Applying Patterns to Develop Extensible ORB Middleware

Douglas C. Schmidt and Chris Cleeland
{schmidt,cleelanf@cs.wustl.edu
Department of Computer Science

Washington University
St. Louis, MO 63130, USA
(314) 935-7538

This article has been submitted to IEEE Communicatiombe goal of DOC middleware is to eliminate many tedious,
Magazine, special issue on design patterns. error-prone, and non-portable aspects of developing and main-
taining distributed applications. In particular, DOC middle-
Ab ware automates common network programming tasks such as

stract object location, object activation, parameter marshaling, fault
Distributed Object Computing forms the basis for nexfecovery, and SeCUrity. At the heart of DOC middleware are
generation application middleware. At the heart of distributégPiect Request Broke(®RBs), such as CORBA [5], DCOM
object computing are Object Request Brokers (ORBs), whih and Java RMI [7].
automate many tedious and error-prone distributed program-
ming tasks. This article presents a case study of key design

patterns needed to develop ORBs that can be dynamically cgr;[h's article describes hodesign patterngan be used to

figured and evolved for specific application requirements a avelop dynamically F:onﬁgurable ORB.mlddIeware' that can
system characteristics. e extended and maintained more easily than statically con-

figured middleware. A pattern represents a recurring solution
to a software development problem within a particular context
1 Introduction [8]. Patterns help to alleviate the continual re-discovery and
re-invention of software concepts and components by docu-

Four trends are shaping the future of commercial software J&Nting proven solutions to standard software development
velopment. First, the software industry is moving away fromoblems [9]. Forinstance, patterns are useful for document-

programmingapplications from scratch iategratingapplica- N9 the structure a”hd, pammpa:r:(ts In common commgmcaﬂgn
tions using reusable components [1] such as ActiveX and Jag§ware micro-architectures like Reactors [10], Active Ob-

Beans. Second, there is great demanddistribution tech- J€CtS [11], and Brokers [12]. These patterns are generaliza-
nologysuch as remote method invocation or message-orieri{@gs Of object-structures that have been used successfully to
middleware that simplifies application collaboration Withihu'ld_ fle>-<|ble and efficient event-driven and concurrent com-
and across enterprises [2]. Third, there are increasing effortdjghication software such as ORBs.

define standard software infrastructures such as CORBA that

allow applications to interwork seemlessly throughloeitero-
geneouenvironments [3]. Finally, next-generation distributeﬁiI
applications such as video-on-demand, teleconferencing,
avionics require Quality of Service (QoS) guarantees for
tency, bandwidth, and reliability [4].

To focus the discussion, this article presents a case study

at illustrates how we have applied patterns to devélog
ORB(TAO) [13]. TAO is a freely available, highly exten-

&ble ORB targeted for applications with real-time quality of

Ak ft technol tina th trenddis service (QoS) requirements. These applications include avion-
€y software technology supporting these rendeiss . \,iqcqi0n computers [14], telecommunication switch man-

tributed iject computing (DQC) middlewarBOG m|ddle-' agement systems [10], and electronic medical imaging sys-
ware facilitates the collaboration of local and remote appllc[%-

i ts in het distributed ; ms [15]. A novel aspect of TAO is its extensible design,
lon components in heterogeneous distribute envwonmeWRich can be customized dynamically to meet specific appli-

*This research is supported in part by grants from Boeing, NSF gr&_rﬁtion QoS requirements and network/endsystem characteris-
NCR-9628218, Siemens, and Sprint. tics.

2 Overview of CORBA and TAO

in args

operation()

. CLIENT SERVANT
2.1 Overview of the CORBA ORB Reference out args + return value
Model
CORBA Object Request Brokers (ORBs) [3] allow clients tc . R v
invoke operations on distributed objects without concern fc RIDL ORB QoS Rf;;LJETC‘;“E
object location, programming language, OS platform, commi Sroes INTERFACE ADAPTER

nication protocols and interconnects, and hardware. Figure
illustrates the components in the CORBA reference mode g@&% m
which collaborate to provide the portability, interoperability,
and transparency mentioned above.

Figure 1 illustrates the components in the CORBA refel
ence model, all of which collaborate to provide the portability

interoperability, and transparency outlined above.

OS KERNEL OS KERNEL
REAL-TIME 1/0 REAL-TIME 1/0
SUBSYSTEM SUBSYSTEM
HIGH-SPEED HIGH-SPEED
NETWORK ADAPTERS, NETWORK ADAPTERS,

Figure 2: Components in the TAO Real-time ORB

in args

operation()

CLIENT SERVANT

out args + return value

A
[DL] Real-time IDL (RIDL) stubs and skeletons are designed to en-
TR sure that application timing requirements are specified and en-
forced end-to-end [16].
INTERFACE
ORB Real-time Object Adapter and ORB Core: In addition to
CORE associating servants with the ORB and demultiplexing incom-

ing requests to servants, TAO’s Object Adapter (OA) imple-
(D sranpap LANGUAGE mentation dispatches servant operations in accordance with
various real-time scheduling strategies such as Rate Mono-
tonic and Maximal Urgency First [13].

O STANDARD INTERFACE

. ORB-SPECIFIC INTERFACE Q STANDARD PROTOCOL

Figure 1: Components in the CORBA Reference Model
ORB QoS Interface: TAO’s QoS interface is designed

The client-side stubs marshal client operations into requel§tsmap real-time processing requirements to ORB endsys-
that are transmitted to servants via the standard Internet Int@fa/network resources. Common real-time processing re-
ORB Protocol (IIOP) implemented in the ORB Core. Th@uirements include end-to-end latency bounds and periodic
server-side ORB Core receives these requests and passes #6gfluling deadlines. Common ORB endsystem/network re-
to the Object Adapter. The Object Adapter demultiplexes th@urces include CPU, memory, network connections and stor-
requests to skeletons, which demarshal the requests andagi§-devices.
patch the appropriate application-level servant operation.

