
Validating Quality of Service for Reusable
Software via Model-integrated Distributed

Continuous Quality Assurance?

Arvind S. Krishna1, Douglas C. Schmidt1, Atif Memon2, Adam Porter2, and
Diego Sevilla3

1 Electrical Engineering & Computer Science, Vanderbilt University, TN USA,
{arvindk, schmidt}@dre.vanderbilt.edu,

2 Computer Science Department, University of Maryland College Park, MD USA,
{atif, aporter}@cs.umd.edu

3 Dept. of Computer Engineering, University of Murcia, Spain,
{dsevilla@ditec.um.es}

Abstract

Quality assurance (QA) tasks, such as testing, profiling, and performance evalua-
tion, have historically been done in-house on developer-generated workloads and
regression suites. Performance-intensive systems software, such as that found
in the scientific computing grid and distributed real-time and embedded (DRE)
domains, increasingly run on heterogeneous combinations of OS, compiler, and
hardware platforms. Such software has stringent quality of service (QoS) require-
ments and often provides a variety of configuration options to optimize QoS. As
a result, QA performed solely in-house is inadequate since it is hard to man-
age software variability, i.e., ensuring software quality on all supported target
platforms across all desired configuration options. This paper describes how the
Skoll project is addressing these issues by developing advanced QA processes and
tools that leverage the extensive computing resources of user communities in a
distributed, continuous manner to improve key software quality attributes.

1 Introduction

Emerging trends and challenges. While developing quality reusable soft-
ware is hard, developing it for performance-intensive systems is even harder.
Examples of performance-intensive software include high-performance scientific
computing systems, distributed real-time and embedded (DRE) systems, and
the accompanying systems software (e.g., operating systems, middleware, and
language processing tools). Reusable software for these types of systems must
not only function correctly across the multiple contexts in which it is reused and
customized – it must also do so efficiently and predictably.

? This material is based upon work supported by the National Science Foundation
under Grant Nos. NSF ITR CCR-0312859, CCR-0205265, CCR-0098158.



To support the customizations demanded by users, reusable performance-
intensive software often must (1) run on a variety of hardware/OS/compiler
platforms and (2) provide a variety of options that can be configured at compile-
and/or run-time. For example, performance-intensive middleware, such as web
servers (e.g., Apache), object request brokers (e.g., TAO), and databases (e.g.,
Oracle) run on dozens of platforms and have dozen or hundreds of options. While
this variability promotes customization, it creates many potential system config-
urations, each of which may need extensive quality assurance (QA) to validate.
Consequently, a key challenge for developers of reusable performance-intensive
software involves managing variability effectively in the face of an exploding
software configuration space.

As software configuration spaces increase in size and software development
resources decrease, it becomes infeasible to handle all QA activities in-house.
For instance, developers may not have access to all the hardware, OS, and com-
piler platforms on which their reusable software artifacts will run. Moreover,
due to time-to-market driven environments, developers may be forced to re-
lease their software in configurations that have not been subjected to sufficient
QA. The combination of an enormous configuration space and severe develop-
ment resource constraints therefore often force developers of reusable software
to make design and optimization decisions without precise knowledge of their
consequences in fielded systems.

Solution approach → Distributed continuous QA processes (DCQA).
To manage this situation, we have initiated the Skoll (www.cs.umd.edu/projec\
-ts/skoll) project to develop tools and processes necessary to carry out “around-
the-world, around-the-clock” QA. Our feedback-driven Skoll approach divides
QA processes into multiple subtasks that are intelligently and continuously dis-
tributed to, and executed by, a grid of computing resources contributed by end-
users and distributed development teams around the world. The results of these
executions are returned to central collection sites where they are fused together
to identify defects and guide subsequent iterations of the QA process.

Skoll QA processes are based on a client/server model. Clients distributed
throughout the Skoll grid request job configurations (implemented as QA subtask
scripts) from a Skoll server. The Skoll process is carried out as shown in Figure 14.
At a high level, the Skoll process is carried out as shown in Figure 1.
1. Developers create the configuration model and adaptation strategies. Devel-
opers create the generic QA subtask code that will be specialized when creating
actual job configurations.
2. A user requests Skoll client software via the registration process described
earlier. The user receives the Skoll client software and a configuration template.
If a user wants to change certain configuration settings or constrain specific
options he/she can do so by modifying the configuration template.
3. A Skoll client periodically (or on-demand) requests a job configuration from
a Skoll server.

