
A Distributed Continuous Quality Assurance Process to
Manage Variability in Performance-intensive Software

Arvind S. Krishna‡, Cemal Yilmaz†, Atif Memon†, Adam Porter†,
Douglas C. Schmidt‡, Aniruddha Gokhale‡, Balachandran Natarajan‡,

†Dept. of Computer Science, University of Maryland, College Park, MD 20742
‡Dept. of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37203

Abstract

Performance-intensive software is increasingly being used on
heterogeneous combinations of OS, compiler, and hardware
platforms. Examples include reusable middleware that forms
the basis for scientific computing grids and distributed real-
time and embedded systems. Since this software has stringent
quality of service (QoS) requirements, it often provides a mul-
titude of configuration options that can be tuned for specific
application workloads and run-time environments.

This paper describes the architecture of Skoll, which is a
DCQA environment containing software QA processes and
tools that leverage the extensive computing resources of
worldwide user communities to significantly and rapidly im-
prove software quality. It describes novel modeling tools and
modeling language BGML that allow Skoll users to capture
the system’s axes of variability (such as configuration options,
QoS strategies, and platform dependencies) to generate scaf-
folding code needed to conduct QA tasks on remote machines.
It describes experiments that apply BGML to systematically
evaluate and improve the performance of DRE component
middleware on a range of platforms and configuration options.
The results show that automatic analysis of QA task results can
significantly improve software quality by capturing the impact
of software variability on performance and providing feedback
to help developers optimize performance.

1 Introduction

Emerging trends and challenges. Well-documented trends
towards the expanding role of software in mission-critical sys-
tems, greater time-to-market pressures on information tech-
nology (IT) suppliers, and decreasing budgets for corporate-
sponsored IT R&D are exposing deficiencies in conven-
tional quality assurance (QA) processes. These processes
have traditionally performed functional testing, code inspec-
tions/profiling, and quality of service (QoS) performance eval-
uation/optimizationin-houseon developer-generated work-
loads and regression suites. Unfortunately, in-house QA pro-
cesses are not delivering the level of quality software needed
for large-scale mission-critical systems since they do not man-
age software variability effectively. For example, in-house QA
processes can rarely capture, predict, and recreate the run-time

environment and usage patterns that will be encountered in the
field on all supported target platforms across all desired con-
figuration options.

The deficiencies of in-house QA processes are particularly
problematic forperformance-intensive software systems. Ex-
amples of this type of software include high-performance sci-
entific computing systems, distributed real-time and embed-
ded (DRE) systems, and the accompanying systems software
(e.g., operating systems, middleware, and language processing
tools). Reusable software for these types of systems must not
only function correctly across the multiple contexts in which
it is reused and customized, it must also do so efficiently and
predictably.

To support the customizations demanded by users, reusable
performance-intensive software often must (1) run on a vari-
ety of hardware/OS/compiler platforms and (2) provide a va-
riety of options that can be configured at compile- and/or run-
time. For example, performance-intensive middleware, such
as web servers (e.g., Apache), object request brokers (e.g.,
TAO), and databases (e.g., Oracle) run on dozens of platforms
and have dozen or hundreds of options. While this variability
promotes customization, it also creates many potential system
configurations, each of which may need extensive QA to vali-
date. Consequently, a key challenge for developers of reusable
performance-intensive software involves managing variability
effectively in the face of an explodingsoftware configuration
space. As software configuration spaces increase in size and
software development resources decrease, it becomes infeasi-
ble to handle all QA activities in-house. For instance, develop-
ers may not have access to all the hardware, OS, and compiler
platforms on which their reusable software artifacts will run.
Moreover, due to time-to-market driven environments, devel-
opers may be forced to release their software in configurations
that have not been subjected to sufficient QA. The combina-
tion of an enormous configuration space and severe develop-
ment resource constraints therefore often force software de-
velopers to make design and optimization decisions without
precise knowledge of their consequences in fielded systems.
Solution approach→Distributed continuous QA processes
and tools. In response to the trends and challenges described
above, developers and organizations have begun to change the
processes they use to build and validate performance-intensive
software. Specifically, they are moving towards more ag-

1



ile processes characterized by (1) decentralized development
teams, (2) greater reliance on middleware component reuse,
assembly, and deployment, (3) evolution-oriented develop-
ment requiring frequent software updates, (4) product designs
that allow extensive end-user customization, and (5) software
repositories that help to consolidate and coordinate QA tasks
associated with the other four characteristics outlined above.
While these agile processes address key challenges with con-
ventional QA approaches, they also create new challenges,
e.g., coping with frequent software changes, remote developer
coordination, and exploding software configuration spaces.

To address the challenges with conventional and agile
software QA processes, we have developed a distributed
continuous quality assurance (DCQA) environment called
Skoll (www.cs.umd.edu/projects/skoll ) that sup-
ports around-the-world, around-the-clock QA on a computing
grid provided by end-users and distributed development teams.
The Skoll environment includes languages for modeling key
characteristics of performance-intensive software configura-
tions, algorithms for scheduling and remotely executing QA
tasks, and analysis techniques that characterize software faults
and QoS performance bottlenecks. Our feedback-driven Skoll
environment divides QA processes into multiple subtasks that
are intelligently and continuously distributed to, and executed
by, a grid of computing resources contributed by end-users
and distributed development teams around the world. The re-
sults of these executions are returned to central collection sites
where they are fused together to identify defects and guide
subsequent iterations of the QA process.

Our earlier publications [1] on Skoll described its structure
and functionality and presented results from a feasibility study
that applied Skoll tools and processes to ACE [2] and TAO [3],
which are large (i.e., over two million SLOC) reusable middle-
ware packages targeted at performance-intensive software for
DRE systems. Our initial work focused largely on building
the Skoll infrastructure, which consisted of the languages, al-
gorithms, mechanisms, and analysis techniques that tested the
functional correctnessof reusable software and its application
to end-user systems.

This paper describes several other dimensions of DCQA
processes and the Skoll environment: (1)integrating model-
based techniques with DCQA processes, (2) improving QoS as
opposed to simply functional correctness, and (3)using Skoll
to empirically optimize a system for specific run-time con-
texts. At the heart of the Skoll work presented in this paper is
BGML [4], which is Model-based toolsuite1 that applies gen-
erative model-based software techniques [5] to measure and
optimize the QoS of reusable performance-intensive software
configurations.

