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Abstract
Developers of highly configurable performance-

intensive software systems often use a type of in-house
performance-oriented “regression testing” to ensure
that their modifications have not adversely affected their
software’s performance across its large configuration
space. Unfortunately, time and resource constraints often
limit developers to in-house testing of a small number of
configurations and unreliable extrapolation from these
results to the entire configuration space, which allows many
performance bottlenecks and sources of QoS degradation
to escape detection until systems are fielded. To improve
performance assessment of evolving systems across large
configuration spaces, we have developed a distributed
continuous quality assurance (DCQA) process called
main effects screening that uses in-the-field resources to
execute formally designed experiments to help reduce
the configuration space, thereby allowing developers to
perform more targeted in-house QA. We have evaluated
this process via several feasibility studies on several large,
widely-used performance-intensive software systems. Our
results indicate that main effects screening can detect key
sources of performance degradation in large-scale systems
with significantly less effort than conventional techniques.

1. Introduction
The quality of performance-intensive software systems,

such as high-performance scientific computing systems and
distributed real-time and embedded (DRE) systems, depend
heavily on their infrastructure platforms, such as the hard-
ware, operating system, middleware, and language process-
ing tools. Developers of such systems often need to tune the
infrastructure and their software applications to accommo-
date the (often changing) platform environments and per-
formance requirements. This tuning is commonly done by
(re)adjusting a large set (10’s-100’s) of compile- and run-
time configuration options that record and control variable
software parameters, such as different operating systems,
resource management strategies, middleware and applica-
tion feature sets; compiler flags; and/or run-time optimiza-
tion settings. For example, SQL Server 7.0 has 47 config-
uration options, Oracle 9 has 211 initialization parameters,
and Apache HTTP Server Version 1.3 has 85 core configu-
ration options.

Although the existence of all these software parameters
promotes flexibility and portability, it also means the soft-
ware must be tested over an enormous number of different
configurations, which yields the following challenges for
developers who must ensure that their decisions, additions,
and modifications work across this large (and often chang-
ing) configuration space:
• Settings that maximize performance for a particular

platform/context may not be suitable for different ones
and certain groups of option settings may be semanti-
cally invalid due to subtle dependencies between op-
tions.

• Limited QA budgets and rapidly changing code bases
mean that developers’ QA efforts are often limited to
just a few software configurations, forcing them to
extrapolate their findings to the entire configuration
space.

• The configurations that are tested are often selected in
an ad hoc manner, so quality is not evaluated system-
atically and many quality problems escape detection
until systems are fielded.

Since exhaustive testing of performance-intensive software
is infeasible under the circumstances listed above, what de-
velopers need is a quick way to estimate how their changes
and decisions affect software performance across its entire
configuration space. To provide this capability, we have de-
veloped and evaluated a new hybrid (i.e., partially in-the-
field and partially in-house) distributed continuous quality
assurance (DCQA) process that improves software quality
iteratively, opportunistically, and efficiently by executing
QA tasks continuously across a grid of computing resources
provided by end-users and distributed development teams.

In prior work [15], we implemented a prototype DCQA
support environment called Skoll that helps developers cre-
ate, execute, and analyze their own DCQA processes, as
described in Section 2. To make it easier to implement
DCQA processes, we also integrated model-based software
development tools with Skoll, which help developers cap-
ture the variant and invariant parts of DCQA processes
and the software systems they are applied to within high-
level models that can be processed to automatically generate
configuration files and other supporting code artifacts [8].
Some model-based tools integrated with Skoll include the
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Options Configuration Modeling language (OCML) [17]
that models configuration options and inter-option con-
straints and the Benchmark Generation Modeling Language
(BGML) [10] that composes benchmarking experiments to
observe QoS behavior under different configurations and
workloads.

This paper extends our earlier work by developing a
new model-based hybrid DCQA process that leverages the
extensive (albeit less dedicated) in-the-field computing re-
sources provided by the Skoll grid, weeding out unimpor-
tant options to reduce the configuration space, thereby al-
lowing developers to perform more targeted QA using their
very limited (but dedicated) in-house resources. This hybrid
DCQA process first runs formally designed experiments
across the Skoll grid to identify a subset of important perfor-
mance-related configuration options. Whenever the system
changes thereafter, this process then exhaustively explores
all configurations of the important options using in-house
computing resources to estimate system performance across
the entire configuration space. This hybrid approach is fea-
sible because the new configuration space is much smaller
than the original, and hence more tractable using in-house
resources.

