A High-performance Endsystem Architecture for Real-time CORBA

Douglas C. Schmidt, Aniruddha Gokhale, Timothy H. Harrison, and Guru Parulkar

{schmidt,gokhal e harrison,guru} @cs.wustl.edu
Department of Computer Science, Washington University
St. Louis, MO 63130, USA

This paper will appear in the festure topic issue on Dis-
tributed Object Computing in the IEEE Communications
Magazine, Vol. 14, No. 2, February 1997.

Abstract

Many application domains (such as avionics, telecommuni-
cations, and multimedia) require real-time guarantees from
the underlying networks, operating systems, and middleware
componentsto achieve their quality of service (QoS) require-
ments. In addition to providing end-to-end QoS guarantees,
applicationsin these domains must be flexible and reusable.
Requirementsfor flexibility and reusability motivatetheuse of
object-oriented middl eware like the Common Object Request
Broker Architecture (CORBA). However, the performance of
current CORBA implementations is not yet suited for hard
real-time systems (e.g., avionics) and constrained latency
systems (e.g., teleconferencing).

This paper describes the architectural features and op-
timizations required to develop real-time ORB endsystems
that can deliver end-to-end QoS guarantees to applications.
While some operating systems, networks, and protocol s now
support real-time scheduling, they do not provide integrated
solutions. The main thrust of this paper is that advances
in real-time distributed object computing can be achieved
only by systematically pinpointing performance bottlenecks;
optimizing the performance of networks, ORB endsystems,
common services, and applications; and simultaneoudly in-
tegrating techniques and tools that simplify application de-
vel opment.

1 Introduction

An increasingly important class of distributed applications
require stringent quality of service (QoS) guarantees. These
applications include telecommunication systems (e.g., call
processing and switching), avionics control systems (e.g.,
operationa flight programs for fighter aircraft), multimedia
(e.g., video-on-demand and teleconferencing), and simula
tions (e.g., battle readiness planning). In addition to requir-
ing QoS guarantees, these applications must be flexible and
reusable.

The Common Object Request Broker Architecture
(CORBA) isadistributed object computing middleware stan-
dard defined by the Object Management Group (OMG) [1].
CORBA is intended to support the production of flexible
and reusable distributed services and applications. Many
implementations of CORBA are now available. Two of the
most popular ORBsinclude IONA’s Orbix, which iswiddy
considered as the market leader, and Visigenic's VisiBroker,
whichisincluded in Netscape 4.0.

Our experience using CORBA on telecommunication,
avionics, and medica projects [2] indicates that it is well-
suited for reguest/response applications over lower-speed
networks (such as Ethernet and Token Ring). However,
CORBA is not well-suited for performance-sensitive real-
time applications, for the following reasons:

o Lack of standard QoS policiesand mechanisms. The
CORBA specification defines neither the policies nor mech-
anisms for providing end-to-end QoS guarantees, i.e., from
application to application across a network. For instance,
there is no standard way for clients to indicate the relative
prioritiesof their requests. Likewise, there are no means for
clients to inform the ORB how frequently an isochronous
object service should execute.

o Lack of real-timefeatures:. CORBA doesnot definekey
featuresthat are necessary to support real -time programming.
For instance, thereisno standard way to invoke CORBA re-
guests asynchronously, the CORBA specification does not
require the ORB to notify clients when transport layer flow
control occurs, and no threading model is defined by the
CORBA specification. As a result, it is hard to write a
standard CORBA application that is guaranteed not to block
indefinitely when endsystem and network resources are tem-
porarily unavailable.

e Lack of performance optimizations: Existing ORBs
incur significant run-time throughput and latency overhead
[3, 4, 2, 5]. These overheads include excessive data copy-
ing, non-optimized presentation layer conversions, internal
message buffering strategies that produce non-uniform la
tency, inefficient demultiplexing agorithms, long chains of
intraeORB virtua function calls, and lack of integrationwith
underlying OS and network QoS mechanisms.

This paper describes an integrated ORB endsystem archi-
tecture for constructing real-time ORBs (RT ORBS) that can
ensure end-to-end QoS for applications. QoS guarantees can
be both deterministic (e.g., hard real-time avionics applica
tionswhere meeting QoS guaranteesiscrucial) and statistical
(e.g., latency constrained applicationsliketeleconferenceand
video-on-demand where minor fluctuationsin scheduling and
reliability guarantees are tol erated).

