
A High-performance Endsystem Architecture for Real-time CORBA

Douglas C. Schmidt, Aniruddha Gokhale, Timothy H. Harrison, and Guru Parulkar

fschmidt,gokhale,harrison,gurug@cs.wustl.edu
Department of Computer Science, Washington University

St. Louis, MO 63130, USA

This paper will appear in the feature topic issue on Dis-
tributed Object Computing in the IEEE Communications
Magazine, Vol. 14, No. 2, February 1997.

Abstract

Many application domains (such as avionics, telecommuni-
cations, and multimedia) require real-time guarantees from
the underlying networks, operating systems, and middleware
components to achieve their quality of service (QoS) require-
ments. In addition to providing end-to-end QoS guarantees,
applications in these domains must be flexible and reusable.
Requirements for flexibility and reusability motivate the use of
object-oriented middleware like the Common Object Request
Broker Architecture (CORBA). However, the performance of
current CORBA implementations is not yet suited for hard
real-time systems (e.g., avionics) and constrained latency
systems (e.g., teleconferencing).

This paper describes the architectural features and op-
timizations required to develop real-time ORB endsystems
that can deliver end-to-end QoS guarantees to applications.
While some operating systems, networks, and protocols now
support real-time scheduling, they do not provide integrated
solutions. The main thrust of this paper is that advances
in real-time distributed object computing can be achieved
only by systematically pinpointing performance bottlenecks;
optimizing the performance of networks, ORB endsystems,
common services, and applications; and simultaneously in-
tegrating techniques and tools that simplify application de-
velopment.

1 Introduction

An increasingly important class of distributed applications
require stringent quality of service (QoS) guarantees. These
applications include telecommunication systems (e.g., call
processing and switching), avionics control systems (e.g.,
operational flight programs for fighter aircraft), multimedia
(e.g., video-on-demand and teleconferencing), and simula-
tions (e.g., battle readiness planning). In addition to requir-
ing QoS guarantees, these applications must be flexible and
reusable.

The Common Object Request Broker Architecture
(CORBA) is a distributedobject computing middleware stan-
dard defined by the Object Management Group (OMG) [1].
CORBA is intended to support the production of flexible
and reusable distributed services and applications. Many
implementations of CORBA are now available. Two of the
most popular ORBs include IONA’s Orbix, which is widely
considered as the market leader, and Visigenic’s VisiBroker,
which is included in Netscape 4.0.

Our experience using CORBA on telecommunication,
avionics, and medical projects [2] indicates that it is well-
suited for request/response applications over lower-speed
networks (such as Ethernet and Token Ring). However,
CORBA is not well-suited for performance-sensitive real-
time applications, for the following reasons:

� Lack of standard QoS policies and mechanisms: The
CORBA specification defines neither the policies nor mech-
anisms for providing end-to-end QoS guarantees, i.e., from
application to application across a network. For instance,
there is no standard way for clients to indicate the relative
priorities of their requests. Likewise, there are no means for
clients to inform the ORB how frequently an isochronous
object service should execute.

�Lack of real-time features: CORBA does not define key
features that are necessary to support real-time programming.
For instance, there is no standard way to invoke CORBA re-
quests asynchronously, the CORBA specification does not
require the ORB to notify clients when transport layer flow
control occurs, and no threading model is defined by the
CORBA specification. As a result, it is hard to write a
standard CORBA application that is guaranteed not to block
indefinitely when endsystem and network resources are tem-
porarily unavailable.

� Lack of performance optimizations: Existing ORBs
incur significant run-time throughput and latency overhead
[3, 4, 2, 5]. These overheads include excessive data copy-
ing, non-optimized presentation layer conversions, internal
message buffering strategies that produce non-uniform la-
tency, inefficient demultiplexing algorithms, long chains of
intra-ORB virtual function calls, and lack of integration with
underlying OS and network QoS mechanisms.

1

This paper describes an integrated ORB endsystem archi-
tecture for constructing real-time ORBs (RT ORBs) that can
ensure end-to-end QoS for applications. QoS guarantees can
be both deterministic (e.g., hard real-time avionics applica-
tions where meeting QoS guarantees is crucial) and statistical
(e.g., latency constrained applications like teleconference and
video-on-demand where minor fluctuations in scheduling and
reliability guarantees are tolerated).

