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Abstract

Distributed object computing forms the basis for next-
generation application middleware. At the heart of distributed
object computing are Object Request Brokers (ORBs), which
automate many tedious and error-prone distributed program-
ming tasks. This article presents a case study of key design
patterns needed to develop ORBs that can be dynamically con-
figured and evolved for specific application requirements and
system characteristics.

1 Introduction

Four trends are shaping the future of commercial software de-
velopment. First, the software industry is moving away from
programmingapplications from scratch tointegratingapplica-
tions using reusable components [1] such as ActiveX and Java
Beans. Second, there is great demand fordistribution tech-
nologysuch as remote method invocation or message-oriented
middleware that simplifies application collaboration within
and across enterprises [2]. Third, there are increasing efforts to
define standard software infrastructures such as CORBA that
allow applications to interwork seemlessly throughouthetero-
geneousenvironments [3]. Finally, next-generation distributed
applications such as video-on-demand, teleconferencing, and
avionics require Quality of Service (QoS) guarantees for la-
tency, bandwidth, and reliability [4].

A key software technology supporting these trends isdis-
tributed object computing (DOC) middleware. DOC middle-
ware facilitates the collaboration of local and remote applica-
tion components in heterogeneous distributed environments.

�This research is supported in part by grants from Boeing, NSF grant
NCR-9628218, Siemens, and Sprint.

The goal of DOC middleware is to eliminate many tedious,
error-prone, and non-portable aspects of developing and main-
taining distributed applications. In particular, DOC middle-
ware automates common network programming tasks such as
object location, object activation, parameter marshaling, fault
recovery, and security. At the heart of DOC middleware are
Object Request Brokers(ORBs), such as CORBA [5], DCOM
[6], and Java RMI [7].

This article describes howdesign patternscan be used to
develop dynamically configurable ORB middleware that can
be extended and maintained more easily than statically con-
figured middleware. A pattern represents a recurring solution
to a software development problem within a particular context
[8]. Patterns help to alleviate the continual re-discovery and
re-invention of software concepts and components by docu-
menting proven solutions to standard software development
problems [9]. For instance, patterns are useful for document-
ing the structure and participants in common communication
software micro-architectures like Reactors [10], Active Ob-
jects [11], and Brokers [12]. These patterns are generaliza-
tions of object-structures that have been used successfully to
build flexible and efficient event-driven and concurrent com-
munication software such as ORBs.

To focus the discussion, this article presents a case study
that illustrates how we have applied patterns to developThe
ACE ORB(TAO) [13]. TAO is a freely available, highly exten-
sible ORB targeted for applications with real-time quality of
service (QoS) requirements. These applications include avion-
ics mission computers [14], telecommunication switch man-
agement systems [10], and electronic medical imaging sys-
tems [15]. A novel aspect of TAO is its extensible design,
which can be customized dynamically to meet specific appli-
cation QoS requirements and network/endsystem characteris-
tics.
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2 Overview of CORBA and TAO

2.1 Overview of the CORBA ORB Reference
Model

CORBA Object Request Brokers (ORBs) [3] allow clients to
invoke operations on distributed objects without concern for
object location, programming language, OS platform, commu-
nication protocols and interconnects, and hardware. Figure 1
illustrates the components in the CORBA reference model,
which collaborate to provide the portability, interoperability,
and transparency mentioned above.

Figure 1 illustrates the components in the CORBA refer-
ence model, all of which collaborate to provide the portability,
interoperability, and transparency outlined above.
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Figure 1: Components in the CORBA Reference Model

The client-side stubs marshal client operations into requests
that are transmitted to servants via the standard Internet Inter-
ORB Protocol (IIOP) implemented in the ORB Core. The
server-side ORB Core receives these requests and passes them
to the Object Adapter. The Object Adapter demultiplexes the
requests to skeletons, which demarshal the requests and dis-
patch the appropriate application-level servant operation.

2.2 Overview of TAO

TAO is an ORB endsystem that contains the network interface,
operating system, communication protocol, and CORBA mid-
dleware components and features shown in Figure 2. TAO is
based on the standard OMG CORBA reference model, with
the following enhancements designed to overcome the short-
comings of conventional ORBs for high-performanceand real-
time applications:

Real-time IDL Stubs and Skeletons: In addition to mar-
shaling and demarshaling of operation parameters, TAO’s
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Figure 2: Components in the TAO Real-time ORB

Real-time IDL (RIDL) stubs and skeletons are designed to en-
sure that application timing requirements are specified and en-
forced end-to-end [16].

Real-time Object Adapter and ORB Core: In addition to
associating servants with the ORB and demultiplexing incom-
ing requests to servants, TAO’s Object Adapter (OA) imple-
mentation dispatches servant operations in accordance with
various real-time scheduling strategies such as Rate Mono-
tonic and Maximal Urgency First [13].

ORB QoS Interface: TAO’s QoS interface is designed
to map real-time processing requirements to ORB endsys-
tem/network resources. Common real-time processing re-
quirements include end-to-end latency bounds and periodic
scheduling deadlines. Common ORB endsystem/network re-
sources include CPU, memory, network connections and stor-
age devices.

Real-time I/O subsystem: TAO’s real-time I/O subsystem
performs admission control and assigns priorities to real-time
I/O threads so that the schedulability of application compo-
nents and ORB endsystem resources can be guaranteed.

