
Model Driven Middleware: A New Paradigm

for Developing and Provisioning Distributed

Real-time and Embedded Applications ?

Krishnakumar Balasubramanian a,
Jaiganesh Balasubramanian a, Arvind S. Krishna a,

George Edwards a, Gan Deng a, Emre Turkay a,
Jeffrey Parsons a, Aniruddha Gokhale a,∗, Douglas C. Schmidt a

aInstitute for Software Integrated Systems, Vanderbilt University, Campus Box
1829 Station B, Nashville, TN 37235, USA

Abstract

Distributed real-time and embedded (DRE) applications have become critical in
domains such as avionics (e.g., flight mission computers), telecommunications (e.g.,
wireless phone services), tele-medicine (e.g., robotic surgery), and defense applica-
tions (e.g., total ship computing environments). DRE applications are increasingly
composed of multiple systems that are interconnected via wireless and wireline net-
works to form systems of systems. A challenging requirement for DRE applications
involves supporting a diverse set of quality of service (QoS) properties, such as pre-
dictable latency/jitter, throughput guarantees, scalability, 24x7 availability, depend-
ability, and security that must be satisfied simultaneously in real-time. Although a
growing number of DRE applications are based on QoS-enabled commercial-off-the-
shelf (COTS) hardware and software components, the complexity of managing long
lifecycles (often ∼15-30 years) remains a key challenge for DRE application develop-
ers. For example, substantial time and effort is spent retrofitting DRE applications
when their COTS technology infrastructure changes.

This paper provides three contributions to improving the development and vali-
dation of DRE applications throughout their lifecycles. First, we illustrate the chal-
lenges in developing and deploying QoS-enabled component middleware-based DRE
applications and outline our solution approach to resolve these challenges. Second,
we describe a new software paradigm called Model Driven Middleware (MDM) that
combines model-based software development techniques with QoS-enabled compo-
nent middleware to address key challenges faced by developers of DRE applica-
tions - particularly composition, integration, and assured QoS for end-to-end op-
erations. Finally, we describe our progress on a MDM tool-chain, called CoSMIC
that addresses key DRE application and middleware lifecycle challenges, including
developing component functionality, partitioning the components to use distributed
resources effectively, validating the software, assuring multiple simultaneous QoS

Preprint submitted to Science of Computer Programming 14 November 2003



properties in real-time, and safeguarding against rapidly changing technology.

Key words: MDA: Model Driven Architecture, MDM: Model Driven Middleware,
MIC: Model Integrated Computing, CCM: CORBA Component Model, D&C:
Deployment and Configuration

1 Introduction

1.1 Emerging Trends

Computing and communication resources are increasingly being used to con-
trol large-scale, mission-critical distributed real-time and embedded (DRE)
applications. Figure 1 illustrates a sampling of these DRE applications in
the medical imaging, commercial air traffic control, military combat opera-
tional capability, electrical power grid system, and industrial process control
domains. These types of DRE applications share the following characteristics:

Fig. 1. Example Large-scale Distributed Real-time and Embedded Appli-
cations

1. Heterogeneity. Large-scale DRE applications often run on a variety of
computing platforms that are interconnected by different types of networking
technologies with varying QoS properties. The efficiency and predictability of
DRE applications on different infrastructure components varies according to
the type of computing platform and interconnection technology.

2. Deeply embedded properties. DRE applications are frequently com-
posed of multiple embedded subsystems. For example, an antilock braking
software control system forms a resource-constrained subsystem that is part
of a larger DRE application controlling the overall operation of an automobile.

3. Simultaneous support for multiple quality of service (QoS) prop-
erties. DRE software controllers [1] are increasingly replacing mechanical
and human control of critical applications. These controllers introduce many
challenging – often simultaneous – QoS constraints, including (1) real-time

? Work supported by AFRL Contract#F33615-03-C-4112 for DARPA PCES Pro-
gram
∗ Corresponding Author Email: a.gokhale@vanderbilt.edu

2



requirements, such as low latency and bounded jitter, (2) availability require-
ments, such as fault propagation/recovery across distribution boundaries, (3)
security requirements, such as appropriate authentication and authorization,
and (4) physical requirements, such as limited weight, power consumption, and
memory footprint. For example, a distributed patient monitoring system re-
quires predictable, reliable, and secure monitoring of patient health data that
can be distributed in a timely manner to healthcare providers.

4. Large-scale, network-centric operation. The scale and complexity of
DRE applications makes it infeasible to deploy them in disconnected, stan-
dalone configurations. The functionality of DRE applications is therefore par-
titioned and distributed over a range of networks. For example, an urban
bioterrorist evacuation capability requires highly distributed functionality in-
volving networks connecting command and control centers with biosensors
that collect data from police, hospitals, and urban traffic management sys-
tems.

5. Dynamic operating conditions. Operating conditions for large-scale
DRE applications can change dynamically resulting in the need for appropri-
ate adaptation and resource management strategies for continued successful
system operation. In civilian contexts, for instance, the recent power grid fail-
ure in the northeastern United States underscores the need to detect failures
in a timely manner and adapt in real-time to maintain mission-critical power
grid operations. In military contexts, likewise, a mission mode change or loss
of functionality due to an attack in combat operations requires adaptation
and resource reallocation to continue with mission-critical capabilities.

1.2 Technology Challenges and Solution Approaches

Although the importance of the DRE applications described above has grown
significantly, DRE software remains harder to develop, maintain, and evolve [2,3]
than mainstream desktop and enterprise software due in large part to their
reliance on proprietary hardware and software technologies and development
techniques. Unfortunately, proprietary solutions often fail to address the needs
of large-scale DRE applications over their extended lifecycles. As DRE appli-
cations grow in size and complexity, moreover, the use of proprietary technolo-
gies can make it hard to adapt DRE software to meet new functional or QoS
requirements, hardware/software technology innovations, or emerging market
opportunities.

During the past decade, a substantial amount of R&D effort has focused on
developing standards-based middleware, such as Real-time CORBA [4] and
QoS-enabled CORBA Component Model (CCM) middleware [5], to address
challenges outlined in the previous paragraph. As shown in Figure 2, middle-
ware is systems software that resides between the applications and the under-
lying operating systems, network protocol stacks, and hardware and provides
the following capabilities:

3



Fig. 2. Component Middleware Layers and Architecture

1. Control over key end-to-end QoS properties. A hallmark of DRE
applications is their need to control the end-to-end scheduling and execution
of CPU, network, and memory resources. QoS-enabled component middleware
is based on the expectation that QoS properties will be developed, configured,
monitored, managed, and controlled by a different set of specialists (such as
middleware developers, systems engineers, and administrators) than those re-
sponsible for programming the application functionality in traditional DRE
applications.

2. Isolation of DRE applications from heterogeneous operating sys-
tems and networks. Standards-based QoS-enabled component middleware
defines communication mechanisms that can be implemented over many net-
works and OS platforms. Component middleware also supports container that
(a) provide a common operating environment to execute a set of related com-
ponents and (b) shield the components from the underlying networks, operat-
ing systems, and even the underlying middleware implementation. By reusing
the middleware’s communication mechanisms and containers, developers of
DRE applications can concentrate on the application-specific aspects of their
systems and leave the communication and QoS-related details to middleware
developers.

