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Abstract DRE systems also require explicit interfaces and mechanisms

. . - ) for key capabilities, such as fine-grain adaptive rescheduling,
Developers of mission-critical distributed real-time and enyr, y cap 9 P 9

X are not available in today’s COTS middleware solutions,
bedded (DRE) systems face a fundamental tension betweegf}1 y

. . . X as Real-Time CORBA 1.0 [4]. Emerging COTS mid-
the performance gains achievable with hand-crafted optimizgz, | - . approaches, such as Dynamic Scheduling Real-Time

tions to systems built largely from scratch and (2) the develqRnp g [5] and the RTSJ [6], add some elements for imple-
E

ment cost and cycle-time reductions offered by common Qff; .. - o
. . ) nting these capabilities,g, enhanced distributable thread-
the-shelf (COTS) middleware. This paper describes how 8models and real-time behavioral descriptors.

Ko_kyu portable middleware scheduling framework, which_ IS owever, additional (andnified higher-level approaches
built using standards-based COTS middleware and OS P'IKd services are still required to realize the full real-time

tives, can be used b.Oth (1) to maintain the fle).(ibility and re-US&rformance benefits achievable with closer integration of
offered by COTS middleware and (2) to provide opportuniti Eheduling mechanisms in middleware.  Middleware is

for domain-specific optimizations to meet stringent real-tm&%iquely suited to address both (1) application-specific con-

performance requirements. straints such as whether or not operation rates are known in ad-

Keywords: Real-Time Middleware, Quality of Service ISy,5,00 “and (2) optimized integration of common mechanisms

sues, Dynamic Schedulmg.AIgonthms and Analysis, Adapt'Y(?support flexible trade-offs within a common reusable infras-

Resource Management, Distributed Systems. tructure. Neither lower layers such as operating systems and
network protocol stacks, nor higher layers such as domain-
specific libraries or applications themselves, are appropriate
contexts in which to combine these issues. Rather, middle-

Next-generation mission-critical distributed real-time and effAre Serves FO mediate the h|gher and [oy\{er level concerns and
A achieve improvements in both flexibility and performance

bedded (DRE) systems, such as integrated avionics mis%

1 Introduction

computing systems [1], teams of collaborating emergency r ough |t|s|, app;roprlatilltntetractlons upward and downward in
cue robots [2], and distributed real-time automobile manaé ¢ overall system archiiecture. I -
To achieve both (1) re-use and flexibility across families

ment systems [3], must adapt swiftly to changing environmen- o . :

tal conditions. Greater coordination allows elements at 3l SYSteMS gnd (2) opt|m|;ed real-time performance In DRE
levels to identify and respond effectively to transient oppo ystems, th|s_ paper describes the fol_lowmg enhancements to
tunities and hazards. Achieving significant levels of coor urrent real-time middleware scheduling approaches: (1) hy-

nation requires DRE systems with the ability to: (1) acco ridizing static and dynamic scheduling techniques to opti-

modate unplanned tasks and evolving task characteristics"if® run-time performance and relieve requirementajori-

a distributed environment with rapidly changing informatiof’ knowledge of exact resource allocations and the order of

and resource availability conditions; (2) trade performangggst't'ol?s tt)etweein_ta(ljlocatlons;f (f2) s(;Jppqrt for ]}’a”ab'e pe]-c
of individual elements for system-level real-time performan{:'g asks, 1o exploit degrees of lreedom In performance o

objectives, and optimize real-time performance across heté'f]g—'v'dual elements to achieve system-wide real-time proper-

geneous criteria; (3) perform adaptive resource reaIIocati(S'l% ; (3)flexible policies and integrated mechanisms for select-

within firmly bounded time-scales ing periods and determining execution eligibility, to apply this

While solutions built using standards-based COTS midd%[_)proach effectively across arbitrary operation characteristics,

ware promise greater re-use of software architectures, patte?('\ﬁ‘gl,e achlevmg rapid local adaptation to run-time variations
system requirements and resource availability.

frameworks, analysis techniques, and testing and certifi . ) )
y q 9 he remainder of this paper is structured as follows: Sec-

tion results across entire families of systems, next-generatio . X )
tion 2 gives an overview of (1) the target system for our opti-