This paper is organized as follows: Section 2 outlines the
features and optimizations required in ORB endsystems to
provide end-to-end QoS guarantees for applications; Sec-
tion 3 summarizes results from our studies [3, 4, 2, 5] of
performance overhead in existing CORBA implementations;
Section 4 describes the feature enhancements and optimiza-
tions we are developing to support high-performance, real-
time ORB endsystems; and Section 5 presents concluding
remarks.

2 Endsystem Requirements for Real-
time CORBA

CORBA Object Request Brokers (ORBs) allow clients to
invoke methods on target object implementations without
concern for:

� Object location – target objects can be located locally
or remotely;

� Programming language – such as C/C++, Java, Ada95,
and Smalltalk;

� OS platform – such as Win32, OS/2, UNIX, and MVS;

� Communication protocols and networks – such as
TCP/IP, IPX/SPX, FDDI, ATM, and Fast Ethernet;

� Hardware – such as RISC vs. CISC.

The components in Figure 1 support this level of trans-
parency.

Steve Vinoski’s article [6] (in this issue of the IEEE Com-
munications Magazine) describes the CORBA middleware
components (e.g., the Object Request Broker, IDL Stubs
and Skeletons, Object Adapter, etc.). However, an ORB
endsystem is more than just middleware – it also contains
the network adapters, operating system I/O subsystem, com-
munication protocols, and common object services. The re-
mainder of this section outlines the requirements of RT ORB
endsystems:

� Policies and mechanisms for specifying end-to-end ap-
plication QoS requirements: ORB endsystems that pro-
vide end-to-end QoS must allow applications to specify their
QoS requirements at a high level with a small number of pa-
rameters (typically throughput, latency, and reliability). For
instance, video-conferencing groupware may require high
throughput and low latency. In contrast, high reliability may
be more important requirements for electronic fund transfer
systems. QoS specification is not addressed by the current

NETWORKNETWORK

DIIDII ORBORB
INTERFACEINTERFACE

OBJECTOBJECT

REQUEST BROKERREQUEST BROKER

op()op()

IDLIDL
STUBSSTUBS

OBJECTOBJECT

ADAPTERADAPTER

IDLIDL
SKELETONSKELETON

DSIDSI

in argsin args

out args + return valueout args + return value

OBJECTOBJECT

IMPLEMENTATIONIMPLEMENTATION
CLIENTCLIENT

OS KERNELOS KERNEL

OS IOS I//O SUBSYSTEMO SUBSYSTEM

NETWORK ADAPTERSNETWORK ADAPTERS

OS KERNELOS KERNEL

OS IOS I//O SUBSYSTEMO SUBSYSTEM

NETWORK ADAPTERSNETWORK ADAPTERS

INTERFACEINTERFACE

REPOSITORYREPOSITORY

IMPLEMENTATIONIMPLEMENTATION

REPOSITORYREPOSITORY

IDLIDL
COMPILERCOMPILER

NAMINGNAMING

SERVICESERVICE

GIOPGIOP//IIOPIIOP

Figure 1: ORB Endsystem Components for Real-Time
CORBA

CORBA specification. Section 4.4 outlines our mechanism
for allowing applications to specify their QoS parameters on
a per-request or per-object basis.

� Optimized real-time operating system and network:
Regardless of the ability to specify QoS requirements, ORBs
cannot deliver end-to-end QoS guarantees to applications
without network and OS support for predictable I/O op-
erations. Therefore, ORB endsystems must be capable
of scheduling resources such as CPUs, memory, storage
throughput, network adapter throughput, and network con-
nection bandwidth and latency. For instance, OS scheduling
mechanisms must allow high priority CORBA requests to
run to completion and prevent them from being blocked in-
definitely by lower priority operations [7, 8]. Section 4.1
describes an OS I/O subsystem and network adapter that can
provide end-to-end gigabit data rates and �10 msec latency
to CORBA applications.

� Optimized real-time communication protocols: The
throughput, latency, and reliability requirements of multi-
media applications like teleconferencing are more stringent
and varied than those found in traditional applications like
remote loginor file transfer. Likewise, the channel speed, bit-
error rates, and services (such as isochronous and bounded-
latency delivery guarantees) of networks like ATM exceed
those offered by traditional networks like Ethernet. There-
fore, ORB endsystems must provide a range of communi-
cation protocols that can be customized and optimized for
specific application requirements and network/host environ-
ments. Section 4.2 outlines optimizations for the CORBA
General Inter-ORB Protocol (GIOP) [1], which specifies the
request format and transmission protocol that enables inter-

2

operability among heterogeneous ORBs.