This paper isorganized as follows: Section 2 outlinesthe
features and optimizations required in ORB endsystems to
provide end-to-end QoS guarantees for applications; Sec-
tion 3 summarizes results from our studies [3, 4, 2, 5] of
performance overhead in existing CORBA implementations;
Section 4 describes the feature enhancements and optimiza-
tions we are developing to support high-performance, real-
time ORB endsystems; and Section 5 presents concluding
remarks.

2 Endsystem Requirements for Real-
time CORBA

CORBA Object Request Brokers (ORBs) dlow clients to
invoke methods on target object implementations without
concern for:

o Object location — target objects can be located locally
or remotely;

¢ Programming language— such as C/C++, Java, Adad5,
and Smalltalk;

e OSplatform— such as Win32, OS2, UNIX, and MVS;

e Communication protocols and networks — such as
TCP/IP, IPX/SPX, FDDI, ATM, and Fast Ethernet;

e Hardware —such as RISC vs. CISC.

The components in Figure 1 support this level of trans
parency.

Steve Vinoski'sarticle [6] (in thisissue of the IEEE Com-
munications Magazine) describes the CORBA middleware
components (e.g., the Object Request Broker, IDL Stubs
and Skeletons, Object Adapter, etc). However, an ORB
endsystem is more than just middleware — it aso contains
the network adapters, operating system 1/0 subsystem, com-
munication protocols, and common object services. The re-
mainder of this section outlinesthe requirements of RT ORB
endsystems:

¢ Policies and mechanismsfor specifying end-to-end ap-
plication QoS requirements. ORB endsystems that pro-
vide end-to-end QoS must alow applicationsto specify their
QoS requirements at ahigh level with asmall number of pa-
rameters (typically throughput, latency, and riability). For
instance, video-conferencing groupware may require high
throughput and low latency. In contrast, high reliability may
be more important requirements for eectronic fund transfer
systems. QoS specification is not addressed by the current

NAMING IDL
SERVICE COMPILER

INTERFACE
REPOSITORY

IMPLEMENTATION
REPOSITORY

in args

op0Q

out args + return value
+-—O

OBJECT
IMPLEMENTATION]
4 A

IDL
SKELETON
IDL ORB OBJECT
STUBS INTERFACE ADAPTER
[GIOP/LIOP %]

CLIENT

OS KERNEL OS KERNEL
NETWORK
. J

Figure 1. ORB Endsystem Components for Real-Time
CORBA

CORBA gpecification. Section 4.4 outlines our mechanism
for alowing applicationsto specify their QoS parameters on
aper-request or per-object basis.

e Optimized real-time operating system and network:
Regardless of the ahility to specify QoS requirements, ORBs
cannot deliver end-to-end QoS guarantees to applications
without network and OS support for predictable 1/0 op-
erations. Therefore, ORB endsystems must be capable
of scheduling resources such as CPUs, memory, storage
throughput, network adapter throughput, and network con-
nection bandwidth and latency. For instance, OS scheduling
mechanisms must allow high priority CORBA requests to
run to completion and prevent them from being blocked in-
definitely by lower priority operations [7, 8]. Section 4.1
describes an OS 1/0 subsystem and network adapter that can
provide end-to-end gigabit data rates and ~10 msec latency
to CORBA applications.

e Optimized real-time communication protocols: The
throughput, latency, and reliability requirements of multi-
media applications like teleconferencing are more stringent
and varied than those found in traditional applications like
remoteloginor filetransfer. Likewise, thechannel speed, bit-
error rates, and services (such as isochronous and bounded-
latency delivery guarantees) of networks like ATM exceed
those offered by traditiona networks like Ethernet. There-
fore, ORB endsystems must provide a range of communi-
cation protocols that can be customized and optimized for
specific application requirements and network/host environ-
ments. Section 4.2 outlines optimizations for the CORBA
General Inter-ORB Protocol (GIOP) [1], which specifies the
request format and transmission protocol that enables inter-

operability among heterogeneous ORBSs.