This paper presents an evaluation of our new hybrid
DCQA process on ACE, TAO, and CIAO (deuce.doc.
wustl.edu/Download.html), which are widely-
used production quality, performance-intensive middleware
frameworks. Our results indicate that (1) hybrid model-
based DCQA tools and processes can correctly identify the
subset of options that are important to system performance,
(2) monitoring only these selected options helps to quickly
detect key sources of performance degradation at an accept-
able level of effort, and (3) alternative strategies with equiv-
alent effort give less reliable results.

2. The Model-based Skoll DCQA Environment
To maintain and evaluate the quality of performance-

intensive software across large configuration spaces, we
are developing and evaluating distributed continuous qual-
ity assurance (DCQA) processes [15] that evaluate various
software qualities, such as portability, performance char-
acteristics, and functional correctness, “around-the-world,
around-the-clock.” To accomplish this, DCQA processes
are divided into multiple subtasks, such as running regres-
sion tests on a particular system configuration, evaluating
system response time under different input workloads, or
measuring usage errors for a system with several alternative
GUI designs. As illustrated in Figure 1, these subtasks are
then intelligently and continuously distributed to – and ex-
ecuted by – clients across a grid of computing resources
contributed largely by end-users and distributed develop-
ment teams. The results of these evaluations are returned
to servers at central collection sites, where they are fused
together to guide subsequent iterations of the DCQA pro-
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Figure 1. The Skoll Architecture

cesses.
To help implement, execute, and analyze DCQA pro-

cesses, we have developed Skoll, which is a model-based
DCQA environment described at www.cs.umd.edu/
projects/skoll. For completeness, this section de-
scribes some of Skoll’s components and services, which
include languages for modeling system configurations and
their constraints, algorithms for scheduling and remotely
executing tasks, and planning technology that analyzes sub-
task results and adapts the DCQA process in real time.

The cornerstone of Skoll is its formal model of a DCQA
process’s configuration space, which captures the different
configuration options and their settings. Since in practice
not all combinations of options make sense (e.g., feature X
may not be supported on operating system Y), we define
inter-option constraints that limit the setting of one option
based on the settings of others. A valid configuration is one
that violates no inter-option constraints (for the feasibility
study in Section 4, we used the OCML modeling tool [17] to
visually define the configuration model and to generate the
low-level formats used by other Skoll components). Skoll
uses this configuration space model to help plan global QA
processes, adapt these processes dynamically, and aid in an-
alyzing and interpreting results from various types of func-
tional and performance regression tests.

Since the configuration spaces of performance-intensive
software can be quite large, Skoll has an Intelligent Steer-
ing Agent (ISA) that uses AI planning techniques to con-
trol DCQA processes by deciding which valid configuration
to allocate to each incoming Skoll client request. When a
client is available to perform QA activities, the ISA decides
which subtask to assign it by considering many factors, in-
cluding (1) the configuration model, which characterizes the
subtasks that can legally be assigned, (2) the results of pre-
vious subtasks, which capture what tasks have already been
done and whether the results were successful, (3) global
process goals, such as testing popular configurations more
than rarely used ones or testing recently changed features
more heavily than unchanged features, and (4) client char-
acteristics and preferences, e.g., the selected configuration
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must be compatible with the OS running on the client ma-
chine or configurations must run with user-level – rather
than superuser-level – protection modes.

After a valid configuration is chosen, the ISA pack-
ages the corresponding QA subtask into a job configu-
ration, which consists of the code artifacts, configura-
tion parameters, build instructions, and QA-specific code
(e.g., developer-supplied regression/performance tests) as-
sociated with a software project. Each job configuration is
then sent to a Skoll client, which executes the job config-
uration and returns the results to the ISA (for the feasibil-
ity studies described in Section refexperiment, we used the
BGML modeling tools [11] to generate most of the code
that comprises a job configuration). The ISA can learn from
the results and adapt the process, e.g., if some configura-
tions fail to work properly, developers may either want to
pinpoint the source of the problems or refocus on other
unexplored parts of the configuration space. To control
the ISA, Skoll DCQA process designers can develop cus-
tomized adaptation strategies that monitor the global pro-
cess state, analyze it, and use the information to modify fu-
ture subtask assignments in ways that improve process per-
formance.

