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Abstract

A communication subsystem consists of protocol tasks and
operating system mechanisms that support the configuration
and execution of protocol stacks composed of protocol tasks.
To parallelize a communication subsystem effectively, care-
ful consideration must be given to thethreading architecture.
The threading architecture binds processing elements with
the protocol tasks and the messages associated with protocol
stacks in a communication subsystem. This paper makes two
contributionsto the study and application of threading archi-
tectures. Firgt, it reports performance results fromempirical
comparisons of two protocol stacks (based on the connec-
tionless and connection-oriented transport protocols UDP
and TCP) using different threading architectures on a 20
CPU multi-processor platform. The results demonstratehow
and why different threading architectures affect performance.
Second, the paper provides guidelines based on these results
that indicate when and how to apply appropriate threading
architectures.

1 Introduction

Advances in VLS| and fiber optic technology are shifting
performance bottlenecks from the underlying networks to
the communication subsystem [1, 2]. A communication
subsystem consists of protocol tasks and operating system
mechanisms. Protocol tasks include connection establish-
ment and termination, end-to-end flow control, remote con-
text management, segmentation/reassembly, demultiplexing,
error protection, session control, and presentation conver-
sions. Operating system mechanisms include process and
thread management, timer-based and I/O-based event demul -
tiplexing, message buffering, and layer-to-layer flow control.
Together, protocol tasks and operating system mechanisms
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support the implementati on and execution of communication
protocol stacks composed of protocol tasks [3].

A promising technique for increasing protocol processing
performance is to multi-thread protocol stacks and execute
them on multi-processors[1]. Significantincreasesin perfor-
mance are possible, however, only if the speed-up obtained
from parallelism outweighs the context switching and syn-
chronization overhead associated with parallel processing.
A context switchistriggered when an executing thread relin-
quishesits associated processing €l ement (PE) voluntarily or
involuntarily. Depending ontheunderlying OS and hardware
platform, a context switch may require dozens to hundreds
of ingtructions to flush register windows, memory caches,
instruction pipelines, and trang ation look-aside buffers [4].
Synchronization overhead arises from locking mechanisms
that seridize access to shared resources (such as message
buffers, message queues, protocol connection records, and
demultiplexing maps) used during protocol processing [5].

A number of threading architectures|[5, 6, 7, 8] have been
proposed as the basis for parallelizing communication sub-
systems. There aretwofundamental typesof threading archi-
tectures: task-based and message-based. Task-based thread-
ing architectures are formed by binding one or more PEs to
unitsof protocol functionaity (such as presentation layer for-
matting, transport layer end-to-end flow control, and network
layer fragmentation and reassembly). In these architectures,
paralelism is achieved by executing protocol tasks in sep-
arate PEs, and passing data messages and control messages
between the tasks/PEs. In contrast, message-based threading
architectures are formed by binding the PEs to datamessages
and control messagesreceived from applicationsand network
interfaces. In these architectures, paralelism is achieved by
simultaneously escorting multiple data messages and control
messages on separate PES through a stack of protocol tasks.

Protocol stacks (such asthe TCP/IP protocol stack and the
ISO OSl 7 layer protocol stack) may be implemented using
either task-based or message-based threading architectures.
However, the choice of threading architecture yields signifi-
cantly different performance characteristics that vary across
operating system and hardware platforms. For instance,
on shared memory multi-processor platforms, task-based
threading architectures often exhibit high context switch-
ing and data movement overhead due to scheduling and
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Figure 1. Threading Architecture Componentsand Interrel ationships

caching properties of the OS and hardware [9]. In contrast,
inamessage-passing multi-processor environment, message-
based threading architectures exhibit high levels of synchro-
nization overhead due to high latency access to global re-
sources such as shared memory, synchronization objects, or
connection context information [6].

Prior work [1, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17]
has generally selected a single task-based or message-based
threading architecture and studied it in isolation. Moreove,
earlier studieshave been conducted on different OSand hard-
ware platformsusing different protocol stacksand implemen-
tation techniques. This diversity of threading architectures,
platforms, and protocols makes it hard to compare results
meaningfully.

In this paper, we describe the design and implementa-
tion of an object-oriented framework that enables controlled
experiments with various threading architectures on multi-
processor platforms. Theframework controlsfor anumber of
relevant factors (such as protocol functionality, concurrency
control strategies, application traffic characteristics, and net-
workinterfaces). By controlling thesefactors, our framework
enables precise measurement of the performance impact of
different threading architectures when parallelizing commu-
nication protocol stacks. This paper reportstheresultsof sys-
tematic, empirica comparisons of the performance of sev-
eral message-based and task-based threading architectures
implemented on a 20 CPU shared memory multi-processor
platform.

The paper is organized as follows: Section 2 outlines the
two fundamental types of threading architectures and classi-
fies related work accordingly; Section 3 describes the key
threading and synchronization components in our object-
oriented framework; Section 4 examines empirical results
from experiments performed using the framework; Section 5
summarizes the results and outlines guidelines for using
threading architectures effectively; and Section 6 presents
concluding remarks.

2 Alternative Threading Architectures

Figurel (1) illustratesthethreebasic componentsof athread-
ing architecture, whichinclude:
¢ Data messages and control messages — which are sent
and received from one or more applicationsand network
devices,
¢ Protocol tasks — which are the units of protocol func-
tionality that processthe control messages and datames-
Sages;
e Processing elements (PES) — which execute protocol
tasks.
The two fundamental types of threading architectures struc-
ture these three basic componentsin the following ways:

1. Task-based threading architectures: which bind one
or more PEs to protocol processing tasks (shown in Fig-
urel (2). In thisarchitecture, tasks are the active entities,
whereas messages processed by the tasks are the passive en-
tities.

2. Message-based threading architectures:  which bind
the PEs to the control messages and the data messages re-
ceived from applications and network interfaces (shown in
Figurel (3)). Inthisarchitecture, messages are the active en-
tities, whereas tasksthat process the messages are the passive
entities.

The remainder of this section outlines severa dternative
threading architecturesin each of the two categories.

2.1 Examplesof Task-based Threading Archi-
tectures

Task-based threading architectures associate threads® with

2In this paper, the term “thread” is used to refer to aseries of instructions
executing within an address space; this address space may be shared with
other threads. Different terminology (such aslightweight processes[15, 18])
has also been used to denote the same basic concepts.
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Figure 2: Task-based Threading Architecture Examples

clusters of one or more protocol tasks. Two common exam-
ples of task-based threading architectures are Layer Paral-
lelism and Functional Parallelism. The primary difference
between these two threading architecturesinvolvesthe gran-
ularity of the protocol processing tasks. Protocol layers are
more coarse-grained than protocol tasks because they clus-
ter multipletasks together to form a composite service (such
as the end-to-end transport service defined by the ISO OSI
transport layer).

Asshown in Figure 2 (1), Layer Paralelism associates a
separate thread with each layer (e.g., the presentation, trans-
port, and network layers) in aprotocol stack. Certain protocol
header and data fields in the messages may be processed in
paralel asthey flow through a pipelineof layersinaprotocol
stack. Buffering and flow control may be necessary within
aprotocol stack if processing activitiesin each layer execute
at different rates.

Functional Parallelism associates a separate thread with
variousprotocol tasks (such as header composition, acknowl -
edgement, retransmission, segmentation, reassembly, and
routing). As shown in Figure 2 (2), these protocol tasks
executein parallel and communicate by passing control mes-
sages and data messages to each other to coordinate parallel
protocol processing.

2.2 Examples of Message-based Threading
Architectures

M essage-based threading architectures associate threadswith
messages, rather than with protocol layers or protocol tasks.
Two common exampl es of message-based threading architec-
turesare Connectional Parallelismand Message Parallelism.
The primary difference between these threading architectures
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Figure 3: Message-based Threading Architecture Examples

involvesthe point at which messages are demultiplexed onto
athread. Connectional Parallelism demultiplexes al mes-
sages bound for the same connection onto the same thread,
whereas Message Paralelism demultiplexes messages onto
an available thread.