High-speed network adapters: TAO’s I/O subsystem con-
tains a “daisy-chained” interconnect comprising a number of
ATM Port Interconnect Controller (APIC) chips [17]. APIC
is designed to sustain an aggregate bi-directional data rate of
2.4 Gbps. However, TAO also runs on conventional real-time
interconnects such as VME backplanes and multi-processor
shared memory environments.
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3 Using Patterns to Build an Extensible
ORB Middleware

This section uses TAO as a case study to illustrate how patterns
can help application developers and ORB developers build,
maintain, and extend communication software by reducing the
coupling between components. The patterns described in this
section are not limited to ORBs or communication middle-
ware, however. They have been applied in many other commu-
nication application domains, including telecom call process-
ing and switching, avionics flight control systems, multimedia
teleconferencing, and distributed interactive simulations.

Figure 3 illustrates the patterns used to develop an extensi-
ble ORB architecture for TAO. It is beyond the scope of this
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Figure 3: Relationships Among Patterns Used in TAO

section to describe each pattern in detail or to discuss all the
patterns used within TAO. Instead, our goal is to focus on the
key patterns and show how they can improve the extensibil-
ity, maintainability, and performance of complex ORB mid-
dleware. The references point to additional material on each
pattern.

In the following discussion, we outline the forces that un-
derlie the main design challenges related to developing ex-
tensible and maintainable ORBs. We also explain how the
absence of these patterns leaves these forces unresolved. In
addition, we describe which patterns resolve these forces and
illustrate how TAO implements these patterns to create an ex-
tensible and maintainable real-time ORB.

3.1 Encapsulate Low-level System Mechanisms
with the Wrapper Facade Pattern

Context: One role of an ORB is to shield application-
specific clients and servants from the details of low-level sys-
tems programming. Thus, ORB developers, rather than appli-
cation developers, are responsible for tedious, low-level tasks
like demultiplexing events, sending and receiving requests
from the network, and spawning threads to execute requests
concurrently.

Problem: Developing an ORB is difficult. It is even more
difficult if developers must wrestle with low-level system APIs
written in languages like C, which often causes the following
problems:

� ORB developers must have intimate knowledge of
many OS platforms: Implementing an ORB using system-
level APIs forces developers to deal with the non-portable,
tedious, and error-prone OS idiosyncrasies such as using un-
typed socket handles to identify connection endpoints. More-
over, these APIs are not portable across OS platforms. For
example, Win32 lacks Pthreads and has subtly different se-
mantics for sockets andselect .

� Increased maintenance effort: One way to build an
ORB is to handle portability variations via explicit conditional
compilation directives in ORB source code. Using condi-
tional compilation to address platform-specific variationsat
all points of useincreases the complexity of the source code.
It is hard to maintain and extend such ORBs, however, since
platform-specific details are scattered throughout the imple-
mentation files.

� Inconsistent programming paradigms: System mech-
anisms are accessed through C-style function calls, which
cause an “impedance mismatch” with the OO programming
style supported by C++, the language used to implement TAO.

How can we avoid accessing low-level system mechanisms
when implementing an ORB?

Solution ! the Wrapper Facade pattern: An effective
way to avoid accessing system mechanisms directly is to use
the Wrapper Facade pattern. This pattern is a variant of the
Facade pattern [8]. The intent of the Facade pattern is to sim-
plify the interface for a subsystem. The intent of the Wrapper
Facade pattern is more specific: it provides type-safe, modu-
lar, and portable class interfaces that encapsulate lower-level,
stand-alone system mechanisms such as sockets,select ,
and Pthreads. In general, the Wrapper Facade pattern should
be applied when existing system-level APIs are non-portable
and non-type-safe.
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Using the Wrapper Facade pattern in TAO: TAO accesses
all system mechanisms via the wrapper facades provided by
ACE [18]. ACE is an OO framework that implements core
concurrency and distribution patterns for communication soft-
ware. It provides reusable C++ wrapper facades and frame-
work components that are targeted to developers of high-
performance, real-time applications and services across a wide
range of OS platforms, including Win32, most versions of
UNIX, and real-time operating systems (like VxWorks, Cho-
rus, and LynxOS).

Figure 4 illustrates how the ACE C++ wrapper facades
improve TAO’s robustness and portability by encapsulating
and enhancing native OS concurrency, communication, mem-
ory management, event demultiplexing, and dynamic linking
mechanisms with type-safe OO interfaces. The OO encap-
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Figure 4: TAO’s Wrapper Facade Encapsulation

sulation provided by ACE alleviates the need for TAO to ac-
cess the weakly-typed system mechanisms directly. Therefore,
C++ compilers can detect type system violations at compile-
time rather than at run-time. ACE wrapper facades use C++
features to eliminate performance penalties that would other-
wise be incurred from its additional type-safety and layer of
abstraction. For instance, inlining is used to avoid the over-
head of calling small method calls. Likewise, static methods
are used to avoid the overhead of passing athis pointer to
each invocation.

Although the ACE wrapper facades solve a common devel-
opment problem, they are just the first step towards developing
an extensible and maintainable ORB. The remaining patterns
described in this section build on the encapsulation provided
by the ACE wrapper facades to address more challenging ORB
design issues.