Since DCQA processes can be complex, Skoll users of-
ten need help to interpret and leverage process results. Skoll
therefore supports a variety of pluggable analysis tools,
such as Classification Tree Analysis (CTA) [1]. In previous
work [15, 19], for example, we used CTA to diagnose op-
tions and settings that were the likely causes of specific test
failures. For the work presented in this paper, we developed
statistical tools to analyze data from the formally-designed
experiments described in the following section.

3 Performance-Oriented Regression Testing
As software systems change, developers often run re-

gression tests to detect unintended functional side effects.
Developers of performance-intensive systems must also be
wary of unintended side effects on their end-to-end QoS.
To detect such performance problems, developers often run
benchmarking regression tests periodically. As described
in Section 1, however, in-house QA efforts can be con-
founded by the enormous configuration space of highly con-
figurable performance intensive systems, where time and
resource constraints (and often high change frequencies)
severely limit the number of configurations that can be ex-
amined. For example, our earlier experience with apply-
ing Skoll to the ACE+TAO middleware [15] found that
only a small number of default configurations are bench-
marked routinely by the core ACE+TAO development team,
who thus get a very limited view of their middleware’s
QoS. Problems not readily seen in these default configu-
rations therefore often escape detection until systems based
on ACE+TAO are fielded by end-users.

This section describes how we address this problem by

using the model-based Skoll environment (Section 2) to de-
velop and implement a new hybrid DCQA process called
main effects screening. We also describe the formal foun-
dations of our approach, which is based on design of ex-
periments theory, and give an example that illustrates key
aspects of our approach.
3.1. The Main Effects Screening Process

Main effects screening is a technique for rapidly detect-
ing performance degradation across a large configuration
space as a result of system changes. Our approach re-
lies on a class of experimental designs called screening de-
signs [18], which are highly economical and can reveal im-
portant low order effects (such as individual option settings
and option pairs/triples) that strongly affect performance.
We call these most influential option settings “main effects.”

At a high level, main effects screening involves the fol-
lowing steps: (1) compute a formal experimental design
based on the system’s configuration model, (2) execute that
experimental design across fielded computing resources in
the Skoll DCQA grid by running and measuring bench-
marks on specific configurations dictated by the experimen-
tal design devised in step 1, (3) collect, analyze and dis-
play the data so that developers can identify the main ef-
fects, (4) estimate overall performance whenever the soft-
ware changes by evaluating all combinations of the main
effects (while defaulting or randomizing all other options),
and (5) recalibrate the main effects options by restarting the
process periodically since the main effects can change over
time, depending on how fast the system changes.

The assumption behind this five step process is that since
main effects options are the ones that affect performance
most, evaluating all combinations of these option settings
(which we call the “screening suite”) can reasonably esti-
mate performance across the entire configuration space. If
this assumption is true, testing the screening suite should
provide much the same information as testing the entire
configuration space, but at a fraction of the time and effort
since it is much smaller than the entire configuration space.
3.2. Technical Foundations of Screening Designs

For main effects screening to work we need to identify
the main effects, i.e., the subset of options whose settings
account for a large portion of performance variation across
the system’s configuration space. One obvious approach
is to test every configuration exhaustively. Since exhaus-
tive testing is infeasible for large-scale, highly configurable
performance-intensive software systems, however, develop-
ers often do some kind of random or ad hoc sampling based
on their knowledge of the system. Since our experience in-
dicates that these approaches can be unreliable [15, 10], we
need an approach that samples the configuration space, yet
produces reasonably precise and reliable estimates of over-
all performance.

The approach we chose for this paper uses formally-
designed experiments, called screening designs, that are
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highly economical and whose primary purpose is to iden-
tify important low-order effects, i.e., first-, second-, or third-
order effects, where an nth-order effect is an effect caused
by the simultaneous interaction of n factors. For instance,
for certain web server applications, a 1st-order effect might
be that performance slows considerably when logging is
turned on and another might be that it also slows when few
server threads are used. A 2nd order effect involves the in-
teraction of two options, e.g., web server performance may
slow when caching is turned off and the server performs
blocking reads.

In the work presented in this paper, we compute specific
screening designs by extending fractional factorial designs.
A full factorial design implies exhaustively testing the con-
figuration space, whereas fractional factorial designs are
factorial designs that require a specific fraction (such as 1/2
or 1/4) of full factorial designs. As a result, fractional fac-
torial designs are less costly than full factorial designs, but
lose the ability to measure some higher-order effects. Since
their run size (i.e., number of observations required) grows
exponentially in the number of configuration options, how-
ever, they can still grow too costly for systems with many
options.