3. Reduction of total ownership costs. QoS-enabled component middle-
ware defines crisp boundaries between components, which can help to reduce
dependencies and maintenance costs associated with replacement, integration,
and revalidation of components. Likewise, common components (such as event
notifiers, resource managers, naming services, and replication managers) can
be reused, thereby helping to further reduce development, maintenance, and
validation costs.

1.3 Unresolved Technology Gaps for DRE Applications

Despite the significant advances in standards-based QoS-enabled component
middleware, however, there remain significant technology gaps to effectively
support large-scale DRE applications in domains that require simultaneous

4



support for multiple QoS properties, including shipboard combat control sys-
tems [6] and supervisory control and data acquisition (SCADA) systems that
manage regional power grids. Key technology gaps include the following:

1. Effective isolation of DRE applications from heterogeneous mid-
dleware platforms. Advances in middleware technology and various stan-
dardization efforts, as well as market and economical forces, have resulted in
a multitude of middleware stacks, such as CORBA, J2EE, SOAP, and .NET.
This heterogeneity makes it hard to identify the right middleware for a given
application domain.

2. Effective composition of DRE application components. DRE com-
ponent middleware enable application developers to develop standalone QoS-
enabled components that can be composed together into assemblies to form
semi-complete DRE applications. Although this approach provides the ability
to use “plug&play” components into DRE applications, system integrators
must now face the daunting task of composing the right set of compatible
components that will deliver the desired semantics and QoS to an entire ap-
plication.

3. Accidental complexities in configuring and deploying middleware.
In QoS-enabled component middleware, both the components and the under-
lying component middleware framework may have a large number of config-
urable attributes and parameters that can be set at various stages of develop-
ment lifecycle, such as composing an application or deploying an application
in a specific environment. It is tedious and error-prone, however, to manually
ensure that all these parameters are semantically consistent throughout an
application. Moreover, such ad hoc approaches have no formal basis for val-
idating and verifying that the configured middleware will indeed deliver the
end-to-end QoS requirements of the application.

4. Effective deployment decisions of DRE component assemblies on
heterogeneous target platforms. The component assemblies described
in bullet 2 above must be deployed in the distributed target environment
before an application can start running. Application deployers must therefore
perform the complex task of selecting from amongst a range of component
assemblies and deploy them on the right entities in a target environment.

This paper describes how we are addressing the technology gaps described
above using Model Driven Middleware (MDM). MDM is an emerging paradigm
that integrates model-based software techniques (including Model-Integrated
Computing [7,8] and the OMG’s Model Driven Architecture [9]) with QoS-
enabled component middleware (including Real-time CORBA [4] and QoS-
enabled CCM [5]) to help resolve key software development and validation
challenges encountered by developers of large-scale DRE middleware and ap-
plications.

5



1.4 Paper Organization

The remainder of paper is organized as follows: Section 2 describes key R&D
challenges associated with large-scale DRE applications and outlines how the
Model Driven Middleware paradigm can be used to resolve these challenges;
Section 3 describes our work on MDM in detail, focusing on our CoSMIC
toolsuite that integrates OMG MDA technology with QoS-enabled component
middleware; Section 4 compares our work on CoSMIC with related research
activities; and Section 5 presents concluding remarks.

2 DRE Application R&D Challenges and Resolutions

This section describes in detail the following R&D challenges associated with
component middleware-based large-scale DRE applications that were outlined
in Section 1:

(1) Safeguarding DRE applications against technology obsolescence
(2) Packaging of component functionality
(3) Configuration of middleware
(4) Planning for deployment

For each of these challenges we describe the context in which they arise, the
specific technology problems that need to be solved, and outline how Model
Driven Middleware (MDM) can be applied to help resolve these problems.
Section 3 then describes how we are implementing these MDM solutions via
CoSMIC, which is a toolsuite that combines MDA technology (such as the
Generic Modeling Environment (GME) [10]) with QoS-enabled component
middleware (such as the Component Integrated ACE ORB (CIAO) [5] that
adds advanced QoS capabilities to the OMG CORBA Component Model).

2.1 Challenge 1 - Safeguarding DRE Applications Against Technology Obso-
lescence

• Context. Component middleware refactors what was often historically
ad hoc application functionality into reusable, composable, and configurable
standalone units. Component developers must select their component middle-
ware platform and implementation language(s). Component developers may
also choose to provide different implementations of the same functionality that
use different algorithms and data structures. The goal is to provide different
implementations that are tailored for different use cases and target environ-
ments. This intellectual property must be preserved over extended periods of
time, ı.e., ∼15-30 years.

• Problem – Accidental complexities in identifying the right tech-
nology and safeguarding against technology obsolescence. Recent
improvements in middleware technology and various standardization efforts,
as well as market and economical forces, have resulted in a multitude of middle-
ware stacks, such as those shown in Figure 3. This heterogeneity often makes

6



Fig. 3. Multiple Middleware Stacks

it hard, however, to identify the right middleware for a given application do-
main. Moreover, there exist limitations on how much application code can be
factored out as reusable patterns and components in various layers for each
middleware stack. This limit on refactoring in turn affects the optimization
possibilities that can be implemented in different layers of the middleware.
A challenge for DRE application developers is therefore to choose the right
middleware technology that can provide the desired levels of end-to-end QoS.
It is also desirable to safeguard applications from technology obsolescence so
that the application software can incorporate newer technologies with minimal
effort.

• Solution approach. One way to safeguard DRE applications from tech-
nology obsolescence is to apply the MDM paradigm to separately model the
functional and systemic (i.e., QoS) requirements of components at higher lev-
els of abstraction than that provided by conventional programming languages
or scripting tools. MDM analysis and synthesis tools can then make suitable
decisions on the choice of the appropriate middleware platform and its con-
figuration and deployment for the target environment. Section 3 describes the
architecture of CoSMIC, which is an integrated suite of MDM tools we are
developing to address this challenge.

2.2 Challenge 2 – Packaging of Component Functionality
•Context. As illustrated in Figure 4, packaging involves bundling a suite
of software binary modules and metadata representing application compo-
nents, where a component can be monolithic (standalone) or an assembly of
subcomponents. Packaged components exist in “passive mode,” i.e., all their
functionality is present, but they are inert object code. To perform their func-
tionality at run-time, components must transition to “active mode,” where
the interconnections between components are established. Deployment mech-
anisms are responsible for transitioning components from passive to active
mode.

• Problem – Accidental complexities in composing and integrating
software systems. Composing an application from a set of components
with syntactically consistent interface signatures simply ensures they can be
connected together. To function correctly, however, collaborating components

7



Fig. 4. Packaging of components

must also have compatible semantics and invocation protocols, which are hard
to express via interface signatures alone. For example, if a component devel-
oper has provided different implementations of the same functionality, it is
necessary to be able to assemble components that are semantically and binary
compatible with each other. It is also essential that the assembled packages
provide the desired systemic (QoS) properties.

Challenge 2 therefore involves ensuring syntactic, semantic, systemic, and bi-
nary compatibility of assembled packages. Ad hoc techniques, such as manually
selecting the components, are tedious, error-prone, and lack a solid analytical
foundation to support verification and validation, and ensuring that the end-
to-end QoS properties are satisfied with the given assembly. Likewise, ad hoc
techniques for determining, composing, assembling, and deploying the right
mix of semantically compatible, QoS-enabled COTS middleware components
do not scale well as the DRE application size and requirements increase.

• Solution approach. Our approach to addressing Challenge 2 involves
developing MDM tools to represent component assemblies using the modeling
techniques described in Section 3.1. These models are amenable to model
checking [11], which in turn can ensure semantic and binary compatibility.

