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1. Introduction 
 
Software product-line architectures (PLAs) are a promising technology for industrializing software-intensive 
systems by focusing on the automated assembly and customization of domain-specific components, rather than 
(re)programming systems manually (Clements et. al, 2001). A PLA is a family of software-intensive product 
variants developed for a specific domain that share a set of common features. Conventional PLAs consist of 
component frameworks (Szyperski., 2002) as core assets, whose design captures recurring structures, connectors, 
and control flow in an application domain, along with the points of variation explicitly allowed among these 
entities. PLAs are typically designed using scope/commonality/variability (SCV) analysis (Coplien et. al, 1998), 
which captures key characteristics of software product-lines, including: (1) scope, which defines the domains 
and context of the PLA, (2) commonalities, which name the attributes that recur across all members of the prod-
uct family, and (3) variabilities, which contain the attributes unique to the different members of the product 
family. 
 
Motivating the need for model-driven software product-line architectures. Despite improvements in third-
generation programming languages (such as C++, Java and C#) and runtime platforms (such as CORBA, J2EE 
and Web Services middleware), the levels of abstraction at which PLAs are developed today remains low-level 
relative to the concepts and concerns within the application domains themselves, such as manually tracking the 
library dependency or ensuring component composition syntactical and semantic correctness. A promising 
means to address this problem involves developing PLAs using model-driven engineering (MDE) (Schmidt, 
2006), which involves systematic use of models as key design and implementation artifacts throughout the 
software lifecycle. MDE represents a design approach that enables description of the essential characteristics of 
a problem in a manner that is decoupled from the details of a specific solution space (e.g., dependence on spe-
cific OS, middleware or programming language).  

As shown in Figure 1, MDE-based PLAs help raise the level of abstraction and narrow the gap between the 
problem space and the solution space of software-intensive systems by applying the following techniques: 
 

 

Figure 1: Using DSMLs and Domain-specific Component Frameworks to Enhance Abstraction 
and Narrow the Gap between Problem and Solution Space of Software-Intensive Systems 
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• Domain-specific Modeling Languages (DSMLs). A DSML (Gray et al., 2007) consists of metamodels and 
model interpreters. A metamodel is similar to the grammar corresponding to a programming language that 
defines a semantic type system that precisely reflects the subject of modeling and exposes important con-
straints associated with specific application domains. Model interpreters can read and traverse the models, 
analyze them, and help create the executable system based on these models. DSMLs help automate repeti-
tive tasks (Gray et al., 2006) that must be accomplished for each product instance, including generating 
code to glue components or synthesizing deployment and configuration artifacts for middleware platforms 
and the underlying operating systems (Balasubramanian et al., 2006). 

 
• Domain-specific Component Frameworks. Through SCV analysis, object-oriented extensibility capabilities 

are often used to create domain-specific component frameworks 1, which factor out common usage patterns 
in a domain into reusable platforms (Clements et al., 2001). These platforms, in turn, help reduce the com-
plexity of designing DSMLs by simplifying the code generated by their associated model interpreters and 
addressing the product-line specific functional and systemic concerns, including quality of service (QoS) 
concerns, such as latencies, throughput, reliability, security, and transactional guarantees. 

 
MDE helps software developers explore various design alternatives that represent possible configurations for a 
specific instance of the product family. For example, a product instance ultimately needs to be deployed into a 
specific target running environment, where all software components must be deployed and mapped to available 
hardware devices and configured properly based on the specific software/hardware capabilities of the devices. If 
the PLAs are intended for use with different hardware devices, however, the mappings between the software 
components and hardware devices cannot not be known a priori when the software PLAs are developed. Instead 
of analyzing every product instance individually and manually writing source code or scripts repetitively for 
every different target execution environment, an MDE-based approach to PLA deployment and configuration 
automates such repetitive and labor-intensive tasks by integrating domain knowledge and expertise into meta-
models and model interpreters. Hence, a DSML infuses intelligence into domain models, which helps address 
many “what if” problems, such as “what glue code or configuration scripts must be written if the product is to be 
deployed into an environment with XYZ requirements?” These “what if” scenarios help developers understand 
the ramifications of design choices of software-intensive systems at a higher level of abstraction than changing 
source code manually at the implementation level.  
 
Challenges with evolution of model-driven software product-line architectures. Although an MDE-based 
approach helps improve productivity of software-intensive systems by raising the level of abstraction through 
composition of DSMLs and domain-specific component frameworks, it is hard to evolve software PLAs by in-
corporating new requirements. Examples of such requirements include using new software platforms or apply-
ing the current PLA in a new use case that may impose a different set of concerns than those handled by the 
current PLA. Consequently, in addition to assisting in the exploration of design alternatives among product in-
stances, an MDE-based PLA technology must also address the domain evolution problem (Macala et al., 1996), 
which arises when existing PLAs must be extended and/or refactored to handle unanticipated requirements.  
 
Depending on the scopes of the DSMLs and domain-specific component frameworks, unanticipated require-
ments can be either functional requirements or non-functional requirements, or both. For example, consider an 
MDE-based PLA that is available on two different component middleware technologies, such as Enterprise Java 
Beans (EJB) (Sun Microsystems, 2001) and CORBA Component Model (CCM) (OMG, 2006). A goal of a 
DSML that supports PLA is to selectively use the technologies within a product instance based on the system 
requirements. The metamodel of the DSML must define proper syntax and semantics to represent both compo-
nent middleware technologies. With domain evolution, if the CCM technology must be replaced by another 
emerging middleware technology such as Web Services, the MDE-based PLA must evolve accordingly to sat-
isfy the new requirements, i.e., new syntax and semantics must be introduced into the metamodel and new do-
main-specific component frameworks must be developed based on the emerging Web Services technology. 
 
Unfortunately, adding new requirements to MDE-based PLAs often causes invasive modifications to the PLAs 
in the DSMLs and component frameworks if DSMLs and component frameworks were not initially designed to 
be extensible to incorporate such new requirements. Conventional MDE tools do not handle the domain evolu-
tion problem effectively because they require significant handcrafted changes to existing PLAs, at both the 
component framework level and the DSML level. The domain evolution problem is particularly hard because 
the coupling of architecture and infrastructure concerns often crosscut the component framework layer and the 
DSML layer (Deng et al., 2006) within a PLA.  

 

 
1. Unless stated otherwise, we use the two terms “domain specific component frameworks” and “component frame-
works” inter-changeably throughout this chapter. 
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Moreover, changes made on metamodels in a PLA often invalidate existing domain models based on previous 
versions of the metamodels (Sprinkle et al., 2004), which makes the evolution process of model-driven software 
PLAs hard. Other examples of this problem occur in programming language or object-oriented framework de-
sign, where changes to a grammar or class hierarchy for a programming language or framework may introduce 
errors in existing legacy source code (Klusener et al. 2005). Another example is schema evolution in a database, 
where changes to a database schema may render the contents of the database useless (Roddick 1992). Just like 
legacy source code and contents of database, domain model are crucial assets of an organization, so they must 
be well handled during the metamodel evolution process. 
 