� Optimized real-time request demultiplexing and dis-
patching: ORB endsystems must demultiplex and dispatch
incoming CORBA requests to the appropriate method of the
target object. In conventional ORBs, demultiplexing occurs
at multiple layers. Layered demultiplexing is often inap-
propriate, however, for real-time applications. In addition
to increasing overhead, the layered demultiplexing and dis-
patching mechanisms in conventional ORBs neither schedule
nor prioritize demultiplexing behavior. Therefore, the ORB
endsystem must provide mechanisms (such as packet filters
[9], de-layered protocol stacks [10], direct demultiplexing
[11], and real-time upcalls [7]) that perform CORBA request
demultiplexing and dispatching efficiently and predictably.
Section 4.3 outlines a de-layered demultiplexing mechanism
and a real-time upcall mechanism that processes CORBA re-
quests predictably regardless of the number of active connec-
tions, application-level target object implementations, and
operations defined in IDL interfaces.

� Optimized memory management: On modern RISC
hardware, data copying consumes a significant amount of
CPU, memory, and I/O bus resources. Therefore, multiple
layers in an ORB endsystem (e.g., the network adapters, I/O
subsystem protocol stacks, Object Adapter, and presentation
layer) must collaborate to minimize data copying [12]. Sec-
tion 4.1 outlines our zero-copy memory management mecha-
nism, which behaves predictably and efficiently irrespective
of user buffer sizes and endsystem workload.

� Optimized presentation layer: Presentation layer con-
versions transform application-level data into a portable for-
mat that masks byte order, alignment, and word length dif-
ferences. There are many techniques for reducing the cost of
presentation layer conversions. For instance, [13] describes
the tradeoffs between using compiled versus interpreted code
for presentation layer conversions. Compiled marshaling
code is efficient, but requires excessive amounts of memory,
which is problematic in many embedded real-time environ-
ments. In contrast, interpreted marshaling code is slower, but
more compact. Section 4.4 outlines how RT ORB endsys-
tems must support worst case guarantees for both interpreted
and compiled marshaling operations.

It is important to recognize that requirements for high per-
formance may conflict with requirements for real-time de-
terminism. For instance, real-time scheduling policies often
rely on the predictability of endsystem operations like thread
scheduling, demultiplexing, and message buffering. How-
ever, certain optimizations (such as using self-organizing
search structures to demultiplex CORBA requests) can in-
crease the average performance of operations, and yet de-
crease the predictability of any given operation. Therefore,
our ORB endsystem is designed with an open architecture
that allows applications to select the appropriate tradeoffs be-
tween average-case and worst-case performance. Moreover,
where possible, we use algorithms and data structures that can

0.0

0.5

1.0

1.5

La
te

nc
y

in
 m

se
c

CORBA (Orbix)
CORBA (Visigenic)
TCP/IP (ACE)

Figure 2: Latency for Invoking Parameterless Twoway Op-
erations over ATM

optimize for both. For instance, de-layered demultiplexing
paths can increase ORB performance and predictability.

3 Performance Overhead in Current
CORBA Implementations

Real-time CORBA applications are not supported effi-
ciently by conventional CORBA implementations. The pri-
mary sources of overhead include (1) excessive presentation
layer conversions and data copying, (2) inefficient server
demultiplexing techniques, (3) unpredictable buffering algo-
rithms used for network reads and writes, (4) long chains of
intra-ORB virtual function calls, and (5) improper choice of
underlying OS system calls [3, 4, 2, 5].

Figures 2, 3, and 4 illustrate the latency for sending pa-
rameterless requests, octets, and structs between a client and
a target object over an otherwise unused 155 Mbps ATM net-
work. These tests were conducted using a modified version of
the TTCP benchmarking tool. The TTCP tool was enhanced
to support three communication mechanisms: two widely
used implementations of CORBA (Orbix 2.1 and VisiBroker
2.0) and an implementation written in ACE [14] (which is
a lightweight C++ network programming framework imple-
mented directly atop sockets and TCP/IP).

The results of the TTCP benchmarks over ATM were as
follows:

� Latency for parameterless invocations: Figure 2 illus-
trates the latency of the three communication mechanisms
for invoking parameterless twoway operations. This figure
shows the baseline latency for VisiBroker and Orbix is ap-
proximately twice that of the TCP/IP implementation written
with ACE.