2.3 Challenge 3 – Configuration of Middleware
• Context. Assuming a suitable component packaging capability exists, the
next challenge involves configuring packages in accordance with the appropri-
ate configuration parameters of the middleware platform. Configuration of
middleware involves selecting the right set of tunable knobs and their values
at different layers of the middleware. For example, in QoS-enabled compo-
nent middleware [5], both the components and the underlying component
middleware framework may have a large number of configurable and tunable
parameters, such as end-to-end priorities, size of thread pools, internal buffer
sizes, and data marshaling strategies. These parameters can be set at vari-
ous stages of development lifecycle, such as during composing an application
or deploying an application in a specific environment. The goal is to satisfy
the functional and systemic requirements of DRE applications by taking into

8



account the properties of the target environment, without prematurely com-
mitting to physical resources, such as a specific host machine or choice of a
network.

• Problem – Accidental complexities in configuring middleware. It
is tedious and error-prone to manually ensure that all the configurable param-
eters provided by the middleware are semantically consistent throughout an
application. Moreover, such ad hoc approaches have no formal basis for val-
idating and verifying that the configured middleware will indeed deliver the
end-to-end QoS requirements of the application.

• Solution approach. To address Challenge 3, we are developing MDM
configuration tools that support the (1) modeling and synthesis of configura-
tion parameters for the middleware, (2) containers that provide the execution
context for application components, and (3) configuration of common middle-
ware services, such as event notification, security, and replication. Section 3.2
describes MDM tools that help ensure the configuration parameters at differ-
ent layers of the middleware are compatible with each other.

2.4 Challenge 4 – Planning for Deployment
• Context. DRE applications often possess multiple QoS requirements that
the middleware must help to enforce simultaneously on the target platform.
This enforcement process involves both planning and preparing for the deploy-
ment of components and their assemblies. Planning involves decisions specify-
ing the target environment, making appropriate component deployment deci-
sions, such as identifying the packages that will be deployed in the hosts speci-
fied in the target environment. After these decisions are made, the preparation
activity involves moving the selected package binaries to the specified entities
of the target environment and triggering the necessary scripts to launch the
application.

• Problem – Satisfying multiple QoS requirements simultaneously.
Due to the uniqueness and complexity of DRE application QoS requirements,
the heterogeneity of the environments in which they are deployed, and the need
to interface with legacy systems and data, it is hard to develop a universal
middleware solution and deployment decision that can address these require-
ments. It is also hard to integrate highly configurable, flexible, and optimized
components from different providers while still ensuring that application QoS
requirements are delivered end-to-end. Due to the functional and systemic
partitioning of these DRE applications, it is therefore necessary to have a
carefully choreographed sequence of deployment planning steps that will en-
sure that functional dependencies are met and the systemic requirements are
satisfied after deployment.

• Solution approach. To address challenge 4, our solution approach de-
scribed in Section 3.3 requires developing MDM tools that accurately depict
the target environment and that determine how appropriate deployment deci-
sions can be made based on an analysis of expected end-to-end QoS of packages

9



to be deployed in a given target environment. For example, the target envi-
ronment modeling includes the network topology, the network technology and
the available bandwidth, the CPUs, the OS they run and the size of RAM,
among others that are used to make the right deployment decisions. Moreover,
as described in Section 3.3, the models of target environment when combined
with the models of the packages are used to synthesize test suites that are cus-
tomized to benchmark different aspects of DRE application and component
middleware performance. Empirical benchmark data for individual assemblies
is used in end-to-end QoS prediction analysis tools to guide the deployment
of components throughout a distributed system.

3 Resolving DRE Application Lifecycle Challenges with Model
Driven Middleware

To address the challenges described in Section 2, principled methods are
needed to specify, develop, compose, integrate, and validate DRE application
and middleware software. These methods must enforce the physical constraints
of the system. Moreover, they must satisfy stringent functional and systemic
QoS requirements within an entire system. Achieving these goals requires a set
of standard integrated tools that allow developers to specify application and
middleware requirements at higher levels of abstraction than that provided
by low-level mechanisms, such as conventional general-purpose programming
languages, operating systems, and middleware platforms. These tools must be
able to analyze the requirements and synthesize the required metadata that
will compose applications from the right set of middleware components.

A promising way to address the DRE application lifecycles challenges de-
scribed in Section 2 is Model Driven Middleware (MDM), which integrates
model-based software techniques (including Model-Integrated Computing [7,8]
and the OMG’s Model Driven Architecture [9]) with QoS-enabled component
middleware (including Real-time CORBA [4] and QoS-enabled CCM [5]) to
help resolve key software development and validation challenges encountered
by developers of large-scale DRE middleware and applications. MDM ex-
presses software functionality and QoS requirements at higher levels of ab-
straction than is possible using conventional programming languages (such as
C, C++, and Java) or scripting languages (such as Perl and Python). In the
context of DRE middleware and applications, MDM tools can be applied to:
• Modeling different functional and systemic properties of DRE applica-
tions in separate middleware- and platform-independent models [12]. Domain-
specific aspect model weavers [13] can integrate these different models into
composite models that can be further refined by incorporating middleware
and platform-specific properties.
• Analyzing different—but interdependent—characteristics and requirements
of application behavior specified in the models, such as scalability, predictabil-
ity, safety, schedulability, and security. Model interpreters [10] translate the

10



information specified by models into the input format expected by model
checking [11] and analysis tools [14]. These tools can check whether the re-
quested behavior and properties are feasible given the specified application
and resource constraints. Tool-specific model analyzers [15,16] can also ana-
lyze the models and predict [17] expected end-to-end QoS of the constrained
models.

• Synthesizing [18,19] platform-specific code and metadata that is cus-
tomized for a particular component middleware and DRE application proper-
ties, such as end-to-end timing deadlines, recovery strategies to handle various
runtime failures in real-time, and authentication and authorization strategies
modeled at a higher level of abstraction.

• Provisioning middleware and applications by assembling and deploying
the selected components end-to-end using the configuration metadata synthe-
sized by MDM tools. In the case of legacy components that were developed
without consideration of QoS, the provisioning process may involve automated
invasive changes to existing components in order to provide the hooks that
will adapt to the metadata. These invasive changes can be instrumented using
a program transformation system, such as DMS [20].

• Assuring runtime QoS properties are delivered to the DRE application,
which can be achieved via modeling dynamic adaptation and resource man-
agement strategies that use hybrid control-theoretic [21] techniques.

Initially, OMG MDA technologies focused largely on enterprise applications.
More recently, MDA technologies have emerged to customize QoS-enabled
component middleware for DRE applications, including aerospace [22], telecom-
munications [23], and industrial process control [24]. This section describes our
R&D efforts that are integrating the MDA paradigm with QoS-enabled com-
ponent middleware to create a Model Driven Middleware toolsuite called CoS-
MIC (Component Synthesis using Model Integrated Computing). As shown
in Figure 5, the CoSMIC toolsuite consists of an integrated collection of mod-
eling, analysis, and synthesis tools addressing key lifecycle challenges of DRE
applications and middleware. The CoSMIC tools are all based on the Generic
Modeling Environment (GME) [10], which is a meta-modeling environment
that defines the modeling paradigms for each stage of the CoSMIC tool chain.
The CoSMIC tools use GME to enforce their “correct by construction” tech-
niques, as opposed to the “construct by correction” techniques commonly used
by post-construction tools such as compilers and script validators. CoSMIC
ensures that the rules of construction – and the models constructed according
to these rules – can evolve together over time. Each CoSMIC tool synthesizes
metadata in XML and passes this XML to the next stage of the tool chain.