Real-time 1/0 subsystem: TAQ's real-time 1/O subsystem
2.2 Overview of TAO performs admission control and assigns priorities to real-time
I/O threads so that the schedulability of application compo-
TAO is an ORB endsystem that contains the network interfagents and ORB endsystem resources can be guaranteed.
operating system, communication protocol, and CORBA mid-
dleware components and features shown in Figure 2. TAQjs,,._ . ,)
based on the standard OMG CORBA reference model, v(\}|| @h speed network adapters: TAO's I/O subsystem con

the followi h ts desianed t h hf ins a “daisy-chained” interconnect comprising a number of
€ following enhancements designed to overcome the s M Port Interconnect Controller (APIC) chips [17]. APIC
comings of conventional ORBs for high-performance and re

. o ‘designed to sustain an aggregate bi-directional data rate of
time applications: 2.4 Gbhps. However, TAO also runs on conventional real-time
Real-time IDL Stubs and Skeletons: In addition to mar- interconnects such as VME backplanes and multi-processor
shaling and demarshaling of operation parameters, TAGRared memory environments.

3 Using Patterns to Build an Extensible 3.1 Encapsulate Low-level System Mechanisms
ORB Middleware with the Wrapper Facade Pattern

Context: One role of an ORB is to shield application-

specific clients and servants from the details of low-level sys-
This section uses TAO as a case study to illustrate how PattgEgs programming. Thus, ORB developers, rather than appli-
can help application developers and ORB developers bulidiion developers, are responsible for tedious, low-level tasks
maintain, and extend communication software by reducing g demultiplexing events, sending and receiving requests

coupling between components. The patterns described in fiign the network, and spawning threads to execute requests
section are not limited to ORBs or communication middlgyncyrrently.

ware, however. They have been applied in many other commu-

nication application domains, including telecom call processroblem: Developing an ORB is difficult. It is even more
ing and switching, avionics flight control systems, multimedéifficult if developers must wrestle with low-level system APIs
teleconferencing, and distributed interactive simulations. written in languages like C, which often causes the following

. . I :
Figure 3 illustrates the patterns used to develop an extel%P-b ems

ble ORB architecture for TAO. It is beyond the scope of this , org developers must have intimate knowledge of

many OS platforms: Implementing an ORB using system-
level APIs forces developers to deal with the non-portable,
SERVICE SERVANT tedious, and error-prone OS idiosyncrasies such as using un-
CONFIGURATOR typed socket handles to identify connection endpoints. More-
over, these APIs are not portable across OS platforms. For
example, Win32 lacks Pthreads and has subtly different se-
mantics for sockets argklect

ABSTRACT
FACTORY

ACTIVE
OBJECT

STRATEGY
|

(CLIENT)
¢ Increased maintenance effort: One way to build an
ORB is to handle portability variations via explicit conditional
THREAD-SPECIFIC compilation directives in ORB source code. Using condi-
CONNECTOR STORAGE ACCEPTOR tional compilation to address platform-specific variati@ts
all points of usdncreases the complexity of the source code.
It is hard to maintain and extend such ORBs, however, since
platform-specific details are scattered throughout the imple-
mentation files.

TR

REACTOR

| WRAPPER FACADES

OS KERNEL OS KERNEL
P p— e Inconsistent programming paradigms: System mech-

anisms are accessed through C-style function calls, which
cause an “impedance mismatch” with the OO programming
style supported by C++, the language used to implement TAO.

Figure 3: Relationships Among Patterns Used in TAO

section to describe each pattern in detail or to discuss all th‘ﬁow can we avoid accessing low-level system mechanisms
patterns used within TAO. Instead, our goal is to focus on th

. -when implementing an ORB?
key patterns and show how they can improve the extensn\;)l\l;f;J 'mp ng
ity, maintainability, and performance of complex ORB midgg| tion —s the Wrapper Facade pattern: An effective

dleware. The references point to additional material on eq,ggy to avoid accessing system mechanisms directly is to use
pattern. the Wrapper Facade patternThis pattern is a variant of the

In the following discussion, we outline the forces that uf-acade pattem [8]. The intent of the Facade pattern is to sim-

derlie the main design challenges related to developing BUY the interface for a subsystem. The intent of the Wrapper

tensible and maintainable ORBs. We also explain how thacade pattern is more specific: it provides type-safe, modu-

absence of these patterns leaves these forces unresolved@®"@nd portable class interfaces that encapsulate lower-level,
d-alone system mechanisms such as sockelsct

addition, we describe which patterns resolve these forces giap
In general, the Wrapper Facade pattern should

illustrate how TAO implements these patterns to create an 8¢9 Pthreads. -NE
tensible and maintainable real-time ORB. be applied when existing system-level APIs are non-portable

and non-type-safe.

Using the Wrapper Facade patternin TAO: TAO accesses listens for new client connections and reads/writes GIOP re-
all system mechanisms via the wrapper facades provideddoests/responses from/to connected clients. To ensure re-
ACE [18]. ACE is an OO framework that implements corgponsiveness to multiple clients, an ORB Core uses OS
concurrency and distribution patterns for communication sofivent demultiplexing mechanisms to wait foONNECTION,
ware. It provides reusable C++ wrapper facades and frarReAD, andwRITE events to occur omultiple socket handles.
work components that are targeted to developers of higgdemmon event demultiplexing mechanisms inclediect
performance, real-time applications and services across a WidkitForMultipleObjects , 1/0 completion ports, and
range of OS platforms, including Win32, most versions tfireads.

UNIX, and real-time operating systems (like VxWorks, Cho- blem: devel . hard-cod
rus, and LynxOS). Problem: One way to develop an ORB Core is to hard-code

Figure 4 illustrates how the ACE C++ wrapper facadétstct) use onehevgnt qemug|png|glg] n;echamsm.' Relymg' or;
improve TAO’s robustness and portability by encapsulatif - one .me(;r Q”'Stm IS L:I” Ieimira e, OfweVllaIr, Slnlge ?o single
and enhancing native OS concurrency, communication, mein-c ¢ IS eflicient on all piattorms or for afl application re-

ory management, event demultiplexing, and dynamic linki irements: For instar!ce, asynchronous 1/O completion ports
mechanisms with type-safe OO interfaces. The OO enc ¢ very efficient on Windows NT [19], whereas synchronous
threads are the most efficient demultiplexing mechanism on

Solaris [20].
TAO's ORB Core Another way to develop an ORB Core is to tightly couple its

' [! event demultiplexing code with the code that performs GIOP

spawn() open(), | dlopen()

