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Abstract

This paper describes how design patterns help to enhance the
flexibility and extensibility of communication software by per-
mitting network services to evolve independently of the strate-
gies used to passively initialize the services. The paper makes
three contributions to the study and development of config-
urable distributed applications. First, it identifies five orthog-
onal dimensions of passive service initialization: service ad-
vertisement, endpoint listening, service handler creation, pas-
sive connection establishment, and service handler activation.
Second, the paper illustrates how design patterns have been
used to build a communication software framework that sup-
ports flexible configuration of different strategies for each of
these five dimensions. Third, the paper demonstrates how de-
sign patterns and frameworks are being used successfully to
develop highly configurable production distributed systems.

1 Introduction

Despite dramatic increases in network and host performance,
developing extensible communication software for distributed
systems remains hard.Design patterns[1] are a promising
technique for capturing and articulating proven techniques for
developing extensible distributed software. A design pattern
captures the static and dynamic structures and collaborations
of components in a software architecture. It also aids the de-
velopment of extensible components and frameworks by ex-
pressing the structure and collaboration of participants in a
software architecture at a level higher than (1) source code

�This research is supported in part by a grant from Siemens MED.

or (2) object-oriented design models that focus on individual
objects and classes.

This paper examines design patterns that form the basis for
flexibly configuring network services in applications built by
the author and his colleagues for a number of production dis-
tributed systems. Due to stringent requirements for reliability
and performance, these projects provided an excellent testbed
for capturing and articulating the key structure, participants,
and consequences of design patterns for building extensible
distributed systems.

The primary focus of this paper is theAcceptor compo-
nent in theAcceptor-Connectorpattern [2]. This design pat-
tern decouples connection establishment and service initial-
ization from service processing in a networked system. The
Acceptor component is a role in this pattern that enables the
tasks performed by network services to evolve independently
of the strategies used to initialize the servicespassively.

When instantiated and used in conjunction with other pat-
terns, such as Reactor [2] and Strategy [1], the Acceptor-
Connector pattern provides a reusable component in the ACE
framework [3]. ACE provides a rich set of reusable object-
oriented components that perform common communication
softwarekg tasks. These tasks include event demultiplexing,
event handler dispatching, connection establishment, routing,
dynamic configuration of application services, and concur-
rency control.

This paper is organized as follows: Section 2 motivates
the Acceptor-Connector pattern by illustrating how it has
been applied in production application-levelGateways ; Sec-
tion 3 outlines theAcceptor component of the Acceptor-
Connector pattern; Section 4 illustrates how to implement
Acceptor ’s flexibly and efficiently by applying the Wrap-
per Facade [2], Strategy, Bridge, Factory Method, and Ab-
stract Factory design patterns [1]; Section 5 outlines how
Acceptor s have been used to implement application-level
Gateways ; Section 6 discusses related patterns; and Sec-
tion 7 presents concluding remarks.
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2 Background and Motivation

2.1 Separating Connection establishment and
service initialization

Many network services, such as remote login, file transfer, and
WWW HTML document transfer, use connection-oriented
protocols, such as TCP, to deliver data reliably between two
or more communication endpoints. Establishing connections
between endpoints involves the following two roles:

1. Thepassiverole, which initializes an endpoint of com-
munication at a particular address and waits passively for the
other endpoint(s) to connect with it.

2. Theactiverole, which actively initiates a connection to
one or more endpoints that are playing the passive role.

The intent of the Acceptor-Connector pattern described in
this paper is to decouple passive initialization of a service from
the tasks performed after the service is initialized. This pat-
tern was discovered by generalizing from extensive experience
building reusable communication frameworks for a range of
distributed systems [3]. In all these systems, the tasks per-
formed by a service are independent of the following:

� Which endpoint initiated the connection: Connec-
tion establishment is inherently asymmetrical since the pas-
sive endpointwaits whereas the active endpointinitiates the
connection. After the connection is established, however, data
may be transferred between endpoints in a manner that obeys
a service’s communication protocol, which can be structured
as peer-to-peer, request-response, oneway streaming, etc.

� The network programming interfaces and underlying
protocols used to establish the connection: Different net-
work programming interfaces, such as sockets or TLI, pro-
vide different routines to establish connections using various
underlying transport protocols. After a connection is estab-
lished, however, data may be transferred between endpoints
using standardread /write system calls that communicate
between separate endpoints in a distributed application.

� The strategies used to initialize the service: The pro-
cessing tasks performed by a service are typically independent
of the initialization strategies used to (1) advertise the service,
(2) listen for connection requests from peers, (3) create a ser-
vice handler to process those requests, (4) establish the con-
nection with the peers, and (5) execute the service handler
in one or more threads or processes. Explicitly decoupling
these initialization strategies from the service behavior itself
enhances the extensibility, reusability, and portability of the
service.

2.2 Motivating Example

Figure 1 illustrates how the Acceptor-Connector pattern
has been used to implement multi-service, application-level
Gateways , which is described further in [4]. AGateway

PEERS

1: send_msg()

PEERS

4: send_msg()

GATEWAY

2: recv_msg()
3: route_msg()

Figure 1: A Connection-oriented, Multi-service Application-
level Gateway

is a mediator [1] that routes data between services running on
Peers located throughout a wide area and local area network.
From theGateway ’s perspective,Peer services differ solely
by their message framing formats and payload types. Several
types of data, such as status information, bulk data, and com-
mands, are exchanged by services running on theGateway
and thePeers . Peers are located throughout local area net-
works (LANs) and wide-area networks (WANs) and are used
to monitor and control network resources, such as satellites,
call centers, or remote branch offices.

The Gateway uses a connection-oriented interprocess
communication (IPC) mechanism, such as TCP, to transmit
data between its connectedPeers . Connection-oriented pro-
tocols simplify application error handling and can enhance
performance over long-delay WANs. Each communication
service in thePeers sends and receives status information,
bulk data, and commands to and from theGateway using
separate TCP connections. Each connection is bound to a
unique address,e.g.,an IP address and port number. For in-
stance, bulk data sent from a ground stationPeer through the
Gateway is connected to a different port than status informa-
tion sent by a tracking station peer through theGateway to a
ground stationPeer . Separating connections in this manner
allows more flexible routing strategies and more robust error
handling if connections fail or become flow controlled.

