Applying Design Patterns to Flexibly Configure
Network Services in Distributed Systems

Douglas C. Schmidt
schmidt@uci.edu
http://www.ece.uci.eda/schmidt/
Department of Electrical & Computer Science
University of California, Irvine 92607

This paper appeared as a chapter in the bbekign Pat- or (2) object-oriented design models that focus on individual
terns in CommunicationgLinda Rising, ed.), Cambridge Uni-objects and classes.

versity Press, 2000. An earlier version of this paper appeared, . : : .
in the International Conference on Configurable Distribuu]ald(ilhls paper examines design patterns that form the basis for

. exibly configuring network services in applications built by
Systems, Annapolis, Maryland, May 6-8, 1996. the author and his colleagues for a number of production dis-

tributed systems. Due to stringent requirements for reliability
Abstract and performance, these projects provided an excellent testbed
for capturing and articulating the key structure, participants,

This paper describes how design patterns help to enhancedh@ consequences of design patterns for building extensible
flexibility and extensibility of communication software by pegistributed systems.

mitting network services to evolve independently of the strate-] .)

gies used to passively initialize the services. The paper makeEhe primary focus of this paper is tifeceptor - compo-
three contributions to the study and development of confight in theAcceptor-Connectapattern [2]. This design pat-
urable distributed applications. First, it identifies five orthogl®™M decouples connection establishment and service initial-
onal dimensions of passive service initialization: service d@ation from service processing in a networked system. The
vertisement, endpoint listening, service handler creation, pA&ECeptor componentis a role in this pattern that enables the
sive connection establishment, and service handler activati§itks performed by network services to evolve independently
Second, the paper illustrates how design patterns have b@bfhe strategies used to initialize the servipassively

used to build a communication software framework that Sup'When instantiated and used in Conjunction with other pat_

ports flexible configuration of different strategies for each @frns, such as Reactor [2] and Strategy [1], the Acceptor-
these five dimensions. Third, the paper demonstrates how@gnnector pattern provides a reusable component in the ACE
sign patterns and frameworks are being used successfullytmework [3]. ACE provides a rich set of reusable object-
develop highly configurable production distributed systemsgriented components that perform common communication
softwarekg tasks. These tasks include event demultiplexing,
) event handler dispatching, connection establishment, routing,

1 Introduction dynamic configuration of application services, and concur-

rency control.
Despite dramatic increases in network and host performance

developing extensible communication software for distributed 1 NiS paper is organized as follows: Section 2 motivates
systems remains hardDesign patterng1] are a promising the Acceptor-Connector pattern t_)y illustrating how it has
technique for capturing and articulating proven techniques R§ieNn @pplied in production application-leGateways ; Sec-
developing extensible distributed software. A design pattdi 3 outlines theAcceptor — component of the Acceptor-
captures the static and dynamic structures and collaboratig§nector pattern; Section 4 illustrates how to implement
of components in a software architecture. It also aids the @¢ceptor s flexibly and efficiently by applying the Wrap-
velopment of extensible components and frameworks by &g Facade [2], Strategy, Bridge, Factory Method, and Ab-
pressing the structure and collaboration of participants in%act Factory design patterns [1]; Section 5 outlines how

software architecture at a level higher than (1) source cdifefePtor s have been used to implement application-level
Gateways ; Section 6 discusses related patterns; and Sec-

*This research is supported in part by a grant from Siemens MED. tion 7 presents concluding remarks.

2 Background and Motivation 2.2 Motivating Example

. . . Figure 1 illustrates how the Acceptor-Connector pattern
2.1 Separating Connection establishment a‘ndhas been used to implement multi-service, application-level

service initialization Gateways , which is described further in [4]. &Sateway

Many network services, such as remote login, file transfer, and

WWW HTML document transfer, use connection-oriented] PEERSD

protocols, such as TCP, to deliver data reliably between tRBERS 2:1ecV_MSQ() i

or more communication endpoints. Establishing connections L 3: route_msg(=

between endpoints involves the following two roles: \@ 1: send_msg() 4: send._msg0)]
0 0= /

—_—>

1. Thepassiveaole, which initializes an endpoint of com-&Z¢* o D'{

munication at a particular address and waits passively for %\‘;@ GATEWAY \

other endpoint(s) to connect with it. é/’/ [\/D

2. Theactiverole, which actively initiates a connectionto _ . ' ' o
one or more endpoints that are playing the passive role. Figure 1: A Connection-oriented, Multi-service Application-

i . level W
The intent of the Acceptor-Connector pattern described e Gateway

this paper is to decouple passive initialization of a service from diator [1] that routes data betw . .
the tasks performed after the service is initialized. This pflft—a mediator [1] that routes ala between Services running on
rs located throughout a wide area and local area network.

tern was discovered by generalizing from extensive experierﬁ’@éa

building reusable communication frameworks for a range fofom theGateway 's perspectivePeer services differ solely

distributed systems [3]. In all these systems, the tasks F}y_theirfrgessage Lraming forma;ts anq paygo?kdc;[ypes. Sdeveral
formed by a service are independent of the following: types of data, such as status information, bulk data, and com-

mands, are exchanged by services running ortheway
e Which endpoint initiated the connection: Connec- and thePeers . Peers are located throughout local area net-

tion establishment is inherently asymmetrical since the p4@rks (LANs) and wide-area networks (WANs) and are used
sive endpointvaits whereas the active endpoinitiates the to monitor and control network resources, such as satellites,
connection. After the connection is established, however, ds#§ centers, or remote branch offices. .

may be transferred between endpoints in a manner that obeyd1€ Gateway uses a connection-oriented interprocess
a service's communication protocol, which can be structuré@mmunication (IPC) mechanism, such as TCP, to transmit
tocols simplify application error handling and can enhance

e The network programming interfaces and under|ying performance over Iong-delay WANs. Each communication
protocols used to establish the connection: Different net- Service in thePeers sends and receives status information,
work programming interfaces, such as sockets or TLI, pfeHlk data, and commands to and from Bateway using
vide different routines to establish connections using varics@parate TCP connections. Each connection is bound to a
underlying transport protocols. After a connection is estarique address.g.,an IP address and port number. For in-
lished, however, data may be transferred between endpost@ice, bulk data sent from a ground statt@er through the
using standardead /write system calls that communicaté>ateway is connected to a different port than status informa-

between separate endpoints in a distributed application. tion sent by a tracking station peer through @Gateway to a
ground statiorPeer . Separating connections in this manner

¢ The strategies used to initialize the service: The pro- allows more flexible routing strategies and more robust error
cessing tasks performed by a service are typically independentdling if connections fail or become flow controlled.
of the initialization strategies used to (1) advertise the servicePne way to design thBeers andGateway is to tightly
(2) listen for connection requests from peers, (3) create a sEuple the connection roles with the network services. For in-
vice handler to process those requests, (4) establish the csbance, thésateway could be hard-coded to play the active
nection with the peers, and (5) execute the service handlennection role and initiate connections for all its services. To
in one or more threads or processes. Explicitly decoupliagcomplish this, it could iterate through a listéers and
these initialization strategies from the service behavior itselffnchronously connect with each of them. LikewiBegrs
enhances the extensibility, reusability, and portability of tleeuld be hard-coded to play the passive role and accept the
service. connections and initialize their services. Moreover, the active

and passive connection code for thateway andPeers , re- 1. The need to reuse connection establishment code for
spectively, could be implemented with conventional netwodach new serviceKey characteristics of services, such as the
programming interfaces like sockets or TLI. In this case,cammunication protocol or the data format, should be able to
Peer could callsocket, bind, listen, andaccept evolve independently and transparently from the mechanisms
to initialize a passive-mode listener socket and@a¢eway used to establish the connections. Since service characteristics
could callsocket andconnect to actively initiate a data- change more frequently than connection establishment mecha-
mode connection socket. After the connections were estalsms, separating these concerns helps to reduce software cou-
lished, theGateway could route data for each type of servicpling and increase code reuse.

it provided. . .