e Optimized real-time request demultiplexing and dis-
patching: ORB endsystemsmust demultiplex and dispatch
incoming CORBA requests to the appropriate method of the
target object. In conventional ORBSs, demultiplexing occurs
at multiple layers. Layered demultiplexing is often inap-
propriate, however, for real-time applications. In addition
to increasing overhead, the layered demultiplexing and dis-
patching mechanismsin conventional ORBsneither schedule
nor prioritize demultiplexing behavior. Therefore, the ORB
endsystem must provide mechanisms (such as packet filters
[9], de-layered protocol stacks [10], direct demultiplexing
[11], and real-time upcalls[7]) that perform CORBA request
demultiplexing and dispatching efficiently and predictably.
Section 4.3 outlines a de-layered demulti plexing mechanism
and areal-time upcall mechanism that processes CORBA re-
quests predictably regardless of the number of active connec-
tions, application-level target object implementations, and
operationsdefined in IDL interfaces.

e Optimized memory management: On modern RISC
hardware, data copying consumes a significant amount of
CPU, memory, and 1/O bus resources. Therefore, multiple
layersin an ORB endsystem (e.g., the network adapters, 1/0
subsystem protocol stacks, Object Adapter, and presentation
layer) must collaborate to minimize data copying [12]. Sec-
tion4.1 outlinesour zero-copy memory management mecha-
nism, which behaves predictably and efficiently irrespective
of user buffer sizes and endsystem workload.

e Optimized presentation layer: Presentation layer con-
versions transform application-level datainto a portablefor-
mat that masks byte order, alignment, and word length dif-
ferences. There are many techniquesfor reducing the cost of
presentation layer conversions. For instance, [13] describes
the tradeoffsbetween using compiled versusinterpreted code
for presentation layer conversions. Compiled marshaling
code isefficient, but requires excessive amounts of memory,
which is problematic in many embedded real-time environ-
ments. Incontrast, interpreted marshaling code is slower, but
more compact. Section 4.4 outlines how RT ORB endsys
tems must support worst case guarantees for both interpreted
and compiled marshaling operations.

It isimportant to recognize that requirements for high per-
formance may conflict with requirements for real-time de-
terminism. For instance, real-time scheduling policies often
rely on the predictability of endsystem operationslike thread
scheduling, demultiplexing, and message buffering. How-
ever, certain optimizations (such as using self-organizing
search structures to demultiplex CORBA requests) can in-
crease the average performance of operations, and yet de-
crease the predictability of any given operation. Therefore,
our ORB endsystem is designed with an open architecture
that allowsapplicationsto sel ect the appropriatetradeoffsbe-
tween average-case and worst-case performance. Moreover,
wherepossible, weusealgorithmsand datastructuresthat can

15

Latency in msec
=
o
T
|

o
3
I

0.0

CORBA (Orbix)
CORBA (Visigenic)
TCP/IP (ACE)

Figure 2: Latency for Invoking Parameterless Twoway Op-
erationsover ATM

optimize for both. For instance, de-layered demultiplexing
paths can increase ORB performance and predictability.

3 Performance Overhead in Current
CORBA I mplementations

Real-time CORBA applications are not supported effi-
ciently by conventional CORBA implementations. The pri-
mary sources of overhead include (1) excessive presentation
layer conversions and data copying, (2) inefficient server
demultiplexing techniques, (3) unpredictable buffering a go-
rithms used for network reads and writes, (4) long chains of
intraeORB virtua function calls, and (5) improper choice of
underlying OS system calls[3, 4, 2, 5].

Figures 2, 3, and 4 illustrate the latency for sending pa-
rameterl ess requests, octets, and structs between aclient and
atarget object over an otherwise unused 155 Mbps ATM net-
work. Thesetestswere conducted using amodified version of
the TTCP benchmarking tool. The TTCP tool was enhanced
to support three communication mechanisms: two widely
used implementations of CORBA (Orbix 2.1 and VisiBroker
2.0) and an implementation written in ACE [14] (which is
alightweight C++ network programming framework imple-
mented directly atop sockets and TCP/IP).

The results of the TTCP benchmarks over ATM were as
follows:

o Latency for parameterlessinvocations:. Figure2 illus-
trates the latency of the three communication mechanisms
for invoking parameterless twoway operations. This figure
shows the baseline latency for VisiBroker and Orbix is ap-
proximately twicethat of the TCP/IPimplementation written
with ACE.