From these observations, there are many complexities involved when MDE-based software PLAs need to evolve. 
Although software developers can manually update their metamodels, domain models, and component frame-
works for small-scale systems, this approach is clearly tedious, time consuming, error-prone, and non-scalable 
for software-intensive systems. 
 
Solution → Systematic PLA evolution with automated domain model transformation. To address these 
challenges, a layered and compositional architecture is needed to modularize system concerns and reduce the 
effort associated with domain evolution. With the help of this architecture, different layers of PLAs can evolve 
systematically and tool supported domain model evolution also becomes feasible. The overall approach can be 
characterized in the following ordered steps: 
1. The first step deals with component framework evolution. Since component frameworks provide core func-

tionalities to the product instances, they have the most direct impact on the PLAs. As a result, whenever 
PLAs need to incorporate new requirements, component frameworks must first be refactored. To reduce the 
impact of such evolution outside the component frameworks, the key point is using pattern-oriented soft-
ware architecture (Gamma 1995, Schmidt 2000).  

2. The second step deals with metamodel evolution. Since metamodels are used to define type systems of par-
ticular domains based on proper language syntax, a language can be decomposed into smaller units to local-
ize the evolution impact, and allow such smaller units to be composed to form the new metamodel.  

3. The third step deals with the domain model transformation. This step applies automated model transforma-
tion techniques to specify model-to-model transformation rules that define metamodel changes. The appli-
cation of automated model transformation alleviates many tedious, time consuming, and error-prone tasks 
of model-to-model transformation to reduce the complexity of PLA evolution. In particular, when an exist-
ing DSML in a PLA is changed, the domain models defined by this DSML can be migrated automatically 
to the new DSML by apply a set of model transformation rules.  

 
While the three-step approach above could be applied to any model-driven software PLAs, this chapter focuses 
on distributed real-time embedded (DRE) PLAs, which are among the most difficult software-intensive systems 
to develop since such systems have limited resources and must communicate via the network to meet stringent 
real-time quality-of-service (QoS) assurance and other performance requirements.. A representative software-
intensive DRE system is used throughout the chapter as a case study to describe how to evolve PLAs systemati-
cally and minimize human intervention. Along with presenting the approach for domain evolution of MDE-
based PLAs, the chapter also describes key concepts, such as model-driven engineering, product-line architec-
tures, and model transformations that are important for developing and evolving PLAs for large-scale software-
intensive systems. 
 
The remainder of this chapter is organized as follows: Section 2 evaluates related work that supports evolution 
of software PLAs for DRE systems and compares it with our approach; Section 3 describes a conceptual archi-
tecture of MDE-based PLAs for DRE systems and defines the key elements in this architecture as background of 
this chapter; Section 4 introduces a representative case study of a PLA for avionics mission computing used 
throughout the chapter; Section 5 describes the challenges we faced evolving model-driven PLAs and the solu-
tions to address these challenges; Section 6 outlines future trends of MDE-based PLAs for DRE systems; and 
Section 7 presents concluding remarks and lessons learned. 
 
2. Related Work 

This section surveys the technologies that provide solutions to MDE-based software PLA evolution for 
software-intensive systems. The related work has been categorized along two dimensions based on the syntax of 
the modeling mechanism the software PLA evolution relies on, i.e., a graphical based modeling approach or a 
text-based modeling approach.  
 
2.1 Graphical Modeling Approaches 
 
A UML metamodel for software PLA evolution (Mens et al., 2000) has been developed based on the concept of 
evolution contract. The idea of an evolution contract is that when incremental modifications and evolution of 
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software artifacts are made on a software product line, a formal contract must be defined between the provider 
and the modifier. The purpose of the contract is to define the evolution behavior formally. A UML metamodel 
has been defined to capture the formal evolution contract. This offers a generic MDE-based mechanism for deal-
ing with unanticipated evolution. By documenting model evolution through formal models, incompatibilities or 
undesired behavior across different modeling artifacts can be detected when models are upgraded, or when dif-
ferent software developers independently make changes to the same or related parts of a model. This approach 
allows conflicts to be detected regardless of the specific kind of model that is under consideration. The approach 
has been integrated into third-party CASE tools, such as IBM Rational Rose (IBM, 2007). 
 
KobrA (Atkinson, 2002) is another approach based on UML for component-based software PLAs that support 
model-driven representation of components. In this method, evolution management in software PLAs is divided 
into three activities, i.e., configuration management, change management, and maintenance planning. Configu-
ration management in KobrA is a static method for bringing together different artifacts within a PLA. Change 
management consists of techniques to evaluate evolution requests. The use of appropriate formal change opera-
tors to evolution requests assists in traceability within change propagations in a PLA. Maintenance planning is 
responsible for constructing infrastructure for the change and configuration management activities. The idea of 
KobrA is based on a change-oriented model, i.e. new versions are obtained from changes applied to some arti-
facts in the product line. To support the evolution in KobrA, the evolution graph technique (Atkinson, 2002) is 
proposed to capture version histories of different artifacts of the PLA and trace the dependencies.  
 
Another technique similar to the evolution graph is called design decision tree (DDT) (Ran et al., 1996), which 
is a formal approach to incrementally document, refine, organize and reuse the architectural knowledge for 
software design. The formalism is a hierarchical organization of design patterns that is a partial ordering of de-
sign decisions put in the context of the problem requirements and the constraints imposed by earlier decisions. 
This model integrates architectural knowledge of software design into a software development process. A DDT 
contains system-wide design information in a form that can be used to analyze change requests and determine 
their impact on system structure. Because the tree is maintained throughout the lifecycle of a PLA, it can be 
used as the main repository of design knowledge (Karhinen, 1998). Such a repository can be used to analyze the 
impact of new requirements to the existing requirement space and to investigate the changes that different im-
plementation strategies may cause to the system structure, which makes it possible to classify different options 
and to react to them and analyze their architectural implications. 
 
Summary. The related work described above adopts a domain-independent modeling technique to capture the 
software PLA evolution requirements either explicitly or implicitly. Our approach is similar to these related 
works in the sense that they all provide visualization capabilities through graphical modeling tools for PLAs. 
Our approach, however, uses a domain-specific modeling technique that adds additional abstractions represent-
ing domain concepts to the modeling languages that are not available in general-purpose domain-independent 
modeling languages such as UML. DSMLs thus require less effort and fewer low-level details to specify a given 
system (Tolvanen et al., 2005). 
 
2.2 Text-based Modeling Approaches 
 
Architectural Description Language (ADL) is an important technique in this dimension that facilitates software 
PLA evolution. The Mae environment (Hoek et al., 2001), for example, uses ADL to facilitate incremental evo-
lution by capturing all changes made to any architectural elements within a PLA. A key concept in the Mae en-
vironment is a system model that allows architectural concepts and configuration management to be mapped 
with each other through ADL syntax, i.e., the ADL allows users to describe what and how the changes should be 
made to the model. The essence of the approach lies in the use of this model to integrate change management 
concepts (such as revisions, variants, and configurations) with architectural concepts (such as components, con-
nectors, subtypes, and styles) through ADL descriptions. By mapping the generic system model onto a specific 
ADL, the design analyses of a software PLA and its evolution can be adapted for the purpose of maintaining the 
consistency of the architectural configurations captured by the model. 
 