*This work was funded in part by Boeing and DARPA ITO. mizations: a research DRE avionics mission computing plat-




form and (2) theKokyu' scheduling framework; Section 3computing platform [7] targeted by the scheduling optimiza-
describes optimizations for DRE target system performartmms we present in this paper. This platform was developed
under steady-state and adaptive conditions, and outlinesand deployed using OO middleware components and services
tensions to our framework to support those optimizationsased on CORBA [8]. Key characteristics of the target plat-
Section 4 presents qualitative and quantitative indicationsfofm that shape our middleware-based optimization approach
the benefits of our approach, and describes experiments ave-described below. These characteristics are shared by many
rently underway to quantify the benefits and associated castser DRE systems, as well.

of these optimizations; Section 5 surveys related work and Qfﬁerations and Tasks: Some operations, such as comput-

scribes how our work extends the state-of-the-art in midd|ﬁ- the first leg of a navigation route, amandatoryand must
ware scheduling; and Section 6 offers concluding remarks 3Ly, pefore their deadlines. Other operations, such as com-

describes planned future work on scheduling middleware [ﬂfting subsequent legs of the route, aptional

DRE systems. The model that underlies our target platform differs some-

what from the model in [9]. In their model each operation may
. have a mandatory part followed by an optional part. A similar
2 Overview of Target Platform and effect can be achieved in our approach by making an optional

Kokyu Framework Infrastructure operation’s task depend on a mandatory one’s task.

Variable Periods: Each task has a (possibly unary) har-
This section describes key features of the platform upon whiglanic set of discrete rates at which it can run, and the union of
our work is based and the Kokyu scheduling and dispat@)tthese sets of rates is also harmonic. In our current research,
ing infrastructure within which we perform optimizations t@ate reallocations are controlled byReeal-Time Adaptive Re-
that platform. Section 2.1 identifies the expected numbgyyrce Manage(RT-ARM) [10]. RT-ARM is a middleware
and characteristics of schedulable tasks within the target pryice developed by Honeywell that adapts the rates of tasks

form |tse|f SeCtion 2.2 deSCt’ibeS pl‘lmltlve elements of Kok)étcording to Changing environmenta| Conditions [11]
scheduling framework, focusing on how target platform tas

) .
are mapped to the dispatching elements of this framework.BePendenC'eS' The tasks may have precedence dependen-

cies, resulting in a directed acyclic graph (DAG) over all op-

erations that is established during or before application ini-

2.1 An Overview of the Target Platform tialization. For example, an operation with a mandatory part
] ) . o ~and an optional part can be modeled in our approach with sep-
Figure 1 illustrates the architecture of the OO avionics missigfyte tasks, a mandatory one for the mandatory part and an

optional one for the optional part, with a dependency of the

o optional operation’s task on the mandatory one’s task. Tasks
-REGISTER

FOR EVENTS 1:REGISTER and dependencies may be enabled or disabled at run-time by
OPERATION the application or a middleware resource manager, such as the
ICHARACTERISTICS
9: PRIO RT-ARM.

DISPATCH

KOKYU
SERVICES

KOKYU | 6: (RE)- KOKYU .
nisarcr | / (8 | oohevuien 2.2 An Overview of Kokyu

e / N\ Kokyu is a portable middleware scheduling framework de-
4 ReGISTER signed to provide flexible scheduling and dispatching ser-
DEPENDENCIES

8: FILTER,
CORRELATE

g 5. (RE) Asson vices within the context of higher-level middleware, such as
RATE, PRIO The ACE ORB [13] (TAO). As shown in white in Figure 2,

rOXY (“3: REGISTER TO GET Kokyu currently provides real-time scheduling and dispatch-
) PERIODIC TIMEOUTS, ing services for TAO’s real-time CORBA Event Service [7]

SEND EVENTS

that mediates supplier-consumer relationships between appli-
cation operations. Figure 2 also illustrates further potential
applications of Kokyu services to TAO, including earlye(,
low-layer) scheduling control of request upcalls on server-side
ORB endsystems. In addition to the features described here,
Kokyu will also be used to implement the standard Real-Time

1Kokyu is a Japanese word meaning literally breath, but also with impftORBA 1.0 [4] SChedU”hg Service specification, using the
cations of timing and coordination. same underlying mechanisms.

Figure 1: Avionics Example
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2.2.2 Kokyu's Dispatching Infrastructure
Figure 2: Kokyu Services used by TAO

Scheduler rate propagation
WCET propagation

The right side of Figure 3 shows the essential features of

Dispatcher Kokyu'’s flexible task dispatching infrastructure. Key features

RV Static of the dispatching infrastructure that are essential to perform-
static ing our optimizations are as follows:

selected propagated
rates rates
EEEE

rate
wpies [l 2
® |

Dispatching queues: Each task is assigned by our strate-
gized scheduling service [14] to a specific dispatching queue,
each of which has an associated queue number, a queueing
discipline, and a unique operating-system-specific priority for
its single associated dispatching thread.