Connectiona Parallelism uses a separate thread to han-
dle the messages associated with each open connection. As
shownin Figure3 (1), connections Cy, C, C'3, and C4 reside
inseparate threads that execute astack of protocol tasksonall
messages associ ated with their respective connection. Within
aconnection, multipleprotocol tasksareinvoked sequentially
on each message flowing through the protocol stack. Out-
going messages generaly borrow the thread of control from
an application and use it to escort messages down a proto-
col stack [18]. For incoming messages, a network interface
or packet filter [19] typically performs demultiplexing oper-
ations to determine the connection/thread to associate with
each message.

Message Parallelism associates a separate thread with ev-
ery incoming or outgoing message. As illustrated in Fig-
ure 3 (2), a thread receives a message from an application
or network interface and escorts that message through the
protocol processing tasksinthe protocol stack. Aswith Con-
nectiona Parallelism, outgoing messages typically borrow
the thread of control from the application that initiated the
message transfer.

2.3 Reated Work

A number of studies have investigated the performance char-
acteristics of task-based threading architectures that ran on
either message passing or shared memory platforms. [9]
mesasured the performance of several implementationsof the
transport and session layersin the ISO OSl reference model
using an ADA-likerendezvous-style of Layer Parallelismin



a nonuniform access shared memory multi-processor plat-
form. [10] measured the performance of Functional Peral-
Ielism for presentation layer and transport layer functionality
on ashared memory multi-processor platform. [11] measured
the performance of a de-layered, function-oriented transport
system [1] using Functional Parallelism on a message pass-
ing transputer multi-processor platform. An earlier study [6]
measured the performance of the ISO OSI transport layer
and network layer, also on a transputer platform. Likewise,
[12] used amulti-processor transputer platformto parallelize
several data-link layer protocols.

Other studies have investigated the performance charac-
teristics of message-based threading architectures. All these
studies utilized shared memory platforms. [13] measured the
performance of the TCP, UDP, and IP protocols using Mes-
sage Parallelism on a uniprocessor platform running the x-
kernel. [5] measured theimpact of synchronization on Mes-
sage Pardlelism implementations of TCP and UDP trans-
port protocols built within a multi-processor version of the
x-kernel. Likewise, [14] examined performance issues in
paralelizing TCP-based and UDP-based protocol stacks us-
ing a different multi-processor version of the x-kernel. [15]
measured the performance of the Nonet transport protocol
on amulti-processor version of Plan 9 STREAMS devel oped
using Message Paralelism. [7] measured the performance
of the ISO OSI protocol stack, focusing primarily on the
presentation and transport layers using Message Parallelism.
[16] measured the performance of the TCP/IP protocol stack
using Connectional Parallelism in a multi-processor version
of System V STREAMS.

Theresultspresented in thispaper extend existing research
in three ways. First, we measure the performance of sev-
era representative task-based and message-based threading
architectures in a controlled environment. Second, our ex-
periments report the impact of both context switching and
synchronization overhead on communi cation subsystem per-
formance. Third, in addition to measuring data link, net-
work, and transport layer performance, our experiments also
measure presentation layer performance. The presentation
layer iswidely considered to be a major bottleneck in high-
performance communication subsystems[2].

3 A Framework for Experimenting
with Threading Architectures

To facilitate controlled experiments with aternative thread-
ing architectures, we developed an object-oriented commu-
nication framework called the “ADAPTIVE Service eXec-
utive” (ASX). This framework is an integrated collection of
componentsthat providean infrastructurefor devel oping and
testing protocol stacks within communication subsystems.
The ASX framework helps control for severa key factors
such as protocol functionality, concurrency control strate-
gies, application traffic characteristics, and network inter-
faces. This enables precise measurement of the performance

impact from using different threading architectures to par-
allelize protocol stacks in a multi-processor platform. For
instance, in the experiments described in Section 4, the ASX
framework is used to hold protocol functionality constant,
while alowing the threading architecture to be systemati-
caly dtered and measured in a controlled manner.

The ASX framework incorporates concepts from existing
communication frameworks such as System V STREAMS
[20], the x-kernel [13], and the Conduit [21]. These frame-
works support the flexible configuration of communication
subsystems built from reusable protocol components (such
as message managers, timer-based event dispatchers, and
connection demultiplexers [13] and other reusable protocol
mechanisms [22]). In addition to supplying building-block
protocol components, the ASX framework aso extends the
features provided by existing communication frameworks.
In particular, ASX components decouple protocol-specific
functionality from the following structura and behaviora
characteristics of a communication subsystem:

e The type of locking mechanisms used to synchronize
access to shared resources,

¢ The sdlection of message-based and task-based thread-
ing architectures;

o Theuse of kerndl-levd vs. user-level threads.

The ASX framework components described below simplify
development of, and experimentation with, protocol stacks
that are functionally equiva ent, but possess significantly dif-
ferent threading architectures.

The overal object-oriented design and i mplementation of
the ASX framework has been described elsewhere [23]. The
remainder of this section focuses on the threading and syn-
chronization componentsin ASX. Thegoal istoillustrate how
the ASX framework simplifiesthe devel opment and testing of
multi-threaded protocol stacks on multi-processor platforms.

3.1 ASX Componentsfor Flexibly Composing
Layer Protocol Stacks

The ASX framework coordinates the installation-time
and/or run-time configuration of one or more Sreams. A
Stream is a composite object used to configure and execute
protocol stacks inthe ASX framework. Asillustratedin Fig-
ure 4, a Stream contains a series of interconnected Modul e
objects.® Modul e objectsare used to decompose a protocol
stack into functionally distinct levels. Each level implements
a cluster of related protocol tasks (such as an end-to-end
transport service or a presentation layer service).

3Throughout the paper, componentsin the ASX framework areillustrated
with Booch notation [24]. Solid clouds indicate objects; nesting indicates
composition rel ationships between objects; and undirected edgesindicate a
link exists between two objects. Dashed clouds indicate classes; directed
edgesindicate inheritance rel ationships between classes; and an undirected
edge with asmall circle at one end indicates either a composition or a uses
relation between two classes. Solid rectangles indicate class categories,
which combine a number of related classes into a common name space.
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Figure 4: Componentsin the ASX Framework

Any level that requires multiplexing and/or demultiplexing
of messages between one or morerel ated Streams may be de-
veloped usingaMul ti pl exor object. A Mul ti pl exor
is a container that provides mechanisms to route messages
between Modul es in adjacent Streams. Both Modul e and
Mul ti pl exor objects may be flexibly configured into a
Stream by developers at instalation-time, as well as by ap-
plicationsat run-time,

Every Modul e contains apair of Task objects that par-
tition a level into the read-side and write-side functionality
required to implement a particular protocol task or layer. A
Task can be specialized to target a specific domain (such
as the domain of communication protocol stacks or the do-
main of network management applications[23]). Each Task
containsaMessage_Queue, whichisareusable ASX com-
ponent that buffers data messages and control messages for
subsequent processing. Protocol tasksin adjacent Modul es
communicate by exchanging typed messages via a uniform
message passing interface defined by the Task class.

The Task class defines an interface that subclasses in-
herit and selectively override to provide the read-side and
write-side protocol functionality in a Modul e. The Task
classisabstract since it defines pure virtual methods (such as
put and svc). Pure virtual methods decouple the protocol-
independent components (such as message objects, message
lists, and message demulti plexing mechanisms) provided by
the ASX from the protocol-specific subclasses (such as those
implementing the data-link, IP, TCP, UDP, and XDR proto-
cols) that inherit and use these components. This decoupling
enhances component reuse and simplifies development and
configuration of Stream-based protocol stacks.