However, the tightly coupled design outlined above has thez' The need to make the connecthn es_tabllshment code
following drawbacks: portable across platforms that cont_au.n different network

programming interfaces. Parameterizing the Acceptor-

o Limited extensibility and reuse of the Gateway and Connector's mechanisms for accepting connections and per-
Peer software: For example, the mechanisms used to estdrming services helps to improve portability by allowing the
lish connections and initialize services are independent of theolesale replacement of these mechanisms. This makes the
type of routing servicee.g.,status information, bulk data, orconnection establishment code portable across platforms that
commands, performed by ti&ateway . In general, these ser-contain different network programming interfaces, such as
vices tend to change more frequently than the connection sagkets but not TLI, or vice versa.

initialization mechanisms. . . .
3. The need to enable flexible service concurrency poli-

« Inflexible connection roles: There are circumstancesies. After a connection is established, peer applications use
where theGateway must play thepassiveconnection role the connection to exchange data to perform some type of ser-
and thePeers play the active role. Therefore, tightly couvice, such as remote login or HTML document transfer. A
pling the software that implements connection establishmégtvice can run in a single-thread, in multiple threads, or mul-
with the software that implements the service makes it hdiile processes, regardless regardless of how the connection
to (1) reuse existing services, (2) extend tRateway by was established or how the services were initialized.
adding new routing services and enhancing existing service
and (3) reconfigure the connection roles playedPkers and
the Gateway .

%. The need to ensure that a passive-mode /O handle is
not accidentally used to read or write datdy strongly decou-
pling the connection establishment logic from the service pro-

o Non-portable and error-prone interfaces: Using low- cessing logic, passive-mode socket endpoints cannot be used
level network programming, such as sockets or TLI, is noificorrectly,e.g.,by trying to read or write data on a passive-
portable and error-prone. These low-level interfaces do ma@de listener socket used to accept connections. This elimi-
provide adequate type-checking since they utilize low-lev@ates an important class of network programming errors.

I/O handles. It is easy to accidentally misuse these interface

8. The need to actively establish connections with large
in ways that cannot be detected until run-time. y 9

number of peers efficienthyVhen an application must estab-

Therefore, a more flexible and efficient way to design tfigh connections with a large number of peers efficiently over

Peers andGateway is to use theAcceptomattern. long-delay WANS it may be necessary to use asynchrony and
initiate and complete multiple connections in non-blocking

mode.

3 The Acceptor-Connector Pattern Structure and participants: The structure of the key partic-

. . . . ipants in the Acceptor-Connector pattern is illustrated in Fig-
This section presents a brief Overview of t.he .Acce'?t re 2. TheAcceptor andConnector components are fac-
Qonnector pattern. A comprehensive discussion is avail fles that assemble the resources necessary to connect and ac-
in [2]. tivateSvc _Handler s.Svc_Handler s are components that
exchange messages with connedeérs .
Intent: The intent of the Acceptor-Connector pattern is to The participants in the Connection Layer of the Acceptor-
decouple connection establishment and service initializati@nnnector pattern can leverage off the Reactor pattern. For in-
from service processing in a networked system. stance, th€onnector 's asynchronousinitialization strategy

establishes a connection afteeactor notifies it that a pre-

Forces: The Acceptor-Connector pattern resolves the fQf, gy initiated connection request t®eer has completed.

lowing forces for distributed applications that use connectiqg-sing the Reactor pattern enables multiSlec_Handlers
oriented communication protocols:

S~ | Concrete_Svc_Handler|
/T /n A rameterized types were used to implement this pattern since

z
gﬁ { Concrete |) S\(/:colzgr?é?eré ¢ Concrete / they improve run-time efficiency. In general, templates trade
Sz | Acceptor > T /\jcﬂn,”ﬁc/@tx compile- and link-time overhead and space overhead for im-
g T i ! proved run-time performance.
[
PanS ETaTTTE | (7 e Dynamics: Figure 3 ill he dynami i
1 | PEER_ACCEPTOR | ! e [PER ST ynamics: igure 3 Illustrates the dynamics among partic-
< *_Acceptor_ Q% : mﬂ;ﬁ”fe//fj Connector \ jpants for theAcceptor component of the pattern. These
> | | create_svc_handler()! \\/fé‘s - _VFPEEEET;;’W \\ \cor}nect_svc_handlee()
9] \, | accept_svc_handler()} P \,,;,,,\,\)| activate_svc_handler()
5& / activate_svc_handler() Y Svc Handler | (Ghandle_event() - acc: SOCK sh: reactor
%g \\(:handle_event() / _open()) pi. CETeEEl, CELS), Server cceptor Acceptor Svc_Handler Reactor
S - QEE=N // I N
§ \ N S~ // . connecstcﬁhandler — % INITIALIZE PASSIVE iopen() open()} } }
sh = create_svc_handler); ! L (sh, addn; ZEw ENDPOINT - | }
ac;:ep:ﬁsvc:h:ra‘lj(?r(sh%; > 8 N % REGISTER HANDLER reglster‘_handler(acc)l -
activate_svc_handler(sh); . - =
— &) (sh: % g Q. EXTRACT HANDLE } get_hqndle() 1 ‘
w AN E START EVENT LOOP : ihandle_‘events() i !
5@ (/Hi\l’/%?ér \\%‘/I;;\Ec;r\\l FOREACH EVENT DO ! ! ! ! h select(l—,."|
< \ — 1)) > | | . _handle_event()
& - \’hanclle_eventQn (O e w O CONNECTION EVENT | ;h = make_svc_handler()
NN g £ CREATE, ACCEPT, ! accept_svc_handler (shzI
Figure 2: Structure of Participants in the Acceptor-Conne(g 5 5 ~w s omer | |Jacivaieove hande ﬁ:gi)ster handerts)
Pattern K= REGISTER HANDLER | | | =
Z I I I I get_handle()
EXTRACT HANDLE ! ! ! h
% DATA EVENT } } } pandle_event(
to be initialized asynchronously within a single thread of c(8 @ w ! ! !
sae PROCESS MSG | | I svc()
trol. FOT | | | !
Toi flexibili dc 4 © & CLENT SHUTDOWN | | | | nandle_close() |
o increase flexibilityAcceptor andConnector com- o SERVER SHUTDOWN ! ! ! | handle_close()

ponents can be parameterized by a particular type of IPC Figure 3: Dynamics for th&cceptor Component
mechanism an8VCHANDLERThe IPC mechanism supplies

the underlying transport mechanism, such as C++ wrapperfa- _ . - : :)

cades [2] for sockets or TLI, used to establish a connectiégnamICS are divided into the following three phases:

The SVCHANDLERspecifies an abstract interface for defin- 1. Endpoint initialization phasewhich creates a passive-

ing a service that communicates with a conned®edr . A mode endpoint encapsulated IBEERACCEPTORNhat is

