
OMG RFP Submission

IDL C++ Language Mapping
Specification

Hewlett-Packard Company
IONA Technologies Ltd.
SunSoft, Inc.

OMG TC Document 93.4.4

April 23, 1993

Copyright 1993 Hewlett-Packard Company
Copyright 1993 IONA Technologies Ltd.
Copyright 1993 Sun Microsystems, Inc.

The companies listed above hereby grant a royalty-free license to the Object Management Group, Inc. (OMG) for
worldwide distribution of this document or any derivative works thereof, so long as the OMG reproduces the copyright
notices and the below paragraphs on all distributed copies.

The material in this document is submitted to the OMG for evaluation. Submission of this document does not represent a
commitment to implement any portion of this specification in the products of the submitters.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE,THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL INCLUDING
BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. The companies listed above shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance or use of this material. The information contained
in this document is subject to change without notice.

This document contains information which is protected by copyright. All Rights Reserved. Except as otherwise provided
herein, no part of this work may be reproduced or used in any form or by any means—graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems— without the permission of one
of the copyright owners. All copies of this document must include the copyright and other information contained on this
page.

The copyright owners grant member companies of the OMG permission to make a limited number of copies of this
document (up to fifty copies) for their internal use as part of the OMG evaluation process.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013.

Hewlett-Packard is a trademark of Hewlett-Packard Company

SunSoft is a trademark of Sun Microsystems, Inc. licensed to SunSoft, Inc.

UNIX is a registered trademark of UNIX Systems Laboratories, Inc.

IDL C++ Language Mapping Specification iii

1 Introduction 5

1.1 Cosubmitting Companies5

1.2 Proposal Background6

1.3 Submission Overview 6

1.4 Technical Summary 6

1.5 Submission Contacts7

2 Design Rationale 9

2.1 Key Design Decisions 9
2.1.1 Interoperability with C 9
2.1.2 Mapping of CORBA Operations 10
2.1.3 C++ Language Specification 10
2.1.4 Future C++ Features 10

2.2 RFP-mandated Requirements10
2.2.1 Maps Entire IDL Language 10
2.2.2 Consistent Style 10
2.2.3 Justification of IDL, CORBA, Object Model Extensions 11
2.2.4 No Implementation Descriptions 11

2.3 Evaluation Criteria 11
2.3.1 Reliability 11
2.3.2 Performance 11
2.3.3 Portability 11

Table of Contents

Contents

iv OMG RFP Submission

3 The Mapping of IDL to C++ 13

3.1 Scoped Names 13

3.2 The CORBA Module 14

3.3 Mapping for Interfaces 15
3.3.1 Inheritance and Operation Names 16
3.3.2 Widening Object References 17
3.3.3 Narrowing Object References 17

3.4 Mapping for Attributes 18

3.5 Mapping for Constants 19

3.6 Mapping for Basic Data Types20

3.7 Mapping for Structure Types20

3.8 Mapping for Union Types 21

3.9 Mapping for Sequence Types24

3.10 Mapping for Strings 26

3.11 Arrays 27

3.12 Mapping for Exception Types27

3.13 Handling Exceptions 28
3.13.1 C++ Exceptions 28
3.13.2 Exceptions Passed through the Environment 29

3.14 Implicit Arguments to Operations31

3.15 Argument Passing Considerations31

3.16 Pseudo-objects 34

3.17 Include Files 34

4 The Mapping of CORBA Operations37

4.1 Dynamic Invocation Interface37
4.1.1 Request, Send, and List Routines 37
4.1.2 Context Object Routines 37

4.2 The Interface Repository40

4.3 Object Reference Operations40

4.4 Null Object References42

4.5 The Basic Object Adapter42
4.5.1 C++ Language Mapping for Object Implementations 42
4.5.2 Method Signatures 42
4.5.3 Raising Exceptions 44
4.5.4 MethodEnvironment 45

4.6 Implementation Parameter Memory Management45
4.6.1 Allocation 45
4.6.2 Implicit Deallocation 47
4.6.3 Explicit Deallocation 47
4.6.4 Exception Deallocation 49

IDL C++ Language Mapping Specification 5

1 Introduction

This introduction:

• Lists the companies who are jointly submitting this proposal

• Explains the background to the proposal

• Provides an overview of the submission

• Summarizes the proposed IDL C++ language mapping

• Names the contacts for this OMG RFP submission

1.1 Cosubmitting Companies

The following companies are pleased to be able to jointly submit this specification in
response to OMG’s IDL C++ Language Mapping RFP:

• Hewlett-Packard Company

• IONA Technologies Ltd.

• SunSoft, Inc.

6 OMG RFP Submission

1.2 Proposal Background

This proposal is the merging of two separate and independent specifications, one devel-
oped by SunSoft/HP and one developed by IONA. Through technical discussions and the
exchange of working papers, it was discovered that both Sunsoft/HP and IONA were pro-
posing very similar IDL to C++ language mappings. The companies therefore judged it
sensible to combine the separate specifications into a single cohesive proposal. The sub-
mitting companies have agreed to this merged specification and will be providing products
that meet this specification.

In general the separate mappings were already 90% identical. This merged specification
reflects the commonality of the two approaches, and includes additional worthwhile ele-
ments contained in one mapping but not in the other. The areas of commonality and addi-
tions are summarized as follows:

• The mapping of modules, interfaces and operations is common to IONA and SunSoft/
HP.

• The mapping for basic data types, arrays, structs, unions and sequences is basically
common to both IONA and SunSoft/HP.

• The mapping of sequences to templates originated from SunSoft/HP.

• The use of function name overloading for attribute access originated from IONA.

• The provision of destructors, copy constructors and assignment operators for structs,
unions and sequences originated from IONA.

• The stress on the symmetry between client and server mapping originated from IONA.

• The support for context objects originated from IONA.

1.3 Submission Overview

The submission covers these subjects:

• Design rationale

• Mapping of IDL

• Mapping of CORBA, including the BOA

1.4 Technical Summary

The C++ language mapping follows the C language mapping in large part:

• Modules are mapped to C++ classes, used as a scoping mechanism.

• Datatypes are mapped the same as C.

Submission Contacts

IDL C++ Language Mapping Specification 7

• Object references behave as pointers to instances of C++ classes whose methods cor-
respond to the IDL operations. The C++ classes have the same inheritance hierarchy
as that expressed in IDL.

• Memory management rules for parameters are the same as for C.

• Exceptions are handled the same as in C for versions of C++ which do not support
C++ exceptions. C++ exceptions are used when supported.

• CORBA objects (ORB, Object, etc.) are supported by mapping the IDL in the
CORBA to C++ using the normal mapping rules. Some minor changes are made as
required.

• An object implementation is an instance of a class derived from a class generated from
the IDL.

1.5 Submission Contacts

Questions about this submission should be directed to:

• Mike Mathews

Hewlett-Packard Company

19447 Pruneridge Avenue

Building 47, MS 47LP

Cupertino, CA 95014

U.S.A.

Email: mjm@cup.hp.com

Tel: 408 447-1959

Fax: 408 447 4729

• Chris Horn

IONA Technologies Ltd.