One way to design thePeers andGateway is to tightly
couple the connection roles with the network services. For in-
stance, theGateway could be hard-coded to play the active
connection role and initiate connections for all its services. To
accomplish this, it could iterate through a list ofPeers and
synchronously connect with each of them. Likewise,Peers
could be hard-coded to play the passive role and accept the
connections and initialize their services. Moreover, the active
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and passive connection code for theGateway andPeers , re-
spectively, could be implemented with conventional network
programming interfaces like sockets or TLI. In this case, a
Peer could callsocket, bind, listen, andaccept
to initialize a passive-mode listener socket and theGateway
could callsocket andconnect to actively initiate a data-
mode connection socket. After the connections were estab-
lished, theGateway could route data for each type of service
it provided.

However, the tightly coupled design outlined above has the
following drawbacks:

� Limited extensibility and reuse of the Gateway and
Peer software: For example, the mechanisms used to estab-
lish connections and initialize services are independent of the
type of routing service,e.g.,status information, bulk data, or
commands, performed by theGateway . In general, these ser-
vices tend to change more frequently than the connection and
initialization mechanisms.

� Inflexible connection roles: There are circumstances
where theGateway must play thepassiveconnection role
and thePeers play the active role. Therefore, tightly cou-
pling the software that implements connection establishment
with the software that implements the service makes it hard
to (1) reuse existing services, (2) extend theGateway by
adding new routing services and enhancing existing services,
and (3) reconfigure the connection roles played byPeers and
theGateway .

� Non-portable and error-prone interfaces: Using low-
level network programming, such as sockets or TLI, is non-
portable and error-prone. These low-level interfaces do not
provide adequate type-checking since they utilize low-level
I/O handles. It is easy to accidentally misuse these interfaces
in ways that cannot be detected until run-time.

Therefore, a more flexible and efficient way to design the
Peers andGateway is to use theAcceptorpattern.

3 The Acceptor-Connector Pattern

This section presents a brief overview of the Acceptor-
Connector pattern. A comprehensive discussion is available
in [2].

Intent: The intent of the Acceptor-Connector pattern is to
decouple connection establishment and service initialization
from service processing in a networked system.

Forces: The Acceptor-Connector pattern resolves the fol-
lowing forces for distributed applications that use connection-
oriented communication protocols:

1. The need to reuse connection establishment code for
each new service.Key characteristics of services, such as the
communication protocol or the data format, should be able to
evolve independently and transparently from the mechanisms
used to establish the connections. Since service characteristics
change more frequently than connection establishment mecha-
nisms, separating these concerns helps to reduce software cou-
pling and increase code reuse.

2. The need to make the connection establishment code
portable across platforms that contain different network
programming interfaces. Parameterizing the Acceptor-
Connector’s mechanisms for accepting connections and per-
forming services helps to improve portability by allowing the
wholesale replacement of these mechanisms. This makes the
connection establishment code portable across platforms that
contain different network programming interfaces, such as
sockets but not TLI, or vice versa.

3. The need to enable flexible service concurrency poli-
cies. After a connection is established, peer applications use
the connection to exchange data to perform some type of ser-
vice, such as remote login or HTML document transfer. A
service can run in a single-thread, in multiple threads, or mul-
tiple processes, regardless regardless of how the connection
was established or how the services were initialized.

4. The need to ensure that a passive-mode I/O handle is
not accidentally used to read or write data.By strongly decou-
pling the connection establishment logic from the service pro-
cessing logic, passive-mode socket endpoints cannot be used
incorrectly,e.g.,by trying to read or write data on a passive-
mode listener socket used to accept connections. This elimi-
nates an important class of network programming errors.

5. The need to actively establish connections with large
number of peers efficiently.When an application must estab-
lish connections with a large number of peers efficiently over
long-delay WANs it may be necessary to use asynchrony and
initiate and complete multiple connections in non-blocking
mode.

Structure and participants: The structure of the key partic-
ipants in the Acceptor-Connector pattern is illustrated in Fig-
ure 2. TheAcceptor andConnector components are fac-
tories that assemble the resources necessary to connect and ac-
tivateSvc Handler s. Svc Handler s are components that
exchange messages with connectedPeers .

The participants in the Connection Layer of the Acceptor-
Connector pattern can leverage off the Reactor pattern. For in-
stance, theConnector ’s asynchronous initialization strategy
establishes a connection after areactor notifies it that a pre-
viously initiated connection request to aPeer has completed.
Using the Reactor pattern enables multipleSvc Handlers
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Figure 2: Structure of Participants in the Acceptor-Connector
Pattern

to be initialized asynchronously within a single thread of con-
trol.

To increase flexibility,Acceptor andConnector com-
ponents can be parameterized by a particular type of IPC
mechanism andSVCHANDLER. The IPC mechanism supplies
the underlying transport mechanism, such as C++ wrapper fa-
cades [2] for sockets or TLI, used to establish a connection.
The SVCHANDLERspecifies an abstract interface for defin-
ing a service that communicates with a connectedPeer . A
Svc Handler can be parameterized by aPEERSTREAM
endpoint. TheAcceptor andConnector components as-
sociate this endpoint to itsPeer when a connection is estab-
lished.

By inheriting from Event Handler , a Svc Handler
can register with aReactor and use the Reactor pattern to
handle its I/O events within the same thread of control as the
Acceptor or Connector . Conversely, aSvc Handler
can use the Active Object pattern and handle its I/O events in
a separate thread. The tradeoffs between these two patterns is
described in [4].

Figure 2 illustrates how parameterized types can be used
to decouple the Acceptor-Connector pattern’s connection es-
tablishment strategy from the type of service and the type of
connection mechanism. Application developers supply tem-
plate arguments for these types to produce Application Layer
Acceptor orConnectors . This design enables the whole-
sale replacement of theSVCHANDLERand IPC mechanism,
without affecting the Acceptor-Connectorpattern’s service ini-
tialization strategy.