Screening designs reduce run sizes even more and at
their smallest can require roughly the same number of ob-
servations as the number of effects one wishes to calculate
(experimenters will often use more than the minimum num-
ber of observations to improve precision or to deal with
noisy processes). The reductions come from aliasing the
effects of lower-order interactions with higher-order ones,
i.e., by making it impossible to distinguish between certain
high- and low-order effects. While this may seem problem-
atic, screening designs have been used extensively to un-
derstand and improve products and processes developed in
manufacturing, engineering, and physical sciences. Their
success stems largely from the ability to use them in an
iterative, “quick and dirty” fashion, i.e., to focus on ma-
jor problem sources, a few at a time, rather than trying to
understand and fix all problems simultaneously. Since our
objective with main effects screening is also to produce a
rough – but reliable – estimate of overall performance, we
hypothesize that screening designs provide the appropriate
foundation for our hybrid model-based DCQA processes.
3.3. Screening Designs in Action

To show how screening designs are computed, we now
present a hypothetical example of a performance-intensive
software system with 4 binary configuration options, A
through D, with no inter-option constraints. The full config-
uration space therefore has 24 = 16 configurations. To cre-
ate a screening design, developers must decide how many
observations they can afford, which level of effects they
want to analyze, and how they will alias effects to fill out
the design. In our example, developers decide they can af-
ford to evaluate 8 configurations and that they will focus

only on 1st-order effects.
Given this information, we begin by creating a 23 full

factorial design for options A, B, and C because this design
has the maximum number of configurations we wanted to
observe. This design is shown in Table 1(a), where the bi-

A B C
- - -
+ - -
- + -
+ + -
- - +
+ - +
- + +
+ + +

(a)

A B C D
- - - -
+ - - +
- + - +
+ + - -
- - + +
+ - + -
- + + -
+ + + +

(b)

Table 1. (a) 23 Design and (b) 24−1

IV
Design

nary option settings are encoded as (-) or (+). This design
is referred to as a 24−1 design, where 4 refers to the total
number of options we will examine and the −1 (2−1 = 1/2)
indicates the fraction of the full factorial over which we will
collect data.

This design has 23 − 1 = 7 degrees of freedom. We use
3 degrees of freedom to estimate the effects of A, B, and
C. The remaining degrees of freedom would normally be
used to estimate higher-order effects of these options, but
since we are only interested in the 1st order effects, we can
instead use them to estimate the effect of option D, i.e., we
can extend the design and estimate the effect of option D
without going to a 24 full factorial design.

The final remaining issue is selecting the settings for op-
tion D. We do this using a design generator, which specifies
the aliasing patterns used to build the design. For this ex-
ample, we select the design generator D = ABC, which
means that D’s settings are computed by multiplying the
settings for options A, B, and C (think of + as 1 and - as
−1).

The design we described above is a resolution IV design.
In resolution R designs, no effects involving i factors are
aliased with effects involving less than R − i factors. De-
velopers therefore need to choose what order of effects they
wish to observe. Table 1(b) gives the final design, which is
identified uniquely as a 24−1

IV
design with the design gener-

ator D = ABC.
After defining the screening design, we can execute it

across the Skoll grid. For our process, each observation
involves measuring a developer-supplied benchmarking re-
gression test while the system runs in a particular config-
uration. We would next analyze the data to calculate the
effects. For binary options (with settings - or +), the main
effect of option A, ME(A), is

ME(A) = z(A−) − z(A+) (1)
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where z(A-) and z(A+) are the mean values of the observed
data over all runs where option A is (-) and where option A
is (+), respectively.

If desired, 2nd order effects can be calculated in a similar
way. The interaction effect of option A and B, INT(A, B)
is:

INT (A, B) = 1/2{ME(B|A+)− ME(B|A−)} (2)
= 1/2{ME(A|B+)− ME(A|B−)} (3)

Here ME(B|A+) is called the conditional main effect of B
at the + level of A. The effect of one factor (e.g., B) there-
fore depends on the level of the other factor (e.g., A). Simi-
lar equations exist for higher order effects.