3.2 ASX Components for Flexibly Synchro-
nizing Multi-Threaded Protocol Stacks

The ASX framework provides a set of reusable components
that are responsible for spawning, executing, synchronizing,
controlling, and gracefully terminating services via one or
more threads at run-time [25]. These threads of control ex-
ecute protocol tasks and pass messages between Tasks in
aprotocol stack. The following outlinesthe synchronization
components in ASX and illustrates how they can be config-
ured to create highly flexible threading architectures.

321 Low-level ASX Synchronization Mechanisms

Thetwo basi ctypesof synchronization mechanismsprovided
by the ASX framework are the Mut ex and Condi ti on
objects:

e ASX Mutex objects: These objects ensure the integrity
of a shared resource that may be accessed concurrently by
multiple threads. A Mut ex object seridizes the execution
of multiplethreads by defining a critical section where only
onethread of control may executeitscode at atime. To enter
acritical section, athread invokes the Mut ex: : acqui r e
method. When athread leavesits critical section, it invokes
theMut ex: : r el ease method.

The Mut ex methods are implemented via adaptive spin-
locks that ensure mutual exclusion by using an atomic hard-
ware instruction. An adaptive spin-lock polls a designated
memory location using the atomic hardware instruction until
either (1) the value at thislocation is changed by the thread
that currently owns the lock (this signifies that the lock has
been released and may now be acquired by the spinning
thread) or (2) thethread that is holding the lock goesto sleep
(at this point, the spinning thread aso puts itself to deep to
avoid unnecessary polling [26]).

¢ ASX Conditionobjects: Theseobjectsallow oneor more
cooperating threads to suspend their execution until an ex-
pression involving shared data attains a particular state. Un-
like the adaptive spin-lock Mut ex objects, a Condi ti on
object enables a thread to suspend itself indefinitely (viathe
Condi ti on: : wai t method) until an expressioninvolving
shared data attains a particular state. When another coop-
erating thread indicates that the state of the shared data has
changed (by invokingtheCondi t i on: : si gnal method),
the associated Condi t i on object wakes up athread that is
suspended on that Condi ti on object. The newly awak-
ened thread then re-evaluates its expression and potentialy
resumes processing if the shared data has attained an appro-
priate state.

Condi ti on object synchronization is not implemented
using spin-locks, which consume excessive resources if a
thread must wait an indefiniteamount of timefor aparticular
conditionto become signaed. Instead, Condi t i on objects
areimplemented with sleep-locksthat trigger acontext switch
to allow another thread to execute. Section 4 illustrates the
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consequences of context switching and synchronization on
threading architecture performance.

3.2.2 Higher-level ASX Threading Architecture Com-
ponents

The low-level ASX Mut ex and Condi t i on objects form
the basic building blocks for configuring higher-level
message-based and task-based threading architectures. A
distinguishing key feature of these threading architectures
is how they use synchronous and asynchronous processing.
Thefollowingdiscusses how the ASX framework allowsboth
formsof processing to be supported uniformly. Section4then
illustrates the performance impact of using synchronous and
asynchronous processing to parallelize communication pro-
tocol stacks on a shared memory multi-processor platform.

e Synchronous execution for message-based thread-
ing architectures: Message-based threading architectures
perform most of their protocol-specific processing syn-
chronously with respect to other Tasks in a Stream. For
instance, the ASX-based i mplementation of the Message Par-
alelism threading architecture associates a separate thread
of control with each message arriving at a network interface.
Thisthread is obtained from a pool of pre-initiaized threads
(which are labeled asthe active entitiesin Figure 5 (1)). The
incoming message passes through a series of interconnected
Tasks inaStream.

In a message-based threading architecture, each Task in
a Stream passes messages to adjacent levels in a protocol
stack by invoking a synchronous calls to the put method in
neighboring Tasks. The put method runs synchronously
with respect to its caller by borrowing the thread of control
fromthe Task.

o Asynchronousexecution for task-based threading archi-
tectures: Task-based threading architectures perform most
of their processing asynchronoudy with respect to other
Tasks in the Streeam. For instance, each protocol layer
in the ASX-based Layer Parallelism threading architecture

isimplemented in a separate Modul e object, which is as
sociated with a separate thread. Messages arriving from a
network interface are passed between Tasks running in the
separate threads (which are labeled as the active entitiesin
Figure5 (2)).

In a task-based threading architecture, each Task in a
Stream executes its protocol -specific functionaity initssvc
method within a separate thread. Thus, the svc methods
perform protocol-specific processing asynchronously. Each
svc method runs an event loop that waits continuously for
messages to beinserted into the Task’s Message_Queue.
When messages are inserted into a Message_Queue, the
svc method dequeues the messages and performs the
protocol-specific processing tasks defined by the Task sub-
class.

3.2.3 Transparently Parameterizing Threading Archi-
tecture Synchronization Policies

The ASX components (such as Tasks, Modul es, and
Streams) for composing protocol stacks described in Sec-
tion 3.1 provide the minima amount of locking necessary
to avoid race conditions. This minimalistic synchronization
strategy avoids over-constraining the granularity of athread-
ing architecture's concurrency control policies. Therefore,
protocol developers have greater flexibility in configuring
threading architectures that map onto the underlying hard-
ware and software platforms efficiently.

The ASX framework enables different threading architec-
tures to configure their synchronization policies flexibly by
instrumenting protocol tasks with various combinations of
Mut ex and Condi ti on objects. When used in conjunc-
tion with higher-level ASX framework components (such as
Tasks) and C++ language features (such as parameterized
types), these synchronization objects hel p to decoupl e proto-
col processing functionality from the synchronization poli-
cies used by a particular threading architecture. The follow-
ing exampleillustrateshow ASX framework synchronization
objects can be transparently parameterized into communica
tion protocol software.



Inthethreading architecture experimentsdescribed in Sec-
tion 4, the Map_Manager class is used to demultiplex in-
coming network messages to the appropriate Modul e [27].
Map_Manager isatemplateclassthat isparameterized by an
external identifier (EXT_I D), aninternal identifier (I NT_I D),
and amutual exclusion mechanism (LOCK), as follows:

tenpl ate <class EXT_ID, class INT_ID, class LOCK>
cl ass Map_Manager
{

publi c:
/] Associate EXT_IDwith INT_ID
bool bind (EXT_ID, INT_ID *);
/1 Break an associ ation
bool unbind (EXT_ID);
/1 Locate INT_ID corresponding to EXT_ID
bool find (EXT_ID, INT_ID &);
...

private:

/1 Paraneterized synchroni zation object
LOCK 1 ock;

/1 Performthe | ookup

bool locate_entry (EXT_ID, INT_ID &);
3

The f i nd method of the Map_Manager template class is
implemented using the technique illustrated in the code be-
low (the bi nd and unbi nd methods are implemented in a
similar manner):

tenpl ate <class EXT_ID, class INT_ID, class LOCK>
bool Map_Manager<EXT_ID, INT_I D, LOCK>

;:find (EXT_ID ext_id, INT_ID & nt_id)

{

/1 Acquire lock in nobn constructor
Guar d<LOCK> non ('t hi s->l ock);

if (this->locate_entry (ext_id, int_id))
return true;

el se
return fal se;

/1 Rel ease | ock in non destructor

}

The code shown above uses the constructor of the Guar d
classtoacquiretheMap_Manager lock whenanobject of the
classiscreated. Likewise, when the f i nd method returns,
the destructor for the Moni t or object releases the Mut ex
lock. Note that the Mut ex lock is released automatically,
regardless of which arm inthei f / el se statement returns
fromthef i nd method. Moreover, thelock isreleased even
if an exceptionisraised withinthe body of thef i nd method.

