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This paper appeared as a chapter in the bdekign Pat- applications such as video-on-demand, teleconferencing, and
terns in CommunicationgLinda Rising, ed.), Cambridge Uni-avionics requirequality-of-service(QoS) guarantees for la-
versity Press, 2000. An abridged version appeared in the IBERcy, bandwidth, and reliability [3].

Communications Magazine Special Issue on Patterns (Linda key software technology supporting these trenddiss

Rising, ed.), Volume 37, No. 4, April 1999. tributed object computing (DOC) middlewareDOC mid-
dleware facilitates the collaboration of local and remote ap-
Abstract plication components in heterogeneous distributed environ-

ments. The goal of DOC middleware is to eliminate many te-
Distributed object computing forms the basis of nexgious, error-prone, and non-portable aspects of developing and
generation communication software. At the heart of digyolving distributed applications and services. In particular,
tributed object computing are Object Request Brokers (ORBShHc middleware automates common network programming
which automate many tedious and error-prone distributed prigisks, such as object location, implementation startien (
gramming tasks. Like much communication software, convegryer and object activation), encapsulation of byte-ordering
tional ORBs use statically configured designs, which are hagflq parameter type size differences across dissimilar architec-
to port, optimize, and evolve. Likewise, conventional ORBges (.e., parameter marshaling), fault recovery, and security.
cannot be extended without modifying their source code, whighthe heart of DOC middleware a@bject Request Brokers
forces recompilation, relinking, and restarting running ORB®RBs), such as CORBA [4], DCOM [5], and Java RMI [6].

and their associated application objects. _This paper describes how we have appliepagtern lan-
This paper makes two cqntrlbutlons to the StUdY_Of exter&b-ageto develop and evolve dynamically configurable ORB
ble ORB middleware. First, it presents a case study 'Ilus""’?t”ﬁﬁﬁddleware that can be extended more readily than statically
how a pattern language can be used to develop dynamically o, red middleware. In general, pattern languages help to
configurable ORBs that can be customized for specific applifyjate the continual re-discovery and re-invention of soft-
cation requirements and system qharactensucs. Second, weq concepts and components by conveying a family of re-
quantify the impact of applying this pattern language 10 sy sojutions to standard software development problems [7].
duce the complexity and improve the maintainability of COfRg - jnstance, pattern languages are useful for documenting the
mon ORB tasks, such as connection management, data trafgss and relationships among participants in common com-
fer, demultiplexing, and concurrency control. munication software architectures [8]. The pattern language
presented in this paper is a generalization of the one presented
1 Introduction in [9] and has_been used successfully to bu_ild flexible, effi-
cient, event-driven, and concurrent communication software,

Four trends are shaping the future of commercial software #t&luding ORB middleware.

velopment. First, the software industry is moving away from To focus our discussion, this paper presents a case study
programmingapplications from scratch fategratingapplica- that illustrates how we have applied this pattern language to
tions using reusable components [1]. Second, there is greatdfaelopThe ACE ORETAO) [10]. TAO is a freely avail-
mand fordistribution technologghat provides remote methodgble, highly extensible ORB targeted for applications with
invocation and/or message-oriented middleware to simpli§@l-time QoS requirements, including avionics mission com-
application collaboration. Third, there are increasing effolRgiting [11], multimedia applications [12], and distributed in-
to define standard software infrastructure frameworks that péfactive simulations [13]. A novel aspect of TAO is its ex-
mit applications to interwork seamlessly throughbeteroge- tensible design, which is guided by a pattern language that en-
neousenvironments [2]. Finally, next-generation distribute@bles the ORB to be customized dynamically to meet specific

, _ , _ application QoS requirements and network/endsystem charac-
*This work was supported in part by ATD, BBN, Boeing, Cisco, DARPA ristics

contract 9701516, Motorola Commercial Government and Industrial So‘ - ) ) ) )
tions Sector, Motorola Laboratories, Siemens, and Sprint. The remainder of this paper is organized as follows: Sec-




tion 2 presents an overview of CORBA and TAO; Section 3 INTERFACE IDL IMPLEMENTATION
motivates the need for dynamic configuration and describes | REPOSITORY COMPILER REPOSITORY
the pattern language that resolves key design challenges fac
when developing extensible ORBs; Section 3.5 evaluates a
guantifies the contribution of the pattern language to ORbL
middleware; and Section 4 presents concluding remarks.
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2 Overview of CORBA and TAO

This section outlines the CORBA reference model ank
describes the enhancements that TAO provides for higIOSTANDARD INTERFACE
performance and real-time applications. .ORB-SPECIFIC INTERFACE OSTANDARD PROTOCOL

Figure 1: Components in the CORBA Reference Model
2.1 Overview of the CORBA Reference Model

CORBA Object Request Brokers (ORBs) [14] allow clients tObject: In CORBA, an object is an instance of an OMG
invoke operations on distributed objects without concern fimterface Definition Language (IDL) interface. Each object
the following issues: is identified by anobject referencewhich associates one or

) . ) ) more paths through which a client can access an object on a
Object location: A CORBA object either can be collocatederyer, Anobject ID associates an object with its implemen-

with the client or distributed on a remote server, without aftjon, called a servant, and is unique within the scope of an
fecting its implementation or use. Object Adapter. Over its lifetime, an object has one or more

Programming language: The languages supported biervantsassomatedWlth it to implement its interface.