14.0 - [@—@CORBA (Orbix) structs 7
B— CORBA (Visigenic) structs
TCP/IP (ACE) structs
12.0 |&—ACORBA (Orbix) octets 4
'W——¥ CORBA (Visigenic) octets
11.0 | |s——KTCP/IP (ACE) octets B

Latency in msec

A
—N

L4

1.0 1“;4 ;
0.0

| | | | |
70.0 200.0 400.0 600.0 800.0 1000.0
Units sent (1 struct unit = 32 bytes, 1 octet unit = 1 byte)

Figure3: Latency for Sending Octetsand Binary Structsover
ATM

o Latency for untyped octet buffers and binary structs:
Figure 3 illustrates the latency for sending relatively small
buffers of untyped oct et s and st r uct s (containing bi-
nary data in the form of shorts, | ongs, and doubl es)
The buffers ranged from 1 to 1,024 units in powers of two
(whereoct et unitsare1byteeachandst r uct unitsare32
bytes each). For oct et s, the performance curves are simi-
lar to thosein Figure 2, with the latency of the the CORBA
implementations roughly twice as high as the ACE imple-
mentation. For binary structs, the CORBA latency was more
than four times higher than the ACE version as the buffers
increased in size.

e Throughput for untyped octet buffers and binary
structs: Figure 4 illustrates the throughput for sending
largestreamsof untypedoct et s andbinary st r uct s. The
data streams were transmitted in buffer sizes ranging from 1
K t0 1,024 K bytesby powers of two. For untypedoct et s,
the ACE implementation outperforms the CORBA imple-
mentations by ~10-15% for buffer sizes upto 8 K. Beyond
that, the performance of all three implementationsissimilar,
with Orbix performing ~5-10% below ACE and VisiBroker.
For binary st r uct s, however, the throughput performance
of the CORBA versionsis substantially lower than the ACE
version. Both CORBA implementations achieved only 26-
30% of the throughput of the ACE implementation.

Ingeneral, the CORBA implementations performed poorly
when sending binary st r uct s because of excessive copy-
ing and marshaling/demarshaling overhead, many layers of
virtual function calls, and excessive writes resulting from
non-optimal fragmentation of request buffers. In the follow-
ing section, we discuss an RT ORB architecture called TAO
(The ACE ORB) that alleviatesthese sources of overhead. In
addition, the TAO architecture addresses amore fundamental
issue — that of providing mechanisms to specify and deliver

120.0 - —

iy

110.0
100.0

90.0

@——@ CORBA (Orbix) structs
B—1 CORBA (Visigenic) structs
TCP/IP (ACE) structs
A—A CORBA (Orbix) octets 7
'W——¥ CORBA (Visigenic) octets
k——k TCPI/IP (ACE) octets N

80.0

70.0

60.0

50.0

Throughput in Mbps

40.0

30.0

20.0

10.0

0.0 L
0.0 200.0

| | | |
400.0 600.0 800.0 1000.0
Number of Kbytes transmitted

Figure4: Throughput for Sending Octets and Binary Structs
over ATM

end-to-end QoS guarantees to applications.

4 A High-performance ORB Endsys-
tem for Real-Time CORBA

This section describes network interface, operating system,
communication protocol, and CORBA middleware mecha-
nisms we are developing to implement a high-performance
ORB endsystem for real-time CORBA called TAO. Figure5
illustratesthe componentsinthe TAO architecture. Thesein-
cludeaGigabit I/0 subsystemthat opti mizesconventiona OS
I/0O subsystems to execute at Gigabit rates over high-speed
ATM networks; asuiteof real-time GIOP/I1OP protocol sthat
provideefficient and predictabl e transmission of requests us-
ing standard CORBA interoperability protocols; areal-time
Object Adapter that schedules and dispatches CORBA re-
guests in real-time; and a application-specific components
that optimize key sources of overhead in current ORBs and
provides features that support end-to-end QoS guarantees to
applications and higher-level CORBA services.

4.1 Gigabit I/0O Subsystem

To implement end-to-end QoS guarantees, we are develop-
ing a high-performance network I/0 subsystem. At the heart
of this subsystem is a daisy-chained interconnect compris-
ing a number of ATM Port Interconnect Controller (APIC)
chips [15]. APIC is designed to sustain an aggregate bi-
directional datarate of 2.4 Gbps.