1BGML can be downloaded fromwww.dre.vanderbilt.edu/
cosmic .

BGML extends Skoll’s earlier focus on functional cor-
rectness to address QoS issues associated with reusable
performance-intensive software,i.e., modeling and bench-
marking interaction scenarios on various platforms by mixing
and matching configuration options. By integrating BGML
into the Skoll process, QoS evaluation tasks are performed in
a feedback-driven loop that is distributed over multiple sites.
Skoll tools analyze the results of these tasks and use them as
the basis for subsequent evaluation tasks that are redistributed
to the Skoll computing grid.

The specific contributions of the work reported in this paper
include:

• Defining model-based tools to automate common Skoll
QA tasks.

• Integrating QoS evaluation and optimization into the
Skoll DCQA process.

• Automating benchmark generation and profiling QoS
measures of highly configurable, reusable, and multi-
platform performance-intensive software.

• Demonstrating the correctness and utility of model-based
QA in a feasibility study involving standards-based DRE
component middleware.

Paper organization. The remainder of this paper is orga-
nized as follows: Section 2 presents an overview of the Skoll
DCQA architecture focusing on interactions between various
components and services; Section 3 motivates and describes
our model based meta-programmable tool (BGML), focusing
on its syntactic and semantic modeling elements that help QA
engineers to visually compose QA tasks for Skoll and its gen-
erative capabilities to the resolve accidental complexities as-
sociated with quantifying the impact of software variability
on QoS; Section 4 reports the results of experiments using
this model-based DCQA process on the CIAO QoS-enabled
component middleware framework; Section 5 examines re-
lated work and compares it with the approaches used in Skoll
and BGML; and Section 6 presents concluding remarks and
outlines future work.

2 Overview of the Structure and Func-
tionality of Skoll

To address limitations with in-house QA approaches, the Skoll
project is developing and empirically evaluating feedback-
driven processes, methods, and supporting tools fordistributed
continuous QA. In this approach software quality is improved
– iteratively, opportunistically, and efficiently – around-the-
clock in multiple, geographically distributed locations. To
support distributed continuous QA processes, we have imple-
mented a set of components and services called theSkoll in-
frastructure, which includes languages for modeling system

2



configurations and their constraints, algorithms for schedul-
ing and remotely executing tasks, and analysis techniques for
characterizing faults.

The Skoll infrastructure performs its distributed QA tasks,
such as testing, capturing usage patterns, and measuring sys-
tem performance, on a grid of computing nodes. Skoll de-
composes QA tasks into subtasks that perform part of a larger
task. In the Skoll grid, computing nodes are machines pro-
vided by the core development group and volunteered by end-
users. These nodes request work from a server when they wish
to make themselves available.

The remainder of this section describes the components, ser-
vices and interactions within the Skoll infrastructure and pro-
vides a sample scenario showing how they are used to imple-
ment Skoll processes.

2.1 The Skoll Infrastructure

Skoll QA processes are based on a client/server model. Clients
distributed throughout the Skoll grid requestjob configura-
tions(implemented as QA subtask scripts) from a Skoll server.
The server determines which subtasks to allocate, bundles up
all necessary scripts and artifacts, and sends them to the client.
The client executes the subtasks and returns the results to the
server. The server analyzes the results, interprets them, and
modifies the process as appropriate, which may trigger a new
round of job configurations for subsequent clients running in
the grid.

At a lower level, the Skoll QA process is more sophisticated.
QA process designers must determine (1) how tasks will be
decomposed into subtasks, (2) on what basis and in what or-
der subtasks will be allocated to clients, (3) how subtasks will
be implemented to execute on a potentially wide set of client
platforms, (4) how subtask results will be merged together and
interpreted, (5) if and how should the process adapt on-the-fly
based on incoming results, and (6) how the results of the over-
all process will be summarized and communicated to software
developers. To support this process we’ve developed the fol-
lowing components and services for use by Skoll QA process
designers (a comprehensive discussion appears in [1]):
Configuration space model. A cornerstone of Skoll is a for-
mal model of a QA process’s configuration space, which cap-
tures all valid configurations for QA subtasks. This informa-
tion is used in planning the global QA process, for adapting the
process dynamically, and to aid in interpreting results. In prac-
tice not all configurations make sense due to platform variabil-
ity, e.g., feature X may not be supported on operating system
Y. Skoll therefore allowsinter-option constraintsthat limit the
setting of one option based on the setting of others. Constraints
are expressed as (Pi −→ Pj), meaning “if predicatePi eval-
uates toTRUE, then predicatePj must evaluate toTRUE.” A
predicatePk can be of the formA, ¬A, A&B, A|B, or simply

(Vi, Ci), whereA, B are predicates,Vi is a option andCi is
one of its allowable values. Avalid configurationis a config-
uration that violates no inter-option constraints.
Intelligent Steering Agent. A novel feature of Skoll is its
use of anIntelligent Steering Agent(ISA) to control the global
QA process by deciding which valid configuration to allocate
to each incoming Skoll client request. The ISA treats con-
figuration selection as an AI planning problem. For exam-
ple, given the current state of the global process including
the results of previous QA subtasks (e.g., which configura-
tions are known to have failed tests), the configuration model,
and metaheuristics (e.g., nearest neighbor searching), the ISA
will chose the next configuration such that process goals (e.g.,
evaluate configurations in proportion to known usage distri-
butions) will be met. After a valid configuration is chosen,
the ISA packages the corresponding QA subtask implemen-
tation, which consists of the code artifacts, configuration pa-
rameters, build instructions, and QA-specific code (e.g., re-
gression/performance tests) associated with a software project.
This package is called ajob configuration.
Adaptation strategies. As QA subtasks are performed by
clients in the Skoll grid, their results are returned to the ISA,
which can learn from the incoming results. For example, when
some configurations prove to be faulty, the ISA can refocus re-
sources on other unexplored parts of the configuration space.
To support such dynamic behavior, Skoll QA process design-
ers can develop customizedadaptation strategiesthat monitor
the global QA process state, analyze it, and use the informa-
tion to modify future subtask assignments in ways that im-
prove process performance.