Note that a similar degree of decoupling could be achieved
via inheritance and dynamic binding by using the Abstract
Factory or Factory Method patterns described in [1]. Pa-

rameterized types were used to implement this pattern since
they improve run-time efficiency. In general, templates trade
compile- and link-time overhead and space overhead for im-
proved run-time performance.

Dynamics: Figure 3 illustrates the dynamics among partic-
ipants for theAcceptor component of the pattern. These
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Figure 3: Dynamics for theAcceptor Component

dynamics are divided into the following three phases:

1. Endpoint initialization phase, which creates a passive-
mode endpoint encapsulated byPEERACCEPTORthat is
bound to a network address, such as an IP address and port
number. The passive-mode endpoint listens for connection
requests fromPeers . This endpoint is registered with the
Reactor , which drives the event loop that waits on the end-
point for connection requests to arrive fromPeers .

2. Service activation phase.Since anAcceptor in-
herits from anEvent Handler the Reactor can dis-
patch theAcceptor ’s handle event method when con-
nection request events arrive. This method performs the
Acceptor ’s Svc Handler initialization strategy, which
(1) assembles the resources necessary to create a new
Concrete Svc Handler object, (2) accepts the connec-
tion into this object, and (3) activates theSvc Handler by
calling itsopen hook method.

3. Service processing phase.After theSvc Handler is
activated, it processes incoming event messages arriving on
thePEERSTREAM. A Svc Handler can process incoming
event messages in accordance with patterns, such as the Reac-
tor or the Active Object [2].

The dynamics among participants inConnector compo-
nent of the pattern can be divided into the following three
phases:
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1. Connection initiation phase, which actively connects
one or moreSvc Handlers with their peers. Connec-
tions can be initiated synchronously or asynchronously. The
Connector ’s connect method implements the strategy for
establishing connections actively.

2. Service initialization phase, which activates a
Svc Handler by calling its open method when its con-
nection completes successfully. Theopen method of the
Svc Handler then performs service-specific initialization.

3. Service processing phase, which performs the
application-specific service processing using the data ex-
changed between theSvc Handler and its connected
Peer .

4 Applying Design Patterns to Develop
Extensible Acceptors

This section describes how to implement a highly con-
figurable instance of theAcceptor component from the
Acceptor-Connector pattern by applying other design pat-
terns, in particular Wrapper Facade [2], Strategy, Bridge, Fac-
tory Method, and Abstract Factory [1]. These patterns en-
able anAcceptor to flexibly configure alternative strategies
for service advertisement, endpoint listening, service handler
creation, service connection acceptance, andservice activa-
tion. In this section, we focus on theSvc Handler and the
Acceptor components shown in Figure 2. TheConnector
component can be implemented in similarly.

4.1 The SvcHandler Class

This abstract C++ class provides a generic interface for pro-
cessing services. Applications customize this class to per-
form a particular type of service. The C++ interface for the
Svc Handler is shown below:

template <class PEER_STREAM>
// Type of IPC mechanism.

class Svc_Handler {
public:

// Pure virtual method (defined by subclass).
virtual int open (void) = 0;

protected:
// Instance of IPC mechanism.
PEER_STREAM stream_;

};

Each Svc Handler contains a communication end-
point, called peer stream , of parameterized type
PEERSTREAM. This endpoint is used to exchange data
between theSvc Handler and its connected peer. After a
connection is successfully accepted, anAcceptor activates

a Svc Handler by calling itsopen method. This pure vir-
tual method must be overridden by a concreteSvc Handler
subclass and performs service-specific initializations.

4.2 The Acceptor Class

This abstract C++ class implements the generic strategy
for passively initializing network services, which are imple-
mented as concreteSvc Handler s. AnAcceptor instance
coordinates the following five orthogonal dimensions of pas-
sive service initialization:

1. Service advertisement, which initializes the
peer acceptor endpoint and announces the availability
of the service to interested peers.

2. Endpoint listening, which waits passively for peers to
actively initiate connections on thepeer acceptor end-
point.

3. Service handler creation, which creates and initializes
a concreteSvc Handler that can communicate with the new
peer.

4. Passive connection establishment, which uses the
peer acceptor endpoint to accept a connection initiated
actively by a peer.

5. Service handler concurrency activation, which deter-
mines the type of concurrency mechanism used to process data
exchanged with peers.

The Acceptor ’s open method is responsible for handling
the first two dimensions. TheAcceptor ’s accept method
is responsible for handling the remaining three dimensions.

The following interface illustrates the methods and data
members in theAcceptor class:

template <class SVC_HANDLER,
// Type of service handler.
class PEER_ACCEPTOR>
// Type of passive connection mechanism.

class Acceptor {
public:

// Defines the initialization strategies.
typedef Strategy_Factory<SVC_HANDLER,

PEER_ACCEPTOR>
STRATEGY_FACTORY;

// Initialize listener endpoint at <addr>
// according to specified <init_strategies>.
virtual void open

(const PEER_ACCEPTOR::PEER_ADDR &addr,
STRATEGY_FACTORY *init_strategies);

// Embodies the strategies for creating,
// connecting, and activating <SVC_HANDLER>’s.
virtual void accept (void);

protected:
// Defines strategy to advertise endpoint.
virtual void advertise_svc

(const PEER_ACCEPTOR::PEER_ADDR &);
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// Defines the strategy to listen for active
// connections from peers.
virtual void make_listener (PEER_ACCEPTOR *);

// Defines <SVC_HANDLER> creation strategy.
virtual SVC_HANDLER *make_svc_handler (void);

// Defines <SVC_HANDLER> connection strategy.
virtual void accept_svc_handler (SVC_HANDLER *);

// Defines <SVC_HANDLER> concurrency strategy.
virtual int activate_svc_handler (SVC_HANDLER *);

private:
// Pointers to objects that implement the
// <Acceptor>’s initialization Strategies.
Advertise_Strategy<PEER_ACCEPTOR::PEER_ADDR>