LLF ety [

Dispatching
configuration

tuple E

visitor

(~ operation —
(‘visitors Rate and priority
assignment polic|

Dispatching threads: Operating-system thread priorities
decrease with increasing queue number, so thadthqueue
Figure 3: Kokyu Scheduling and Dispatching InfrastructuréS Served by the highest priority thread. Each dispatching
thread removes the task from the head of its queue and runs its
entry point function to completion before retrieving the next
Kokyu consists of two cooperating infrastructure segmeniask to dispatch. As described in Section 3.2, adapters can be
illustrated in Figure 3: (1) a pluggable scheduling infrastruapplied to operations to intercept and possibly short-circuit the
ture with efficient support for adaptive execution of diversntry-point upcall. In general, however, the outermost opera-
scheduling heuristics; and (2) flexible dispatching infrastrugen entry point must complete on each dispatch.

ture that allows composition of primitive operating Syste@ e eing disciplines: Dispatching thread priorities deter-
and middleware mechanisms to enforce arbitrary schedulijge \which queue is active at any given time: the highest pri-
heuristics. The combined framework provides implicit proyyiv, queue with a task to dispatch is always active, preempt-
J_ectlon of schedull_ng hgurlstlcs into appropriate FiISpatChlﬂgJ tasks in lower priority queues. In addition, each queue
infrastructure configurations, so that the scheduling and qﬁéy have a distinct discipline for determining which of its en-
patching infrastructure segments can be optimized both sepas ;e tasks has the highest eligibility, and must ensure the
rately and in combination, as we describe in Section 3. pighest is at the head of the queue at the point when one is to
be dequeued.
2.2.1 Kokyu’s Scheduling Infrastructure This paper discusses three disciplines: static, deadline, and
laxity. Static tasks are ordered by a static subpriority value,
Our earlier work on Kokyu's scheduling infrastructure [14fsulting in a FIFO ordering if all static subpriorities are made
(1) introduced strategized support for hybrid static and dyte same; static queues at different priority levels can be used
namic scheduling heuristics, (2) decoupled scheduling heutisimplement an RMS scheduling strategy. Deadline tasks
tics from application characteristics and dispatching mecre ordered by time to deadline; a single deadline queue can
anisms, (3) provided middleware mechanisms for dynaniieé used to implement the earliest deadline first [15] (EDF)
scheduling, and (4) did preliminary evaluation of infrastrugeheduling strategy. Finally, laxity tasks are ordered by slack
ture alternatives in the context of well-known schedulirtgme, orlaxity — the time to deadline minus the execution time;
heuristics. a single laxity queue can be used to implement the minimum
As illustrated on the left side of Figure 3, Kokyu'’s schedulaxity first [16] (MLF) scheduling strategy; laxity queues at
ing infrastructure has evolved into a light-weight common iwtifferent priority levels can be used to implement the maxi-
terface and a set of richer pluggable strategies that encapsum urgency first [16] (MUF) scheduling strategy.
late details of both scheduling data structures and heuristicsAny discipline for which a maximal eligibility may be se-
Each scheduling strategy contains algorithms and data stiected can be employed to manage a given dispatching queue




in this approach. Scheduling strategies can be construgtmehd of rate selection and priority assignment must be per-
from one or more queues of each discipline alone, or cofarmed. Section 3.2 describes optimizations to the steady-state
binations of queues with different disciplines can be used,raede partition, and Section 3.3 describes optimizations to the
in [9]. adaptive mode partition. In our current research, the RT-ARM
described in Section 2 is invoked from the steady state mode
. .. . partition, but may transition the system into the adaptive mode
3 Scheduling Optimizations partition during its execution.

Careful optimization of middleware is needed to meet the

goals of mission-critical DRE systems described in Sectiond.2 Steady-State Optimizations
In this section we present several key optimizations that we, . : .
have applied to realistic avionics mission computing app XIsting re;earch [9, 17.] on adaptive scheduling of mand.a-
cations in the target platform environment described in Séefy and optional operations has largely focused on properties

. that can be specified priori, such as the computational com-
tion 2.1. . i ) .

plexity of the scheduling algorithm, the error function for op-
. tional tasks during overload, and the value to the application
3.1 Overview of System Modes of completing various stages of task execution. While these

A modeis a Boolean function on the states of a system’s cdipproaches are valuable for establishing the essential theory
stituent configuration items. For example, “the aircraft is eR]f building adaptive DRE systems, we believe an empirical

gaged with ground threats” is a mode, and “all sensors areapproach is also useful to guide design decisions and reveal
their operational states” is a mode opportunities for application-specific and domain-specific op-