2.2 Skoll in Action

At a high level, the Skoll process is carried out as shown in
Figure 1.
1. Developers create the configuration model and adaptation
strategies. The ISA automatically translates the model into
planning operators. Developers create the generic QA subtask
code that will be specialized when creating actual job config-
urations.
2. A user requests Skoll client software via the registration
process described earlier. The user receives the Skoll client
software and a configuration template. If a user wants to
change certain configuration settings or constrain specific op-
tions he/she can do so by modifying the configuration tem-
plate.
3. A Skoll client periodically (or on-demand) requests a job
configuration from a Skoll server.
4. The Skoll server queries its databases and the user-provided
configuration template to determine which configuration op-
tion settings are fixed for that user and which must be set by
the ISA. It then packages this information as a planning goal

3



Figure 1: Skoll QA Process View

and queries the ISA. The ISA generates a plan, creates the job
configuration and returns it to the Skoll client.
5. A Skoll client invokes the job configuration and returns the
results to the Skoll server.
6. The Skoll server examines these results and invokes all
adaptation strategies. These update the ISA operators to adapt
the global process.
7. The Skoll server prepares avirtual scoreboardthat summa-
rizes subtask results and the current state of the overall pro-
cess. This scoreboard is updated periodically and/or when
prompted by developers.

3 Enhancing Skoll with a Model-based
QoS Improvement Process

Reusable performance-intensive software is often used by ap-
plications with stringent QoS requirements, such as low la-
tency and bounded jitter. The QoS of reusable performance-
intensive software is influenced heavily by factors such as (1)
the configuration options set by end-users to tune the under-
lying hardware/software platform (e.g., the concurrency archi-
tecture and number of threads used by an application signifi-
cantly affects its throughput, latency, and jitter) and (2) char-
acteristics of the underlying platform itself, (e.g., the jitter
on a real-time OS should be much lower than on a general-
purpose OS). Managing these variable platform aspects effec-

Figure 2:Elements in the CCM Architecture

tively requires a QA process that can precisely pinpoint the
consequences of mixing and matching configuration options
on various platforms. In particular, such a QA process should
resolve the following forces:

1. Minimize the time and effort associated with testing var-
ious configuration options on particular platforms,

2. Provide a framework for seamless addition of new test
configurations corresponding to various platform envi-
ronment and application requirement contexts,

In our initial Skoll approach, creating a benchmarking ex-
periment to measure QoS properties required QA engineers
to write (1) the header files, source code, that implement the
functionality, (2) the configuration and script files that tune the
underlying ORB and automate running tests and output gen-
eration, and (3) project build files (e.g., makefiles) required to
generate the executable code. Our experience during our ini-
tial feasibility study [1] revealed how tedious and error-prone
this process was since it required multiple manual steps to gen-
erate benchmarks, thereby impeding productivity and quality
in the QA process.

The remainder of this section describes how we have ap-
plied model-based techniques [5] to resolve forces 1 and 2 out-
lined earlier. In this context, model-based techniques involve
visual representations for defining entities and their interac-
tions in an application domain using domain-specific build-
ing blocks. These improvements are embodied in BGML [4],
which is a model-based benchmarking toolsuite designed to
evaluate the QoS of implementations of the CORBA Compo-
nent Model (CCM), which is shown in Figure 2 and described
in Sidebar 1.2 BGML allows CCM users to:

1. Model interaction scenarios between CCM components
using varied configuration options,i.e., capture software

2We focus on CCM in our work since it is standard component middleware
that is targeted for the QoS requirements of DRE systems. As QoS support
for other component middleware matures we will enhance our modeling tools
and DCQA processes to integrate them.

4



Sidebar 1: Overview of CCM

The CORBA Component Model (CCM) forms a key part of the
CORBA 3.x standard [6]. CCM is designed to address the lim-
itations with earlier versions of CORBA 2.x [7] middleware that
supported a distributed object computing (DOC) model [8]. Fig-
ure 2 depicts the key elements in the architecture of CCM, which
are described below.
Components. Componentsin CCM are implementation enti-
ties that collaborate with each other viaports. CCM supports sev-
eral types of ports, including (1)facets, which define an interface
that accepts point-to-point method invocations from other compo-
nents, (2)receptacles, which indicate a dependency on point-to-
point method interface provided by another component, and (3)
event sources/sinks, which indicate a willingness to exchange typed
messages with one or more components.
Container. A containerin CCM provides the run-time environ-
ment for one or more components that manages various pre-defined
hooks and strategies, such as persistence, event notification, trans-
action, and security, used by the component(s). Each container is
responsible for (1) initializing instances of the component types it
manages and (2) connecting them to other components and com-
mon middleware services. Developer specified metadata expressed
in XML can be used to instruct CCM deployment mechanisms how
to control the lifetime of these containers and the components they
manage. The meta-data is present in XML files calleddescriptors.
Component assembly. In a distributed system, a component
may need to be configured differently depending on the context
in which it is used. As the number of component configuration
parameters and options increase, it can become tedious and error-
prone to configure applications consisting of many individual com-
ponents. To address this problem, the CCM defines anassembly
entity to group components and characterize the meta-data that de-
scribes these components in an assembly. Each component’s meta-
data in turn describes the features available in it (e.g., its properties)
or the features that it requires (e.g., its dependencies).
Component server. A component serveris an abstraction that
is responsible for aggregatingphysicalentities (i.e., implementa-
tions of component instances) intological entities (i.e., distributed
application services and subsystems).
Component packaging and deployment. In addition to
the run-time building blocks outlined above, the CCM also stan-
dardizes component implementation, packaging, and deployment
mechanisms. Packaging involves grouping the implementation of
component functionality – typically stored in a dynamic link li-
brary (DLL) – together with other meta-data that describes proper-
ties of this particular implementation. The CCM Component Im-
plementation Framework (CIF) helps generate the component im-
plementation skeletons and persistent state management automat-
ically using the Component Implementation Definition Language
(CIDL).

variability in higher-level models rather than in lower-
level source code.

2. Automate benchmarking code generation to systemati-
cally identify performance bottlenecks based on mixing
and matching configurations.

3. Generate control scripts to distribute and execute the ex-
periments to users around the world to monitor QoS per-
formance behavior in a wide range of execution contexts.

4. Evaluate and compare CCM implementation perfor-
mances in a highly automated way the overhead
that CCM implementations impose above and beyond
CORBA 2.x implementations based on the DOC model.