The initial CoSMIC toolsuite uses a platform-specific model (PSM) approach
that integrates the modeling technology with our CIAO QoS-enabled compo-
nent middleware [5] since CIAO is targeted to meet the QoS requirements of

11



Fig. 5. CoSMIC Model Driven Middleware Toolsuite

DRE applications. As other component middleware platforms (such as J2EE
and .Net) mature and become suitable for DRE applications, however, we will
enhance the CoSMIC toolsuite so it supports platform-independent models
(PIMs) and then include the necessary patterns and policies to map the PIMs
to individual PSMs for the various component middleware platforms.

The remainder of this section describes each tool in our CoSMIC toolsuite,
the modeling paradigms we have developed for that tool, and how the tool
resolves the R&D challenges described in Section 2.

3.1 Model-driven Component Packaging: Resolving Component Packaging
Challenges

CoSMIC provides the Composable Adaptive Software Systems (COMPASS)
tool to resolve the problem of packaging component functionality described in
Challenge 2 of Section 2.2. COMPASS defines a modeling paradigm that allows
DRE application integrators to model the component assembly and packaging
aspect. COMPASS also provides built-in constraint checkers that check for
syntactic, semantic and binary compatibility of the assembled components.
Moreover, the COMPASS model interpreter enables the synthesis of metadata
describing component packages.

Figure 6 illustrates how COMPASS fits into the overall CoSMIC tool chain,
which enables application developers to model, synthesize, and deploy DRE
applications. Below we describe how the COMPASS tool is used by DRE
application integrators.

Package modeling. The modeling paradigm of COMPASS comprises dif-
ferent packaging and configuration artifacts and also legal domain-specific as-
sociations between the various artifacts. The modeling paradigm is defined

12



Fig. 6. COMPASS

such that the application integrator is able to visualize the packages at differ-
ent levels of abstractions i.e., at the level of package, assembly and individual
components. Visualization of abstractions is achieved by using the hierar-
chy inherent in composition based approaches of software development i.e., it
utilizes the hierarchy of individual packages, the set of assemblies contained
within a package, and the individual components contained as part of each
assembly.

Configuration modeling. Since components can be composed out of as-
semblies of components, the individual components need to carry informa-
tion about their properties and requirements so that informed decisions can
be made at composition time by application integrators and tools. By mak-
ing both properties and requirements as first-class entities of the modeling
paradigm, COMPASS ensures that the properties of the set of available com-
ponents can be matched against the set of requirements. This matching can
be done using metrics defined by the OMG Deployment and Configuration
of Component-based Distributed Applications Specification [25], including (1)
quantity, which is a restriction on number (em e.g., number of available pro-
cessors), (2) capacity, which is a restriction on consumption (e.g., available
bandwidth), (3) minimum, which is a restriction on the allowed minimum
(e.g., minimum latency), (4) maximum, which is a restriction on the allowed
maximum (e.g. maximum throughput), (5) equality, which is a restriction on
the allowed value e.g., the required operating system), and (6) selection, which
is a restriction on a range of allowed values (e.g., allowed versions of a library
satisfying a dependency).

Constraint specification. COMPASS provides a constraint checker to en-
sure that the packages it creates are valid. This checker plays a crucial role
in enforcing the CoSMIC “correct by construction” techniques. Constraints
are defined on elements in the COMPASS meta-model using the Object Con-
straint Language (OCL) [26], which is a strongly typed, declarative, query and
constraint language that has formal mathematical semantics domain experts
can use to describe their domain constraints. COMPASS defines constraints

13



to capture the restrictions that exist in the context of component packaging
and configuration, including (1) creation of component packages, (2) intercon-
nection of component packages, (3) composition of packages, (4) creation of
component assemblies, (5) interconnection of component assemblies, (6) com-
position of assemblies, (7) creation of components, and (8) interconnection of
components.

Adding constraints to the COMPASS meta-model ensures that illegal connec-
tions are not made among the various modeling elements, which also catches
errors early in the component development cycle. Since COMPASS performs
static modeling it has the added advantage that sophisticated constraint check-
ing can be done prior to application instantiation, without incurring the cost
of run-time constraint checking.

Interpretation. The COMPASS model interpreter translates the various
packaging and configuration information captured in the models constructed
using the meta-model into a set of descriptors, which are files containing meta-
data that describes the systemic information of component-based DRE appli-
cations. The output of the COMPASS model interpreter serves as input to
another tool downstream, such as the deployment planner described in Sec-
tion 3.3, that will use the information in the descriptors to deploy the compo-
nents.

The descriptors generated by COMPASS model interpreter are XML doc-
uments that conform to a XML Schema [27,28]. To ensure interoperability
with other CoSMIC modeling tools, COMPASS synthesizes descriptors con-
forming to the XML schema defined by the Deployment and Configuration of
Component-based Distributed Applications Specification. COMPASS generates
the following four different types of descriptors:

• Component package descriptor, which describes the elements in a package
• Component implementation descriptor, which describes elements of a spe-

cific implementation of an interface, which might be a single implementation
or an assembly of interconnected sub-component implementations

• Implementation artifact descriptor, which describes elements of a compo-
nent implementation

• Component interface descriptor, which describes the interface of a single
component along with other elements like component ports

The output of COMPASS can be validated by running the descriptors through
any tool, such as Xerces, that supports XML schema validation. The generated
descriptors are input to the CoSMIC run-time infrastructure, which uses this
information to instantiate the different components of the application and
interconnect the different components.

14



3.2 Model-driven Middleware Configuration: Resolving Configuration Chal-
lenges

CoSMIC provides a group of tools to address the problem of multi-layer mid-
dleware configuration discussed in Challenge 3 of Section 2. The group com-
prises the Option Configuration Modeling Language (OCML) tool that deals
with ORB-level configurations, the Event QoS Aspect Language (EQAL) tool
that addresses container-level configurations, and the Federated Event Service
Modeling Language (FESML) tool that addresses application-level configura-
tions. Each tool consists of two parts: a modeling paradigm, in which models
can be built, and a model interpreter, which synthesizes configuration meta-
data in service configuration files.

Configuration modeling. The meta-model for each tool defines a modeling
paradigm and contains the various types of configuration models, individual
configuration parameters, and constraints that enforce model dependencies.
Below we describe the modeling paradigm for the three tools.

• OCML. The OCML modeling paradigm addresses middleware level con-
figuration options. OCML contains artifacts to define and categorize the mid-
dleware options and to configure the middleware with these options. OCML
also generates the documentation for the middleware options. The user inter-
face of the OCML is based on the Graphical Modeling Environment (GME).

The OCML tool is intended to be used by both the middleware developer and
the application developer. The middleware developer uses the OCML meta-
model to create the middleware options configuration model. The options
configuration model contains two artifacts: (a) the structure artifact, which
contains all the available options categorized hierarchically in different folders.
For example, we have used OCML to model all the configuration options
provided by the TAO [29] ORB; (b) The rules artifact contains the dependency
relations among these options.

An application developer uses OCML to model a permutation of ORB con-
figuration options to be used for configuring the ORB. After validating the
compatibility of the selected options, a ORB-specific service configuration file
is generated. Figure 7 illustrates how OCML can be used for middleware con-
figuration.

