
Software Tools for Automating the Migration From DCE to CORBA

Aniruddha Gokhale and Douglas C. Schmidt
fgokhale,schmidtg@cs.wustl.edu
Department of Computer Science

Washington University
St. Louis, Missouri, 63130

Stanley Moyer
stanm@bellcore.com

Bellcore
445 South Street

Morristown, NJ, 07960

A subset of this paper appeared in the proceedings of ISS
97: World Telecommunications Congress, IEEE Toronto,
Canada, September, 1997.

Abstract
Next-generation telecommunication software must be flex-
ible and reusable. These requirements motivate the use
of object-oriented (OO) middleware like the Common Ob-
ject Request Broker Architecture (CORBA). However, many
existing telecommunication software products have already
been written using the Distributed Computing Environment
(DCE) RPC toolkit. To reduce porting effort and to mini-
mize unnecessary rework, it is essential to provide a smooth
migration path from DCE to CORBA.

This paper provides two contributions to the study of mi-
gration strategies from DCE to CORBA. First, we describe
a migration tool we developed that provides source-level in-
teroperability between DCE RPC and CORBA. Our tool au-
tomatically translates DCE Interface Definition Language
(IDL) into CORBA IDL and generates code that integrates
existing DCE-based code with stubs and skeletons generated
by CORBA IDL compilers. Second, we present our lessons
learned applying this migration tool to a project at Bellcore.

Our experience using the tool on existing applications
at Bellcore indicates that source-level interoperability pro-
vides a low-cost, yet powerful solution. In addition, the time
required to develop the tool (about 9 person months) was
substantially less compared to developing a full scale DCE-
CIOP protocol. We also found out that minimal human in-
tervention was necessary to achieve interoperability.

The disadvantages of using source-level interoperability
arise from the fact that not all constructs in the source do-
main can be mapped onto the target domain. Therefore,
source-level interoperability may provide solutions to only a
subset of constructs of the source domain (DCE in our case).
In practice, this was not a problem as long as programmers
followed certain development guidelines.

Keywords: CORBA, DCE, Interoperability, Software mi-
gration tools.

1 Motivation

CORBA is an emerging standard for distributed object com-
puting [10]. CORBA enhances application flexibility and
portability by automating many common development tasks
such as object location, parameter marshaling, and object ac-
tivation. In general, CORBA improves upon conventional
procedural RPC middleware (such as OSF DCE RPC and
ONC RPC) in the following ways:

� Support for OO language features: such as encapsula-
tion, interface inheritance, parameterized types, and excep-
tion handling;

� More flexible communication models: such as object
references, which are essentially “network pointers” that
support a range of communication models like peer-to-peer
and distributed callbacks;

� Dynamic invocation capabilities: which allow applica-
tions dynamically issue requests to objects without requiring
IDL interface-specific stubs to be linked in to the application.

These features enable complex applications to be developed
rapidly and correctly.

An increasingly large number of distributed applications
are being developed using the CORBA technology. How-
ever, a significant number of complex, distributed applica-
tions that predate CORBA use DCE. It is generally not cost-
effective to reimplement these applications from scratch us-
ing CORBA. Therefore, it is essential to develop automated
techniques and tools that can enable existing DCE appli-
cations to interoperate with, and incrementally migrate to,
CORBA.

There are two general models for achieving interoperabil-
ity between DCE and CORBA:

� Protocol-level interoperability: The CORBA specifica-
tion defines a protocol-level interoperability standard called
Environment Specific Inter-ORB Protocols (ESIOP)s. ES-
IOP’s provide a means for CORBA to interoperate with non-
CORBA applications and toolkits. The primary example of
an ESIOP is the DCE Common Inter-ORB Protocol (DCE-
CIOP). This protocol uses the DCE remote procedure call
(RPC) mechanism to transport messages between DCE and

1

CORBA, whereas message formatting, marshaling of data,
and operation dispatching can be performed by a CORBA
Object Request Broker (ORB).

Although DCE-CIOP offers a solution that allows DCE
and CORBA to interoperate seamlessly, it has the following
disadvantages:

� High cost solution– requires an expensive third-party
CIOP component, which is currently not widely avail-
able;

� Format conversion– requires converting between
CORBA Common Data Representation (CDR) and
DCE Network Data Representation (NDR);

� DCE as transport mechanism– uses the DCE RPC
mechanism to transport of messages rather than using
the ORB.

� Source-level interoperability: Another way to interop-
erate between DCE and CORBA is to use source-level inter-
operability. Source-level interoperability has the following
benefits:

� Low cost solution– provides a low cost solution that is
based on publicly available components;

� Less format conversion– the only conversions required
are between the native representation and CORBA CDR
(which is often a “null” conversion since CORBA CDR
is a bi-canonical format that supports both big-endian
and little-endian byte-orders);

� ORB as transport mechanism– uses the ORB for mes-
sage transport. This allows interoperability with other
ORBs without the need for an ESIOP such as DCE-
CIOP.

The work presented in this paper uses the source-level in-
teroperability model. We have developed a software tool that
translates DCE IDL into the corresponding CORBA IDL,
plus extensions for DCE IDL types that do not map directly
into CORBA IDL. In addition, our tool generates code that
integrates existing DCE-based code with the stubs and skele-
tons generated by CORBA IDL compilers.

Our DCE!CORBA IDL translation tool is based on the
SunSoft CORBA IDL front-end. The “front-end” of our tool
extends the SunSoft IDL compiler to accept DCE IDL syn-
tax. The “back-end” of our tool generates CORBA IDL that
corresponds to the DCE IDL provided as input. In addition,
our back-end generates code that integrates existing DCE-
based code with the stubs and skeletons generated by the
CORBA IDL compiler.

This paper is organized as follows: Section 2 describes
key similarities and differences between DCE and CORBA
and summarizes the advantages and disadvantages of migrat-
ing from DCE to CORBA; Section 3 describes the design
methodology of our DCE!CORBA IDL translation tool;
Section 4 describes our experience using the tool; Section 5
provides concluding remarks; and Appendix A outlines how
we modified the SunSoft CORBA IDL compiler to develop
our migration tool.

2 Comparing and Contrasting DCE
and CORBA

Both DCE and CORBA support the development and inte-
gration of applications in heterogeneous distributed environ-
ments. This section summarizes the main features of DCE
and CORBA, comparing and contrasting their key similari-
ties and differences [3].