O’Reilly Institute

Westland Row

Dublin 2, Ireland

Email: horn@iona.ie

Tel: +353 1 679-0677

Fax: +353 1 679-8039

8 OMG RFP Submission

• Geoff Lewis

SunSoft, Inc.

2550 Garcia Avenue, MS MTV21-121

Mountain View, CA 94043-1100

U.S.A.

Email: geoffrey.lewis@eng.sun.com

Tel: 415 336-2839

Fax: 415 336-6776

IDL C++ Language Mapping Specification 9

2 Design Rationale

2.1 Key Design Decisions

2.1.1 Interoperability with C

The mapping proposed here follows the approach of C++ with respect to C compatibility.
The C datatypes of C++ (e.g. struct, etc.) are compatible and interoperable with C. C func-
tions can be called from C++ and C++ functions can be declared in such a way so that they
can be called from C. We believe that it is extremely important that the C and C++ map-
pings interoperate. C++ built its success on this natural upgrade path from C, and we
should strive to maintain this feature in order to gain wide acceptance for the OMG speci-
fications.

Interoperability between code written in C and C++ requires the ability to pass the mapped
IDL data structures between the two languages. We cannot change the representations (for
instance of strings or unions), without losing C interoperability.

While retaining interoperability with C, this mapping can nevertheless make good use of
the features of C++. In particular, it improves on the C mapping by introducing construc-
tors, destructors, assignment operators as well as utility functions1 on most mapped types.

10 OMG RFP Submission

2.1.2 Mapping of CORBA Operations

The CORBA defines operations on pseudo objects such as the ORB. The language map-
ping must define how these operations are performed in the specified language. It is the
belief of the submitters that a C++ programmer looking at the CORBA operations speci-
fied in IDL should immediately know how those operations would be specified in C++
since IDL was modeled on C++. We accomplish this by mapping the CORBA operations
from IDL into C++ using the general mapping rules specified here.

2.1.3 C++ Language Specification

The version of C++ for this mapping is that defined inThe Annotated C++ Reference
Manual by Ellis and Stroustrup.

Because not all C++ compilers currently support exceptions, this mapping describes how
IDL exceptions are handled without using C++ exceptions.

2.1.4 Future C++ Features

A feature calledNamespaces has been proposed for C++. This construct would be much
better than embedded classes for the mapping of IDL modules. This C++ mapping uses
classes for modules in a way that will be totally upwards compatible with the eventual use
of namespaces.

2.2 RFP-mandated Requirements

2.2.1 Maps Entire IDL Language

This proposal maps the entire IDL language as defined in CORBA 1.1.

2.2.2 Consistent Style

The style of this mapping is consistent with the C mapping in the CORBA 1.1 as well as
consistent with common usage of C++ including such things as default constructors, copy
constructors, etc.

1. We have equipped our mapped datatypes with a minimum set of common methods; more can be added
later in a totally upwardly compatible way when experience is gained with the mapping.

Evaluation Criteria

IDL C++ Language Mapping Specification 11

2.2.3 Justification of IDL, CORBA, Object Model Extensions

No extensions to IDL, CORBA, or the object model are proposed here.

2.2.4 No Implementation Descriptions

Care has been taken to avoid details in the mapping that would constrain implementations
while still allowing clients to be fully source compatible with any compliant implementa-
tion.

2.3 Evaluation Criteria

2.3.1 Reliability

The proposed mapping is natural for C++ and has no element that would impact the reli-
ability either of CORBA implementations or of clients and servers built on the ORB.

2.3.2 Performance

There are many concerns about the performance of C++. For example, some C++ compil-
ers produce very large object instances when multiple inheritance is used. Virtual method
invocation can be considered expensive compared to normal function calls.

Care has been taken to retain the flexibility of various implementation strategies. When
such flexibility had to be limited, justification is provided.

2.3.3 Portability

This mapping uses standard C++ constructs. The only relatively new constructs used are
templates and (optionally) exceptions. This mapping (except for C++ exceptions) has
been tested on cfront version 3.0.

12 OMG RFP Submission

IDL C++ Language Mapping Specification 13

3 The Mapping of IDL to C++

This chapter describes the mapping of OMG IDL constructs to C++ constructs. In general,
the mapping is straightforward, due to the similarity of the IDL and C++ languages. This
chapter follows the order and style of the CORBA chapterC Language Stub Mapping
(chapter 5).

Chapter 4 describes the server side mapping and the mapping of CORBA objects.

3.1 Scoped Names

Scoped names in IDL are specified by C++ scopes:

• IDL modules are mapped to C++ nested classes.

• IDL interfaces are mapped to C++ classes (as described in “Mapping for Interfaces”
on page 15).

• All IDL constructs scoped to an interface are accessed via C++ scoped names. For
example, if a typemode is defined in interfaceprinter then the type would be referred
to asprinter::mode.

14 OMG RFP Submission

These mappings allow the corresponding mechanisms in IDL and C++ to be used to build
scoped names. For instance:

// IDL
module M
{

interface A
{

struct E {
long L;

};
};

};

is mapped into:

// C++
class M {

public:
class A : ... {
 public:

struct E {
long L;

};
};

};

andE can be referred outside ofM as M::A::E .

NOTE The ellipses in this and other examples in this chapter stand for declarations that are not
germane to the current subject.

To avoid C++ compilation problems, every use in IDL of a C++ keyword is mapped into
the same name preceded by an underscore.

3.2 The CORBA Module

The objects and datatypes defined in the CORBA are realized in C++ with the same names
as in the CORBA. Since many of these names (such asObject) are very generic, there is a
risk that these names are already in use and collisions are inevitable.

To minimize the chances of such a collision, the proposed C++ mapping scopes all of the
CORBA symbols in a module called CORBA. That means that the CORBAObject is
referred to in C++ asCORBA::Object .

Mapping for Interfaces

IDL C++ Language Mapping Specification 15

3.3 Mapping for Interfaces

Each OMG IDL interface is mapped to a corresponding C++ class. This C++ class is used
to define a C++ type (called the pointer type) which is the object reference for objects that
satisfy the interface. Note that the pointer type will likely not be a simple pointer to a class
object. The pointer type bears the name of the IDL interface plus the suffixRef .

The C++ class can be specified in a variety of ways depending on implementation deci-
sions. The C++ class can be pure virtual which provides the maximum flexibility, or it can
define non virtual operations. The submitters believe that a pure virtual class provides the
best implementation. The examples given here are not pure virtual and so are not exactly
what our implementation would produce.

Note that such differences are completely invisible to clients as long as the mapping is
used legally. For example, it is not allowed to declare an instance of the mapped class even
though it is possible when non-virtual classes are used.

The following example:

// IDL
interface Example1
{

long op1(in long arg1);
};

generates the following C++ declarations:

// C++
class Example1 : public virtual CORBA::Object
{

public:
...
long op1(long arg1,

 CORBA::Environment &env=CORBA::default_environment);
Example1Ref _duplicate(CORBA::Environment &env=

 CORBA::default_environment);
static Example1Ref _narrow(CORBA::Object obj,

CORBA::Environment &env=
 CORBA::default_environment);

...
};

In the submitters’ implementation, the C++ classexample1 is an abstract class; it does
not provide implementations for its member functions which are all pure virtual. A client
cannot create instances ofExample1 because it is an abstract class. A client might obtain

16 OMG RFP Submission

anExample1 object from an operation on another object, for example a name service.
(example1 ’s inheritance ofCORBA::Object is described in §4.3 on page 40.).