Svc_Handler can be parameterized by REERSTREAM bound to a network address, such as an IP address and port

endpoint. TheAcceptor andConnector components as-number. The passive-mode endpoint listens for connection

sociate this endpoint to iBeer when a connection is estabrequests fronPeers . This endpoint is registered with the

lished. Reactor , which drives the event loop that waits on the end-
By inheriting from Event _Handler , a Svc_Handler point for connection requests to arrive fréteers .

can register with &eactor and use the Reactor pattern to . L . .

handle its I/O events within the same thread of control as hez.' Service activation phase.Since anAcceptor n-

Acceptor or Connector . Conversely, Svc_Handler erits from anEven’t Handler the Reactor can dis-

can use the Active Object pattern and handle its I/O event?ﬁlt(:h theAcceptor 's handle _event method when con-

a separate thread. The tradeoffs between these two patterﬂg%'on recﬂ“eSt events armve. Th's. method performs the
described in [4]. Acceptor ’'s Svc_Handler initialization strategy, which

Figure 2 illustrates how parameterized types can be u 121 assembles the resources necessary to create a new
9 P yp oncrete _Svc_Handler object, (2) accepts the connec-

to decouple the Acceptor-Connector pattern’s connection gs- . ; : .
tablishment strategy from the type of service and the type of Into this object, and (3) activates tsec_Handler by

connection mechanism. Application developers supply te?’ﬁajlmg itsopen hook method.

plate arguments for these types to produce Application LayeB. Service processing phaséfter the Svc _Handler is
Acceptor orConnectors . This design enables the wholeactivated, it processes incoming event messages arriving on
sale replacement of tH8VCHANDLERand IPC mechanism,the PEERSTREAMA Svc_Handler can process incoming
without affecting the Acceptor-Connector pattern’s service idvent messages in accordance with patterns, such as the Reac-
tialization strategy. tor or the Active Object [2].

Note that a similar degree of decoupling could be achieved) o
via inheritance and dynamic binding by using the Abstract ' "€ dynamics among participants@onnector - compo-

Factory or Factory Method patterns described in [1]. paent of the pattern can be divided into the following three
phases:

4

1. Connection initiation phasewhich actively connectsa Svc _Handler by calling itsopen method. This pure vir-
one or moreSvc _Handlers with their peers. Connec-tual method must be overridden by a conct&te _Handler
tions can be initiated synchronously or asynchronously. Téibclass and performs service-specific initializations.
Connector ’sconnect methodimplements the strategy for

establishing connections actively. 4.2 The Acceptor Class

2. Service initialization phase which activates a
Svc_Handler by calling its open method when its con-
nection completes successfully. Tlheen method of the
Svc_Handler then performs service-specific initialization.

This abstract C++ class implements the generic strategy
for passively initializing network services, which are imple-
mented as concref&vc _Handler s. AnAcceptor instance
coordinates the following five orthogonal dimensions of pas-
3. Service processing phasewhich performs the sive service initialization:
application-specific service processing using the data ex; ggpyice
changed between th&vc_Handler and its connected
Peer .

advertisement which initializes the
peer _acceptor _ endpoint and announces the availability
of the service to interested peers.

2. Endpoint listening which waits passively for peers to
4 Applying Design Patterns to Develop actively initiate connections on theer _acceptor _ end-

1 oint.
Extensible Acceptors P , o o
3. Service handler creatigrwhich creates and initializes

This section describes how to implement a highly cod-concret&Svc _Handler thatcan communicate with the new
figurable instance of thé\cceptor component from the P€er.

Acceptor-Connector pattern by applying other design pat-4, passive connection establishmenthich uses the

terns, in particular Wrapper Facade [2], Strategy, Bridge, Fafeser _acceptor _ endpoint to accept a connection initiated
tory Method, and Abstract Factory [1]. These patterns ejttively by a peer.

able anAcceptor to flexibly configure alternative strategies
for service advertisemergndpoint listeningservice handler
creation service connection acceptana@ndservice activa-
tion. In this section, we focus on tif&vc _Handler and the
Acceptor components shownin Figure 2. T@Bennector ~ The Acceptor ’'s open method is responsible for handling

5. Service handler concurrency activatiowhich deter-
mines the type of concurrency mechanism used to process data
exchanged with peers.

component can be implemented in similarly. the first two dimensions. Thacceptor ’s accept method
is responsible for handling the remaining three dimensions.
4.1 The SvcHandler Class The following interface illustrates the methods and data

members in thécceptor class:

This abstract C++ class provides a generic interface for pro-
. . L . . template <class SVC_HANDLER,
cessing services. Applications customize this class to per- /I Type of service handler.

form a particular type of service. The C++ interface for the class PEER_ACCEPTOR>

; . /I Type of passive connection mechanism.
Svc _Handler is shown below: class Acceptor {

public:

template <class PEER_STREAM> /I Defines the initialization strategies.
Il Type of IPC mechanism. typedef Strategy Factory<SVC_HANDLER,
class Svc_Handler { PEER_ACCEPTOR>
public:)] STRATEGY_FACTORY;
/I Pure virtual method (defined by subclass).
virtual int open (void) = 0; /I Initialize listener endpoint at <addr>
/I according to specified <init_strategies>.
protected:) virtual void open
/I Instance of IPC mechanism. (const PEER_ACCEPTOR::PEER_ADDR &addr,
PEER_STREAM stream_; STRATEGY_FACTORY *init_strategies);

3
/I Embodies the strategies for creating,

Each Svc_Handler contains a communication end- // connecting, and activating <SVC_HANDLER>'s.

. . virtual void accept (void);
point, called peer _stream _, of parameterized type
PEERSTREAM This endpoint is used to exchange dam%}egegi rateay to advert dooint

. efines strategy to aavertuse endpoint.

between th§vc _Handler and its connected peer. .After & yirtual void advertise_sve
connection is successfully accepted,fateptor activates (const PEER_ACCEPTOR::PEER_ADDR &);

~~_)J SVC HANDLER |

/

- : : sh = make_svc_handler();, / \ PEER_ACCEPTOR !

1 Deflnes_the strategy to listen for active 2: | accept sve. handler (sh) ; ,,,,,,,T,\
/I connections from peers. activate_svc_handler (sh); [/ Acceptor I
b bt B

virtual void make_listener (PEER_ACCEPTOR *); < | 1 - | advertise_sve)

7777777 Sy open()o- — — — —/— * | make_listener()

/I Defines <SVC_HANDLER> creation strategy. = schnoR | 10 accept() .

virtual SVC_HANDLER *make_svc_handler (void); " Creaon L4 :mgt’: 's'\slf”ﬁggm//\tﬁ:@,gﬂ
\ ! lactivate_svc handler()\ { Listener |

laccept_svc_handler()) | Strategy <_

\ \advemse svc - — 5

/I Defines <SVC_HANDLER> connection strategy. | Strategy (\/

virtual void accept_svc_handler (SVC_HANDLER *); | make_svc_handler() /
\ Ve 7 1 make_listener() /

P

\ —— s T T e ——
/I Defines <SVC_HANDLER> concurrency strategy. T \W// N
virtual int activate_svc_handler (SVC_HANDLER *); }”}.ZN}_E{’ 777j\/
P ety /™ PEER ACCEPTCR | \\“} ADOR |
private: - oy 1 Accept |’ Advertise
/I Pointers to objects that implement the { Concurrency J o SAccept o Strategy /