As shown in Section 4, once the effects are com-
puted we display them graphically using Skoll visualization
tools [15], allowing developers to decide which effects they
consider important.
4. Feasibility Study

This section describes a feasibility study that assesses
the implementation cost and the effectiveness of the main
effects screening process described in Section 3 on a suite
of large, performance-intensive software systems.
4.1. Experimental Design
Hypotheses. Our feasibility study explores the following
hypotheses: (1) our model-based Skoll environment cost-
effectively supports the definition, implementation and ex-
ecution of our main effects screening process described
in Section 3, (2) the screening design used in main ef-
fects screening correctly identifies a small subset of options
whose effect on performance is important, and (3) exhaus-
tively examining just the options identified by the screen-
ing design gives performance data that (a) is representative
of the system’s performance across the entire configuration
space, but less costly to obtain and (b) is more representa-
tive than a similarly-sized random sample.

Subject applications. The experimental subject applica-
tions for this study were based on a suite of performance-
intensive software: ACE v5.4 + TAO v1.4 + CIAO
v0.4. ACE provides reusable C++ wrapper facades and
framework components that implements core concurrency
and distribution patterns [16] for communication software.
TAO is a high-performance, highly configurable Real-time
CORBA ORB built atop ACE to meet the demanding QoS
requirements of DRE systems. CIAO is QoS-enabled mid-
dleware that extends TAO to support components, which
enables developers to declaratively provision QoS policies
end-to-end when assembling a DRE system.

ACE, TAO, and CIAO are ideal subjects for our fea-
sibility study since they share many characteristics with
other highly configurable performance-intensive software
systems. For example, they collectively contain over 2M+
lines of source code, functional regression tests, and perfor-
mance benchmarks contained in ∼4,500 files that average

over 300 CVS commits per week. They also run on a wide
range of OS platforms, including all variants of Windows,
most versions of UNIX, and many real-time operating sys-
tems, such as LynxOS and VxWorks.

Application scenario. Due to recent changes made to the
message queuing strategy, the developers of ACE+TAO+-
CIAO were concerned with measuring two performance cri-
teria: (1) the latency for each request and (2) total message
throughput (events/second) between the ACE+TAO+CIAO
client and server. For this version of ACE+TAO+CIAO, the
developers identified 14 binary run-time options they felt
affected latency and throughput (See Table 2). Thus, the
entire configuration space has 214 = 16, 384 different con-
figurations.

Option Option Option
Index Name Settings

A ORBReactorThreadQueue {FIFO, LIFO}
B ORBClientConnectionHandler {RW, MT}
C ORBReactorMaskSignals {0, 1}
D ORBConnectionPurgingStrategy {LRU, LFU}
E ORBConnectionCachePurgePercentage {10, 40}
F ORBConnectionCacheLock {thread, null}
G ORBCorbaObjectLock {thread, null}
H ORBObjectKeyTableLock {thread, null}
I ORBInputCDRAllocator {thread, null}
J ORBConcurrency {reactive, thread-per-connection}
K ORBActiveObjectMapSize {32, 128}
L ORBUseridPolicyDemuxStrategy {linear, dynamic}
M ORBSystemidPolicyDemuxStrategy {linear, dynamic}
N ORBUniqueidPolicyReverseDemuxStrategy {linear, dynamic}

Table 2. Some ACE+TAO Options and their Set-
tings

Experimental process. After selecting the ACE+TAO+-
CIAO subject application and our application scenario, our
experimental process used Skoll’s model-driven tools to im-
plement the main effects screening process and evaluate our
three hypotheses. To accomplish this, we executed the main
effects screening process across a prototype Skoll grid of
dual processor Xeon machines running Red Hat 2.4.21 with
1GB of memory in the real-time scheduling class. The ex-
perimental task involved running a benchmark application
in a particular configuration, which evaluated the applica-
tion scenario outlined above by creating an ACE+TAO+-
CIAO client and server. For each task we measured mes-
sage latency and overall throughput between the client and
the server. The client sends 300K requests to the server,
where after each request it waits for a response from the
server and records the latency measure. At the end of 300K
requests, the client computes the throughput achieved in
terms of number of requests served per second. We finally
analyzed the resulting data to evaluate our hypotheses. Sec-
tion 6 describes the limitations with our current experimen-
tal process.
4.2. The Full Data Set

To evaluate main effects screening, we first gener-
ated performance data for all 16,000+ valid configurations,
which we refer to as the “full suite” and the performance
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Figure 2. Option effects based on full data
data as the “full data set.” We then examined the effect
of each option and judged whether they had important ef-
fects on performance using a graphical method called half-
normal probability plots, which show each option’s effect
against their corresponding coordinates on the half-normal
probability scale. If |θ|1 ≤ |θ|2 ≤ ... ≤ |θ|I are the ordered
set of effect estimations, the half-normal plot then consists
of the points

(Φ−1(0.5 + 0.5[i− 0.5]/I), |θ|i) for i = 1, ..., I (4)

where Φ is the cumulative distribution function of a stan-
dard normal random variable.