CORBA include C, C++, Java, Ada95, COBOL, an&ervant: This component implements the operations de-
Smalltalk, among others. fined by an OMG IDL interface. In object-oriented (OO) lan-

. guages, such as C++ and Java, servants are implemented us-
OS platform:  CORBA runs on many OS platforms, including one or more class instances. In non-OO languages, such
ing Win32, UNIX, MVS, and real-time embedded systemgg ¢, servants are typically implemented using functions and
such as VxWorks, Chorus, and LynxOS. struct s. A client never interacts with servants directly, but
Communication protocols and interconnects: The com- always through objects identified by object references. To-

munication protocols and interconnects that CORBA run gﬁther', an object and its.ser\'/ant form an.implementat.ion of
include TCP/IP, IPX/SPX, FDDI, ATM, Ethernet, Fast Ethef'® Bridge pattern [15], witbjectas theRefinedAbstraction
net, embedded system backplanes, and shared memory. andservantas theConcretelmplementor

_ ] o ] ORB Core: When a client invokes an operation on an ob-
Hardware: CORBA shields applications from side effecty, ¢ the ORB Core is responsible for delivering the request

stemming from hardware diversity, such as different storageihe object and returning a response, if any, to the client.
layouts and data type sizes/ranges. An ORB Core is implemented as a run-time library linked

Figure 1 illustrates the components in the CORBA refép—to client and server applications. For objects e-xecuting re-
ence model, all of which collaborate to provide the portabilit ’otely, a CORBA-compliant ORB Core communicates via a

interoperability and transparency outlined above. ersion of the General Inter-ORB Protocol (GIOP), such as
. . . thde Internet Inter-ORB Protocol (IIOP) that runs atop the TCP
Each componentin the CORBA reference model is outlln? | dditi : i
below: ransport protocol. In addition, custom EnV|rorjment-SpeC| ic
' Inter-ORB protocols (ESIOPSs) can also be defined [16].

Client: A client is arole that obtains references to object§ RB Interface: An ORB is an abstraction that can be im-
and invokes operations on them to perform application taSb%mented various ways,g, One or more processes or a set
Objects can be remote or collocated relative to the cliegt. jibraries. To decouple applications from implementation
Clients can access remote objects just like a local obiject, details, the CORBA specification defines an interface to an
object —operation(args) . Figure 1 shows how the ORB. This ORB interface provides standard operations to ini-

underlying ORB components described below transmit remgtgize and shut down the ORB, convert object references to
operation requests transparently from client to object.



strings and back, and create argument lists for requests medfgitional information associated with interfaces to CORBA
through thedynamic invocation interfacglI|). objects, such as type libraries for stubs and skeletons.

OMG IDL Stubs and Skeletons: IDL stubs and skeletonsimplementation Repository: The Implementation Reposi-
serve as a “glue” between the client and servants, respectiviglyy [18] contains information that allows an ORB to activate
and the ORB. Stubs implement tiikroxy pattern [15] and servers to process servants. Most of the information in the Im-
provide a strongly-typedstatic invocation interfac€Sll) that plementation Repository is specific to an ORB or OS environ-
marshals application parameters into a common message-lgyght. In addition, the Implementation Repository provides a
representation. Conversely, skeletons implemenfti@pter common location to store information associated with servers,

pattern [15] and demarshal the message-level representadi@gth as administrative control, resource allocation, security,
back into typed parameters that are meaningful to an appligad activation modes.

tion.

IDL Compiler:  An IDL compiler transforms OMG IDL .
definitions into stubs and skeletons that are generated autor%a%- Overview of TAO

ically in an application programming language, such as C¥A0 is a high-performance, real-time ORB endsystem tar-
or Java. In addition to providing programming language tranfeted for applications with deterministic and statistical QoS
parency, IDL compilers eliminate common sources of netwoigquirements, as well as best-effort requirements. TAO's ORB
programming errors and provide opportunities for automatgfldsystem contains the network interface, OS, communication
compiler optimizations [17]. protocol, and CORBA-compliant middleware components and
Dynamic Invocation Interface (D||) The DIl allows services shown in Figure 2. TAO supports the standard OMG
clients to generate requests at run-time, which is useful when

