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Abstract

The next generation of communication subsystems must sup-
port diverse applications (such as interactive voice and
video conferencing, supercomputer visualization, collabora-
tive work, and remote process control) operating over high-
performance local, metropolitan, and wide area networks
(such as FDDI, SMDS, and B-ISDN). This paper describes a
framework that contains a number of resources, languages,
and tools for generating customized protocols that support di-
verse multimedia applications running on high-performance
networks. This framework facilitates the configuration of
application-tailored, function-based communication proto-
cols that are automatically synthesized from high-level spec-
ifications. In addition, this framework also decouples the
platform-independent aspects of protocol configuration from
the platform-dependent aspects. This enables the genera-
tion of efficient protocols on a variety of hardware platforms
that offer parallel processing based on shared memory and
message passing architectures.

1 Introduction

Communication systems must undergo significant changes to
support the emerging diversity of application requirements
and high-performance network characteristics efficiently and
flexibly. This diversity is manifested by multimedia appli-
cations that contain multiple data streams (such as video,
voice, and text) possessing different service characteristics.
Likewise, the next generation of networks (such as DQDB,
FDDI, and ATM-based B-ISDN) provide increased channel
speeds, decreased bit error rates, and a wider range of ser-
vices (such as asynchronous, synchronous and isochronous

1Portions of the University of California, Irvine material is based upon
work supported by the National Science Foundation under Grant No. NCR-
8907909. This research is also supportedin part by the University of Califor-
nia MICRO program. Additional support for this research was also provided
by Nippon Steel Information and Communication Systems Inc. (ENICOM),
Hitachi Ltd., Hitachi America, and Tokyo Electric Power Company.

data delivery) than traditional networks.
Delivering these high-performance network capabilities to

applications may require modifications to existing communi-
cation models, service interfaces, and protocol functionality.
For example, layered communication models limit the po-
tential for processing protocols on parallel platforms. They
also include redundant functionality in multiple protocol lay-
ers [1]. Moreover, conventional transport service interfaces
(such as those available in the OSI [2] and TCP/IP [3] pro-
tocol suites) do not enable applications to specify certain
service requirements (such as isochronous data delivery or
inter-stream synchronization). In addition, the next genera-
tion of protocols must efficiently support the increasing inte-
gration of traditional and emerging applications and network
services. It appears to be infeasible, however, to develop
a single “monolithic” protocol that integrates every differ-
ent type of service. Such a protocol would likely become a
highlycomplex edifice that is difficult to implement correctly
and is unable to support all types of service efficiently.

A more flexible approach may be to develop “application-
tailored” protocols that are customized for specific types
of services such as transferring voice, video, text, and im-
age data [4, 5]. Each of these protocols may be simpler
and more efficient to design and implement than a single
monolithic protocol [6]. However, an application-tailored
approach may be impractical if substantial effort is required
to configure and reconfigure each customized protocol im-
plementation manually. This paper describes a framework
that is being developed to help overcome this potential draw-
back. This framework provides specification notations and
configuration languages that support the automated genera-
tion of customized protocols. These customized protocols
are composed of reusable components known as protocol
function [1]. Each protocol function performs a well-defined
protocol processing task such as flow control, error control,
acknowledgment, and connection establishment.

The framework presented in this paper facilitates the de-
velopment of communication subsystems that adapt rapidly
to changes in application requirements and advances in net-
work technology. To achieve this, the languages and tools
in this framework emphasize automation, reusability, and
flexibility. Automated language support based on reusable
building-block functions simplifies the development of cus-
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Figure 1: The Function-based Communication Model

tomized protocols. In contrast to manual programming tech-
niques that use conventional low-level languages and oper-
ating system (OS) services directly, automation enables ap-
plications and developers to utilize the increased flexibility
offered by an application-tailored protocol approach. More-
over, the framework presented here decouples the hardware
and OS platform-independent aspects of protocol generation
from the platform-dependent aspects. This decoupling helps
facilitate the generation and execution of efficient protocols
on a variety of hardware platforms (such as transputers and
symmetric multi-processors) that offer several types of par-
allel processing architectures (such as message passing and
shared memory).

A model describing a flexible function-based communi-
cation subsystem (F-CSS) is presented in [1]. A similar
approach (ADAPTIVE) involving transport system support
for multimedia applications is presented in [7]. Other re-
lated work addresses issues such as architectures that support
function-based protocol decomposition [5, 8] and graph- and
shape-based protocol configuration techniques [6, 9]. How-
ever, the related work does not address in detail the automated
support necessary to generate application-tailored, function-
based protocols that run on parallel platforms.

This paper is organized as follows. Section 2 outlines
and motivates the function-based communication model and
the framework that supports this model. Section 3 presents
several languages that facilitate the description and configu-
ration of conventional and customized protocols. Section 4
describes a higher-level notation for specifying application
services via qualitative and quantitative requirements. Sec-
tion 5 outlines the tasks performed by tools that support and
automate the protocol generation process. Section 6 presents
concluding remarks.

2 A Function-based Communication
Subsystem

A communication model (such as the OSI reference model)
describes a set of abstract entities and the relationships be-
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Figure 2: Protocol Functions and Protocol Mechanisms

tween these entities. This section outlines and defines the pri-
mary entities in a function-based communication model [1].
It also describes the major components in a framework that is
being developed to implement the function-based communi-
cation model on several hardware and operating system plat-
forms. The components in this framework include various
resources (such as C++ component libraries and information
bases), specification notations and configuration languages,
and supporting tools. Although the framework described in
this paper is oriented towards the function-based communica-
tion model, it is designed to support other types of traditional
communication models as well [10].

2.1 The Function-based Model and Commu-
nication Architecture

Traditional communication models (such as the Internet and
ISO OSI reference models) are characterized by hierarchical
protocol layers. However, the efficiency, functionality, and
flexibility of these layered communication models may be
inadequate to support the increasing diversity of application
requirements [11, 12]. These inadequacies are addressed by
the function-based communication subsystem (F-CSS) de-
scribed in [1]. F-CSS is based upon a function-based com-
munication model characterized by a “de-layered” communi-
cation architecture. In this model, conventional coarse-grain
hierarchical protocol layers are replaced by a communica-
tion subsystem that is decomposed into finer-grain protocol
functions (illustrated in Figure 1).