Similar to the idea of the Mae environment, the Koala Component Model (Ommering et al., 2000) also uses 
ADL to explicitly describe the architecture and provides a platform-centric approach to the design of PLAs for 
consumer electronics software. Specifically, the Koala Component Model allows variability options to be mod-
eled explicitly via a property mechanism. Using a third-party versioning system, Koala can be used to capture 
the evolution of a PLA. 
 
XADL (Dashofy et al., 2003) is an XML-based ADL that is constructed from a set of extensible XML schemas. 
XADL also defines a set of associated libraries that provide a programmatic interface to XADL documents, and 
provide runtime facilities to create, store, and modify XADL documents. XADL and its associated libraries pro-
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vide three important benefits for the purposes of supporting software PLA evolution: (1) the core of the XADL 
language supports variability in both space and time; in XADL, variabilities of artifacts are a natural and inte-
gral part of the language, (2) the language can be extended, which allows individual activities in the lifecycle to 
be able to attach additional information, and (3) the library provides a generic interface to easily access XADL 
documents, which supports the rapid construction of new tools supporting PLA evolution. 
 
Summary. The related work described in this section all use text-based languages (such as structural languages 
or XML) to either explicitly capture the PLA evolution activities, or implicitly associate the evolution require-
ments with actual software components. Our approach is similar to this dimension of the related work in the 
sense that PLA evolution can be captured through the software PLA architecture itself, rather than through a 
separate dedicated language. 
 
2.3. Hybrid Approaches 
 
Some technologies span both text-based and graphical-based approaches. A well-know example in this category 
is called QVT (Query/View/Transformation) (OMG 2005b), which is the OMG standard for model-to-model 
transformations. This technology provides a standard language to transform UML or custom model types from 
one type to another. It accepts XMI as input and output. Typical usage scenarios include automating transforma-
tion of a high-level design model into a more detailed model, transforming a UML model into a custom data 
model, or transforming one custom model type into another. The core benefits of this feature set are a standards-
based language to express common model transformations with traceability, which provides repeatable results.  
 
Summary. The specification of QVT defines both graphical syntax and textual syntax for the transformation 
language, but so far there still lacks a full implementation of the specification. Moreover, while QVT is re-
stricted to only XMI to XMI transformations, our approach does not have this restriction so it can exploit any 
internal representation of the DSMLs. 
 
3. An MDE-based Product Line Architecture for DRE Systems 

This section introduces an architecture of a MDE-based product line architecture for software-intensive DRE 
systems, focusing on the design concepts, common patterns, and software methodology. An MDE-based design 
and composition approach for DRE systems entails the combination of DSMLs with reusable component 
frameworks. Figure 2 illustrates the high-level design principles and an overall architecture of an MDE-based 
PLA solution for software-intensive DRE systems that exploits a layered and compositional approach. This ar-
chitecture takes advantage of layering and composition design principles (Krueger et al., 2006) to make the as-
sociated PLAs easier to develop and evolve than ad hoc approaches. 

         
 

 

As shown in Figure 2, the PLA architecture is based on a core set of COTS middleware and OS platforms, com-
ponent frameworks and domain specific modeling languages. The right side of the figure shows the technologies 
available to implement the design artifacts on the left side. For example, the “Generator Technology” shown on 
the right can be used to build model interpreters that automatically generate code to bridge the gap between 
models and component frameworks. 

Figure 3. OS, Middleware, DSML 
and Application Layer Relationships  

Figure 2. MDE-Based Product-line 
Architecture for DRE Systems   
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The remainder of this section introduces and defines key terms and concepts in the architecture shown in Figure 
2. 

Commercial-off-the-shelf (COTS) middleware and OS platforms provide the infrastructure upon which 
DRE systems run. Many DRE systems are based on OS platforms with real-time scheduling capabilities. Exam-
ples of such OS platforms include VxWorks (Wind River Systems, 1998), Timesys Linux (Timesys, 2002), and 
Windows CE (Microsoft, 2007). Middleware is an enabling technology that allows multiple processes running 
on one or more machines to interact across a network. Middleware can be further decomposed into multiple 
layers (Schmidt et al., 2002), such as those shown in Figure 3 and described below:  

• Host Infrastructure Middleware. The host infrastructure layer resides directly atop the operating system 
and provides a set of higher-level APIs that hide the heterogeneity of different operating systems and net-
work protocols. The host infrastructure layer provides generic services to the upper middleware layers by 
encapsulating functionality that would otherwise require much tedious, error-prone, and non-portable code, 
such as socket programming and thread manipulation primitives. Examples of such middleware include 
ACE (Schmidt, 1993), Real-time Java (Bollella et al., 2000) and Rocks (Zandy, 2002). 

• Distribution Middleware. The distribution layer resides atop the host-infrastructure layer and provides 
high-level programming abstractions, such as remote object operations. Using the distribution layer, a de-
veloper can write a distributed application in a similar way to a stand-alone application. CORBA 2.x (OMG, 
2003), DCOM (Microsoft, 2000), Java RMI (Sun Microsystems, 2000) and Data Distribution Service (DDS) 
(OMG, 2004) are the main solutions to distribution middleware. 

• Component Middleware. The component middleware layer resides atop the distribution middleware layer 
and adopts the component-based software engineering approach to allow maximum reuse of software com-
ponents. Component middleware also provides mechanisms to configure and control key distributed com-
puting aspects, such as connecting event producers to event consumers and managing transactional behavior, 
separate from the functional aspects of the application. Examples of component middleware platforms in-
clude Enterprise Java Beans (EJB) (Sun Microsystem, 2001) and OMG Corba Component Model (CCM) 
(OMG, 2005). 

Because many DRE systems require a loosely-coupled distribution architecture to simplify extensibility, COTS 
middleware typically provides event-based publish/subscribe communication mechanisms, which help reduce 
ownership costs by defining clear boundaries between the components in the application. Such mechanisms 
reduce dependencies and maintenance costs associated with replacement, integration, and revalidation of com-
ponents. COTS middleware and OS platforms are designed to maintain the commonality, portability, reusability, 
and applicability of software for different domains. 

 
Component frameworks provide reusable domain-specific building blocks for PLAs of DRE systems. As illus-
trated in Figure 3, component frameworks reside atop COTS middleware and OS platforms. The key difference 
between component frameworks and component middleware is that the latter is domain independent while the 
former is domain-specific. Component frameworks define “semi-complete” applications that embody domain-
specific object structures and functionality to raise the level of abstraction at which the software product in-
stance is composed, and offer product-line specific environments to capture the variabilities. Components in 
such a framework coordinate with each other to provide core functionalities for a family of related applications. 
Complete applications can be composed by inheriting from and/or instantiating framework components. . 
 
