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Abstract 
Despite advances in hardware and software 
technologies, it remains challenging to develop large-
scale distributed systems that are correct, efficient, and 
flexible. Some challenges arise from increasingly 
demanding end user requirements for quality and 
functionality.  Other challenges arise from complexities 
associated with integrating large-scale distributed 
systems composed of modular components. This paper 
provides two contributions to R&D efforts that address 
these challenges.  First, it motivates the use of an 
integrated Model Driven Architecture (MDA) and 
component middleware approach to enhance the level of 
abstraction at which distributed systems are developed 
to (1) improve software quality and developer 
productivity and (2) reduce the complexity of component 
integration. Second, we present our experience gained 
applying MDA and component middleware software 
techniques to develop an Inventory Tracking System that 
monitors and controls the flow of goods and assets in 
warehouses. Our preliminary results show that using 
MDA tools and component middleware as the core 
elements of software composition leads to reduced 
development complexity, improved system 
maintainability, and increased developer productivity. 

Keywords: Model Driven Architecture, Component 
Middleware, CORBA Component Model (CCM). 

1. Introduction 
 

During the past five decades the IT industry has 
experienced a steady increase in the complexity of both 
problem and solution spaces. In the problem space of 
various domains (such as telecom, enterprise business, 
aerospace, and industrial process control systems) 
software-intensive systems developed today are often 
considerably larger and more complicated than those 
developed two decades ago.  In the solution space, 
gigabytes of documentation, source code, and binaries 
are supplied by providers of infrastructure software 
(such as operating systems, database management 
systems, graphical user interface packages, and 
component middleware), which suggests their 
complexity has grown beyond the ability of most 
developers to comprehend many aspects of these 
popular technologies. 

The IT industry has historically addressed the growth in 
complexity by raising the level of abstraction at which 
software systems are developed, integrated, and vali-

dated. For example, the growing complexity of larger-
scale assembly language programs in the 1960s moti-
vated the creation and adoption of the next generation of 
higher-level programming languages (such as Pascal and 
C++), which raised the abstraction level and helped im-
prove the efficiency and quality of software develop-
ment. Likewise, the growing complexity of developing 
large-scale systems from scratch motivated the creation 
and adoption of frameworks and patterns as a way to 
provide semi-complete applications and factor out reus-
able structures and behaviors in mature domains (such 
as network programming, database access, and GUI 
creation).  

More recently, component middleware technologies 
(such as J2EE, .NET and CCM) have factored out key 
functional and non-functional aspects (such as 
component lifecycle management, 
authentication/authorization, and remoting) to shield 
application developers from low-level, non-portable 
platform details (such as socket-level programming). As 
a result, a growing number of large-scale distributed 
systems are being assembled from modular components 
– many of which are available from commercial-off-the-
shelf (COTS) providers – rather than developed 
manually from scratch using proprietary, monolithic 
software technologies.  

Although the capabilities of higher-level component 
middleware can help to alleviate many complexities 
associated with lower-level platforms and tools, the 
complexity of today’s component middleware 
technologies yields new challenges to application 
developers. For example, considerable effort must now 
be expended to integrate business logic with the set of 
rules and behavior dictated by component models. A 
concrete example is: component containers in J2EE and 
CCM. They can activate or passivate components 
according to a lifecycle management strategy that is 
independent from the business logic implemented by the 
components. This process, however, imposes non-trivial 
restrictions and rules on component developers. 
Moreover, different component middleware platforms 
implement lifecycle management differently, which 
incurs additional complexities for applications that must 
run on multiple platforms.  

Another challenge confronting developers of large-scale 
COTS-based component systems is that few software 
developers have an integrated view of all the subsys-
tems and libraries in large-scale systems. Instead, they 
are only familiar with a subset of the characteristics of 
the subsystems and libraries they use regularly, which 



makes it hard for developers to know which portions of 
the system functionality are influenced by changes aris-
ing from bug fixes, new requirements, new platforms, 
etc. The lack of an integrated view – coupled with the 
danger of unforeseen side-effects – often force develop-
ers to implement suboptimal solutions that duplicate 
code unnecessarily, violate key architectural principles, 
and complicate system maintenance. 