5. Enable comparison of CCM implementations using key
metrics, such as throughput, latency, jitter, and other QoS
criteria.

6. Develop a framework that automates benchmark tests and
facilitates the seamless integration of new tests.

With BGML, QA engineers graphically model possible inter-
action scenarios. Given a model, BGML generates the scaf-
folding code needed to run the experiments. This typically
includes Perl scripts that start daemon processes, spawn the
component server and client, run the experiment, and display
the required results. BGML is built on top of the Generic
Modeling Environment (GME) [9], which provides a meta-
programmable framework for creating domain-specific mod-
eling languages and generative tools. GME is programmed
via meta-modelsand model interpreters. The meta-models
define modeling languages called paradigms that specify al-
lowed modeling elements, their properties, and their relation-
ships. Model interpreters associated with a paradigm can also
be built to traverse the paradigm’s modeling elements, per-
forming analysis and generating code.

Figure 3 presents an overview of how we have integrated
BGML with the Skoll infrastructure. Below we describe how

Figure 3: Skoll QA Process View with BGML Enhance-
ments

our BGML modeling tools interact with the existing Skoll in-
frastructure to enhance its DCQA capabilities.

5



A. QA engineers define a test configuration using BGML
models. The necessary experimentation details are captured in
the models,e.g., the ORB configuration options used, the IDL
interface exchanged between the client and the server, and the
benchmark metric performed by the experiment.

B & C. QA engineers then use BGML to interpret the model.
The OCML paradigm interpreter parses the modeled ORB
configuration options and generates the required configuration
files to configure the underlying ORB. The BGML paradigm
interpreter then generates the required benchmarking code,
i.e., IDL files, the required header and source files, and nec-
essary script files to run the experiment. Steps A, B, and C are
integrated with Step 1 of the Skoll process.

D. When users register with the Skoll infrastructure they ob-
tain the Skoll client software and configuration template. This
step happens in concert with Step 2, 3, and 4 of the Skoll pro-
cess.

E & F. The client executes the experiment and returns the
result to the Skoll server, which updates its internal database.
When prompted by developers, Skoll displays execution re-
sults using an on demand scoreboard. This scoreboard dis-
plays graphs and charts for QoS metrics,e.g., performance
graphs, latency measures and foot-print metrics. Steps E and
F correspond to steps 5, 6, and 7 of the Skoll process.

4 Feasibility Study

This section describes the design and results of an experiment
we conducted to evaluate the enhanced DCQA capabilities that
stem from integrating BGML with Skoll. In this paper, we use
the BGML modeling tools and Skoll infrastructure to execute
a formally-designed experiment using afull-factorial design,
which executes the experimental task (benchmarking in this
case) exhaustively across all combinations of the experimental
options (a subset of the configuration parameters of the CIAO
QoS-enabled component middleware).

The data from our experiments is returned to the Skoll
server, where it is organized into a database. The database then
becomes a resource for developers of applications and mid-
dleware who wish to study the system’s performance across
its many different configurations. Since the data is gathered
through a formally-designed experiment, we use statistical
methods (e.g., analysis of variance, wilcox ran sum tests, and
classification tree analysis) to analyze the data. To demon-
strate the utility of this approach, we present two use cases that
show how (1) CIAO developers can query the database to im-
prove the performance of the component middleware software
and (2) application developers can fine-tune CIAO’s config-
uration parameters to improve the performance of their soft-
ware.

4.1 Hypotheses

The use cases we present in this section explore the following
hypotheses:

1. The Skoll grid can be used together with BGML to
quickly generate benchmark experiments that pinpoint
specific QoS performance aspects of interest to develop-
ers of middleware and/or applications,e.g., BGML al-
lows QA process engineers to quickly setup QA pro-
cesses and generate significant portions of the required
benchmarking code.

2. Using the output of BGML, the Skoll infrastructure can
be used to (1) quickly execute benchmarking experiments
on end-user resources across a Skoll grid and (2) capture
and organize the resulting data in a database that can be
used to improve the QoS of performance-intensive soft-
ware.

3. Developers and users of performance-intensive software
can query the database to gather important information
about that software,e.g., obtain a mix of configuration
option settings that improve the performance for their
specific workload(s).

4.2 Experimental Process

We used the following experimental process to evaluate the
hypotheses outlined in Section 4.1:

Step 1: Choose a software system that has stringent perfor-
mance requirements. Identify a relevant configuration
space.

Step 2: Select workload application model and build bench-
marks using BGML.

Step 3: Deploy Skoll and BGML to run benchmarks on multi-
ple configurations using a full factorial design of the con-
figuration options. Gather performance data.

Step 4: Formulate and demonstrate specific uses of the per-
formance results database from the perspective of both
middleware and application developers.

4.2.1 Step 1: Subject Applications

We used ACE 5.4 + TAO 1.4 + CIAO 0.4 for this study.
CIAO [10] is a QoS-enabled implementation of CCM (see
Sidebar 1) developed at Washington University, St. Louis
and Vanderbilt University to help simplify the development of
performance-intensive software applications by enabling de-
velopers to declaratively provision QoS policies end-to-end
when assembling a DRE system. CIAO adds component sup-
port to TAO [3], which is distribution middleware that imple-
ments key patterns [11] to meet the demanding QoS require-
ments of DRE systems.

6



4.2.2 Step 2: Build Benchmarks

Figure 4 describes how the ACE+TAO+CIAO QA engineers
used the BGML tool to generate the screening experiments to
quantify the behavior of latency and throughput. As shown in

Figure 4:BGML Use Case Scenario

this figure, the following steps were performed:

1. QA engineers used the BGML modeling paradigm to
compose the experiment. In particular, QA engineers use
the domain-specific building blocks in BGML to com-
pose experiments.

2. In the experiment modeled, QA engineers associated the
QoS characteristic (in this case roundtrip latency and
throughput) that will be captured in the experiment. Fig-
ure 5 depicts how this is done in BGML.

Figure 5:Associating QoS Metrics in BGML

3. Using the experiment modeled by QA engineers, BGML
interpreters generated the benchmarking code required to
set-up, run, and tear-down the experiment. The gener-
ated files include component implementation files (.h and
.cpp), IDL files (.idl), component IDL files (.cidl), and
benchmarking code (.cpp) files.