*listen_strategy_;
Listener_Strategy<PEER_ACCEPTOR>

*listen_strategy_;
Creation_Strategy<SVC_HANDLER>

*create_strategy_;
Accept_Strategy<SVC_HANDLER, PEER_ACCEPTOR>

*accept_strategy_;
Concurrency_Strategy<SVC_HANDLER>

*concurrency_strategy_;
};

The Acceptor is a C++ template that is parameterized by
a particular type ofPEERACCEPTORand SVCHANDLER.
The PEERACCEPTORis the type of transport mechanism
used by theAcceptor to passively establish the connec-
tion. The SVCHANDLERis the type of service that pro-
cesses the data exchanged with its connected peer. Parameter-
ized types are used to efficiently decouple the service initial-
ization strategies from the type ofSvc Handler , network
programming interface, and transport layer connection proto-
col. This design improves the extensibility of theAcceptor
and Svc Handler components by allowing the wholesale
replacement of various strategies.

Figure 4 visually depicts the relationship between the
classes that comprise theAcceptor implementation. The
five strategies supported by theAcceptor to passively ini-
tializeSvc Handlers are illustrated and described below.

1. Service advertisement strategies: The Acceptor
uses its service advertisement strategy to initialize the
PEERACCEPTORendpoint and to announce the availability
of the service to interested peers. Figure 5 illustrates the com-
mon strategies configured into theAcceptor to advertise
services:

� Well-known addresses, such as Internet port numbers and
host names;

� Endpoint portmappers, such as those used by Sun RPC
and DCE;

� X.500 directory service, which is a ISO OSI standard for
mapping names to values in a distributed system.

Acceptor

SVC_HANDLER
PEER_ACCEPTOR

open()
accept()
make_listener()
make_svc_handler()
activate_svc_handler()
accept_svc_handler()
advertise_svc()

sh = make_svc_handler();
accept_svc_handler (sh);
activate_svc_handler (sh);

Accept
Strategy

accept_svc_handler()

SVC_HANDLER
PEER_ACCEPTOR

2: 

A

Concurrency
Strategy

SVC_HANDLER

activate_svc_handler()
A

Creation
Strategy

SVC_HANDLER

make_svc_handler()
A

advertise_svc()
make_listener()1:

Listener
Strategy

make_listener()
A

PEER_ACCEPTOR

Advertise
Strategy

advertise_svc()
A

ADDR

Figure 4: Class Structure of theAcceptor Class Implemen-
tation

Advertise
Strategy

advertise_svc()

Portmapper
Strategy

Well-known
Address
Strategy

A

X.500
Strategy

ADDR

ADDR

ADDR

ADDR

Figure 5: Alternative Service Advertising Strategies

2. Endpoint listener strategies: The Acceptor uses its
endpoint listening strategy to wait passively for peers to ac-
tively initiate a connection to thePEERACCEPTORendpoint.
Figure 6 illustrates the following common strategies config-

Listener
Strategy

make_listener()

Threaded
Listener
Strategy

Reactive
Listener
Strategy

A

PEER  ACCEPTOR

PEER  ACCEPTOR

PEER  ACCEPTOR

Figure 6: Alternative Endpoint Listener Strategies

ured into theAcceptor to wait for connections:
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� Reactive listeners, which use an event-demultiplexer,
such as aReactor [2], to listen passively on a set of
endpoints in a single thread of control;

� Threaded listeners, which use a separate thread of control
for each listener.

3. Service handler creation strategies: The Acceptor
uses its creation strategy to initialize aSvc Handler that
will communicate with the new peer. Figure 7 illustrates the

Creation
Strategy

SVC_HANDLER

make_svc_handler()

Singleton
Strategy

SVC_HANDLERDemand
Strategy

SVC_HANDLER Dynamic
Strategy

SVC_HANDLER

A

Figure 7: AlternativeSvc Handler Creation Strategies

following common strategies configured into theAcceptor
to createSvc Handlers :

� Demand creation, which allocates a newSvc Handler
for every new connection;

� Singleton creation, which only creates a single
Svc Handler that is recycled for every connec-
tion;

� Dynamic creation, which does not store the
Svc Handler object in the application process until
it is required, at which point the object is dynamically
linked into the process from a shared library.

4. Passive connection establishment strategies:The
Acceptor uses its passive connection establishment strategy
to accept a new connection initiated actively by a peer. Fig-
ure 8 illustrates the following common strategies configured
into theAcceptor to accept connections from peers:

� Connection-oriented (CONS) establishment, which uses
connection-oriented protocols, such as TCP, SPX, or
TP4;

� Connectionless (CLNS) establishment, which uses the
Adapter pattern [1] to utilize a uniform interface for con-
nectionless protocols.

CLNS
Strategy

Accept
Strategy

accept_svc_handler()

SVC_HANDLER
PEER_ACCEPTOR

CONS
Strategy

SVC_HANDLER
PEER_ACCEPTOR SVC_HANDLER

PEER_ACCEPTOR

A

Figure 8: AlternativeSvc Handler Connection Acceptance
Strategies

5. Service handler concurrency activation strategies: The
Acceptor uses its activation strategy to determine the type
of concurrency mechanism aSvc Handler will use to pro-
cess data exchanged with its peer. Figure 9 illustrates the fol-

Concurrency
Strategy

SVC_HANDLER

activate_svc_handler()

Thread
Strategy

SVC_HANDLER

Reactive
Strategy

SVC_HANDLER Process
Strategy

SVC_HANDLER

Thread
Pool

Strategy

SVC_HANDLER

A

Figure 9: AlternativeSvc Handler Concurrency Activation
Strategies

lowing common strategies configured into theAcceptor to
activateSvc Handlers :

� Reactive activation, where allSvc Handlers execute
within a single thread of control by using the Reactor pat-
tern [2];

� Thread activation, where eachSvc Handler executes
within its own separate thread;

� Thread pool activation, where eachSvc Handler exe-
cutes within a pool of threads to increase performance on
multi-processors;

� Process activation, where eachSvc Handler executes
within a separate process.
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The next section illustrates how differentAcceptor s can
be configured flexibly to support alternative strategies without
requiring changes to its external interface design or internal
implementation.