As a result of these challenges, it is not surprising that 
large-scale distributed systems often have many defects 
and are chronically over budget and behind schedule, 
even when they are based on the most advanced 
software technologies. In particular, despite 
improvements in third-generation programming 
languages (such as Java or C++) and run-time platforms 
(such as component middleware), the level of 
abstraction at which business logic is integrated with the 
set of rules and behavior dictated by component models 
is still too low.  For example, the components and the 
underlying component middleware framework often 
have a large number of configurable attributes and 
parameters that can be set at various stages of 
development lifecycle, such as composing an application 
or deploying an application in a specific environment.  It 
is tedious and error-prone to use third-generation 
languages to write programs that manually ensure all 
these parameters are semantically consistent throughout 
an application. Moreover, there is no formal basis for 
validating and verifying that middleware configured via 
such ad hoc approaches will deliver the intended 
behaviors.  In addition, the level of abstraction 
supported by third-generation languages does not 
intuitively reflect the concepts used by today’s cutting-
edge software developers, who are using higher level 
concerns (such as persistence, remoting, and 
synchronization) to express their system architectures. 

A promising way to alleviate these problems with low-
level abstractions and tools is to apply Model Driven 
Architecture (MDA) techniques [MDA] that express 
application functional and non-functional requirements 
at higher levels of abstraction beyond third-generation 
programming languages and conventional component 
middleware. MDA tools help to improve the 
understanding of software-intensive systems using 
higher-level models that (1) standardize the process of 
capturing business logic and quality of service (QoS)-
related requirements and (2) ensure the consistency of 
software implementations with analysis information 
associated with functional and systemic QoS 
requirements captured by models. A key role in reducing 
software complexity via MDA tools is played by meta-
modeling [GME], which defines a semantic type system 
that precisely reflects the subject of modeling and 
exposes important constraints associated with specific 
application domains. 

To evaluate the extent to which MDA technologies ac-
tually improve development productivity, quality, and 
understanding, we have developed a prototypical Inven-
tory Tracking System (ITS). The ITS is a warehouse 
management system that monitors and controls the flow 
of goods and assets. Users of an ITS include couriers, 

such as UPS, FedEx, DHL, as well as airport baggage 
handling systems.  

This paper uses a portion of our ITS prototype as a case 
study to illustrate the benefits of integrating MDA and 
component middleware by focusing on two of the 
fundamental aspects of ITS, “Warehouse Configuration” 
and “Component Assembly and Configuration”. We will 
illustrate (1) how our MDA tool suite with two aspects 
we developed could capture end user’s concerns in a ITS 
system, (2) how the concerns are mapped to the actual 
artifacts which are used by the run time framework --
CIAO1. 

The remainder of this paper is organized as following: 
Section 2 outlines our Inventory Tracking System (ITS) 
prototype; Section 3 describes how we applied MDA 
tools and techniques to generate (a) warehouse domain-
specific models for ITS and (b) middleware 
configuration tools used to generate CIAO configuration 
artifacts; and Section 4 summarizes our lessons learned 
and presents concluding remarks. 

2. Overview of the ITS Case Study  
 

A key goal of an Inventory Tracking System (ITS) is to 
provide convenient mechanisms that manage the 
movement and flow of inventory in a timely and reliable 
manner. For instance, an ITS should enable human 
operators to configure warehouse storage organization 
criteria, maintain the set of goods known throughout a 
highly distributed system (which may span 
organizational and even international boundaries), and 
track warehouse assets using GUI-based operator 
monitoring consoles.  This section presents an overview 
of the behavior and architecture of our ITS prototype.  
Section 3 then uses this prototype to illustrate how 
MDA can be integrated with component middleware and 
applied to large-scale distributed system development.  

2.1 ITS System Behavior 
 

Figure 1 shows a UML use case diagram for our ITS 
prototype. As shown in the figure, there are three 
primary actors in the ITS system. 