/I <Acceptor>’s initialization Strategies. \} Strategy N trategy ! ~o
Adv_ertise_Strategy<PEER_ACCEPTOR::PEER_ADDR> activate_sve handler()/ /accept sve handlerd | advertise_svc() /
*listen_strategy \ \,,_\W/ N

Listener_Strategy<PEER_ACCEPTOR> oo \W/ TN
*listen_strategy_;
Creation_Strategy<SVC_HANDLER> .
*Crga@ Stratggy e Figure 4: Class Structure of teceptor Class Implemen-
Accept_Strategy<SVC_HANDLER, PEER_ACCEPTOR> tation
*accept_strategy_;
Concurrency_Strategy<SVC_HANDLER> P ;BBF; |
*concurrency_strategy_; 1
Y (S Advertlse)
‘W Strategy n\
/
The Acceptor is a C++ template that is parameterized by (advertise_svc) /
. S N -
a particular type oPEERACCEPTORINd SVCHANDLER ISR g ——
The PEERACCEPTORSs the type of transport mechanism J **JADDRJ S *‘ADDR‘
used by theAcceptor to passively establish the connec- { Welkknown \ X500 J
tion. The SVCHANDLER:s the type of service that pro-) Address %, | ————- Strategy
| Stategy / S (APDR N T

cesses the data exchanged with its connected peer. Parameter- _ZZ"57-7

ized types are used to efficiently decouple the service initial- - \/P()Sr:[[g?epper /\/

ization strategies from the type &vc _Handler , network [\\/\/g}///

programming interface, and transport layer connection proto- Figure 5: Alternative Service Advertising Strategies
col. This design improves the extensibility of tAeceptor

and Svc _Handler components by allowing the wholesale

replacement of various strategies. 2. Endpoint listener strategies: The Acceptor uses its

Figure 4 visually depicts the relationship between tgddpoint listening strategy to wait passively for peers to ac-
classes that comprise thicceptor — implementation. The tively initiate a connection to theEERACCEPTORNdpoint.
five strategies supported by theceptor to passively ini- Figure 6 illustrates the following common strategies config-
tialize Svc _Handlers are illustrated and described below. ~— _________

~

/ *ﬁ PEER ACCEPTOR \
1. Service advertisement strategies: The Acceptor Lisener 1
uses its service advertisement strategy to initialize the WStrategy n/\
PEERACCEPTORNdpoint and to announce the availability / make_listener) /
of the service to interested peers. Figure 5 illustrates the com- NN ///
mon strategies configured into theceptor to advertise e
services: S
Ik dd h S . PEERf;CgEfIOR i /# PEER ACCEPTOR | J
. \r/]\é)eSt ng&v;r; 'a ressesuch as Internet port numbers and (\] Ei?:r?gf) g Threaded)
: b | Listener %,
e Endpoint portmapperssuch as those used by Sun RPC \ Strategy __/ | Strategy _/
and DCE; . o T .
Figure 6: Alternative Endpoint Listener Strategies
e X.500 directory servicewhich is a ISO OSI standard for
mapping names to values in a distributed system. ured into theAcceptor to wait for connections:

¢ Reactive listenerswhich use an event-demultiplexer, }SVCHMDLER |

| ACCEPTOR |
such as &Reactor [2], to listen passively on a set of v LPEElefjJ
endpoints in a single thread of control; (Accept %
- . v Strategy ¢
e Threaded listenersvhich use a separate thread of control / oot sve handlen /
for each listener. \acceft S\VC a”/ ert 0/
3. Service handler creation strategies: The Acceptor ,\Mw/u; P ===
uses its creation strategy to initializeSvc _Handler that (/| PEERACCEPTOR | /PR ACCEPTCR |
will communicate with the new peer. Figure 7 illustrates the Y\ CONS . (’ ****”/ﬁ*‘
7777777 { Strategy /) CLNS |
S~ J\,S‘LC—,HQNELE‘J N~ 7 \\Strategy /
.) — T
W Creation Figure 8: AlternativéSvc _Handler Connection Acceptance
~ Strategy <\)
Strategies
\ make svc handler()
/ ~=ISVC_HANDLER] 5. Service handler concurrency activation strategies: The
~I5vc_rnoLeR Dyn;r;n;:iii Acceptor uses its actiyation strategy to dgtermine the type
0 *”*/ 777777) Strat) of concurrency mechanism@vc _Handler will use to pro-
) gﬁggnd ™ sved rﬂoﬁ} \ aegy cess data exchanged with its peer. Figure 9 illustrates the fol-
e N
N ED,/ SR Slngleton/\ SR ‘
| Strategy / / LSL’C:TNPEERT\
N Concurrency /
Figure 7: AlternativeSvc _Handler Creation Strategies \, Strategy W
! activate_svc handlero/
following common strategies configured into theceptor N \ ~C ===
to createSvc _Handlers : e e ’ ‘S*VC*%@FER‘
- : (/ \S,VS'X*NDLEE\ \ Process !
. . /
o Demand creatiorwhich allocates a ne®vc _Handler) FSQtea;:tlve / Strategy
for every new connection; N /ra egy / N7
e Singleton creation which only creates a single r/\ @E_EAE';LEE\ \/~ ‘JF)’S*E&DLEE\
Svc Handler that is recycled for every connec- \ Thread [Thread /
tion; | Strategy / } Pool
) \ / /
.) . N~ | Strategy /
e Dynamic creation which does not store the ~ NN

Svc_Handler object in the application process untiFigure 9: Alternativesvc _Handler Concurrency Activation
it is required, at which point the object is dynamicall@trategies
linked into the process from a shared library.

lowing common strategies configured into theceptor to
4. Passive connection establishment strategiesThe activateSvc_Handlers

Acceptor uses its passive connection establishment strategy Reactive activationwhere allSvc _Handlers execute

to accept a new connection initiated actively by a peer. Fig- ithin a single thread of control by using the Reactor pat-
ure 8 illustrates the following common strategies configured

tern [2];
into theAcceptor to accept connections from peers: o
e Thread activationwhere eacl8vc _Handler executes
e Connection-oriented (CONS) establishmemitich uses within its own separate thread,;

connection-oriented protocols, such as TCP, SPX, ofy Thread pool activationwhere eactSvc _Handler exe-

TP4; cutes within a pool of threads to increase performance on
e Connectionless (CLNS) establishmewhich uses the multi-processors;

Adapter pattern [1] to utilize a uniform interface for con- e Process activationwhere eaclsvc _Handler executes

nectionless protocols. within a separate process.

The next section illustrates how differefstceptor s can sockets or TLI. The Wrapper Facade pattern ensures that these
be configured flexibly to support alternative strategies withawto classes can be used identically by different instantiations
requiring changes to its external interface design or interadithe Svc _Handler class.

implementation. Using the Strategy Pattern: The Strategy pattern [1] de-
fines a family of algorithms, encapsulates each one as an ob-
4.3 Using Design Patterns to Implement an EX- ject, and makes them interchangeable. The ACEeptor
tensible Acceptor uses this pattern to determine the passive initialization strate-
gies used to create, accept, and execlBe@ Handler . By
The ACE implementation of the Acceptor-Connector patte '%mg the Strategy pattern, an application can configure dif-

applies the Wrapper Facade [2], Factory Method, Strategy. s initialization strategiesithoutmodifying the following
Bridge, and Abstract Factory patterns described in [1]. Theaﬁ orithm used byaccept , as follows:

patterns facilitate the flexible and extensible configuration an

use of the initialization strategies discussed above. Belastplate <class SVC_HANDLER, class PEER_ACCEPTOR> void
each pattern used in the AC&cceptor is described, the Acceptor<SVC_HANDLER, PEER_ACCEPTOR>:accept (void)
design forces it resolves are outlined, and an example of how create a new <SvC_HANDLER>.

the pattern is used to implement theceptor is presented. SVC_HANDLER *svc_handler =
make_svc_handler ();

Using the Wrapper Facades Pattern: The Wrapper Fa-
cade [2] pattern encapsulates the functions and data pr
vided by existing non-OO APIs within more concise, robust,
portable, maintainable, and cohesive OO class interfaces. Thé Activate <SVC_HANDLER>.