Typical examples of protocol functions include flow con-
trol, error control, acknowledgment, and connection estab-
lishment. Each protocol function may be implemented via
alternative protocol mechanisms (as shown in Figure 2).
For instance, the flow control function may be implemented
by either window-based and/or rate-based mechanisms. In
essence, these mechanisms comprise the instructions of the
virtual machine that constitutes the function-based commu-
nication model. Functions and mechanisms may be treated as
“black-boxes” and accessed solely via their interfaces. More-
over, each mechanism may be instantiated using different
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implementation techniques (such as memory management
schemes that minimize data copying, hardware support for
protocol functions such as checksumming and demultiplex-
ing, and parallel processing of protocol functions) available
on various target platforms.

The primary motivations for utilizing a function-based
approach are to enhance service flexibility and to improve
performance in order to better satisfy application require-
ments. For example, applications may precisely specify their
quantitative and qualitative requirements via a flexible ser-
vice interface described in [1]. This interface enables the
communication subsystem to select or generate customized
protocols that use protocol functions as their basic building-
blocks. These protocols are specially-tailored to contain the
minimal set of functions required to perform a particular
service. In addition, functions form a convenient level of
abstraction that is amenable to parallel execution on vari-
ous multi-processor platforms. Performance measurements
indicate that this function-based communication model is a
promising approach for developing high-performance trans-
port systems [13].

Protocol functions also serve as building-blocks for vari-
ous architectural components that support the function-based
communication model. For example, a particular set of func-
tions may be combined to form a protocol machine. Each
protocol machine may be specifically-tailored to support an
application data stream. A data stream represents a uni-
directional flow of application data between one or more
communicating entities. To support complex multimedia ap-
plications (such as teleconferencing), multiple data streams
may be consolidated to form a session. A session manager
coordinates the protocol machines of related data streams
within each session. It generates and interprets session con-
trol information and performs various management tasks such
as adding, modifying, or deleting data streams dynamically.
Each data stream in a session is implemented by a protocol
machine that is customized for a specific set of application
requirements during a particular time period.

Figure 3 depicts the relationships between these various
entities. In this figure, Application A maintains two sessions.
Session 1 contains two outgoingdata streams and one incom-
ing data stream and Session 2 contains a single outgoing data
stream. Each data stream is implemented by a different pro-
tocol machine, which is coordinated by a session manager
in each session. The network interface is responsible for
demultiplexing incoming application data onto a particular
protocol machine that is associated with a unique combina-
tion of session and data stream. This de-layered approach
enables the selected protocol machine to process incoming
data without requiring additional demultiplexing operations,
thereby reducing jitter [14] and increasing the potential for
parallelism by minimizing synchronization overhead.

2.2 Configuration and Synthesis of Protocol
Machines

The framework described in this paper provides language
support for the automatic generation of function-based,
application-tailored protocol machines. The languages in
this framework access and manipulate information stored in
a protocol resource pool. Among other things, this resource
pool contains descriptors that characterize key syntactic and
semantic attributes of alternative mechanisms that implement
various protocol functions.

Applications and developers may compose protocol ma-
chines by indirectly or directly selecting particular func-
tions and mechanisms from the resource pool. Protocol
machines may be configured via several high-level and/or
low-level notations and languages that are presented in Sec-
tions 3 and 4. These language descriptions are processed
by tools (described in Section 5) that automatically generate
customized protocol machines containing a particular set of
protocol mechanisms.

The protocol generation and execution process may be
characterized by several transformation phases (illustrated
in Figure 4).2 In the first phase, configuration tools gen-
erate protocol machine configurations based upon requests
submitted via the service interface of the communication
subsystem. A protocol machine configuration is an interme-
diate representation that indicates the particular mechanisms
to apply in a particular sequence on incoming or outgoing
application data in a stream. The configurations generated in
the first transformation phase are designed to be independent
of the underlying hardware and operating system platform.
Therefore, they are not directly executable.

In the second phase, synthesis tools transform the configu-
rations into protocol machine instantiations. An instantiation
is an executable protocol machine that consists of resources
(such as object code and related data) that may be optimized
to run efficiently on a particular target execution platform
(such as transputers [13] or shared memory multi-processors
[7]). Instantiations are implemented via mechanisms selected
from the protocol resource pool during the first transforma-
tion phase. Depending on the hardware platform, protocol
mechanisms may be grouped into clusters and mapped onto
one or more processing elements using the tools discussed in
Section 5.

Configuration and synthesis tools generate protocol ma-
chines either dynamically (as an application is running) or
statically (during an “off-line” protocol machine genera-
tion stage). Dynamic generation enables applications and/or
the participating peer communication subsystems to modify
certain protocol machine characteristics at run-time by us-
ing operating system facilities such as dynamic linking and
object-oriented programming features such as dynamic bind-
ing. This enables applications to adaptively update protocol
mechanisms and/or internal parameter values in a pre-defined

2These transformation phases are distinguished in this paper to clarify
the presentation of the general architecture; a particular implementation may
consolidate the phases to enhance performance.
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Figure 3: Relationship between Entities in the Function-based Communication Model

protocol machine instantiation. For example, an application
may specify the maximum size of its data units when selecting
a pre-defined instantiation. If a path discovery mechanism
[15] determines that the maximum transmission unit of the
underlying network supports this size without requiring frag-
mentation, the segmentation function may be removed from
the instantiationat connection establishment time, before any
processing of application data units occurs.

Static generation enables developers to “pre-define” pro-
tocol machines that implement various application service
classes. These classes efficiently support different types
of communication service such as unreliable real-time ser-
vice (e.g., isochronous traffic such as voice conversation and
full-motion video), reliable real-time service (e.g., robotics
and process control), unreliable non-real-time service (e.g.,
electronic mail) and reliable non-real-time service (e.g., file
transfer and remote login). Each protocol machine that im-
plements one of these classes is configured to use the minimal
set of protocol functionality required to perform that partic-
ular service.