3

0.0 200.0 400.0 600.0 800.0 1000.0
Units sent (1 struct unit = 32 bytes, 1 octet unit = 1 byte)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

15.0

La
te

nc
y

in
 m

se
c

CORBA (Orbix) structs
CORBA (Visigenic) structs
TCP/IP (ACE) structs
CORBA (Orbix) octets
CORBA (Visigenic) octets
TCP/IP (ACE) octets

Figure 3: Latency for Sending Octets and Binary Structs over
ATM

� Latency for untyped octet buffers and binary structs:
Figure 3 illustrates the latency for sending relatively small
buffers of untyped octets and structs (containing bi-
nary data in the form of shorts, longs, and doubles)
The buffers ranged from 1 to 1,024 units in powers of two
(whereoctet units are 1 byte each andstructunits are 32
bytes each). For octets, the performance curves are simi-
lar to those in Figure 2, with the latency of the the CORBA
implementations roughly twice as high as the ACE imple-
mentation. For binary structs, the CORBA latency was more
than four times higher than the ACE version as the buffers
increased in size.

� Throughput for untyped octet buffers and binary
structs: Figure 4 illustrates the throughput for sending
large streams of untypedoctets and binarystructs. The
data streams were transmitted in buffer sizes ranging from 1
K to 1,024 K bytes by powers of two. For untyped octets,
the ACE implementation outperforms the CORBA imple-
mentations by �10-15% for buffer sizes upto 8 K. Beyond
that, the performance of all three implementations is similar,
with Orbix performing�5-10% below ACE and VisiBroker.
For binary structs, however, the throughput performance
of the CORBA versions is substantially lower than the ACE
version. Both CORBA implementations achieved only 26-
30% of the throughput of the ACE implementation.

In general, the CORBA implementations performed poorly
when sending binary structs because of excessive copy-
ing and marshaling/demarshaling overhead, many layers of
virtual function calls, and excessive writes resulting from
non-optimal fragmentation of request buffers. In the follow-
ing section, we discuss an RT ORB architecture called TAO
(The ACE ORB) that alleviates these sources of overhead. In
addition, the TAO architecture addresses a more fundamental
issue – that of providing mechanisms to specify and deliver

0.0 200.0 400.0 600.0 800.0 1000.0
Number of Kbytes transmitted

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

110.0

120.0

T
hr

ou
gh

pu
t i

n
M

bp
s

CORBA (Orbix) structs
CORBA (Visigenic) structs
TCP/IP (ACE) structs
CORBA (Orbix) octets
CORBA (Visigenic) octets
TCP/IP (ACE) octets

Figure 4: Throughput for Sending Octets and Binary Structs
over ATM

end-to-end QoS guarantees to applications.

4 A High-performance ORB Endsys-
tem for Real-Time CORBA

This section describes network interface, operating system,
communication protocol, and CORBA middleware mecha-
nisms we are developing to implement a high-performance
ORB endsystem for real-time CORBA called TAO. Figure 5
illustrates the components in the TAO architecture. These in-
clude a Gigabit I/O subsystem that optimizes conventional OS
I/O subsystems to execute at Gigabit rates over high-speed
ATM networks; a suite of real-time GIOP/IIOP protocols that
provide efficient and predictable transmission of requests us-
ing standard CORBA interoperability protocols; a real-time
Object Adapter that schedules and dispatches CORBA re-
quests in real-time; and a application-specific components
that optimize key sources of overhead in current ORBs and
provides features that support end-to-end QoS guarantees to
applications and higher-level CORBA services.

4.1 Gigabit I/O Subsystem

To implement end-to-end QoS guarantees, we are develop-
ing a high-performance network I/O subsystem. At the heart
of this subsystem is a daisy-chained interconnect compris-
ing a number of ATM Port Interconnect Controller (APIC)
chips [15]. APIC is designed to sustain an aggregate bi-
directional data rate of 2.4 Gbps.

Our Gigabit I/O subsystem builds on the APIC to enhance
conventional operating systems with a zero-copy buffer man-
agement system. At the device level, the APIC interfaces
directly with the main system bus and other I/O devices to
transfer CORBA requests between endsystem buffer pools

4

REALREAL--TIMETIME

REQUESTREQUEST

SCHEDULINGSCHEDULING

 QUEUES QUEUES

REALREAL--TIME THREADSTIME THREADS

AND UPCALLSAND UPCALLS

ZEROZERO

COPYCOPY

BUFFERSBUFFERS

REAL-TIME OBJECT ADAPTER

ATM PORT
INTERFACE

CONTROLLER
(APIC)

GIGABIT I/O SUBSYSTEM

VCVC11 VCVC22 VCVC33 VCVC44 VCVC55

.........