The value of a mode can change abruptly. For exampﬂ E L .
the failure of a component can affect modes. In DRE sys- or example, hybridization of the rate monotonic schedul-

tems the time allotted to respond to mode changes may/i& (RMS), earliest deadline first (EDF), and minimum lax-

very short. In fact, this requirement is one of the key techiY first (MLF) scheduling techniques has been proposed to

cal differences between mission-critical DRE applications alf¢'até mandatory tasks from optional tasks, and optimize the
mainstream commercial business applications. execution behavior of those tasks [9, 16]. Clearly, a variety of

For this paper, we defineraode partitioras an equivalenceSChedu”ng approaches and hybrid combinations of approaches

partition over the set of possible states of the system. i PoSsible-and often desirable—for scheduling various types

middleware scheduling optimizations focus on two high-levei PRE applications. . _

mode partitionssteady-statandadaptive-of the target avion- HOWever, choosing the approach that is best suited to a
ics mission computing platform described in Section 2. As Rarticular application or application domain requires attention

lustrated in Figure 4, the steady-state mode partition contdiie¢ Only to the characteristics and requirements of the appli-

any steady behavioral state, with a particular rate and prioffgtion: but of the platforms and middleware on which it is
assigned to each operation while in that state. hosted. Here, we focus primarily on the empirically measured

low-level characteristics of the dispatching infrastructure on
which the scheduling policies will be enforced in our flexible
scheduling framework. Since the RT-ARM described in Sec-
tions 2 and 3.3 must manage adaptive transitions whenever a
change in application state requires a reallocation of rates, it
must operate at a higher priority than the optional operations.
However, if its operations cannot be feasibly scheduled with
the mandatory operations, at least some of them must be as-
signed to an intermediate priority partition between the op-
tional and mandatory operations. To meet the three system
objectives described in Section 1, we describe four types of
performance optimizations for this scenario, illustrated in Fig-
ure 5:

gﬂzations in middleware.

ADAPTIVE PARTITION

@ TRANSITIONS
Cr2)

STEADY STATES @ @

STEADY STATE PARTITION

Figure 4: System Mode Partitions A. Dynamic scheduling: If we cannot feasibly schedule all
of the RT-ARM operations with the mandatory operations, or
The adaptive mode partition consists of the sequencetld combination produces a barely feasible schedule and we
transitions between steady behavioral states, in which a raek confidence in the precision of the advertised execution
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mism and pessimism must be achieved for cancellation to be
effective. As shown in Figure 6, our initial measurements of
this technique using a rather pessimistic cancellation strategy
actuallyreducedthe number of optional operations that made
their deadlines. With a more accurate cancellation threshold,
however, we believe the technique will give the target sys-
tem more exact control over individual operation dispatches,
thereby allowing more deadlines to be met overall.

C. Merged scheduling: If we can feasibly and confidently
schedule the RT-ARM operations and mandatory operations
together using RMS, then merging the RT-ARM operations
upward into the mandatory partition serves to reduce (1) the
times, we might trade some measure of overhead for strictember of threads needed to dispatch operations and (2) the
partitioning between the mandatory and RT-ARM operatiorexpected queueing overhead for RT-ARM operations. This op-
and schedule the RT-ARM operations in an intermediate priimization can help with our goal of improving real-time per-
ity queue using a deadline- or laxity-based discipline. This dprmance {.e., reducing overhead) across heterogeneous crite-
timization allows the target system some flexibility to meet otin (i.e., criticality and rate).

goal to accommodate unplanned tasks and unexpected V%!af)ivided scheduling: If we can partition the RT-ARM

t!ons.m operation pharactenstmse(., somepttgr in the exe(,:u'operations themselves into mandatory and optional segments
tion times), especially of the RT-ARM or optional operatlon%e.g’ to consider different ranges of available rates) and the
RT-ARM mandatory segment is feasible with the other manda-
tory operations, then we can merge it upward into the RMS
partition, reducing overhead for at least the mandatory part of
RT-ARM.

By ensuring that the critical status assessment portion of the
RT-ARM is feasibly scheduled, and thus avoiding consistency
recovery costs, this optimization can help meet our goal of per-
forming adaptive resource reallocations within firmly bounded

time-scales. This optimization can also help meet our goal to
7 improve real-time performance across heterogeneous criteria,
e i.e, criticality and rate or laxity, by maximizing the number of
— operations assigned to more efficient dispatching queues.