ACE acquireQ recg};“s(e)l; 4o handle_events(disymO protocol processing. In this case, the demulup!exmg code can-
WRAPPER A v A v not be reused as a blackbox component by similar communi-
FACADES THREAD | | SOCKETS/| | SELECT/ | |DYNAMIC cation middleware applications such as HTTP servers [19] or

WRAPPERS TLI 10 COMP LINKING . . .
video-on-demand applications. Moreover, if new ORB strate-
P(gg% TR COMMUNICATION VIRTUAL gies for threading or Object Adapter request scheduling algo-
Win32 THREAD o — MEMORY rithms are introduced, substantial portions of the ORB Core

SUBSYSTEM SUBSYSTEM

SERVICES must be re-written.
Figure 4: TAO’s Wrapper Facade Encapsulation How then can an ORB implementation render itself inde-
pendent of a specific event demultiplexing mechanism and de-

sulation provided by ACE alleviates the need for TAO to agouple its demultiplexing code from its handling code?

cess the weakly-typed system mechanisms directly. Theref%rglmion _s the Reactor pattern: An effective way to re-

C++ compilers can detect type system violations at COMPitiice coupling and increase the extensibility of an ORB Core

time rather than at run-time. ACE wrapper facades use C++ .
o . is to apply theReactor pattern10]. This pattern supports
features to eliminate performance penalties that would other-)) ; i :
s¥nchronous demultiplexing and dispatching of multglent

wise be incurred from its additional type-safety and layer Randlers which are triggered by events that can arrive concur-

abstraction. For instance, inlining is used to avoid the Ov?r'ntly from multiple sources. The Reactor pattern simplifies

head of calling small method calls. Likewise, static mEzthoe\s/ent—driven applications by integrating the demultiplexing of
are used to avoid the overhead of passinbis. pointer to P yinteg 9 P g

each invocation events and the dispatching of their corresponding e\(ent han-

' dlers. In general, the Reactor pattern should be applied when
Although the ACE wrapper facades solve a common devan application like an ORB Core must handle events from mul-

opment problem, they are just the first step towards developitide clients concurrently, without commiting itself to a single

an extensible and maintainable ORB. The remaining pattel@¥¥-level mechanism likselect

described in this section build on the encapsulation providedt is importantto note that applying the Wrapper Facade pat-

by the ACE wrapper facades to address more challenging ORB. is not sufficient to resolve the problems outlined above. A
design issues. wrapper facade foselect may improve ORB Core porta-

bility somewhat. However, this pattern does not resolve the

.) . need to completely decouple the low-level event demultiplex-

3.2 Demultiplexing ORB Core Events using the ing |ogic from the higher-level client request processing logic
Reactor Pattern in an ORB Core.

Context: An ORB Core is responsible for demultiplexingJsing the Reactor pattern in TAO: TAO uses the Re-
I/O events from multiple clients and dispatching their assaetor pattern to drive the main event loop within its ORB
ciated event handlers. For instance, a server-side ORB GBoze, as shown in Figure 5. A TAO servet) (initi-

1 RUN EVENT LOOP P— algorithms may preclude its use as a real-time protocol [13].

{ APPLICATION (:)SERV ANT } GIOP requests reliably, its flow control and congestion control
Likewise, it may be more efficient to use a shared memory

transport mechanism when clients and servants are co-located
OBJECT ACTIVE OBJECT MAP on the same endsystem. Thus, an ideal ORB Core must be
ADAPTER 4: DISPATCH flexible in its support of multiple transport mechanisms.

Problem: The CORBA architecture explicitly decouples the
connection management tasks performed by an ORB Core
from the request processing performed by an application ser-
Handler vant. However, one way to implement an ORBrgernal
Reactor Connection connection management activities is to use low-level network
Handler APIs like sockets. Likewise, the connection establishment
2: select() < Connection protocol can be tightly coupled with the communication pro-
3: handle_input() HandIch tocol.
This design approach yields the following drawbacks, how-
Figure 5: Using the Reactor Pattern in TAO’s Event Loop ever:

Connection

1. Too inflexible: If an ORB’s connection management
ates an event loop in the ORB Core®eactor , where datastructuresand algorithms are too closely intertwined, sub-
curs. When a GIOP request event occurs, Reactor ~ Stance, tight coupling the ORB to use the socket API makes

demultiplexes the request to the appropriate event handldiard to change the underlying transport mechanesmg, to
which is the GIOPConnection _Handler that is associ- Use shared memory rather than sockets. Therefore, it is intru-

ated with each connected socket. Reactor (3) then calls Sive and time consuming to port a tightly coupled ORB Core
Connection _Handler::handle dnput , which @) dis- to new networks, such as ATM, or different network program-

patches the request to TAO's Object Adapter. The Objébtnd APIs, such as TLI or Win32 Named Pipes.

Adapter demultiplexes the request to the appropriate upcalh o0 inefficient: Many internal ORB strategies can be
method on the servant ang) @ispatches the upcall. optimized by allowing both ORB developers and application

The Reactor pattern enhances the extensibility of TAO Bgvelopers to select appropriate implementations late in the
decoupling the event handling portions of its ORB Core frofesign cycleg.g, after extensive performance profiling. For
the underlying OS event demultiplexing mechanisms. F&kample, a multi-threaded, real-time ORB client may need
example, théVaitForMultipleObjects event demulti- to store connection endpoints in thread-specific storage to re-
plexing system call is used on Windows NT, whers@lect duce lock contention and overhead. Similarly, the concurrency
is used on UNIX platforms. Moreover, the Reactor pattegfrategy for a CORBA server might require that each connec-
simplifies the configuration of new event handlers. For ifion run in its own thread to eliminate per-request locking over-
stance, adding a neecure _Connection _Handler that head. However, if connection management mechanism are
performs encryption/decryption of all traffic does not affegfard-coded and tightly bound with other internal ORB strate-
the Reactor’s implementation. gies it is hard to accommodate efficient new strategies.