Examples of component frameworks include the Boeing Bold Stroke product line architecture (Schulte, 2003) in 
the avionics mission computing domain and Siemens Building Technology APOGEE product line architecture 
(SIEMENS 2007) in the building automation domain. For example, the Boeing Bold Stroke PLA supports many 
Boeing product variants using a component-based platform. The Boeing Bold Stoke PLA supports systematic 
reuse of mission computing functionality and is configurable for product-specific functionality and execution. 
The philosophy of component frameworks is to develop reusable components that are well-defined and have 
specific use contexts and variability points, which helps reduce the effort associated with using low-level mid-
dleware interfaces or OS APIs. 
 
Domain-specific modeling languages (DSMLs) and patterns facilitate the model-based design, development, 
and analysis of DRE systems. Figure 4 shows how DSMLs and patterns can be combined with component 
frameworks to build product instances. A DSML can represent either a vertical application domain model (spe-
cific to concerns within a specific industry or domain) or a horizontal model (generic to concerns that span sev-
eral domains). 
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Figure 4. Integration of Domain-specific Modeling and Component Frameworks 

Vertical application domain models address the problems arose within a particular domain, and they are often 
modeled in a platform-independent manner (Frankel, 2003). Examples of such vertical application domains in-
clude industrial process control, telecommunications, and avionics mission-critical systems. Some DSML ex-
amples developed for vertical domains include the Saturn Site Production Flow (SSPF), which is a manufactur-
ing execution system serving as an integral and enabling component of the business process for an automotive 
factory (Long et al., 1998). Another example is the Embedded System Modeling Language (ESML) (Karsai et 
al., 2002), which models mission computing embedded avionics applications in the Boeing Bold Stroke PLA. 

Horizontal platform domain models are also called platform-specific models (Frankel, 2003). A platform-
specific model is a model of a system that is linked to a specific technological platform (e.g., a specific middle-
ware platform, operating system or database). An example of a DSML for horizontal platforms is the Rhapsody 
modeling environment (iLogix, 2006), which allows application generation for embedded software platforms 
based on many real-time operating systems. Other examples of DSMLs for horizontal platforms include the 
Platform Independent Component Modeling Language (PICML) (Balasubramanian et al., 2005a) and J2EEML 
(White et al., 2005), which facilitate the development, deployment, and configuration of QoS-enabled compo-
nent-based DRE systems based on CCM and EJB, respectively. 

The main idea is that it should be possible to use a model transformation technique to transform vertical applica-
tion domain models to a horizontal platform domain model. Regardless of whether the DSMLs target horizontal 
or vertical domains, model interpreters can be used to generate various artifacts (such as code and metadata de-
scriptors for deployment and configuration), which can be integrated with component frameworks to form ex-
ecutable applications and/or simulations. Key advantages of using DSMLs and patterns in PLAs are to rigor-
ously capture the key roles and responsibilities of a product instance and help automate repetitive tasks that must 
be accomplished for each product instance. 

As summary, an MDE-based PLA for software-intensive systems must based on an architecture that adheres to 
well documented principals of architectural design with a clear separation of commonalities and appropriate 
provisions for incorporating variations by integrating vertical/horizontal DSMLs, component frameworks, mid-
dleware and OS platforms. In this architecture, MDE technologies are used to model PLA features and glue 
components together; for example, they could be utilized to synthesize deployment artifacts for standard mid-
dleware platforms (Balasubramanian et al., 2006). 
 

4. Overview of the Boeing Bold Stroke PLA and EQAL MDE Tool 
 
This section introduces a case study based on a real-time avionics mission computing product line called Boeing 
Bold Stroke and describes the structure and functionality of the Event QoS Aspect Language (EQAL) MDE tool 
based on this product line. The Boeing Bold Stroke PLA supports many Boeing product variants (e.g., F/A-18E, 
F/A-18F, F-15E, and F-15K) using a component-based publish/subscribe pattern (Gamma 1995).. The EQAL 
MDE tool is intended to reduce many complexities associated with the integration, deployment and configura-
tion of different implementations of publish/subscribe mechanism. The Bold Stroke PLA and its associated 
models in EQAL will serve as the case study throughout this chapter. 

4.1 Overview of Boeing Bold Stroke Product Line Architecture 

Figure 5 illustrates the Boeing Bold Stroke PLA (Sharp, 1999), which was developed by Boeing in the mid-
1990s to support systematic reuse of avionics mission computing functionality and is configurable for product-
specific functionality (such as heads-up display, navigation, and sensor management) and execution environ-
ments (such as different networks/buses, hardware, operating systems, and programming languages) for a vari-
ety of military aircraft. Bold Stroke is a very complex framework with several thousand components imple-
mented in several million lines of C++ code. 
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The Boeing Bold Stroke architecture contains set of event-driven component-based component frameworks 
built atop (1) The ACE ORB (TAO) (Schmidt et al., 1998), which implements key Real-time CORBA (OMG, 
2005) features, and (2) TAO’s Real-time Event Service (Harrison et al., 1997), which implements the pub-
lish/subscribe architectural pattern. Bold Stroke uses a Boeing-specific component model called PRISM (Roll, 
2003), which implements a variant of the CORBA Component Model (CCM) atop TAO.  

Following the CCM specification, PRISM defines the following types of ports, which are named interfaces, and 
connection points components used to collaborate with each other: 

• Facets, which define named interfaces that process method invocations from other components. 

• Receptacles, which provide named connection points to facets provided by other components. 

• Event sources and event sinks, which indicate a willingness to exchange event messages with one or more 
components via event channels. 

Bold Stroke is a representative PLA for DRE systems in the real-time avionics mission computing domain. Its 
event based communication architecture employs a control flow/data flow (Sharp, 1999) principle, where con-
trol flow represents the movement of execution through a software system, while the data flow represents the 
movement of data through a software system. Depending on requirements, different product variants in the Boe-
ing Bold Stroke PLA may require different levels of QoS assurance for event communication, including timing 
constraints, event delivery latency, jitter, and scalability. Even within the same product variant, different levels 
of QoS assurance must be ensured for different communication paths, depending on criticality of the data. For 
example, the communication path between a collision radar component and the LED display component must 
have much more stringent timeliness deadline requirements than regular GPS components and navigation dis-
play components. 

To alleviate the complexity in provisioning the event-based publish/subscribe services and their QoS assurance 
in the Boeing Bold Stroke PLA, we designed an MDE-based tool called the Event QoS Aspect Language (EQ-
AL) that can automate and simplify the integration of publish/subscribe services into QoS-enabled component-
based systems. 
 
4.2 Overview of the EQAL MDE Tool 

One core part of the EQAL MDE tool is the EQAL DSML (Edwards et al., 2004), which is implemented using 
the Generic Modeling Environment (GME) (Lédeczi, 2001). The GME is a toolkit that supports the develop-
ment of DSMLs, as described in Sidebar 1. The EQAL DSML provides an integrated set of metamodels, model 
interpreters, and standards-based component middleware that allow DRE system developers to visually config-
ure and deploy event-based communication mechanisms in DRE systems via models instead of programming 
them manually. The EQAL DSML is an example that supports a horizontal platform domain; i.e., it is not re-
stricted to a particular vertical application domain, but instead can be leveraged by multiple vertical domains. In 
this case study, we describe how EQAL was applied to the Bold Stroke avionics mission computing PLA. 
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As shown in Figure 6, EQAL is a layered architecture that supports several types of abstractions, which are sub-
ject to change stemming from domain evolution as explained below: 
 
• The bottom layer in the architecture is the EQAL Runtime Framework, which is a portable, OS-independent 

middleware framework based on light-weight CCM (OMG, 2004b). The EQAL Runtime Framework pro-
vides an extensible way to deploy various event-based publish/subscribe mechanisms, including a two-way 
event communication mechanism based on direct method invocation instead of using a mediator channel.  