Our Gigabit 1/0 subsystem builds on the APIC to enhance
conventional operating systemswith azero-copy buffer man-
agement system. At the device level, the APIC interfaces
directly with the main system bus and other 1/O devices to
transfer CORBA requests between endsystem buffer pools

-

APPLICATION
SPECIFIC
CODE
& CORBA
SERVICES

QoS
SPECIFICATIONS
Y,
<
_> N 2 DE-LAYERED REQUEST
— DEMULTIPLEXER

REAL-TIME THREADS
AND UPCALLS

—I OBJECT1::METHOD1 |
-IOBJECTII:METHODZ |

S

5
i#l OBJECTN::METHODK |

s —IOBJECTI::METHODK |
—H & —IOB.]ECTN::METHODI |

N
i
L2

REAL-TIME
REQUEST
SCHEDULING
QUEUES

(REAL-TIME OBJECT ADAPTER
REAL-TIME GIOP/IIOP PROTOCOLS

TCPIP ATM
GIGABIT /O SUBSYSTEM
i

vC1

VC2 VC3 VC4
ATM PORT

£ INTERFACE

= CONTROLLER

(APIC)

L ATM NETWORK

J

Figure 5: A High-performance ORB Endsystem for Real-
time CORBA

and ATM virtua circuits without incurring additiona data
copying. The buffer pools for 1/O devices support “direct
demultiplexing” of periodic and aperiodic CORBA requests
into memory shared among user- and kernel-resident threads.

4.2 Real-timeGIOP/II1OP Protocols

The CORBA Generd Inter-ORB Protocol (GIOP) [1] speci-
fiesthe request format and transmission protocol that enables
ORB-t0-ORB interoperability. Conventiona CORBA im-
plementations utilizeinflexible, static strategiesfor selecting
the GIOP implementation. For instance, ORBs commonly
implement the GIOP using the Internet Inter-ORB Protocol
(11OP), which islayered above TCP/IP.

Performance-sensitive real-time applications often can-
not tolerate the latency overhead and jitter of TCR which
supportsfunctionaity (such as adaptive retransmissions, de-
ferred transmissions, and del ayed acknowledgments) that can
cause excessive overhead and latency for real-time applica
tions. Likewise, unreliableprotocolslike UDPIlack function-
ality (such ascongestion control, end-to-end flow control, and
rate control), which leadsto excessive congestion and missed
deadlinesin networks and endsystems.

To enhance flexibility and performance, therefore, TAO
supportsthe run-time configuration of lightweight GIOP im-
plementations. These protocol s optimizethe CORBA GIOP
for high-speed networks (e.g., ATM LANs and ATM/IP
WANS) [16] and can be customized for specific applica-
tion requirements. For instance, certain applications that
do not require complete reliability (e.g., teleconferencing
or certain types of imaging). In this case, TAO can selec-
tively omit transport layer functionality (such as retransmis-
sions and end-to-end error handling) and run directly atop
ATM or ATM/IP. Our GIOP transport layer tightly integrates
the underlying ATM/IP infrastructure viatechniques such as
ALF/ILP [17], our Gigabit 1/0 subsystem [18, 19, 20, 21],
and the APIC [15] network adapter.

4.3 Real-Time Object Adapter

The Object Adapter is the component in CORBA that as-
sociates object implementations with the ORB and delivers
requests to the appropriate target object. In addition to its
standard duties, the Object Adapter in TAO isresponsiblefor
real-time scheduling and dispatching of the following ORB
operations:

¢ Real-time upcalls (RTU): Support for periodic data
transfer and protocol processing is critical for multimedia
and other delay-sensitive applications. To support periodic
delivery of CORBA requests, we have implemented a real-
timeupcall (RTU) mechanism [7]. RTUsare an OS schedul -
ing mechanism that providesrate monotonic QoS guarantees
to protocols and CORBA applications. When used in con-
junction with the APIC's zero-copy buffering and direct de-
multiplexing, RTUs can significantly reduce synchronization

and context switching overhead for isochronous multimedia
applications.