The example methods shown above have optional environment parameters which are
explained in §3.14 on page 31. The environment parameter permits the return of exception
information in the absence of C++ exceptions. §3.12 on page 27 describes the exception
and environment structures and provides an example of handling exceptions in client
code. Subsequent examples will omit these optional parameters for brevity. The Environ-
ment parameter is a reference parameter so that the client need not pass in a pointer.

The parameter is given a default valueCORBA::default_environment in order to
satisfy the requirement in C++ that an optional parameter be given a default value. The
default value cannot be NULL because it is a reference parameter. TheCORBA::de-
fault_environment is a special Environment parameter which cannot ever explicitly
be used by the client as an Environment parameter. It always indicates no exception and is
not used to pass back exception information when no environment parameter is provided
by the client. Any use by the client of this default environment variable is undefined.

A C++ fragment for invoking an operation on anExample1 object is:

// C++
#include "example1.hh"

Example1Ref ex1;
long y;

// Initialize ex1 ...

y = ex1->op1(3);

The object reference used by a client is named by the interface name and the suffixRef ,
for example theExample1Ref in the above example. This allows some flexibility in the
implementation. The reference is required to behave like a pointer to a C++ class in that
method invocation uses the arrow notation and the reference may be implicitly widened.
All of the methods of the class and its inherited parents must be directly accessible.

3.3.1 Inheritance and Operation Names

IDL permits the specification of interfaces that inherit the operations of other interfaces.
Consider the following in whichExample3 inherits fromExample1:

// IDL
interface Example3 : Example1
{

void op3(in long arg3, out long arg4);
};

Mapping for Interfaces

IDL C++ Language Mapping Specification 17

This is mapped to the following C++ declarations:

// C++
class Example3: public virtual Example1
{

long op3(long arg3, long &arg4);
};

A client written in C++ can requestop1 (or an operation defined inCORBA::Object)
as if it were directly declared inExample3 . Public virtual inheritance ensures that base
interfaces are only inherited once in the case of multiple inheritance.

3.3.2 Widening Object References

Widening is supported by C++ mechanisms (e.g. widening through C++ inheritance or by
using cast operators):

• implicit widening through parameter passing and assignment

• explicit widening by using the<type name> operator in functional or cast syntax.

For instance, anExample3 object could be widened toExample1 by:

// C++
Example3Ref z;
Example1Ref x = Example1Ref(z);

3.3.3 Narrowing Object References

Often object references are typed at a more general level than desired. For example, a
name service might return object references of typeObject but a more specific type is
needed in order to perform operations. The act of converting an object reference from a
more general type to a more specific type is called narrowing.

The current version of C++ does not support narrowing in the presence of public virtual
inheritance. Also, C++ can only narrow down to the most derived type of the C++ object
being narrowed. It would be too much of an implementation restriction to require the C++
object representing the real (possibly remote) object to be the same type as the remote
object. The narrow operation allows the ORB implementation to create a new C++ object
if needed. Therefore, the mapping provides special narrow operations.

Object references can be narrowed by means of a static member function generated by the
IDL compiler for each class. In the case ofExample3 this would be:

// C++
static Example3Ref _narrow(CORBA::ObjectRef x);

18 OMG RFP Submission

(TheCORBA::ObjectRef parameter is described in §4.3 on page 40.)

Narrowing an object reference performs an implicitCORBA::Object::_duplicate operation;
the client is responsible for releasing the narrowed (new) object reference.

If the narrow operation attempts to cast the object reference to a type that is not legal for
that reference, the implementation may return aBAD_PARAM standard exception at the
time of the narrow. However, to not overly constrain an implementation of the ORB,
detection of improper narrows is not required. Checking the legality of a narrow may, in
the worst case, cost as much as an invocation on the object.

Supposeobj really is aC (as defined in the diagram below) that has been widened to an
A. Passingobj to B::_narrow or toC::_narrow does not raiseBAD_PARAM; pass-
ing it toE::_narrow or toD::_narrow may raiseBAD_PARAM. Although aC-wid-
ened-to-an-A may, in some implementations, be improperly narrowed to aD without
raising aBAD_PARAM exception, requesting aD operation on the object nevertheless
raises theBAD_OPERATION exception.

3.4 Mapping for Attributes

The mapping for each read-write attribute produces two member functions, both with the
same name as the attribute: one to get the attribute’s value and the other to set it. Consider
the following example:

// IDL
interface DepositAccount : Account {

attribute float balance;
readonly attribute float over_draft_limit;

};

A

B

C

D

E

Object

Mapping for Constants

IDL C++ Language Mapping Specification 19

The equivalent C++ is:

// C++
class DepositAccount: public virtual Account {

float balance();
void balance(float x);
float over_draft_limit();

};

Thus, attributes are mapped to two member functions (to get and set the value);readonly
attributes are mapped to one member function (to get the value).

3.5 Mapping for Constants

IDL constants are mapped differently depending on whether they are global or occur in an
IDL scope. A constant defined outside any scope:

// IDL
const long L = 4;

is mapped to:

// C++
const long L = 4;

The same constant defined in IDL interface S is mapped to:

// C++
class S ...
{

...
static const long L;
...

}

in the header (.hh) file, and:

// C++
const long S::L = 4;

in the definition (.cc) file.

20 OMG RFP Submission

3.6 Mapping for Basic Data Types

The basic data types have the mappings shown in TBL. 1 on page 20. Note that the
unsigned char mapping of the OMG IDLboolean type defines only the values 1
(TRUE) and 0 (FALSE); other values produce undefined behavior.

1Note that whereas IDL enums may have up to 2^32 values, C++ enums are allowed to be
implemented with a limit of 127 values.

3.7 Mapping for Structure Types

OMG IDL structures map directly onto C++ structs. Note that all OMG IDL types that
map to C++ structs may potentially include padding.

The IDL struct:

// IDL
struct str {

long i;
string j;

};

TBL. 1 Basic Data Type Mappings

IDL C++

short short

long long

unsigned short unsigned short

unsigned long unsigned long

float float

double double

char char

boolean unsigned char

octet unsigned char

enum enum1

Mapping for Union Types

IDL C++ Language Mapping Specification 21

maps to:

// C++
struct str {

long i;
char *j;

str();
~str();
str(const str &);
str &operator= (const str &);

};

Each struct has a default constructor, a copy constructor, a destructor, and an assignment
operator. The default constructor creates a struct with default initial values. The destructor
deletes any embedded storage (such as the string in the above example). The copy con-
structor does a deep copy of the struct by copying the struct then copying everything the
struct points to. The assignment operator overwrites (and frees) the existing contents of
the struct then deep copies the source.

Note the impact of this behavior of the destructor. The destructor will attempt to free any
non-null storage contained within the struct. If the struct was provided with non-dynamic
storage (e.g., static or stack storage) then the attempted destruction of that storage may
cause problems. This is also true of the destructors for unions and sequences as described
below.