2.1 Key DCE/CORBA Similarities

The key similarities between DCE and CORBA are outlined
below:

� Simplify common network programming tasks: DCE
and CORBA simplify common tasks of building distributed
applications such as service registration, location, and activa-
tion, demultiplexing, framing and error-handling, parameter
(de)marshaling, and operation dispatching.

� Support for heterogeneous environments: DCE and
CORBA shield application developers from differences in
programming languages, operating systems, computer hard-
ware (particularly instruction byte ordering), and networking
protocols.

� Use of Interface Definition Languages (IDLs): DCE
and CORBA support the definition of service components,
using high-level interface definition languages. The main
purpose of an IDL is to separate interface from implemen-
tation. This separation of concerns makes it possible to (1)
improve the modularity and specification of software com-
ponents, (2) transparently distribute implementation across
process and host boundaries, (3) write language-independent
applications, and (4) remove common sources of network
programming errors.

� Automatically generated stubs and skeletons: Imple-
mentations of DCE and CORBA provide IDL compilers that
automatically translate IDL definitions into client-side stubs
and server-side skeletons. Stubs areproxies[5] that inter-
act with the underlying run-time systems to allow clients
to access services defined by servers. Skeletons integrate
application-specific code with automatically generated code
that performs demarshaling, demultiplexing, and dispatching
of client requests to target object implementations.

� Synchronous request/response communication:Both
DCE and CORBA support synchronous request/response
communication. In this approach, the client calls an oper-
ation on the server. The client blocks until the server com-
pletes the operation, at which pointout or inout param-
eters and/or a return value is passed back to the client. In
theory, synchronous request/response communication helps
shield client applications from knowledge of whether the tar-
get object implementation is local or remote. In practice, it is
often difficult to completely hide the use of distribution from
clients due to differences in performance and reliability [2].

2

STUBS GENERATED BY

THE IDL COMPILER

CLIENT SERVER

FRAMING, ERROR

CHECKING AND

INTEROPERABILITY

MARSHALLING

OS LEVEL

INTERFACE METHOD

IMPLEMENTATION

FRAMING, ERROR

CHECKING AND

INTEROPERABILITY

DEMULTIPLEXING AND

DEMARSHALLING VIA

GENERATED SKELETONS

NETWORK

A
P

P
L

IC
A

T
IO

N

L
O

G
IC

R
U

N
T

IM
E

 L
IB

R
A

R
IE

S
P

L
A

T
F

O
R

M

IN
F

R
A

S
T

R
U

C
T

U
R

E

OS LEVEL

Figure 1: General Path of CORBA and DCE Requests

� Oneway communication: CORBA supports “oneway”
(send-only) calls, where the server does not return any in-
formation to the client (e.g.,as part of the operation’s return
value or inout/out parameters). In DCE, oneway operations
can be achieved using “maybe” semantics, which are a spe-
cial case of DCE “idempotent” operations.

� Similar request path: Figure 1 shows the general path
that CORBA and DCE implementations use to transmit re-
quests from client to server for remote operation invocations.
The client code invokes the IDL compiler-generated stubs to
access the services of the server. After the client invokes the
stub, it blocks until it receives a response from the server.

The presentation layer encodes the request data into a
common data representation. The run-time system then
packetizes the encoded data by adding framing information.
This may include packet headers and trailers, checksums for
data integrity, encrypted data for security and information
for interoperability. The run-time system uses the underly-
ing network software provided by the operating system and
device drivers to send the packets to the destination.

On arrival at the server, the network software passes the re-
quest to the run-time system. The run-time system removes
the framing information and passes the request to the pre-
sentation conversion layer. This layer converts the encoded
data into the native format of the host machine (if necessary)
and passes it over to the message demultiplexer. The demul-
tiplexer dispatches the request to the appropriate server stub
generated by the IDL compiler.

The response traces the reverse path of the incoming re-
quest message through the server and client. When the re-
sponse reaches the client, it unblocks the client stub that is
waiting for the reply.

� Higher-level services: Both DCE and CORBA build
upon their core communication infrastructure (called the
“executive” in DCE and the “ORB” in CORBA) to provide
higher-level distributed services. Common services provided
by both CORBA and DCE include a time service, event ser-
vice, and naming and directory services.

2.2 Key DCE/CORBA Differences

The following describes the key differences between DCE
and CORBA:

� Programming model: An important difference between
DCE and CORBA is that DCE was designed to provide
a procedural programming model, whereas CORBA was
designed to provide anobject-oriented(OO) programming
model. This difference is analogous to the difference be-
tween the C and C++/Java programming models.

For instance, it is possible to implement OO programs
using C by manually creating virtual tables and other OO
language features. However, the effort required to do so is
high and the results are often error-prone and complex. In
contrast, the effort required to implement OO programs with
C++/Java is typically much lower since these languages sup-
port OO features directly.

Note that the difference between DCE’s procedural pro-
gramming model and CORBA’s OO programming model is
often overstated. In particular, there are extensions to DCE
that provide an OO veneer (such as OODCE [4] and DCE
Objects [1]). There are, however, a number of restrictions
inherent in using DCE in an OO manner. To illustrate these,
consider the following ways in which the DCE and CORBA
programming models differ:

� Support for multiple inheritance of interfaces and poly-
morphism– CORBA provides these features to support
the specialization and reuse of existing interfaces. De-
velopers can use inheritance to form new composite in-
terfaces, which can be implemented flexibly using poly-
morphism.

In contrast, DCE does not directly support interface in-
heritance or polymorphism of implementation, which
requires tedious manual recoding of common interfaces
and operations.

� Accessing distributed resources via Object References
– In CORBA, Object References are “first class” enti-
ties that can be passed to clients throughout a network
and used to flexibly access server objects. DCE does
not provide this degree of flexibility without additional
programming effort.

� Object-style vs. RPC-style communication– Figure 2
illustrates the difference between RPC-style communi-
cation (supported by DCE) and Object-style communi-
cation (supported by CORBA) [15].1 There are several
benefits to using Object-style communication:

1Note that CORBA can also be used in a manner that supports RPC-style
communication.