4. The generated file was then executed using the Skoll
DCQA process and QoS characteristics were measured.
The execution was done in Step 4 described in Sec-
tion 4.2.4.

4.2.3 Step 3: Execute the DCQA process

For this version of ACE+TAO+CIAO, we identified 14 run-
time options that could affect latency and throughput. As
shown in Table 1, each option is binary, so the entire configu-
ration space is214 = 16, 384. We executed the benchmark ex-
periments on each of the 16,384 configurations. This is called
a full-factorial experimental design. Clearly such designs will
not scale up to arbitrary numbers of factors. In ongoing work
we are therefore studying strategies for reducing the number of
observations that must be examined. In the current example,
however, the design is manageable.

Option Index Option Name Option Settings
opt1 ORBReactorThreadQueue {FIFO, LIFO}
opt2 ORBClientConnectionHandler {RW, MT}
opt3 ORBReactorMaskSignals {0, 1}
opt4 ORBConnectionPurgingStrategy {LRU, LFU}
opt5 ORBConnectionCachePurgePercentage {10, 40}
opt6 ORBConnectionCacheLock {thread, null}
opt7 ORBCorbaObjectLock {thread, null}
opt8 ORBObjectKeyTableLock {thread, null}
opt9 ORBInputCDRAllocator {thread, null}
opt10 ORBConcurrency {reactive, tpc}
opt11 ORBActiveObjectMapSize {32, 128}
opt12 ORBUseridPolicyDemuxStrategy {linear, dynamic}
opt13 ORBSystemidPolicyDemuxStrategy {linear, dynamic}
opt14 ORBUniqueidPolicyReverseDemuxStrategy{linear, dynamic}

Table 1:The Configuration Space: Run-time Options and
their Settings

For a given configuration, we use the BGML modeling
paradigms to model the configuration visually and generate
the scaffolding code to run the benchmarking code. The ex-
periment was run three times and for each run the client sent
300,000 requests to the server. In total, we distributed and ran
∼50,000 benchmarking experiments. For each run, we mea-
sured the latency values for each request and total throughput
(events/second).

The BGML modeling tool helps improve the productiv-
ity of QA engineers by allowing them to compose the ex-
perimentvisually rather than wrestling with low-level source
code. This tool thus resolves tedious and error-prone acci-
dental complexities associated with writing correct code by
auto-generating them from higher level models. Table 2 sum-
marizes the BGML code generation metrics for a particular
configuration.

Files Number Lines of Code Generated (%)
IDL 3 81 100

Source (.cpp) 2 310 100
Header (.h) 1 108 100
Script (.pl) 1 115 100

Config (svc.conf) 1 6 100
Descriptors (XML) 2 90 0

Table 2:Generated Code Summary for BGML

7



This table shows how BGML automatically generates 8 of
10 required files that account for 88% of the code required for
the experiment.

4.2.4 Step 4: Example Use Cases

Below we present two use cases that leverage the data col-
lected by the Skoll DCQA process. The first scenario involves
application developers who need information to help config-
uring CIAO for their use. The second involves CIAO middle-
ware developers who want to prioritize certain development
tasks.

Use case #1: Application developer configuration. In this
scenario, a developer of a performance-intensive software ap-
plication is using CIAO. This application is expected to have a
fairly smooth traffic stream and needs high overall throughput
and low latency for individual messages. This developer has
decided on several of the option settings needed for his/her
application, but is unsure how to set the remaining options
and what effect those specific settings will have on applica-
tion performance. To help answer this question, the applica-
tion developer goes to the ACE+TAO+CIAO Skoll web page
and identifies the general workload expected by the applica-
tion, the platform, OS, and ACE+TAO+CIAO versions used.
Next, the developer arrives at the web page shown in Figure 6.
On this page the application developer inputs those option set-

Figure 6:Accessing Performance Database

tings (s)he expects to use and left unspecified (denoted “*”)
those for which (s)he needs guidance. The developer also in-
dicates the performance metrics (s)he wishes to analyze and
then submits the page.

Submitting the page causes several things to happen. First,
the data corresponding to the known option settings is lo-
cated in the Skoll databases. Next, the system graphs the

historical performance distributions of both the entire con-
figuration space and the subset specified by the application
developer (i.e., the subset of the configuration space consis-
tent with the developer’s partially-specified options). These
graphs are shown in Figure 7 and Figure 8. Last, the system

Figure 7:1st Iteration

presents a statistical analysis of the options that significantly
affect the performance measures, as depicted in Figure 8. To-
gether, these views present the application developer with sev-
eral pieces of information. First, it shows how the expected
configuration has performed historically on a specific set of
benchmarks. Next, it compares this configuration’s perfor-
mance with the performance of other possible configurations.
It also indicates which of the options have a significant effect
on performance and thus should be considered carefully when
selecting the final configuration.

Figure 8: 1st Iteration: Main Effects Graph (Statistically
Significant Options are Denoted by an *)

8



Continuing our use case example, the application developer
sees that optionopt10(ORBConcurrency ) has not been set
and that it has a significant effect on performance. To better
understand the effect of this option, the developer consults the
main effects graph shown in Figure 8). This plot shows that
settingORBConcurrency to thread-per-connection(where
the ORB dedicates one thread to each incoming connection)
should lead to better performance than setting it toreactive
(where the ORB uses a single thread to detect, demultiplex
and service multiple client connections). The application de-
veloper therefore sets the option and reruns the earlier anal-
ysis. The new analysis shows that, based on historical data,
the new setting does indeed improve performance, as shown
in Figure 9. However, the accompanying main effects graph

Figure 9:2nd Iteration

Figure 10:2nd Iteration: Main effects graph (Statistically
Significant Options are Denoted by an *)

shown in Figure 10 shows that the remaining unset options

are unlikely to have a substantial effect on performance. At
this point, the application developer has several choices,e.g.,
(s)he can stop here and set the remaining options to their de-
fault settings or (s)he can revisit the original settings. In this
case, our developer reexamines the original settings and their
main effects (See Figure 11) and determines that changing the
setting ofopt2(ORBClientConnectionHandler ) might
greatly improve performance.

Using this setting will require making some changes to
the actual application, so the application developer reruns the
analysis to get an idea of the potential benefits of changing the
option setting. The resulting data is shown in Figure 12. The
results in this figure show that the performance improvement
from setting this option would be substantial. The developer
would now have to decide whether the benefits justify the costs
of changing the application.