The experiments described in Section 4 implement con-
nection demultiplexing operationsin the connection-oriented
protocol stacks via the Map_Manager template class. In
the experiments, the Map_Manager class is instantiated
with a LOCK parameter whose type is determined by the
threading architecture being configured. For instance, the
Map_Manager used by the Message Parallelism implemen-
tation of the transport layer in the protocol stack from in
Section 4.3.1 is instantiated with the following EXT_I D,
| NT_I D, and LOCK type parameters:

typedef Map_Manager
<TCP_Addr, // Segnent address.
TCB, // Internal control bl ock.
RW Mut ex> // Readers/witer | ock.
ADDR_NAP;

This particular instantiation of Map_Manager locates the
transport control block (TCB), whichisan internal datastruc-
ture that is associated with the address of an incoming TCP
message (TCP_Addr ), which is the externa identifier. In-
stantiating the Map_Manager class with the RWMit ex
class ensures that its f i nd method executes as a critica
section.  The RWMut ex is the ASX-implementation of a
readers/writer lock that efficiently prevents race conditions
from occurring with other threads that are inspecting or in-
serting entriesinto the Map_Manager in parald.

In contrast, the Layer Parallelism implementation of the
transport layer intheprotocol stack described in Section4.3.2
uses adifferent type of concurrency control. Inthiscase, se-
rialization is performed at the transport layer using the syn-
chronization mechanisms provided by theMessage Queue
defined in the Task class. Therefore, the Map_Manager
used for the Layer Parallelism implementation of the pro-
tocol stack is instantiated with a different Mut ex class, as
follows:
typedef Map_Manager

<TCP_Addr, // Segment address.
TCB, // Internal control bl ock.

Nul | _Mitex> // "Null" I ock.
ADDR_MAP:

The implementation of theacqui r e and r el ease meth-

odsin the Nul I _-Mut ex class are “no-op” inline functions

that are removed completely by the compiler optimizer. In

general, templates generate efficient object code that exacts

no additional run-time overhead for the increased flexibility.
The definition of the Map_Manager address map may

be conditionally compiled using template class arguments

corresponding to the type of threading architecture that is

required, i.e.

#i f defined (MSG BASED PA)

/] Select a nessage-based threadi ng architecture.

typedef Mutex LOCK;

#el i f defined (TASK_BASED PA)

/1 Select a task-based threading architecture.

typedef Null_Mitex LOCK;
#endi f

typedef Map_Manager <TCP_Addr, TCB, LOCK> ADDR_MAP;
Asshown below, thisallowsthe mgjority of the protocol code

to remain unaffected, regardless of the choice of threading
architecture, as follows:

ADDR_MAP addr _nap;

TCP_Addr tcp_addr;

TCP tchb;

"o,

if (addr_map.find (tcp_addr, tch))
/] Perform connection-oriented processing

4 Communication Subsystem Perfor-
mance Experiments
This section presents performance results obtained by mea-

suring the data reception portion of protocol stacks im-
plemented using several different threading architectures.



Two different types of protocol stacks were implemented:
connection-oriented and connectionless. Three different
variants of task-based and message-based threading archi-
tectures were used to paralelize the protocol stacks: Layer
Parallelism(which isatask-based threading architecture), as
well as Message-Parallelism and Connectional Parallelism
(which are message-based threading architectures). The fol-
I owing section describesthe multi-processor platform and the
measurement toolsused in the experiments, the communica
tion protocol stacks and threading architectures devel oped
using ASX framework components, and the performance re-
sults.

41 Multi-Processor Platform

All experiments were conducted on an otherwise idle
Sun SPARCcenter 2000 shared memory symmetric multi-
processor. This SPARCcenter platform contained 640
Mbytes of RAM and 20 superscaar SPARC 40 MHz pro-
cessing elements (PES). The operating system used for the
experimentswasrelease 5.4 of SUnOS (also known as Solaris
2.4). SunOS 5.4 providesamulti-threaded kernel that allows
multiple system callsand device interruptsto execute in par-
alel on the SPARCcenter platform [26]. All the threading
architecturesin the experiments execute protocol tasks using
separate SUNOS unboundthreads. These unboundthreadsare
multiplexed over 1,2, 3, . . .20 SunOS lightwei ght processes
(LWPs) within an OS process. The SunOS 5.4 scheduler
maps each LWP directly onto a separate kernel thread. Since
kernel threads are the units of PE scheduling and execution
in SunOS, multiple LWPs run protocol tasks in paralel on
the 20 PEs of the SPARCcenter 2000.

Our tests measured the memory bandwidth of the SPARC-
center 2000 platform to be approximately 750 Mbits/sec. In
addition to memory bandwidth, communication subsystem
throughput is significantly affected by the context switching
and synchronization overhead of the multi-processor plat-
form. Scheduling and synchronizing a SunOS LWP requires
a kernel-level context switch. This context switch flushes
register windows and updates instruction and data caches,
instruction pipelines, and trandation lookaside buffers [4].
Measurements of these activities indicated that it takes ap-
proximately 50 psecs to perform between LWPSs running in
the same process. During this time, the PE incurring the
context switch does not execute any protocol tasks.

ASX Mut ex and Condi t i on objects were both used in
the experiments. Mut ex objects were implemented using
SunOS adaptive spin-locks and Condi ti on objects were
implemented using SUnOS sleep-locks [26]. Synchroniza-
tion methods invoked on Condi t i on objects were approx-
imately two orders of magnitude more expensive compared
with methods on Mut ex objects. For instance, measure-
ments indi cated that approximately 4 ;1secs were required to
acquire or release a Mut ex object when no other PEs con-
tended for the lock. In contrast, when all 20 PEs contended
for aMut ex object, thetimerequired to perform thelocking
methods increased to approximately 55 jsecs.

Approximately 300 psecs were required to synchronize
LWPs using Condi ti on objects when no other PEs con-
tended for the lock. Conversely, when all 20 PEs contended
for aCondi ti on object, the time required to perform the
locking methods increased to approximately 520 psecs. The
two orders of magnitude difference in performance between
Mut ex and Condi t i on objects was caused by the imple-
mentation of the Condi t i on object methods. In particular,
performing the wai t method on a Condi ti on object in-
curred a context switch, which increased the synchronization
overhead. In contrast, performing an acqui r e method on
a Mut ex object rarely triggered a context switch since the
Mut ex was implemented with an adaptive spin-lock.

4.2 Functionality of the Communication Pro-
tocol Stacks

Two types of protocol stacks were investigated in the exper-
iments. One was based on the connectionless UDP transport
protocol; the other was based on the connection-oriented TCP
transport protocol. Both protocol stacks contained data-link,
network, transport, and presentation layers. The presentation
layer was included in the experiments since it represents a
major bottleneck in high-performance communication sub-
systems|[2, 7, 28].

Both the connectionless and connection-oriented protocol
stacks were devel oped by specializing reusable components
in the ASX framework via inheritance and parameterized
types. Asdiscussed in Section 3.2, inheritance and parame-
terized types were used to hold protocol stack functiondity
constant, while the threading architecture was systematically
varied. Each layer in a protocol stack was implemented as
aModul e, whose read-side and write-sideinherit interfaces
and implementationsfrom the Task abstract class described
in Section 3.1. The synchronization and demultiplexing
mechanisms required to implement different threading ar-
chitectures were parameterized using C++ template class ar-
guments. Asillustrated in Section 3.2, these templates were
instantiated based upon the type of threading architecture
being tested.