The function-based framework leverages off the flexibil-
ity offered by the ability to invoke the configuration and
synthesis tools dynamically and/or statically. For exam-
ple, in addition to storing protocol function and mechanism
building-blocks, the protocol resource pool also stores per-
sistent pre-defined protocol machine configurations (which
are not directly executable) and protocol machine instantia-
tions (which are directly executable). Storing configurations
is useful for developing a family of protocol machines that
are designed to execute on a heterogeneous collection of tar-
get platforms. Rather than replicating the entire sequence
of tasks required to produce a protocol machine configura-
tion, the necessary configuration tasks are performed only
once. The resulting configuration is a platform-independent
intermediate representation that describes both the sequence
and type of protocol mechanisms comprising the protocol

machine. Subsequently, one or more target platform-specific
instantiations may be generated by invoking synthesis tools to
“fill-in” and interconnect the necessary platform-dependent
mechanisms.

Pre-defined protocol machine instantiations may also be
stored in the protocol resource pool. Storing instantiations
in the resource pool reduces application start-up overhead
at run-time since the time-consuming configuration and syn-
thesis phases are avoided. Applications may directly or in-
directly select one or more of these persistent instantiations
when specifying their requirements via the service interface.
The target platform is responsible for mapping the cluster
components of a pre-defined instantiation onto the run-time
system and executing them using one or more processing
elements.

3 Languages for Configuring and De-
scribing Protocol Machines

A protocol machine configuration contains a set of descrip-
tors stored in the protocol resource pool, their predecessor
and successor relations, and any synchronization informa-
tion necessary to coordinate collaboratingprotocol functions.
Each protocol resource descriptor indicates certain attributes
of the function such as its name, the specific mechanism(s)
that implement the function, the input and output parameters
of each mechanism, and any dependencies the mechanism(s)
may have on system resources (such as the amount of avail-
able memory).

The mechanisms in the protocol resource pool form an
instruction set that may be “programmed” via several nota-
tions and languages that exist at different levels of abstraction.
The highest level notation specifies application requirements
via the service interface of the communication subsystem.
The next level provides flowgraph-based and text-based lan-
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Figure 4: Resources, Languages, and Tools in the Function-based Framework

guages used to configure protocol machines that are generated
from functions and mechanisms residing in the protocol re-
source pool. This pool is populated using a protocol resource
descriptor language that characterizes the essential syntactic
and semantic aspects of each protocol function. At the lowest
level, protocol mechanisms are implemented on a particular
target platform using conventional programming languages
(such as C and C++). Figure 5 illustrates the levels of ab-
straction between the various languages in the framework.

The framework provides a range of languages that enable
applications and developers to generate protocols using the
appropriate level of abstraction, rather than requiring them to
program directly in low-level conventional languages such
as C or C++. Typically, applications use the service specifi-
cation notation to indicate their qualitative and quantitative
service requirements. This high-level notation reduces the
amount of details that applications must consider and specify
at run-time. If a pre-defined instantiation exists that meets
these requirements, it is directly selected. Otherwise, con-
figuration and synthesis tools are invoked dynamically to
generate a suitable protocol machine. Protocol developers,
on the other hand, may prefer to describe protocol function-
ality using the lower-level configuration languages. These
languages provide developers with fine-grained control over
the selection of particular protocol functions and/or mecha-
nisms. Customized protocol machines generated by develop-

ers may be stored persistently as pre-defined instantiations in
the protocol resource pool. Applications may subsequently
invoke these instantiations at run-time to fulfill their service
requirements.

Section 3.1 illustrates the main features of the flowgraph-
based protocol machine configuration language that specifies
the segment reception portion of the TCP protocol. Sec-
tion 3.2 discusses the language used to populate the protocol
resource pool with protocol resource descriptors.

3.1 Protocol Machine Flowgraphs

The framework described in this paper provides both a
flowgraph-based and a text-based language for describing
protocol machine configurations. The flowgraph-based rep-
resentation uses different types of nodes to visually express
properties, attributes, and predecessor/successor relation-
ships between functions that constitute a protocol machine
configuration. Constructs in the flowgraph-based represen-
tation translate essentially “one-to-one” onto the text-based
language. Protocol developers may prefer the flowgraph-
based format since various graphical-editing tools simplify
the configuration process by handling bookkeeping details
(such as keeping track of the interconnections among pre-
decessors and successors). Conversely, configuration tools
[16] may use the text-based format directly since it is more
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Figure 6: A Flowgraph for the TCP Receiver Protocol Ma-
chine

efficient to manipulate programmatically via automated pro-
cessing tools.

The flowgraph-based configuration depicted in Figure 6
formalizes the notation used to depict function-based de-
compositions of TCP and IP in related publications [17, 18].
These decompositions illustrate the potential parallelism in
the TCP and IP protocols. TCP is used as the example in
this paper since it is a standard protocol with well-known be-
havior. Moreover, by configuring TCP function relationships
via flowgraph constructs, the main features of the language
are demonstrated. However, the flowgraph language is not
limited to configuring only existing protocols. In fact, it is
primarily intended to configure application-tailored protocol
machines.

As with other types of flowgraphs, the constructs in a pro-
tocol machine flowgraph are nodes and edges. Each node
in Figure 6 represents a single protocol function such as
resequencing, checksum calculation, congestion control, op-
tion handling, and connection establishment and termination
(Section 3.1.1 describes the different types of nodes in de-
tail). The edges characterize the flow of control between
the functions. The following discussion uses the flowgraph-
based language to illustrate a protocol machine configuration
for a portion of the TCP protocol that handles the reception
of segments passed up the protocol stack from IP.

The TCP protocol machine for receiving segments is il-
lustrated as three shaded components in Figure 6 that han-
dle data reception, connection control reception, and various
connection dynamics involving timer-related processing [18].
The description here focuses primarily on the data reception
component (which consists of the nodes in the darkly shaded
portion of the Figure). This component processes correctly
received TCP segments containing regular and urgent appli-
cation data segments.