4 A comprehensive discussion of Skoll components and infrastructure appears in [1].



4. The Skoll server queries its databases and the user-provided configuration
template to determine which configuration option settings are fixed for that
user and which must be set by it.
5. A Skoll client invokes the job configuration and returns the results to the
Skoll server.
6. The Skoll server examines these results and invokes all adaptation strategies.
These update the operators to adapt the global process.

Model-Integrated DCQA techniques Earlier work on Skoll described the
structure and functionality of Skoll and presented results [1] from a feasibility
study that applied Skoll tools and processes to ACE [2] and TAO [3]. The ini-
tial Skoll prototype provided a DCQA infrastructure that performed functional
testing, but did not address QoS issues, nor did it minimize the cost of im-
plementing QA subtasks. In particular, integrating new application capabilities
into the Skoll infrastructure (such as benchmarks that quantified various QoS
properties) required developers to write test cases manually. Likewise, extending
the configuration models (e.g., adding new options) required the same tedious
and error-prone approach.

This paper describes several previously unexamined dimensions of Skoll: in-
tegrating model-based techniques with distributed continuous QA processes, im-
proving quality of service (QoS) as opposed to functional correctness, and using
Skoll to empirically optimize a system for specific run-time contexts. At the heart
of the Skoll work presented in this paper is CCMPerf [4], which is an open-
source toolsuite5 that applies generative model-based techniques [5] to measure
and optimize the QoS of reusable performance-intensive software configurations.
Currently, CCMPerf in concert with Skoll, focuses on evaluating QoS of imple-
mentations of the CORBA Component Model (CCM)6, as shown in Figure 2.

Paper organization The remainder of this paper is organized as follows: Sec-
tion 2 motivates and describes the design of CCMPerf, focusing on its model-
based generative benchmarking capabilities; Section 3 describes a case-study that
illustrates how QoS characteristics captured using CCMPerf can be captured and
fed back into models to analyze system behavior at model construction time; Sec-
tion 4 examines related work and compares it with the approaches used in Skoll
and CCMPerf; Section 5 presents concluding remarks and future work.

2 Enhancing Skoll with a Model-based QoS Improvement
Process

Reusable performance-intensive software is often used by applications with strin-
gent quality of service (QoS) requirements, such as low latency and bounded
jitter. The QoS of reusable performance-intensive software is influenced heavily
5 CCMPerf can be downloaded from www.dre.vanderbilt.edu/cosmic
6 We focus on CCM since it is standard component middleware targeted for QoS

requirements for DRE systems



Fig. 1. Skoll QA Process View Fig. 2. Skoll QA Process View with CCM-
Perf Enhancements

by factors such as (1) the configuration options set by end-users to tune the
underlying hardware/software platform and (2) characteristics of the underlying
platform itself. Managing these variable platform aspects effectively requires a
QA process that can precisely pinpoint the consequences of mixing and matching
configuration options on various platforms.

In the initial Skoll approach, creating a benchmarking experiment to measure
QoS properties required QA engineers to write (1) the header files, source code,
that implement the functionality, (2) the configuration and script files that tune
the underlying ORB and automate running tests and output generation, and (3)
project build files (e.g., makefiles) required to generate the executable code. Our
experience during our initial feasibility study [1] revealed how this process was
tedious and error-prone. The remainder of this section describes how we have ap-
plied model-based techniques [5] to improve this situation. These improvements
are embodied in CCMPerf [4], a model-based benchmarking toolsuite.

2.1 Model-based Tools for Performance Improvement

With CCMPerf, QA engineers graphically model possible interaction scenarios.
For example, Figure 3 presents a model that shows an association between a
facet7 and an IDL interface. It also shows the domain-specific building blocks
(such as receptacles, event sources, and event sinks) allowed in the models. Given
a model, CCMPerf generates the scaffolding code needed to run the experiments.
This typically includes Perl scripts that start daemon processes, spawn the com-
ponent server and client, run the experiment, and display the required results.