 
• The middle layer in the EQAL architecture is a set of domain models that represent instances of the mod-

eled DRE systems. These models are created using the EQAL DSML and are used to capture the structural 
and behavioral semantic aspects of event-based DRE systems.  

 
• The top layer of the EQAL architecture consists of a metamodel that enables developers to model concepts 

of event-based DRE systems, including the configuration and deployment of various publish/subscribe ser-
vices. This layer also contains several model interpreters that synthesize different types of configuration 
files that specify QoS configurations, parameters, and constraints, such as the threading model for event 
dispatching, event filtering configuration, and event channel federation configurations (Edwards et al., 
2004). The EQAL interpreters automatically generate publish/subscribe service configuration files and ser-
vice property description files needed by the underlying EQAL Runtime Framework and selected middle-
ware. 

 
As shown in Figure 7, EQAL allows DRE system deployers to create and synthesize publish/subscribe QoS 
configurations and deployments via graphical models (i.e., EQAL domain models) that are much easier to un-
derstand and analyze than hand-crafted code. During the modeling phase, EQAL ensures that dependencies be-
tween configuration parameters are enforced by declaring constraints on the contexts in which individual op-
tions are valid (e.g., priority-based thread allocation policies are only valid with component event connections 
that have assigned priorities). EQAL can then automatically validate configurations and notify users of incom-
patible QoS properties during model validation, rather than at component deployment and run-time. The gener-
ated XML-based QoS configuration and deployment descriptors can then be fed into deployment and configura-
tion runtime tools to deploy and configure the components and real-time event channels within the Boeing Bold 
Stroke. 
 

 
Figure 6. EQAL MDE Tool Architecture 

Sidebar 1: Generic Modeling Environment (GME) 

 
The Generic Modeling Environment (GME) is a meta-
modeling tool for creating and evolving domain-
specific models. GME allows developers to create 
domain-specific modeling languages (DSMLs) that 
capture multiple aspects of a domain, such as struc-
tural, functional and behavior aspects, and their seman-
tics (i.e., constraints) to ensure correctness of con-
structed models. End-users of the DSML then in turn 
use GME to construct models realized by the DSML.  
 
One of the main features of GME is the ability to im-
plement components that operate on target models of a 
DSML. GME supports the following components: 
• Interpreters, which are invokeable components 

specific to a DSML, such as parsing a DSML to 
generate a configuration file. 

• Add-ons, which are event-driven components spe-
cific to a DSML, such as responding to the creation 
of new elements to initialize attributes. 

• Plug-ins, which are invokeable components applica-
ble to any DSML, such as providing a tabular view 
of the model in any DSML. 

The main goal of the components is to provide both 
domain-specific, and non domain-specific, functional-
ity that cannot be captured in a metamodel. GME is 
available as open-source for download (GME, 2007). 
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5. Support MDE-based PLA Evolution when Facing Domain Evolution 
 
This section examines the following challenges associated with evolving MDE-based PLAs: 
 
1. Challenges stemming from capturing new requirements into existing MDE-based PLAs for DRE systems. 
2. Challenges stemming from migrating existing domain models with MDE-based PLA evolution. 
 
For each challenge, we explain the context in which the challenge arises and identify key problems that must be 
addressed. Many of these challenges also exist in MDE-based PLAs for DRE systems, so they are not limited 
solely to event-based DRE systems as described in our case study. In the remainder of this section, we first dis-
cuss the challenges and solutions associated with domain-specific component framework evolution and DSML 
evolution in Section 5.1, then the challenges and solutions associated with domain model evolution in Section 
5.2. 
 

5.1 Challenges Stemming from Capturing New Requirements into Existing MDE-based PLAs 
for DRE Systems 
 
Context. Evolution is a natural occurrence in software development and an inevitable part of the software PLA 
lifecycle (Chapin et al., 2001). The changes may be initiated to correct, improve, or extend assets or products. 
Because assets are often dependent on other assets, changes to one asset may require corresponding changes in 
other assets. Moreover, changes to assets in PLAs can propagate to affect all products using these assets. A suc-
cessful process for PLA evolution must therefore manage these changes effectively (McGregor, 2003). 

Problem: New requirements impact metamodels and component frameworks. DRE systems must evolve to 
adapt to changing requirements and operational contexts such as supporting new features. In addition, when 
some emerging technologies become sufficiently mature, it is often desirable to integrate them into existing 
PLAs for DRE systems.  

For example, in our Boeing Bold Stroke case study, depending on system requirements, different product vari-
ants in the Bold Stroke PLA may require different levels of QoS assurance for event communication, including 
timing constraints, event delivery latency, jitter, and scalability. Even within the same product variant, different 
levels of QoS assurance may be required for different communication paths, depending on system criticality 
(e.g., certain communication paths between components may require more stringent QoS requirements than oth-
ers). 

 
Figure 7. Code Generation from EQAL Domain Model 



 11 

 
Figure 8. Challenges Stemming from Adding New Requirements into Model-Driven Software PLAs 

Solution: Evolve a PLA systematically through framework and metamodel enhancement. A layered PLA 
can reduce software design complexity by separating concerns and enforcing boundaries between different lay-
ers. Because different layers in a PLA need to interact with each other through predefined interfaces, to integrate 
new requirements into a PLA, all layers must evolve in a systematic manner. This evolution can be generalized 
to the following three steps: 
 
1. Component framework evolution. As discussed in Section 3, frameworks are often built atop middleware 

and OS platforms to provide the runtime environment of DRE systems. As a result, whenever a DRE system 
must evolve to adapt to new requirements, component frameworks are often affected because they have di-
rect impact on the system. 

 
2. DSML evolution. DSML metamodels and interpreters are often used to capture the variability and features 

of DRE systems to expose different capabilities for different product variants. As discussed in Section 3 and 
shown in Figure 2, typically the DSMLs for vertical application domains have a higher level of abstraction 
than DSMLs for horizontal platform domains. These lower level DSMLs are built atop domain-specific 
component frameworks and are often used to glue different component framework entities together to form a 
complete application. Therefore, the evolution of lower level DSMLs should be performed after framework 
evolution is completed.  

 
3. Domain model evolution. The DSML metamodel defines a type system to which domain models must con-

form. Because the changes to the metamodel of a DSML often invalidate the existing domain models by re-
defining the type system, domain model evolution must be performed after the DSML evolution. 

 
In the remainder of this section, we further elaborate the solution approach and describe how it applies to our 
case study. 
 