To expedite protocol processing, the flowgraph is designed
to exploit potential parallelism among the TCP checksum cal-
culation function and the header decomposition functions that
access the segment associated with a connection. For exam-
ple, functions such as SEQUENCE CHECK, WINDOW CHECK,
and ACK CHECK may concurrently determine whether the
sequence and acknowledgement numbers are within their
respective window ranges. Likewise, other header decom-
position functions such as FLAG TEST may also inspect the
incoming segment concurrently to determine whether any
exception flags (such as FIN, SYN, RST, or URG) are en-
abled. As shown in Figure 6, these functions subsequently
rendezvous at the VALIDATE HEADER node, which decides
where control is transferred next. The decision depends on
both the state of the connection and the flags in the segment.
Assuming that no errors occur, the connection dynamics and
OPTION HANDLING functions may be invoked simultaneously
to update round-trip time estimates and process any options
in the TCP segment header. Likewise, the appropriate recep-
tion function (either regular data, urgent data, or connection
control reception) specified by the segment flags is also in-
voked. Urgent data may be made available to the application
immediately, whereas regular data segments must first be
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processed by the RESEQUENCING function. In either event,
the RECEIVE function must update the connection’s flow con-
trol window before passing the data up to the application
interface.

3.1.1 Graphical Notation

The edges and nodes in the protocol machine flowgraph lan-
guage express key properties and attributes of protocol mech-
anisms. These properties and attributes form a type system
that provides valuable information to configuration and syn-
thesis tools. For instance, edges depict potential mechanism
interactions and indicate whether a protocol function may
transfer control to only one or to many successors simulta-
neously. For example, the edges emanating from the LOCATE

CONNECTION node in Figure 6 indicate that the header de-
composition functions may be invoked concurrently once
the appropriate connection identifier is located.

Node types indicate whether a function is invoked directly
(via the regular sequence of processing steps) or indirectly
(via timer control). During the configuration phase, this type
information simplifies the syntactic and semantic analysis re-
quired to correctly and automatically configure the necessary
functions and mechanisms. For instance, data dependencies
between the input and output parameters of a mechanism are
used to constrain the potential predecessor and successor re-
lations of a particular protocol node. The relations between
functions in the example presented here are fixed in advance
by the TCP protocol specification. In contrast, the order-
ing relations between nodes in application-tailored protocol
machines are often more flexible [16].

During the synthesis phase, type information characteriz-
ing data dependencies may be analyzed further to determine
opportunities for parallel execution of certain protocol mech-
anisms. In addition, when mapping a protocol machine onto
a particular target platform, type information helps guide the
selection of efficient platform-dependent techniques for in-
terconnecting protocol mechanisms together at run-time on
one or more processing elements.

Several types of nodes are distinguished according to the
general class of functions they perform. The function inside
a node is treated as a “black-box,” i.e., it is represented only
via its interface rather than its instantiation. The following
paragraphs describe the various types and subtypes of nodes
that may appear in a protocol machine flowgraph:

� Anchor Nodes: Anchor nodes represent functions that
occur at the entry and exit points into and out of a protocol ma-
chine. Anchor nodes are generally located at the service ac-
cess points within and around the communication subsystem.
In the de-layered function-based communication model, an-
chor nodes typically interact only with entities at the bound-
aries of the communication subsystem. For example, they
may transfer service data units to and from network interfaces
and user applications. In the TCP example, they occur at ser-
vice access points between IP and TCP, as well as between
TCP and the application interface. Depending on various

factors (such as the network/host interface, the protection-
domain scheme, and the degree of multi-programming and
multiplexing supported by the end-system), anchor nodes
may perform functions that copy service data units from the
network and place them into subsystem memory buffers, ini-
tiate cross-domain mode-switches, utilize various synchro-
nization primitives to protect shared system resources, and
demultiplex PDUs onto the appropriate protocol machine.

� Protocol nodes: Protocol nodes represent protocol func-
tions (such as segmentation/reassembly, lifetime control,
checksum calculation, retransmission, routing, and flow con-
trol) that access and/or modify information units3 that flow
through a protocol machine. Protocol nodes may be further
classified into several subtypes:

� Timer Nodes – Timer nodes represent certain timer-
driven protocol functions that are invoked “asyn-
chronously” with respect to the regular flow of control
in a protocol machine. For example, timers are used to
invoke the TCP retransmission function (as well as the
acknowledgement function in certain protocols [19]). A
protocol machine flowgraph may not explicitly indicate
a direct transfer of control to timer nodes (i.e., there
may be no incoming edges into the node). Therefore,
the use of a distinct node subtype provides information
necessary to properly analyze the flowgraph and trans-
form the protocol machine configuration into a correct
implementation.

� Sink Nodes – Sink nodes represent protocol functions
that do not propagate information units outside a proto-
col machine. For example, functions such as TCP op-
tion handling (or error handling functions for unreliable
protocols such as UDP) simply update certain internal
context information in the protocol machine and return.
Sink nodes are characterized graphically by the absence
of any outgoing edges.

These subtypes are used internally by configuration and syn-
thesis tools to facilitate syntactic and semantic analysis.

In general, the commonalities between these different sub-
types may be expressed via object-oriented techniques such
as inheritance (which facilitates software reuse) [9] and dy-
namic binding (which decouples mechanism interfaces from
mechanism algorithms and defers certain implementation de-
cisions until run-time). These techniques facilitate a modular,
extensible, and efficient object-orientedsoftware architecture
for the configuration and synthesis tools, as well as for the
run-time environment [10].

� Control Nodes: Control nodes represent functions that
coordinate and synchronize protocol and anchor nodes in
the protocol machine. Rendezvous nodes [18] are a subtype
of control nodes that represent special pseudo-functions that

3Information units consist of application data and protocol control pack-
ets, along with units that report the status of local and remote sessions and
deliver stream management requests to a session manager [1].
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synchronize concurrent processing in the flowgraph. Typi-
cally, rendezvous nodes do not perform actual protocol func-
tions. Instead, they validate or evaluate the results of concur-
rently executed predecessor nodes in order to determine the
next action(s) to perform.