3

QUOTEQUOTE

SERVERSERVER: Reuters: Reuters
QuoterQuoter

: DowJones
Quoter

: Quoter: Quoter
FactoryFactory

QUOTE

CLIENT

: DowJones: DowJones
QuoterQuoter
ProxyProxy

: Quoter: Quoter
FactoryFactory
ProxyProxy

get_quote()get_quote()

destroy()destroy()

create_quoter()create_quoter()

namename

valuevalue

namename

QuoterQuoter

: Reuters: Reuters
QuoterQuoter
ProxyProxy

QUOTE CLIENTQUOTE CLIENT

QUOTE SERVER

: Quoter: Quoter
ProxyProxy

: Quoter: Quoter

get_quote()get_quote()

namename

valuevalue

R
P

C
R

P
C

---S
T

Y
L

E
S

T
Y

L
E

O
B

JE
C

T
O

B
JE

C
T
---S

T
Y

L
E

S
T

Y
L

E

: Quoter: Quoter
ProxyProxy

Figure 2: RPC-style vs. Object-style Communication

– Customized quality of service– Clients can use
factories to create different types of product ob-
jects that support a range of functionality or per-
formance characteristics (such as real-time quality
of service or high-bandwidth) that are tailored to
their individual needs.

– Flexible lifecycle control– Object-style commu-
nication gives clients more flexibility to control
the lifecycle of object implementations, compared
with RPC-style communication. For instance,
servers accessed via RPC-style interfaces often
must make inefficient or non-robust assumptions
about the lifecycle of clients that access their ser-
vices.

� Ability to associate cohesive operations into modular
and reusable components– CORBA’s programming
model encourages the association of related operations
to form modular and reusable components. Although it
is possible to achieve much the same effect in DCE via
developer conventions, the standard DCE programming
model is not as conducive to supporting OO design and
implementation.

�Communication model: CORBA supports the “deferred
synchronous” communication, which separates a send oper-
ation from a server’s reply. DCE does not support deferred
synchronous operations, though it is possible to approximate
this to some extent using multiple threads. However, DCE
supports the notion of “idempotent” operations, which can
be used to optimize duplicate detection on a server. CORBA
does not support idempotent operations.

� Interface Definition Languages (IDLs): CORBA IDL
is designed to allow interoperability between a range of tar-
get languages (such as C, C++, Smalltalk, Java, Ada, and

COBOL). In contrast, DCE IDL is focused primarily on C
(and C++ to the extent that the type system of C is a subset
of C++).

� Type systems: An important consequence of CORBA’s
emphasis on language independence is that its type system
is simpler (though inherently more restrictive) than DCE. In
particular, there is no support in CORBA for passing point-
ers, arrays of varying sizes, and streaming data.

In particular, there is no direct support in CORBA for the
following type system features:

� Passing pointers or structures containing pointers

� Streaming data– e.g.,via the DCEpipe mechanism.

� Conformant arrays– i.e.,arrays of varying sizes.

Unlike DCE, on the other hand, CORBA support the
“any” type, which allows clients and servers to pass arbitrary
data values whose type is determined at run-time.

� Dynamic invocation: CORBA supports the dynamic in-
vocation of requests that can be created and called at run-
time. The correctness of these requests can be checked at
run-time using CORBA’s Interface Repository. In contrast,
DCE does not provide support for dynamic invocation or in-
terface repositories.

� Interface and Implementation Repository: CORBA’s
Interface Repository stores information present in the IDL
files. Applications can query an Interface Repository for in-
formation about interfaces they plan to utilize. This feature
is useful for tools such as browsers and debuggers that have
no prior knowledge of the interfaces offered by a server. By
querying the Interface Repository, applications can dynam-
ically access services offered by different servers and con-
struct requests at run-time.

In addition, CORBA defines an Implementation Reposi-
tory that ORBs use to map client requests to object imple-
mentations. Implementation Repositories contain informa-
tion that ORBs use to locate and activate object implemen-
tations. DCE does not define an Interface or Implementation
Repository explicitly in the standard specification.

�Component identity: In DCE, all components (e.g.,IDL
definitions, IDL implementations, servers, etc.) are identi-
fied by “Universal Unique Identifiers” (UUIDs). CORBA
has no notion of a UUID. Instead, components in CORBA
are “identified” via Object References, which grant applica-
tions access to CORBA objects, but provide no guarantees of
unique identity. For more information on the pros and cons
of this issue see [11] and [8], respectively.

� Infrastructure services: DCE defines a multi-threading
API that is part of its core “executive” infrastructure. In
contrast, CORBA does not define a standard API for multi-
threading. Therefore, it is not possible to write portable
CORBA multi-threaded applications. Likewise, DCE de-
fines a security service (based on Access Control Lists) in

4

its core infrastructure, whereas CORBA defines security as a
higher-level service.2

� Higher-level services: Higher-level services defined by
DCE and CORBA are different. For instance, DCE defines
a distributed file service (DFS) in itsextended servicescom-
ponent, whereas CORBA does not provide this service. On
the other hand, the OMG has completed specifications for
a much wider range of distributed services,e.g., Trading
Service. includingConcurrency Control, Event Service, Ex-
ternalization Service, Life Cycle Services, Naming Service,
Persistent Object Service, Query Service, Relationship Ser-
vice, Transaction Service, Licensing Service, Property Ser-
vice, Security Service, Time Service, Trading Service.
In addition, the OMG is currently defining standards for
even higher-level, application-specific services, known as
CORBA facilities. These facilities will cover domains such
as user-interface, compound documents, and task manage-
ment. However, the CORBA services and facilities are not
yet well defined, nor widely implemented.

� Interoperability and portability: The DCE specifica-
tion and its various implementations were designeda priori
to be interoperable and portable. In contrast, the original
CORBA 1.x specification did not ensure interoperability and
portability of CORBA implementations. Although CORBA
2.0 addresses this weakness, many CORBA implementations
do not yet implement interoperability robustly [7].

In addition, there are a number of non-portable aspects
of the CORBA server-side Object Adapter specification, in-
cluding:

� Non-portable mapping of skeletons onto implementa-
tions– There is no standard way to map the automati-
cally generated IDL skeletons onto application-specific
target object operation implementations.

� Incomplete Object Adapter Interface– The existing in-
terface for the Basic Object Adapter in the CORBA 2.0
standard is very incomplete. Therefore, each ORB ven-
dor has added non-standard features to make it possi-
ble to utilize important OS platform resources (such as
threads or dynamic linking).

This lack of specificity in the CORBA 2.0 specification
makes it hard to develop completely portable server imple-
mentations. However, the client-side CORBA 2.0 speci-
fication does support the development of relative portable
clients.