¢ Delayered demultiplexing optimizations. A standard
GIOP-compliant CORBA request contains the identity of its
remote obj ect implementation and remote operation. There-
mote object implementationisrepresented by an object refer-
ence and theremote operationisrepresented asastring. Con-
ventional ORB endsystems demultiplex CORBA requeststo
the appropriate method of the object implementation using
the following steps (shown at the top of Figure 6):

e Sepsland 2-The OSprotocol stack demultiplexesthe
incoming CORBA request multipletimes (e.g., through
thedatalink, network, and transport layers) totheORB’s
Object Adapter;

o Seps 3 and 4 — The Object Adapter uses the addressing
information intherequest tolocatethe appropriatetarget
object implementation and associated IDL skeleton;

e Sep 5 — The IDL skeleton locates the appropriate
method, demarshals the request buffer into method pa
rameters, and performs the method upcall.

Demultiplexing requeststhrough al these layersis expen-
sive, particularly when alarge number of operations appear
inan IDL interface and/or alarge number of objectsare man-
aged by an ORB. To minimize this overhead, TAO utilizes
de-layered demultiplexing [22] (shown at the bottom of Fig-
ure 6). This approach uses pre-negotiated demultiplexing
keys to map CORBA requests directly to object/method tu-
plesthat perform application-level real-time upcalls. To fur-
ther reduce the number of demultiplexing layers, the APIC
can be programmed to directly dispatch CORBA requests
associated with ATM virtua circuits. This strategy reduces
demultiplexing latency and supports end-to-end QoS on a
per-request or per-object basis.

4.4 Application-specific Code and CORBA
Services

Certain ORB endsystem features and optimizations depend
largely on application characteristics. Chief among these
are QoS parameter specifications and presentation layer con-
versions. TAO uses this application-specific information to
guidethe sel ection and/or generation of thefollowing policies
and mechanisms to deliver end-to-end QoS to applications:

¢ Specifyingand mapping QoSrequirements. Specifica-
tion of QoS requirementsis essential to provide performance
guarantees. Since applications can have widely varying re-
quirements, a structured and general way to specify QoS is
necessary. TAO identifies four application service classes
that encompass continuous media, bulk data, low-latency
transaction message, and high-bandwidth message streams
[7]. These four classes of QoS specifications are defined
using high-level parameters; other low-level parameters are
derived automatically.

HEIRE
5:DEMUX TO g g E LAYERED
(XX}

METHOD gl & g DEMULTIPLEXING
4: DEMUX TO

SKELETON DL DL) ... (DL
3 DEMUX TO SKEL 1) \ SKEL 2 KEL M

OBIECT I
2: DEMUX TO (OBJECT 1) (OBJECT 2) ooe (OBJECT N)

1/O HANDLE [|]

1: DEMUX THRU
PROTOCOL STACK

OBJECT ADAPTER

o = M
DE-LAYERED g g 5
DEMULTIPLEXING é E é
: ||
3: DEMUX TO o 5] g
METHOD
I/O HANDLE DEMULTIPLEXER

I3 DEMUX THRU OBJECT ADAPTER
PROTOCOL STACK

. J

Figure6: Layered and De-layered CORBA Request Demul-
tiplexing

Several ORB endsystem resources (such as CPU, mem-
ory, network connections, and storage devices) are involved
in satisfying application QoS requirements. Applications
must specify their QoS needs so that the ORB subsystem can
guarantee resource availability. For instance, network con-
nection bandwidth must be determined from the specified
QoS parameters when establishing connections. Likewise,
the amount of computing required to process CORBA re-
guests must be determined so CPU capacity can be allocated
accordingly.

In distributed object systems, real-time applications may
need to specify QoS parameters on a per-request or per-
object basis. For instance, an event service for red-time
avionics may choose to propagate navigation events with a
higher priority (lower latency) than sensor events. In contrast,
a video-on-demand server may only need to specify QoS
parameters per-object.

e Presentation layer optimizations:. TAO can generate
and configure multiple strategies for marshaling and demar-
shaling CORBA IDL types. For instance, based on measures
of atype's run-time usage, the TAO can link in either com-
piled and/or interpreted CORBA IDL stubs and skeletons.
Thisflexibility can achieve an optimal tradeoff between inter-
preted code (whichisslow, but compact insize) and compiled
code (whichisfast, but larger in size) [13].