33 Managing Connections in an ORB Using How then can an ORB Core’s connection management com-
ponents support multiple transports and allow connection-
Acceptor-Connector Pattern related behaviors to be (re)configured flexibly late in the de-

. . ?
Context: Connection management is another key respé’r‘?-mpmem cycle’

sibility of an ORB Core. For instance, an ORB Corgolution — the Acceptor-Connector pattern: An effective
that implements the 1IOP protocol must establish TCP camay to increase the flexibility of ORB Core connection man-
nections and initialize the protocol handlers for each [IGiyement and initialization is to apply teceptor-Connector
server _endpoint . By localizing connection managemenpattern[21]. This pattern decouples connection initialization
logic in the ORB Core, application-specific servants are alfitem the processing performed once a connection endpoint is
to focus solely on processing client requests. initialized. TheAcceptor component in the pattern is re-
An ORB Core is notimited to running over IIOP and TCP sponsible fopassivanitialization, i.e., the server-side of the
transports, however. For instance, while TCP can trans@RB Core. Conversely, thEonnector component in the

pattern is responsible factiveinitialization, i.e., the client- use. This strategy minimizes connection setup time, thereby
side of the ORB Core. In general, the Acceptor-Connector pagelucing end-to-end request latency.

tern should be applied when client/server middleware must alin the server-side ORB Core, thReactor notifies

low flexible configuration of network programming APIs an@AO’s Strategy _Acceptor to (3) accept newly con-
must maintain proper separation of initialization roles. nected clients and createonnection _Handlers . The
Using the Acceptor-Connector pattern in TAO: TAO Strategy _Acceptor delegates the choice of concurrency

uses the Acceptor-Connector pattern in conjunction Wﬁrﬁechanlsm to one of TAO&oncurrencystrateglgs €0,
the Reactor pattern to handle setup of connections Fgpetive, thread-per-request, thread-per-connection, thread-

GIOP/IIOP communication. Within TAO's client-sideper'priority’ etc.) described in Section 3.4. Once a

ORB Core, aConnector initiates connections to serversonnection _Handler is activated 4) within the ORB
in response to a method invocation or explicit bind=Cre: it performs the requisite GIOP protocol processh)g (

ing to a remote object. Within TAO's server-sid€" & conne_ction and ultimately dispgtché}ame request to
ORB Core, one or moreAcceptor s creates a GIOPthe appropriate servant via TAO'’s Object Adapter.

Connection Handler to service each new client connec-

tion. Acceptor sandConnection _Handler sbothderive 3.4 Simplifying ORB Concurrency using the
from Evgnt _Handler , which enable them to be dispatched Active Object Pattern

automatically by &Reactor .

TAO’s Acceptors andConnectors can be configured Context: Once the Object Adapter has dispatched a client
with any transport mechanisms, such as sockets or TLI, prequest to the appropriate servant, the servant executes the re-
vided by the ACE wrapper facades. In addition, TAOguest. Execution may occur in the same thread of control as
Acceptor and Connector can be imbued with customthe Connection Handler that received it. Conversely,
strategies to systematically select an appropriate concurregxgcution may occur in a different thread, concurrent with
mechanism, as described in Section 3.4. other request executions. The CORBA specification does not

Figure 6 illustrates the use of Acceptor-Connector straggdress the issue of concurrency within an ORB or a servant,

gies in TAO's ORB Core. When a clientl) invokes a leaving the decision to ORB developers and end-users.
It is important to develop ORBs that manage concur-

rent processing efficiently. Concurrency allows long-running

including Win32, VxWorks, and pSoS. Not only is there no di-
rect mapping between APIs, but there is no clear mapping of
functionality. For instance, POSIX Pthreads supports deferred
.) . . thread cancellation, whereas Win32 threads do not. Moreover,
Figure 6.' Using the Acceptor-Connector Pattern in TAOaﬁthough Win32 has a thread termination API, but the docu-
Connection Management . o .

mentation strongly recommendst using it since it does not
release thread resources on exit. Moreover, Pthreads itself is
non-portable since many UNIX vendors implement different
%afts of the standard.

1: operation ORB COF 6: piseATCH operations to execute simultaneously without impeding the
5: request | Conne oo progress (_)f othe_r opergti(_)n_s. Likevyise, preemptive multi-

Connection RESPONSE Han{ g1 Connection threading is crucial to minimize the dispatch latency of real-

ey Handler time systems [14].

H‘j,‘f;,‘; N T + ACCRTEI{‘;EE& Problem: In many ORBSs, the concurrency architecture is
Concurrency programmed directly using the OS platform’s multi-threading

Cached Strategy API, such as the POSIX Pthreads API [22]. However, there

gt‘;::':g“; Strategy| || @re several drawbacks to this approach:
2: connect() 3: accept() Acceptor e Non-portable;: Threading APIs tend to be very

Strategy platform-specific. Even industry standards such as POSIX
ConnectOJ Reactor —>2 Pthreads are not available on many widely-used OS platforms,

remote operation, it makes eonnect call through the
Strategy _Connector . The Strategy _Connector
(2) consults its connection strategy to obtain a connection
this example the client uses a “caching connection strategys Hard to program correctly: Programming a multi-

that recycles connections to the server. Thus, it only creat®®aded ORB is hard since application and ORB developers
new connections when all existing connections are alreadynist ensure that access to shared data is serialized properly in

the ORB and in the servants. In addition, the techniques re-
quired to robustly terminate servants that execute concurrently

in multiple threads are complicated, non-portable, and non- 2a: Task::activate()

intuitive. @ Concurrency
e Non-extensible: The choice of an ORB concurrency Connection — Strategy

strategy depends largely on external factors like application 2: ACTIVE OR PASSIVE?

requirements and network/endsystem characteristics. For in-

stance, Reactive single-threading [10] is an appropriate strat- \

egy for short duration, compute-bound requests on a uni- 1: handle_input()

processor. If these external factors change, however, it is im-

portant that an ORB can be extended to handle alternative con- 3: SERVICE REQUEST

currency strategies such as thread-per-request, thread pool, or

thread-per-priority. . . , . .
When ORBSs are developed using low-level threading APF gure 7: Using the /-_\ct|ve Object Pattern to Structure TAO's

however, they are hard to extend it with new concurren ncurrency Strategies

strategiesvithoutaffecting other ORB components. How then

can an ORB support a simple, extensible, and portable CONGHE:

rency mechanism? ’

the handler?) determines if it should be active or
passive and acts accordingly. This flexibility is achieved
Solution — the Active Object pattern: An effective way to by inheriting TAO’s ORB Core connection handling classes
increase the portability, correctness, and extensibility of OR#®m an ACE base class calléithsk . To process a request
concurrency strategies is to apply tAetive Object pattern concurrently, therefore, the handler simpBa) invokes the
[11]. This pattern provides a higher-level concurrency arcfiask::activate method. This method spawns a new
tecture that decouples the thread that initially receives and pgtoead and invokes a standard hook method. Whether active
cesses a client request from the thread that ultimately execatesassive, the handler will ultimatelg) process the request.
the request.