5.1.1 Component Framework Evolution 
 
Component frameworks consist of a set of core reusable components that can be configured using well-defined 
interfaces. In order to capture the commonalities of software PLAs, one must formulate a set of usage patterns. 
The component frameworks encapsulate these usage patterns and provide reusable libraries that contain wrapper 
façades for the underlying implementation classes and shield component developers from tedious and error-
prone programming tasks associated with lower-level details. Component frameworks are typically designed by 
analyzing various potential problems that the frameworks might address and identifying which parts of each 
solution are the same and which areas of each solution are unique through the SCV analysis.  
 
The first step is to define the domains (i.e., the problem areas a framework addresses) and the context of the 
framework. The next step is to define the attributes that recur across all members of the family of products based 
on the framework. The final step is to describe the attributes unique to the different members of the family of 
products. The SCV analysis requires extensive knowledge about the domain and the PLA requirements so one 
can reason what parts of the system should be implemented by the framework (commonalities) and what parts of 
the system should be specialized in subclasses or parameters (variabilities). To implement such design usually 
requires effective and skillful use of programming language features, such as templates and virtual functions, in 
conjunction with design patterns (Gamma et. al. 1995).  
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Applying the solution to the EQAL case study. In our EQAL case study, the scope is to design a framework 
to simplify the event communication between the event sources and event sinks of PRISM components. The 
commonality in this scope is straightforward, i.e., every software product instance should implement an event-
based publish/subscribe pattern. The variability of the EQAL Runtime Framework results from different con-
crete service types that provide different interfaces and different QoS mechanism for the event communication. 
Because different real-time publish/subscribe services depend on different representations of real-time QoS 
properties, the EQAL Runtime Framework implements the adapter pattern that converts a service-independent 
representation of real-time properties into a service-specific representation.  
 
The benefits of EQAL’s design are twofold: (1) component developers need not concern themselves with pecu-
liar configuration interfaces, and (2) no matter what changes occur to the underlying publish/subscribe services, 
the interface exposed to components does not change. The EQAL Runtime framework also implements the 
strategy pattern to enhance the extensibility by allowing new publish/subscribe services to be easily plugged-in. 
This design results in a pluggable publish/subscribe service implementation that is interchangeable and extensi-
ble, and enables all event communication mechanisms supported by EQAL to provide the same interface, yet 
can also be configured with different strategies and QoS configurations even facing the domain evolution of 
adding new publish/subscribe service types. 
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Figure 9. Component Framework Architecture of EQAL 

 
5.1.2 DSML Evolution 
The core component in the DSML is the metamodel. To help understand the context of domain evolution, Fig-
ure 10 presents a matrix of several evolution tasks that require automated assistance to manage the various de-
pendencies among metamodels, instance models, and corresponding source code. As shown at the top of Figure 
10, a metamodel represents a modeling language definition that is instantiated to represent end-user intentions in 
a specific domain. Elements in the instance models (middle of figure) have meta-types that are specified in the 
metamodel. A vertical transformation (i.e., a transformation that goes across abstraction layers) exists between 
the instance models and the legacy source code at the bottom, which represents updates that are needed in one 
artifact that are triggered by a change at a different layer of abstraction. Correspondingly, horizontal transforma-
tion occurs at the same layer of abstraction to address changing requirements (i.e., the ∆ at each layer represents 
a horizontal transformation). 
 
To simplify the evolution of DSMLs, the reusability of metamodels is crucial when the domain becomes com-
plex. Ideally, a metamodel can be developed based on a set of reusable (usually smaller) metamodel units, with 
different units capturing different aspects in the domain of interest. For example, these metamodel units might 
include different variations of signal flow, finite state machines, data type specifications, and petri-nets. The 
unified metamodel can then extend these units and glue them together. This technique is called compositional 

metamodeling (Karsai et al., 2004), and the main motivation of this technique is to make metamodels more scal-
able and easier to evolve.  
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Figure 10. A Matrix of Evolution Activities within DSMLs 

 
Composition metamodeling provides a capability for reusing and combining existing modeling languages and 
language concepts. When changes need to be made in the metamodel units to reflect a better understanding of 
the given aspect in the domain, such changes can be propagated automatically to the metamodels that utilize 
them. Furthermore, by precisely specifying the extension and composition rules, models specified in the original 
domain language can be automatically translated to comply with the new, extended and composed, modeling 
language. Another important benefit of compositional modeling is its ability to add new capabilities while si-
multaneously leveraging prior constraints and model generators of existing DSMLs, thus it is ideal for evolving 
existing DSMLs to address new requirements. 
 
Applying the solution to the EQAL case study. EQAL is implemented within GME, which offers the compo-
sitional modeling capability. When new publish/subscribe services are integrated, a new DSML can be designed 
within GME and import the old EQAL metamodel as a reusable “library.” Apart from being read-only, all ob-
jects in the metamodel imported through the library are equivalent to objects created from scratch. Because the 
new publish/subscribe services share much commonality between the existing publish/subscribe services that 
EQAL already supports, when the old EQAL metamodel is imported as a library, subtypes can be created and 
instances from the metamodel library can refer to library objects through references.  
 
5.2 Challenges Stemming from Migrating Existing Domain Models with MDE-based PLA Evo-
lution 
 
Context. The primary value of the MDE paradigm stems from the models created using the DSML. These mod-
els specify the system from which the executable application can be generated or composed. Changes to the 
system can be modeled and the resulting executable model is thus a working version of the actual system. Un-
fortunately, if the metamodel is changed, all models that were defined using that metamodel may require main-
tenance to adapt to the semantics that represent the system correctly. Without ensuring the correctness of the 
domain models after a change to the domain, the benefits of MDE will be lost. The only way to use instance 
models based on the original metamodel is to migrate them to use the modified metamodel. During this migra-
tion process, we must preserve the existing set of domain model assets and allow new features to be added into 
domain models; ideally, with as little human intervention as possible. 
 
Problem: Existing domain model evolution techniques require excessive human intervention. As illustrated 
in Figure 11, to preserve the existing set of domain model assets, old domain models must be transformed to 
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become compliant with the changed metamodel. In the MDE research community, particularly in the DSML 
community, research has been conducted on using model transformation to address metamodel evolution 
(Sprinkle et al., 2003, Gray et al., 2006, Jouault 2006). The underlying structure of models, particularly visual 
models, can be described by graphs. Model transformation research has therefore often been conducted in the 
context of graph transformation. In particular, recent research (Vizhanyo et al., 2004, Balogh et al. 2007) has 
shown that graph transformation is a promising formalism to specify model transformations rules.  
 

 
Figure 11. Domain Model Evolution Problem 

Most existing model transformation techniques, however, require the transformation be performed after the do-
main metamodel has changed. For example, when an old metamodel is modified and a new metamodel-based on 
it is created, the model transformation must consider both the old metamodel and new metamodel as input, and 
then manually specify the model transformation rules based on these two metamodels by using a transformation 
specification language provided by the transformation tool. Although such a design approach could solve the 
model transformation problem, it introduces additional effort in specifying the model transformation rules, even 
if the metamodel evolution is minor (e.g., a simple rename of a concept in the metamodel). This additional effort 
is particularly high when the metamodels are complex, because the transformation tool must take both complex 
metamodels as input to specify the transformation. 
 