3.2 Demultiplexing ORB Core Events using the
Reactor Pattern

Context: An ORB Core is responsible for demultiplexing
I/O events from multiple clients and dispatching their asso-
ciated event handlers. For instance, a server-side ORB Core

listens for new client connections and reads/writes GIOP re-
quests/responses from/to connected clients. To ensure re-
sponsiveness to multiple clients, an ORB Core uses OS
event demultiplexing mechanisms to wait forCONNECTION,
READ, andWRITE events to occur onmultiplesocket handles.
Common event demultiplexing mechanisms includeselect ,
WaitForMultipleObjects , I/O completion ports, and
threads.

Problem: One way to develop an ORB Core is to hard-code
it to use one event demultiplexing mechanism. Relying on
just one mechanism is undesirable, however, since no single
scheme is efficient on all platforms or for all application re-
quirements. For instance, asynchronous I/O completion ports
are very efficient on Windows NT [19], whereas synchronous
threads are the most efficient demultiplexing mechanism on
Solaris [20].

Another way to develop an ORB Core is to tightly couple its
event demultiplexing code with the code that performs GIOP
protocol processing. In this case, the demultiplexing code can-
not be reused as a blackbox component by similar communi-
cation middleware applications such as HTTP servers [19] or
video-on-demand applications. Moreover, if new ORB strate-
gies for threading or Object Adapter request scheduling algo-
rithms are introduced, substantial portions of the ORB Core
must be re-written.

How then can an ORB implementation render itself inde-
pendent of a specific event demultiplexing mechanism and de-
couple its demultiplexing code from its handling code?

Solution ! the Reactor pattern: An effective way to re-
duce coupling and increase the extensibility of an ORB Core
is to apply theReactor pattern[10]. This pattern supports
synchronous demultiplexing and dispatching of multipleevent
handlers, which are triggered by events that can arrive concur-
rently from multiple sources. The Reactor pattern simplifies
event-driven applications by integrating the demultiplexing of
events and the dispatching of their corresponding event han-
dlers. In general, the Reactor pattern should be applied when
an application like an ORB Core must handle events from mul-
tiple clients concurrently, without commiting itself to a single
low-level mechanism likeselect .

It is important to note that applying the Wrapper Facade pat-
tern is not sufficient to resolve the problems outlined above. A
wrapper facade forselect may improve ORB Core porta-
bility somewhat. However, this pattern does not resolve the
need to completely decouple the low-level event demultiplex-
ing logic from the higher-level client request processing logic
in an ORB Core.

Using the Reactor pattern in TAO: TAO uses the Re-
actor pattern to drive the main event loop within its ORB
Core, as shown in Figure 5. A TAO server (1) initi-
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Figure 5: Using the Reactor Pattern in TAO’s Event Loop

ates an event loop in the ORB Core’sReactor , where
it (2) remains blocked onselect until an I/O event oc-
curs. When a GIOP request event occurs, theReactor
demultiplexes the request to the appropriate event handler,
which is the GIOPConnection Handler that is associ-
ated with each connected socket. TheReactor (3) then calls
Connection Handler::handle input , which (4) dis-
patches the request to TAO’s Object Adapter. The Object
Adapter demultiplexes the request to the appropriate upcall
method on the servant and (5) dispatches the upcall.

The Reactor pattern enhances the extensibility of TAO by
decoupling the event handling portions of its ORB Core from
the underlying OS event demultiplexing mechanisms. For
example, theWaitForMultipleObjects event demulti-
plexing system call is used on Windows NT, whereasselect
is used on UNIX platforms. Moreover, the Reactor pattern
simplifies the configuration of new event handlers. For in-
stance, adding a newSecure Connection Handler that
performs encryption/decryption of all traffic does not affect
the Reactor’s implementation.

3.3 Managing Connections in an ORB Using
Acceptor-Connector Pattern

Context: Connection management is another key respon-
sibility of an ORB Core. For instance, an ORB Core
that implements the IIOP protocol must establish TCP con-
nections and initialize the protocol handlers for each IIOP
server endpoint . By localizing connection management
logic in the ORB Core, application-specific servants are able
to focus solely on processing client requests.

An ORB Core is notlimited to running over IIOP and TCP
transports, however. For instance, while TCP can transfer

GIOP requests reliably, its flow control and congestion control
algorithms may preclude its use as a real-time protocol [13].
Likewise, it may be more efficient to use a shared memory
transport mechanism when clients and servants are co-located
on the same endsystem. Thus, an ideal ORB Core must be
flexible in its support of multiple transport mechanisms.

Problem: The CORBA architecture explicitly decouples the
connection management tasks performed by an ORB Core
from the request processing performed by an application ser-
vant. However, one way to implement an ORB’sinternal
connection management activities is to use low-level network
APIs like sockets. Likewise, the connection establishment
protocol can be tightly coupled with the communication pro-
tocol.

This design approach yields the following drawbacks, how-
ever:

1. Too inflexible: If an ORB’s connection management
data structures and algorithms are too closely intertwined, sub-
stantial effort is required to modify the ORB Core. For in-
stance, tight coupling the ORB to use the socket API makes
it hard to change the underlying transport mechanism,e.g., to
use shared memory rather than sockets. Therefore, it is intru-
sive and time consuming to port a tightly coupled ORB Core
to new networks, such as ATM, or different network program-
ming APIs, such as TLI or Win32 Named Pipes.