Figure 11:3rd Iteration: Main Effects Graph (Statistically
Significant Options are Denoted by an *)

Use case #2: Middleware developer task prioritization.
In this scenario, a developer of CIAO middleware itself wants
to do an exploratory analysis of the system’s performance
across its configuration space. This developer is looking for
areas that are in the greatest need of improvement. To do this
(s)he accesses the ACE+TAO+CIAO and Skoll web page and
performs several tasks. First, (s)he examines the overall per-
formance distribution of one or more performance metric. In
this case, the middleware developer examines measurements
of system latency, noting that the tails of the distribution are
quite long (the latency plots are the same as those found in
the “all.options” subplots of Figure 7). The developers wants
to better understand which specific configurations are the poor
performers.3

3For latency the worst performers are found in the upper tail, whereas for
throughput it is the opposite.

9



Figure 12:3rd Iteration: Step 3

Our DCQA process casts this question as a classification
problem. The middleware developer therefore recodes the
performance data into two categories: those in the worse-
performing 10% and the rest. From here out, (s)he considers
poor performing configurations as those in the bottom 10%.
Next, (s)he uses classification tree analysis [12] to model the
specific combinations of options that lead to degraded perfor-
mance.

For our current use case example, the middleware developer
uses a classification tree to extract performance-degrading op-
tion patterns,i.e., (s)he extracts the options and option set-
tings from the tree that characterize poorly performing config-
urations. Figure 13 shows one tree obtained from the CIAO
data (for space reasons the tree shown in the Figure gives
only a coarse picture of the information actually contained in
the tree). By examining the tree, the middleware developer

Figure 13:Sample Classification Tree Modeling Poorly Per-
forming Configurations

notes that a large majority of the poorly performing configu-
rations haveORBClientConnectionHandler set toMT

andORBConcurrency set toreactive. The first option in-
dicates that the CORBA ORB uses separate threads to service
each incoming connections. The second option indicates that
the ORB’s reactor [11] (the framework that detects and ac-
cepts connections and dispatches event to the corresponding
event handlers when events arrive) are executed by a pool of
threads.

The information gleaned by the classification tree is then
used to guide exploratory data analysis. To help middleware
developers organize and visualize the large amount of data,
we employed the Treemaps data visualizer (www.cs.umd.
edu/hcil/treemap ), which allows developers to explore
multidimensional data. The performance data described in the
previous paragraph is shown in Figure 14. This figure shows
poorly performing configurations as dark tiles and the accept-
ably performing configurations as lighter tiles. The layout first
divides the data into two halves: the left for configurations
with ORBClientConnectionHandler set toRWand the
right for those set toMT. Each half is further subdivided, with
the upper half for configurations withORCConcurrency
set tothread-per-connectionand the lower half for those set
to reactive. The data can be further subdivided to arbitrary
levels, depending on how many options the middleware de-
veloper wishes to explore. The treemap shown in Figure 14
depicts how almost all the poor performers are in the bottom
right quadrant, which suggests that the options discovered by
the classification tree are reasonably good descriptors of the
poorly performing configurations.

The middleware developer continues to explore the data,
checking whether the addition of other options would fur-
ther isolate the poor performers, thereby providing more in-
formation about the options that negatively influence perfor-
mance. After some exploration, the middleware developer find
no other influential options. Next, (s)he examines the poor
performing configurations that are not part of the n group,
i.e., those withORBCurrency set tothread-per-connection
rather thanreactive. The middleware developer determines
that nearly all of the latency values for these configurations
are quite close to the 10% cutoff. In fact, lowering the arbitrary
cutoff to around 8% leads to the situation in which nearly every
poor performer hasORBConnectionClientHandler set
to MT andORBConcurency set toreactive. Based on this
information, the middleware developer can conduct further
studies to determine whether a redesign might improve per-
formance.

4.3 Discussion

The experiments reported in this section empirically explored
how integrating BGML and Skoll allowed us to quickly imple-
ment specific DCQA processes to help application and middle-
ware developers understand, use, and improve highly-variable

10



Figure 14:Treemap Visualization

performance-intensive systems. To accomplish this, we used
BGML and Skoll to implement a DCQA process that con-
ducted a large-scale, formally-designed experiment across a
grid of remote machines. This process quickly collected per-
formance data across all combinations of a set of system con-
figuration options, thereby allowing application and middle-
ware developers to conduct sophisticated statistical analyses.

We found that the BGML modeling approach allowed us
to specify the relevant configuration space quickly and to au-
tomatically generate a large fraction of the benchmark code
needed by the DCQA process. In our previous efforts [1]
we performed these steps manually, making numerous er-
rors. Overall, it took around 48 hours of CPU time to run
the∼50,000 experimental tasks dictated by the experimental
design. Calendar time is effectively dictated by the number of
end-users participating in the process. We see no problem con-
ducting these types of experiment several times a day, which
is particularly useful for ACE++TAOCIAO developers (whose
middleware infrastructure changes quite frequently), since this
will help keep the performance data in synch with the evolving
middleware.

Although this paper focused on experiments over a single
platform, we can run our Skoll DCQA process over many
platforms. This cross-platform portability is extremely im-
portant to ACE++TAOCIAO developers because their middle-
ware run over dozens of compiler/OS platforms, though in-
dividual middleware developers often have access to only a

few platforms. Our DCQA process therefore gives individ-
ual developers virtual access to all platforms. Moreover, our
approach makes performance data accessible to application
developers and end-users, which helps extend the benefits of
DCQA processes from the core to the periphery.

Despite the success of our experiments, we also found nu-
merous areas for improvement. For example, we realize that
exhaustive experimental designs can only scale up so far. As
the number of configuration options under study grows, it will
become increasingly important to find more efficient experi-
mental designs. Moreover, the options we studied were binary
and had no inter-option constraints, which will not always be
the case in practice. Additional attention therefore must be
paid to the experimental design to avoid incorrect analysis re-
sults.

We also found that much more work is needed to support
data visualization and interactive exploratory data analysis.
We have included some tools for this in Skoll, but they are
rudimentary. More attention must be paid to characterizing
the workload examined by the benchmark experiments. The
one we used in this study modeled a constant flow of mes-
sages, but obviously different usage scenarios will call for dif-
ferent benchmarks. Finally, we note that our use cases focused
on middleware and applications at a particular point in time.
Time-series analyses that study systems as they evolve may
also be valuable.