Likewise, TAO can cache premarshaled application data
units (ADUs) that are used repeatedly. Caching improves
performance when ADUs are transferred sequentidly in“re-
quest chains” and each ADU varies only dightly from one
transmission to the other. In such cases, it is not necessary
to marshal the entire ADU every time. This optimizationre-

quires TAO to perform flow analysis [23, 24] of application
code to determine what request fields can be cached.

Although these techniques can significantly reduce mar-
shaling overhead for the common case, real-timeapplications
with static scheduling policiesoften consider only worst-case
execution. As a result, the flow analysis optimizations de-
scribed above can only be employed under certain circum-
stances, e.g., for applicationsthat can accept statistical QoS
guaranteesor when theworst case scenarios are still sufficient
to meet deadlines.

5 Concluding Remarks

Currently, there is significant interest in developing high-
performance implementations of real-time ORB endsystems.
However, meeting these needs requires much more than
defining ORB QoSinterfacesusing CORBA IDL —itrequires
an integrated architecture that delivers end-to-end QoS guar-
anteesat multiplelevelsof theentiresystem. Thearchitecture
we describe in this article addresses this need with the fol-
lowing policiesand mechanisms spanning network adapters,
operating systems, communication protocols, and CORBA
middleware;

¢ Real-time scheduling of OS and network resources;

e A high-performance ATM Port Interface Controller
(APIC);

o Efficient zero-copy buffer management that shares
CORBA request buffers across OS protection domains;

e Customized red-time implementations of GIOP-
compliant communication protocols;

¢ Red-time Object Adapter implementation with real-
time upcalls (RTUs) and de-layered demultiplexing us-
ing kernel-level packet filters;

o Lightweight presentation layer based on compiler anal-
ysis and efficient buffer management schemes;

o Applicationinterfacefor specifying end-to-end QoS and
mapping this onto individual CORBA reguests and/or
sessions.

TAO's architecture is designed to offer determinis
tic and statistical guarantees to real-time applications.
More information on rea-time CORBA is available
through the OMG Redtime Specid Interest Group
(http://www.omg.org/sigs.htm), which provides a forum for
defining CORBA standards applicable to isochronous and
rea-time domains, and from our CORBA WWW page
(http://www.cswustl.edu/~schmidt/corba.html).

Acknowledgments

Weliketothank IONA and Visigenicfor their helpin supply-
ing the cOrRBA implementationsused for thetestsin Section 3.

Both companies are currently working to eiminate their la-
tency and throughput overheads. We expect their forthcom-
ing releases to perform much better over high-speed ATM
networks.

References

[1] Object Management Group, The Common Object Request Bro-
ker: Architectureand Specification, 2.0 ed., July 1995.

[2] I. Pyarali, T. H. Harrison, and D. C. Schmidt, “Design and
Performance of an Object-Oriented Framework for High-
Performance Electronic Medical Imaging,” USENIX Comput-
ing Systems, vol. 9, November/December 1996.

[3] A. Gokhaleand D. C. Schmidt, “Measuring the Performance
of Communication Middleware on High-Speed Networks,” in
Proceedings of SGCOMM ' 96, (Stanford, CA), pp. 306317,
ACM, August 1996.

[4] A. Gokhale and D. C. Schmidt, “The Performance of the
CORBA Dynamic Invocation I nterface and Dynamic Skeleton
Interface over High-Speed ATM Networks,” in Proceedings
of GLOBECOM 96, (London, England), pp. 50-56, |EEE,
November 1996.

[5] A.GokhaleandD. C. Schmidt, “ Evaluating Latency and Scal-
ability of CORBA Over High-Speed ATM Networks,” in Pro-
ceedings of the International Confernce on Distributed Com-
puting Systems, (Baltimore, Maryland), |IEEE, May 1997.

[6] S. Vinoski, “CORBA: Integrating Diverse Applications
Within Distributed Heterogeneous Environments,” |EEE
Communications Magazine, vol. 14, February 1997.

[7] R. Gopalakrishnan and G. Parulkar, “Bringing Real-time
Scheduling Theory and Practice Closer for Multimedia Com-
puting,” in SSGMETRICS Conference, (Philadelphia, PA),
ACM, May 1996.