2. Too inefficient: Many internal ORB strategies can be
optimized by allowing both ORB developers and application
developers to select appropriate implementations late in the
design cycle,e.g., after extensive performance profiling. For
example, a multi-threaded, real-time ORB client may need
to store connection endpoints in thread-specific storage to re-
duce lock contention and overhead. Similarly, the concurrency
strategy for a CORBA server might require that each connec-
tion run in its own thread to eliminate per-request locking over-
head. However, if connection management mechanism are
hard-coded and tightly bound with other internal ORB strate-
gies it is hard to accommodate efficient new strategies.

How then can an ORB Core’s connection management com-
ponents support multiple transports and allow connection-
related behaviors to be (re)configured flexibly late in the de-
velopment cycle?

Solution! the Acceptor-Connector pattern: An effective
way to increase the flexibility of ORB Core connection man-
agement and initialization is to apply theAcceptor-Connector
pattern[21]. This pattern decouples connection initialization
from the processing performed once a connection endpoint is
initialized. TheAcceptor component in the pattern is re-
sponsible forpassiveinitialization, i.e., the server-side of the
ORB Core. Conversely, theConnector component in the
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pattern is responsible foractive initialization, i.e., the client-
side of the ORB Core. In general, the Acceptor-Connector pat-
tern should be applied when client/server middleware must al-
low flexible configuration of network programming APIs and
must maintain proper separation of initialization roles.

Using the Acceptor-Connector pattern in TAO: TAO
uses the Acceptor-Connector pattern in conjunction with
the Reactor pattern to handle setup of connections for
GIOP/IIOP communication. Within TAO’s client-side
ORB Core, aConnector initiates connections to servers
in response to a method invocation or explicit bind-
ing to a remote object. Within TAO’s server-side
ORB Core, one or moreAcceptor s creates a GIOP
Connection Handler to service each new client connec-
tion. Acceptor s andConnection Handler s both derive
from Event Handler , which enable them to be dispatched
automatically by aReactor .

TAO’s Acceptors andConnectors can be configured
with any transport mechanisms, such as sockets or TLI, pro-
vided by the ACE wrapper facades. In addition, TAO’s
Acceptor and Connector can be imbued with custom
strategies to systematically select an appropriate concurrency
mechanism, as described in Section 3.4.

Figure 6 illustrates the use of Acceptor-Connector strate-
gies in TAO’s ORB Core. When a client (1) invokes a
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Figure 6: Using the Acceptor-Connector Pattern in TAO’s
Connection Management

remote operation, it makes aconnect call through the
Strategy Connector . The Strategy Connector
(2) consults its connection strategy to obtain a connection. In
this example the client uses a “caching connection strategy”
that recycles connections to the server. Thus, it only creates
new connections when all existing connections are already in

use. This strategy minimizes connection setup time, thereby
reducing end-to-end request latency.

In the server-side ORB Core, theReactor notifies
TAO’s Strategy Acceptor to (3) accept newly con-
nected clients and createConnection Handlers . The
Strategy Acceptor delegates the choice of concurrency
mechanism to one of TAO’sconcurrencystrategies (e.g.,
reactive, thread-per-request, thread-per-connection, thread-
per-priority, etc.) described in Section 3.4. Once a
Connection Handler is activated (4) within the ORB
Core, it performs the requisite GIOP protocol processing (5)
on a connection and ultimately dispatches (6) the request to
the appropriate servant via TAO’s Object Adapter.

3.4 Simplifying ORB Concurrency using the
Active Object Pattern

Context: Once the Object Adapter has dispatched a client
request to the appropriate servant, the servant executes the re-
quest. Execution may occur in the same thread of control as
the Connection Handler that received it. Conversely,
execution may occur in a different thread, concurrent with
other request executions. The CORBA specification does not
address the issue of concurrency within an ORB or a servant,
leaving the decision to ORB developers and end-users.

It is important to develop ORBs that manage concur-
rent processing efficiently. Concurrency allows long-running
operations to execute simultaneously without impeding the
progress of other operations. Likewise, preemptive multi-
threading is crucial to minimize the dispatch latency of real-
time systems [14].

Problem: In many ORBs, the concurrency architecture is
programmed directly using the OS platform’s multi-threading
API, such as the POSIX Pthreads API [22]. However, there
are several drawbacks to this approach:

� Non-portable: Threading APIs tend to be very
platform-specific. Even industry standards such as POSIX
Pthreads are not available on many widely-used OS platforms,
including Win32, VxWorks, and pSoS. Not only is there no di-
rect mapping between APIs, but there is no clear mapping of
functionality. For instance, POSIX Pthreads supports deferred
thread cancellation, whereas Win32 threads do not. Moreover,
although Win32 has a thread termination API, but the docu-
mentation strongly recommendsnot using it since it does not
release thread resources on exit. Moreover, Pthreads itself is
non-portable since many UNIX vendors implement different
drafts of the standard.

� Hard to program correctly: Programming a multi-
threaded ORB is hard since application and ORB developers
must ensure that access to shared data is serialized properly in
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the ORB and in the servants. In addition, the techniques re-
quired to robustly terminate servants that execute concurrently
in multiple threads are complicated, non-portable, and non-
intuitive.