In addition to different types and subtypes, protocol ma-
chine configuration flowgraphs may also contain several aux-
iliary symbols. These symbols characterize the input and
output semantics associated with the transfer of control be-
tween predecessors and successors of one or more nodes.
For example, a barrier dictates that all incoming control
from predecessor nodes must synchronize before any further
processing occurs. The rendezvous node labeled VALIDATE

HEADER in Figure 6 illustrates the use of a barrier that syn-
chronizes the header decomposition and checksum functions.
If a barrier is not present, control may be transferred into a
node from multiple predecessor mechanisms without requir-
ing synchronization. The EXCEPTION HANDLING node in the
TCP example illustrates this case. Likewise, a node with
more than one outgoing edge may represent a decision point
in the control flow of a protocol machine. If a selector is
not present, then all the successor nodes may be invoked si-
multaneously. Otherwise, control may be transferred to only
one of the multiple successors. For instance, the VALIDATE

HEADER node contains a selector that chooses between the
RESEQUENCING, URGENT, and CONNECTION ESTABLISHMENT

AND TERMINATION functions.
The flowgraph statically depicts all successors that a node

may potentially transfer control to at run-time. During run-
time, the protocol function at a node will dynamically select
the particular successor nodes(s) that will perform subsequent
processing. The edge(s) selected at run-time depend on fac-
tors such as the success or failure of a processing operation
or characteristics of an information unit (such as its size or
the value of a field in its control header). Judiciously plac-
ing these barriers and selectors at synchronization points and
decision points in the flowgraph allows the configurationpro-
cessing tools generate more time and space efficient protocol
machine implementations. For example, generating code for
a node with only a single successor may run more efficiently
and require less storage since control transfer decisions need
not be performed at run-time.

3.1.2 Relation to Existing Graphical Notations for Spec-
ifying Protocols

Flowgraphs are commonly used as architectural description
and translation techniques in many computing domains such
as VLSI synthesis and compiler optimization. In the com-
munication subsystem domain, the x-kernel project utilizes
a graph-based notation called a protocol graph to describe
and implement “highly-layered” protocols [6]. The two ba-
sic types of nodes in a protocol graph correspond to virtual-
and micro-protocols. A virtual-protocol uses information
such as the protocol address in a message header or the mes-
sage size to determine which subsequent micro-protocol to

invoke. The selected micro-protocol then processes the asso-
ciated message. Edges in a protocol graph imply the transfer
of a message between interconnected micro-protocols.

Morpheus is a special-purpose programming language that
utilizes the OS facilities of the x-kernel as a run-time en-
vironment [9]. Protocol developers utilize object-oriented
techniques like inheritance to compose protocols constructed
from various “shapes.” The three classes of shapes in Mor-
pheus (multiplexers, routers, and workers) are distinguished
by the type of addressing information they expect. Dif-
ferent shapes embody certain semantic information that is
specific to the communication protocol domain. Therefore,
a compiler for the Morpheus language may perform cer-
tain optimizations (such as reducing the overhead of passing
PDUs via multiple protocol layers that are interconnected at
run-time) that are not detectable via conventional program-
ming language compilers. In addition, the compiler gener-
ates code that reuses pre-existing x-kernel protocol support
library components (such as hash tables and message man-
agers), thereby simplifying the overall protocol development
effort.

There are several differences between the type systems of-
fered by the x-kernel protocol graphs and Morpheus shapes
and the type system offered by the protocol machine flow-
graphs described in Section 3.1. Most notably, the flowgraph-
based configuration language enables the specification of data
dependency and synchronization information that may be
used to detect and exploit parallelism in protocol machines.
Neither the x-kernel nor Morpheus have any explicit pro-
visions for expressing parallelism in their protocol graphs.
Specification languages such as Petri-nets [20] also provide
graphical notations that specify the potential for concurrent
processing. However, the effort required to extend Petri-nets
to express the semantics necessary to automate the generation
of application-tailored, function-based protocol machines is
significant enough to warrant the development of the lan-
guages described in this paper.

Other specification languages such as Estelle, Lotus, SDL,
and PASS provide notations that are used to specify protocol
behavior at the finite-state machine level [21]. However, the
flowgraph language described in this paper provides a rep-
resentation that is particularly intended to describe function-
based protocol machines. For instance, protocol machine
flowgraphs directly characterize the functionality and the or-
dered predecessor/successor relationships provided by the
protocol mechanisms residing in the protocol resource pool.
This correspondence helps to simplify the development of
configuration and synthesis tools.

3.2 Protocol Resource Descriptor Language

Configuration and synthesis tools utilize syntactic and seman-
tic information associated with protocol resource descriptors
that reside in the protocol resource pool. Descriptors in this
pool possess attributes that guide both the transformation of
service specifications into protocol machine configurations,
as well as the subsequent transformation of configurations
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<protocol-resource-descriptor> ::=
<protocol-function-descriptor> |
<anchor-function-descriptor> |
<control-function-descriptor> |
<configuration-descriptor> |
<instantiation-descriptor>

<protocol-function-descriptor>
’(’FUNCTION <function-name>
{ ’(’ MECHANISM <mechanism-name>

’(’ INPUT <input-parameter-list> ’)’
’(’ OUTPUT <output-parameter-list> ’)’
’(’ CODE <code-for-mechanism> ’)’

[ ’(’ PREDECESSORS <predecessor-node-list> ’)’
’(’ SUCCESSORS <successor-node-list> ’)’
’(’ CONSTRAINTS <condition_list> ’)’ ]

’)’ }
’)’

<instantiation-descriptor>
’(’ INSTANTIATION <instantiation-name>

[ ’(’ CLASS <class-name> ’)’ ]
’(’ CODE <code-path-name> ’)’

’)’

Figure 7: Extended-BNF Format for a Protocol Resource
Descriptor

into executable instantiations. To facilitate interaction with
the resource pool, the framework provides a language that de-
scribes certain attributes associated with protocol functions
and the mechanisms that implement these functions.

Figure 7 illustrates a portion of the general syntax for
several descriptors via an extended-Backus/Naur Format
(EBNF) notation. Each resource descriptor contains a
name (e.g., Flow Control) that uniquely identifies it
in the resource pool. One or more mechanisms (e.g.,
Sliding Window or Rate Control) are associated
with each function (the EBNF notation for “one or more
instances of” are indicated by the left and right curly-
brackets “f” and “g” in the figure). Each mechanism con-
tains both mandatory and optional attributes. Mandatory
attributes must be included with every mechanism descrip-
tion. The mandatory attributes of protocol function descrip-
tors include the object code (e.g., sliding window.o or
rate control.o), as well as the input and output param-
eters of a mechanism. For example, the input parameters
for the Sliding Window mechanism might include the
segment identifier, sequence number, and credit update.