It is an unspecified implementation detail how these operators are implemented, with one
restriction. They may be implemented as non-virtual methods or as inlines, but they can-
not be implemented as virtual methods. This is because of the desire to have compatibility
between the C and C++ structures and the representation of a struct is changed if virtual
methods are used.

3.8 Mapping for Union Types

OMG IDL discriminated unions are mapped onto C++ structs. Consider the following
OMG IDL declaration:

// IDL
union Foo
switch (long) {

case 1: long x;
case 2: float y;
default: string z;

};

22 OMG RFP Submission

This is equivalent to the following struct in C++:

// C++
struct Foo {

long _d;
union {

long x;
float y;
char *z;

};

Foo();
~Foo();
Foo(const Foo &);
Foo &operator= (const Foo &);

};

The discriminator in the struct is always referred to as_d ; the union in the struct is always
an anonymous union.

The constructor, destructor, copy constructor, and assignment operator serve the same pur-
pose as in the struct mapping. The destructor checks the value of the_d field to decide
what needs to be deleted. For example, if the discriminator indicates that the union con-
tains a string, then the destructor is called on that string.

The C++ language definition states that an object of a class with a constructor or a destruc-
tor or a user-defined assignment operator cannot be a member of a union. The proposed
definitions of struct, sequence, union, and object reference have such constructs and hence
are not allowed in a union. To retain compatibility with C unions, it is necessary to define
special versions of datatypes included in unions.

For example, if a union were defined to contain the struct defined in the previous section, a
special version of that struct would have to be defined which did not contain any of the
prohibited operations.

// IDL
union Foo
switch (long) {

case 1: long x;
case 2: str s;

};

Mapping for Union Types

IDL C++ Language Mapping Specification 23

The C++ union would have to refer to a struct without the methods:

// C++
struct _str {

long i;
char *j;

};
struct Foo {

long _d;
union {

long l;
_str s;

};

Foo();
~Foo();
Foo(const Foo &);
Foo &operator= (const Foo &);

};

Two additional operations would have to be defined on the original struct to allow implicit
conversions:

// C++
struct str {

// stuff as defined above
str(const _str &);
operator _str();

};

The additional operators allows anstr to be put into a union and extracted from a union.

// C++
str s;
s.i = 1;
s.j = new char[20];
Foo f;
// set the value of the union
f._d = 1;
f.s = s;
// extract the struct in the union
if (f._d == 1) {

s = f.s;
}

Note that a client is not required to refer to the special struct defined to accommodate the
union.

24 OMG RFP Submission

Because the embedded struct does not have its own destructor, the destructor of the union
must destruct the embedded struct.

Reference to union elements is as in normal C++:

// C++
Foo *v;

// make a call that returns a pointer to a Foo in v

switch(v->_d) {
case 1: cout << v->x; break;
case 2: cout << v->y; break;
default: cout << v->z; break;

}

3.9 Mapping for Sequence Types

OMG IDL sequences are usually defined as typedefs, for example:

// IDL
typedef sequence<long,10> vec10;

The IDL compiler maps such a sequence to a struct containing three members:

• _maximum which describes the sequence’s maximum number of elements

• _length which describes the number of elements actually in the sequence

• _buffer which points to an array containing the sequence data (i.e., an array of
longs in the vec10 example above)

A C++ programmer can declare an instance of avec10 sequence in a variety of ways:

// C++
vec10 x; // empty seq. with no allocated storage
vec10 x(20); // seq. of maximum 20, length 20, and buffer of 20
vec10 x(10, 5, buf); // seq. of max 10, length 5, and buffer

Prior to passingx as an in parameter, the programmer must set the_buffer member to
point to along array of 10 elements, and must set the_length member to the actual
number of elements to transmit. (_length denotes the number of elements in the
sequence, not the size of the sequence.)

Prior to passingx as an out parameter, or receiving avec10 as a return value, the pro-
grammer does nothing. The client stub will allocate storage for the returned buffer; for
bounded sequences it allocates a buffer of the specified size, while for unbounded

Mapping for Sequence Types

IDL C++ Language Mapping Specification 25

sequences it allocates a buffer large enough to hold what the object returns. Upon success-
ful return from an invocation, the_maximum member will contain the size of the allo-
cated array, the_buffer member will point at the allocated storage, and the_length
member will contain the number of values that were returned in the_buffer member.

Prior to passingx as an inout parameter, the programmer must set the_buffer member
to point to along array of 10 elements. For an unbounded sequence, the programmer
must set the_maximum member to the actual size of the array. The_length member
must be set to the actual number of elements to transmit. Upon successful return from the
invocation, the_length member will contain the number of values that were copied into
the buffer pointed to by the_buffer member. The number of values returned is con-
strained by the value of the_maximum member.

For bounded sequences, it is an error to set the_length or_length member to a value
larger than the specified bound.

OMG IDL sequences are mapped with the C++ template facility. The IDL compiler gener-
ates the following template definition:

// C++
template <class T>
struct CORBA_sequence {

unsigned long _maximum;
unsigned long _length;
T *_buffer;

CORBA_sequence(); // default constructor, no space allocated
CORBA_sequence(unsigned long); // allocates storage
CORBA_sequence(unsigned long, unsigned long, T *);
CORBA_sequence(const CORBA_sequence &); // deep copy constructor
~CORBA_sequence(); // destructor, deallocates buffer
CORBA_sequence operator=(const CORBA_sequence &); // assignment op

};

These methods may be implemented as non-virtual methods or as inlines. Virtual methods
cannot be used because they would change the memory layout of the sequence so that it no
longer matched the C sequence.

Suppose an interface defines a sequence ofs as follows:

// IDL
interface I
{

typedef string S;
void op (in sequence <S> x);

};

26 OMG RFP Submission

A C++ programmer declaresx as follows:

// C++
CORBA_sequence<I::S> x;

To declare a sequence of this sequence, the programmer writes:

// C++
CORBA_sequence< CORBA_sequence<I::S> > x;

3.10 Mapping for Strings

OMG IDL strings are mapped to 0-byte terminated character arrays; i.e. the length of the
string is encoded in the character array itself by the placement of the 0-byte. Note that the
storage for C++ strings is one byte longer than the stated IDL bound. Consider the follow-
ing IDL declarations:

// IDL
typedef string<10> sten;
typedef string sinf;

In C++, this is converted to:

// C++
typedef char *sten;
typedef char *sinf;

Instances of these types are declared as follows:

// C++
sten s1 = 0;
sinf s2 = 0;

Prior to passings1 or s2 as an in parameter, the programmer must assign the address of a
character buffer containing a 0-byte terminated string to the variable.

Prior to passings1 or s2 as an out parameter (or receiving ansten or sinf as the
return result), the programmer does nothing. The client stub will allocate storage for the
returned buffer; for bounded strings, it allocates a buffer of the specified size; for
unbounded strings, it allocates a buffer big enough to hold the returned string. Upon suc-
cessful return from the invocation, the character pointer will contain the address of the
allocated buffer. The client is responsible for freeing the allocated storage. If the pointer is
non-NULL when a call is made, it is overwritten with a pointer to the storage allocated by
the stub.