� Non-extensible: The choice of an ORB concurrency
strategy depends largely on external factors like application
requirements and network/endsystem characteristics. For in-
stance, Reactive single-threading [10] is an appropriate strat-
egy for short duration, compute-bound requests on a uni-
processor. If these external factors change, however, it is im-
portant that an ORB can be extended to handle alternative con-
currency strategies such as thread-per-request, thread pool, or
thread-per-priority.

When ORBs are developed using low-level threading APIs,
however, they are hard to extend it with new concurrency
strategieswithoutaffecting other ORB components. How then
can an ORB support a simple, extensible, and portable concur-
rency mechanism?

Solution! the Active Object pattern: An effective way to
increase the portability, correctness, and extensibility of ORB
concurrency strategies is to apply theActive Object pattern
[11]. This pattern provides a higher-level concurrency archi-
tecture that decouples the thread that initially receives and pro-
cesses a client request from the thread that ultimately executes
the request.

While Wrapper Facadesprovide the basis for portability,
they are simply thin veneers over the low-level system mech-
anisms. Moreover, a facade’s behavior may still vary across
platforms. Therefore, the Active Object pattern defines a
higher-level concurrency abstraction that shields TAO from
the complexity of low-level thread facades. By raising the
level of abstraction for ORB developers, the Active Object pat-
tern makes it easier to define more portable, flexible, and easy
to program ORB concurrency strategies.

In general, the Active Object pattern should be used when
an application can be simplified by centralizing the point
where concurrency decisions are made. This pattern gives
developers the flexibilityx to insert decision points between
each request’s initial reception and its ultimate execution. For
instance, developers could decide whether or not to spawn a
thread-per-connection or a thread-per-request.

Using the Active Object pattern in TAO: TAO uses
the Active Object pattern to transparently allow a GIOP
Connection Handler to execute requests eitherreac-
tivelyby borrowing the Reactor’s thread of control oractively
by running in its own thread of control. The sequence of steps
is shown in Figure 7.

The processing shown in Figure 7 is triggered when (1) a
Reactor notifies theConnection Handler that an I/O
event is pending. Based on the currently configured strat-
egy, e.g., reactive, thread-per-connection, thread-per-request,
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1: handle_input()1: handle_input()

3:3: SERVICE  REQUEST SERVICE  REQUEST

Figure 7: Using the Active Object Pattern to Structure TAO’s
Concurrency Strategies

etc., the handler (2) determines if it should be active or
passive and acts accordingly. This flexibility is achieved
by inheriting TAO’s ORB Core connection handling classes
from an ACE base class calledTask . To process a request
concurrently, therefore, the handler simply (2a) invokes the
Task::activate method. This method spawns a new
thread and invokes a standard hook method. Whether active
or passive, the handler will ultimately (3) process the request.

3.5 Reducing Lock Contention and Priority In-
versions with the Thread-Specific Storage
Pattern

Context: The Active Object pattern allows applications and
components in the ORB to operate using a variety of concur-
rency strategies, rather than one enforced by the ORB itself.
The primary drawback to concurrency, however, is the need to
serialize access to shared resources, such as operatorsnew and
delete , pointers created by theCORBA::ORBinit ORB
initialization factory, or theAcceptor andConnector de-
scribed in Section 3.3. A common way to achieve serializa-
tion is to use mutual-exclusion locks on each resource shared
by multiple threads. However, acquiring and releasing these
locks can be expensive, often negating any potential perfor-
mance benefits of concurrency.

Problem: In theory, multi-threading an ORB can improve
performance by executing multiple instruction streams simul-
taneously. In addition, multi-threading can simplify inter-
nal ORB design by allowing each thread to execute syn-
chronously rather than reactively or asynchronously. In prac-
tice, multi-threaded ORBs often perform no better, or even
worse, than single-threaded ORBs due to (1) the cost of acquir-
ing/releasing locks and (2) priority inversions that arise when
high- and low-priority threads contend for the same locks [23].
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In addition, multi-threaded ORBs are hard to program due to
complex concurrency control protocols required to avoid race
conditions and deadlocks.

Solution ! the Thread-Specific Storage pattern: An ef-
fective way to minimize the amount of locking required to
serialize access to resources shared within an ORB is to use
theThread-Specific Storagepattern [24]. This pattern allows
multiple threads in an ORB to use one logically global access
point to retrieve thread-specific data without incurring locking
overhead for each access.

Using the Thread-Specific Storage Pattern in TAO: TAO
uses the Thread-Specific Storage pattern to minimize lock con-
tention and priority inversion for real-time applications. In-
ternally, each thread in the TAO stores its ORB Core and
Object Adapter components,e.g., Reactor , Acceptor ,
Connector , POA, in thread-specific storage. When a thread
accesses any of these components, they are retrieved by us-
ing akey as an index into the thread’s internal thread-specific
state, as shown in Figure 8. Therefore, no additional locking
is required to access ORB state.

THREAD  ATHREAD  A THREAD  BTHREAD  B

1: ACE_OS::thr_getspecific(key)

2: get_state(key)

ORB THREAD-
SPECIFIC STATE

POA

Reactor

Acceptor

Connector

POA

Reactor

Acceptor

Connector

THREAD-SPECIFIC
OBJECT  TABLES

INDEXED  BY  KEY

Figure 8: Using the Thread-Specific Storage Pattern TAO

3.6 Support Interchangeable ORB Behaviors
with the Strategy Pattern

Context: The alternative concurrency architectures de-
scribed in 3.4 are just one of the many strategies that an ex-
tensible ORB may be required to support. In general, exten-
sible ORBs must support multiple request demultiplexing and
scheduling strategies in their Object Adapters, as well as mul-
tiple connection establishment, request transfer, and concur-
rent request processing strategies in their ORB Cores.