4.3 Using Design Patterns to Implement an Ex-
tensible Acceptor

The ACE implementation of the Acceptor-Connector pattern
applies the Wrapper Facade [2], Factory Method, Strategy,
Bridge, and Abstract Factory patterns described in [1]. These
patterns facilitate the flexible and extensible configuration and
use of the initialization strategies discussed above. Below,
each pattern used in the ACEAcceptor is described, the
design forces it resolves are outlined, and an example of how
the pattern is used to implement theAcceptor is presented.

Using the Wrapper Facades Pattern: The Wrapper Fa-
cade [2] pattern encapsulates the functions and data pro-
vided by existing non-OO APIs within more concise, robust,
portable, maintainable, and cohesive OO class interfaces. The
ACE Acceptor uses the Wrapper Facade pattern to provide
a uniform interface that encapsulates differences between non-
uniform network programming mechanisms, such as sockets,
TLI, named pipes, and STREAM pipes.

Figure 10 illustrates how the ACEAcceptor uses the
Wrapper Facade patterns to enhance its portability across plat-
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(UNIFORM)
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SOCKET

INTERFACE

Figure 10: Using the Wrapper Facade Pattern

forms that contain different network programming interfaces,
such as sockets but not TLI, or vice versa. In this example,
thePEERSTREAMtemplate argument of theSvc Handler
class can be instantiated with either aSOCKStream or a
TLI Stream , depending on whether the platform supports

sockets or TLI. The Wrapper Facade pattern ensures that these
two classes can be used identically by different instantiations
of theSvc Handler class.

Using the Strategy Pattern: The Strategy pattern [1] de-
fines a family of algorithms, encapsulates each one as an ob-
ject, and makes them interchangeable. The ACEAcceptor
uses this pattern to determine the passive initialization strate-
gies used to create, accept, and execute aSvc Handler . By
using the Strategy pattern, an application can configure dif-
ferent initialization strategieswithoutmodifying the following
algorithm used byaccept , as follows:

template <class SVC_HANDLER, class PEER_ACCEPTOR> void
Acceptor<SVC_HANDLER, PEER_ACCEPTOR>::accept (void)
{

// Create a new <SVC_HANDLER>.
SVC_HANDLER *svc_handler =

make_svc_handler ();

// Accept connection from the peer.
accept_svc_handler (svc_handler);

// Activate <SVC_HANDLER>.
activate_svc_handler (svc_handler);

}

Figure 11 illustrates how the Strategy pattern is used to
implement theAcceptor ’s concurrency strategy. When

Acceptor

accept() A

Concurrency
Strategy

SVC_HANDLER

activate_svc_handler()

A

Thread
Strategy

SVC_HANDLER

...
activate_svc_handler(sh)
...

SVC_HANDLER
PEER_ACCEPTOR

Figure 11: Using the Strategy Pattern

theAcceptor is initialized, itsStrategy Factory con-
figures the designated concurrency strategy. As shown in
Figure 9, there are a number of alternative strategies. The
particularly strategy illustrated in Figure 11 activates each
Svc Handler to run in a separate thread of control. Since
all concurrency algorithms are encapsulated in a uniform in-
terface, however, it is easy to replace this strategy with an al-
ternative one, such as running theSvc Handler in a separate
process.

Using the Bridge Pattern: The Bridge pattern [1] decou-
ples an abstraction from its implementation so that the two
can vary independently. The ACEAcceptor uses this pat-
tern to provide a stable, uniform interface that is both open
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(i.e., extensible) and closed (i.e., does not require direct code
changes).

Figure 12 illustrates how the Bridge pattern is used to
implement theAcceptor ’s connection acceptance strategy

Acceptor
accept_svc_handler()
accept_strategy_
accept()
...

A Accept
Strategy

accept_svc_handler()

SVC_HANDLER
PEER_ACCEPTOR

CONS  Strategy

SVC_HANDLER
PEER_ACCEPTOR

accept_svc_handler()

A

2: accept_strategy_->accept_svc_handler(sh)

...
1: accept_svc_handler(sh)
...

SVC_HANDLER
PEER_ACCEPTOR

Figure 12: Using the Bridge Pattern

(the Bridge pattern is used for all the otherAcceptor
strategies, as well). When a connection is established
with a peer, theAcceptor ’s accept method invokes the
accept svc handler method. Instead of performing the
passive connection acceptance strategy directly, however, this
method forwards the method to the appropriate subclass of
Accept Strategy . In the example shown in Figure 12,
this subclass establishes the connection using a connection-
oriented protocol. Since the Bridge pattern is used, however,
an application can change theAcceptor ’s connection accep-
tance strategy to an alternative strategy. For example, it can
change to the connectionless version shown in Figure 8 with-
out requiring any changes to the code inaccept .

Another advantage of using the Bridge pattern is that a sub-
class of theAcceptor can override itsmake * methods to
avoid the additional overhead of indirecting through strategy
objects on every call. In this case, theaccept method uses
the Template Method pattern [1]. In the Template Method ver-
sion ofaccept the steps in theAcceptor ’s passive initial-
ization algorithm are fixed, but can be overridden by derived
classes.

Using the Factory Method Pattern: The Factory Method
pattern [1] defines a stable interface for initializing a compo-
nent, but allows subclasses to specify the details of the initial-
ization. The ACEAcceptor uses this pattern to allow each
initialization strategy used by theAcceptor to be extended
without modifying theAcceptor or Svc Handler imple-
mentations.