 

Figure 1. Use Case Diagram for the ITS Prototype 

For the Configurator actor, the ITS provides the ability 
to configure the set of available facilities in certain 
                                                            
1 Creating generators for J2EE and .NET component 
middleware remains as future work. 



warehouses, such as the structure of transportation belts, 
routes used to deliver goods, and characteristics of stor-
age facilities (e.g., whether hazardous goods are allowed 
to be stored, maximum allowed total weight of stored 
goods, etc.). For the Operator actor, the ITS provides 
the ability to reorganize the warehouse to fit future 
changes, as well as dealing with other use cases, such as 
receiving goods, storing goods, fetching goods, dumping 
goods, stock queries, specifying delivery time accuracy, 
and updating operator console views.  For the Operating 
Environment actor, the ITS provides the ability to toler-
ate partial failures due to transportation facility prob-
lems, such as broken belts. To handle these partial fail-
ures the ITS dynamically recalculates the delivery pos-
sibilities based on available transportation resources and 
delivery time requirements. 

2.2 Architecture 
 

The ITS architecture is based on component middleware 
developed in accordance with the OMG’s CORBA 
Component Model (CCM) [CCM]. A component is a 
basic meta-type in CCM that consists of a named 
collection of features – known as ports, i.e., event 
sources/sinks, facets, and receptacles – that can be 
associated with a single well-defined set of behaviors. In 
particular, a CCM component provides one or more 
ports that can be connected together with ports exported 
by other components. CCM also supports the 
hierarchical encapsulation of components into 
component assemblies, which export ports that allow 
fine tuning of business logic modeling. 

Figure 2 illustrates the key components that form the 
basic implementation and integration units of our ITS 
prototype.  Some ITS components (such as the Operator 

  

Figure 2. Key CCM ITS Architecture Components  

Console component) expose interfaces to end users, i.e., 
ITS operators.  Other components represent warehouse 
hardware entities (such as cranes, forklifts, and shelves) 
and expose interfaces to manage databases (such as 

Transportation Facility component and the Storage Fa-
cility component). Yet another set of components (such 
as the Workflow Manager and Storage Manager compo-
nents) coordinate and control the event flow within the 
ITS system.  

As illustrated in Figure 2, the ITS architecture consists 
of the following three subsystems: 

1. Warehouse Management (WM) subsystem, which 
is a set of high-level functionality and decision 
making components. This level of abstraction 
calculates the destination location and delegates the 
rest of the details to the Material Flow Control 
(MFC) subsystem.  In particular, the WM does not 
provide capabilities such as route calculation for 
transportation or reservation of intermediate storage 
units.  

2. Material Flow Control (MFC) subsystem, which is 
responsible for executing high-level decisions 
calculated by the WM subsystem. The primary task 
of the MFC is to deliver goods to the destination 
location. This subsystem handles all related details, 
such as route (re)calculation, transportation facility 
reservation, and intermediate storage reservation. 

3. Warehouse Hardware (WH) subsystem, which is 
responsible for dealing with physical devices, such 
as sensors and transportation units (e.g., belts, 
forklifts, cranes, pallet jacks, etc.). 

 
The functionality of these three ITS subsystems is moni-
tored and controlled via an Operator Console. All persis-
tence aspects are handled via databases that can be man-
aged either by the centralized DBMS or distributed 
DBMS over different DB servers. A typical interaction 
scenario between these three subsystems is illustrated by 
the following action sequence: 

1. The new good arrives at the warehouse entrance and 
is entered into the ITS either automatically or 
manually. 

2. The WM subsystem calculates the final destination 
for storing the good by querying the Storage Facility 
for a list of available free locations. The final 
destination is passed to the MFC subsystem. 

3. The MFC subsystem calculates the transportation 
route and assigns required transportations facilities. 

4. The MFC subsystem interacts with the WH 
subsystem to control the transportation process and if 
necessary adapt to changes, such as failures or the 
appearance of higher priority tasks. 