Problem: One way to develop an ORB is to provide only
static, non-extensible strategies, which are typically config-
ured in the following ways:

� Preprocessor macros: Some strategies are determined
by the value of preprocessor macros. For example, since
threading is only available on selected platforms, conditional
compilation is often used to select the appropriate concurrency
architecture.

�Command-line options: Other strategies are controlled
by the presence or absence of flags on the command-line. For
instance, command-line options can be used to enable various
ORB concurrency strategies.

While these two configuration approaches are widely
used, they are very inflexible. For instance, preprocessor
macros only support compile-time strategy selection, whereas
command-line options convey a limited amount of information
to an ORB. Moreover, these hard-coded configuration strate-
gies are completely divorced from any code they might affect.
Thus, ORB components that want to use these options must (1)
know of their existence, (2) understand their range of values,
and (3) provide an appropriate implementation for each value.
These restrictions make it hard to develop highly extensible
ORBs composed from transparently configurable strategies.

How then does an ORB (1) permit replacement of subsets of
component strategies in a manner orthogonal and transparent
to other ORB components and (2) encapsulate the state and
behavior of each strategy so that changes to one component
do not permeate throughout an ORB haphazardly?

Solution! the Strategy pattern: An effective way to sup-
port multiple transparently “pluggable” ORB strategies is to
apply theStrategy pattern[8]. This pattern factors out simi-
larity among algorithmic alternatives and explicitly associates
the name of a strategy with its algorithm and state. Moreover,
the Strategy pattern removes lexical dependencies on strategy
implementations since applications access specialized behav-
iors only through common base class interfaces. In general,
the Strategy pattern should be used when an application’s be-
havior can be configured using multiple strategies that can be
interchanged seamlessly.

Using the Strategy Pattern in TAO: TAO uses a vari-
ety of communication, concurrency, demultiplexing, real-time
scheduling and dispatching strategies to factor out behaviors
that are typically hard-coded in conventional ORBs. Several
of these strategies are illustrated in Figure 9. For instance,
TAO supports multiple request demultiplexing strategies (e.g.,
perfect hashing vs. active demultiplexing [25]) and scheduling
strategies (i.e., FIFO vs. rate monotonic vs. earliest deadline
first [14]) in its Object Adapter, as well as connection man-
agement strategies (e.g., process-wide cached connections vs.
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Table 1: Example Applications and their ORB Strategy Configurations
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Figure 9: Strategies in TAO

thread-specific cached connections) and handler concurrency
strategies (e.g., Reactive vs. variations of Active Objects) in
its ORB Core.

3.7 Consolidate ORB Strategies Using the Ab-
stract Factory Pattern

Context: There are many potential strategy variants sup-
ported by TAO. Table 1 shows a simple example of the strate-
gies used to create two configurations of TAO. One is an avion-
ics application with hard real-time requirements [14] and the
other is an electronic medical imaging application [15] with
high throughput requirements. In general, the forces that must
be resolved to compose all ORB strategies correctly are the
need to (1) ensure the configuration of semantically compati-
ble strategies and (2) simplify the management of a large num-
ber of individual strategies.

Problem: An undesirable side-effect of using the Strategy
pattern extensively in complex software like ORBs is that ex-
tensibility becomes hard to manage for the following reasons:

� Software complexity: ORB source code can become
littered with hard-coded references to strategy types. Many
independent strategies must act in harmony to provide a com-
prehensive solution to particular application domains, such as
real-time avionics. However, identifying these strategies in-
dividually by name requires tedious replacement of selected
strategies in one domain with a potentially different set of
strategies in another domain.

� Semantic incompatibilities: It is not always possible
for certain ORB strategies to interact compatibly. For instance,
the FIFO strategy for scheduling requests shown in Table 1
might not work with the thread-per-priority concurrency archi-
tecture. The problem stems from semantic incompatibilities
between scheduling requests in their order of arrival,i.e., FIFO
queueing, versus dispatching requests based on their relative
priorities, i.e., preemptive priority-based thread dispatching.
Moreover, some strategies are only useful when certain pre-
conditions are met. For instance, the perfect hashing demul-
tiplexing strategy is generally feasible only for systems that
statically configure all servants off-line.

How can a highly-configurable ORB reduce the complexi-
ties required in managing its myriad of strategies, as well as
enforce semantic consistency when combining discrete strate-
gies?

Solution ! the Abstract Factory pattern: An effective
way to consolidate multiple ORB strategies into semantically
compatible configurations is to apply theAbstract Factory pat-
tern [8]. This pattern provides a single access point that inte-
grates all strategies used to configure an ORB. Concrete sub-
classes then aggregate semantically compatible application-
specific or domain-specific strategies, which can be replaced
wholesale in semantically meaningful ways. In general, the
Abstract Factory pattern should be used when an application
needs to consolidate the configuration of many strategies, each
having multiple variations.