The predecessor, successor, and constraint attributes are
optional (indicated by the EBNF “zero or one” left and right
square-bracket notation“[” and “]” in the Figure), and may be
necessary only in certain circumstances. For example, devel-
opers who populate the resource pool with protocol resource
descriptors may need to specify additional semantic con-
straints. These constraints limit the conditions under which
a particular mechanism may be used, and may also restrict
the predecessor and successor relations. If no constraints
or predecessor/successor restrictions apply to a function or
mechanism, these optional attributes may be entirely omitted
from the descriptor.

Semantic constraints provide guidance to configuration
and synthesis tools that enables them to generate correct and
efficient protocol machines automatically. Constraints are

(function "Locate_Connection"
(mechanism "TCP_Locate_Connection"
(input (Source_Port sp), (Destination_Port dp))
(output (Connection_ID cid))
(code "f_tcp_locate_connection.o")
(predecessors "IP_Interface")))

(function "Checksum_Calculation"
(mechanism "TCP_Checksum"
(input (PDU_Checksum cs), (PDU pdu))
(output (Boolean cbr))
(code "f_tcp_checksum.o")))

(function "Urgent"
(mechanism "TCP_Urgent"
(input (Urgent_Flag uf), (Urgent_Pointer up))
(output (SDU sdu))
(code "f_tcp_urgent.o")))

(function "Sequence_Check"
(mechanism "TCP_Sequence_Check"
(input (Sequence_Number sn)) (output (Boolean sbr))
(code "f_tcp_seq_check.o")
(predecessors "Locate_Connection"))

(mechanism "Gen_Sequence_Check"
(input (Sequence_Number sn)) (output (Boolean sbr))
(code "f_gen_seq_check.o")))

(function "Flow_Control"
(mechanism "Sliding_Window"
(input (Segment_ID sid), (Sequence_Number sn),

(Credit_Update cu))
(output (Segment_ID sid), (Lower_Edge le),

(Actual_Credit ac))
(code "f_sliding_window.o"))

(mechanism "Rate_Control"
(input (Segment_ID sid), (Rate_Update rd),

(Burst_Update bd))
(output (Segment_ID sid), (Rate r), (Burst b),

(Rate_Timer rt))
(code "f_rate_control.o")))

Figure 8: Protocol Resource Descriptors in the Protocol Re-
source Pool

necessary since there are certain situations where a mech-
anism’s interface does not convey enough information to
adequately restrict the appropriate predecessor and succes-
sor relations. For example, the TCP Sequence Check
mechanism requires the connection ID to be located before
the sequence number if checked. However, since there is
no direct parameter association between these two functions,
additional information must be provided explicitly by the re-
source descriptor to enable the language configuration and
synthesis processing tools to produce correct instantiations.
Likewise, if a mechanism’s input parameter is a composite
type (such as an “information unit”), it may be impossible for
tools to automatically deduce the dependencies or constraints
this mechanism may have on other mechanisms.

A protocol resource descriptor may explicitly enumerate
some or all of its potential predecessors and/or successors.
This may be necessary to correctly generate protocol ma-
chines for standard protocols that possess tightly-coupled
functionality. However, in an application-tailored model
(such as that one provided by the function-based commu-
nication subsystem), excessive use of explicit enumeration
may over-constrain the possible relationships between func-
tions. Since this decreases the potential for parallelism and
limits the reusability of the protocol mechanisms, developers
are encouraged to minimize the constraints and dependencies
placed on descriptors they insert into the resource pool.

Developers and tools may use the protocol resource de-
scriptor language to insert, modify, access, and extract cer-
tain attributes of descriptors. For example, developers use
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(anchor "IP_Interface"
(mechanism "IP_SAP")
(successors "Locate_Connection", "Checksum"))

(function "Locate_Connection"
(mechanism "TCP_Locate_Connection")
(predecessors "IP_Interface")
(successors "Sequence_Check", "Flag_Test", "State_Test",

"Window_Check", "Ack_Check"))

(function "Sequence_Check"
(mechanism "TCP_Sequence_Check")
(predecessors "Locate_Connection")
(successors "Path"))

(function "Checksum_Calculation"
(mechanism "TCP_Checksum")
(predecessors "IP_Interface")
(successors "Validate_Header"))

(function "Urgent"
(mechanism "TCP_Urgent")
(predecessors "Validate_Header")
(successors "Application_Interface"))

(sink "Option_Handling"
(mechanism "TCP_Options")
(predecessors "Validate_Header"))

(rendezvous "Validate_Header"
(mechanism "TCP_Validate")
(predecessors barrier ("Path", "State_Test", "Window_Check",

"Ack_Check", "Checksum"))
(successors selector ("Connection_ET", "Exception_Handler",

"Urgent", "Resequencing"),
"RTT", "Congestion_Control", "Option_Handling"))

Figure 9: A Portion of a Text-based Protocol Machine Con-
figuration for TCP

the descriptor language to insert protocol functions and their
constituent mechanisms and attributes into the resource pool.
Subsequently, certain attributes may require modification to
reflect changes to descriptors such as replacing the object
code of a mechanism with a more efficient implementation.
Likewise, high-level configuration tools [16] access the se-
mantic attributes of descriptors when determining how to
correctly transform a service specification into a protocol
machine configuration. In addition, synthesis tools extract
the object code corresponding to each platform-dependent
mechanism selected to generate a protocol machine instanti-
ation. After all the selected mechanisms are interconnected,
the target platform’s run-time environment maps them onto
one or more processing elements.

Figure 8 presents an example list of resource descriptors
that may be used to populate a protocol resource pool with
certain protocol functions and their associated mechanisms
and attributes. The mechanisms in the first three descrip-
tors are associated with the TCP example from Section 3.1.
The first mechanism in the Sequence Check function is
also specific to the TCP example. However, the second
mechanism in this function, as well as both mechanisms in
the Flow Control descriptor, is intended for general use
with application-tailored protocol machine configurations.
The protocol resource descriptor language enables mecha-
nism dependency information to be indicated implicitly via
the input and output parameters that form each mechanism’s
interface. For example, the Sequence Number input pa-
rameter for the Sliding Window mechanism implement-
ing the Flow Control protocol function implies a depen-
dency on the Sequence Check function. Various tools in
the framework construct dependency graphs that process this

information during the configuration and synthesis phases
[1].