Fig. 7. OCML Process
15



• EQAL. EQAL focuses on the configuration of real-time event services in
QoS-enabled component middleware. Currently, EQAL provides support for
event service configuration in the Component-Integrated ACE ORB (CIAO).
CIAO employs two kinds of CORBA event services: a real-time event service
and a notification service. These services allow components to asynchronously
and anonymously send and receive customized data structures called events.

EQAL allows the specification of an event mechanism (i.e., real-time event
service or notification service) and the configuration of that mechanism for
each component event connection. Each mechanism has unique capabilities
and requires a distinct set of modeling constructs. Policies and strategies that
can be modeled include, but are not limited to, filtering, correlation, time-
outs, locking, disconnect control, and priority. Various policies have differing
scope, from a single port to an entire event channel. EQAL allows the mod-
eler to create reusable and sharable configurations at each level of granularity.
The modeler assigns configurations to individual event connections and then
constructs filters for each connection.

• FESML. One strategy by which a real-time event service can be con-
figured to minimize network traffic is building federations of event services
that share filtering information to minimize or eliminate the transmission of
unwanted events to a remote entity. Moreover, federation of event services al-
lows events that are being communicated in one channel to be made available
on other channels. The channels could communicate with each other through
CORBA IIOP Gateways, UDP, or IP Multicast [30]. Connecting event chan-
nels from different systems together will allow event information to be inter-
changed, providing a level of integration among the systems.

To ensure support for synthesizing the configuration of federation of event
services, CoSMIC provides the Federated Event Service Modeling Language
(FESML) tool. As part of the CoSMIC tool chain, FESML uses MDA technol-
ogy and provides a visual interface for modeling the interactions among dif-
ferent event artifacts in the distributed system. These artifacts include event
consumers, event suppliers, event channels, CIAO Gateways, UDP Senders,
UDP Receivers and Multicast ports.

Constraint specification. Dependencies among middleware QoS policies,
strategies, and configurations are complex. Ensuring coherency among poli-
cies and configurations has been a major source of complexity in component
middleware. One of CoSMICs primary benefits is the prevention of inconsis-
tent QoS parameters during modeling time through constraints. Constraints
ensure that only valid models can be constructed and interpreted.

• OCML. The rules artifact of OCML is used to define the constraints which
the ORB service configuration is required to satisfy. These constraints are en-
forced to be satisfied by the application developer in the Service Configuration
Modeling Environment.

16



• EQAL. EQAL automatically verifies the validity of event service configu-
rations and notifies the user during modeling time of incompatible QoS prop-
erties. Consequently, EQAL dramatically reduces the time and effort involved
in configuring components with stringent real-time requirements.

• FESML. To ensure that the federation of Event Service work properly,
event channel settings are validated. FESML provides a built-in constraint
model checker that checks for syntactic and semantic compatibility of the
federation of event channels. This model checker provides us the opportunity
to detect consistent event channel settings in an early design phase rather
than the assembly and deployment phase.

Interpretation. The CoSMIC middleware configuration toolset provides
model interpreters that synthesize middleware configuration files and com-
ponent descriptor files.

• OCML. The middleware specific options configuration language is val-
idated against the OCML meta-model and when interpreted generates the
following:

• Source code for the service configuration design environment. Service config-
uration design environment is used by the application developer to generate
ORB service configuration files.

• Source code for a handcrafted service configuration file validation tool.
• An HTML file documenting all the options and the dependencies

This procedure is illustrated in Figure 7.

• EQAL. EQAL encompasses two model interpreters. The first interpreter
generates XML descriptor files that conform to the Boeing Bold Stroke XML
schema for component RT event service configuration. These descriptor files
identify the RT requirements of individual connections. The second interpreter
generates the service configuration files that specify event channel policies and
strategies. The component deployment framework parses these files, creates
event channels, and configures each connection, while shielding the actual com-
ponent implementations from the lower-level middleware services. Currently,
these files must be written by hand a tedious process that is repeated for each
component deployment. Accordingly, the automation of this process, and the
guarantee of model validity, improves the reusability of components across
diverse deployment scenarios.

• FESML. FESML includes a model interpreter that generates XML files to
specify the configuration of the federation of event channels. The information
captured in the descriptor files include the relationship between each artifacts,
the physical location of each supplier, consumer, event channel, CIAO Gate-
way, etc. This file will be then be further fed into the CIAO assembly and
deployment tool to deploy the system.

17



3.3 Model-driven Configuration and Deployment of Components : Resolving
the Deployment Planning Challenge

CoSMIC provides the Model Integrated Deployment and Configuration En-
vironment for Composable Software Systems (MIDCESS) and the CCM Per-
formance (CCMPerf) tools to resolve the problem of deployment planning
described in challenge 4 of Section 2.4. MIDCESS is used to specify the target
environment for deploying the packages. CCMPerf uses the aforementioned
target information, and uses empirical benchmarking in identifying the pack-
ages to be configured and deployed in the target environment. These two tools
in concert help in creating the deployment plan for the final deployment of
packages.

A target environment is a model of the computing resource environment (such
as processor speed and type of operating system) in which a component-based
application will execute. The various entities of the target model include:

(1) Nodes, where the individual components and component packages are
loaded and used to instantiate those components,

(2) Interconnects among nodes, to which inter-component software connec-
tions are mapped, to allow the instantiated components to intercommu-
nicate, and

(3) Bridges among interconnects. Interconnects provide a direct connection
between nodes, while bridges provide a routing capability between inter-
connects.

Nodes, interconnects, and bridges are collected into a domain, which collec-
tively represents the target environment.

Using the target environment information available from MIDCESS, CCM-
Perf can be used to create experiments that measure black box, e.g., latency,
throughput and white-box e.g., jitter, context-switch overhead, metrics that
can be used to know the consequences of mixing and matching component
assemblies on a target environment. CCMPerf can also be used to synthesize
experiments on a per component basis, the motivation being to generate unit
and regression tests. The experiments in CCMPerf can be divided into the
following three experimentation categories:

(1) Distribution middleware tests that quantify the performance of CCM-
based applications using black box and white box techniques

(2) Common middleware services tests that quantify the suitability of us-
ing different implementations of CORBA services, such as the Real-time
Event [31] and Notification Services [32].

(3) Domain-specific middleware tests that quantify the suitability of CCM
implementations to meet the QoS requirements of a particular DRE ap-
plication domain, such as static linking and deployment of components

18



in the Boeing Bold Stroke avionics mission computing architecture [2].

A model based approach to planning the deployment allows the modeler to
get information about the target environment, get the middleware configura-
tion information and generate tests at the push of button. Without modeling
techniques, these tedious and error-prone code would have to be written by
hand. In a hand-crafted approach, changing the configuration would entail
re-writing the benchmarking code. In a model based solution, however, the
only change will be in the model and the necessary experimentation code will
be automatically generated. A model based solution also provides the right
abstraction to visualize and analyze the overall planning phase rather than
looking at the source code. In the ensuing paragraphs we describe the design
of MIDCESS and CCMPerf.

Figure 8 illustrates how MIDCESS and CCMPerf are designed to be a link in
the CoSMIC tool chain that enables developers to model the planning phase
of the component development process. Below we describe how the MIDCESS

Fig. 8. PLANNING

and the CCMPerf tools are used by the domain administrators and planners.

Modeling paradigm. The meta-model for each tool defines a modeling
paradigm and contains the various types of configuration models, individual
configuration parameters, and constraints that enforce model dependencies.