Data-link layer processing in each protocol stack was per-
formed by the DLP Modul e. This Modul e transformed
network packets received from a network interface into the
canonical message format used internally by the intercon-
nected Task components in a Stream. Preliminary tests
conducted with the widdy-available t t cp benchmarking
tool indicated that the SPARCcenter multi-processor platform
processed messages through a protocol stack much faster
than our 10 Mbps Ethernet network interface was capabl e of
handling. Therefore, the network interface in our threading
architecture experiments was simulated with a single-copy
pseudo-device driver operating in loop-back mode. Our ap-
proach is consistent with those used in similar experiments
on multi-processor platforms|[5, 7, 14].

The network and transport layers of the protocol stacks
were based on the IP, UDPR, and TCP implementationsin the



BSD 4.3 Reno release [29]. The 4.3 Reno TCP implemen-
tation contains the TCP header prediction enhancements, as
well as the TCP dow start algorithm and congestion avoid-
ance features [30]. The UDP and TCP transport protocols
were configured into the ASX framework via the UDP and
TCP Mbdul es. Network layer processing was performed
by thel P Modul e. ThisModul e handled routing and seg-
mentation/reassembly of Internet Protocol (IP) packets.

Presentation layer functionality was implemented in the
XDR Modul e using marshaling routines produced by the
ONC eXternal Data Representation (XDR) stub generator.
The ONC XDR stub generator translates type specifica
tions into marshaling routines. These marshaling routines
encode/decode implicitly-typed messages before/after ex-
changing them among hoststhat may possess heterogeneous
processor byte-orders.

The ONC presentation layer conversion mechanisms con-
sist of a type specification language (XDR) and a set of
library routinesthat implement the appropriate encoding and
decoding rules for built-in integra types (e.g., char, short,
int, and long), as well as real types (e.g., float and double).
These library routinesmay be combined to produce marshal-
ing routines for arbitrarily complex user-defined composite
types (such as record/structures, unions, arrays, and point-
ers). Messages exchanged via XDR are implicitly-typed,
which improves marshaling performance at the expense of
run-timeflexibility.

The XDR routines generated for the connectionless and
connection-oriented protocol stacks converted incoming and
outgoing messages into and from variable-sized arrays of
structures containing a set of integral and real values. The
XDR processing involved byte-order conversions, as well as
dynamic memory allocation and deallocation.

4.3 Structureof the Threading Architectures

The remainder of this section outlines the structure of the
message-based and task-based threading architectures used
to parallelizethe connectionless and connection-oriented pro-
tocol stacks described above.

431 Structure of the Message-based Threading Archi-
tectures

¢ Connectional Parallelism: The protocol stack depicted
in Figure 6 (1) illustrates an ASX-based implementation of
the Connectional Parallelism (CP) threading architecture out-
lined in Section 2.2. Each thread performs the data-link, net-
work, transport, and presentation layer tasks sequentially for
a single connection. Protocol tasks are divided into four in-
terconnected Modul es, corresponding to the datarlink, net-
work, transport, and presentation layers. Data-link process-
ingisperformed in the CP_DLP Mbdul e. The Connectiona
Parallelism implementation of thisModul e performs* eager
demultiplexing” viaa packet filter [19] at the data-link layer.
Thus, the CP_DLP Modul e usesitsread-sidesvc methodto
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demultiplex incoming messages onto the appropriate trans-
port layer connection. In contrast, the CP_I P, CP_TCP, and
CP_XDR Modul es perform their processing synchronously
in their respective put methods. To eiminate extraneous
data movement overhead, the Task: : put _next method
passes a pointer to a message between protocol layers.

o Message Parallelism:  Figure 6 (2) depicts the Message
Parallelism (MP) threading architecture used for the TCP-
based connection-oriented protocol stack. Whenanincoming
message arrives, itishandled by the MP_DLP: : svc method.
Thismethod managesapool of pre-spawned SunOS unbound
threads. Each message is associated with an unbound thread
that escorts the message synchronously through a series of
interconnected Tasks that formaprotocol stack. Each layer
of the protocol stack performs the protocol tasks defined by
its Task. When these tasks are complete, an upcall [31] is
used to pass the message to the next adjacent layer in the
protocol stack. The upcall isperformed by invoking theput
method in the adjacent layer's Task. This put method
borrowsthethread of control fromits caller and executes the
protocol tasks associated with itslayer.

The Message Paraldlism threading architecture for the
connectionless protocol stack is similar to the one used to
implement the connection-oriented protocol stack. The pri-
mary difference between the two protocol stacks is that the
connectionless stack performs UDP transport functionality,
which isless complex than TCP. For example, UDP does not
generate acknowledgements, keep track of round-trip time
estimates, or manage congestion windows. In addition, the
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connectionless MP_UDP: : put method handles each mes-
sage concurrently and independently, without explicitly pre-
serving inter-message ordering.

In contrast, the connection-oriented MP_TCP: : put
method utilizes several Mut ex synchronization objects. For
instance, as separate messages from the same connection
ascend the protocol stack in paralld, these Mut ex objects
serialize access to per-connection control blocks. Seridiza
tionisrequired to protect shared resources (such as message
gueues, protocol connection records, TCP segment reassem-
bly, and demultiplexing tables) against race conditions.

Both Connectiona Paralelism and Message Paralelism
optimize message management by using SunOS thread-
specific storage [26] to buffer messages as they flow through
a protocol stack. This optimization leverages off the cache
affinity [17] properties of the SunOS shared memory multi-
processor. In addition, it minimizes the cost of synchroniza:
tion operations used to manage the globa dynamic memory
heap.

4.3.2 Structure of the Task-based Threading Architec-
ture

e Layer Parallelism: Figure 7 illustrates the ASX frame-
work components that implement a Layer Parallelism (LP)
threading architecturefor the TCP-based connection-oriented
protocol stack. The connectionless UDP-based protocol
stack for Layer Parallelism was designed inasimilar manner.
The primary difference between them was that the read-side
and write-side Tasks in the connectionless transport layer
Modul e (LP_UDP) implement the simpler UDP functional -

ity.

10

Protocol-specific processing at each protocol layer shown
in Figure 7 is performed in the Task: : svc method. Each
svc method is executed in a separate thread associated with
the Modul e that implements the corresponding protocol
layer (e.g., LPXDR, LP_TCP, LP_l P, and LP_DLP). These
threads cooperate in a producer/consumer manner, operating
in parallel on message header and data fields corresponding
to their particular protocol layer. Every svc method per-
formsitsprotocol layer tasks before passing a message to an
adjacent Modul e running in a separate thread.

All threads share a common address space, which dim-
inates the need to copy messages that are passed between
adjacent Modul es. However, even if pointersto messages
are passed between threads, per-PE data caches may be in-
validated by hardware cache consistency protocols. Cache
invalidation degrades performance by increasing the level
of contention on the SPARCcenter system bus. Moreover,
since messages are passed between PEs, it is not feasible
to use the thread-specific storage memory management opti-
mi zation techniques described in Section 4.3.1.

A strict implementation of Layer Paralelism would limit
paralel processing to only include the number of protocol
layers that could run on separate PEs. On a platform with
2 to 4 PEs this is not a serious problem since the protocol
stacks used in the experiments only had 4 layers. On the
20 PE SPARCcenter platform, however, thisapproach would
have greatly constrained the ability of Layer Paralelism to
utilize the available processing resources. To dleviate this
constraint, the connection-oriented Layer Parallelism thread-
ing architecture was implemented to handle a cluster of con-
nections (i.e., 5 connections per 4 layer protocol stack, with
one PE per-layer). Likewise, the connectionless Layer Par-




allelism threading architecture was partitioned across 5 net-
work interfacesto utilizethe available parallelism.

44 Measurement Results

This section presents results obtained by measuring the data
reception portion of the protocol stacks developed using the
threading architectures described in Section 4.3. Threetypes
of measurements were obtained for each combination of
threading architecture and protocol stack: average through-
put, context switching overhead, and synchronization over-
head. Average throughputisablackbox metric that measures
the impact of parallelism on protocol stack performance. In
contrast, context switching and synchronization are white-
box metrics that help explain the variation in the throughput
measurements.