ACE Acceptor uses the Wrapper Facade pattern to prowg aC“Vate _sve_handler (svc_handler);

a uniform interface that encapsulates differences between non-

uniform network programming mechanisms, such as socketsrigure 11 illustrates how the Strategy pattern is used to

d/ Accept connection from the peer.
accept_svc_handler (svc_handler);

TLI, named pipes, and STREAM pipes. implement theAcceptor ’s concurrency strategy. When
Figure 10 illustrates how the ACBcceptor uses the
. o . Fo—————m R
Wrapper Facade patterns to enhance its portability across plat ////\\“L%T, J //, {sc o |
,,,,,,,, " Acceptor \\ (" Concurrency |

\ Strategy <\\
accept()Q W/‘—/ activate_svc_handler(),/ 0

(0}

<

o
T~

.
-77 3y Handler '\ ~>~ X N & -
_ / " \ Se N -
\ peer_stream_) ~. N NS
i/ Svc / [J Sve [activate_svc_handler(sh) H /\15\,(: ;;ND]%‘
\ [/ ———=
/\ Handler \\ CLIENT INTERFACES \ Handler \ (} Thread /
\\ peer_streeLnl W) (UNIFORM) (peer_stream 4\ | Strategy /)
_/'\\J \ N //k/ \\ —~ _
i Figure 11: Using the Strategy Pattern
//*\—-/ =y ST
v TLI / WRAPPER FACADE \) SOCK / th N .
\ e Acceptor is |n|t|aI|zed, itsStrate _Factor con-
) Stream B INTERFACES | Stream \ p ay Yy

~ -~ (UNIFORM) o figures the designated concurrency strategy. As shown in
\<\ 4\\/ Figure 9, there are a number of alternative strategies. The
P TN particularly strategy illustrated in Figure 11 activates each
\ | WSERSEEE OS INTERFACES \ INF;L:ACE Svc _Handler to run in a separate thread of control. Since
\ _$ (NON-UNIFORM) \ _3 all concurrency algorithms are encapsulated in a uniform in-
terface, however, it is easy to replace this strategy with an al-
ternative one, such as running tBec _Handler in a separate

forms that contain different network programming interfacepsr,ocess'

such as sockets but not TLI, or vice versa. In this examplésing the Bridge Pattern: The Bridge pattern [1] decou-
the PEERSTREAMemplate argument of tHévc _Handler ples an abstraction from its implementation so that the two
class can be instantiated with eitheiS®CKStream or a can vary independently. The ACEcceptor uses this pat-
TLI _Stream , depending on whether the platform supportern to provide a stable, uniform interface that is both open

Figure 10: Using the Wrapper Facade Pattern

(i.e.,extensible) and closedé., does not require direct code / | SVC_HANDLER |

changes). (" Creation)
Figure 12 illustrates how the Bridge pattern is used to SO \ StrategyW ‘\/
implement theAcceptor ’s connection acceptance strategy LV Sve [make_svc_handler(),/
7777777777777777 ! Handler / Mg T
S| SCHADER | /~4 scHADR | A T
/" T~ PEER ACCEPTOR | ! eRpcPR! A _
S == j,,\ // ,,,,,, jJ [~ Concrete |
(’WM ° Accept | /7 sve Handien
\|accept_svc_handle) Strategy ST ¢ Demand |
/\1‘ Zggzpt(_gfatew_ AN (accept_svc_handler/()/ (\‘ Concrete ¢ | Strategy S,
(EEER N T\ | Svc Handler, { make_svo_handier(0 |
- N -
N\ ~
N N A CREATES
1: accept_svc_handler(sh)} N //_‘} SVC HANDLER } return new ConcretevacﬁHandleﬁ
N , | PEER ACCEPTOR |

S mmme—= ~= Figure 13: Using the Factory Method Pattern

2: accept_strategy_->accept_svc, handler(srﬁ (C(My \}
- - i \ accept_svc_handler(),’

M factory method callednake_svc _handler . This method

is invoked by themake_svc _handler Bridge method in

the Acceptor to create the appropriate type of concrete

Svc _Handler , as follows:

Figure 12: Using the Bridge Pattern

(the Bridge pattern is used for all the othécceptor

strategies, as well). When a connection is establishedplate <class SVC_HANDLER, class PEER_ACCEPTOR> void
with a peer, theAcceptor ’s accept method invokes the Acceptor<SVC_HANDLER, PEER_ACCEPTOR>::accept (void)
accept _svc _handler method. Instead of performing the creation_strategy_->make_svc_handler ();

passive connection acceptance strategy directly, however, this

method forwards the method to the appropriate subclass, of. . .

Accept _Strategy . In the example shown in Figure 12:An |mplementat|or_1 of a creation strategy based ordiémand
this subclass establishes the connection using a connectidiftegy could be implemented as follows:

oriented protocol. Since the Bridge pattern is used, howeVghpiate <class SVC_HANDLER> SVC_HANDLER *

an application can change tAeceptor s connection accep- Demand_Strategy<SVC_HANDLER>::make_svc_handler (void) {
tance strategy to an alternative strategy. For example, it caﬁ L?g{g?;ngythaﬁlocﬁwgng ngﬁaﬂg\',c_H ANDLERS.

change to the connectionless version shown in Figure 8 withreturn new SVC_HANDLER;

out requiring any changes to the codeaotept . }

Another advantage of using the Bridge pattern is that a Sll{Po'te that
class of theAcceptor can override itsnake_* methods to
avoid the additional overhead of indirecting through strate
objects on every call. In this case, thecept method uses
the Template Method pattern [1]. In the Template Method vé#sing the Abstract Factory: The Abstract Factory pattern
sion ofaccept the steps in thécceptor ’s passive initial- [1] provides a single interface that creates families of related
ization algorithm are fixed, but can be overridden by derivejects without requiring the specification of their concrete
classes. classes. Thécceptor uses this pattern to simplify its in-

, terface by localizing all five of its initialization strategies into
Using the Factory Method Pattern: The Factory Method g gjngle class. The Abstract Factory pattern also ensures that
pattern [1] defines a stable interface for initializing a COMPQy| selected strategies can work together correctly.

nent, but allows subclasses to specify the details of the i”it'alFigure 14 illustrates how the Abstract Factory pattern is
ization. The ACEAcceptor uses this pattern to allow eachseq 1o implement thetatus _Acceptor taken from the
initialization strategy used by th&cceptor to be extended Gateway example describe in Section 5. This example in-

without modifying theAcceptor or Svc _Handler imple- giantiates the followinGtrategy _Factory template:

mentations.
Figure 13 illustrates how the Factory Method pattern template <c|a}73 SVC_?AND_LERH g

used to transparently extend tAeceptor s creation strat- Clagp,’iE°ERs_e,£‘(’:'°CeEp?gRir'

egy. TheCreation _Strategy base class contains a Il Type of passive connection.

it is the responsibility of theAcceptor 's
Strategy _Factory to determine the type of subclass as-
Sciated with thereation _Strategy _.