11



5 Related Work

This section compares our work on model-driven performance
evaluation techniques in Skoll and BGML with other related
research efforts including (1) large-scale testbed environments
that provide a platform to conduct experiments using hetero-
geneous hardware, OS, and compiler platforms, (2) evaluating
the performance of middleware layers, and (3) feedback-based
optimization techniques that use empirical data and mathemat-
ical models to identify performance bottlenecks.
Large-scale benchmarking testbeds. EMULab [13] is a
testbed at the University of Utah that provides an environ-
ment for experimental evaluation of networked systems. EM-
ULab provides tools that researchers can use to configure the
topology of their experiments,e.g., by modeling the under-
lying OS, hardware, and communication links. This topol-
ogy is then mapped [14] to∼250 physical nodes that can
be accessed via the Internet. The EMULab tools can gener-
ate script files that use the Network Simulator (NS) (http:
//www.isi.edu/nsnam/ns/ ) syntax and semantics to
run the experiment.

The Skoll infrastructure provides a superset of EMULab
that it is not limited by resources of a particular testbed, but
instead can leverage the vast end-user computer resources in
the Skoll grid. Moreover, the BGML model interpreters can
generate NS scripts to integrate our benchmarks with experi-
ments in EMULab.
Feedback-driven optimization techniques. Traditional
feedback-driven optimization techniques can be divided into
the following categories:
•Offline analysis, which has been applied to program anal-

ysis to improve compiler-generated code. For example, the
ATLAS [15] numerical algebra library uses an empirical op-
timization engine to decide the values of optimization param-
eters by generating different program versions that are run on
various hardware/OS platforms. The output from these runs
are used to select parameter values that provide the best per-
formance. Mathematical models are also used to estimate op-
timization parameters based on the underlying architecture,
though empirical data is not fed into the models to refine it.

Our approach on BGML enhances ATLAS by feeding back
platform-specific information into the models to identifying
performance bottlenecks at model construction time. This in-
formation can be used to select optimal configurations ahead
of time that maximize QoS behavior.
• Online analysis, where feedback control is used to dy-

namically adapt QoS measures. An example of online analy-
sis is the ControlWare middleware [16], which uses feedback
control theory by analyzing the architecture and modeling it
as a feedback control loop. Actuators and sensors then mon-
itor the system and affect server resource allocation. Real-
time scheduling based on feedback loops has also been ap-

plied to Real-time CORBA middleware [17] to automatically
adjust the rate of remote operation invocation transparently to
an application.

Though online analysis enables systems to adapt at run-
time, the optimal set of QoS features are not determined at
system initialization. Using the model-based techniques pro-
vided by BGML, QoS behavior and performance bottlenecks
on various hardware and software configurations can be deter-
mined offline and then fed into the models to generate optimal
QoS characteristics at model construction time. Moreover, dy-
namic adaptation can incur considerable overhead from sys-
tem monitoring and adaptation, which may be unacceptable
for performance-intensive DRE systems.

• Hybrid analysis , which combines aspects of offline and
online analysis. For example, the continuous compilation
strategy [18] constantly monitors and improves application
code using code optimization techniques. These optimiza-
tions are applied in four phases including (1)static analysis, in
which information from training runs is used to estimate and
predict optimization plans, (2)dynamic optimization, in which
monitors apply code transformations at run-time to adapt pro-
gram behavior, (3)offline adaptation, in which optimization
plans are actually improved using actual execution, and (4)re-
compilation, where the optimization plans are regenerated.

BGML’s model-based strategy can enhance conventional
hybrid analysis by tabulating platform-specific and platform-
independent information separately using the Skoll frame-
work. In particular, Skoll does not incur the overhead of sys-
tem monitoring since behavior does not change at run-time.
New platform-specific information obtained can be fed back
into the models to optimize QoS measures.

Generative Benchmarking Techniques. There have been
a several initiatives that use generative techniques similar to
BGML for generating test-cases and benchmarking for per-
formance evaluation. The ForeSight [19] tool uses empirical
benchmarking engine to capture QoS information for COTS
based component middleware system. The results are used
to build mathematical models to predict performance. This is
achieved using a three pronged approach of (1) create a per-
formance profile of how components in a middleware affect
performance, (2) Construct a reasoning framework to under-
stand architectural trade-offs,i.e., know how different QoS at-
tributes interact with one another and (3) Feed this configura-
tion information into generic performance models to predict
the configuration settings required to maximize performance.

The SoftArch/MTE [20] tool provides a framework for sys-
tem architects to provide higher level abstraction of the sys-
tem specifying system characteristics such as middleware,
database technology, and client requests. The tool then gen-
erates a implementation of the system along with the perfor-
mance tests that measure system characteristics. These results

12



are then displayed back,i.e., annotated in the high level dia-
grams, using tools such as Microsoft Excel. This allows archi-
tects to refine the design for system deployment.

BGML closely relates to the aforementioned approaches.
However, both ForeSight and SoftArch tools lack DCQA en-
vironments to accurately capture QoS variations on a range of
varied hardware, OS and compiler platforms. Rather than us-
ing a generic mathematical models to predict performance, the
BGML tools use a feedback-driven approach [4], wherein the
DCQA environment is used to empirically evaluate the QoS
characteristics offline. This information can then be used to
provide the modeler with accurate system information. Fur-
ther, platform specific optimization techniques can also ap-
plied to maximize QoS characteristics of the system.

6 Concluding Remarks

Reusable software for performance-intensive systems increas-
ingly has a multitude of configuration options and runs on a
wide variety of hardware, compiler, network, OS, and mid-
dleware platforms. The distributed continuous QA techniques
provided by Skoll play an important role in ensuring the cor-
rectness and quality of service (QoS) of performance-intensive
software.

Skoll helps to ameliorate the variability in reusable software
contexts by providing

• Domain-specific modeling languages that encapsulate the
variability in software configuration options and interac-
tion scenarios within GME modeling paradigms.

• An Intelligent Steering Agent (ISA) to map configuration
options to clients that test the configuration and adap-
tation strategies to learn from the results obtained from
clients and

• Model-based interpreters that generate benchmarking
code and provide a framework to automate benchmark
tests and facilitate the seamless integration of new tests.