Average throughput was measured by holding the proto-
col functionality, application traffic, and network interfaces
constant, while systematically varying the threading archi-
tecture in order to determine the impact on performance.
Each benchmarking run measured the amount of time re-
quired to process 20,000 4 Kbyte messages. In addition,
10,000 4 Kbyte messages were transmitted through the pro-
tocol stacks at the start of each run to ensure that all the PE
caches were fully initialized (the time required to process
these initial 10,000 messages was not used to calculate the
average throughput). Each test was runusing 1,2, 3,...20
PEs, with each test replicated a dozen times and the results
averaged. The purpose of replicating the tests was to insure
that the amount of interference from process and thread man-
agement tasksinterna to the OS did not perturb the results.

Various statisticswere collected using an extended version
of the widely available t t cp protocol benchmarking tool
[28]. Thet t cp tool measures the amount of OS processing
resources, user-time, and system-time required to transfer
data between a transmitter thread and areceiver thread. The
flow of datais uni-directional, with the transmitter flooding
the receiver with a user-specified number of data buffers.
Various sender and receiver parameters (such as the number
of data buffers transmitted and the size of data buffers and
protocol windows) may be selected at run-time.

The version of t t cp used in our experiments was mod-
ified to use ASX-based connection-oriented and connection-
less protocol stacks. These protocol stacks were configured
in accordance with the threading architectures described in
Section 4.3. Thett cp tool was aso enhanced to alow a
user-speci fied number of connectionsto be active simultane-
oudly. This extension enabled us to measure the impact of
multiple connections on the performance of the connection-
oriented protocol stacks using message-based and task-based
threading architectures.

44.1 Throughput Measurements

e Connection-oriented Performance:  Figures8,9,and 10
depict the average throughput for the message-based thread-
ing architectures (Connectional Pardlelismand M essage Par-

11

alelism) and the task-based threading architecture (Layer
Parallelism) used to implement the connection-oriented pro-
tocol stacks. Each test run for these connection-oriented
threading architectures used 20 connections. These figures
report the average throughput (in Mbits/sec), measured both
with and without presentation layer processing. The figures
illustrate how throughput is affected as the number of PEs
increase from 1 to 20.

Figures11, 12, and 13 indicatetherelative speedup that re-
sulted from successively adding another PE to each threading
architecture. Relative speedup is computed by dividing the
average aggregated throughput for » PEs (shown in Figures
8,9, and 10, where 1 < n < 20) by the average throughput
for 1 PE.

The results from Figures 8, 9, 11, and 12 indicate that
increasing the number of PES generally improves the aver-
agethroughput in the message-based threading architectures.
Connection-oriented Connectional Parallelism exhibited the
highest performance, both in terms of average throughput
and interms of relative speedup. Asshownin Sections4.4.2
and 4.4.3, these results stem from the low context switching
and synchronization overhead of Connectional Parallelism,
relative to the other threading architectures.

The following paragraphs examine the results for each
threading architecturein detail:

e Connectional Parallelism— As shown in Figure 8, the
average throughput of Connectiona parallelism with
presentation layer processing peaks at approximately
100 Mbitg/sec. The average throughput without pre-
sentation layer processing peaks a just under 370
Mbitg/sec. These results indicate that the presentation
layer representsasignificant portion of theoverall proto-
col stack overhead. Asshown in Figure 11, the relative
speedup of Connectional Parallelism without presenta-
tionlayer processing increases steadily from 1 to 20 PEs.
The relative speedup with presentation |ayer processing
issimilar up to 12 PEs, at which point it beginsto level
off. This speedup curve flattens due to the additional
overhead from datamovement and synchronization per-
formed in the presentation | ayer.

e Message Parallelism— As shown in Figure 9, the aver-
age throughput achieved by connection-oriented Mes-
sage Parallelism without presentation layer processing
peaks at just under 130 Mbitg/sec. When presentation
layer processing is performed, the average throughput
is 1.5 to 3 times lower, peaking at approximately 90
Mbitg/sec. Note, however, that the relative speedup
without presentation layer processing (shown in Fig-
ure 12) flattens out after 8 CPUs. Thisflattening occurs
for two reasons. Firdt, there is increased contention
for shared synchronization objects at the transport layer
(discussed further in Section 4.4.3). Second, there is
also increased contention for the shared memory bus
[5], which ultimately limitsthe performance of protocol
paralelism.
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In contrast, the rel ative speedup of connection-oriented 40 CPEEES
Message Parallelism with presentation layer process 353 ZNS SN Aﬂwgl Al jead
ing grows steadily from 1 to 20 PEs. This behavior 0 m’[ T e

indicates that connection-oriented Message Parallelism
benefits more from parallelism when the protocol stack
contains presentation layer processing (which is con-
sistent with findings reported in [14]). The reason for
this behavior is that presentation layer processing in-
volves very little synchronization overhead compared
with the connection-oriented transport layer. Therefore,
the protocol stacks have more opportunity to exploit the
parallellsm availablefrom theZO PEs. 123456 78 91011121314151617181920

Number of Processing Elements
o Layer Paralldism— In contrast to Connectional Paral-

lelism and M essage Paralelism, the performance of the
connection-oriented Layer Paralleism (shown in Fig-
ures 10 and 13) did not scale up as the number of PEs  Figure 10: Connection-oriented Layer Parallelism Through-
increased. The average throughput with presentation put
layer processing (shown in Figure 10) pesks at approx-
imately 36 Mbitg/sec. This amount is well below half
of the throughput achieved by Connectiona Parallelism protocol stacks* As with the other tests, these figures report
and Message Parallelism. The throughput exhibited by the throughput measured both with and without presentation
Layer Parallelism peaks at 40 Mbits/sec when presen- layer processing. Figures 16 and 17 indicate the speedup of
tation layer processing is omitted. Thisisover 3 times each threading architecture, relativeto itssingle PE case, for
lower than Message Parallelism and approximately 9 the data points reported in Figures 14 and 15.
times lower than Connectional Parallelism. As shown
in Figure 13, the rel ative speedup both with and without e Message Parallelism — The connectionless Message
presentation layer processing increasesuntil after 10 and Parallelism threading architecture (Figure 14) signifi-
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7 PEs, respectively. After peaking, average throughput
levels off and gradually beginsto decrease.

The poor overall performance of Layer Paraldism
stemsfromitshigh levels of context switching and syn-
chronization overhead. The reasonsfor thisoverhead is
discussed in Section 4.4.2 and Section 4.4.3.

cantly outperforms the task-based threading architec-
ture (Figure 15). This behavior is consistent with the
resultsfrom the connection-oriented tests shown in Fig-
ure 8 through Figure 13. With presentation layer pro-
cessing, the throughput and relative speedup of con-
nectionless Message Parallelism is dightly higher than
the connection-oriented version shown in Figures 9 and

e Connectionless Performance;  Figures 14 and 15 depict 12. However, without presentation|ayer processing, the

theav erage thr'OUghpUt forthe message- based and taSk.' based 4Notethat Connectional Parallelism isnot applicable for aconnectionless
threading architectures used to implement the connectionless protocol stack.
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Figure 12: Relative Speedup for Connection-oriented Mes-
sage Paralelism

throughput and rel ative speedup of connectionlessMes-
sage Paralldlism are substantialy higher (500 Mbits/sec
vs. 130 Mbits/sec). In addition, note that the relative
speedup of connectionless M essage Parallelism without
presentation layer processing exceeds that attained with
presentation layer processing (showninFigurel16). This
behavior is the reverse of the connection-oriented Mes-
sage Parallelism results (shown in Figure 12). The dif-
ferencein performanceisdueto thefact that connection-
less Message Paralelism incurs much lower levels of
synchronization overhead (synchronizationisdiscussed
further in Section 4.4.3). After 11 PEs, the speedup
curve flattens out, indicating that the hardware limita-
tions of the SPARCcenter’s shared memory bus have
been reached.