For the technical infrastructure of our initial ITS proto-
type, we selected the Component Integrated ACE ORB 
(CIAO) [CIAO1, CIAO2], which is QoS-enabled CCM 
middleware built atop the The ACE ORB (TAO) [TAO1, 
TAO2]. TAO is a highly configurable, open-source 2 
Real-time CORBA Object Request Broker (ORB) that 

                                                            
2 CIAO and TAO can be downloaded from 
http://deuce.doc.wustl.edu/Download.html. 



implements key patterns [POSA2] to meet the demand-
ing QoS requirements of distributed real-time and em-
bedded (DRE) systems. CIAO extends TAO to provide 
the component-oriented paradigm to developers of DRE 
systems by abstracting critical systemic aspects (such as 
QoS requirements, real-time policies) as installa-
ble/configurable units supported by the CIAO compo-
nent framework. Promoting these DRE aspects as first-
class metadata disentangles (1) code for controlling 
these non-function aspects from (2) code that imple-
ments the application logic, ideally making DRE system 
development more flexible and productive as a result.  

3. Model Driven ITS Development 
 

To evaluate how MDA technologies can help improve 
productivity by enabling developers to work at a higher 
abstraction level than components and classes, we 
developed and applied a set of modeling tools to 
automate the following two aspects of ITS development: 

1. Warehouse modeling, which simplifies the 
warehouse configuration aspect of the ITS system 
according to the equipment available in certain 
warehouses, including moving conveyor belts and 
various types of cranes. These modeling tools can 
synthesize the ITS database configuration and 
population. 

2. Modeling and synthesizing the deployment and 
configuration (D&C) aspects of the components that 
implement the ITS functionality.  These modeling 
tools use MDA technology in conjunction with the 
CCM to develop, assemble, and deploy ITS software 
components. 

This section describes these two modeling aspects, fo-
cusing on the domain models and model interpreters. 
We also explore the relationship between these aspects 
to show how multiple layers of MDA are applied in ITS. 

3.1 Modeling an ITS Warehouse with MDA 
Tools 
 

Warehouse modeling consists of designing the 
warehouse configuration model by mapping from 
concrete warehouse structures perceived from a physical 
standpoint. This is the first phase which must be 
accomplished prior to setting up an ITS. The following 
are the two main concerns of a warehouse model in this 
phase: 

1. Transportation facility network, which includes 
position information (e.g., the physical location and 
reachable areas) and properties, (e.g., the capacity 
and toxicity of items transported in the network). 

2. Appropriate available storage places, which 
includes their physical locations and properties 
(e.g., storage capacity and type of goods they can 
store). 

In the ITS warehouse model these two concerns are 
blended together to give the warehouse model develop-
ers a convenient overview of the warehouse setup, 
which is similar to the architectural blue print of the 

warehouse. Mapping from the architectural blue print to 
the warehouse model should be intuitive to domain ex-
perts, as well as to model developers, so they can reuse 
the warehouse knowledge efficiently and conveniently. 

3.1.1 Choosing the Modeling Tool 
 

After evaluating the requirements of our partners in 
Siemens business units, we have selected Microsoft® 
Visio® as our warehouse modeling tool. Visio is a 
commercially supported graphic drawing tool with 
meta-modeling capabilities, as well as the following 
desirable features: 

• Full range of technical diagramming capabilities. 
Numerous drawing related features are provided by 
Visio. For instance, it supports grid, docking point, 
and object manipulation (e.g., resize, rotation, 
connection routing), which are valuable for 
warehouse modeling by domain experts who work 
on large-scale commercial ITS deployments. 

• Integrated model interpreter with embedded 
debugging environment. Unlike traditional tools 
that focus on a discrete segment of information, 
Visio offers an integrated toolset for applications, 
development, and data modeling. Visio is shipped 
with an embedded Visual Basic® editor and 
debugging environment that simplifies interpreter 
writing. C++/COM objects can also be plugged in, if 
desired. 

• Extensibility. Visio supports database modeling, 
which includes complete database design, database 
schema, and Data Definition Language (DDL) script 
generation from conceptual and physical models. For 
example, in the warehouse configuration domain, we 
can connect the physical model to the associated 
database. Moreover, Visio ships with many domain-
specific paradigms (known as drawing types in 
Visio). Besides the major building blocks needed by 
warehouse management systems, Visio also provides 
many other modeling paradigms, such as UML 
diagrams. The meta-modeling capability makes it 
possible to extend Visio’s modeling paradigm to suit 
the domain more effectively. 