Arrays

IDL C++ Language Mapping Specification 27

Prior to passings1 or s2 as an inout parameter, the programmer must assign the address
of a character buffer containing a 0-byte terminated array to the variable. Upon successful
return from the invocation, the returned 0-byte terminated array is copied into the same
buffer. If it was a bounded string, then the size of the returned string is limited by the
declared size of the string type; if it was an unbounded string, then the size of the returned
string is limited by the size of the string passed as input. Due to this restriction, use of
inout string parameters is deprecated.

3.11 Arrays

IDL arrays map directly to C++ arrays. Array indices run from 0 to <size - 1>.

If the return result to an operation is an array, the array storage is dynamically allocated by
the stub; a pointer to the array is returned as the value of the client stub function. When the
data is no longer needed, it is the programmer’s responsibility to delete the dynamically
allocated storage.

3.12 Mapping for Exception Types

Each defined OMG IDL exception type is mapped to a scoped struct containing the data
and a string identifying the exception. For example:

// IDL
exception Foo {

long dummy;
};

yields the following C++ declarations:

// C ++
struct Foo : public CORBA::Exception {

long dummy;
};

static const char *ex_foo;

CORBA::Exception is the parent of all exceptions and is a struct defined as shown in
the CORBA module:

// PIDL
struct Exception {

char *_id;
};

28 OMG RFP Submission

This exception structure allows all CORBA exceptions, both system and user, to be caught
with a single catch. It differs from the IDL module StExcep in that it must remain a type
and the StExcep module will map to the C++ Namespace when compilers support it.

The value of the_id field is the exception identifier as shown above. This identifier allows
the type of the exception to be inspected at run time. This identifier references static stor-
age and is not freed.

The system exceptions are all derived from the special class
CORBA::StExcep::SystemException . This allows all standard exceptions to be
caught with a single C++ catch. See the example in the next section.

3.13 Handling Exceptions

Exceptions can be handled in one of two ways. If C++ exceptions are supported, then IDL
exceptions are thrown as C++ exceptions. If C++ exceptions are not supported, the envi-
ronment parameter is used to detect the exception.

3.13.1 C++ Exceptions

Consider the following interface:

// IDL
interface Bank {

exception Reject {
 string reason;
};
Account new_account(in string name) raises (Reject);

};

Handling Exceptions

IDL C++ Language Mapping Specification 29

When C++ exceptions are supported, exceptions raised by an invocation of an operation
are handled as follows:

// C++
BankRef obj;
AccountRef a;
char *new_name;
...
try {

a = obj->new_account(new_name);
}
catch (Bank::Reject exc) {

report_bad_account(new_name, exc.reason);
}
catch (CORBA::StExcep::SystemException) {

// system exception
}

3.13.2 Exceptions Passed through the Environment

TheCORBA::Environment type passed as an implicit parameter in each request is partially
opaque; the C++ declaration contains at least the following:

// C ++
struct Environment {

StExcep::exception_type _major;
Environment();
Environment(Environment &);
~Environment();
char *exception_id();
void *exception_value();
void exception_free();
...

};

An environment’s value is undefined until it has been specified in a request; calling any of
the methods on an undefined environment produces an undefined result.

Upon return from an invocation, the_major field indicates whether the invocation termi-
nated successfully;_major can have one of these values:

• CORBA::StExcep::NO_EXCEPTION

• CORBA::StExcep::USER_EXCEPTION

• CORBA::StExcep::SYSTEM_EXCEPTION

If the value is either of the latter two, then any exception parameters signalled by the
object can be accessed.

30 OMG RFP Submission

Three methods are defined on aCORBA::Environment structure for accessing and
freeing exception information.

CORBA::Environment::exception_id() returns a pointer to the character string
identifying the exception. If invoked on aCORBA::Environment that identifies a non-
exception, a NULL is returned.

CORBA::Environment::exception_value() returns a pointer to the structure
corresponding to this exception. If invoked on aCORBA::Environment that identifies
a non-exception or an exception for which there is no associated information, a NULL is
returned.

exception_free() returns any storage pertaining to the exception. It is permissible
to callexception_free() regardless of the value of the_major field. However, if a
request’s outcome is an exception,exception_free() must be called before specify-
ing the same environment in another request; failure to do so may cause a memory leak.

Consider the example in the section above. The following user code shows how to invoke
the operation and recover from an exception:

// C++
CORBA::Environment ev;
BankRef obj;
Bank::reject *exc;
char *new_name;

...

obj->new_account(new_name, ev);
switch(ev._major) {
 case CORBA::StExcep::NO_EXCEPTION:

break;
 case CORBA::StExcep::USER_EXCEPTION:

if (strcmp(Bank::ex_reject, ev.exception_id())
 == 0) {
exc = (Bank::reject *)ev.exception_value();
report_bad_account(new_name, exc->reason);

}
break;

 default: // standard (system) exception
 // system exception
break;

}
ev.exception_free(); // free exception storage

Implicit Arguments to Operations

IDL C++ Language Mapping Specification 31

3.14 Implicit Arguments to Operations

Every mapped operation includes an optional environment parameter which is the last
parameter in the signature of the operation. If acontext clause is present in an operation
declaration, a context parameter is included after the operation parameters but before the
environment parameter.

3.15 Argument Passing Considerations

For all OMG IDL types except arrays and strings, if the IDL signature specifies that an
argument is an out or inout parameter, then the caller passes a variable of that type; for
arrays and strings, the caller passes a pointer to the first element of the array or string. If
the IDL argument is an in, the client passes a value of the correct type, except for arrays
and strings, for which the client passes a pointer to the first element of the array or string.

Consider the following IDL specification:

// IDL
interface Foo
{

typedef long Vector[25];
struct Complex {

long real;
long imaginary;

};

void bar
(

in long x,
out Vector y,
inout complex z

);
};

Client code for invoking the bar operation could look like:

// C++
Foo::Vector y;
Foo::Complex z;
CORBA::Environment ev;

// code to bind object and initialize z ...

object->bar(4, y, z, ev);

32 OMG RFP Submission

Clients are responsible for deleting ORB-allocated storage for out parameters and return
results as described later in this section.

TBL. 2 on page 32 summarizes parameter and result passing.

A client is responsible for providing storage for all arguments passed as in arguments. All
simple data types (shown as short through enum in TBL. 2 on page 32) are always passed
in by value and are never allocated or freed. TBL. 3 on page 33 and TBL. 4 on page 34
describe the client’s responsibility for storage associated with inout and out parameters

1. Including pseudo-object references.
2. Passed as const to provide compiler check for inadvertent modification by implementation.

TBL. 2 Argument and Result Passing

Data Type Pass In Pass Out/Inout Return Result

short value reference receive value

long value reference receive value

unsigned short value reference receive value

unsigned long value reference receive value

float value reference receive value

double value reference receive value

boolean value reference receive value

char value reference receive value

octet value reference receive value

enumeration value reference receive value

object refer-
ence1 object reference reference

receive value of
object reference

struct reference2 reference receive value of struct

union reference2 reference receive value of struct

string
pointer to 1st char2

reference to (char *)
variable

receive char *

sequence
reference2 reference

receive value of
sequence struct

array pointer to 1st ele-
ment2

address of 1st ele-
ment

pointer to array

Argument Passing Considerations

IDL C++ Language Mapping Specification 33

and for return results. A client is responsible for providing storage for all out arguments
and return results except in the cases noted in TBL. 3 on page 33 and TBL. 4 on page 34.