Using the Abstract Factory pattern in TAO: All of TAO’s
ORB strategies are consolidated into two abstract factories im-
plemented as Singletons [8]. One factory encapsulates client-
specific strategies, while the factory shown in Figure 10 en-
capsulates server-specific strategies. These abstract factories
encapsulate concurrency strategies in both the client and the
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Figure 10: Factories used in TAO

server, and request demultiplexing, scheduling, and dispatch
strategies in the server. By using the Abstract Factory pattern,
TAO can configure different ORB personalities conveniently
and consistently.

3.8 Dynamically Configure ORBs with the Ser-
vice Configurator Pattern

Context: The cost of many computing resources, such as
memory and CPUs, continue to drop. However, ORBs must
still avoid excessive consumption of finite system resources.
This parsimony is particularly essential for embedded real-
time systems that require small memory footprints and pre-
dictable CPU processing overhead. Likewise, many applica-
tions can benefit from an ability to extend ORBsdynamically
by allowing their strategies to be configured at run-time.

Problem: Although the Strategy and Abstract Factory pat-
terns make it easier to customize ORBs for specific applica-
tion requirements and system characteristics, these patterns
can cause the following problems for extensible ORBs:

�High resource utilization: Widespread use of the Strat-
egy pattern can substantially increase the number of strategies
configured into an ORB, which can increase the system re-
sources required to run an ORB.

� Unavoidable system downtime: If strategies are con-
figured statically at compile-time or static link-time using ab-
stract factories, it is hard to enhance existing strategies or add
new strategies without (1) changing the existing source code
for the consumer of the strategy or the abstract factory, (2) re-
compiling and relinking an ORB, and (3) restarting running
ORBs and their application servants.

In general, static configuration is only feasible for a small,
fixed number of strategies. Using this technique to configure

complex ORBs complicates maintenance, increases system re-
source utilization, and leads to unavoidable system downtime
to add or change existing components.

How then does an ORB implementation reduce the “overly-
large, overly-static” side-effect of pervasive use of the Strategy
and Abstract Factory patterns?

Solution ! the Service Configurator pattern: An ef-
fective way to enhance the dynamism of an ORB is to
apply the Service Configurator pattern[26]. This pat-
tern uses explicit dynamic linking [27] mechanisms to ob-
tain, utilize, and/or remove the run-time address bind-
ings of custom Strategy and Abstract Factory objects
into an ORB at installation-time or run-time. Widely
available explicit dynamic linking mechanisms include the
dlopen/dlsym/dlclose functions in SVR4 UNIX [28]
and theLoadLibrary/GetProcAddress functions in
the WIN32 subsystem of Windows NT [29]. The ACE wrap-
per facades provide a portable encapsulation of these OS func-
tions.

By using the Service Configurator pattern, thebehavior
of ORB strategies are decoupled fromwhen implementa-
tions of these strategies are configured into an ORB. For in-
stance, ORB strategies can be linked into an ORB from DLLs
at compile-time, installation-time, or even during run-time.
Moreover, this pattern can reduce the memory footprint of an
ORB by allowing application developers to dynamically link
only those strategies that are necessary for a specific ORB per-
sonality.

In general, the Service Configurator pattern should be used
when (1) an application wants to configure its constituent com-
ponents dynamically and (2) conventional techniques, such as
command-line options, are insufficient due to the number of
possibilities or the inability to anticipate the range of values.

Using the Service Configurator pattern in TAO: TAO
uses the Service Configurator pattern to configure abstract fac-
tories at run-time that contain the desired strategies. TAO’s
initialization code uses the dynamic linking mechanisms pro-
vided by the OS and encapsulated by the ACE wrapper facades
to link in the appropriate factory for a particular use-case. This
design allows applications to select the personality of a partic-
ular ORB at run-time. In addition, it allows the behavior of
TAO to be tailored for specific platforms and application re-
quirements without requiring access to the ORB source code.

Figure 11 shows two factories tuned for different applica-
tion domains – avionics and medical imaging. In this partic-
ular configuration, the avionics concrete factory is currently
installed in the process. Applications using this ORB configu-
ration will be processed with a particular set of ORB concur-
rency, demultiplexing, and dispatching strategies. In contrast,
the medical imaging concrete factory resides in a DLL outside
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Figure 11: Using the Service Configurator Pattern in TAO

of the current ORB process. To support a different configu-
ration of the ORB this factory could be dynamically installed
when the ORB process is first initialized.

4 Concluding Remarks

This article presented a case study showing how we applied
patterns to enhance the extensibility and maintainability of
TAO, a dynamically configurable, real-time ORB. We found
qualitative and quantitative evidence that the use of patterns
helped to clarify the structure of, and collaboration between,
components that perform key ORB tasks. These tasks include
event demultiplexing and event handler dispatching, connec-
tion establishment and initialization of application services,
concurrency control, and dynamic configuration. In addition,
patterns improved TAO’s performance and predictability by
making it possible to transparently configure lightweight and
optimized strategies for processing client requests.

In general, the use of patterns in TAO provided the follow-
ing benefits:

� Increased extensibility: Patterns like Abstract Factory,
Strategy, and Service Configurator make it much easier to re-
configure TAO for a particular application domain by allowing
extensibility to be “designed into” an ORB. In contrast, mid-
dleware that lacks these patterns is significantly harder to de-
velop and extend. This article illustrated how design patterns
were applied to make an ORB more extensible.

� Enhanced maintenance: Design patterns are essential to
capture and articulate the design rationale for complex struc-
tures in an ORB. Patterns help to demystify and motivate the
structure of an ORB by describing its architecture in terms of
design forces that recur in many software systems. The ex-
pressive power of patterns enabled us to convey the design of
complex software systems like TAO.