Command_Router
= SOCK Acceptor

P
//\r’ Command ™\

\ Strategies .
/ make_creation_strategy() O
/ make_concurrency_strategy() /Q)\ ~ _
\

2

gCommand_Router|
. SOCK Acceptor
(}Command \
(Acceptor _/
<o =

. -
- . N~ -

~ e\
’ \
A Dynamic
P (Strategy ,/

/
-

\
\

N
N
N

Factory

- -)
I make_creation_strategy() \
(makeiconcurrencyﬁslrategy()\/

\ e 7
\\/,\\ //
=

Status_Router
\ -~ SOCK Acceptor
\fV Status “\
Strategies +_ -

\
make_creation_strategy() O™

NN
4 \
| Reactive §
/| Strategy /
{ -

N~
~-

-~

\

T TN

—~

\
Threading

Strategy A Status_Router
\/\\//’ ,~®| SOCK_ Acceptor
) Status
(Acceptgg 4

——~
~_

)

/ makeiconcurrencyﬁstrategy()8{ -

-

-

Figure 14: Using the Abstract Factory Pattern

class Strategy_Factory {
public:
Strategy_Factory

(Advertise_Strategy<PEER_ACCEPTOR::PEER_ADDR> *,
Listener_Strategy<PEER_ACCEPTOR> *,
Creation_Strategy<SVC_HANDLER> *,
Accept_Strategy<SVC_HANDLER, PEER_ACCEPTOR> *,
Concurrency_Strategy<SVC_HANDLER> *);

/I Factory methods called by Acceptor::open().
Advertise_Strategy<PEER_ACCEPTOR::PEER_ADDR>
*make_advertise_strategy (void);
Listener_Strategy<PEER_ACCEPTOR>
*make_listener_strategy (void);
Creation_Strategy<SVC_HANDLER>
*make_create_strategy (void);
Accept_Strategy<SVC_HANDLER, PEER_ACCEPTOR>
*make_accept_strategy (void);

make_* Factory Methods can be overridden to create different
types of initialization strategies.

e Subclasses of th8trategy _Factory abstract fac-
tory can be used to ensure that conflicting initialization strate-
gies are not configured accidentally. For example sthgle-
ton creation strategy may conflict with thiereadconcurrency
strategy since multiple threads of control will attempt to access
a single communication endpoint. 3trategy _Factory
subclass can be defined to check for these conflicts and report
an error at configuration time.

5 Example: Implementing Extensi-
ble Application-level Gateways Using
the Acceptor

This section illustrates how the application-le&ghteway
described in Section 2 uses the pattern-ba&edeptor
component from Section 4 to simplify the task of passively
initializing services whose connections are initiated actively
by Peers . In this example th@eers play the active role in
establishing connections with tiigateway .

Defining SvcHandlers for routing peer messages:
The three classes shown belowStatus _Router |,
Bulk _Data _Router , and CommandRouter , process
routing messages received frétaers . These classes inherit
from Svc_Handler , which allows them to be passively
initialized by anAcceptor , as shown in Figure 15. Each

~ Command_Router
/ SOCK_Acceptor

7 7] SoCK_stream
-

Concurrency_Strategy<SVC_HANDLER> \\ Commandgn 1{\ Command /
*make_concurrency_strategy (void); :l\\BQUJ?f // TS 5\5 Ac/cgpt(zr# /I)
%(% 1 liBulk Data‘'n s 1(J/Bu| ,/
Figure 14 shows the creation and concurren £< \‘ '{\EQUJQV 7 Acceptor |
strategies—the other strategies are handled simila.ty. e R e A
The Status _Strategies factory instructs the ‘\ L ,/\ .
Status _Acceptor to dynamically create each ! 'nl ! RO?J'[L(JESI’ >n 1‘9 Status [| //
Status _Router , which will execute in its own thread) M=l INTS (. A:c/c\ep/tor,\‘ | /
of control. This example illustrates the following points: ; i / o \ ‘,‘ ;
, - e wrroo o
e The Abstract Factory pattern is often used in conjun =& ¢ sy~ S R R
tion with the Factory Method pattern. For example, tt < i\HandIer / N T J
Strategy _Factory abstract factory simplifies the inter- R~ T ~! (ffﬁ‘ietf’f, ’

face to theAcceptor by consolidating all five initialization
strategy factory methods in a single class.

e The Abstract Factory pattern ensures that various

Figure 15: Structure ofAcceptor Participants in the
Gateway

the

strategies can work together correctly. For instance, fttlass is instantiated with a specific type of C++ IPC wrapper

Strategy _Factory

can be subclassed and its variofacade that exchanges data with its connected peer.

For

10

example, the classes below us&@CKStream as the un- These typedefs instantiate th&cceptor template with
derlying data transport delivery mechanis®OCKStream concrete parameterized type arguments SMCHANDLER
is an ACE C++ wrapper facade that encapsulates the datad PEERACCEPTORA SOCKAcceptor wrapper fa-
transfer functions in the socket interface. By virtue of theade is used as the underlyiREERACCEPTORN or-
Strategy pattern, however, it easy to vary the data trangder to accept a connection passively. Parameterizing the

mechanism by parameterizing tHgvc _Handler with a
differentPEERSTREAMsuch as &LI _Stream .

Acceptor with a different PEERACCEPTORsuch as a
TLI _Acceptor , is easy since the IPC mechanisms are en-

The Status _Router class routes status data sent to aré@psulated in C++ wrapper facade classes. The three objects

received fromPeers :1

class Status_Router :
public Svc_Handler<SOCK_Stream>

{
public:
/I Performs router initialization.
virtual int open (void);
/I Receive and route status data from/to peers.
virtual int handle_event (void);
..

TheBulk _Data _Router class routes bulk data sent to an/

received fronPeers .

class Bulk_Data_Router :
public Svc_Handler<SOCK_Stream>

{
public:
/I Performs router initialization.
virtual int open (void);
/I Receive and route bulk data from/to peers.
virtual int handle_event (void);
..

shown below are instances of these classes that create and
activate Status _Routers , Bulk _Data _Routers , and
CommandRouters , respectively:

/I Accept connection requests from
/I Gateway and activate Status_Router.
static Status_Acceptor status_acceptor;

/I Accept connection requests from
/I Gateway and activate Bulk_Data_Router.
static Bulk_Data_Acceptor bulk_data_acceptor;

Accept connection requests from
Gateway and activate Command_Router.
static Command_Acceptor command_acceptor;

Defining strategies to initialize SvcHandlers: The
three classes shown below are instantiations of the
Strategy _Factory described in Section 4.2:

/I Typedefs that instantiate different types
/I of <Strategy_Factory>.
typedef Strategy Factory<Status_Router,
SOCK_Acceptor>
Status_Strategies;

TheCommandRouter class routes bulk data sent to and rdyPedef Strategy_Factory<Bulk_Data_Router,

ceived fromPeers :

class Command_Router :
public Svc_Handler<SOCK_Stream>

{
public:
/I Performs router initialization.
virtual int open (void);
/I Receive and route command data from/to peers.
virtual int handle_event (void);
...