Solution: Tool-supported domain model migration. To preserve the assets of domain models, our approach is 
to integrate model migration capabilities into the metamodeling environment itself. This approach is sufficiently 
generic to be applied to any existing metamodeling environment. A description of the change in semantics be-
tween an old and a new DSML is a sufficient specification to transform domain models such that they are cor-
rect in the new DSML. Moreover, the pattern that specifies the proper model migration is driven by the change 
in semantics and may be fully specified by a model composed of entities from the old and new metamodels, 
along with directions for their modification. 
 
Below we describe how syntactic- and semantic-based model transformation approaches can be integrated to 
address the domain model migration problem. 
 
5.2.1 Integration of Syntactic-based and Semantic-based Domain Model Evolution 

Based on the characteristics of metamodel change, researchers have shown that 14 atomic types of metamodel 
changes can be defined (Sprinkle et al., 2004), as shown in Table 1. These results provide intuition into the 
problem of domain model evolution. In some cases, the semantics can be easily specified. For example, if the 
metamodel designer deletes an atom called “foo” in the metamodel and creates a new atom called “bar” we can 
then specify the semantics of the change as: 
 

replace(Atom("foo") -> Atom("bar")); 
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Table 1: Changes that Require a Paradigm Shift (Sprinkle et al., 2003b) 

Syntactic metamodel changes, however, can often affect semantic changes, which result in a highly challenging 
task in model migration, i.e., semantic migration. Semantic migration requires that the meaning of the old do-
main models be preserved after the transformation and that the new domain models conform to the entire set of 
static constraints required in the new domain. 
 
For model migration, we generalized two approaches to perform model transformation with semantic migration. 
In the first approach, given two distinct metamodels, source metamodel and destination metamodel, we can per-
form a transformation that converts the source models in entirety to the destination models. This means that a 
complete set of rules is needed to convert each entity in the models. In the second approach, we create a unified 
metamodel (old + new), such that both old and new domain models are valid. Developers can then write trans-
formation specifications that convert those parts of the model belonging to the source part of the paradigm to 
equivalent models in the destination part of the paradigm. 
 
We have found that the second approach is much cleaner and user-friendly than the first approach because it 
requires much less human effort. In this second approach, after the unified metamodel is formulated, we use an 
“SQL-like” declarative language that allows one to query and change the model to define model transformation 
rules. The Embedded Constraint Language (ECL), used by the C-SAW GME plug-in (Gray, 2001), is such a 
language. ECL is a textual language for describing transformations on visual models. Similar to the Object Con-
straint Language (OCL) defined in OMG’s UML specification, ECL provides concepts such as collection and 
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model navigation. In addition, the ECL also provides a rich set of operators that are not found in the OCL to 
support model aggregations, connections, and transformations. ECL is a declarative language that allows one to 
specify the formal transformation rules of the syntax translator to capture the semantic migration.  
 
In previous work, we showed how ECL can be used to accomplish several model transformation tasks (Gray et 
al., 2006). As an input language to C-SAW, ECL can support aspect modeling, as well as the ability to scale a 
base model to a larger model with replicated structures. Figure 12 illustrates an input source model being trans-
formed by an ECL transformation rule to generate a new target model. An example of using ECL to handle the 
domain model migration in our case study is described in the next subsection. 
 

 

Figure 12. Model Transformation Using the ECL (Gray et al., 2006) 
 
Applying the solution to EQAL case study. In an old version of the EQAL metamodel there is a modeling 
object type called “EventChannelGateway,” which can be used to federate different event channels to-
gether (Edwards et al., 2004). The definition of such a modeling element in a metamodel is similar to defining a 
class in C++ or Java. With domain evolution, this EventChannelGateway object type needs to be defined 
as an abstract base type (similar to the abstract base class concept in C++ or Java), and two new derived types 
called IIOPGatway and UDPGateway are defined in order to configure different underlying transport proto-
cols between event channels. An issue arises regarding the type assignment of EventChannelGateway 
elements; depending on the context, these elements could be migrated to either the type of IIOPGatway or 
UDPGateway. In cases like these, it is quite challenging to discover the semantics of the change, i.e., the se-
mantics of the model elements cannot be deduced from the syntax. To require that such algorithms provide ac-
tual semantic migration capabilities necessitates human input because semantic changes in metamodels cannot 
be captured through syntactic changes alone. 
 
Figure 13 shows the BasicSP application scenario (Balasubramanian et. al. 2005b) in the Boeing Bold Stroke 
PLA. We use the BasicSP scenario as an example to showcase the problems encountered when evolving PLAs 
for component based DRE systems and motivate the need of ECL for model transformation. In this figure, two 
component instances named BMDevice and BMClosedED are connected with each other through a real-time 
event channel provided by TAO’s Real-time Event Service. An event channel consists of one 
RTEC_Proxy_Consumer module and RTEC_Proxy_Supplier module, which could be configured with 
various QoS settings, such as event dispatching threading models, priority configuration and periodic event 
processing configurations. Consider a domain evolution scenario, where the Real-time Event Service is not the 
desired choice for a particular Bold Stroke product variant, so it must be replaced with the TAO Federated Noti-
fication Service. In this case, the current domain model of Figure 13 will become invalid and must be migrated 
to the new EQAL DSML that supports the configuration of TAO’s Federated Notification Service. 
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With ECL, a model transformation rule can be defined to accomplish the model migration task noted above. In 
the ECL, a strategy represents a transformation rule that is applied to a specific location of a model. A query can 
be written in the ECL to define a collection of models that need to be transformed, and a strategy can be invoked 
on the collection. The strategy below specifies the desired model migration. The semantic meaning of this trans-
formation is straightforward, i.e., line 1 declares the strategy based on the ECL syntax; lines 4-10 find the inter-
ested model elements and their associations that are based on TAO’s Real-time Event Service; line 11 removes 
the found model elements, and lines 13-20 replace these model elements and associations with TAO’s Federated 
Notification Service. 
 
1.  strategy ChangeToFNS() { 
2.    declare FNS_Proxy_Consumer, FNS_Proxy_Supplier : model; 
3.  
4.    // Find interested model elements… 
5.    if(atoms()->select(a | a.kindOf() =  "RTEC_Proxy_Consumer")->size() >= 1) then 
6. 
7.    //get the RTEC_Proxy_Consumer model element  
8.    //and its connections 
9.   … 
10.   //delete the RTEC_Proxy_Consumer model element 
11.   RTEC_Model.deleteModel(“RTEC_Proxy_Consumer”, “RTEC_proxy_consumer”); 
12. 
13.   //add the FNS_Proxy_Consumer model 
14.   FNS_Proxy_Consumer:= addModel(“FNS_Proxy_Consumer”, “FNS_proxy_consumer”); 
15.   FNS_Proxy_Consumer.setAttribute("Reactive", "1"); 
16.   FNS_Proxy_Consumer.setAttribute("LockType", "Thread Mutex"); 
17. 
18.   //add the connections 
19.   RTEC_Model.addConnection("Event_Source_Proxy_Consumer", event_source, FNS_Proxy_Consumer); 
20.   RTEC_Model.addConnection("Proxy_Supplier_Event_Sink", FNS_Proxy_Consumer, event_sink); 
21. 
22.  //do similar to the FNS_Proxy_Supplier model 
23.  … 
24.  endif; 
25. } 
 
6. Future Trends 
 
This section discusses the future trends in the areas of MDE and component middleware, and how together they 
are impacting MDE-based PLAs, particularly for DRE systems. 
 