Layer Parallelism— The throughput of the connection-
less Layer Paraldism (shown in Figure 15) suffered
from the same problems as the connection-oriented ver-
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Figure 13: Relative Speedup for Connection-oriented Layer
Perallelism
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Figure 14: Connectionless Message Parallelism Throughput

sion (shown in Figure 10). Asshown in Figure 13, the
relative speedup increases only up to 6 PEs, regardless
of whether presentation layer processing was performed
or not. At this point, the performance levels off and be-
ginsto decrease. This behavior isaccounted for by the
high levels of context switching incurred by the Layer
Parallelism threading architecture, as discussed in the
following section.

4.4.2 Context Switching Measurements

M easurements of context switching overhead were obtained
by modifyingthet t cp benchmarking tool to use the SUnOS
54/ proc file system. The / pr oc file system provides
access to the executing image of each OS process and LWP
in the system. It reports the number of voluntary and invol-
untary context switches incurred by SunOS LWPs within a
process. Figures 18 through 22 illustrate the number of vol-
untary and involuntary context switches incurred by trans-
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Relative Speedup for Connectionless Message

mitting the 20,000 4 Kbyte messages through the threading
architectures and protocol stacks measured in this study.

A voluntary context switch is triggered when a protocol
task puts itself to sleegp awaiting certain resources (such as
I/O devices or synchronization locks) to become available.
For example, a protocol task may attempt to acquire a re-
source that is not available immediately (such as obtaining a
message from an empty list of messagesin a Task). In this
case, the protocol task puts itself to sleep by invoking the
wai t method of an ASX Condi t i on object. This method
causes the SunOS kernel to preempt the current thread of
control and perform a context switch to another thread of
control that is capable of executing protocol tasks immedi-
ately. For each combination of threading architecture and
protocol stack, voluntary context switching increases fairly
steadily as the number of PEs increase from 1 through 20
(shown in Figures 18 through 22).

An involuntary context switch occurs when the SunOS
kernel preempts a running unbound thread in order to sched-
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Figure17: Relative Speedup of ConnectionlessLayer Paral-
lelism

ule another thread of control to execute other protocol tasks.
The SunOS scheduler preempts an active thread of control
every 10 millisecondswhen thetime-dice dloted to itsLWP
expires. Note that the rate of growth for involuntary context
switching shownin Figures 18 through 22 remainsfairly con-
sistent as the number of PEs increase. Therefore, it appears
that most of the variance in average throughput performance
is accounted for by voluntary context switching, rather than
by involuntary context switching.

The following examines the context switching overhead
of each threading architecturein detail:

e Connectional Parallelism — As shown in Figure 18,
Connectional Perallelism incurred the lowest levels of
context switching for the connection-oriented protocol
stacks. In this threading architecture, after a mes
sage has been demultiplexed onto a connection, al that
connection’s context information is directly accessible
withinthe address space of the associated thread of con-
trol. Therefore, athread of control in Connectional Par-
allelism can process its connection’s messages without
incurring additional context switching overhead.

e Message Parallelism — As shown in Figure 19, Mes-
sage Parallelism incursahigher level of context switch-
ing than Connectional Parallelism. This is caused by
the higher level of contention for Mut exes used inthe
connection-oriented Message Parallelism implementa
tion to seriaize access to resources like transport layer
connection control blocks. Sinceadaptivespin-locksare
used, this additional contention yields a slightly higher
level of context switching.

o Layer Parallelism — The task-based Layer Parallelism
threading architectures (shownin Figures21 and 22) ex-
hibited approximately 4 to 5 times higher levels of vol-
untary context switching than the message-based thread-
ing architectures(shownin Figures18,19, and 20). This
difference stems from the synchronization mechanisms
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Figure 19: Connection-oriented Message Pardlelism Con-
text Switching

used for the Layer Parallelism threading architecture.
Layer Parallelism uses deep-locks to implement flow
control between protocol stack layers running in sepa-
rate PEs.

Layer-to-layer flow control isnecessary withina Stream
since processing activitiesin each layer may execute at
differentrates. In SuUnOS, thewai t andsi gnhal meth-
ods on Condi ti on objects are implemented using
sleep-locks, which trigger voluntary context switches.
In contrast, Connectiona Parallelism and Message Par-
allelism use adaptive spin-lock synchronization, which
isless costly sinceit typically does not trigger voluntary
context switches. The substantialy lower-levels of vol-
untary context switching exhibited by Connectional Par-
alelism and Message Paraléelism helps to account for
their significantly higher overall throughput and greater
relative speedup discussed in Section 4.4.1.

15

30000 T
] lo—te
@ 25000 andl
g ] %
& 20000
% ]
S 15000 o]
O ]
s 10000 ] /
2 ] o/
£ >
=3
Z 5000 g
] rq
] lo—oT
F = e e e = = =]
123456 78 91011121314151617181920
Number of Processing Elements
—e— Voluntary Context Switches
—=5— Involuntary Context Switches

Figure 20: Connectionless Message Parallelism Context
Switching

100000
90000
80000 1o/
70000
60000 ter
50000 bl
40000
30000
20000
mmﬁgzig/ﬁﬁ SEESE

03ste | e O

123456 78 91011121314151617181920

Number of Processing Elements

AN

Number of Context Switches

—e— Voluntary Context Switches

—5— Involuntary Context Switches

Figure 21: Connection-oriented Layer Paralelism Context
Switching

4.4.3 Synchronization Measurements

Measurements of synchronization overhead were collected
to determine the amount of time spent acquiring and rel eas-
ing locks on ASX Mut ex and Condi ti on objects during
protocol processing on the 20,000 4 Kbyte messages. Unlike
context switches, the SunOS 5.4 / pr oc file system does
not maintain accurate metrics on synchronization overhead.
Therefore, these measurements were obtained by bracketing
the ASX Mut ex and Condi t i on methodswith calls to the
get hrti me system call. This system call uses the SunOS
5.4 high-resolution timer, which expresses time in nanosec-
ondsfrom an arbitrary timeinthe past. The timereturned by
the get hrti me system cdl is very accurate since it does
not drift.

Figures 23 through 27 indicate the total time (measured in
msecs) used to acquire and release locks on Mut ex and
Condi ti on synchronization objects. These tests were
performed using al three threading architectures to imple-
ment connection-oriented and connectionless protocol stacks
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Connectionless Layer Paralelism Context

that contained data-link, network, transport, and presenta-
tion layer functionality. The message-based threading archi-
tectures (Connectiona Parallelism and Message Parallelism,
shown in Figures 23, 24, and 26) used Mut ex synchro-
ni zation mechanisms that utilize adaptive spin-locks (which
rarely trigger a context switch). In contrast, the task-based
threading architecture (Layer Parallelism, shown in Fig-
ures 25 and 27) utilized both Mut ex and Condi ti on ob-
jects (Condi t i on objectsdo trigger context switches).

The following examines the synchronization overhead of
each threading architecturein detail:

e Connectional Parallelism — Connection-oriented Con-
nectional Parallelism (shown in Figure 23) exhibited
the lowest levels of synchronization overhead, which
peaked at approximately 700 msecs. This synchroniza
tion overhead was approximately 1 order of magnitude
lower than the results shown in Figures 24 through 27.
Moreover, the amount of synchronization overhead in-
curred by Connectional Parallelism did not increase sig-
nificantly as the number of PEs increased from 1 to
20. This behavior occurs since after a message is de-
multiplexed onto a PE/connection, few additional syn-
chronization operations are required. In addition, since
Connectional Parallelism processes messages within a
single PE cache, it leverages off of SPARCcenter 2000
multi-processor cache affinity properties[17].