While Wrapper Facadegrovide the basis for portability, . . .
they are simply thin veneers over the low-level system met,?h—5 Red_ucmg ITOCk Contention and erorlty In-
anisms. Moreover, a facade’s behavior may still vary across ~ Versions with the Thread-Specific Storage
platforms. Therefore, the Active Object pattern defines a Pattern

higher-level concurrency abstraction that shields TAO from)] o
the complexity of low-level thread facades. By raising tHeontext: The Active Object pattern allows applications and

level of abstraction for ORB developers, the Active Object p&2MPonents in the ORB to operate using a variety of concur-
tern makes it easier to define more portable, flexible, and e5ZJCY Strategies, rather than one enforced by the ORB itself.
to program ORB concurrency strategies. Thg primary drawback to concurrency, however, is the need to
In general, the Active Object pattern should be used whfi@lize access to shared resources, such as operatoand
an application can be simplified by centralizing the poif€!éte . pointers created by tlEORBA::ORBinit ~ ORB
where concurrency decisions are made. This pattern gifdalization factory, or théAcceptor -~ andConnector ~ de-
developers the flexibilityx to insert decision points betwe&S"iPed in Section 3.3. A common way to achieve serializa-
each request’s initial reception and its ultimate execution. RIg" iS to use mutual-exclusion locks on each resource shared

instance, developers could decide whether or not to spawygnultiple threads. However, acquiring and releasing these
thread-per-connection or a thread-per-request. locks can be expensive, often negating any potential perfor-

)))] mance benefits of concurrency.
Using the Active Object pattern in TAO: TAO uses
the Active Object pattern to transparently allow a GIOProblem: In theory, multi-threading an ORB can improve
Connection Handler to execute requests eithezac- performance by executing multiple instruction streams simul-
tively by borrowing the Reactor’s thread of controlamtively taneously. In addition, multi-threading can simplify inter-
by running in its own thread of control. The sequence of stepal ORB design by allowing each thread to execute syn-
is shown in Figure 7. chronously rather than reactively or asynchronously. In prac-
The processing shown in Figure 7 is triggered whEna(tice, multi-threaded ORBs often perform no better, or even
Reactor notifies theConnection Handler that an I1/0O worse, than single-threaded ORBs due to (1) the cost of acquir-
event is pending. Based on the currently configured straiig/releasing locks and (2) priority inversions that arise when
egy, e.g, reactive, thread-per-connection, thread-per-requéstih- and low-priority threads contend for the same locks [23].

In addition, multi-threaded ORBSs are hard to program dueRooblem: One way to develop an ORB is to provide only
complex concurrency control protocols required to avoid rasetic, non-extensible strategies, which are typically config-
conditions and deadlocks. ured in the following ways:

Solution —s the Thread-Specific Storage pattern: An ef- e Preprocessor macros: Some strategies are determined

fective way to minimize the amount of locking required tBY the value of preprocessor macros. For example, since

serialize access to resources shared within an ORB is to (i¥gading is only available on selected platforms, conditional
the Thread-Specific Storageattern [24]. This pattern allowsCompilation is often used to select the appropriate concurrency

multiple threads in an ORB to use one logically global acce¥€hitecture.
point to retrieve thread-specific data without incurring locking « Command-line options: Other strategies are controlled
overhead for each access. by the presence or absence of flags on the command-line. For

) -) instance, command-line options can be used to enable various
Using the Thread-Specific Storage Patternin TAO: TAO g concurrency strategies.

uses the Thread-Specific Storage pattern to minimize lock con-
tention and priority inversion for real-time applications. In- W
tgg?:gg"Azngetthﬁpg]néﬁa—rgo;etggfg’r Its A(ii(fptcc:)cr)re aﬂged, they are very inflexible. For instance, preprocessor

. N ’ ’ acros only support compile-time strategy selection, whereas
Connector , POA in thread-specific storage. When a thre Y Supp P 9y

. mmand-line options convey a limited amount of information
accesses any of these components, they are retrieved byéﬂ

hile these two configuration approaches are widely

. . :) %d'&h ORB. Moreover, these hard-coded configuration strate-
ing akey as an index into the thread’s internal thread-speci fos are completely divorced from any code they might affect.

;tate, as shown in Figure 8. Therefore, no additional locki us, ORB components that want to use these options must (1)
is required to access ORB state. know of their existence, (2) understand their range of values,
and (3) provide an appropriate implementation for each value.
These restrictions make it hard to develop highly extensible
THREAD A THREAD B | ORBs composed from transparently configurable strategies.

How then does an ORB (1) permit replacement of subsets of

1: ACE OS::thr get ific(k .
- ~getspecific(key) - component strategies in a manner orthogonal and transparent
> THREAD-SPECIFIC to oth(_ar ORB components and (2) encapsulate the state and
OBJECT TABLES behavior of each strategy so that changes to one component
INDEXED BY KEY do not permeate throughout an ORB haphazardly?

| CIT_T T T 1 1T 1} Solution— the Strategy pattern: An effective way to sup-
port multiple transparently “pluggable” ORB strategies is to
apply theStrategy patterri8]. This pattern factors out simi-
larity among algorithmic alternatives and explicitly associates
Acceptor Acceptor the name of a strategy with its algorithm and sta’Fe. Moreover,
ORB THREAD- the Strategy pattern removes lexical dependencies on strategy
Soieluy] SPECIFIC STATE SULLENY | implementations since applications access specialized behav-
iors only through common base class interfaces. In general,
Figure 8: Using the Thread-Specific Storage Pattern TAQ® Strategy pattern should be used when an application’s be-
havior can be configured using multiple strategies that can be
interchanged seamlessly.