Defining Acceptor factories to create SvdHandlers: The
three classes shown below are instantiations otteeptor
template:

/I Typedefs that instantiate <Acceptor>s for

/I different types of routers.

typedef Acceptor<Status_Router, SOCK_Acceptor>
Status_Acceptor;

typedef Acceptor<Bulk_Data_Router, SOCK_Acceptor>
Bulk_Data_Acceptor

typedef Acceptor<Command_Router, SOCK_Acceptor>
Command_Acceptor;

1To save space, these examples have been simplified by omitting most of new

the detailed protocol logic and error handling code.

SOCK_Acceptor>
Bulk_Data_Strategies;
typedef Strategy_Factory<Command_Router,
SOCK_Acceptor>
Command_Strategies;

These typedefs instantiate tl®irategy _Factory tem-
plate with concrete parameterized type arguments for
SVCHANDLER and PEERACCEPTOR The three ob-
jects shown below instantiate these classes to spec-
ify the initialization strategies forStatus _Routers
Bulk _Data _Routers , and CommandRouters , respec-
tively:

/I Creates a multi-threaded <Status_Router>.
Status_Strategies threaded
(new Well_Known_Addr,
new Reactive_Listener (Reactor:instance ()),
new Demand,
new CONS,
new Multi_Thread);

/I Creates a multi-processed <Bulk_Data_Router>.
Bulk_Data_Strategies process
(new Well_Known_Addr,
new Reactive_Listener (Reactor:instance ()),
new Demand,
CONS,

new Multi_Process);

11

the associatedcceptor , which (1) creates an appropriate

/I Creates a single-thread reactive <Command_Router>. type of Svc_Handler on demand to perform the service
Command_Strategies reactive R L !
(new V\,—e”_K_nan_Addr, _ (2) accepts the connection into the handler, and (3) activates
new Eeactlvg_ustener (Reactor::instance ()), the handler. The concurrency strategy configured into each
new Demand, . . .
new CONS, Acceptor dictates how evergvc Handler it creates will
new Reactive (Reactor:instance ()); processes events.

_ _ Figure 16 illustrates the relationship between Acceptor-
Each Strategy _Factory configuration shown aboveconnector pattern components in th@ateway after
uses thewell known addresservice advertisement strategy,

thereactivelistener strategy, thdemandSvc _Handler cre-
ation strategy, and theonnection-orienteécceptance strat- : Commands T swatus
egy. To illustrate the flexibility of the Acceptor-Connector (Statuss
pattern, however, eachtrategy _Factory implements a) ' """"" ;

different concurrency strategy, as follows:

fl: Bulk Data’}
_Router |

: Acceptor |

e When the Status _Router is activated by
Status _Acceptor itrunsin a separate thread.

e When activated by Bulk _Data _Acceptor , the
Bulk _Data _Router runs as a separate process.

ACTIVE
CONNECTIONS

- Command) |
Router

PASSIVE
LISTENERS

e When activated by CommandAcceptor , the

CommandRouter runs in the same thread as with the, e 16: Object Diagram for thGateway Acceptor-
Reactor singleton [1], which is used to demultlplexConnector Pattern

connection requests for the thraeceptor factories.

Note how changing the concurrency strategy does not (gur connections have been established. The various
fect theAcceptor class. Thus, thé\cceptor ’s generic ‘Routers —exchange data with their connecteeers us-
strategy for passively initializing services can be reused, whil§ the type of concurrency strategy designated by their
permitting specific details, such as tREERACCEPTOR Strategy _Factories . Meanwhile, the*Acceptor s
SVCHANDLER and selected initialization strategies, tgontinue to listen for new connections.
change flexibly.

The main() gateway function: Themain gateway initial- 5.1 Known Uses

izes theAcceptor s with their well-known ports and initial-

ization strategies, as follows: UNIX network superservers: Superserver implementa-
tions such as Inetd [5], Listen [6] and the Service Configura-

/i Main program for the Gateway. tor [7] from the ACE framework use a master acceptor process

int main (void) { that listens for connections on a set of communication ports. In
Z 'nititalize cfctﬁeptofs_t_vY_ith t_theif tW?"-k_nOWH Inetd, for example, each port is associated with a service, such
status. acceptoropen oo as the standard Internet serviea®, TELNET, DAYTIME , and
(INET_Addr (STATUS_PORT), &threaded); ECHO. The acceptor process decouples the functionality of the
bulk_data_acceptor.open ; . ol
(INET Addr (BULK DATA_PORT), &process): Inetd superserver into two separgtg parts: one for gstabllshlng
command_acceptor.open connections and another for receiving and processing requests
(INET_Addr (COMMAND_PORT), &reactive); from peers. When a service request arrives on a port monitored
/I Loop forever handling connection request by Inet(_j, it accepts the request and dlspa_tches an appropriate
Il events and processing data from peers. pre-registered handler to perform the service.
for (;;)
Reactor::instance ()->handle_events (); CORBA Object Request Brokers (ORBs): The ORB Core

layer in many implementations of CORBA [8] uses the
The listener strategy configured for easbceptor is reac- Acceptor-Connector pattern to passively and actively initialize
tive, as shown in Section 5. Therefore, the program enterscg@fnection handlers when clients request ORB services. For
event loop that uses thiReactor singleton to detect all con-example, [9] describes how the Acceptor-Connector pattern is
nection requests frofeers within a single thread of control. Used to implement the ORB Core portion in The ACE ORB

When connections arrive, tiReactor singleton dispatches(TAO), which is a high-performance and real-time implemen-
tation of CORBA.

12

Web Browsers: The HTML parsing components in Webare concerned with the separation of active connection estab-
browsers such as Netscape and Internet Explorer use the alistmment from subsequent service processing. The primary
chronous version of the connector component to establish cdifference is that the Acceptor-Connector pattern addresses
nections with servers associated with images embeddegassive and active connection establishment and initializa-
HTML pages. This pattern allows multiple HTTP connectiont®n of both synchronous and asynchronous connections. In
to be initiated asynchronously. This avoids the possibility obntrast, the Client-Dispatcher-Server pattern focuses on syn-
the browser’s main event loop blocking. chronous connection establishment.

. . The service handlers that are created by acceptors and con-
Ericsson EOS Call Center Management System: This nectors can be coordinated using the Abstract Session pat-
systgm Uses the Acceptor-Connector pattern to a”?é‘Yn [16], which allows a server object to maintain state for
app_hcanon—lengCaII C(.enterl\/llanager.event SEIVers [1.0] to ‘?ﬁény clients. Likewise, the Half Object plus Protocol pat-
tablish connections actively with passive supervisors in a Nt [17] can help decompose the responsibilities of an end-
worked center management system. to-end service into service handler interfaces and the protocol

Project Spectrum: The high-speed medical image trand/sed to collaborate between them.

fer subsystem of project Spectrum [11] uses the AcceptorThe Acceptor-Connector pattern may be viewed as an ob-
Connector pattern to establish connections passively and j@¢t creational pattern [1]. A creational pattern assembles the
tialize application services for storing large medical imagd§sources necessary to create an object and decouples the cre-
Once connections are established, applications send and®fen and initialization of the object from subsequent use of the

ceive multi-megabyte medical images to and from the imag@ject. The Acceptor-Connector pattern is a factory that cre-
stores. ates, passively connects, and initializes service handlers. Its

accept method implements the algorithm that listens pas-
ACE: Implementations of the generiSvc_Handler , sjvely for connection requests, then creates, accepts, and acti-
Connector , andAcceptor components described in the/ates a handler when the connection is established. The han-
Implementation section are provided as reusable C++ clasgie$ performs a service using data exchanged on the connec-
in the ACE framework [3]. Java ACE [12] is a version of ACEjon. Thus, the subsequent behavior of the service is decoupled
implemented in Java that provides components correspondiidgn its initialization strategies.
to the participants the Acceptor-Connector pattern.