� Context: The notion of context in DCE and CORBA
is different. Contexts in DCE are used to maintain server
states during a series of logically related requests from a sin-
gle client. The run-time system understands the information
stored in the contexts. DCE contexts in a distributed applica-
tion is analogous to a file handle in a local application. These

2Note that the DCE security model has been available for many years,
whereas the CORBA security model is relatively not widely implemented
yet.

Category Sub Category CORBA DCE

Programming Model Object-oriented Procedural
Aspect Interface supported not supported

inheritance (including mult.
inheritance)

IDL design interoperability only for C
between many (C++ minimal)
languages

Communication Model object style RPC style
Aspect Idempotent ops not supported supported

Component object unique ids
Identification references (UUID)
Dynamic supported not supported
Invocation
Deferred supported not supported
Synchronous
Repository supported not supported
(impl and i/f)
Interoperability optional required

(UNO specs)
contexts opaque to used solely by

run-time system run-time system
Services Infrastructure no thread API built in

thread API
security external built-in

Market Force Vendor support active, large restricted
Customer base large restricted

Table 1: Summary of Key Differences between DCE and
CORBA

contexts are maintained by the stubs and the RPC run-time li-
braries and not by the application code. In contrast, CORBA
contexts are opaque to the run-time system. They are used to
carry user information along with the request and are similar
to UNIX “environment variables.” Programmers responsible
for managing and interpreting CORBA context information.

2.3 Transition Strategies from DCE to
CORBA

It is hard to port from DCE to CORBA since many features
do not map directly. Therefore, to achieve some degree of
portability to transition from DCE to CORBA it is necessary
to avoid certain DCE features. In this context, portability
focuses on writing DCE applications that may some day need
to port to CORBA.3 The following guidelines are intended to
make it easier to port DCE code to CORBA:

� Avoid using DCE ACF attributes (e.g.,commstatus
and fault status). Instead, use DCE exceptions
since they map better onto CORBA exceptions. Like-
wise, don’t use the “implicit” form of binding handles
since this is hard to port to CORBA (which utilizes ex-
plicit Object References).

� Do not rely on the fact that DCE is case significant
(CORBA is caseinsignificant).

3A different (and somewhat easier) set of guidelines are required to go
from CORBA to DCE.

5

� Avoid the use of DCE pipes since CORBA doesn’t
provide an equivalent mechanism (yet).4 To imple-
ment this feature in CORBA requires the use of ei-
ther (1) external mechanisms (e.g.,ACE wrappers for
socket streams) or (2) defining IDL classes for stream-
ing, which incurs very high overhead on many existing
ORBs [14, 12, 6].

� Avoid the use of pointers in DCE interfaces since
CORBA doesn’t provide a mechanism for specifying
this in a portable and transparent manner. To pass
“pointers” in CORBA requires additional explicit mar-
shaling code and/or the use of CORBA IDL structures.
If pointers are being used for optional values (as was
the case in some DCE software at Bellcore) there are
ways of working around this in CORBA (e.g.,defining
an IDL union that has “valid” and “NULL” enum tags
or such).

� Avoid the use of DCE contexts and context handles
since CORBA doesn’t support these transparently (in
CORBA, the programmer is responsible for managing
this type of context information explicitly).

� Be careful of using DCE “varying arrays,” which only
pass a part of the array from client to server. CORBA
doesn’t support this directly, though similar behavior
can be obtained using CORBA sequences.

� In general, to achieve interoperability, developers
should focus on defining service interfaces and seman-
tics first. Only once this is defined should they attempt
to implement that behavior, which should minimize re-
liance on non-portable DCE or CORBA features.

The key differences between DCE and CORBA are sum-
marized in Table 1.

3 Achieving Source-level Interoper-
ability between DCE and CORBA

This section describes the design of our DCE!CORBA mi-
gration tool. Our migration tool handles most DCE IDL con-
structs, including:

� Separate IDL files used for constants, struct declara-
tions, and interfaces;

� Simple constant declarations;

� Simple DCE IDL types;

� enums;

� Varying arrays within a structure;

� Full pointers used in structures and in operations for op-
tional parameters;

� Simple structures;

4The OMG Telecom SIG is currently working on standardizing a similar
mechanism.

� Complex structures;

� Operations returningerror status t ;

� Operations using an explicit binding handle;

� Reference pointers used inout parameters;

� Operations havingin parameters;

� Operations havingout parameters of type array.

Our tool does not handle the following DCE IDL con-
structs because they have no equivalent in CORBA IDL:

� Pipes;

� Complex constant declarations involving relational and
logical operators;

� Idempotent operations.

In addition, our tool did not handle the following DCE
IDL constructs since they were not used by the domain of
applications for which the tool was designed.

� unions;

� hyper integers;

� conformant arrays.

3.1 Mapping DCE IDL to CORBA IDL

[16, 17] describe techniques to map a number of DCE IDL
constructs to CORBA IDL. Our tool uses many of these tech-
niques to map DCE IDL to CORBA IDL. In addition, we
devised other techniques for our tool to handle a wider range
of cases than described in [16, 17]. All these techniques are
outlined below.

� Import Statements: A DCE import statement is
shown below:

interface example{
import "default_constants.idl";

}

The corresponding CORBA IDL declaration uses the
#include preprocessor primitive to include the IDL files
as shown below:

#include <default_constants.idl>
interface example {
}

The#include statements are left outside theinterface
definition since the included file may contain an interface
definition. Including such a file inside an interface causes
nested interface definitions, which are not supported in
CORBA. [16, 17] describe a technique where the IDL files
are included using interface inheritance.

6

� Constants: The DCE to CORBA mapping for
constants is straightforward. A DCEconstant dec-
laration is shown below:

interface default_constants{
const unsigned short FIX_DATE=0;

}

This declaration maps to the following CORBA declaration:

interface default_constants{
const unsigned short FIX_DATE=0;

}

DCE allows constant declarations with expressions involv-
ing logical and relational operators. There is no equivalent
CORBA IDL support for these cases. An example involving
these operators in DCE constant declaration is shown below:

/* assume x, y, z are predefined */
const unsigned short XYZ=x < y ? x : y;
const long PQR= ((x < y) && (y > 5));

Whenever the mapping tool encounters such non portable
constructs, it flags an error. In this respect, the tool behaves
similar to thelint C program checker.