Thus, the patterns presented in this article help to improve
the maintainability of ORB middleware by reducing software

complexity.

� Increased portability and reuse: Constructing our ORB
atop an OO communication framework like ACE simplified
the effort required to port TAO to various real-time platforms.
Most of the porting effort is absorbed by the ACE frame-
work maintainers. In addition, since the ACE framework is
rich with configurable high-performance, real-time network-
oriented components, we were able to achieve considerable
code reuse by leveraging the framework.

The use of patterns can incur some liabilities. We summa-
rize these liabilities below and discuss how we minimize them
in TAO.

� Abstraction penalty: Many patterns use indirection to in-
crease component decoupling. For instance, the Reactor pat-
tern uses virtual methods to separate the application-specific
Event Handler logic from the general-purpose event de-
multiplexing and dispatching logic. The extra indirection in-
troduced by using these pattern implementations can poten-
tially decrease performance. To alleviate these liabilities, we
carefully applied C++ programming language features (such
as inline functions and templates) and other optimizations
(such as eliminating demarshaling overhead [30] and demul-
tiplexing overhead [25]) to minimize performance overhead.
As a result, TAO is substantially faster than the original hard-
coded SunSoft IIOP [30].

� Additional external dependencies: Whereas SunSoft
IIOP only depends on system-level interfaces and libraries,
TAO now depends on the ACE framework. Since ACE en-
capsulates a wide range of low-level OS mechanisms, the ef-
fort required to port it to a new platform could potentially be
higher than porting SunSoft IIOP, which only uses a subset
of the OS’s APIs. However, since ACE has been ported to
many platforms already, the effort to port to new platforms is
relatively low. Most sources of platform variation have been
isolated to a few modules in ACE.

A final benefit of applying patterns to TAO is that not only
did we developed a more flexible ORB, but we also devised
a richer vocabulary for discussing ORB middleware designs.
This vocabulary is a key “enabling” step to demystify the in-
ternals of an ORB. As we continue to learn about ORBs and
the patterns of which they are composed, we expect this vo-
cabulary to grow and evolve.

The source code for ACE and TAO is freely available at
www.cs.wustl.edu/ �schmidt/TAO.html .

Acknowledgements

We would like to thank Frank Buschmann, Hans Rohnert, and
Michael Stal for their extensive comments on this paper.

11



References
[1] R. Johnson, “Frameworks = Patterns + Components,”Commu-

nications of the ACM, vol. 40, Oct. 1997.

[2] S. Landis and S. Maffeis, “Building Reliable Distributed Sys-
tems with CORBA,”Theory and Practice of Object Systems,
Apr. 1997.

[3] S. Vinoski, “CORBA: Integrating Diverse Applications Within
Distributed Heterogeneous Environments,”IEEE Communica-
tions Magazine, vol. 14, February 1997.

[4] J. A. Zinky, D. E. Bakken, and R. Schantz, “Architectural Sup-
port for Quality of Service for CORBA Objects,”Theory and
Practice of Object Systems, vol. 3, no. 1, 1997.

[5] Object Management Group,The Common Object Request Bro-
ker: Architecture and Specification, 2.2 ed., Feb. 1998.

[6] D. Box, Essential COM. Addison-Wesley, Reading, MA, 1997.

[7] A. Wollrath, R. Riggs, and J. Waldo, “A Distributed Object
Model for the Java System,”USENIX Computing Systems,
vol. 9, November/December 1996.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Pat-
terns: Elements of Reusable Object-Oriented Software. Read-
ing, MA: Addison-Wesley, 1995.

[9] D. C. Schmidt, “Experience Using Design Patterns to Develop
Reuseable Object-Oriented Communication Software,”Com-
munications of the ACM (Special Issue on Object-Oriented Ex-
periences), vol. 38, October 1995.

[10] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler Dispatch-
ing,” in Pattern Languages of Program Design(J. O. Coplien
and D. C. Schmidt, eds.), pp. 529–545, Reading, MA: Addison-
Wesley, 1995.

[11] R. G. Lavender and D. C. Schmidt, “Active Object: an Ob-
ject Behavioral Pattern for Concurrent Programming,” inPat-
tern Languages of Program Design(J. O. Coplien, J. Vlissides,
and N. Kerth, eds.), Reading, MA: Addison-Wesley, 1996.

[12] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-Oriented Software Architecture - A System of
Patterns. Wiley and Sons, 1996.

[13] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request Brokers,”Computer
Communications, vol. 21, pp. 294–324, Apr. 1998.

[14] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The De-
sign and Performance of a Real-time CORBA Event Service,”
in Proceedings of OOPSLA ’97, (Atlanta, GA), ACM, October
1997.

[15] I. Pyarali, T. H. Harrison, and D. C. Schmidt, “Design
and Performance of an Object-Oriented Framework for High-
Performance Electronic Medical Imaging,”USENIX Comput-
ing Systems, vol. 9, November/December 1996.

[16] V. F. Wolfe, L. C. DiPippo, R. Ginis, M. Squadrito, S. Wohlever,
I. Zykh, and R. Johnston, “Real-Time CORBA,” inProceedings
of the Third IEEE Real-Time Technology and Applications Sym-
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