 
Figure 3. Microsoft Visio ITS Model Example 



Figure 3 illustrates a Visio screenshot, where warehouse 
model elements are available from the master panel 
(left-side) and the right-side contains the drawing 
representing a warehouse fragment consisting of a 
moving belt, two cranes, storage rack, and a forklift. 
Modeling a warehouse graphically is therefore as 
straightforward as mapping/drawing the concrete 
warehouse physical structure in the Microsoft Visio 
drawing panel.  

3.1.2 Implementing the Model Interpreter 
 

After creating the complete model for a desired 
warehouse configuration, the corresponding 
configuration artifacts are generated automatically by 
using our domain-specific model interpreter. The model 
interpreter we developed for the warehouse model 
contains a set of Visual Basic macros that can be 
executed within Visio to generate corresponding data 
model as part of component synthesis. In the model 
interpreter, certain analysis and validation steps are 
applied to the warehouse model to validate the 
correctness of the data model. Once validated, C++ code 
is generated and used at runtime to bootstrap the ITS 
components, as described below: 

1. Certain location-related constraints can be checked 
by the model interpreter to validate the model to 
ensure that the physical layout and configuration of 
the warehouse is valid and meaningful. For example, 
when a crane is on top of a storage place, the model 
interpreter can ensure that the crane is capable of 
reaching all the storage cells of the place. Upon 
discovering potential conflicts, error or warning 
messages will be issued to a domain expert. 

2. Different domain-specific aspects captured by the 
graphical model can be extracted from the model to 
populate the warehouse system databases. The 
generated artifacts include the classes used to 
populate the databases and some initialization steps 
of the databases. 

After running the model interpreter, the system is ready 
to start the component-based deployment and 
configuration process described in Section 3.2. 

3.2 Modeling ITS Component Deployment and 
Configuration with MDA Tools 
As discussed in section 2.2, ITS is developed using 
CIAO, which is a CCM implementation. As a result, ITS 
has a standardized way to configure the functional and 
systemic QoS behavior of its software components and 
map them to the underlying hardware and software 
infrastructure in a highly flexible manner. In ITS, 
component deployment and configuration is performed 
via the Component Synthesis using Model Integrated 
Computing (CoSMIC) toolsuite [CoSMIC], which is an 
MDA open-source 3  toolsuite targeted for component-
based distributed applications.  

                                                            
3 CoSMIC can be downloaded from 
http://www.dre.vanderbilt.edu/cosmic/.  

At the heart of CoSMIC is the Component Assembly 
and Deployment Modeling Language (CADML), which 
automates the deployment and configuration aspects of 
distributed applications.  CADML is a visual language 
tool developed using the Generic Modeling 
Environment (GME) framework [GME], which supports 
the following features: 

• GUI interface supporting all general GUI application 
features with very generic semantic mapping. 

• Library importing and exporting capability. 

• Type system defined in the meta-model, which 
supports inheritance and instantiation. This 
introduces object-oriented design (OOD) in the 
modeling paradigm. 

• Formalized constraints specified in the meta-model 
to validate the model.  

• Plug-in of analysis and synthesis tools that interpret 
the models 

The current release of CoSMIC’s CADML tool supports 
the CCM Deployment and Configuration standard 
[D&C] and works out-of-the-box with CIAO. The 
CADML modeling paradigm allows developers of 
CIAO-based application to model component 
assemblies that capture the connections between 
different application components. 

The CADML model interpreter synthesizes component 
assembly metadata as XML descriptors, which are then 
used by CIAO middleware deployment tools. Different 
descriptor files represent different application scenarios. 
With the support of a component repository, application 
developers can configure and deploy different 
application scenarios by providing the required 
descriptors. For example, Figure 4 presents a screen shot 
that illustrates how the deployment and configuration of 
ITS components are modeled in the CADML modeling 
environment.  

 
Figure 4. ITS CCM Component Assembly Model 

The generated XML descriptors are fed into the CIAO 
component middleware runtime environment, which 
then deploys the components into the containers 
throughout the ITS distributed system. This MDA-based 
modeling approach is essential to the CCM D&C proc-
ess. In particular, it automates the descriptor generation 



to avoid errors that arise when the ad-hoc handcrafting 
approach is used. Moreover, analysis is performed on 
the D&C models to ensure semantic correctness of the 
configurations, e.g., only the ports with the same inter-
face or event type could be connected. 
 