� Enumerations: An enum declaration in DCE is shown
below:

typedef enum {
TRACE_0,
TRACE_L,
TRACE_M,
TRACE_H,
TRACE_A

} TraceLevel_e;

This is transformed to the following declaration in CORBA:

enum _TraceLevel_e{
TRACE_0,
TRACE_L,
TRACE_M,
TRACE_H,
TRACE_A

};
typedef _TraceLevel_e TraceLevel_e;

� Fixed Length Strings: In DCE, thestring attribute is
applicable to thechar andbyte data types. In addition,
thestring attribute can be applied to astruct only if all
its members are of typebyte . In DCE IDL, all characters
in an array including theNULcharacter will be transmitted,
unless thestring attribute is specified. TheNULcharacter
helps in terminating the array.

In contrast, CORBA provides astring data type, which
is represented as a sequence ofchars . Hence, we provide
the following two different mappings forstring of chars
andstring of bytes :

� Strings of characters– A DCE declaration for a
string of chars is shown below:
typedef [string] char MsgType_str[MAX_MSG_TYPE+1];

The corresponding CORBA mapping is shown below:5

typedef string <MAX_MSG_TYPE+1 - 1> MsgType_str;

� Strings of bytes– A DCE declaration for astring of
bytes is shown below:
typedef [string] byte MsgType_str[MAX_MSG_TYPE+1];

The corresponding CORBA mapping is as shown be-
low:
typedef sequence <octet, MAX_MSG_TYPE+1 - 1>

MsgType_str;

The CORBA mapping subtracts a 1 from the length
specified in the corresponding DCE definition. This is
based on the assumption that the DCE declaration uses
one extra space to accommodate theNULcharacter.

The CORBA octet and DCEbyte data types are
equivalent. They represent untyped or opaque data.
They do not undergo any marshaling/unmarshaling.

� Unbounded Strings: Unbounded strings of characters
are mapped to CORBA unbounded strings. An example is
shown below:

/* DCE unbounded string */
typedef [string] char *v_string;

// CORBA Mapping
typedef string v_string;

� Simple and Complex Structures: The CORBA map-
ping for simple and complex DCE structures is straightfor-
ward. A DCEstruct declaration is shown below:

typedef struct MsgOutput {
MsgType_str type;
MsgCode_str code;
MsgDest_str dest;
MsgText_str text;

} MsgOutput_t;

The equivalent CORBA mapping is shown below:

struct MsgOutput {
MsgType_str type;
MsgCode_str code;
MsgDest_str dest;
MsgText_str text;

};
typedef MsgOutput MsgOutput_t;

�Varying Arrays within a Structure: A DCE declaration
for varying arrays handled by our tool is shown below:

typedef struct infoList {
short first;
short len;
[first_is(first), length_is(len)] info_t

info_arr[MAX_ARRAY_LEN];
} info_array;

5The assumption here is that the DCEstring declaration always allo-
cates one extra byte to hold theNULcharacter.

7

The CORBA IDL does not directly support thevarying
array concept. Hence, our CORBA mapping uses
bounded sequences , along with some additional infor-
mation that keeps track of the lower and upper bounds of the
array being transmitted. [16, 17] suggest a similar approach,
but their prototype uses CORBA constant arrays.

typedef sequence <info_t, MAX_ARRAY_LEN> seq_info_t;
typedef struct info_array{

short first;
short len;
struct varying_array{

short lower;
short upper;
long length;
seq_info_t var_arr;

} info_arr;
};

Theseq info t sequence in the above declaration defines
a bounded sequence ofinfo t with a maximum size of
MAXARRAYLEN as specified in the DCE declaration. The
lower and upper bound of the part of the array being trans-
mitted is
stored in the variables infoarray::varyingarray::lower and
info array::varyingarray::upper. Our translation tool gener-
ates external helper functions to copy the incoming sequence
into a pre-allocated array starting at the location indicated by
the lower bound value.

� IN, OUT and IN,OUT Parameters: The DCE IDL to
CORBA IDL mapping for thein , out and in,out at-
tributes is straightforward. An example for the mapping of
in , out andin,out is given below.

/* DCE declaration */
error_status_t getInfo(

[in] handle_t handle,
...,
[out,ref] ReqStat_i *reqStatus,
...);

// CORBA mapping
error_status_t getInfo(

in handle_t handle,
...,
out ReqStat_i reqStatus,
...);

/* The DCE [in,out] attribute will be
mapped to the CORBA inout attribute */

� Full Pointers: The domain of DCE applications we con-
sidered uses DCE “full pointers” in structures and in oper-
ations to specify optional parameters. Since these pointers
can takeNULLvalues and do not represent linked lists, full
pointers can be mapped to a CORBAsequence of size one
[16, 17].

A DCE full pointer used in a structure is shown below:

typedef struct info {
ID_str id;
long *quantity;
OrderNum_str *orderNum;
Number number;

}info_t;

The corresponding CORBA mapping is shown below.

typedef sequence<long,1> long_seq;
typedef sequence<OrderNum_str,1> OrderNum_str_seq;

typedef struct info {
ID_str id;
long_seq quantity;
OrderNum_str_seq orderNum;
Number number;

};

typedef info info_t;

In the CORBA mapping shown above, the sequence’s
length will be zero if the pointer value is NULL. A sequence
length of one indicates presence of data. In CORBA IDL, if
any member of astruct is of a sequence type, then that
sequence type must be typedef’d before the struct definition.

� Reference Pointers: Since DCE reference pointers can-
not assume a NULL value, a DCE declaration of a refer-
ence pointer can be mapped to a CORBA type declaration
[16, 17]. An example of this mapping is shown below.

/* DCE Ref Ptr declaration */
typedef [ref] short *xyz;

// CORBA mapping
typedef short xyz;

� error status t: The DCE methods re-
turningerror status t are mapped to CORBA methods
returningunsigned long [16, 17]. Thus, the CORBA
mapping cantypedef error status t to unsigned
long and use it as the return types for all operations that
returnerror status t .

� comm status and fault status Status Messages: The
DCE commstatus and fault status codes can be
mapped to the CORBA user-defined exceptions. We can-
not rely on the CORBA::Status return value since accord-
ing to the CORBA specification, ORB implementors are free
to typedef CORBA::Status to void. User defined exceptions
can be defined for all the different communication failures
and can be raised when one occurs.

� Binding handle mapping: Binding handles in DCE are
mapped to CORBA object references and client stub proxies.