Figure 13 illustrates how the Factory Method pattern is
used to transparently extend theAcceptor ’s creation strat-
egy. The Creation Strategy base class contains a

Svc
Handler

A

Concrete
Svc Handler

return new Concrete_Svc_Handler
CREATES

Creation
Strategy

SVC_HANDLER

make_svc_handler()

Demand
Strategy

Concrete
Svc Handler

A

make_svc_handler()

Figure 13: Using the Factory Method Pattern

factory method calledmake svc handler . This method
is invoked by themake svc handler Bridge method in
the Acceptor to create the appropriate type of concrete
Svc Handler , as follows:

template <class SVC_HANDLER, class PEER_ACCEPTOR> void
Acceptor<SVC_HANDLER, PEER_ACCEPTOR>::accept (void)
{

creation_strategy_->make_svc_handler ();
}

An implementation of a creation strategy based on thedemand
strategy could be implemented as follows:

template <class SVC_HANDLER> SVC_HANDLER *
Demand_Strategy<SVC_HANDLER>::make_svc_handler (void) {

// Implement the ‘‘demand’’ creation
// strategy by allocating a new <SVC_HANDLER>.
return new SVC_HANDLER;

}

Note that it is the responsibility of theAcceptor ’s
Strategy Factory to determine the type of subclass as-
sociated with thecreation strategy .

Using the Abstract Factory: The Abstract Factory pattern
[1] provides a single interface that creates families of related
objects without requiring the specification of their concrete
classes. TheAcceptor uses this pattern to simplify its in-
terface by localizing all five of its initialization strategies into
a single class. The Abstract Factory pattern also ensures that
all selected strategies can work together correctly.

Figure 14 illustrates how the Abstract Factory pattern is
used to implement theStatus Acceptor taken from the
Gateway example describe in Section 5. This example in-
stantiates the followingStrategy Factory template:

template <class SVC_HANDLER,
// Type of service handler.
class PEER_ACCEPTOR>
// Type of passive connection.
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Figure 14: Using the Abstract Factory Pattern

class Strategy_Factory {
public:

Strategy_Factory
(Advertise_Strategy<PEER_ACCEPTOR::PEER_ADDR> *,

Listener_Strategy<PEER_ACCEPTOR> *,
Creation_Strategy<SVC_HANDLER> *,
Accept_Strategy<SVC_HANDLER, PEER_ACCEPTOR> *,
Concurrency_Strategy<SVC_HANDLER> *);

// Factory methods called by Acceptor::open().
Advertise_Strategy<PEER_ACCEPTOR::PEER_ADDR>

*make_advertise_strategy (void);
Listener_Strategy<PEER_ACCEPTOR>

*make_listener_strategy (void);
Creation_Strategy<SVC_HANDLER>

*make_create_strategy (void);
Accept_Strategy<SVC_HANDLER, PEER_ACCEPTOR>

*make_accept_strategy (void);
Concurrency_Strategy<SVC_HANDLER>

*make_concurrency_strategy (void);

// ...

Figure 14 shows the creation and concurrency
strategies–the other strategies are handled similarly.
The Status Strategies factory instructs the
Status Acceptor to dynamically create each
Status Router , which will execute in its own thread
of control. This example illustrates the following points:

� The Abstract Factory pattern is often used in conjunc-
tion with the Factory Method pattern. For example, the
Strategy Factory abstract factory simplifies the inter-
face to theAcceptor by consolidating all five initialization
strategy factory methods in a single class.

� The Abstract Factory pattern ensures that various the
strategies can work together correctly. For instance, the
Strategy Factory can be subclassed and its various

make * Factory Methods can be overridden to create different
types of initialization strategies.

� Subclasses of theStrategy Factory abstract fac-
tory can be used to ensure that conflicting initialization strate-
gies are not configured accidentally. For example, thesingle-
toncreation strategy may conflict with thethreadconcurrency
strategy since multiple threads of control will attempt to access
a single communication endpoint. AStrategy Factory
subclass can be defined to check for these conflicts and report
an error at configuration time.

5 Example: Implementing Extensi-
ble Application-level Gateways Using
the Acceptor

This section illustrates how the application-levelGateway
described in Section 2 uses the pattern-basedAcceptor
component from Section 4 to simplify the task of passively
initializing services whose connections are initiated actively
by Peers . In this example thePeers play the active role in
establishing connections with theGateway .

Defining SvcHandlers for routing peer messages:
The three classes shown below,Status Router ,
Bulk Data Router , and CommandRouter , process
routing messages received fromPeers . These classes inherit
from Svc Handler , which allows them to be passively
initialized by anAcceptor , as shown in Figure 15. Each
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Figure 15: Structure ofAcceptor Participants in the
Gateway

class is instantiated with a specific type of C++ IPC wrapper
facade that exchanges data with its connected peer. For

10



example, the classes below use aSOCKStream as the un-
derlying data transport delivery mechanism.SOCKStream
is an ACE C++ wrapper facade that encapsulates the data
transfer functions in the socket interface. By virtue of the
Strategy pattern, however, it easy to vary the data transfer
mechanism by parameterizing theSvc Handler with a
differentPEERSTREAM, such as aTLI Stream .

TheStatus Router class routes status data sent to and
received fromPeers :1

class Status_Router :
public Svc_Handler<SOCK_Stream>

{
public:

// Performs router initialization.
virtual int open (void);
// Receive and route status data from/to peers.
virtual int handle_event (void);
// ...

TheBulk Data Router class routes bulk data sent to and
received fromPeers .

class Bulk_Data_Router :
public Svc_Handler<SOCK_Stream>

{
public:

// Performs router initialization.
virtual int open (void);
// Receive and route bulk data from/to peers.
virtual int handle_event (void);
// ...

TheCommandRouter class routes bulk data sent to and re-
ceived fromPeers :

class Command_Router :
public Svc_Handler<SOCK_Stream>

{
public:

// Performs router initialization.
virtual int open (void);
// Receive and route command data from/to peers.
virtual int handle_event (void);
//...

Defining Acceptor factories to create SvcHandlers: The
three classes shown below are instantiations of theAcceptor
template:

// Typedefs that instantiate <Acceptor>s for
// different types of routers.
typedef Acceptor<Status_Router, SOCK_Acceptor>

Status_Acceptor;
typedef Acceptor<Bulk_Data_Router, SOCK_Acceptor>

Bulk_Data_Acceptor
typedef Acceptor<Command_Router, SOCK_Acceptor>

Command_Acceptor;

1To save space, these examples have been simplified by omitting most of
the detailed protocol logic and error handling code.