O
B

J
E

C
T

O
B

J
E

C
T
N

::
N

::
M

E
T

H
O

D
M

E
T

H
O

D
11

O
B

J
E

C
T

O
B

J
E

C
T
1
::

1
::

M
E

T
H

O
D

M
E

T
H

O
D

22

O
B

J
E

C
T

O
B

J
E

C
T
1
::

1
::

M
E

T
H

O
D

M
E

T
H

O
D

11

DEDE--LAYERED REQUESTLAYERED REQUEST

DEMULTIPLEXERDEMULTIPLEXER

APPLICATION
SPECIFIC

CODE
& CORBA
SERVICES

REAL-TIME GIOP/IIOP PROTOCOLS

TCP/IP ATM RTP

ATM NETWORK

.........

O
B

J
E

C
T

O
B

J
E

C
T
N

::
N

::
M

E
T

H
O

D
M

E
T

H
O

D
KK

O
B

J
E

C
T

O
B

J
E

C
T
1
::

1
::

M
E

T
H

O
D

M
E

T
H

O
D

KK
PRESENTATION LAYERPRESENTATION LAYER

QQOOSS

SPECIFICATIONSSPECIFICATIONS

Figure 5: A High-performance ORB Endsystem for Real-
time CORBA

and ATM virtual circuits without incurring additional data
copying. The buffer pools for I/O devices support “direct
demultiplexing” of periodic and aperiodic CORBA requests
into memory shared among user- and kernel-resident threads.

4.2 Real-time GIOP/IIOP Protocols

The CORBA General Inter-ORB Protocol (GIOP) [1] speci-
fies the request format and transmission protocol that enables
ORB-to-ORB interoperability. Conventional CORBA im-
plementations utilize inflexible, static strategies for selecting
the GIOP implementation. For instance, ORBs commonly
implement the GIOP using the Internet Inter-ORB Protocol
(IIOP), which is layered above TCP/IP.

Performance-sensitive real-time applications often can-
not tolerate the latency overhead and jitter of TCP, which
supports functionality (such as adaptive retransmissions, de-
ferred transmissions, and delayed acknowledgments) that can
cause excessive overhead and latency for real-time applica-
tions. Likewise, unreliable protocols like UDP lack function-
ality (such as congestion control,end-to-end flow control, and
rate control), which leads to excessive congestion and missed
deadlines in networks and endsystems.

To enhance flexibility and performance, therefore, TAO
supports the run-time configuration of lightweight GIOP im-
plementations. These protocols optimize the CORBA GIOP
for high-speed networks (e.g., ATM LANs and ATM/IP
WANs) [16] and can be customized for specific applica-
tion requirements. For instance, certain applications that
do not require complete reliability (e.g., teleconferencing
or certain types of imaging). In this case, TAO can selec-
tively omit transport layer functionality (such as retransmis-
sions and end-to-end error handling) and run directly atop
ATM or ATM/IP. Our GIOP transport layer tightly integrates
the underlying ATM/IP infrastructure via techniques such as
ALF/ILP [17], our Gigabit I/O subsystem [18, 19, 20, 21],
and the APIC [15] network adapter.

4.3 Real-Time Object Adapter

The Object Adapter is the component in CORBA that as-
sociates object implementations with the ORB and delivers
requests to the appropriate target object. In addition to its
standard duties, the Object Adapter in TAO is responsible for
real-time scheduling and dispatching of the following ORB
operations:

� Real-time upcalls (RTU): Support for periodic data
transfer and protocol processing is critical for multimedia
and other delay-sensitive applications. To support periodic
delivery of CORBA requests, we have implemented a real-
time upcall (RTU) mechanism [7]. RTUs are an OS schedul-
ing mechanism that provides rate monotonic QoS guarantees
to protocols and CORBA applications. When used in con-
junction with the APIC’s zero-copy buffering and direct de-
multiplexing, RTUs can significantly reduce synchronization

5

and context switching overhead for isochronous multimedia
applications.