• MIDCESS. MIDCESS is a graphical tool that provides a visual inter-
face for specifying the target environment for deploying DRE applications.
The modeling paradigm contains entities to model the various artifacts of the
target environment for deploying composable software systems and also the
interconnections between those artifacts. The modeling paradigm also allows
the domain administrators to visualize the target environment at various levels
of abstractions i.e. at the level of domains and sub-domains. MIDCESS also
provides built-in constraint checkers that check for the semantic compatibility
of the specified target environment. For example, the constraint checker could
check for connections involving bridges and make sure that no two nodes are
directly connected using a bridge.

The MIDCESS tool enables the modeling of the following features of a target
environment:

19



(1) Specification of node elements and the interconnections between the node
elements.

(2) Specification of the attributes of each of the nodes.
(3) Hierarchical modeling of the individual nodes that share certain basic at-

tributes (such as their type), but vary in the processing power, supported
OS etc.

(4) Hierarchical modeling of the interconnects to specify the different vari-
eties of connections possible in the target environment.

(5) Hierarchical modeling of the domain to have sub-domains.

• CCMPerf. The modeling paradigm of CCMPerf is defined in a manner
that will allow its integration with other paradigms, for example, COMPASS.
To achieve the aforementioned goal, CCMPerf defines Aspects, i.e., visualiza-
tions of existing meta model that allows the modeler to depict component
interconnection and associate metrics the above interaction. The following are
the three aspects defined in CCMPerf

(1) Configuration Aspect, that defines the interface that are provided and
required by the individual component,

(2) Metric Aspect, that defines the metric captured in the benchmark, and
(3) Inter-connection Aspect, that defines how the components will interact in

the particular benchmarking experiment.

Constraints specification. The meta-model for each tool defines a model-
ing paradigm and contains the various types of configuration models, individ-
ual configuration parameters, and constraints that enforce model dependen-
cies.

• MIDCESS. MIDCESS contains a constraint checker to ensure that the
target environments specified by the tool are semantically compatible. Con-
straints are defined using the Object Constraint Language (OCL) [26], which
is a strongly typed, declarative, query and constraint language. MIDCESS
defines constraints to enforce restrictions in the (1) specification of node el-
ements, (2) specification of interconnect elements, (3) specification of bridge
elements, (4) specification of resource elements, and (5) interconnection of
various elements of the domain.

• CCMPerf. Additionally, a constraint checker validates the experiment
precluding the possibility of invalid configuration, such as: (1) conflicting met-
rics (e.g., using both back box and white box metrics in a given experiment),
(2) invalid connections (e.g., not connecting a required interface with the cor-
responding provides interface), and (3) incompatible exchange format (e.g.,
connecting a point-to-point entity with a point to multi point entity). Con-
straints are defined in the CCMPerf meta model are defined using OCL [26].
The use of constraints ensure that the experiment is correct a priori minimiz-
ing errors at run-time.

Model interpreter. The meta-model for the MIDCESS and CCMPerf tools
defines a modeling paradigm and contains the various types of configura-
tion models, individual configuration parameters, and constraints that enforce
model dependencies.

20



• MIDCESS. MIDCESS generates a domain descriptor that describes the
domain aspect of the target model environment of composable software sys-
tems. This descriptor is an XML document that conforms to a XML Schema
defined by the Deployment and Configuration of Component-based Distributed
Applications Specification [25]. The output of MIDCESS can therefore be val-
idated by running the descriptor through a tool that supports XML schema
validation. The generated descriptor is also used by the CoSMIC run-time
infrastructure, which uses information in the descriptor to make deployment
planning decisions.

• CCMPerf. From the CCMPerf meta-model, an interpreter generates the
necessary descriptor files that provide meta-data to configure the experiment.
In particular, the interpreter embellishes the following descriptor files gener-
ated by COMPASS (described in Section 3.1) including:

(1) Component package descriptor, by selecting the component implementa-
tion used in the test,

(2) Component implementation descriptor, by specifying the interactions be-
tween the components, and

(3) Component interface descriptor, by associating metrics with the corre-
sponding interfaces.

In addition to the descriptor files, the CCMPerf interpreter also generates
benchmarking code that monitors and records the values for the variables un-
der observation. To allow the experiments to be carried out in varied hardware
platforms, script files can be generated to run experiments.

4 Related Work

This section reviews related work on model-based software development and
describes how modeling, analysis, and generative programming techniques are
being used to model and provision QoS capabilities for DRE component mid-
dleware and applications.

Model-based software development. Our work on Model Driven Middle-
ware extends earlier work on Model-Integrated Computing (MIC) [7,33,34,8]
that focused on modeling and synthesizing embedded software. MIC provides
a unified software architecture and framework for creating Model-Integrated
Program Synthesis (MIPS) environments [10]. Examples of MIC technology
used today include the Generic Modeling Environment (GME) [10] and Ptolemy [35]
(used primarily in the real-time and embedded domain) and MDA [9] based
on UML [36] and XML [37] (which have been used primarily in the business
domain). Our work on CoSMIC combines the GME tool and UML modeling
language to model and synthesize QoS-enabled component middleware for use
in provisioning DRE applications. In particular, CoSMIC is enhancing GME

21



to produce domain-specific modeling languages and generative tools for DRE
applications, as well as developing and validating new UML profiles (such as
the UML profile for CORBA [38], the UML profile for quality of service [39],
and UML profile for schedulability, performance and time [40]) to support
DRE applications.

As part of an ongoing collaboration [41] between ISIS, University of Utah, and
BBN Technologies, work is being done to apply GME techniques to model an
effective resource management strategy for CPU resources on the Timesys
Linux real-time OS [42]. Timesys Linux allows applications to specify CPU
reservations for an executing thread, which guarantee that the thread will have
a certain amount of CPU time, regardless of the priorities of other threads in
the system. Applying GME modeling to develop the QoS management strategy
simplifies the simulation and validation necessary to assure end-to-end QoS
requirements for CPU processing.

The Virginia Embedded System Toolkit (VEST) [43] is an embedded system
composition tool that enables the composition of reliable and configurable
systems from COTS component libraries. VEST compositions are driven by a
modeling environment that uses the GME tool [10]. VEST also checks whether
certain real-time, memory, power, and cost constraints of DRE applications
are satisfied.

The Cadena [11] project provides an MDA toolsuite with the goal of assessing
the effectiveness of applying static analysis, model-checking, and other light-
weight formal methods to CCM-based DRE applications. The Cadena tools are
implemented as plug-ins to IBM’s Eclipse integrated development environment
(IDE) [44]. This architecture provides an IDE for CCM-based DRE systems
that ranges from editing of component definitions and connections information
to editing and debugging of auto-generated code templates.

Commercial successes in model-based software development include the Ra-
tional Rose [45] suite of tools used primarily in enterprise applications. Rose is
a model driven development toolsuite that is designed to increase the produc-
tivity and quality of software developers. Its modeling paradigm is based on
the Unified Modeling Language (UML). Rose tools can be used in different ap-
plication domains including business and enterprise/IT applications, software
products and systems, and embedded systems and devices. In the context of
DRE applications, Rose has been applied successfully in the avionics mission
computing domain [2].