These typedefs instantiate theAcceptor template with
concrete parameterized type arguments forSVCHANDLER
and PEERACCEPTOR. A SOCKAcceptor wrapper fa-
cade is used as the underlyingPEERACCEPTORin or-
der to accept a connection passively. Parameterizing the
Acceptor with a different PEERACCEPTOR, such as a
TLI Acceptor , is easy since the IPC mechanisms are en-
capsulated in C++ wrapper facade classes. The three objects
shown below are instances of these classes that create and
activate Status Routers , Bulk Data Routers , and
CommandRouters , respectively:

// Accept connection requests from
// Gateway and activate Status_Router.
static Status_Acceptor status_acceptor;

// Accept connection requests from
// Gateway and activate Bulk_Data_Router.
static Bulk_Data_Acceptor bulk_data_acceptor;

// Accept connection requests from
// Gateway and activate Command_Router.
static Command_Acceptor command_acceptor;

Defining strategies to initialize SvcHandlers: The
three classes shown below are instantiations of the
Strategy Factory described in Section 4.2:

// Typedefs that instantiate different types
// of <Strategy_Factory>.
typedef Strategy_Factory<Status_Router,

SOCK_Acceptor>
Status_Strategies;

typedef Strategy_Factory<Bulk_Data_Router,
SOCK_Acceptor>

Bulk_Data_Strategies;
typedef Strategy_Factory<Command_Router,

SOCK_Acceptor>
Command_Strategies;

These typedefs instantiate theStrategy Factory tem-
plate with concrete parameterized type arguments for
SVCHANDLER and PEERACCEPTOR. The three ob-
jects shown below instantiate these classes to spec-
ify the initialization strategies forStatus Routers ,
Bulk Data Routers , and CommandRouters , respec-
tively:

// Creates a multi-threaded <Status_Router>.
Status_Strategies threaded

(new Well_Known_Addr,
new Reactive_Listener (Reactor::instance ()),
new Demand,
new CONS,
new Multi_Thread);

// Creates a multi-processed <Bulk_Data_Router>.
Bulk_Data_Strategies process

(new Well_Known_Addr,
new Reactive_Listener (Reactor::instance ()),
new Demand,
new CONS,
new Multi_Process);
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// Creates a single-thread reactive <Command_Router>.
Command_Strategies reactive

(new Well_Known_Addr,
new Reactive_Listener (Reactor::instance ()),
new Demand,
new CONS,
new Reactive (Reactor::instance ());

Each Strategy Factory configuration shown above
uses thewell known addressservice advertisement strategy,
thereactivelistener strategy, thedemandSvc Handler cre-
ation strategy, and theconnection-orientedacceptance strat-
egy. To illustrate the flexibility of the Acceptor-Connector
pattern, however, eachStrategy Factory implements a
different concurrency strategy, as follows:

� When the Status Router is activated by
Status Acceptor it runs in a separate thread.

� When activated by Bulk Data Acceptor , the
Bulk Data Router runs as a separate process.

� When activated by CommandAcceptor , the
CommandRouter runs in the same thread as with the
Reactor singleton [1], which is used to demultiplex
connection requests for the threeAcceptor factories.

Note how changing the concurrency strategy does not af-
fect theAcceptor class. Thus, theAcceptor ’s generic
strategy for passively initializing services can be reused, while
permitting specific details, such as thePEERACCEPTOR,
SVCHANDLER, and selected initialization strategies, to
change flexibly.

The main() gateway function: The main gateway initial-
izes theAcceptor s with their well-known ports and initial-
ization strategies, as follows:

// Main program for the Gateway.

int main (void) {
// Initialize Acceptors with their well-known
// ports and their initialization strategies.
status_acceptor.open

(INET_Addr (STATUS_PORT), &threaded);
bulk_data_acceptor.open

(INET_Addr (BULK_DATA_PORT), &process);
command_acceptor.open

(INET_Addr (COMMAND_PORT), &reactive);

// Loop forever handling connection request
// events and processing data from peers.
for (;;)

Reactor::instance ()->handle_events ();
}

The listener strategy configured for eachAcceptor is reac-
tive, as shown in Section 5. Therefore, the program enters an
event loop that uses theReactor singleton to detect all con-
nection requests fromPeers within a single thread of control.
When connections arrive, theReactor singleton dispatches

the associatedAcceptor , which (1) creates an appropriate
type of Svc Handler on demand to perform the service,
(2) accepts the connection into the handler, and (3) activates
the handler. The concurrency strategy configured into each
Acceptor dictates how everySvc Handler it creates will
processes events.

Figure 16 illustrates the relationship between Acceptor-
Connector pattern components in theGateway after
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Figure 16: Object Diagram for theGateway Acceptor-
Connector Pattern

four connections have been established. The various
*Routers exchange data with their connectedPeers us-
ing the type of concurrency strategy designated by their
Strategy Factories . Meanwhile, the*Acceptor s
continue to listen for new connections.

5.1 Known Uses

UNIX network superservers: Superserver implementa-
tions such as Inetd [5], Listen [6] and the Service Configura-
tor [7] from the ACE framework use a master acceptor process
that listens for connections on a set of communication ports. In
Inetd, for example, each port is associated with a service, such
as the standard Internet servicesFTP, TELNET, DAYTIME , and
ECHO. The acceptor process decouples the functionality of the
Inetd superserver into two separate parts: one for establishing
connections and another for receiving and processing requests
from peers. When a service request arrives on a port monitored
by Inetd, it accepts the request and dispatches an appropriate
pre-registered handler to perform the service.

CORBA Object Request Brokers (ORBs): The ORB Core
layer in many implementations of CORBA [8] uses the
Acceptor-Connector pattern to passively and actively initialize
connection handlers when clients request ORB services. For
example, [9] describes how the Acceptor-Connector pattern is
used to implement the ORB Core portion in The ACE ORB
(TAO), which is a high-performance and real-time implemen-
tation of CORBA.
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Web Browsers: The HTML parsing components in Web
browsers such as Netscape and Internet Explorer use the asyn-
chronous version of the connector component to establish con-
nections with servers associated with images embedded in
HTML pages. This pattern allows multiple HTTP connections
to be initiated asynchronously. This avoids the possibility of
the browser’s main event loop blocking.