� De-layered demultiplexing optimizations: A standard
GIOP-compliant CORBA request contains the identity of its
remote object implementation and remote operation. The re-
mote object implementation is represented by an object refer-
ence and the remote operation is represented as a string. Con-
ventional ORB endsystems demultiplex CORBA requests to
the appropriate method of the object implementation using
the following steps (shown at the top of Figure 6):

� Steps 1 and 2 – The OS protocol stack demultiplexes the
incoming CORBA request multiple times (e.g., through
the data link, network, and transport layers) to the ORB’s
Object Adapter;

� Steps 3 and 4 – The Object Adapter uses the addressing
information in the request to locate the appropriate target
object implementation and associated IDL skeleton;

� Step 5 – The IDL skeleton locates the appropriate
method, demarshals the request buffer into method pa-
rameters, and performs the method upcall.

Demultiplexing requests through all these layers is expen-
sive, particularly when a large number of operations appear
in an IDL interface and/or a large number of objects are man-
aged by an ORB. To minimize this overhead, TAO utilizes
de-layered demultiplexing [22] (shown at the bottom of Fig-
ure 6). This approach uses pre-negotiated demultiplexing
keys to map CORBA requests directly to object/method tu-
ples that perform application-level real-time upcalls. To fur-
ther reduce the number of demultiplexing layers, the APIC
can be programmed to directly dispatch CORBA requests
associated with ATM virtual circuits. This strategy reduces
demultiplexing latency and supports end-to-end QoS on a
per-request or per-object basis.

4.4 Application-specific Code and CORBA
Services

Certain ORB endsystem features and optimizations depend
largely on application characteristics. Chief among these
are QoS parameter specifications and presentation layer con-
versions. TAO uses this application-specific information to
guide the selection and/or generation of the following policies
and mechanisms to deliver end-to-end QoS to applications:

� Specifying and mapping QoS requirements: Specifica-
tion of QoS requirements is essential to provide performance
guarantees. Since applications can have widely varying re-
quirements, a structured and general way to specify QoS is
necessary. TAO identifies four application service classes
that encompass continuous media, bulk data, low-latency
transaction message, and high-bandwidth message streams
[7]. These four classes of QoS specifications are defined
using high-level parameters; other low-level parameters are
derived automatically.

2: DEMUX TO

 I/O HANDLE

O
B

J
E

C
T

O
B

J
E

C
T
N

::
N

::
M

E
T

H
O

D
M

E
T

H
O

D
KK

O
B

J
E

C
T

O
B

J
E

C
T
N

::
N

::
M

E
T

H
O

D
M

E
T

H
O

D
11

O
B

J
E

C
T

O
B

J
E

C
T
1
::

1
::

M
E

T
H

O
D

M
E

T
H

O
D

KK

O
B

J
E

C
T

O
B

J
E

C
T
1
::

1
::

M
E

T
H

O
D

M
E

T
H

O
D

22

.........

O
B

J
E

C
T

O
B

J
E

C
T
1
::

1
::

M
E

T
H

O
D

M
E

T
H

O
D

11

DEDE--LAYERED REQUESTLAYERED REQUEST

DEMULTIPLEXERDEMULTIPLEXER

M
E

T
H

O
D

M
E

T
H

O
D
KK

M
E

T
H

O
D

M
E

T
H

O
D
22

.........

M
E

T
H

O
D

M
E

T
H

O
D
11

.........

.........IDLIDL

SKEL SKEL 11
IDLIDL

SKEL SKEL 22
IDLIDL

SKEL SKEL MM

OBJECT ADAPTER

OBJECT OBJECT 11 OBJECT OBJECT 22 OBJECT OBJECT NN

4: DEMUX TO

 SKELETON

5: DEMUX TO

 METHOD

3: DEMUX TO

 METHOD

1: DEMUX THRU

 PROTOCOL STACK

3: DEMUX TO

 OBJECT

OBJECT ADAPTER

LAYERED

DEMULTIPLEXING

DEDE--LAYEREDLAYERED

DEMULTIPLEXINGDEMULTIPLEXING

2: DEMUX TO

 I/O HANDLE

1: DEMUX THRU

 PROTOCOL STACK

Figure 6: Layered and De-layered CORBA Request Demul-
tiplexing

Several ORB endsystem resources (such as CPU, mem-
ory, network connections, and storage devices) are involved
in satisfying application QoS requirements. Applications
must specify their QoS needs so that the ORB subsystem can
guarantee resource availability. For instance, network con-
nection bandwidth must be determined from the specified
QoS parameters when establishing connections. Likewise,
the amount of computing required to process CORBA re-
quests must be determined so CPU capacity can be allocated
accordingly.

In distributed object systems, real-time applications may
need to specify QoS parameters on a per-request or per-
object basis. For instance, an event service for real-time
avionics may choose to propagate navigation events with a
higher priority (lower latency) than sensor events. In contrast,
a video-on-demand server may only need to specify QoS
parameters per-object.