� Linked Lists: A full pointer in DCE could be used to
point to a linked list of nodes. The CORBA mapping for
linked lists or binary trees is provided in [16, 17].

The CORBA mapping for a DCE IDL linked list is shown
below.

/* DCE declaration of a node used in a linked list */
typedef struct ObjectList {

short objectID;
ObjectClass objectClass;
struct ObjectList* next;

} ObjectList;

// CORBA Mapping
struct ObjectList {

short objectID;
ObjectClass objectClass;
sequence <ObjectList, 1> next;

};

8

� Unions: The DCEunion construct is mapped to the
CORBA union construct. An example of the DCEunion
from the MediaVantage products is shown below:

typedef union switch(ObjectClass retType)
PtrUnion {

case NODE: NodeType *nodep;
case LINK: LinkType *linkp;
default: xbbMsgOutput_t *error;

} AnyPtr;

The CORBA mapping for DCEunion is given below:

typedef sequence<NodeType,1> NodeType_seq;
typedef sequence<Link,Type,1> LinkType_seq;
typedef sequence<xbbMsgOutput_t,1>

xbbMsgOutput_t_seq;

union PtrUnion
switch (ObjectClass)
{

case NODE: NodeType_seq nodep;
case LINK: Linktype_seq linkp;
default: xbbMsgOutput_t_seq error;

};

typedef PtrUnion AnyPtr;

� Conformant Arrays: DCE conformant arrays are
mapped to CORBA unbounded sequences [16, 17]. An ex-
ample of a conformant array declaration in DCE and its
CORBA mapping is shown below:

/* DCE Conformant array */
typedef unsigned long perf_data_t[0..*];

// CORBA Mapping
typedef sequence<unsigned long> perf_data_t;

� Maybe Operations: DCE maybe operations are
mapped to CORBAoneway methods.

� Hyper Integers: Hyper integers in DCE range from
�2

63
to + 2

63
� 1. CORBA does not support hyper or

unsigned hyper types. The CORBA mapping for hyper is
shown below:

struct hyper{
long high;
long low;

};

� Character Sets: DCE permits the use of three different
character sets:

� ISO Latin-1;

� ISO Multilingual;

� ISO UCS.

CORBA only supports the ISO Latin-1 character set. Us-
ing a different character set will require external marshal-
ing/demarshaling routines.

� Pipes: CORBA does not support the notion ofpipe op-
erations. To support pipes, a mechanism (such as “Blob”
Streaming framework in [12]) that integrates CORBA with
TCP stream sockets could be used.

OBJECT REQUEST BROKER

TOOL

XYZC_Srv.h
XYZC_Srv.cpp

 DCE Server
Application Code

DCE Function
call

CORBA skeleton
invocation

CORBA method
upcall

XYZC_Cli.h
XYZC_Cli.cpp

 DCE Client
Application Code

CORBA stub
invocation

DCE Function
call

FILE XYZ.idl

interface XYZ{

...
};

DCE IDL

XYZC.idl

CORBA IDL

COMPILER

CORBA IDL

SKELETON

CORBA IDL

STUBS

Figure 3: Interfacing Generated Code with DCE Application
Code

3.2 Client-side and Server-side Adapters

This section describes the client-side and server-side inter-
face code generated by our migration tool. Figure 3 illus-
trates the various files generated by the tool and shows how
they are used to integrate existing DCE application code with
CORBA stubs and skeletons.

For a given DCE IDL file,e.g.,“customer.idl,” defining an
interface called “customer,” the following files are generated
by our migration tool:

� customerC.idl: This file is the CORBA IDL mapping of
the input DCE IDL that uses the rules discussed in Section
3.1. A “C” is appended to the file name to distinguish it from
the original DCE IDL file.

The tool generates code that uses fully scoped names for
all types defined in the CORBA IDL file. Fully scoped
names for types are required as these types may be defined
in other included CORBA IDL files. In addition, all types
and definitions have a “C” appended to them to avoid name
clashes with existing DCE code.

Each imported DCE file is parsed and included. If any
imported file itself imports another file, the tool recursively
parses the imported file and generates fully scoped names.

The tool generates “#ifndef” preprocessor commands
around each included file that serve to prevent multiple in-
clusions of included files by the CORBA IDL compiler.
A special predefined header file, “dcecorba.idl”, is al-
ways included to predefine certain DCE types (such as
error status t andcommstatus t).

� customerC Cli.h: This header file defines a C++ class
(“class customer” in this example) used by a DCE client ap-

9

plication.
The C++ class maintains a private data member that stores

the object reference to the server object. The public member
functions have the same name and parameters as the original
DCE IDL.

� customerC Cli.cpp: Excerpts from the implementation
of “class customer” generated by the tool are shown below.

// These files are also generated
// by the migration tool.
#include "common_structsC_Cli.h"
#include "exampleC_Cli.h"
#include ‘‘customerC_Cli.h"
// Constructor
customer::customer()
{

// Obtain object reference to server
this->customerCvar = customerC__bind

(/* obj name, host */);
}
// destructor releases the object reference
// (not shown).

// method getInfo
error_status_t customer::getInfo

(handle_t handle, OrderNum_str orderNum, ...)
// other parameters not shown
{

handle_tC handleC =
CORBA_handle_t_adapter(handle);

exampleC_OrderNum_strC orderNumC =
CORBA_OrderNum_str_adapter(orderNum);

// Other parameters translated in
// the same manner.
return this->customerCvar->getInfoC

(handleC, orderNumC, ...);
}

The implementation file first includes the generated
header files for all imported files. Next, it defines the con-
structor and the destructor. The constructor is responsible
for acquiring an object reference to a server object. Within
this constructor, manual intervention is required to set the
“object name” and “host” parameters to thebind call.6

The implementation of each method converts its parame-
ters passed by the DCE application code into a form suitable
for passing to the CORBA stubs. Finally, each method calls
the CORBA stub corresponding to that method.

In this way, “class customer” serves as an interface for
DCE application code to use the ORB to transport requests
to the server.

� customerC Srv.h: This is the server-side header file
generated by the tool. It defines a C++ class that imple-
ments the interface defined in the generated CORBA IDL.
Thus, in our example, the tool generates a class called “cus-
tomerCimpl”. The header file includes all the server-side
header files corresponding to files included by the CORBA
IDL file.