Figure 9 illustrates a portion of the TCP protocol shown
in Figure 6 that is described via a text-based representation
of the protocol machine configuration language. A config-
uration described via this text-based language consists of a
collection of clauses that each contain information (such as
the successor and predecessor nodes) that is necessary to con-
figure the protocol machine. Note how constructs from the
flowgraph-based configuration language (such as barriers and
selectors) map concisely onto the text-based configuration
language. Moreover, the syntax of the text-based configura-
tion language is very similar to the resource descriptor lan-
guage, with the exception of platform-dependent attributes
(such as the object code) which are omitted in the configura-
tion, as well as additional control nodes and synchronization
information (which may be added to the configuration by
developers and/or the configuration tools). The close cor-
respondence between a text-based configuration language
and a related object-descriptor language is also reflected in
other interface-description languages such as CORBA [22].
CORBA uses a syntax that closely resembles C++ to describe
service interfaces for distributed applications.

4 Service Specification Notation

In addition to the lower-level protocol machine configura-
tion and resource descriptor languages, a higher-level ser-
vice specification notation is also available. This notation
provides a concise and convenient service interface that ex-
ports certain properties of the communication subsystem to
applications and protocol developers. The service interface
of the F-CSS system offers a wider range of services to appli-
cations than is generally available via conventional service
interfaces (such as TLI [23] and sockets [24]). In particular,
conventional interfaces typically offer only a limited choice
of services (such as connection-oriented and connectionless
services), and permit little or no capability for customizing
the underlying protocol machines.

The F-CSS service interface passes specifications of qual-
itative and quantitative application service requirements to
configuration and synthesis tools that have access to the
protocol resources available at communication end-systems.
Different actions may be taken depending on the type of
specification provided by an application or developer. For
example, an application may request a particular pre-defined
application service class. If the existing protocol machines
do not meet application requirements, however, tools may
automatically generate a customized protocol machine from
mechanisms residing in the protocol resource pool.

As shown in Figure 10, a service primitive consists of a
fixed-length session header that specifies the attributes a ses-
sion must support. Each data stream may be described via
two additional fixed-length sets of fields known as the stream
definition. This definition contains a stream header that in-
cludes the application service class, the mandatory bit, and
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Figure 10: Structure of a Service Primitive

the inter-stream-synchronization specification fields. Like-
wise, it also contains a stream specification that indicates the
list of qualitative parameters (such as ordered delivery, guar-
anteed group delivery, or syntax selection) and quantitative
parameters (such as maximum throughput, minimum delay,
or maximum error loss rate). There may be multiple data
streams specified for each session.

To enable convenient specification of service primitives,
many fields in the service interface may be expressed in a
binary “enable/disable” manner. For example, qualitative
parameters may be selected by enabling various fields in the
application service primitive. At configuration time, con-
figuration tools use a simple pattern matching algorithm to
identify the particular protocol functionality requested by a
service user. The details of the application service interface
are described further in [1].

5 Tools for Generating and Executing
Protocol Machines

This section describes several classes of tools that trans-
form high-level descriptions of qualitative and quantitative
application service requirements into lower-level protocol
machines that may be directly executed on a particular target
platform. Figure 11 illustrates the complete set of relation-
ships between the resources and tools involved in this trans-
formation process. The tool components access and manipu-
late the descriptors in the protocol resource pool to transform
platform-independent descriptions of protocol functionality
into executable protocol machine instantiations that may be
optimized for a specific target platform.

Three classes of tools, configuration, synthesis, and map-
ping, are involved in configuring, instantiating, and execut-
ing application-tailoredprotocol machines, respectively. The
synthesis and mapping tools perform the platform-dependent
transformations, whereas the configuration tools are intended
to be platform-independent. Each class of tools consults in-
formation residing in the protocol resource pool on the local
end-system. The remainder of this section outlines the func-
tionality offered by the tools in each class and describes the
types of information they utilize from the descriptors resid-
ing in the protocol resource pool. In addition to the tools

described below, various platform-specific operating system
utilities (such as compilers and assemblers for conventional
programming languages, as well as linkers and loaders) are
also necessary to generate and execute application-tailored
protocol machines.

5.1 Configuration Tools

Configuration tools transform high-level application service
specification requests (submitted via the service interface
shown at the top of Figure 11) into protocol machine config-
urations that are described via the flowgraph-based or text-
based protocol machine configuration languages defined in
Section 3. Configuration tools perform operations involv-
ing the selection and ordering of protocol resources [16].
The selection process determines which functions and mech-
anisms in the protocol resource pool are necessary to fulfill a
particular application service request. The ordering process
determines the predecessors and successors of each func-
tion and mechanism. Selection and ordering decisions are
based on semantic information associated with protocol re-
source descriptors (such as input and output parameters and
constraints), as well as domain-specific knowledge of com-
munication protocols possessed by configuration tools (such
as the minimal set of protocol functions required to satisfy a
particular class of application service requests).

5.2 Synthesis Tools

Synthesis tools transform protocol machine configurations
produced by the configuration tools into protocol machine
instantiations. Synthesis tools perform operations involving
the composition and static interconnection of protocol re-
sources to form one or more clusters. A complete protocol
machine instantiationconsists of a set of interconnected clus-
ters (depicted in Figure 12 (1)). Each cluster contains a set
of platform-specific object-code extracted from the function
descriptors in the protocol resource pool that were selected
earlier by the configuration tools. The composition pro-
cess uses the protocol machine configuration to guide the
formation of one or more clusters. The static interconnec-
tion process determines efficient mechanisms for transferring
control between functions within a cluster, as well as between
interconnected clusters at run-time.4

4Clusters may also be interconnected dynamically (cf. Section 5.3).
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Figure 11: Resources and Tools used during Protocol Generation and Execution

Several alternative mechanisms may be used to transfer
control between and within functions and clusters. For ex-
ample, within a cluster, control is typically transferred be-
tween functions as a consequence of the hardware updating
a program counter to reference the next executable protocol
function or instruction. Mechanisms for transferring control
between clusters, in contrast, depend on the underlying pro-
cess architecture, operating system, and hardware platform.
For instance, interprocess communication (IPC) mechanisms
may be necessary to transfer control between functions in dif-
ferent clusters that are executing on separate processing ele-
ments in a non-shared memory platform. Conversely, if sev-
eral clusters are executing concurrently on separate threads
in a shared address space, control may be transferred be-
tween functions by simply traversing a pointer link to the
next cluster. Depending on the underlying process architec-
ture, synchronization primitives may be necessary to protect
resources shared between concurrently executing threads of
control. Pointer links between clusters may be established
either statically (by the synthesis tools during protocol ma-
chine instantiation) or dynamically (by the mapping tools at
run-time, as described in Section 5.3 below).