Ericsson EOS Call Center Management System: This
system uses the Acceptor-Connector pattern to allow
application-level Call Center Manager event servers [10] to es-
tablish connections actively with passive supervisors in a net-
worked center management system.

Project Spectrum: The high-speed medical image trans-
fer subsystem of project Spectrum [11] uses the Acceptor-
Connector pattern to establish connections passively and ini-
tialize application services for storing large medical images.
Once connections are established, applications send and re-
ceive multi-megabyte medical images to and from the image
stores.

ACE: Implementations of the genericSvc Handler ,
Connector , andAcceptor components described in the
Implementation section are provided as reusable C++ classes
in the ACE framework [3]. Java ACE [12] is a version of ACE
implemented in Java that provides components corresponding
to the participants the Acceptor-Connector pattern.

6 Related Patterns

[1, 13, 2] identify and catalog many architectural and design
patterns. This section examines how the patterns described in
this paper relate to other patterns in the literature.

The intent of the Acceptor-Connector pattern is similar to
the Configuration pattern [14]. The Configuration pattern de-
couples structural issues related to configuring services in dis-
tributed applications from the execution of the services them-
selves. This pattern has been used in frameworks for config-
uring distributed systems, such as Regis [15], to support the
construction of a distributed system from a set of components.
In a similar way, the Acceptor-Connector pattern decouples
service initialization from service processing. The primary
difference is that the Configuration pattern focuses more on
the active composition of a chain of related services, whereas
the Acceptor-Connector pattern focuses on the passive initial-
ization of a service handler at a particular endpoint. In addi-
tion, the Acceptor-Connector pattern also focuses on decou-
pling service behavior from the service’s concurrency strate-
gies.

The intent of the Acceptor-Connector pattern is similar to
that of the Client-Dispatcher-Server pattern [13] in that both

are concerned with the separation of active connection estab-
lishment from subsequent service processing. The primary
difference is that the Acceptor-Connector pattern addresses
passive and active connection establishment and initializa-
tion of both synchronous and asynchronous connections. In
contrast, the Client-Dispatcher-Server pattern focuses on syn-
chronous connection establishment.

The service handlers that are created by acceptors and con-
nectors can be coordinated using the Abstract Session pat-
tern [16], which allows a server object to maintain state for
many clients. Likewise, the Half Object plus Protocol pat-
tern [17] can help decompose the responsibilities of an end-
to-end service into service handler interfaces and the protocol
used to collaborate between them.

The Acceptor-Connector pattern may be viewed as an ob-
ject creational pattern [1]. A creational pattern assembles the
resources necessary to create an object and decouples the cre-
ation and initialization of the object from subsequent use of the
object. The Acceptor-Connector pattern is a factory that cre-
ates, passively connects, and initializes service handlers. Its
accept method implements the algorithm that listens pas-
sively for connection requests, then creates, accepts, and acti-
vates a handler when the connection is established. The han-
dler performs a service using data exchanged on the connec-
tion. Thus, the subsequent behavior of the service is decoupled
from its initialization strategies.

7 Concluding Remarks

This paper describes the Acceptor-Connector pattern and illus-
trates how itsAcceptor component has been implemented
using other patterns to develop highly flexible communication
software. In general, the Acceptor-Connector pattern is ap-
plicable whenever connection-oriented applications have the
following characteristics:

� The behavior of a distributed service does not depend on
the steps required to passively or actively connect and ini-
tialize a service.

� Connection requests from different peers may arrive con-
currently, but blocking or continuous polling for incom-
ing connections on any individual peer is inefficient.

The Acceptor-Connector pattern provides the following bene-
fits for network applications and services:

It enhances the reusability, portability, and extensibility
of connection-oriented software: The Acceptor-Connector
pattern decouples mechanisms for connection establishment
and service initialization, which are application-independent
and thus reusable, from the services themselves, which
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are application-specific. For example, the application-
independent mechanisms in theAcceptor are reusable com-
ponents that know how to establish a connection passively and
to create and activate its associatedSvc Handler . In con-
trast, theSvc Handler knows how to perform application-
specific service processing.

This separation of concerns decouples connection establish-
ment from service handling, thereby allowing each part to
evolve independently. The strategy for establishing connec-
tions actively was written once, placed into the ACE frame-
work, and reused via inheritance, object composition, and
template instantiation. Thus, the same passive connection es-
tablishment code need not be rewritten for each application.
In contrast, services may vary according to different applica-
tion requirements. By parameterizing theAcceptor with a
Svc Handler , the impact of this variation is localized to a
single point in the software.

Improves application robustness: By strongly decoupling
the Acceptor from the Svc Handler the passive-mode
PEERACCEPTORcannot accidentally be used to read or write
data. This eliminates a class of subtle errors that can arise
when programming with weakly typed network programming
interfaces such as sockets or TLI.

However, the Acceptor-Connector pattern can also exhibit the
following drawbacks:

Additional indirection: The Acceptor-Connector pattern
can incur additional indirection compared to using the under-
lying network programming interfaces directly. However, lan-
guages that support parameterized types, such as C++, Ada or
Eiffel, can implement these patterns with no significant over-
head when compilers inline the method calls used to imple-
ment the patterns.

Additional complexity: The Acceptor-Connector pattern
may add unnecessary complexity for simple client applications
that connect with only one server and perform one service us-
ing a single network programming interface. However, the
use of generic acceptor and connector wrapper facades may
simplify even these use cases by shielding developers from
tedious, error-prone and non-portable low-level network pro-
gramming mechanisms.

Open-source implementations of the Acceptor-
Connector and Reactor patterns are available at URL
www.cs.wustl.edu/ �schmidt/ACE.html . This
URL contains complete source code, documentation, and
example test drivers for the C++ components developed as
part of the ACE framework [3] developed at the University of
California, Irvine and Washington University, St. Louis.
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