[manbaTtory  [J7/JrT-arM [ oPTIONAL
Figure 5: Steady State Optimizations
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Figure 6: Effects of Pessimistic Cancellation

In our prior adaptive scheduling research [11], a previous-

B. Dynamic cancellation: If we cannot feasibly schedule allgeneration real-time adaptive resource manager (RT-
of the operations within a priority partition, we must considé&tRM) [10] interacted with a previous-generation instance
whether to allow futile dispatches of operations, even thoughour scheduler via itsensitivity interface This interface
we know they will miss their deadlines. Reducing the numbalfowed the RT-ARM to (1) propose a specific assignment of
of futile dispatches and wasted CPU time may improve thegtes to operations, (2) obtain a boolean feasibility assessment
performance of other operations and increase either the ndionthat assignment, and (3) obtain a number representing the
ber of made deadlines, the amount of work completed befgemnsitivity of that feasibility result to increases or decreases in
deadlines, or both. This optimization can help meet our galaé rates assigned to the operations. The RT-ARM performed
to trade performance of individual elements for overall perfdhese steps whenever a transition between steady states was
mance objective®.g, maximizing the availability of the CPU needed.
for operations thatanmeet their deadlines. To perform its assignment algorithm, the RT-ARM itera-

Cancellation adds overhead, however, so it should nottiwely extended a set of rate-to-operation bindings, adding new
applied to mandatory partitions that are known to be feasilbbindings and updating existing ones based on responses from
especially when the benefits of optimizations, such as stdlie scheduler to feasibility and sensitivity queries. The indi-
dispatching, are desired. Moreover, a balance between ogtiual performances of the RT-ARM and the scheduler sensi-



tivity implementation were reasonable, as shown in Figuresi®e-scales. For example, consider a realistic application with
and 9 in Section 4. Both (1) the number of calls to the se®f4 schedulable operations, each of which has (1) one of a
sitivity interface, and (2) the amount of time spent assessiitged small set of criticality values, and (2) an associated
feasibility and sensitivity within each operation, were roughfet of available invocation periods chosen from a fixed simi-
proportional to the number of operations in the schedule. larly small set of period values. If we applied the previous-
The combined behavior of the RT-ARM and scheduler wgeneration sensitivity-based approach, we would expect adap-
not as good as we might hope, however, since the productieé rescheduling to occur in time bounded &y + 64C; +
the number of calls and the time per call produces an overld6C,. If we instead applied a comparison sorting strategy
performance curve that is quadratic in the number of opefar combined rate and priority assignment, we would expect a
tions. Therefore, we apply the following refinements to optighter bound ofCs; + 384C,. Finally, if we instead applied

mize the combined behavior, illustrated in Figure 7: radix sorting for combined rate and priority assignment, we
would expect a still tighter bound @5 + Cgn = Cs + 64C5.
NAME As we discuss in Section 4.2, the constant overheads for the
“"‘/TES i: TohLes COMPARISON sensitivity, comparison sorting, and radix sorting approaches
'/ TUPLES are expected to be similar. Therefore, we anticipate that exper-
A. DENORMALIZED RADIX iments currently in progress to measure these factors precisely
DESCRIPTORS B. RATE/PRIORITY SORTING in all three cases, using a realistic application with around 64
i = g = l ORDERED schedulable operations on the target platform, will show adap-
5 = el tive rescheduling overhead reductions on the order of:
CB-FAIR FAIR
C. ASSIGNMENT POLICIES D. RATE SELECTION e 90%, i.e, a ten-fold reduction — going from the sensitiv-

I vanoaToRY [ JoPTioNAL ity approach to the comparison sorting approach.

e 98%, i.e, a fifty-fold reduction — going from the sensi-

Figure 7: Adaptive Optimizations tivity approach to the radix sorting approach.
A. De-normalized operation descriptors: We de-

normalize the available rate set and fixed characteristj¢s

for each operation into a sequence of flat tuples of characte! ISASSlgnment policies: We encapsulate specific sort order-

tics (containinge.g, the operation handle, a particular rate, th'(?g strategies as policies for rate assignment, much as we have

execution time at that rate). We then derive information that '€ previously for scheduling policies [14]. We present two

facilitates sorting for and utilization bounds checking. F(():ranonlcal strategies for rate selection, based on two different

example, we specify the index of a tuple within an operatioﬁ“sewS of fairess:

ordered set of rates, and the utilization difference for ane FAIR Strategy: In the first strategy, calleBair Assign-
operation between each pair of its consecutively indexernt by Indexed RafEAIR), we emphasize fairness across all
tuples. This optimization can help meet our goal to trad@erations, ordering tuples by ascending rate index, then de-
performance of individual elementisd|, rate of execution) for scending criticality, then mean rate, and finally by descriptor
overall performance objectivegd.,, maximizing the number handle. This strategy selects the lowest rate for each opera-
of feasible operations). tion, for mandatory first operations and then optional opera-