Reactor

Reactor

. Using the Strategy Pattern in TAO: TAO uses a vari-
3.6 Support Interchangeable ORB Behaviors ety of communication, concurrency, demultiplexing, real-time
with the Strategy Pattern scheduling and dispatching strategies to factor out behaviors
) , that are typically hard-coded in conventional ORBs. Several
Context: The alternative concurrency architectures dgz yhese strategies are illustrated in Figure 9. For instance,
scrlped in 3.4 are just one _of the many strategies that an X0 supports multiple request demultiplexing strategéeg(
tensible ORB may be required to support. In general, extesect hashing vs. active demultiplexing [25]) and scheduling
sible ORBs must support multiple request demultiplexing a@gfaegiesi(e, FIFO vs. rate monotonic vs. earliest deadline
scheduling strategies in their Object Adapters, as well as mgls; [14]) in its Object Adapter, as well as connection man-

tiple connection establishment, request transfer, and CONGlament strategies.q, process-wide cached connections vs.
rent request processing strategies in their ORB Cores.

Strategy
Application Concurrency | Scheduling] Demultiplexing | Protocol
Avionics Thread-per-priority Rate-based Perfect hashing VME backplane
Medical Imaging Thread-per-connection FIFO Active demultiplexing| TCP/IP

Table 1: Example Applications and their ORB Strategy Configurations

BB Bl)revvcr sasane @) ACTVE DEMUXING STRATEGY e Software complexity: ORB source code can become
H IR E DEMUXING z||2 % Z % littered with hard-coded references to strategy types. Many
58] (5 STRATEGY 52| [5| |3 |Z| independent strategies mustactin harmony to provide a com-
Lz oo EE™ 5™ |85 prehensive solution to particular application domains, such as
ity L] et £[l5| || |%| || real-time avionics. However, identifying these strategies in-
z z dividually by name requires tedious replacement of selected
| SERVANT 1 | | SERVANT 2 | oo | SERVANT N |

il (i) strateg!es .in one domain yvith a potentially different set of
strategies in another domain.

hash(object key) OBJECT

ORB CORE ADAPTER e Semantic incompatibilities: It is not always possible

for certain ORB strategies to interact compatibly. For instance,
the FIFO strategy for scheduling requests shown in Table 1
Thread- Cached Reactive Threaded might not work with the thread-per-priority concurrency archi-
ggfl;‘:"cct Connect Cosncurrency Concurrency tecture. The problem stems from semantic incompatibilities
Strategy | | Stratesy trategy Strategy between scheduling requests in their order of arrival,FIFO

gueueing, versus dispatching requests based on their relative
Strategy Strategy priorities, i.e., preemptive priority-based thread dispatching.
ConiEEin: Acceptor Moreover, some strategies are only useful when certain pre-
conditions are met. For instance, the perfect hashing demul-
tiplexing strategy is generally feasible only for systems that
statically configure all servants off-line.

Figure 9: Strategies in TAO

How can a highly-configurable ORB reduce the complexi-

. . ties required in managing its myriad of strategies, as well as
thread-specific cached connections) and handler concurren . . o ;

.) e . . .enforce semantic consistency when combining discrete strate-
strategies€.g, Reactive vs. variations of Active Objects) i

" ies?
its ORB Core. gies:

Solution — the Abstract Factory pattern: An effective

way to consolidate multiple ORB strategies into semantically
compatible configurations is to apply tAéstract Factory pat-

tern [8]. This pattern provides a single access point that inte-
%rates all strategies used to configure an ORB. Concrete sub-

3.7 Consolidate ORB Strategies Using the Ab-
stract Factory Pattern

Context: - There are many potential strategy variants su asses then aggregate semantically compatible application-
ported by TAO. Table 1 shows a simple example of the strate 99reg y b PP

) specific or domain-specific strategies, which can be replaced
gies used to create two configurations of TAO. One is an avior)- . - -
; o . .) wholesale in semantically meaningful ways. In general, the
ics application with hard real-time requirements [14] and t o
; . o . C ~Abstract Factory pattern should be used when an application

other is an electronic medical imaging application [15] wit ;) . .

. . needs to consolidate the configuration of many strategies, each
high throughput requirements. In general, the forces that myst. . L

i aving multiple variations.

be resolved to compose all ORB strategies correctly are the

need to (1) ensure the configuration of semantically compalising the Abstract Factory patternin TAO: All of TAO’s
ble strategies and (2) simplify the management of a large nUDRB strategies are consolidated into two abstract factories im-
ber of individual strategies. plemented as Singletons [8]. One factory encapsulates client-

specific strategies, while the factory shown in Figure 10 en-

Problem: An undesirable side-effect of using the Strateqy, n\jates server-specific strategies. These abstract factories
pattern extensively in complex software like ORBS is that €xqcansulate concurrency strategies in both the client and the
tensibility becomes hard to manage for the following reasons:

9

T | o Comureney |5 | Theead complex (.).RB.S complicates maintenapce, increases syster_n re-
oo trateey per- source utilization, and leads to unavoidable system downtime
to add or change existing components.

Medical > ORB o Avionics] HOW then does an ORB implementation reduce the “overly-
(]:oné’reti 1 sro Abstrac Perfect concrete| large, overly-static” side-effect of pervasive use of the Strategy
Factory| | Dispatching \ / Hashing Factory |and Abstract Factory patterns?

Dispatching Demuxing

Strategy Strategy Solution — the Service Configurator pattern: An ef-

fective way to enhance the dynamism of an ORB is to
Active X Rate-based apply the Service Configurator patterj26]. This pat-
Demuxing Dispatching
tern uses explicit dynamic linking [27] mechanisms to ob-
tain, utilize, and/or remove the run-time address bind-
Figure 10: Factories used in TAO ings of custom Strategy and Abstract Factory objects
into an ORB at installation-time or run-time. Widely

o) ~available explicit dynamic linking mechanisms include the
server, and request demultiplexing, scheduling, and d'SPBéﬁfben/dlsym/dlclose functions in SVR4 UNIX [28]

strategies in the server. By using the Abstract Factory pattggqg the LoadLibrary/GetProcAddress functions in

TAQO can configure different ORB personalities convenientlife \WIN32 subsystem of Windows NT [29]. The ACE wrap-

and consistently. per facades provide a portable encapsulation of these OS func-
tions.