Other commercial successes include the Matlab Simulink and Stateflow tools
that are used primarily in engineering applications. Simulink is an interactive
tool for modeling, simulating, and analyzing dynamic, multidomain systems.
It provides a modeling paradigm that covers a wide range of domain areas, in-

22



cluding control systems, digital signal processors (DSPs), and telecommunica-
tion systems. Simulink is capable of simulating the modeled system’s behavior,
evaluating its performance, and refining the design. Stateflow is an interac-
tive design tool for modeling and simulating event-driven systems. Stateflow is
integrated tightly with Simulink and Matlab to support designing embedded
systems that contain supervisory logic. Simulink uses graphical modeling and
animated simulation to bridge the traditional gap between system specifica-
tion and design.

Program transformation technologies. Program Transformation [20] is
the act of changing one program to another. It provides an environment for
specifying and performing semantic-preserving mappings from a source pro-
gram to a new target program. Program transformation is used in many areas
of software engineering, including compiler construction, software visualiza-
tion, documentation generation, and automatic software renovation.

Program transformations are typically specified as rules that involve pattern
matching on an abstract syntax tree (AST). The application of numerous
transformation rules evolves an AST to the target representation. A trans-
formation system is much broader in scope than a traditional generator for a
domain-specific language. In fact, a generator can be thought of as an instance
of a program transformation system with specific hard-coded transformations.
There are advantages and disadvantages to implementing a generator from
within a program transformation system. A major advantage is evident in the
pre-existence of parsers for numerous languages [20]. The internal machinery
of the transformation system may also provide better optimizations on the
target code than could be done with a stand-alone generator.

Generative Programming (GP) [46] is a type of program transformation con-
cerned with designing and implementing software modules that can be com-
bined to generate specialized and highly optimized systems fulfilling specific
application requirements. The goals are to (1) decrease the conceptual gap
between program code and domain concepts (known as achieving high inten-
tionality), (2) achieve high reusability and adaptability, (3) simplify managing
many variants of a component, and (4) increase efficiency (both in space and
execution time).

GenVoca [19] is a generative programming tool that permits hierarchical con-
struction of software through the assembly of interchangeable/reusable com-
ponents. The GenVoca model is based upon stacked layers of abstraction that
can be composed. The components can viewed as a catalog of problem solu-
tions that are represented as pluggable components, which then can be used
to build applications in the catalog domain.

Yet another type of program transformation is aspect-oriented software de-
velopment (AOSD). AOSD is a new technology designed to more explicitly

23



separate concerns in software development. The AOSD techniques make it
possible to modularize crosscutting aspects of complex DRE systems. An as-
pect is a piece of code or any higher level construct, such as implementation
artifacts captured in a MDA PSM, that describes a recurring property of a pro-
gram that crosscuts the software application i.e., aspects capture crosscutting
concerns). Examples of programming language support for AOSD constructs
include AspectJ [47] and AspectC++ [48].

5 Concluding Remarks

Large-scale DRE applications are increasingly being developed using QoS-
enabled component middleware [5]. QoS-enabled component middleware pro-
vides policies and mechanisms for provisioning and enforcing large-scale DRE
application QoS requirements. The middleware itself, however, does not re-
solve the challenges of choosing, configuring, and assembling the appropriate
set of syntactically and semantically compatible QoS-enabled DRE middle-
ware components tailored to the application’s QoS requirements. Moreover,
any given middleware API does not resolve all the challenges posed by obsoles-
cence of infrastructure technologies and its impact on long-term DRE system
lifecycle costs.

It is in this context that the OMG’s Model Driven Architecture (MDA) is
an effective paradigm to address the challenges described above. The MDA
is a software development paradigm that applies domain-specific modeling
languages systematically to engineer computing systems. This paper provides
an overview of the emerging paradigm of Model Driven Middleware (MDM),
which applies MDA techniques to help configure and deploy QoS-enabled com-
ponent middleware and large-scale DRE applications and systems of systems.
The MDM analysis-guided composition and deployment of DRE applications
helps to provide a verifiable and certifiable basis for ensuring the consistency
and fidelity of DRE applications, such as those deployed in safety-critical do-
mains like avionics control, medical devices, and automotive systems.

To illustrate recent progress on MDA technologies, this paper describes CoS-
MIC, which is an MDM toolsuite that combines the power of domain-specific
modeling, aspect-oriented domain modeling, mathematical analysis, genera-
tive programming, QoS-enabled component middleware, and run-time dy-
namic adaptation and resource management to resolve key challenges that
occur throughout the DRE application lifecycle. CoSMIC currently provides
platform-specific metamodels that address the packaging, middleware con-
figuration, deployment planning and runtime QoS assurance challenges. The
middleware platform we use to demonstrate our MDM R&D efforts is the
Component-Integrated ACE ORB (CIAO) [5], which is QoS-enabled imple-

24



mentation of the CORBA Component Model (CCM). As other component
middleware technologies mature to the point where they can support DRE
applications, the CoSMIC tool-chain will be enhanced to support platform-
independent models and their mappings to various platform-specific models.

All material presented in this paper is based on the CoSMIC MDM toolsuite
available for download at www.dre.vanderbilt.edu/cosmic. The associated
QoS-enabled component middleware platform CIAO can be downloaded from
www.dre.vanderbilt.edu/CIAO.

References

[1] K. Ogata, Modern Control Engineering, Prentice Hall, Englewood Cliffs, NJ,
1997.

[2] D. C. Sharp, Reducing Avionics Software Cost Through Component Based
Product Line Development, in: Proceedings of the 10th Annual Software
Technology Conference, 1998.

[3] Joseph K. Cross and Patrick Lardieri, Proactive and Reactive Resource
Reallocation in DoD DRE Systems, in: Proceedings of the OOPSLA 2001
Workshop ”Towards Patterns and Pattern Languages for OO Distributed
Real-time and Embedded Systems”, 2001.

[4] A. S. Krishna, D. C. Schmidt, R. Klefstad, A. Corsaro, Real-time CORBA
Middleware, in: Q. Mahmoud (Ed.), Middleware for Communications, Wiley
and Sons, New York, 2003.

[5] N. Wang, D. C. Schmidt, A. Gokhale, C. Rodrigues, B. Natarajan, J. P.
Loyall, R. E. Schantz, C. D. Gill, QoS-enabled Middleware, in: Q. Mahmoud
(Ed.), Middleware for Communications, Wiley and Sons, New York, 2003.

[6] D. C. Schmidt, R. Schantz, M. Masters, J. Cross, D. Sharp, L. DiPalma,
Towards Adaptive and Reflective Middleware for Network-Centric Combat
Systems, CrossTalk.

[7] J. Sztipanovits, G. Karsai, Model-Integrated Computing, IEEE Computer
30 (4) (1997) 110–112.

[8] J. Gray, T. Bapty, S. Neema, Handling Crosscutting Constraints in
Domain-Specific Modeling, Commun. ACM (2001) 87–93.

[9] Object Management Group, Model Driven Architecture (MDA), OMG
Document ormsc/2001-07-01 Edition (Jul. 2001).

[10] A. Ledeczi, A. Bakay, M. Maroti, P. Volgysei, G. Nordstrom, J. Sprinkle,
G. Karsai, Composing Domain-Specific Design Environments, IEEE
Computer.

25



[11] J. Hatcliff, W. Deng, M. Dwyer, G. Jung, V. Prasad, Cadena: An Integrated
Development, Analysis, and Verification Environment for Component-based
Systems, in: Proceedings of the International Conference on Software
Engineering, Portland, OR, 2003.