� customerC Srv.cpp: On the server-side, the tool gen-
erates the implementation of each method defined by the
CORBA IDL interface. Excerpts from the file “cus-
tomerCSrv.cpp” are shown below.

6 bind is not a standard CORBA feature. It is used here to obtain an
object reference.

#include "common_structsC_Srv.h"
#include "exampleC_Srv.h"
#include "customerC_Srv.h"

error_status_tC
customerC_impl::getInfoC

(handle_tC handleC,
const char *orderNumC, ...)

{
handle_t handle =

DCE_handle_t_adapter(handleC);
OrderNum_str orderNum =

DCE_OrderNum_str_adapter(orderNumC);
// similar transformation for other parameters
return getInfo(handle, orderNum, id,

nums, trace, reqStatus,
msgOutput, info);

}

The implementation of each method converts all its pa-
rameters into a form understood by the DCE application code
on the server. After each parameter is converted, the method
invokes the appropriate DCE method in the server. Thus,
the server-side generated class serves as an interface for the
ORB to delegate incoming requests to the DCE application
code.

4 Experience

The DCE!CORBA migration tool has been used at Bell-
core on a large distributed software application.7 The server-
side of the application ran on an HP/UX workstation and
the client ran on a Windows NT-based PC. The server of-
fered several DCE interfaces that the client uses to request
services. The files that define these interfaces utilize the fol-
lowing features of DCE IDL:

� import

� enums

� constants

� fixed-length strings of characters

� simple and complex structures

� full and reference pointers

� linked lists

� conformant arrays

As evident by the list of features used, these DCE IDL
files were very complex. The DCE!CORBA migration tool
was run on all the DCE IDL files to generate CORBA IDL
files and the appropriate DCE to CORBA (and CORBA to
DCE) stubs. The migration tool was able to generate valid
CORBA IDL (and stubs) for all of the DCE IDL files.

However, the CORBA IDL compiler that we used to com-
pile the resultant CORBA IDL (into C++ files) did not
generate valid code – the code generated C++ compilation
errors.8 We manually modified the CORBA IDL files gen-

7The DCE!CORBA migration was done as a research experiment and
does not necessarily mean that Bellcore is (or is not) moving their products
from DCE to CORBA.

8We tried a different CORBA IDL compiler and it generated valid C++
code.

10

erated by the DCE!CORBA migration tool so that the
CORBA IDL compiler generated valid C++ code. This re-
sulted in a client/server DCE application that communicated
via CORBA.

The migration tool was invaluable since it significantly re-
duced the amount of code that had to be modified manu-
ally. The primary modification that we made was to change
the calls to the DCE memory allocation routines. The main
cost in using the tool (vs. overhauling the application to
use CORBA instead of DCE) is that a run-time performance
penalty is incurred by the adapter methods in the stubs and
skeletons that converted DCE to CORBA and CORBA to
DCE. While we did not measure this delay, we believe that
it should be insignificant when compared to the cost of a re-
mote procedure call or invoking a remote method.

Another drawback in moving from DCE to CORBA was
that we were not able to duplicate the security of our DCE-
based application in CORBA. This is not a fault of the tool,
per se, but rather a shortcoming of current CORBA products.

5 Concluding Remarks

Currently, there is significant momentum in the telecommu-
nication industry to move to CORBA-based middleware so-
lutions [13, 9]. However, many existing distributed appli-
cations are developed with DCE. It is not cost-effective to
reimplement these applications from scratch using CORBA.
Therefore, it is essential to develop automated techniques
and tools that can enable existing DCE applications to in-
teroperate with, and incrementally migrate to, CORBA.

This paper describes a tool we developed to automate the
migration from DCE to CORBA. The design of this tool is
based on the principle of achieving source-level interoper-
ability, as opposed to protocol-level interoperability (e.g.,as
specified by DCE-CIOP). Our experience using the tool on
existing applications at Bellcore indicated that tools based on
source-level interoperability provide a low-cost, yet power-
ful solution. In addition, the time required to develop the tool
(about 9 person months) was substantially less compared to
developing a full scale DCE-CIOP protocol.

The disadvantages of using source-level interoperability
arise from the fact that not all constructs in the source
domain can be mapped onto the target domain. For the
DCE to CORBA, these includepipes , complex constant
declarations involving relational and logical operators, and
idempotent operations. Therefore, source-level interop-
erability may provide solutions to only a subset of constructs
of the source domain (DCE in our case). Fortunately, this
subset was sufficient to satisfy the requirements of the appli-
cation base at Bellcore.

References

[1] Bellcore. dceObjects Developer’s Guide, Bellcore Document
BD-DCEO-DG-R140-001 edition, November 1995.

[2] Kenneth Birman and Robbert van Renesse.Reliable Dis-
tributed Computing with the Isis Toolkit. IEEE Computer So-
ciety Press, Los Alamitos, 1994.

[3] Thomas J. Brando. Comparing DCE and CORBA. Tech-
nical Report MP 95B-93, MITRE, March 1995. URL :
http://www.mitre.org/research/domis/reports/DCEvCORBA.html.

[4] John Dilley. OODCE: A C++ Framework for the OSF Dis-
tributed Computing Environment. InProceedings of the Win-
ter Usenix Conference. USENIX Association, January 1995.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, Reading, MA, 1995.

[6] Aniruddha Gokhale and Douglas C. Schmidt. Measuring the
Performance of Communication Middleware on High-Speed
Networks. InProceedings of SIGCOMM ’96, pages 306–317,
Stanford, CA, August 1996. ACM.

[7] Aniruddha Gokhale and Douglas C. Schmidt. Evaluating La-
tency and Scalability of CORBA Over High-Speed ATM Net-
works. In Proceedings of the International Conference on
Distributed Computing Systems, Baltimore, Maryland, May
1997. IEEE.

[8] William Harrison. The Importance of Using Object Refer-
ences as Identifiers of Objects: Comparison of CORBA Ob-
ject. IBM, OMG Document 94-06-12 edition, June 1994.

[9] Silvano Maffeis and Douglas C. Schmidt. Constructing Re-
liable Distributed Communication Systems with CORBA.
IEEE Communications Magazine, 14(2), February 1997.

[10] Object Management Group.The Common Object Request
Broker: Architecture and Specification, 2.0 edition, July 1995.

[11] Michael L. Powell. Objects, References, Identifiers, and
Equality White Paper. SunSoft, Inc., OMG Document 93-
07-05 edition, July 1993.