TBL. 3 Client Argument Storage Responsibilities

Type
Inout
Param

Out
Param

Return
Result

short 1 1 1

long 1 1 1

unsigned short 1 1 1

unsigned long 1 1 1

float 1 1 1

double 1 1 1

boolean 1 1 1

char 1 1 1

octet 1 1 1

enumeration 1 1 1

object reference 2 2 2

struct 1 1 1

union 1 1 1

string 1 3 3

sequence 1 4 4

array 1 1 3

any 5 5 5

TypeCode 5 5 5

34 OMG RFP Submission

Note that the size of an unbounded string or sequence whose value is set by an operation is
undefined until the operation completes.

3.16 Pseudo-objects

Pseudo-object interfaces are mapped like those of real objects, with some minor differ-
ences described in the next chapter.

3.17 Include Files

By convention, each OMG IDL interface or module is stored in a separate source file.
Compiling an IDL file named Foo.idl yields a header file named Foo.hh. This file must be

1. As listed in TBL. 3 on page 33

TBL. 4 Argument Passing Cases

Case1

1 The client is responsible for providing storage and managing release of the storage.
That is, the system allocates storage which must be freed for the following types and
directions: string/out, string/return, sequence/out, sequence/return, array/return. For
inout strings and sequences, the out result is constrained by the size of the type on
input.

2 The client is responsible for releasing the returned object reference, using
CORBA::Object::release, it should not be deleted. To continue to use an object refer-
ence passed in as an inout, a client must first duplicate the reference. To release stor-
age occupied by an object reference passed as an inout, the client must maintain a
reference to the “in” reference, and use this pointer in the CORBA::Object::release
operation following completion of the request. Storage freed using the C++ delete oper-
ation automatically performs a CORBA::Object::release for all object references embed-
ded in ORB-allocated storage; clients should not release these object references.

3 The ORB provides the storage for these returned parameters and results. The client is
responsible for releasing the storage.

4 The client provides the storage for the structure which contains the description of the
sequence and the client manages release of the storage and the descriptor. The ORB
provides storage for the values returned and puts the pointers to this storage in the
descriptor structures. The client is responsible for releasing the ORB-allocated storage.

5 The client is responsible for releasing the returned pseudo-object reference using the
relevant operation defined in the pseudo-object interface. An inout any is constrained to
be the same type and size on output as input. This means that the typecode field cannot
be modified and the value field must be exactly the same size (the existing value field
can just be overwritten). To continue to use an any or typecode passed as an inout, the
client must copy the parameter by creating a new instance and copying the data making
up the pseudo-object, e.g., by copying the typecode and value of an any.

Include Files

IDL C++ Language Mapping Specification 35

#included by clients and implementations of the interfaces defined in Foo.idl. Inclusion of
Foo.hh is sufficient to define all symbols associated with the interfaces in Foo.idl and any
interfaces from which they are derived.

36 OMG RFP Submission

IDL C++ Language Mapping Specification 37

4 The Mapping of CORBA
Operations

This chapter describes the mapping of OMG CORBA operations to C++. In general, the
mapping is straightforward, using the language mapping of IDL to C++. Each section of
this chapter describes the mapping of a section of the CORBA.

4.1 Dynamic Invocation Interface

The Dynamic Invocation Interface as defined in chapter 6 of the CORBA is primarily
mapped to C++ using the mapping rules described in the previous chapter. Since these are
CORBA defined objects and types, their names are scoped within the CORBA module.

4.1.1 Request, Send, and List Routines

The IDL defining these interfaces described in sections 6.2 through 6.4 of the CORBA are
mapped according to the normal C++ mapping rules.

4.1.2 Context Object Routines

A client can maintain one or more Context objects, which provide a mapping from Identi-
fiers (in effect, strings) to string values. An IDL operation can specify that it is to be pro-

38 OMG RFP Submission

vided with the client’s mapping for particular Identifiers—it does this by listing these
Identifiers following the operation declaration. For example, in the following interface
definition, the operationop1 specifies that it is to receive the mapping for Identifiersaccu-
racy andbase.

// IDL
interface f {

operation void op1 (int s) raises (exc1)
 context (accuracy, base);

};

The set of Identifiers is not defined by the infrastructure, but each Identifier name must
begin with an alphanumeric character and can only contain alphanumerics, digits, _ and ..
An identifier specified in a context clause can also contain the character *, but this charac-
ter must appear at the end—it indicates that the operation is to receive the mapping for all
identifiers in the client context with matching leading names. For example, an identifier
sys_* in a context clause would match entries such assys_printer andsys_quality in the
client’s context.

An operation that specifies a context clause is mapped to a C++ member function that
takes an extra parameter, just before the environment parameter:

// C++
class f {

 virtual void op1 (int s, Context &c,
CORBA::Environment &ev=CORBA::default_environment);

};

This order allows the environment parameter to have a default value.

A client can create a Context by defining a variable of typeContext :

// C++
Context c;

This creates an initially empty Context object, to which identifier:value mappings can be
added, and which can be passed to a function that takes a Context parameter.

Because the infrastructure on the client side does not delete the context passed to it, it is
also the responsibility of the client programmer to eventually delete the context if it was
dynamically allocated.

The infrastructure on the server side constructs a new Context from the value received in
the incoming operation request, and calls the target object’s operation. The infrastructure
deletes the context when the call returns. Should the server programmer require that the
context be retained after the call, he should copy the context argument passed in the call.

Dynamic Invocation Interface

IDL C++ Language Mapping Specification 39

ClassContext is defined by the infrastructure as follows:

// C++
class Context {
 public:
 // constructors
 Context(Context *parent=NULL);
 Context(const char *name, Context *parent=NULL);

 //destructor (equivalent to calling the Delete fn
 // below - with zero flag).
 ~Context();

 // add property name and value to Context:
 ORBStatus set_one_value (

 Identifier prop_name,//add property name
 const char *value);//value

 // set a number of property values. Any prior
 // property values are forgotten:
 ORBStatus set_values (

NVList &values); // property_name:values to change:

 // retrieve matching values
 ORBStatus get_values (

const Identifier start_scope,//search scope.
Flags op_flags,//flags.
const Identifier prop_name,//property name
//output property_name:value list:
NVList *&values);

 // delete specified property from context
 ORBStatus delete_values (

const Identifier prop_name);//property name

 // create child context with specified name
 ORBStatus create_child (

const Identifier ctx_name,//Context name
Context *&child_ctx);//newly created

 // delete the context
 ORBStatus _delete (

Flags &del_flags);//how to act
};

40 OMG RFP Submission

4.2 The Interface Repository

The Interface Repository as described in chapter 7 of the CORBA is mapped according to
the normal C++ mapping rules.