7 A facet is a specialized port a CCM component exposes for clients to communicate
with the component.



CCMPerf is built on top of the Generic Modeling Environment (GME) [6],
which provides a meta-programmable framework for creating domain-specific
modeling languages and generative tools. GME is programmed via meta-models
and model interpreters. The meta-models define modeling languages called paradi-
gms that specify allowed modeling elements, their properties, and their rela-
tionships. Model interpreters associated with a paradigm can also be built to
traverse the paradigm’s modeling elements, performing analysis and generating
code. CCMPerf was developed by creating the following two paradigms:

Fig. 3. CCMPerf modeling paradigm Fig. 4. OCML Modeling Paradigm

The Options Configuration Modeling Language (OCML) [7] paradigm
models the various configuration parameters provided by ACE, TAO, and CIAO.
Figure 4 shows ORB configuration options modeled with OCML. Inter-option
dependencies are captured as model constraints. For instance, Figure 4 shows
that when the demultiplexing option is set to active demultiplexing and the
reactivation of system ids is disabled, the use of active hints is disallowed. Specific
OCML models are then used to automatically generate large portions of Skoll’s
QA subtask code.

The Benchmark Generation Modeling Language (BGML) [4] paradigm
models (1) how clients and servers interact with each other and (2) represents
metrics that can be applied to specific configuration options and platforms. Fig-
ure 3 illustrates the BGML modeling paradigm.

We also developed one model interpreter for each of CCMPerf’s two paradigms.
The OCML model interpreter generates configuration files to configure the un-
derlying middleware. For ACE, TAO, and CIAO these configuration files conform
to a specified format that can be parsed by the middleware. The BGML model
interpreter parses the model and synthesizes the code required to benchmark
the modeled configuration.



2.2 Integrating CCMPerf into the Skoll QA Process

Figure 2 presents an overview of how we have integrated CCMPerf with the
existing Skoll infrastructure.
A. A QA engineer defines a test configuration using CCMPerf models. The
necessary experimentation details are captured in the models, e.g., the ORB
configuration options used, the IDL interface exchanged between the client and
the server, and the benchmark metric performed by the experiment.
B & C. The QA engineer then uses CCMPerf to interpret the model. The
OCML paradigm interpreter parses the modeled ORB configuration options and
generates the required configuration files to configure the underlying ORB. The
CCMPerf paradigm interpreter then generates the required benchmarking code,
i.e., IDL files, the required header and source files, and necessary script files to
run the experiment. Steps A, B, and C are integrated with Step 1 of the Skoll
process described in Section 1.
D. When users register with the Skoll infrastructure they obtain the Skoll client
software and configuration template. This step happens in concert with Step 2,
3, and 4 of the Skoll process.
E & F. The client executes the experiment and returns the result to the Skoll
server, which updates its internal database. When prompted by developers, Skoll
displays execution results using an on demand scoreboard. This scoreboard dis-
plays graphs and charts for QoS metrics, e.g., performance graphs, latency mea-
sures and foot-print metrics. Steps E and F correspond to steps 5, 6, and 7 of
the Skoll process.

3 Feedback-driven, Model-integrated Skoll: A Case Study

Study motivation and design. Measuring QoS for a highly configurable sys-
tem such as CIAO involves capturing and analyzing system performance in terms
of throughput, latency, and jitter across many different system configurations
running on a wide range of hardware, OS, and compiler platforms. We treat
this problem as a large-scale scientific experiment, i.e., we rely on design of
experiments theory to determine which configurations to examine, how many
observations to capture, and the techniques needed to analyze and interpret the
resulting data. We use the CCMPerf modeling tools presented in Section 2 to
model configuration parameters and generate benchmarking code that measures
and analyzes the QoS characteristics. Using the collected data, we derive two
categories of information: (1) platform-specific, whose behavior differs on partic-
ular platforms and (2) platform-independent, whose behavior is common across
a range of platforms. This information can then be fed-back into the models to
specify QoS characteristics at model construction time.

To make this discussion concrete, we present a simple example of our ap-
proach (in production systems these experiments would be much larger and
more complex). This experiment measures only one aspect of QoS: round-trip
throughput calculated at the client side as the number of events processed/sec.
We then use the OCML paradigm described in Section 2.1 to model the software



configuration options that set the request processing discipline within the ORB.
All other options are simply set to their default values.

For this study, we modeled a leader/followers [8] request processing approach,
where a pool of threads take turns demultiplexing, dispatching, and processing
requests via a thread-pool reactor (TP_Reactor) [8]. In this scheme the following
two configuration parameters can be varied to tune the QoS characteristics:
– The thread-pool size determines the number of threads in the ORB’s

TP_Reactor that will demultiplex, dispatch, and process requests and
– The Scheduling policy determines how the threads take turns in process-

ing requests. We use two scheduling policies for the experiment: (1) FIFO
scheduling, where the thread that enters the queue first processes the request
first, and (2) LIFO scheduling, where the thread entering last processes the
request first.