B. Rate and priority sorting: We recast rate and priorityt'ons’ then the next rate for each mandatory operation and the

assignment as a sorting problem over operation characte?%qh optional operation, and so forth.
tics, with at worst arD(nlog(n)) bound on worst-case per- e CB-FAIR Strategy: In the second strategy, called
formance, and a(n) bound on worst-case performance iCriticality-Biased FAIR(CB-FAIR), we emphasize criticality
certain special instances of the more general problem. Sipeetitioning, and order tuples first by descending criticality,
our scheduling approach applies to arbitrary collections of ahen by ascending rate index index, then mean rate, and finally
eration characteristics, for some combinations of operatiafescriptor handle. This optimization adds flexibility to meet
and scheduling strategies @tnlog(n)) comparison sort may our goal to improve real-time performance across heteroge-
be needed. For our target avionics application, however, radlous criteriai.e., rate and criticality.
operations are known in advance and the value spaces of the
characteristics of interest (g, whether an operation is mandab. Rate Selection: Once the tuples are sorted, we perform
tory, its available periods) are small, so the more effidiegfait) a singleO(n) traversal of the tuples to select the rate of each
radix sorts are applicable in many cases. operation and determine expected utilization values based on
This optimization can help meet our system goal to pahe rates selected and the advertised execution times. As we
form adaptive resource reallocations within firmly boundegtrate through the sorted tuples, we maintain variables for (1)



the total utilization by mandatory operations, and (2) the totdentify trade-offs for off-line selection of sets of appropri-
utilization by all operations, based on the tuples selectedate scheduling strategies, (2) characterize the overhead fac-
far. A tuple is selected if and only if the additional utilizatiortors across the space of relevant scheduling strategies, and
compared to the utilization for the previously admitted tup(8) ultimately provide parameters for on-line adaptive selec-
for that operation, will still fit within the utilization thresh-tion of scheduling strategies to optimize both the effectiveness
old associated with that tuple. The highest rate of any tupiescheduling for any steady application state and the time of
selected for an operation becomes the assigned rate for #uptive transitions between steady states.

operation. This optimization can help meet our goals to trade

performance of individual elements for overall real-time 063_9r10re|te re_sphedglmg q cf(;aragtenshci: (?L:a ntifying thﬁ d
jectives, and to perform adaptive resource reallocations witRfigina! sensitivity-based adaptive rescheduling approach, an
firmly bounded time-scales. the comparison sorting and radix sorting optimizations in the

target platform environment will give hard data on the effec-
tiveness of these optimizations for production avionics sys-

4 Empirica| Studies tems. Furthermore, precise measurement of the constant over-
head factors for these approaches will allow reliable projection
4.1 Motivation for Empirical Studies of the effects of different numbers of operations and the degree

of information about their scheduling characteristics on actual
This section presents an empirical study consisting of the fetheduling behavior in those systems.
lowing experiments that quantify the effects of our optimiza- The first experiments were conducted on a single CPU
tions and their overall benefit to the avionics mission compygoomHz Pentium) machine, running the Windows NT Work-
ing platform we are targeting: (1) measure overhead factorségition 4.0 operating system. The second set of experiments
the original sensitivity-based adaptive rescheduling approggs conducted on single-CPU (200MHz Power PC) single-

described in Section 3.3 and (2) quantify and demonstrate ffagyrd computers, running the VxWorks 5.3 operating system.
trade-offs when choosing between two alternative scheduling

strategies. The results of this study have the following benefits o
for designers and developers of DRE systems: 4.2 Empirical Results

Original rescheduling profile:  Characterizing the order andn this section, we examine the results of the three completed
constant factors of the original sensitivity-based adaptigets of experiments in our empirical study. Section 4.2.1
rescheduling approach gave insights leading to the compatrifiles the original sensitivity-based approach to adaptive
son sorting and radix sorting optimizations. Furthermore, trescheduling of operations. Section 4.2.2 explores concrete al-
constant factors for the original approach can be related to tbmative scheduling strategies in the target platform environ-
constant factors for the optimized approaches, so that we pgnt, describes their relative performance, and relates those
project the overhead effects of those optimizations basedresults to the earlier more basic measurements.

the order reductions they provide.