4.3 Object Reference Operations

Object is the base class from which all object references derive. It is defined
mainly for typing purposes i.e., to provide a root for the IDL type system on
which widen/narrow mechanisms can be built. It also allows generic functions
which work on any type of object to be written. The interface Object is defined
as:

// PIDL
interface Object
{

ImplementationDef get_implementation();
InterfaceDef get_interface();
boolean is_nil();
Object duplicate();
void release();

ORBStatus create_request(
in Context ctx,
in Identifier operation,
in NVList arg_list,
inout NamedValue result,
out Request request,
in Flags req_flags

);
};

Object Reference Operations

IDL C++ Language Mapping Specification 41

It is generally mapped to C++ like any other interface:

// C++
class Object
{

public:
ImplementationDefRef _get_implementation();
InterfaceDefRef _get_interface();
static unsigned char _is_nil(CORBA::ObjectRef obj);
void _release();
ObjectRef _duplicate();
ORBStatus _create_request
(

CORBA::ContextRef ctx,
CORBA::Identifier &operation,
NVList &arg_list,
CORBA::NamedValue &result,
CORBA::RequestRef &request,
CORBA::Flags req_flags

);
};

Unlike the mapping of ordinary interfaces, theObject mapped operation names start
with an underscore. Because IDL reserves names starting with an underscore,Object
operations names cannot collide with the names of user defined operations. For C++ com-
pilers that do not support covariant return types,_duplicate must be nonvirtual to
allow its redefinition in classes derived fromObject . It is required that_duplicate
return a reference to an object of the same type as that being duplicated. The_is_nil
operation is defined as static so as not to fail if passed an OBJECT_NIL value.

All C++ abstract classes generated from IDL interfaces inheritCORBA::Object . As a
result, a programmer can requestObject operations on anexample3Ref object in
either of these ways, for example:

// C++
Example3Ref x;
unsigned short a_boolean ;
x = CORBA::OBJECT_NIL;
a_boolean = x->_is_nil(x, ev);
a_boolean = CORBA::Object::_is_nil(x, ev);

42 OMG RFP Submission

4.4 Null Object References

The CORBA defines OBJECT_NIL to represent a null object reference. The C++ map-
ping is:

//C++
enum {OBJECT_NIL = 0};

CORBA::OBJECT_NIL is valid in all places where an Object is allowed. Narrowing an
OBJECT_NIL yields anOBJECT_NIL. An object reference whose value is
OBJECT_NIL is guaranteed to pass theCORBA::Object::_is_nil operation.

4.5 The Basic Object Adapter

4.5.1 C++ Language Mapping for Object Implementations

This section describes how BOA-based object implementations written in C++ interact
with the BOA.

4.5.2 Method Signatures

For each interfaceIntf implemented in C++ the IDL compiler generates a class
IntfBOAImpl which has pure virtual functions for the operations defined in the OMG
IDL interface specification. An implementation ofIntf inherits fromIntfBOAImpl and
implements the virtual functions.

It is important for implementation flexibility that the class that a BOA implementation
inherits from is not the same class used by a client. The class described here must have
virtual methods so that the implementation can override the methods to provide the actual
implementation of the object. As described before, it is important to allow the classes used
for object references to not have virtual methods.

Suppose an interface is specified as:

// IDL
interface ex1
{

long op1(in long l);
};

The Basic Object Adapter

IDL C++ Language Mapping Specification 43

The IDL compiler generates this abstract class (other definitions in the class are described
shortly):

// C++
class ex1BOAImpl
{

public:
virtual long op1
(

long l,
BOA::MethodEnvironmentRef me

) = 0;
};

The implementation of this class could have the following signature (the name
of the class could be different, but must not be ex1BOAImpl):

// C++
class acmeEx1 : public virtual ex1BOAImpl
{

public:
long op1
(

long l,
BOA::MethodEnvironmentRef me

);
};

Theme argument is the client’s environment and is described in §4.5.4 on page 45.

If an interface is contained in an OMG IDL module hierarchy, the IDL compiler generates
an analogous class hierarchy. For example, if an interfaceIntf is defined in a modulem1
which is defined in a modulem0, then the class corresponding to the interface is
m0BOAImpl::m1BOAImpl::IntfBOAImpl . BOAImpl classes inherit from each
other in the same way that the client abstract classes do (see §3.3.1 on page 16).

All of the symbols defined in the IDL hierarchy are defined with the same names in this
analogous class hierarchy. For example, if the interfaces defines a typefoo , then that type
can be referenced from theBOAImpl class directly, without using a fully scoped name.
This use pertains to all generated symbols such as exception ids.

44 OMG RFP Submission

4.5.3 Raising Exceptions

4.5.3.1 C++ Exceptions

When C++ exceptions are supported, an IDL exception is raised by raising the corre-
sponding C++ exception. Following the example in §3.13 on page 28, the method code
would be:

// C++
if (! legal_account_name(name)) {

reject exc;
exc.reason = new char[bad_name_msg_len+1];
strcpy(exc.reason, bad_name_msg);
throw(exc);

}

The exception is allocated locally but all of the storage in the exception must be allocated
since it will be freed after the exception is caught and handled. In the example above, the
actual exceptionexc is declared local but the storage within the exception, thereason ,
is dynamically allocated. For more details, see the description of C++ exceptions in the
Annotated C++ Reference Manual.

4.5.3.2 Set Exception

The method terminates with an error by requesting theset_exception operation prior to
executing a return statement. Theset_exception operation is defined on theMethodEnvi-
ronment and has the following C++ language definition:

// C++
class MethodEnvironment {

public:
void set_exception
(

CORBA::StExcep::exception_type major,
const char *user_id,
const void *param

);
};

Like all methods, this one has an optional trailing environment parameter used to report an
exception (the method is acting as a client here). TheMethodEnvironment object is
the environment parameter passed into the method (see §4.5.4 on page 45). The caller
must supply a value for themajor parameter. The value of themajor parameter con-
strains the other parameters in the call as follows:

• If the major parameter has the valueCORBA::StExcep::NO_EXCEPTION ,
then it specifies that this is a normal outcome to the operation. In this case, bothuse-

Implementation Parameter Memory Management

IDL C++ Language Mapping Specification 45

r_id andparam must be NULL. Note that it isnot necessary to invoke
set_exception to indicate a normal outcome; it is the default behavior if the
method simply returns.

• If the major parameter has the value
CORBA::StExcep::SYSTEM_EXCEPTION , then it specifies that the outcome is a
standard exception. Theuser_id parameter is a string representing the exception
type identifier. Theparam parameter must be the address of a struct containing the
parameters according to the C++ language mapping, coerced to avoid * .

• For any other value ofmajor it specifies either a user-defined or standard exception.
If the major parameter has the valueCORBA::StExcep::USER_EXCEPTION ,
then it specifies that the outcome is a user-defined exception. Theuser_id parame-
ter is a string representing the exception type identifier. If the exception is declared to
take parameters, theparam parameter must be the address of a struct containing the
parameters according to the C++ language mapping, coerced to avoid * ; if the
exception takes no parameters,param must be NULL.

When raising an exception, the method code isnot required to assign legal values to any
out or inout parameters.