Execution testbed. We chose the following four testbeds with varying hard-
ware, OS, and compiler configurations. Table 1 summarizes the key features of
these four testbed platforms.

DOC ACE Lindy Tango

CPU AMD AMD Intel Intel
Type Athlon Athlon Xeon Xeon

Speed (GHz) 2 2 2.4 1.9

Cache (KB) 512 512 1024 2048

Compiler (gcc) 3.2.2 3.3 3.3.2 3.3.2

OS (Linux) Red Hat 9 Red Hat 8 Fedora Core I Debian
Table 1. Testbed Summary

Study execution. To identify the influence of scheduling policy and thread
pool size on round-trip throughput, we conducted the experimental task that
used two components communicating with each other. The Skoll system next
distributed the experimental tasks to clients running on the four platforms. Each
task involved 250,000 iterations. Skoll continued distributing the tasks until the
entire experimental design was completed. For example, on the machine called
DOC (See Table 1), different clients and servers executed every combination of
FIFO and LIFO policies with the number of request processing threads set to 2
and 4. Each combination can be categorized as a tuple (t1, t2), where t1 denotes
number of threads used on the client and t2 number of threads used on the
server.

Study analysis. The Skoll infrastructure provides the framework for automat-
ically collecting data that can then be analyzed to glean platform-specific and
platform-independent information. The experimental results shown in Figure 5
were obtained by using Skoll to run experiments on each platform described in
Table 1. Our analysis of the results in Figure 5 yielded the following observations:



Fig. 5. Results Summary for Study Execution

Machine Tuple FIFO LIFO

Throughput (events/sec)

DOC (4,2) 10,470 9354

ACE (4,2) 10,152 10,087

Lindy (4,2) 11,057 9982

Tango (4,2) 10,196 10,067
(6,2) 14,696 12,556

Table 2. Platform-specific Information

• Observation 1. On average, LIFO scheduling yielded higher throughput
than FIFO scheduling strategy. Our analysis suggests that this occurs because
the LIFO strategy increases cache thread affinity, leading to the cache lines not
being invalidated after every request. This observation holds for all the platforms
we conducted the experiment, though it is obviously influenced by the underlying
hardware, OS and compiler platforms. Assuming our testbed platforms as a
complete configuration space, this information is platform-independent, i.e., the
LIFO strategy yields higher throughput when the leader/followers model for
request processing is chosen. Such information helps developers understand the
first-order effects of different configuration options.
• Observation 2. While observation 1 holds as the general case, we detected
finer effects, as shown in Table 2. Also, for specific test cases, FIFO produces
higher throughput than LIFO. In particular, whenever the number of server
threads is low (i.e., 2) FIFO performs as well or better than LIFO. Moreover,
the degree of improvement increases as the number of client threads increases.
This platform-specific information holds only for certain configurations in our
configuration space, which consists of the hardware, OS, compiler and software
configuration options.

Lessons learned. Although this feasibility study was purposely simplified, it
indicates how the model-integrated Skoll framework enables more powerful ex-



periments that help identify performance bottlenecks and provide general guide-
lines to developers and users of software systems. The platform specific and inde-
pendent information help in developing re-usable configurations that maximize
QoS for a given operational context. The formal designed experiment illustrated
how our Skoll framework can be used to codify these re-usable configuration
solutions. These configurations when validated across a range of hardware, OS
and compiler platforms represents a Configuration & Customization (C&C) [9]
pattern.

4 Related Work

This section compares our work on model-driven performance evaluation tech-
niques in Skoll and CCMPerf with other related research efforts that use empirical
data and mathematical models to identify performance bottlenecks. For exam-
ple, the ATLAS [10] numerical algebra library uses an empirical optimization
engine to decide the values of optimization parameters by generating different
program versions that are run on various hardware/OS platforms. The output
from these runs are used to select parameter values that provide the best perfor-
mance. Mathematical models are also used to estimate optimization parameters
based on the underlying architecture, though empirical data is not fed into the
models to refine it.