Emerging Interest in Domain-Specific Modeling. The interest and adoption of DSMLs over the past decade 
has surged. Strong support for basic research has been committed by the large European Union ModelWare and 
ModelPlex projects, which are funded at 30M Euros (ModelWare Project, 2006). Metamodeling tools that sup-
port DSM continue to emerge from both commercial and open source projects (e.g., Microsoft’s DSL Toolkit 
(Microsoft, 2006) and the Eclipse Modeling Project (Eclipse, 2007)), as well as numerous academic research 
projects (e.g., Vanderbilt’s Generic Modeling Environment (GME, 2007)). Initial success stories from industry 
adoption of DSM have been reported; the newly created DSM Forum (DSM Forum, 2007) serves as a repository 

 
Figure 13. EQAL Configuring Real-time Event Service Between Two Components 
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of several dozen successful projects (mostly from industry, such as Nokia, Dupont, Honeywell, and NASA) that 
have adopted DSM. Over the past five years, the annual DSM workshop at OOPSLA (42 international partici-
pants in 2006) provides a venue for reporting experiences in DSM research and practice. 

 
Future trends of MDE tools for DRE systems. MDE has already played an important role in the assembly, 
configuration and deployment lifecycle stages of today’s DRE systems. We envision next generation MDE tools 
will seamlessly integrate all lifecycle stages of software product lines, including requirement management, func-
tionality specification, QoS specification, system partitioning and implementation, component assembly and 
packaging, system configuration, system planning and analysis and runtime system management. With such 
seamless integration, models will become vital artifacts in all aspects of software PLA development lifecycle, 
and sophisticated model transformation techniques will bridge the gap between models in different lifecycle 
stages. The need for seamless integration of models across the lifecycle is driving the need for integration across 
a collection of different modeling tools, where each offers some advanced capability not found in another tool. 
The need for tool integration will continue to heighten the role that model transformation plays as the key en-
abler of model sharing (Sendall et al., 2003). 
 
Future trends of component middleware for DRE systems. The success of component middleware technolo-
gies has resulted in DRE systems created by customizing pre-existing COTS components rather than creating 
them from scratch. The increased use of pre-existing components shifts the focus from development to configu-
ration and deployment of COTS components. With more COTS components provided by different vendors, the 
capability of heterogeneous deployment becomes a challenging task to evolve today’s DRE systems. 
 
Future component middleware technologies will enable rapid development of adaptive large scale DRE systems 
to accommodate changing operating environments. To facilitate the development of large-scale DRE systems, 
component middleware must support the agility in business service provisioning within and across organizations 
while ensuring the quality of service. The combination of these two techniques will finally enable software PLA 
developers to capture and represent adaptability of DRE systems at the business level and automatically trans-
late this business adaptability into component and process adaptability. 
 
As PLAs become more complex, they will be adopted into software-intensive systems of very large-scale, as 
typified by the focus of Ultra Large-Scale systems (Ultra Large-Scale, 2007). In such cases, it is not unrealistic 
to imagine the PLAs using multiple different middleware platforms. To accommodate these requirements de-
mands new investigation in deployment and configuration across heterogeneous middleware platforms. This 
heterogeneity also adds to the challenges in provisioning QoS end-to-end for these PLAs. All these require 
novel modeling capabilities that can abstract away the heterogeneity. 
 
We envision these future trends will greatly simplify the development of MDE-based PLAs and make next gen-
eration DRE systems more robust. 
 
7. Concluding Remarks  
 
Change is a natural and inevitable part of the software-intensive system lifecycle. The changes may be initiated 
to correct, improve, or extend assets or products. Since assets are often dependent on other assets, changes to 
one asset may require corresponding changes in other assets. Moreover, changes to assets in PLAs can propa-
gate to affect all products using these assets.  
 
To use MDE-based PLA technologies effectively in practice requires practical and scalable solutions to the do-
main evolution problem, which arises when existing PLAs are extended and/or refactored to handle unantici-
pated requirements or better satisfy existing requirements. For example, changing metamodels in a PLA often 
invalidates models based on previous versions of the metamodels. Although software developers can manually 
update their models and/or components developed with a previous metamodel to work with the new metamodel, 
this approach is clearly tedious, error-prone, and non-scalable. A successful process for PLA evolution must 
therefore manage these changes effectively. 
 
To rectify these problems, this chapter describes a layered and compositional architecture to modularize system 
concerns and reduce the effort associated with domain evolution. This chapter illustrates via a case study how 
systematic evolution with three ordered steps can maintain the stability of domain evolution against MDE-based 
software PLAs, and how structural-based model transformations help reduce human effort by automatically 
transforming existing domain models based on metamodel-based rules. 
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The following is a summary of lessons learned from our experience in evolving product-lines using MDE tools:  
 
• DSMLs and Component Frameworks are Highly Synergistic . An MDE approach expedites PLA devel-

opment with the proper integration of DSMLs and component frameworks. The component frameworks help 
shield the complexities of the design and implementation of modeling tools, and decouple many aspects of 
concerns between the modeling tools and the executable systems. In our case study, if the publish/subscribe 
service type is the only missing or changing concern in the Boeing Bold Stroke PLA (which is typical in our 
case), little new application code must be written, yet the complexity of the generation tool remains manage-
able due to the limited number of well-defined configuration “hot spots” exposed by the underlying infra-
structure. Likewise, when component deployment plans are incomplete or must change, the effort required is 
significantly less than starting from the raw component middleware without MDE tool support. 

• Declarative-based Model Transformation Alleviates Transformation Effort. Structural-based model 
transformations help maintain the stability of domain evolution of MDE-based DRE systems by automati-
cally migrating domain models. A declarative-based model transformation language like ECL is an ideal ap-
proach in such a case. The case study presented in this chapter highlights the ease of specification and the 
general flexibility provided by the transformation engine. 

• Testing and Debugging of Transformation Specification is Still Hard . Transformation specifications, 
such as those used to specify the transformation strategy in this chapter, are written by humans and prone to 
error. To improve the robustness and reliability of model transformation, there is a need for testing and de-
bugging support to assist in finding and correcting the errors in transformation specifications. Ongoing and 
future work on ECL focuses on the construction of testing and debugging utilities to ensure the correctness of 
ECL transformation specifications. 

 
All software in this chapter can be downloaded our websites. The EQAL framework is shipped as part of the 
CIAO and is available at http://download.dre.vanderbilt.edu. The EQAL DSML is available at 
http://www.dre.vanderbilt.edu/cosmic/. C-SAW is available at: http://www.cis.uab.edu/gray/Research/C-SAW/ 
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