 

3.3 Relations between the Warehouse Model 
and the Component D&C Model 
As discussed above, there are two types of modeling 
aspects in ITS: (1) warehouse modeling and (2) compo-
nent deployment and configuration (D&C) modeling. 
These two aspects are semi-orthogonal to each other in 
terms of aspect separation, i.e., they depict the overall 
system from different perspectives, yet they are com-
plementary to each other. For example, Figure 5 shows 
how the system modeler and warehouse modeler are 
different roles in the ITS development process. 
 

 
 

Figure 5. ITS Modeling Aspects 
 
The system modeler studies the business logic of general 
ITS and produces a model describing the software 
aspect of the system, including CCM component, 
deployment/assembly specification, and QoS 
requirements. The warehouse modeler, in contrast, is 
responsible for modeling one or a group of specific 
warehouses.   
 
The warehouse and component model aspects can be 
implemented separately during system development, i.e., 
the warehouse model can be mapped to the CCM and 
D&C model by means of MDA-based code generation 
to fully materialize an ITS system. There exist, however, 
some concerns that span these two aspects. For example, 
the number of components and the way they are 
communicate with each other can influence the 
configuration of different infrastructural aspects, such as 
real-time event channels [Harrison]. In ITS, however, a 
warehouse modeler often needs to fine tune the 
configuration on the base of warehouse model. In these 
cases, different actions are applied according to the 
nature of the concern after necessary analysis.   

4. Concluding Remarks 
 

Advances in hardware and software raising the level of 
abstraction at which distributed systems are developed.  

With each increase in abstraction comes a new set of 
complexities that must be mastered to reap the rewards 
of the higher-level technologies. A key challenge asso-
ciated with higher-level software abstractions is that the 
integration complexity makes it hard to assure the over-
all quality of the complete system.  To explore the bene-
fits of applying Model Driven Architecdture (MDA) 
technologies to address these challenges, we have de-
veloped an Inventory Tracking System (ITS) prototype, 
which is a distributed system that employs MDA tools 
and component middleware to address key requirements 
from the warehouse management application domain.  

The lessons we have learned applying MDA and 
component middleware technologies thus far include:   

• The component middleware paradigm elevates the 
abstraction level of middleware to enhance software 
developer quality and productivity. It also 
introduces extra complexities, however, that are 
hard to handle in an ad-hoc manner for enterprise 
application. For example, the CCM requires many 
configuration files due to its large number of 
configuration points.  

• The MDA paradigm expedites application devel-
opment with the proper tool support. In the ITS pro-
ject, if the warehouse model is the only missing or 
changing aspect in the system (which is typical for 
end users), little new application code must be writ-
ten. Likewise, in the case when the software model 
is missing or changes, application developers must 
write the component implementation code and fin-
ish the component model.  Even in this latter case, 
however, the amount of effort required is signifi-
cantly less than starting from the raw component 
middleware. 

• Domain-specific modeling techniques can help to 
reduce the learning curve for end users. For exam-
ple, warehouse modelers in our ITS project need lit-
tle or no knowledge of how to write conventional 
software since they interact with the system entirely 
through models and visual modeling environments. 

• Models at different abstraction layers or reflecting 
different aspects often exist in the large-scale 
MDA-based systems. Weaving the models together 
to form the overall system is very important. In ITS, 
this is currently done in a ad-hoc manner. To solve 
this problem an even higher level of abstraction is 
needed based on the concept of “concern” as a fun-
damental building block. For example, we could de-
fine yet another modeling paradigm to capture the 
meta-models of both the warehouse model and the 
component model, as well as important correlations 
between these two meta-models.  A model weaving 
process [Gray] could then be captured in the model 
and automated. 

In future work we plan to implement an integrated con-
cern modeling and manipulation environment to achieve 
the benefits outlined in the last bullet point above. We 
also plan to extend our MDA modeling tools so they can 
perform a two step mapping from (1) the domain-



specific model to the platform-independent component-
based architecture presented in Figure 2 and (2) the plat-
form-independent model to a CCM-specific implemen-
tation. 
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