� Presentation layer optimizations: TAO can generate
and configure multiple strategies for marshaling and demar-
shaling CORBA IDL types. For instance, based on measures
of a type’s run-time usage, the TAO can link in either com-
piled and/or interpreted CORBA IDL stubs and skeletons.
This flexibilitycan achieve an optimal tradeoff between inter-
preted code (which is slow, but compact in size) and compiled
code (which is fast, but larger in size) [13].

Likewise, TAO can cache premarshaled application data
units (ADUs) that are used repeatedly. Caching improves
performance when ADUs are transferred sequentially in “re-
quest chains” and each ADU varies only slightly from one
transmission to the other. In such cases, it is not necessary
to marshal the entire ADU every time. This optimization re-

6

quires TAO to perform flow analysis [23, 24] of application
code to determine what request fields can be cached.

Although these techniques can significantly reduce mar-
shaling overhead for the common case, real-time applications
with static scheduling policies often consider only worst-case
execution. As a result, the flow analysis optimizations de-
scribed above can only be employed under certain circum-
stances, e.g., for applications that can accept statistical QoS
guarantees or when the worst case scenarios are still sufficient
to meet deadlines.

5 Concluding Remarks

Currently, there is significant interest in developing high-
performance implementations of real-time ORB endsystems.
However, meeting these needs requires much more than
defining ORB QoS interfaces using CORBA IDL – it requires
an integrated architecture that delivers end-to-end QoS guar-
antees at multiple levels of the entire system. The architecture
we describe in this article addresses this need with the fol-
lowing policies and mechanisms spanning network adapters,
operating systems, communication protocols, and CORBA
middleware:

� Real-time scheduling of OS and network resources;

� A high-performance ATM Port Interface Controller
(APIC);

� Efficient zero-copy buffer management that shares
CORBA request buffers across OS protection domains;

� Customized real-time implementations of GIOP-
compliant communication protocols;

� Real-time Object Adapter implementation with real-
time upcalls (RTUs) and de-layered demultiplexing us-
ing kernel-level packet filters;

� Lightweight presentation layer based on compiler anal-
ysis and efficient buffer management schemes;

� Application interface for specifying end-to-end QoS and
mapping this onto individual CORBA requests and/or
sessions.

TAO’s architecture is designed to offer determinis-
tic and statistical guarantees to real-time applications.
More information on real-time CORBA is available
through the OMG Realtime Special Interest Group
(http://www.omg.org/sigs.htm), which provides a forum for
defining CORBA standards applicable to isochronous and
real-time domains, and from our CORBA WWW page
(http://www.cs.wustl.edu/�schmidt/corba.html).

Acknowledgments

We like to thank IONA and Visigenic for their help in supply-
ing the CORBA implementations used for the tests in Section 3.

Both companies are currently working to eliminate their la-
tency and throughput overheads. We expect their forthcom-
ing releases to perform much better over high-speed ATM

networks.

References

[1] Object Management Group,The Common Object Request Bro-
ker: Architecture and Specification, 2.0 ed., July 1995.

[2] I. Pyarali, T. H. Harrison, and D. C. Schmidt, “Design and
Performance of an Object-Oriented Framework for High-
Performance Electronic Medical Imaging,” USENIX Comput-
ing Systems, vol. 9, November/December 1996.

[3] A. Gokhale and D. C. Schmidt, “Measuring the Performance
of Communication Middleware on High-Speed Networks,” in
Proceedings of SIGCOMM ’96, (Stanford, CA), pp. 306–317,
ACM, August 1996.

[4] A. Gokhale and D. C. Schmidt, “The Performance of the
CORBA Dynamic Invocation Interface and Dynamic Skeleton
Interface over High-Speed ATM Networks,” in Proceedings
of GLOBECOM ’96, (London, England), pp. 50–56, IEEE,
November 1996.

[5] A. Gokhale and D. C. Schmidt, “Evaluating Latency and Scal-
ability of CORBA Over High-Speed ATM Networks,” in Pro-
ceedings of the International Confernce on Distributed Com-
puting Systems, (Baltimore, Maryland), IEEE, May 1997.

[6] S. Vinoski, “CORBA: Integrating Diverse Applications
Within Distributed Heterogeneous Environments,” IEEE
Communications Magazine, vol. 14, February 1997.