[12] G. Karsai, J. Sztipanovits, A. Ledeczi, T. Bapty, Model-Integrated
Development of Embedded Software, Proceedings of the IEEE 91 (1) (2003)
145–164.

[13] J. Gray, J. Sztipanovits, T. Bapty, S. Neema, A. Gokhale, D. C. Schmidt,
Two-level Aspect Weaving to Support Evolution of Model-Based Software, in:
R. Filman, T. Elrad, M. Aksit, S. Clarke (Eds.), Aspect-Oriented Software
Development, Addison-Wesley, Reading, Massachusetts, 2003.

[14] A. Bondavalli, I. Mura, I. Majzik, “Automated dependability analysis of UML
designs”, in: Proc. of Second IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing, 1998.

[15] S. Gokhale, J. R. Horgan, K. S. Trivedi, “Integration of specification,
simulation and dependability analysis”, in: Workshop on Architecting
Dependable Systems, Orlando, FL, 2002.

[16] S. Gokhale, “Cost–constrained reliability maximization of software systems”,
in: Proc. of Annual Reliability and Maintainability Symposium (RAMS 04)
(To Appear), Los Angeles, CA, 2004.

[17] S. Gokhale, K. S. Trivedi, “Reliability prediction and sensitivity analysis
based on software architecture”, in: Proc. of Intl. Symposium on Software
Reliability Engineering (ISSRE 02), Annapolis, MD, 2002.

[18] S. Neema, T. Bapty, J. Gray, A. Gokhale, Generators for Synthesis of QoS
Adaptation in Distributed Real-Time Embedded Systems, in: Proceedings of
the ACM SIGPLAN/SIGSOFT Conference on Generative Programming and
Component Engineering (GPCE’02), Pittsburgh, PA, 2002.

[19] D. Batory, V. Singhal, J. Thomas, S. Dasari, B. Geraci, M. Sirkin, The
GenVoca Model of Software-System Generators, IEEE Software 11 (5) (1994)
89–94.

[20] I. Baxter, DMS: A Tool for Automating Software Quality Enhancement,
Semantic Designs (www.semdesigns.com), 2001.

[21] T. A. Henzinger, S. Sastry (Eds.), Hybrid Systems: Computation and Control
- Lecture Notes in Computer Science, Springer Verlag, New York, NY, 1998.

[22] L. M. Aeronautics, Lockheed Martin (MDA Success Story),
http://www.omg.org/mda/mda_files/LockheedMartin.pdf (Jan. 2003).

[23] L. G. Networks, Optical Fiber Metropolitan Network,
http://www.omg.org/mda/mda_files/LookingGlassN.pdf (Jan. 2003).

[24] A. Railways, Success Story OBB,
http://www.omg.org/mda/mda_files/SuccessStory_OeBB.pdf/ (Jan.
2003).

26



[25] Object Management Group, Deployment and Configuration Adopted
Submission, OMG Document ptc/03-07-08 Edition (Jul. 2003).

[26] Object Management Group, Unified Modeling Language: OCL version 2.0,
OMG Document ptc/03-08-08 Edition (Aug. 2003).

[27] H. S. Thompson, D. Beech, M. Maloney, N. M. et al., XML Schema Part 1:
Structures, W3C Recommendation (2001).
URL http://www.w3.org/TR/xmlschema-1/

[28] P. V. Biron, A. M. et al., XML Schema Part 2: Datatypes, W3C
Recommendation (2001).
URL http://www.w3.org/TR/xmlschema-2/

[29] D. C. Schmidt, et al., TAO: A Pattern-Oriented Object Request Broker for
Distributed Real-time and Embedded Systems, IEEE Distributed Systems
Online 3 (2).

[30] C. O’Ryan, D. C. Schmidt, J. R. Noseworthy, Patterns and Performance of a
CORBA Event Service for Large-scale Distributed Interactive Simulations,
International Journal of Computer Systems Science and Engineering 17 (2).

[31] Object Management Group, Event Service Specification Version 1.1, OMG
Document formal/01-03-01 Edition (Mar. 2001).

[32] Object Management Group, Notification Service Specification, Object
Management Group, OMG Document telecom/99-07-01 Edition (Jul. 1999).

[33] D. Harel, E. Gery, Executable Object Modeling with Statecharts, in:
Proceedings of the 18th International Conference on Software Engineering,
IEEE Computer Society Press, 1996, pp. 246–257.
URL citeseer.nj.nec.com/article/harel97executable.html

[34] M. Lin, Synthesis of Control Software in a Layered Architecture from Hybrid
Automata, in: HSCC, 1999, pp. 152–164.
URL citeseer.nj.nec.com/92172.html

[35] J. T. Buck, S. Ha, E. A. Lee, D. G. Messerschmitt, Ptolemy: A Framework for
Simulating and Prototyping Heterogeneous Systems, International Journal of
Computer Simulation, Special Issue on Simulation Software Development
Component Development Strategies 4.

[36] Object Management Group, Unified Modeling Language (UML) v1.4, OMG
Document formal/2001-09-67 Edition (Sep. 2001).

[37] W. A. Domain, Extensible Markup Language (XML),
http://www.w3c.org/XML.

[38] Object Management Group, UML Profile for CORBA, OMG Document
formal/02-04-01 Edition (Apr. 2002).

[39] Object Management Group, UML Profile for Modeling Quality of Service and
Fault Tolerance Characteristics and Mechanisms Joint Revised Submission,
OMG Document realtime/03-05-02 Edition (May 2003).

27



[40] Object Management Group, UML Profile for Schedulability, Final Draft OMG
Document ptc/03-03-02 Edition (Mar. 2003).

[41] R. Schantz and J. Loyall and D. Schmidt and C. Rodrigues and Y.
Krishnamurthy and I. Pyarali, Flexible and Adaptive QoS Control for
Distributed Real-time and Embedded Middleware, in: Proceedings of
Middleware 2003, 4th International Conference on Distributed Systems
Platforms, IFIP/ACM/USENIX, Rio de Janeiro, Brazil, 2003.

[42] TimeSys, TimeSys Linux/RT 3.0, www.timesys.com (2001).

[43] J. A. Stankovic, R. Zhu, R. Poornalingam, C. Lu, Z. Yu, M. Humphrey,
B. Ellis, VEST: An Aspect-based Composition Tool for Real-time Systems, in:
Proceedings of the IEEE Real-time Applications Symposium, IEEE,
Washington, DC, 2003.

[44] Object Technology International, Inc., Eclipse Platform Technical Overview:
White Paper, Object Technology International, Inc., Updated for 2.1, Original
publication July 2001 Edition (Feb. 2003).

[45] Matthew Drahzal, Rose RealTime – A New Standard for RealTime Modeling:
White Paper, Rational (IBM)., Rose Architect Summer Issue 1999 Edition
(Jun. 1999).

[46] K. Czarnecki, U. Eisenecker, Generative Programming: Methods, Tools, and
Applications, Addison-Wesley, Boston, 2000.

[47] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. G. Griswold, An
overview of AspectJ, Lecture Notes in Computer Science 2072 (2001) 327–355.
URL citeseer.nj.nec.com/kiczales01overview.html

[48] Olaf Spinczyk and Andreas Gal and Wolfgang Schröder-Preikschat,
AspectC++: An Aspect-Oriented Extension to C++, in: Proceedings of the
40th International Conference on Technology of Object-Oriented Languages
and Systems (TOOLS Pacific 2002), 2002.

28