[8] S.Khannaand et. a., “Realtime Schedulingin Sun0OS5.0,” in
Proceedings of the USENIX Winter Conference, pp. 375-390,
USENIX Association, 1992.

[9] S.McCanneandV. Jacobson,“TheBSD Packet Filter: A New
Architecture for User-level Packet Capture,” in Proceedings
of the Winter USENI X Conference, (San Diego, CA), pp. 259—
270, Jan. 1993.

[10] M. Abbott and L. Peterson, “Increasing Network Through-
put by Integrating Protocol Layers,” ACM Transactions on
Networking, vol. 1, October 1993.

[11] D. R. Engler and M. F. Kaashoek, “DPF: Fast, Flexible Mes-
sage Demultiplexing using Dynamic Code Generation,” in
Proceedings of ACM SSIGCOMM '96 Conference in Com+
puter Communication Review, (Stanford University, Califor-
nia, USA), pp. 53-59, ACM Press, August 1996.

[12] P. Druschel, M. B. Abbott, M. Pagels, and L. L. Peterson,
“Network subsystem design,” |EEE Network (Special Issue
on End-System Support for High Speed Networks), vol. 7,
July 1993.

[13] P. Hoschka, “Automating Performance Optimization by
Heuristic Analysis of a Formal Specification,” in Proceed-
ings of Joint Conference for Formal Description Techniques
(FORTE) and Protocol Specification, Testing and Verification
(PSTV), (Kaiserslautern), 1996. To be published.

[14]

[19]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

D. C. Schmidt and T. Suda, “ An Object-Oriented Framework
for Dynamically Configuring Extensible Distributed Commu-
nication Systems,” IEE/BCS Distributed Systems Engineering
Journal (Special Issue on Configurable Distributed Systems),
vol. 2, pp. 280-293, December 1994.

Z.D. Dittia, J. JeromeR. Cox, and G. M. Parulkar, “ Design of
the APIC: A High Performance ATM Host-Network Interface
Chip,” in IEEE INFOCOM ' 95, (Boston, USA), pp. 179-187,
IEEE Computer Society Press, April 1995.

G. Parulkar, D. C. Schmidt, and J. S. Turner, “dt'm: aStrategy
for Integrating IP with ATM,” in Proceedings of the Sympo-
sium on Communications Architectures and Protocols (S G-
COMM), ACM, September 1995.

D. D. Clark and D. L. Tennenhouse, “Architectural Consid-
erations for a New Generation of Protocols,” in Proceedings
of the Symposium on Communications Architecturesand Pro-
tocols (S GCOMM), (Philadelphia, PA), pp. 200-208, ACM,
Sept. 1990.

C. Cranor, “OS Buffer Management System for Continuous
Medial/O,” tech. rep., Washington University Department of
Computer Science, July 1995.

C. Cranor and G. Parulkar, “Design of Universal Continuous
Medial/O,” in Proceedingsof the 5th Inter national Workshop
on Network and Operating Systems Support for Digital Au-
dio and Video (NOSSDAV '95), (Durham, New Hampshire),
pp. 83-86, Apr. 1995.

R. Gopalakrishnanand G. M. Parulkar, “ Efficient User Space
Protocol Implementations with QoS Guarantees using Real-
time Upcalls,” Tech. Rep. 96-11, Washington University De-
partment of Computer Science, March 1996.

R. Gopalakrishnan and G. M. Parulkar, “Real-time Upcalls:
A Mechanism to Provide Real-time Processing guarantees,”
Tech. Rep. 95-06, Dept. of Computer Science, Washington
University in St. Louis, 1995.

D. L. Tennenhouse, “ L ayered Multiplexing Considered Harm-
ful,” in Proceedings of the 1°" International Workshop on
High-Speed Networks, May 1989.

J--D. Choi, R. Cytron, and J. Ferrante, “ Automatic Construc-
tion of Sparse Data Flow Evaluation Graphs,” in Conference
Record of the Eighteenth Annual ACE Symposium on Princi-
ples of Programming Languages, ACM, January 1991.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck, “Efficiently Computing Static Single Assign-
ment Form and the Control Dependence Graph,” in ACM
Transactionson Programming Languages and Systems, ACM,
October 1991.