[7] R. Gopalakrishnan and G. Parulkar, “Bringing Real-time
Scheduling Theory and Practice Closer for Multimedia Com-
puting,” in SIGMETRICS Conference, (Philadelphia, PA),
ACM, May 1996.

[8] S. Khanna and et. al., “Realtime Scheduling in SunOS5.0,” in
Proceedings of the USENIX Winter Conference, pp. 375–390,
USENIX Association, 1992.

[9] S. McCanne and V. Jacobson,“The BSD PacketFilter: A New
Architecture for User-level Packet Capture,” in Proceedings
of the Winter USENIX Conference, (San Diego, CA), pp. 259–
270, Jan. 1993.

[10] M. Abbott and L. Peterson, “Increasing Network Through-
put by Integrating Protocol Layers,” ACM Transactions on
Networking, vol. 1, October 1993.

[11] D. R. Engler and M. F. Kaashoek, “DPF: Fast, Flexible Mes-
sage Demultiplexing using Dynamic Code Generation,” in
Proceedings of ACM SIGCOMM ’96 Conference in Com-
puter Communication Review, (Stanford University, Califor-
nia, USA), pp. 53–59, ACM Press, August 1996.

[12] P. Druschel, M. B. Abbott, M. Pagels, and L. L. Peterson,
“Network subsystem design,” IEEE Network (Special Issue
on End-System Support for High Speed Networks), vol. 7,
July 1993.

[13] P. Hoschka, “Automating Performance Optimization by
Heuristic Analysis of a Formal Specification,” in Proceed-
ings of Joint Conference for Formal Description Techniques
(FORTE) and Protocol Specification, Testing and Verification
(PSTV), (Kaiserslautern), 1996. To be published.

7

[14] D. C. Schmidt and T. Suda, “An Object-Oriented Framework
for Dynamically Configuring Extensible Distributed Commu-
nication Systems,” IEE/BCS Distributed Systems Engineering
Journal (Special Issue on Configurable Distributed Systems),
vol. 2, pp. 280–293, December 1994.

[15] Z. D. Dittia, J. Jerome R. Cox, and G. M. Parulkar, “Design of
the APIC: A High Performance ATM Host-Network Interface
Chip,” in IEEE INFOCOM ’95, (Boston, USA), pp. 179–187,
IEEE Computer Society Press, April 1995.

[16] G. Parulkar, D. C. Schmidt, and J. S. Turner, “aItPm: a Strategy
for Integrating IP with ATM,” in Proceedings of the Sympo-
sium on Communications Architectures and Protocols (SIG-
COMM), ACM, September 1995.

[17] D. D. Clark and D. L. Tennenhouse, “Architectural Consid-
erations for a New Generation of Protocols,” in Proceedings
of the Symposium on Communications Architectures and Pro-
tocols (SIGCOMM), (Philadelphia, PA), pp. 200–208, ACM,
Sept. 1990.

[18] C. Cranor, “OS Buffer Management System for Continuous
Media I/O,” tech. rep., Washington University Department of
Computer Science, July 1995.

[19] C. Cranor and G. Parulkar, “Design of Universal Continuous
Media I/O,” in Proceedings of the 5th International Workshop
on Network and Operating Systems Support for Digital Au-
dio and Video (NOSSDAV ’95), (Durham, New Hampshire),
pp. 83–86, Apr. 1995.

[20] R. Gopalakrishnan and G. M. Parulkar, “Efficient User Space
Protocol Implementations with QoS Guarantees using Real-
time Upcalls,” Tech. Rep. 96-11, Washington University De-
partment of Computer Science, March 1996.

[21] R. Gopalakrishnan and G. M. Parulkar, “Real-time Upcalls:
A Mechanism to Provide Real-time Processing guarantees,”
Tech. Rep. 95-06, Dept. of Computer Science, Washington
University in St. Louis, 1995.

[22] D. L. Tennenhouse,“Layered Multiplexing Considered Harm-
ful,” in Proceedings of the 1st International Workshop on
High-Speed Networks, May 1989.

[23] J.-D. Choi, R. Cytron, and J. Ferrante, “Automatic Construc-
tion of Sparse Data Flow Evaluation Graphs,” in Conference
Record of the Eighteenth Annual ACE Symposium on Princi-
ples of Programming Languages, ACM, January 1991.

[24] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck, “Efficiently Computing Static Single Assign-
ment Form and the Control Dependence Graph,” in ACM
Transactions on Programming Languages and Systems,ACM,
October 1991.

8