Characteristics of primitive elements: Characterizing the 4.2.1  Original Rescheduling Profile

overhead of primitive dispatching elements gives guidance on

expected trade-offs between different adaptive reschedufigigglitative comparisons of the adaptive transition optimiza-

strategies, based on the configuration of dispatching elemdi3s we propose for integrating predictable RT-ARM execu-

each produces. These empirical results, along with analyti@n with mandatory and optional tasks were discussed in Sec-
approaches such as exact [18] or polynomial-time [19] sched@D 3.3. We support these indications of the benefits of our
lability tests, serve to guide selection of scheduling strategi@BProach with new results measuring the behavior of the pre-

based on performance and schedulability trade-offs. vious generation RT-ARM and scheduler during adaptive tran-
sitions over a small number of operations.

Comparison of concrete alternatives: Examining two al- Figures 8 and 9 show respectively the number and aver-

ternative scheduling strategies in detail reveals nuances Ofa{ & duration of calls to our scheduler by the earlier-generation
expected trade-offs in a realistic environment for our targe}_pp during an adaptive transition. In each figure, we

platform. '\.Ne juxtgposg these results with the gppropri t data for theoperation _set _utilization value
schedulability considerations to show how the tension betw 8. which returns the utilization level for a particular as-

empirical and analyticgl result§ gpides optimization Withint@‘?gnment of rates to tasks by the RT-ARM, and for the
total space of scheduling heuristics. operation  _sensitivity call, which returns a value
Space of alternative strategies: Empirical measurementsindicating the sensitivity of the current utilization level to
of a larger space of alternative scheduling strategies will (f)anges in the proposed rates.
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. 4.2.2 Comparison of Concrete Alternatives

As shown in Figure 10, there was a measurable difference in

number of calls
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Each horizontal axis label describes an adaptive transition. i
The first bracketed numbers in each label show the number of

mandatory and then optional operations in the application state

] 0 ,
before the adaptive transition, and the second bracketed num- EM—N%f”T R i

] [

#

SRT deadlines made [HRT missed = 0]
5
8

b
[
.

bers show the number of mandatory and then optional opera-
tions in the following application state. Both the average time

and number of sensitivity interface calls give plots that are lin-
ear in the total number of operations in tHestinationstate Figure 10: Comparison of Strategies
during an adaptive transition, for an expected resulting adap-

tive transition time that is a quadratic function of the numbﬁ{
of operations in the destination state.

0 1 2 3 ) 5 6 7 8 9 10 1

e dispatching performance of three alternative scheduling
strategies, RMS [15], MUF [16], and RMS+LLF [9] in the tar-

get platform environment. In each subsequent operating state
we increased the non-critical load, and also cycled from state
S to state through low, medium-low, high, and medium high lev-
o o B — els of execution time jitter. RMS performed optimally in these
I studies up to the point of overload, shown in state 7. While

avg time (usec)

. both MUF and RMS+LLF allowed critical operations to meet

“ their deadlines in overloddRMS+LLF was consistently able

to achieve more deadline successes in states with low or high
= jitter levels, while MUF made more deadlines in states with

’ intermediate jitter levels.

We attribute these differences to two factors. First,
RMS+LLF applies a static queueing discipline for all criti-
cal operations and fans them out across multiple rate-based
ueues, both of which tend to reduce the overhead per op-
trétion at a given level of loading. MUF on the other hand

$anages all critical operations within a single queue ordered
tion 3.3. In particular, we expect that constafits ..., Cs in 9 P geq

the ord lexit tions to be of simil itud b‘?r/ laxity. Second is the ability to manage queue ordering and
€ order comp'exity equations to be ot simiiar magnitude, ‘eemption effectively, and the known sensitivity of RMS to
cording to the following reasoning. First, the constant ov

! . o . 'op—harmonic rates of execution requests. As the jitter in ex-
heads in the original sensitivity based case were propomoggution times may be considered a kind of additional sporadic
to two function calls (feasibility and sensitivity) per operatio

. . . h ad, it seems reasonable that at some levels of jitter a kind of
and an inspection of each operation per function call. In't

. . . . n-harmonic behavior would resudtg, as in the intermedi-
comparison sorting case, there is only one function call (sor.
. ) ate levels observed here.
but at worstnlog(n) comparisons of two operations, where
is the number of operations. Finally, in the radix sorting case,

there is again O_ne function Ca!l (SOI’t), anda Single ”ght'Weightza single critical deadline miss was observed late in state 9, for MUF with-
hash computation per operation. out cancellation and for RMS+LLF with cancellation.