4.5.4 MethodEnvironment

A MethodEnvironment represents theCORBA::Environment passed by the method’s client.
The method can do nothing with aMethodEnvironment except pass it to operations that
require it as a parameter, such asBOA::set_completion.

The parameter through which a BOA based implementation method receives call specific
information (such as the principal) and specifies call specific information (such as excep-
tions) is typed differently from the environment parameter used by a client. This is to
avoid the confusion of the two flavors of environment used by the server. The two envi-
ronments are used completely differently and so should be typed differently.

4.6 Implementation Parameter Memory Management

The ORB does not constrain an implementation’s private use of dynamically allocated
memory. In contrast, an implementation must coordinate with the ORB to properly
reclaim parameter memory: memory whose contents are returned to a client. This section
describes how parameter memory is allocated, and how it can be reclaimed by either of
two techniques, one simple, the other flexible.

4.6.1 Allocation

Parameter memory must be allocated for everything returned to clients: out and inout
parameters, and results. Note that the environment parameter is treated as an in. TBL. 5 on

46 OMG RFP Submission

page 46 and TBL. 6 on page 46 describe who (ORB or implementation) is responsible for
allocating and freeing each kind of parameter memory.

TBL. 5 Parameter Storage Responsibilities

Type
Inout
Param

Out
Param

Return
Result

short 1 1 1

long 1 1 1

unsigned short 1 1 1

unsigned long 1 1 1

float 1 1 1

double 1 1 1

boolean 1 1 1

char 1 1 1

octet 1 1 1

enumeration 1 1 1

object reference 2 2 2

struct 1 1 1

union 1 1 1

string 1 3 3

sequence 1 4 4

array 1 1 3

any 1 5 5

TypeCode 1 5 5

TBL. 6 Parameter Passing Cases

Case Description

11 The ORB provides and releases the storage. For inout strings and sequences, the out result is
constrained by the size of the type on input. For inout any, the typecode field must be exactly the
same size (i.e., the existing storage is reused). For inout TypeCode, the size of the TypeCode
must remain the same. The use of inout strings and TypeCodes is deprecated.

2 The implementation provides the object reference and is responsible for releasing the object ref-
erence with CORBA::Object::release when it is no longer needed.

3 The implementation allocates storage for the string/out, string/return, and array/return. The object
implementation must free this storage when it is no longer needed.

Implementation Parameter Memory Management

IDL C++ Language Mapping Specification 47

4.6.2 Implicit Deallocation

The implementation is responsible for deallocating the parameter memory it allocates (i.e.,
cases 2, 3, and (partially) 4 inTBL. 5 on page 46). However, it is the ORB and not the
implementation that knowswhen parameter memory can be deallocated. The implementa-
tion can let the ORB implicitly deallocate parameter memory, or can direct the ORB to
inform the implementation when deallocation is safe (when the parameters have been
transmitted to the client). Most implementations will be able to use implicit deallocation;
alternatively, implementations can deallocate memory explicitly, as described in §4.6.3 on
page 47. It is also possible to do both, and to switch between the techniques dynamically.

Implicit deallocation of parameter storage is the default. After a method returns (without
raising an exception) and the ORB is finished with the parameters, the ORB automatically
deallocates the parameter storage. The ORB frees datatypes other than Object with the
C++ delete operator (i.e., the ORB assumes that the storage was allocated using the
correspondingnew operator.) The ORB releases object references with
CORBA::Object::release. The ORB frees all of the subcomponents of complex data struc-
tures, assuming that each subcomponent was individually allocated. For example, for an
out sequence of structs with each struct containing a string and an Object, each string is
freed and each Object is released, then each struct is freed, then the sequence value array
is freed.

If a method using implicit deallocation wants to retain a parameter value, it must make a
copy of the parameter before returning. For an Object, this copy is made using
CORBA::Object::duplicate. The implementation is responsible for freeing the copy when it
is no longer needed. An Object is freed withCORBA::Object::release.

4.6.3 Explicit Deallocation

A method can explicitly deallocate the parameter memory it has allocated by registering a
completion function with the ORB. (Such a method might use something other thannew

1. As listed in TBL. 5 on page 46.

4 The ORB provides the storage for the structure that contains the description of the sequence.
The implementation provides storage for the values returned and puts the pointers to this storage
in the descriptor structures. The implementation is responsible for releasing this storage when it
is no longer needed.

5 For an out any or TypeCode, the ORB provides the pseudo-object initialized to be empty. The
implementation must set the fields of the any or TypeCode appropriately and then release the
storage when no longer needed. For a return any or TypeCode, the implementation is responsi-
ble for creating the new pseudo-object and releasing it when no longer needed.

TBL. 6 Parameter Passing Cases

Case Description

48 OMG RFP Submission

anddelete for memory management, but there are no requirements for choosing
explicit deallocation.) The ORB calls the method’s completion function when the memory
can be deallocated; the completion function should deallocate the memory and return to
the ORB.

Explicit deallocation is in effect when a completion function is registered. A completion
function must be registered by the method for each invocation. If no completion function
is registered then implicit deallocation is in effect for the method invocation. A comple-
tion function must be registered at most once per method invocation.

If the completion function registered is a NULL pointer, this means that explicit (not
implicit) deallocation is in effect, but no completion function will be called. For example,
if part of the state of the activated object is being returned, it need not be freed because it
is retained as long as the object is activated.

Note that if a completion function is registered, it is guaranteed to be called, even if there
is no parameter storage to be freed (e.g. there were no out, inout, or result parameters).

A method registers a completion function by requesting theBOA::set_completion opera-
tion (other object adapters may provide analogous operations):

// C++
typedef void (*Completion_Fn)
(

MethodEnvironmentRef mev,
void *param

);

virtual void set_completion
(

MethodEnvironmentRef mev,
Completion_Fn fn,
const void *param

) = 0;

Themev parameter identifies the method invocation to the ORB. Thefn parameter is a
pointer to the completion function or a NULL pointer. Theparam parameter is a pointer
that the ORB will pass back to the completion function. The pointer must enable the com-
pletion function to deallocate (and release, in the case of object references) all implemen-
tation-allocated parameter memory associated with the method invocation. For example,
param might point to an array of pointers to the allocated parameters. The information
associated withparam must be sufficient to deallocate parameter memory for both nor-
mal and exceptional outcomes; the ORB calls the completion function regardless of the
outcome.

Implementation Parameter Memory Management

IDL C++ Language Mapping Specification 49

4.6.4 Exception Deallocation

If a BOA-based method raises an exception by requestingset_exception, the method does
not allocate storage for themev, major , oruser_id arguments. It does allocate storage
for theev and theparam arguments; the latter is a pointer to a struct that contains the
exception value that is copied to the client.

For deallocation purposes, the ORB treats the exception struct as if it were embedded in
an ORB-allocated sequence. The struct can be deallocated implicitly or explicitly. If the
method has not specified a completion function, the ORB implicitly deallocates the struct
with delete ; however, it does not deallocate the method’s parameters (it assumes the
method did not allocate them due to the exception). If the method specifies a completion
function, that function should deallocate the struct.

50 OMG RFP Submission