The rationale behind half-normal plots is that unimpor-
tant options will have effects whose distribution is normal
and centered near 0. Important effects will also be normally
distributed1 with means different that 0. If no effects are
important, the resulting plot will show a set of points on a
rough line near y = 0. Options whose effects deviate sub-
stantially from 0 are considered important.

Note that “importance” is not defined formally and dif-
fers in spirit from the traditional notion of statistical signifi-
cance. In particular, developers must decide for themselves
how large effects must be to warrant their attention. While
this has some downsides (see Section 6), even with tradi-
tional statistical tests that measure statistical significance
developers still must make judgments as to the magnitude
of effects.

1Since the effects are averages over numerous observations, the central
limit theorem guarantees normality.

Figure 2 plots the effect of each of the 14 ACE+TA+-
CIAO options on latency and throughput respectively. The
effects are calculated from the full data set. We see that
options B and J are clearly important, whereas options I, C
and F are arguably important, and the remaining options are
not important.

4.3. Evaluating Screening Designs
We now evaluate whether the remotely executed screen-

ing designs can correctly identify the important options dis-
covered during our analysis of the full data set. To accom-
plish this, we calculated and executed three different screen-
ing designs, whose specifications appear in Appendix A.
These designs examined all 14 options using increasingly
larger run sizes (32, 64, or 128 observations). We refer to
the screening designs as Scr32, Scr64 and Scr128, respec-
tively.

Figure 3 shows the half-normal probability plots ob-
tained from our screening designs. The figures show that
all screening designs correctly identify options B and J as
being important (as is the case in full-factorial experiment).
Scr128 also identifies the possibly important effect of op-
tions C, I, and F. Due to space considerations in the paper
we only present data on latency. Throughput analysis shows
identical results unless otherwise stated.

These results suggest that (1) screening designs can de-
tect important options at a large fraction of the cost of ex-
haustive testing, (2) the smaller the effect, the larger the run
size needed to identify it, and (3) developers should be cau-
tious when dealing with options that appear to have an im-
portant, but relatively small effect, as they may actually be
seeing normal variation (Scr32 and Scr64 both have exam-
ples of this).

4.4. Estimating Performance with Screening Suites
We now evaluate whether screening all the combinations

of the most important options can be used to estimate per-
formance quickly across the entire configuration space we
are studying. The estimates are generated by examining
all combinations of the most important options, while de-
faulting the settings of the unimportant options (developers
could choose to randomize the settings of unimportant op-
tions, as well). In the previous section, we determined that
options B and J were clearly important and that options C,
I, and F were arguably important. Developers will there-
fore make the estimates based on benchmarking either 4 (all
combinations of options B and J) or 32 (all combinations of
options B, J, C, I, and F) configurations. We will refer to
the set of 4 configurations as the top-2 screening suite and
the set of 32 configurations as the top-5 screening suite.

Figure 4 shows the distributions of latency for the full
suite vs the top-5 screening suite and for the full suite vs the
top-2 screening suite. From the figure, we see that the distri-
butions of the top-5 and top-2 screening suites closely track
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Figure 3. Option Effects Based on Screening De-
signs

the overall performance data. Such plots, called quantile-
quantile (Q-Q) plots, are used to see how well two data dis-
tributions correlate. To do this they plot the quantiles of the
first data set against the quantiles of the second data set. If
the two sets share the same distribution, the points should
fall approximately on x = y line.

This data suggests that the screening suites computed
at step 4 of the main effects screening process (Section 3)
can be used to estimate overall performance in-house at ex-
tremely low time/effort, i.e., running 4 benchmarks takes 40
seconds, running 32 takes 5 minutes, running 16,000+ takes
2 days.
4.5. Screening Suites vs. Random Sampling

Another question is whether our main effects screening
process was any better that other obvious low-cost estima-
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Figure 4. Q-Q plots for the top-2 and top-5 screen-
ing suites

tion processes. In particular, we compared latency distribu-
tions of several random samples of 4 configurations to that
of the top-2 screening suite found by our process. The re-
sults of this test are summarized in Figure 5. These box
plots show the distributions of latency metric obtained from
exhaustive testing, top-2 screening suite testing, and ran-
dom testing. These graphs suggest the obvious weakness
of random sampling, i.e., while sampling distributions tend
toward the overall distribution as the sample size grows, in-
dividual small samples may show wildly different distribu-
tions.