[12] Irfan Pyarali, Timothy H. Harrison, and Douglas C. Schmidt.
Design and Performance of an Object-Oriented Framework
for High-Performance Electronic Medical Imaging. InPro-
ceedings of the2nd Conference on Object-Oriented Technolo-
gies and Systems, Toronto, Canada, June 1996. USENIX.

[13] Douglas C. Schmidt, Aniruddha Gokhale, Tim Harrison, and
Guru Parulkar. A High-Performance Endsystem Architecture
for Real-time CORBA. IEEE Communications Magazine,
14(2), February 1997.

[14] Douglas C. Schmidt, Timothy H. Harrison, and Ehab Al-
Shaer. Object-Oriented Components for High-speed Net-
work Programming. InProceedings of the1st Conference
on Object-Oriented Technologies and Systems, Monterey, CA,
June 1995. USENIX.

[15] Steve Vinoski. CORBA: Integrating Diverse Applications
Within Distributed Heterogeneous Environments.IEEE Com-
munications Magazine, 14(2), February 1997.

[16] Andreas Vogel and Brett Gray. Translating DCE IDL in OMG
IDL and vice versa. Technical Report 22, CRC for Distributed
Systems Technology, 1995.

[17] Andreas Vogel, Brett Gray, and Keith Duddy. Understand-
ing any IDL-Lesson one: DCE and CORBA. In P. Honey-
man, editor,Proceedings of Second International Workshop
on Services in Distributed and Networked Environments, Los
Alamitos, CA, 1996. IEEE Computer Society Press. In Press.

11

CLIENTCLIENT
STUBSTUB
BODYBODY

CLIENTCLIENT
STUBSTUB

HEADERHEADER

SERVERSERVER
SKELETONSKELETON

HEADERHEADER

SERVERSERVER
SKELETONSKELETON

BODYBODY

IDLIDL COMPILERCOMPILER

 CORBA

IDL FILE

SERVERSERVER
INTERFACEINTERFACE

BODYBODY

SERVERSERVER
INTERFACEINTERFACE

HEADERHEADER

CLIENTCLIENT
INTERFACEINTERFACE

BODYBODY

CLIENTCLIENT
INTERFACE

HEADER

C++

COMPILER

CLIENT
SOURCE

CODE

CLIENT
SOURCE

CODE

CLIENT
SOURCE

CODE

CLIENT

PROGRAM

SERVER
SOURCE

CODE

SERVER
SOURCE

CODE

SERVER
SOURCE

CODE

SERVER

PROGRAM

CORBA
RUN-TIME
LIBRARIES

C++

COMPILER

PARSER

 ABSTRACT

SYNTAX TREE

 GENERATOR

FRONT END

CODE GENERATOR

BACK END

DCE CORBA TOOL

 DCE

IDL FILE

Figure 4: Design and Use of the DCE!CORBA Migration
Tool

A Components in the DCE!CORBA
Translation Tool

This section describes the architecture of the tool. First, we
describe the architecture of the public domain CORBA IDL
compiler front-end. Next, we describe our modifications to
the front-end and the back-end that is responsible for the
code generation.

A.1 SunSoft’s CORBA IDL Compiler Front-
end

The SunSoft’s CORBA IDL compiler is available at
ftp://ftp.omg.org/pub/OMG IDL CFE 1.3 . This
CORBA IDL compiler is simply a “front-end” that uses a
yacc parser to generate an in-memory abstract syntax tree
(AST) from CORBA IDL input. Developers must provide
customized back-ends that can read the AST and generate
source code (such as C++, C, or DCE IDL) appropriate for
the target platform. Figure 4 depicts the components of the
tool and the way it is used.

The SunSoft IDL compiler front-end contains the follow-
ing components:

� CORBA IDL Parser: The parser comprises ayacc
specification of the CORBA IDL grammar. The action for
each grammar rule invokes methods of the AST node classes
to build the AST.

� Abstract Syntax Tree Generator: Different nodes of
the AST correspond to the different constructs of CORBA
IDL. The front-end defines a base class calledAST Decl
that maintains information common to all AST node types.
Specialized AST node classes (such asAST Interface)
inherit from this base class.

The SunSoft IDL compiler also defines a class called
UTL Scope , which maintains scoping information. All
AST nodes representing CORBA IDL constructs that can
define scopes (such asstructs and interfaces) also
inherit from theUTL Scope class.

� Driver: The driver component directs the parsing and
AST generation process. It reads an input CORBA IDL file
and invokes the parser and the AST generator.

A.2 Customizing the SunSoft CORBA IDL
Compiler for DCE IDL

Our migration tool takes a DCE IDL file as input. Since we
used the CORBA IDL compiler as our basic tool, we cus-
tomized it as described below.

� Customizing the front-end: We modified the CORBA
IDL grammar by augmenting it with rules that recognize
DCE IDL syntax. This introduced several new AST node
classes to the existing repertoire of AST node classes.

� Providing a back-end: We defined several specialized
C++ classes that derived from the AST node classes. These
specialized classes defined additional methods responsible
for code generation.
The parser parses the input DCE IDL and creates an AST
that comprises the specialized nodes described above. The
back-end comprising the code generator walks through the
AST and invokes the different code generation methods of
the specialized AST node classes.

A.3 Tool Statistics

In this section, we provide statistics in terms of the number
of classes defined by the original CORBA IDL compiler, the
lines of code in the original CORBA IDL compiler and in the
tool, additional classes defined by the tool, and the effective
reuse of the original code.

� Statistics for the Original CORBA IDL compiler: The
original CORBA IDL compiler defines roughly 27 AST node
class and 16 utility classes. It provides a “null” back-end that
prints out the input source by traversing the abstract syntax
tree.

12

Category Original Tool

AST 7,892 7,910
Driver 1,398 1,402
Back end 1,778 4,005
Parser 3,727 5,346
Include 7,766 7,958
Utilities 4,382 4,643
Narrowing 163 163

TOTAL 27,086 31,427

Table 2: Comparison of Lines of Code

� Statistics for the Tool: The tool provides a back-end that
defines roughly 20 C++ classes that derive from the various
AST classes. In addition, each class provides methods for
code generation. Table 2 provides statistics in terms of the
lines of source code in the original CORBA IDL compiler
and the tool.

Table 2 reveals that the additional effort to build the tool
was roughly 5,000 lines of source code. The tool reused most
of the class library provided by the original compiler.

13