; : ; By using the Service Configurator pattern, thehavior
5.8 \E?gg%n;ﬁ?élzrgt%?flggaﬂgr?RBS with the Ser of ORB strategies are decoupled fromhen implementa-

tions of these strategies are configured into an ORB. For in-

Context: The cost of many computing resources, such 8@nce, ORB strategies can be linked into an ORB from DLLs
memory and CPUs, continue to drop. However, ORBs m@gtcompne—u_me, installation-time, or even during ru_n-t|me.
still avoid excessive consumption of finite system resourcMoreover, this pattern can reduce the memory footprint of an
This parsimony is particularly essential for embedded re&RB by allowing application developers to dynamically link
time systems that require small memory footprints and p,cg]ly those strategies that are necessary for a specific ORB per-
dictable CPU processing overhead. Likewise, many applié@nality-
tions can benefit from an ability to extend OR&gmamically ~ In general, the Service Configurator pattern should be used
by allowing their strategies to be configured at run-time. ~ When (1) an application wants to configure its constituent com-
ponents dynamically and (2) conventional techniques, such as
Problem: Although the Strategy and Abstract Factory patommand-line options, are insufficient due to the number of
terns make it easier to customize ORBs for specific appligessibilities or the inability to anticipate the range of values.
tion requirements and system characteristics, these patterns
can cause the following problems for extensible ORBs: ~ Using the Service Configurator pattern in TAO: TAO
uses the Service Configurator pattern to configure abstract fac-
¢ High resource utilization: Widespread use of the Strattories at run-time that contain the desired strategies. TAO’s
egy pattern can substantially increase the number of strate@i@#alization code uses the dynamic linking mechanisms pro-
configured into an ORB, which can increase the system véded by the OS and encapsulated by the ACE wrapper facades
sources required to run an ORB. to link in the appropriate factory for a particular use-case. This
])] design allows applications to select the personality of a partic-
~* Unavoidable system downtime: If strategies are con-yjar ORB at run-time. In addition, it allows the behavior of
figured statically at compile-time or static link-time using abraQ to pe tailored for specific platforms and application re-

stract factories, it is hard to enhance existing strategies or ﬁgﬁ’rements without requiring access to the ORB source code.
new strategies without (1) changing the existing source codg:jgre 11 shows two factories tuned for different applica-

for the consumer of the strategy or the abstract factory, (2) {8, domains — avionics and medical imaging. In this partic-
compiling and relinking an ORB, and (3) restarting running, configuration, the avionics concrete factory is currently
ORBs and their application servants. installed in the process. Applications using this ORB configu-
ration will be processed with a particular set of ORB concur-
In general, static configuration is only feasible for a smatkncy, demultiplexing, and dispatching strategies. In contrast,
fixed number of strategies. Using this technique to configuhe medical imaging concrete factory resides in a DLL outside

10

complexity.
Medical P y -)
TAO | Rate-based Imaging e Increased portability and reuse: Constructing our ORB
PROCESS | Dispatchin, Concrete DLLs inati ; ; i
P g Factory atop an OO communication framework like ACE simplified
Perfect the effort required to port TAO to various real-time platforms.
Thread-per Hashing Most of the porting effort is absorbed by the ACE frame-
L AT _FIFO \\york maintainers. In addition, since the ACE framework is
Concurrency Demuxing Dispatching|
rich with configurable high-performance, real-time network-
g Avionics Thresd oriented components, we were able to achieve considerable
ervice Concrete read-per .
Repository > Factory Connection code reuse by leveraging the framework.
Concurrency . R
The use of patterns can incur some liabilities. We summa-

rize these liabilities below and discuss how we minimize them
Figure 11: Using the Service Configurator Pattern in TAOjn TAO.

e Abstraction penalty: Many patterns use indirection to in-

of the current ORB process. To support a different configéfease component decoupling. For instance, the Reactor pat-
ration of the ORB this factory could be dynamically installe@rn uses virtual methods to separate the application-specific
when the ORB process is first initialized. Event Handler logic from the general-purpose event de-
multiplexing and dispatching logic. The extra indirection in-
. troduced by using these pattern implementations can poten-
4 Concludlng Remarks tially decrease performance. To alleviate these liabilities, we
carefully applied C++ programming language features (such
This article presented a case study showing how we appligdinline functions and templates) and other optimizations
patterns to enhance the extensibility and maintainability @uch as eliminating demarshaling overhead [30] and demul-
TAO, a dynamically configurable, real-time ORB. We founghlexing overhead [25]) to minimize performance overhead.

qualitative and quantitative evidence that the use of pattepisa result, TAO is substantially faster than the original hard-
helped to clarify the structure of, and collaboration betweafbded SunSoft IIOP [30].

components that perform key ORB tasks. These tasks incllgd

event demultiplexing and event handler dispatching, conngtsp only depends on system-level interfaces and libraries

tion establishment and initialization of application service§Ao now depends on the ACE framework. Since ACE en-

concurrency control, and dynamic configuration. In additio@apsulates a wide range of low-level OS mechanisms, the ef-

rpna:et:(eirrnnsi t'mfégiﬁ: tgﬁ%isp’i:g;?azgi f?r:ﬁepﬁeggzib 'Ir'liyaﬁért required to port it to a new platform could potentially be
gup P y 9 9 9 higher than porting SunSoft IIOP, which only uses a subset

.] V}!nany platforms already, the effort to port to new platforms is
ing benefits: relatively low. Most sources of platform variation have been
e Increased extensibility: Patterns like Abstract Factory,solated to a few modules in ACE.

Strategy, and Service Configurator make it much easier to re-

configure TAO for a particular application domain by allowing A final benefit of applying patterns to TAO is that not only
extensibility to be “designed into” an ORB. In contrast, midflid we developed a more flexible ORB, but we also devised
dleware that lacks these patterns is significantly harder to @dicher vocabulary for discussing ORB middleware designs.

velop and extend. This article illustrated how design patterhis vocabulary is a key “enabling” step to demystify the in-
were applied to make an ORB more extensible. ternals of an ORB. As we continue to learn about ORBs and

. . . the patterns of which they are composed, we expect this vo-
e Enhanced maintenance: Design patterns are essential tBabuIary to grow and evolve

capture and articulate the design rationale for complex StrUCThe Source code for ACE and TAO is freely available at

tures in an ORB. Patterns he!p'to Qemystify and motivate R/h/?/w.cs.wustl.edu/ ~schmidt/TAO. html
structure of an ORB by describing its architecture in terms o

design forces that recur in many software systems. The ex-
pressive power of patterns enabled us to convey the desigwajknowledgements
complex software systems like TAO.
Thus, the patterns presented in this article help to improwe would like to thank Frank Buschmann, Hans Rohnert, and
the maintainability of ORB middleware by reducing softwanglichael Stal for their extensive comments on this paper.