Our experimental results showed how the modeling tools
improve productivity by resolving the accidental complexity
involved in writing error-prone source code for each bench-
marking configuration. Section 4.2.3 showed that by using
BGML, ∼90% of the code required to test and profile each
combination of options can be generated, thereby significantly
reducing the effort required by QA engineers to empirically
evaluate impact of software variability on numerous QOS pa-
rameters. Section 4.2.4 showed how the results collected us-
ing Skoll can be used to populate a data repository that can
be used by both application and middleware developers. The
two use case presented in our feasibility study showed how
our approach provides feedback to (1) application developers,
e.g., to tune configurations to maximize end-to-end QoS and

(2) middleware developers,e.g., to more readily identify con-
figurations that should be optimized further.

In future work, we are applying DCQA processes to a grid
of geographically decentralized computers composed of thou-
sands of machines provided by users, developers, and organi-
zations around the world. We are also integrating our DCQA
technologies into the DRE software repository maintained by
the ESCHER Institute (www.escherinstitute.org ),
which is a non-profit organization4 established to preserve,
maintain, and promote the technology transfer of government-
sponsored R&D tools and frameworks in the DRE computing
domain.

The ESCHER repository contains over 3 million lines of
reusable, quality-controlled C++ and Java software tools and
frameworks for the DRE system developer and user commu-
nities. Tools and frameworks enter the repository based on
certain criteria (e.g., maturity, reliability, interoperability, ap-
plicability to DRE system development) and use of quality
development standards (e.g., documentation, defect tracking,
source code management, testing, and metrics). The ESCHER
repository therefore provides an ideal environment for inte-
grating and evaluating DCQA technologies in the context of
performance-intensive software.

References
[1] A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D. C. Schmidt, and

B. Natarajan, “Skoll: Distributed Continuous Quality Assurance,” in
Proceedings of the 26th IEEE/ACM International Conference on
Software Engineering, (Edinburgh, Scotland), IEEE/ACM, May 2004.

[2] D. C. Schmidt and S. D. Huston,C++ Network Programming, Volume
1: Mastering Complexity with ACE and Patterns. Boston:
Addison-Wesley, 2002.

[3] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request Brokers,”Computer
Communications, vol. 21, pp. 294–324, Apr. 1998.

[4] A. S. Krishna, D. C. Schmidt, A. Porter, A. Memon, and
D. Sevilla-Ruiz, “Improving the Quality of Performance-intensive
Software via Model-integrated Distributed Continuous Quality
Assurance,” inProceedings of the 8th International Conference on
Software Reuse, (Madrid, Spain), ACM/IEEE, July 2004.

[5] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, “Model-Integrated
Development of Embedded Software,”Proceedings of the IEEE,
vol. 91, pp. 145–164, Jan. 2003.

[6] Object Management Group,CORBA Components, OMG Document
formal/2002-06-65 ed., June 2002.

[7] Object Management Group,The Common Object Request Broker:
Architecture and Specification, 2.6.1 ed., May 2002.

[8] A. Gokhale, D. C. Schmidt, B. Natarajan, and N. Wang, “Applying
Model-Integrated Computing to Component Middleware and
Enterprise Applications,”The Communications of the ACM Special
Issue on Enterprise Components, Service and Business Rules, vol. 45,
Oct. 2002.

[9] A. Ledeczi, A. Bakay, M. Maroti, P. Volgysei, G. Nordstrom,
J. Sprinkle, and G. Karsai, “Composing Domain-Specific Design
Environments,”IEEE Computer, Nov. 2001.

4The initial sponsors of the ESCHER Institute are General Motors,
Raytheon, Boeing, NSF, and DARPA.

13



[10] N. Wang, D. C. Schmidt, A. Gokhale, C. Rodrigues, B. Natarajan, J. P.
Loyall, R. E. Schantz, and C. D. Gill, “QoS-enabled Middleware,” in
Middleware for Communications(Q. Mahmoud, ed.), New York: Wiley
and Sons, 2003.

[11] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,
Pattern-Oriented Software Architecture: Patterns for Concurrent and
Networked Objects, Volume 2. New York: Wiley & Sons, 2000.

[12] A. Porter and R. Selby, “Empirically Guided Software Development
Using Metric-Based Classification Trees,”IEEE Software, Mar. 1990.

[13] B. White and J. L. et al, “An Integrated Experimental Environment for
Distributed Systems and Networks,” inProceedings of the Fifth
Symposium on Operating Systems Design and Implementation,
(Boston, MA), pp. 255–270, USENIX Association, Dec. 2002.

[14] Robert Ricci and Chris Alfred and Jay Lepreau, “A Solver for the
Network Testbed Mapping Problem,”SIGCOMM Computer
Communications Review, vol. 33, pp. 30–44, Apr. 2003.

[15] Kamen Yotov and Xiaoming Li and Gan Ren et.al, “A Comparison of
Empirical and Model-driven Optimization,” inProceedings of ACM
SIGPLAN conference on Programming Language Design and
Implementation, June 2003.

[16] R. Zhang, C. Lu, T. Abdelzaher, and J. Stankovic, “Controlware: A
Middleware Architecture for Feedback Control of Software
Performance,” inProceedings of the International Conference on
Distributed Systems 2002, July 2002.

[17] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son, “Feedback Control
Real-Time Scheduling: Framework, Modeling, and Algorithms,”
Real-Time Systems Journal, vol. 23, pp. 85–126, July 2002.

[18] B. Childers, J. Davidson, and M. Soffa, “Continuous Compilation: A
New Approach to Aggressive and Adaptive Code Transformation,” in
Proceedings of the International Parallel and Distributed Processing
Symposium, Apr. 2003.

[19] Y. Liu, I. Gorton, A. Liu, N. Jiang, and S. Chen, “Designing a Test
Suite for Empirically-based Middleware Performance Prediction,” in40
th International Conference on Tenchnology of Object-Oriented
Languages and Systems, Sydney Australia, Australian Computer
Society, Aug. 2002.

[20] J. Grundy, Y. Cai, and A. Liu, “Generation of Distributed System
Test-beds from High-level Software Architecture Description,” in16 th
International Conference on Automated Software Engineering, Linz
Austria, IEEE, Sept. 2001.

14