These results motivate the comparison sort and radix s
optimizations to adaptive rescheduling described in S




4.3 Interpretation of Empirical Results ral basis for reuse of policies and mechanisms in implement-
o ing schedulers and associated dispatching infrastructures for
The empirical results presented here support the followiggher of these standards. In its current form, Kokyu is already
conclusions: (1) the original sensitivity-based app.roach Ie"’?‘é%%essible to DSRT CORBA under the C++ language binding.
ample room for improvement, and the comparison sortifg intend to re-host Kokyu on a range of RTSJ-compliant en-
and radix sorting optimizations show promise for significag,onments, which would enable its use in implementing both

reductions in overhead and thus completion time for adqRa RTSJ schedulers and DSRT CORBA schedulers under the
tive rescheduling of operations; (2) empirical measurementgf o language binding.

overhead for primitive dispatching elements offers some guid-
ance selection of scheduling strategies, and these results are

born out in practice by the measured performance of MUF aﬁd Concluding Remarks
RMS+LLF in the target platform environment.

This paper presented a number of middleware-specific opti-
mizations for a target application, using a flexible middleware
5 Related Work scheduling framework. We describe a performance-oriented
approach to designing and optimizing scheduling policies, and
Traditional approaches to QoS enforcement have adoptedghow qualitative and preliminary quantitative evidence of our
isting solutions from the domain of real-time scheduling [13pproach’s benefits. We believe these techniques are useful
9, 17], fair queuing in network routers [20], or OS support fg{nd appropriate for building mission-critical distributed real-
continuous media applications [21]. In addition, there haye and embedded (DRE) applications using standards-based
been efforts to implement new concurrency mechanisms 0TS middleware.
real-time processing, such as the real-time threads of Mach essons learned during the Kokyu research project in-
[22] and real-time CPU scheduling priorities of Solaris [23].c|ude the following: (1) empirical results serve to validate
In contrast to research on network- and OS-level QoS, m adaptive and hybnd Schedu”ng approach; (2) quantify-
programming model for developers of OO middleware focus@g the costs/benefits of discrete alternatives can be pow-
on invoking remote operations on distributed objects. Det@fful when combined with feasibility analysis; (3) compos-
mining how to map the results from the network and OS layeysle dispatching modules based on primitive elements enables
to OO middleware is a major focus of our research. Our pgsmain-specific and even environment-specific optimizations;
vious research has examined many dimensions of DRE I’T(K:b- design decisions are aided by empirica| data; (5) experi-
dleware, including static [24] and dynamic [14] schedulingents currently underway are needed to offer a quantitative
and real-time event services [7]. This earlier work providefueprint for co-scheduling middleware services such as the
the basis for our research on optimizing a flexible middlewarg-ARM with applications; (6) these experiments will allow
scheduling framework described in this paper. us to demonstrate a general co-scheduling technique where
Feng,et al. [25] compare and contrast previous-generatiggasibility analysis and empirical studies meet.
CORBA scheduling approaches and offered suggestions forhe optimizations and framework extensions described in
producing more open and scalable real-time CORBA middigis paper have been integrated first into the TAO Event Ser-
ware. Our approach follows and expands on several of thgite [7], and theKokyusource code will be available as a dis-
suggestions, notably offering flexible policies and mechaniskisct framework provided with the ACE [27] and TAO distri-
for configuring a variety of scheduling approaches, while preuations. Our continuing work is focusing on (1) a more thor-
serving isolation of the application from low-level schedulingugh analysis of the space of scheduling heuristics enabled
details. by this approach, combinirg priori observations and empir-
Montez,et al.[26] present an approach based on hybridigzal measurements to offer specific patterns and overall de-
ing polymorphic invocation and (m,k)-firm scheduling assusign guidance to developers of DRE systems and (2) further
ances. This approach could prove beneficial for RT-ARM [1@jork on measuring and optimizing real-time interactions with
scheduling in particular, and we plan to investigate this agther higher-level resource managers and schedulers in adap-
proach for implementation in our framework. tive DRE middleware.
Standard COTS middleware approaches, such as the ap-
proved Real-Time CORBA 1.0 [4] specification, and emerg-
ing approaches, such as Dynamic Scheduling Real-Tinfe Acknowledgments
CORBA [5] (DSRT CORBA) and the RTSJ [6], generalize the
possible range of scheduler implementations, rather than sgéds work was funded in part by Boeing. We gratefully ac-
ifying a particular scheduling approach. Kokyu offers a natkinowledge the support and direction of Boeing Principal In-
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