4.6. Dealing with Evolving Systems
A primary goal of main effects screening is to detect per-

formance degradations in evolving systems quickly. Our
experiments discussed above do not address whether – or
for how long – screening suites remain useful as a system
evolves. To better understand this issue, we measured la-
tency on the top-2 screening suite, once a day, using CVS
snapshots of ACE+TAO+CIAO. We used historical snap-
shots for two reasons: (1) the versions are from the time
period for which we already calculated the main effects
and (2) developer testing and in-the-field usage data have
already been collected and analyzed for this time period
(see www.dre.vanderbilt.edu/Stats/), allowing
us to reasonably assess the system’s performance character-
istics without having to exhaustively test all configurations
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Figure 5. Latency Distribution from full, top-2,
and random suites

for each system change.
Figure 6 depicts the data distributions for the top-2

screening suites broken down by date (higher latency mea-
sures are worse). We see that the distributions were stable
the first two days, crept up somewhat for 3 days and then
shot up the 4th day (12/14/03). They were brought back un-
der control for several more days, but then moved up again
on the last day. Developer records and problem reports indi-
cate that problems were noticed on 12/14/03, but not before
then.

Another interesting finding was that the limited testing
done by ACE+TAO+CIAO developers measured a perfor-
mance drop of only around 5% on 12/14/03. In contrast,
our screening process showed a much more dramatic drop
– closer to 50%. Further analysis by system developers
indicated that their unsystematic testing failed to evaluate
configurations where the degradation was much more pro-
nounced.

4.7. Higher-Order Effects
The analyses done so far only calculated first-order ef-

fects, which worked well for our subject application and
scenario, but might not be sufficient for other situations.
Figure 7 shows the effects of all pairs of options in the sub-
ject systems based on the full data set and on a screening
design. We used a resolution VI design here (rather than
resolution IV as in the previous sections) and increased the
run size to 2,048 to capture the second-order effects.

Figure 7 shows several things. First, the important in-
teraction effects involve only options that are already con-
sidered important by themselves, which supports the idea
that monitoring only first-order effects was sufficient for our
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Figure 6. Performance estimates across time
subject systems. Second, we see that the screening design
correctly identifies the 5 most important pairwise interac-
tions at 1/8th the cost of exhaustive testing.
5. Related Work
Applying DOE to software engineering. As far as we
can tell, no one has used screening designs for software
performance assessment. The use of design of experiment
(DoE) theory within software engineering has mostly been
limited to interaction testing. The goal of interaction test-
ing is largely to compute and sometimes generate minimal
test suites that cover all combinations of specified program
inputs, typically by computing orthogonal arrays or cover-
ing arrays. Some examples of this work include Dalal et
al. [5], Burr et al. [3], Dunietz et al. [6], and Kuhn et al [12].
Yilmaz et al. [19] used covering arrays as a configuration
space sampling technique to support the characterization of
failure-inducing option settings.

Other relevant literature on performance monitoring in-
cludes:

• Offline analysis , which has been applied to program
analysis to improve compiler-generated code. For example,
the ATLAS [7] numerical algebra library uses an empirical
optimization engine to decide the values of optimization pa-
rameters by generating different program versions that are
run on various hardware/OS platforms. The output from
these runs are used to select parameter values that provide
the best performance. Mathematical models are also used
to estimate optimization parameters based on the underly-
ing architecture, though empirical data is not fed into the
models to refine it.

• Online analysis , where feedback control is used to
dynamically adapt QoS measures. An example of online
analysis is the ControlWare middleware [20], which uses
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Figure 7. Pairwise Effects Based on Full and
Screening Suite

feedback control theory by analyzing the architecture and
modeling it as a feedback control loop. Actuators and sen-
sors then monitor the system and affect server resource al-
location. Real-time scheduling based on feedback loops has
also been applied to Real-time CORBA middleware [13] to
automatically adjust the rate of remote operation invocation
transparently to an application.

• Hybrid analysis , which combines aspects of offline
and online analysis. For example, the continuous compi-
lation strategy [4] constantly monitors and improves appli-
cation code using code optimization techniques. These op-
timizations are applied in four phases, including (1) static
analysis, in which information from training runs is used to
estimate and predict optimization plans, (2) dynamic opti-
mization, in which monitors apply code transformations at
run-time to adapt program behavior, (3) offline adaptation,
in which optimization plans are actually improved using ac-
tual execution, and (4) recompilation, where the optimiza-
tion plans are regenerated.