Protocol functions constitute the primary units of execu-
tion in a protocol machine, whereas clusters (which may
contain one or more protocol functions) are the primary units
of mapping and interconnection onto a particular target plat-

form. There are several motivations for clustering certain
protocol functions together in a protocol machine instantia-
tion. In general, clusters decouple the processing of protocol
functions from the interconnections that link the functions
together. This decoupling facilitates reuse, automation, and
flexibility. For example, fine-grain reuse of protocol func-
tions is encouraged by developing the functions indepen-
dently from how, when, or in what order they are eventually
composed. Likewise, the mapping tools described below
may be used to determine and perform the appropriate type of
interconnections between clusters without requiring explicit
intervention from developers or applications. In addition,
flexibility is enhanced by deferring certain interconnection
decisions until late in the protocol design process, potentially
during installation or run-time.

By deferring these configuration-related decisions, com-
munication subsystem may select more efficient mechanisms
for interconnecting functions and clusters. Selecting an ef-
ficient interconnection mechanism depends both on static
factors (such as bus bandwidth or whether the underlying tar-
get platform hardware architecture supports IPC via message
passing and/or shared memory), as well as dynamic factors
(such as the current system load on a particular processing
element).

Determining the policies and mechanisms for clustering
protocol resources is a research challenge. Potential crite-
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Figure 12: Clustering and Mapping Protocol Resources onto Multi-Processing Platforms

ria for partitioning protocol machines into clusters include
(1) grouping resources to facilitate stage balancing within a
multi-processor function “pipeline,” (2) localizing functions
that reference common data in order to minimize memory
contention, exploit processor cache affinity, and/or reduce
paging, (3) coalescing certain functions together to conve-
niently add or remove clusters from protocol machines at
run-time, and (4) enabling more thorough static analysis of
concurrent activity between and within clusters [25]. Future
work will utilize the synthesis and mapping tool mechanisms
to determine which cluster partition policies are suitable un-
der which circumstances.

5.3 Mapping Tools

Mapping tools transfer the clusters that comprise a protocol
machine instantiation into the run-time system of a particular
target platform. The primary operations performed by map-
ping tools involve local system resource allocation, dynamic
interconnection, and cluster placement. For instance, when

an application activates one or more protocol machines, the
mapping tools load the object-code associated with the clus-
ters of the selected protocol machine instantiation(s) into the
target platform’s run-time system. This task involves allocat-
ing resources (such as memory and processing elements) and
performing any necessary dynamic interconnections between
clusters in the protocol machine instantiation.

Permitting the dynamic interconnection of clusters enables
the reconfiguration of certain mechanisms in a pre-defined
protocol machine instantiation. The capability to reconfigure
protocol machines at run-time enables the communication
subsystem to dynamically adapt to changes in network and
application characteristics. For example, adaptive protocol
error handling mechanisms may achieve a lower average
transmission delay compared with non-adaptive approaches
[26].

Mapping tools are also responsible for placing clusters
onto the processing elements (PEs) available on the hard-
ware platform. Determining the placement of clusters onto
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PEs is crucial for achieving high levels of application and
transport system performance. In order to determine a suit-
able mapping onto the PEs, the synthesis and mapping tools
must cooperate to determine which clusters to associate with
which PEs. In general, the synthesis tools described in Sec-
tion 5.2 identify protocol function clusters and the mapping
tools subsequently decide where to place these clusters within
the underlying PE topology. The cluster placement process
may be modeled via a graph description of the end-system’s
PE topology. This “placement graph” is labeled with the cur-
rent load statistics (calculated as the quotient of the PE pro-
cessing time versus the sum of idle and processing time) at the
nodes (i.e., PEs), and the current communication behavior of
inter-processor connections at the edges (i.e., communication
links between PEs).

Clusters must be mapped onto the placement graph without
exceeding limits on PE-load or memory resources. There-
fore, the mapping tools must account for the anticipated PE
utilization and the related communication and synchroniza-
tion behavior. In addition, the mapping tools require detailed
knowledge of certain static and dynamic hardware features
(such as the number of available PEs, the mechanisms used to
interconnect and communicate between the PEs, and maxi-
mum and current load capacity of the PEs). After the mapping
operations are performed, the target platform’s operating sys-
tem is responsible for managing the scheduling and context
switching of the protocol machine clusters during run-time.

Although the target platforms supported by this frame-
work differ in terms of operating system and hardware as-
pects (such as the number of available PEs, the interprocess
communication and memory architecture, and the network
interface devices), many of the same resources, languages,
tools, and underlying architectural principles may be applied
on the different platforms. Using the graphical notation de-
fined in the Section 3.1.1, Figure 12 illustrates the mapping of
an identical set of clusters (Figure 12 (1)) onto a shared mem-
ory multi-processor platform (Figure 12 (2)), as well as onto
a message-passing multi-processor system (Figure 12 (3)).
We are currently experimenting with protocol implementa-
tions to characterize the advantages and disadvantages of
each platform.

6 Concluding Remarks

The framework described in this paper provides a set of re-
sources, languages, and tools that support the automated gen-
eration of protocol machines composed of reusable, function-
based protocol mechanisms. Due to the emphasis on flexi-
bility, extensibility, and reusability, this framework is partic-
ularly well-suited to support the increasing diversity of ser-
vices required by multimedia applications. In particular, it is
possible to reduce protocol development effort and facilitate
rapid prototyping and experimentation with communication
subsystems on a variety of hardware and operating system
platforms. Moreover, performance measurements indicate
that the function-based communication model is a promising

architecture for developing high-performance communica-
tion subsystems. The technique of using flowgraphs as a
language for specifying function-based protocol machines is
described in this paper using notions and definitions from the
function-based communication model presented in [1]. In
addition, the same approach is also applicable to the system
described in [7].
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