Additional external dependencies: Whereas SunSoft

11

References

(1]
(2]

(3]

(4]

(5]

(6]
(7]

(8]

(9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

R. Johnson, “Frameworks = Patterns + Componei@sfnmu-
nications of the ACMvol. 40, Oct. 1997.

S. Landis and S. Matffeis, “Building Reliable Distributed Sysf19]
tems with CORBA,"Theory and Practice of Object Systems
Apr. 1997.

S. Vinoski, “CORBA: Integrating Diverse Applications Within
Distributed Heterogeneous Environment&£EE Communica- [20]
tions Magazinevol. 14, February 1997.

J. A. Zinky, D. E. Bakken, and R. Schantz, “Architectural Sup-
port for Quality of Service for CORBA ObjectsTheory and [21]
Practice of Object Systemeol. 3, no. 1, 1997.

Object Management Groufthe Common Object Request Bro-
ker: Architecture and Specificatip@.2 ed., Feb. 1998.

D. Box, Essential COM Addison-Wesley, Reading, MA, 1997.

A. Wollrath, R. Riggs, and J. Waldo, “A Distributed Objecizg]
Model for the Java System,USENIX Computing Systems
vol. 9, November/December 1996.

E. Gamma, R. Helm, R. Johnson, and J. Vlissid&ssign Pat-
terns: Elements of Reusable Object-Oriented Softw&ead-
ing, MA: Addison-Wesley, 1995.

D. C. Schmidt, “Experience Using Design Patterns to Devel§p4]
Reuseable Object-Oriented Communication Softwagm-
munications of the ACM (Special Issue on Object-Oriented Ex-
periences)vol. 38, October 1995.

D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler Dispatc[p5]
ing,” in Pattern Languages of Program Desigh O. Coplien

and D. C. Schmidt, eds.), pp. 529-545, Reading, MA: Addison-
Wesley, 1995. [26]

R. G. Lavender and D. C. Schmidt, “Active Object: an Ob-
ject Behavioral Pattern for Concurrent Programming, Pat-

tern Languages of Program Desigh O. Coplien, J. Vlissides,
and N. Kerth, eds.), Reading, MA: Addison-Wesley, 1996. [27]

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-Oriented Software Architecture - A System of
Patterns Wiley and Sons, 1996.

D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request BrokeZsmputer [28]
Communicationsvol. 21, pp. 294-324, Apr. 1998.

T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The De-
sign and Performance of a Real-time CORBA Event Servic§29]
in Proceedings of OOPSLA '97Atlanta, GA), ACM, October
1997. [30]

I. Pyarali, T. H. Harrison, and D. C. Schmidt, “Design
and Performance of an Object-Oriented Framework for High-
Performance Electronic Medical ImagindJSENIX Comput-
ing Systemsvol. 9, November/December 1996.

V. F. Wolfe, L. C. DiPippo, R. Ginis, M. Squadrito, S. Wohlever,

I. Zykh, and R. Johnston, “Real-Time CORBA,"Rroceedings

of the Third IEEE Real-Time Technology and Applications Sym-
posium (Montréal, Canada), June 1997.

Z. D. Dittia, G. M. Parulkar, and J. Jerome R. Cox, “The APIC
Approach to High Performance Network Interface Design: Pro-
tected DMA and Other Techniques,” Rroceedings of INFO-
COM '97, (Kobe, Japan), IEEE, April 1997.

[22]

12

D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” ifProceedings of the
6" USENIX C++ Technical ConferencgCambridge, Mas-
sachusetts), USENIX Association, April 1994.

J. Hu, I. Pyarali, and D. C. Schmidt, “Measuring the Impact
of Event Dispatching and Concurrency Models on Web Server
Performance Over High-speed Networks,FAroceedings of the
2" Global Internet ConferengéEEE, November 1997.

J. Hu, S. Mungee, and D. C. Schmidt, “Principles for Develop-
ing and Measuring High-performance Web Servers over ATM,”
in Proceeedings of INFOCOM '98&/arch/April 1998.

D. C. Schmidt, “Acceptor and Connector: Design Patterns for
Initializing Communication Services,” iRattern Languages of
Program Design(R. Martin, F. Buschmann, and D. Riehle,
eds.), Reading, MA: Addison-Wesley, 1997.

IEEE, Threads Extension for Portable Operating Systems (Draft
10), February 1996.

D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale,
“Software Architectures for Reducing Priority Inversion and
Non-determinism in Real-time Object Request Brokers,” in
Proceedings of the Fourth IEEE Real-Time Technology and Ap-
plications Symposiun(San Francisco, CA), IEEE, December
1997.

D. C. Schmidt, T. Harrison, and N. Pryce, “Thread-Specific
Storage — An Object Behavioral Pattern for Accessing per-
Thread State Efficiently,” iThe4!" Pattern Languages of Pro-
gramming Conference (Washington University technical report
#WUCS-97-34)September 1997.

A. Gokhale and D. C. Schmidt, “Measuring and Optimizing
CORBA Latency and Scalability Over High-speed Networks,”
Transactions on Computingol. 47, no. 4, 1998.

P. Jain and D. C. Schmidt, “Service Configurator: A Pattern
for Dynamic Configuration of Services,” iRroceedings of the
3" Conference on Object-Oriented Technologies and Systems
USENIX, June 1997.

D. C. Schmidt and T. Suda, “An Object-Oriented Framework
for Dynamically Configuring Extensible Distributed Commu-

nication Systems,IEE/BCS Distributed Systems Engineering

Journal (Special Issue on Configurable Distributed Systems)
vol. 2, pp. 280-293, December 1994.

R. Gingell, M. Lee, X. Dang, and M. Weeks, “Shared Libraries
in SunOS,” inProceedings of the Summer 1987 USENIX Tech-
nical Conferencg(Phoenix, Arizona), 1987.

H. Custer,Inside Windows NT Redmond, Washington: Mi-
crosoft Press, 1993.

A. Gokhale and D. C. Schmidt, “Principles for Optimizing
CORBA Internet Inter-ORB Protocol Performance, Hiawai-
ian International Conference on System Sciencésnuary
1998.