6 Concluding Remarks
This paper presents a new distributed continuous qual-

ity assurance (DCQA) process called main effects screen-
ing that is designed to detect performance degradation effi-
ciently in performance-intensive software systems that have
large configuration spaces. To evaluate this process, we
conducted a formally-designed experiment across a grid of

in-house and in-the-field computers in the Skoll environ-
ment. The results of this experiment formed the basis for
estimating the performance across the large configuration
space of ACE, TAO, and CIAO, which are widely used,
large-scale, performanceintensive software systems.

All empirical studies suffer from threats to their inter-
nal and external validity. For the work presented here, we
were primarily concerned with threats to external validity
since they limit our ability to generalize the results of our
experiment to industrial practice. For instance, potential
threat is that several steps in our hybrid in-the-field/in-house
DCQA process requires human decision making and input,
e.g., developers must provide reasonable benchmarking ap-
plications and must also decide for themselves at what point
they will consider an effect to be important. Bad choices in
these stages make it hard to use main effects screening suc-
cessfully.

Another possible threat to external validity concerns the
representativeness of the ACE+TAO+CIAO subject appli-
cations, which though large are still just one suite of soft-
ware systems. A related issue is that we have focused on
a relatively simple and small subset of the entire configu-
ration space of ACE+TAO+CIAO that only has binary op-
tions and has no inter-option constraints. While these issues
pose no theoretical problems (since screening designs can
be created for much more complex situations, as discussed
in Section 3), we need to apply our approach to larger, more
realistic configuration spaces in future work to understand
how well it scales.

Another potential threat is that for the time period we
studied, the ACE+TAO+CIAO subject application was in
a fairly stable phase, i.e., changes were made mostly to
fix bugs and reduce memory footprint, but the system’s
functionality was relatively stable. For situations where a
system’s basic functionality is in greater flux, it may be
harder to distinguish significant performance degradation
from normal variation. Likewise, we conducted the study
on a homogeneous grid of computers, which may limit the
amount of noise in our experimental measurements, making
it easier to distinguish performance deviations than it might
be in another, more heterogeneous context.

Even with various threats to validity, however, we be-
lieve our feasibility study supports the basic hypotheses un-
derlying our research. We reached this conclusion by noting
that our studies showed that: (1) screening designs can cor-
rectly identify important options, (2) these options can be
used to quickly produce reliable estimates of performance
across the entire configuration space at a fraction of the cost
of exhaustive testing, (3) the alternative approach of random
or ad hoc sampling can give highly unreliable results, (4)
the main effects process detected performance degradation
on a large and evolving software system, and (5) the screen-
ing suite estimates were more precise than the ad hoc pro-
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cess currently used by the developers of the subject system.
Main effects screening process can also provide a valuable
defect detection aid, e.g., if the screened options change
unexpectedly when recalibrated, developers can reexamine
the software to identify possible problems with software up-
dates.

We believe that this line of research is novel and inter-
esting, but much work remains to be done. We are therefore
continuing to develop enhanced model-based Skoll capabil-
ities and using them to create and validate new more sophis-
ticated DCQA processes that overcome the limitations and
threats to external validity with our current approach. In
particular, we are exploring the connection between design
of experiments theory and the quality assurance of systems
with large configuration spaces. We are also working to in-
corporate Skoll services into software repositories, such as
ESCHER (www.escherinstitute.org). Finally, we
are conducting a much larger case study using Skoll to con-
duct the ACE+TAO+CIAO daily build and regression test
process with 100+ machines contributed by users and de-
velopers worldwide.
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A. Actual Screening Designs
The screening designs used in Section 4.3 were calcu-

lated using the SAS statistical package. (www.sas.com).
Scr32 is a 214−9

IV
with design generators F = ABC, G =

ABD, H = ACD, I = BCD, J = ABE, K = ACE,
L = BCE, M = ADE, N = BDE.
Scr64 is a 214−8

IV
with design generators G = ABC, H =

ABD, I = ABE, J = ACDE, K = ABF , L = ACDF ,
M = ACEF , N = ADEF .
Scr128 is a 214−7

IV
with design generators H = ABC, I =

ABDE, J = ABDF , K = ACEF , L = ACDG, M =
ABEFG, N = BCDEFG.
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