¢ Message Parallelism — The synchronization overhead
incurred by connection-oriented Message Parallelism
(shown in Figure 24) peaked at just over 6,000 msecs.
Moreover, the rate of growth increased fairly steadily as
the number of PEsincreased from 1 to 20. This behav-
ior occurs from the lock contention caused by Mut ex
objects that serialize access to the Map_Manager con-
nection demultiplexer (discussed in Section 3.2). In
contrast, the connectionless Message Parallelism pro-
tocol stack does not require the use of this connection
demultiplexer. Therefore, the amount of synchroniza
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Figure 24: Connection-oriented Message Parallelism Syn-
chronization Overhead

tion overhead it incurred was much lower, pesking at
under 1,800 msecs.

e Layer Parallelism — Connection-oriented Layer Para-
lelism exhibited two types of synchronization overhead
(shown in Figure 25). The amount of overhead re-
sulting from Mut ex objects peaked at just over 2,000
msecs, whichwaslower than that of connection-oriented
Message Perallelism (shown in Figure 24). How-
ever, the amount of synchronization overhead from the
Condi t i on objects was much higher, peaking at ap-
proximately 18,000 msecs (shown in Figure 25). In the
Layer Parallelismimplementation, theCondi t i on ob-
jectsimplemented flow control between separate layers
executing on different PEs in a protocol stack. The
connectionlessversion of Layer Parallelism aso exhib-
ited high levels of synchronization overhead (shown in
Figure 27).
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5 Summary of Observations and Rec-
ommendations

This section summarizes our observations and presents rec-
ommendations for using threading architectures effectively.

51 Summary of Observations

The following is a summary of observations based on the
resultsof our performance experimentson aternativethread-
ing architectures for connectionless and connection-oriented
protocol stacks.

e Task-based threading architectures are easier toimple-
ment than themessage-based processar chitectures. The
task-based Layer Paralelism threading architecture maps
cleanly onto conventional layered communication models
using a well-structured “producer/consumer” model [32].
Synchronization withinalayer isminimal since parallel pro-
cessing is seridlized at service access points (such as the
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Figure 27: Connectionless Layer Paralelism Synchroniza:
tion Overhead

service access point defined between the network and trans-
port layers). In contrast, implementing the message-based
threading architectures is more complex due to the need for
more sophisticated concurrency control, thread pools, and
demultiplexing a gorithms.

¢ Message-based threading architectures are more effi-
cient than task-based threading architectures: Despite
being harder to program, the message-based process archi-
tectures use parallelism more effectively than the task-based
threading architectures. This is due in part to the fact that
message-based threading architecture paralelism is based
upon dynamic characteristics (such as messages or connec-
tions). As described in Section 4.4.1, the relative speedups
gained from parallel message-based threading architectures
scaled up to use arelatively high number of PES. In contrast,
the parallelism used by thetask-based threading architectures
depended onrelatively static characteristics(such asthenum-
ber of layers or protocol tasks), which did not scale up. In
addition, the higher rate of growth for context switching and
synchronization (discussed in Sections 4.4.2 and 4.4.3) pre-
vented Layer Parallelism from using a large number of PEs
effectively.

¢ Connectional Parallelism works best when the num-
ber of connectionsis >= the number of PEs. Connec-
tional Parallelism becomes more effective when the number
of connections approaches the number of PES. Message Par-
allelism, onthe other hand, ismore suitablewhen the number
of active connectionsis significantly less than the number of
availablePEs. Figure28illustratesthispoint by graphing av-
erage throughput as a function of the number of connections.
Thistest held the number of PEs constant at 20, whileincress-
ing the number of connections from 1 to 20. Connectiona
Paralelism consistently out-performs Message Parallelism
as the number of connections becomes larger than 10.

o Connection-oriented M essage Par allelism benefitsfrom
more PEs when the protocol stack performs presenta-
tionlayer processing: Asshownin Figure12, the speedup
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curve for connection-oriented Message Paralelism without
presentation layer processing flattens out after 8 PEs. In con-
trast, when presentation layer processing is performed, the
speedup continuesuntil 16 PES, at which point the bandwidth
of the shared memory bus becomes the limiting factor. This
behavior results from the relatively low amount of synchro-
nization overhead associated with parallel processing at the
presentation | ayer.

e The rélative cost of synchronization operations has
a substantial impact on threading architecture perfor-
mance.  On the SPARCcenter 2000 shared memory multi-
processor running SunOS 5.4, the message-based threading
architectures benefit from their use of relatively inexpensive
adaptive spin-locks. In contrast, the task-based threading ar-
chitectures were penalized by the much higher cost of sleep-
lock synchronization, (i.e., two ordersof magnitude—4 jisecs
vs. 300 psecs for spin-locksvs. sleep-locks, respectively).

We conjecture that a multi-processor platform possessing
different synchronization properties would produce signifi-
cantly different results. For example, if the experiments re-
ported in thispaper were replicated on anon-shared memory;,
message-passing transputer platform [6], it islikely that the
performance of the task-based threading architectures would
improve relative to the message-based threading architec-
tures.

5.2 Recommendations

Thefollowing recommendationsfor using threading architec-
tures effectively are based on our performance experiments
and our experience gained buildingand testing thealternative
threading architectures:

o |f program simplicity is a more important requirement
than performance, we recommend the use of task-based
threading architectures.
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o If performance is a more important requirement than
program simplicity, we recommend the use of message-
based threading architectures.

o |f the number of connectionsis >= than the number of
PEs and the connections process data at approximately
the same rate, we recommend the use of Connectional
Parallelism.

o If the number of connections is << than the number
of PEs or the connections process data at highly dis-
proportional rates, we recommend the use of Message
Parallelism.

6 Concluding Remarks

This paper describes communication protocol stack perfor-
mance measurements obtained using the ASX framework.
Thisframework providesan integrated set of object-oriented
components that facilitate controlled experimentation with
message-based and task-based threading architectures on
multi-processor platforms. The ASX framework contributed
to these performance experiments by hel ping to decouplethe
protocol-specific functionality from the underlying threading
architecture. Thisdecoupling increased component reuseand
simplified the devel opment, configuration, and experimenta-
tionwith aternative parallel protocol stacks.

The experimental results presented in this paper demon-
stratethat toincrease performance significantly, the speed-up
obtained from parallelizing a protocol stack must outweight
the context switching and synchronization overhead associ-
ated with paralle processing. If these sources of overhead
are large, paraldizing a protocol stack will not yield sub-
stantial benefits. The task-based Layer Parallelism threading
architecture exhibited high levels of context switching and
synchronization, and did not effectively utilize the available
multi-processing resources on a SPARCcenter 2000 shared
memory multi-processor platform containing 20 processing
elements. In contrast, the message-based threading architec-
tures (Connectional Parallelism and Message Parallelism) in-
curred significantly less context switching and synchroniza-
tion overhead, and exhibited much higher levels of perfor-
mance and multi-processing resource utilization. In general,
theresultsfrom these experimentsunderscore theimportance
of the threading architecture on parallel communi cation sub-
system performance.

Components in the ASX framework described in this pa-
per are freely available via the World Wide Web at URL
http://ww. cs.wist!.edu/~schm dt/ACE. htm .
Thisdistribution contai ns compl ete source code, documenta-
tion, and exampl e test driversfor the C++ components devel -
oped as part of the ACE object-oriented network program-
ming toolkit [23] developed at the University of California,
Irvine and Washington University. The ACE toolkit is cur-
rently being used on communication software for production
communication systems at Motorola, Siemens, Ericsson, and
Kodak, as well as many academic research projects.
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