Like ATLAS, CCMPerf uses an optimization engine to configure/customize
middleware parameters in accordance to available OS platform characteristics
(such as the type of threading, synchronization, and demultiplexing mechanisms)
and characteristics of the underlying hardware (such as the type of CPU, amount
of main memory, and size of cache). CCMPerf enhances ATLAS, however, by
feeding back platform-specific information into the models to identifying perfor-
mance bottlenecks at model construction time. This information can be used to
select optimal configurations ahead of time that maximize QoS behavior.

Other research initiatives to validate if software components meet QoS, in-
clude automatic validation techniques [11] for J2EE components using Aspects.
In this approach, agents at run-time, conduct validation tests such as, single-
client response time, functional operation and data storage/ retrieval tests. Our
approach on Skoll, differs from run-time validation as all our testing is done
offline. Using our approach, no cost is incurred at deployment time for the com-
ponent. Further, extensive testing and QoS behavior analysis is done on a range
of hardware, OS and compiler platforms to identify performance bottlenecks by
modeling the operational context and synthesizing scaffolding code. The results
are then used to select optimal configuration at deployment time rather than
incur overhead of run-time monitoring.

5 Concluding Remarks

Reusable software for performance-intensive systems increasingly has a multi-
tude of configuration options and runs on a wide variety of hardware, com-



piler, network, OS, and middleware platforms. Our work on Skoll addresses two
key dimensions of applying distributed continuous QA processes to reusable
performance-intensive software. The Skoll framework described in [1] address
software functional correctness issues, e.g., ensuring software compiles and runs
on various hardware, OS, and compiler platforms. The CCMPerf tools described
in this paper address software QoS issues, e.g., modeling and benchmarking in-
teraction scenarios on various platforms by mixing and matching configuration
options. These model-based QA techniques enhance Skoll by allowing developers
to model configuration/interaction aspects and associate metrics to benchmark
the interaction. These techniques also minimize the cost of testing and profiling
new configurations by moving the complexity of writing error-prone code from
QA engineers into model interpreters, thereby increasing productivity and qual-
ity. Model-based tools such as CCMPerf simplify the work of QA engineers by
allowing them to focus on domain specific details rather than write source code.

References

1. A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D. C. Schmidt, and
B. Natarajan, “Skoll: Distributed Continuous Quality Assurance,” in Proceedings
of the 26th IEEE/ACM International Conference on Software Engineering,
(Edinburgh, Scotland), IEEE/ACM, May 2004.

2. D. C. Schmidt and S. D. Huston, C++ Network Programming, Volume 1:
Mastering Complexity with ACE and Patterns. Boston: Addison-Wesley, 2002.

3. D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and Performance of
Real-Time Object Request Brokers,” Computer Communications, vol. 21,
pp. 294–324, Apr. 1998.

4. A. S. Krishna, J. Balasubramanian, A. Gokhale, D. C. Schmidt, D. Sevilla, and
G. Thaker, “Empirically Evaluating CORBA Component Model
Implementations,” in Proceedings of the OOPSLA 2003 Workshop on Middleware
Benchmarking, (Anaheim, CA), ACM, Oct. 2003.

5. J. Sztipanovits and G. Karsai, “Model-Integrated Computing,” IEEE Computer,
vol. 30, pp. 110–112, Apr. 1997.

6. A. Ledeczi, A. Bakay, M. Maroti, P. Volgysei, G. Nordstrom, J. Sprinkle, and
G. Karsai, “Composing Domain-Specific Design Environments,” IEEE Computer,
Nov. 2001.

7. A. Gokhale, “Component Synthesis using Model Integrated Computing.”
www.dre.vanderbilt.edu/cosmic, 2003.

8. D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-Oriented
Software Architecture: Patterns for Concurrent and Networked Objects, Volume
2. New York: Wiley & Sons, 2000.

9. S. Berczuk and B. Appleton, Software Configuration Management Patterns:
Effective Teamwork, Practical Integration. Addison-Wesley, 2003.

10. Kamen Yotov and Xiaoming Li and Gan Ren et.al, “A Comparison of Empirical
and Model-driven Optimization,” in Proceedings of ACM SIGPLAN conference
on Programming Language Design and Implementation, June 2003.

11. J. Grundy and G. Ding, “Automatic Validation of Deployed J2EE Components
Using Aspects,” in 17th International Conference on Automated Software
Engineering, Linz Austria, IEEE, Sept. 2002.