6 Related Pattermns 7 Concluding Remarks
))) _This paper describes the Acceptor-Connector pattern and illus-

[1, 13, 2] |dgnt|fy a'nd catalo'g many architectural and d?s'%tes how itsAcceptor component has been implemented

patterns. This section examines how the patterns describegdg other patterns to develop highly flexible communication

this paper relate to other patterns in the literature. software. In general, the Acceptor-Connector pattern is ap-
The intent of the Acceptor-Connector pattern is similar [icable whenever connection-oriented applications have the

the Configuration pattern [14]. The Configuration pattern dgjiowing characteristics:

couples structural issues related to configuring services in dis-

tributed applications from the execution of the services them-s The behavior of a distributed service does not depend on

selves. This pattern has been used in frameworks for config- the steps required to passively or actively connect and ini-

uring distributed systems, such as Regis [15], to support the tialize a service.

construction of a distributed system from a set of components. . . .
e Connection requests from different peers may arrive con-

In a similar way, the Acceptor-Connector pattern decouples . : . .
S . . . currently, but blocking or continuous polling for incom-

service initialization from service processing. The primary . . S C 2

) . .) ing connections on any individual peer is inefficient.
difference is that the Configuration pattern focuses more on
the active composition of a chain of related services, Wherm Acceptor-Connector pattern provides the following bene-
Fhe .Acceptor-Co'nnector pattern focuges on the passive |n|tfﬁg- for network applications and services:
ization of a service handler at a particular endpoint. In addi-
tion, the Acceptor-Connector pattern also focuses on dechitenhances the reusability, portability, and extensibility
pling service behavior from the service’s concurrency stratg-connection-oriented software: The Acceptor-Connector
gies. pattern decouples mechanisms for connection establishment

The intent of the Acceptor-Connector pattern is similar tmd service initialization, which are application-independent
that of the Client-Dispatcher-Server pattern [13] in that bo#md thus reusable, from the services themselves, which

13

are application-specific.

independent mechanisms in theceptor are reusable com-

For example, the applicatioRefel’enceS

[1]. E. Gamma, R. Helm, R. Johnson, and J. Vlissid#ssign Patterns: El-

ponents that know how to establish a connection passively and ements of Reusable Object-Oriented Softwa&eading, MA: Addison-

to create and activate its associatet _Handler . In con-
trast, theSvc _Handler knows how to perform application-
specific service processing.

(2]

This separation of concerns decouples connection establig$)-

ment from service handling, thereby allowing each part to
evolve independently. The strategy for establishing conneg-
tions actively was written once, placed into the ACE frame-
work, and reused via inheritance, object composition, and
template instantiation. Thus, the same passive connection
tablishment code need not be rewritten for each applicatio
In contrast, services may vary according to different applica-
tion requirements. By parameterizing theceptor witha (7]
Svc_Handler , the impact of this variation is localized to a
single point in the software. -
Improves application robustness: By strongly decoupling 9]
the Acceptor from the Svc _Handler the passive-mode
PEERACCEPTORannot accidentally be used to read or write

&5

Wesley, 1995.

D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmarattern-
Oriented Software Architecture: Patterns for Concurrency and Dis-
tributed Objects, Volume. New York, NY: Wiley & Sons, 2000.

D. C. Schmidt, “Applying Design Patterns and Frameworks to Develop
Object-Oriented Communication Software,” itandbook of Program-
ming Language$P. Salus, ed.), MacMillan Computer Publishing, 1997.

] D. C. Schmidt, “Applying a Pattern Language to Develop Application-

level Gateways,” irDesign Patterns in Communicatio(is. Rising, ed.),
Cambridge University Press, 2000.

W. R. StevensUNIX Network Programming, First EditionEnglewood
Cliffs, NJ: Prentice Hall, 1990.

] S. Rago, UNIX System V Network Programming Reading, MA:

Addison-Wesley, 1993.

P. Jainand D. C. Schmidt, “Service Configurator: A Pattern for Dynamic
Configuration of Services,” ifProceedings of th@"¢ Conference on
Object-Oriented Technologies and SystedSENIX, June 1997.

Object Management Groufhe Common Object Request Broker: Ar-
chitecture and Specificatio2.3 ed., June 1999.

D. C. Schmidt and C. Cleeland, “Applying a Pattern Language to De-
velop Extensible ORB Middleware,” iDesign Patterns in Communica-
tions(L. Rising, ed.), Cambridge University Press, 2000.

data. This eliminates a class of subtle errors that can aff€s D C. Schmidt and T. Suda, “An Object-Oriented Framework for

when programming with weakly typed network programming
interfaces such as sockets or TLI.

However, the Acceptor-Connector pattern can also exhibit {hd
following drawbacks:

[12]
Additional indirection: The Acceptor-Connector pattern
can incur additional indirection compared to using the und&?!
lying network programming interfaces directly. However, lan-

Dynamically Configuring Extensible Distributed Communication Sys-
tems,”IEE/BCS Distributed Systems Engineering Journal (Special Issue
on Configurable Distributed Systemspl. 2, pp. 280-293, December
1994.

G. Blaine, M. Boyd, and S. Crider, “Project Spectrum: Scalable Band-
width for the BJC Health SystemPMIMSS, Health Care Communica-
tions, pp. 71-81, 1994.

P. Jain and D. Schmidt, “Experiences Converting a C++ Communication
Software Framework to JavaC++ Report vol. 9, January 1997.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture - A System of Pattekivdey
and Sons, 1996.

guages that support parameterized types, such as C++, Ada4prsS. Crane, J. Magee, and N. Pryce, “Design Patterns for Binding in

Eiffel, can implement these patterns with no significant over-
head when compilers inline the method calls used to imple-
ment the patterns. [15]

Additional complexity: The Acceptor-Connector pattern
may add unnecessary complexity for simple client applicatiqns
that connect with only one server and perform one service us-
ing a single network programming interface. However, tﬁ%
use of generic acceptor and connector wrapper facades
simplify even these use cases by shielding developers from
tedious, error-prone and non-portable low-level network pro-
gramming mechanisms.

Open-source implementations of the Acceptor-
Connector and Reactor patterns are available at URL
www.cs.wustl.edu/ ~schmidt/ACE.html This
URL contains complete source code, documentation, and
example test drivers for the C++ components developed as
part of the ACE framework [3] developed at the University of
California, Irvine and Washington University, St. Louis.

14

Distributed Systems,” imhe OOPSLA '95 Workshop on Design Pat-
terns for Concurrent, Parallel, and Distributed Object-Oriented Sys-
tems (Austin, TX), ACM, Oct. 1995.

J. Magee, N. Dulay, and J. Kramer, “A Constructive Development En-
vironment for Parallel and Distributed Programs,” Rmoceedings of
the 274 International Workshop on Configurable Distributed Systems
(Pittsburgh, PA), pp. 1-14EEE, Mar. 1994.

N. Pryce, “Abstract Session,” iRattern Languages of Program Design
(B. Foote, N. Harrison, and H. Rohnert, eds.), Reading, MA: Addison-
Wesley, 1999.

G. Meszaros, “Half Object plus Protocol,” Pattern Languages of Pro-
gram Design(J. O. Coplien and D. C. Schmidt, eds.), Reading, MA:
Addison-Wesley, 1995.