an application has no compile-time knowledge of the integ
face it accesses. The DIl also allows clients to maéterred
synchronougalls, which decouple the request and respon
portions of two-way operations to avoid blocking the clierit
until the servant responds. CORBA SlI stubs support both \é

synchronous and asynchronaws-way i.e., request/response IDL
andone-wayi.e. request-only operations. STUBS
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the IDL interface they implement. Clients making requesj
need not know whether the server ORB uses static skeleton
dynamic skeletons. Likewise, servers need not know if clie
use the DIl or Sl to invoke requests.
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Object Adapter: An Object Adapter is a composite compo-
nent that associates servants with objects, creates object refer-

ences, demultiplexes incoming requests to servants, and E§jure 2: Components in the TAO Real-time ORB Endsystem
laborates with the IDL skeleton to dispatch the appropriate

operation upcall on a servant. Object Adapters enable ORB@RBA reference model [14] and Real-time CORBA speci-
to support various types of servants that possess similarfieation [19], with enhancements designed to ensure efficient,
quirements. This design results in a smaller and simpler OREgdictable, and scalable QoS behavior for high-performance
that can support a wide range of object granularities, lifetim@&d real-time applications. In addition, TAO is well-suited for

policies, implementation styles, and other properties. general-purpose distributed applications. Below, we outline

Interface Repository: The Interface Repository providesthe features of TAQ's components shown in Figure 2.

run-time information about IDL interfaces. Using this inforOptimized IDL Stubs and Skeletons: DL stubs and skele-
mation, it is possible for a program to encounter an objdgons perform marshaling and demarshaling of application op-
whose interface was not known when the program was coenation parameters, respectively. TAO’s IDL compiler gener-
piled, yet be able to determine what operations are valid on #Hies stubs/skeletons that can selectively use highly optimized
object and make invocations on it using the DII. In additioepmpiled and/or interpretive (de)marshaling [20]. This flex-
the Interface Repository provides a common location to stdbéity allows application developers to selectively trade off

NETWORK




time and space, which is crucial for high-performance, reglerformance, real-time applications and higher-level middle-
time, and/or embedded distributed systems. ware like TAO. ACE and TAO run on a wide range of OS plat-

Real-time Object Adapter: An Object Adapter <,:L,Q,socim(ag‘orms,.including Win32, most versions ofUNIX,'and real-time
servants with the ORB and demultiplexes incoming requeSRErating systems, such as Sun/Chorus ClassiX, LynxOS, and
to servants. TAO's real-time Object Adapter uses perfect ha¥pfWorks.

ing [21] and active demultiplexing [22] optimizations to dis-
patch servant operations in constértl) time, regardless of;
the number of active connections, servants, and operations
fined in IDL interfaces.

To expedite our project goals, and to avoid re-inventing ex-

sting components, we based TAO on SunSoft IIOP, which is
ﬁéely available C++ reference implementation of the Inter-

net Inter-ORB Protocol (IlOP) version 1.0. Although SunSoft

Run-time Scheduler: TAO'’s run-time scheduler [19] mapslIOP provides core features of a CORBA ORB it also has the

application QoS requirements, such as bounding end-to-&ithwing limitations:

latency and meeting periodic scheduling deadlines, to ORB

endsystem/network resources, such as CPU, memory, netdét&K of standard ORB features: - Although SunSoft 110P

connections, and storage devices. TAO's run-time sched@&pvides an ORB Core, an IIOP 1.0 protocol engine, and a

supports both static [10] and dynamic [23] real-time sched&l!! @nd DSI implementation, it lacks an IDL compiler, an
ing strategies. Interface Repository and Implementation Repository, and a

) ) , . Portable Object Adapter (POA). TAO implements all these
Real-time ORB Core: An ORB Core delivers client re- iqing features and provides newer CORBA features, asyn-

quests to the Object Adapter and returns responses (if anyddpy ous method invocations [29], real-time CORBA [19] fea-
clients. TAO's real-time ORB Core [24] uses a multl—threadegjj,reS [30], and fault tolerance CORBA features [31, 32].
preemptive, priority-based connection and concurrency archi-

tecture [20] to provide an efficient and predictable CORBRack of IOP optimizations: Due to the excessive marshal-
protocol engine. TAO's ORB Core allows customized protig/demarshaling overhead, data copying, and high-levels of
cols to be plugged into the ORB without affecting the standdidhction call overhead, SunSoft IIOP performs poorly over
CORBA application programming model [25]. high-speed networks. Therefore, we applied a range of opti-

Real-time 1/0 subsystem: TAO's real-time 1/O (RIO) sub- mization principle patterns [22] that improved its performance

system [26] extends support for CORBA into the OS. RIO a%Qnsiglerably [33]. The .principles that directed our optim@za—
signs priorities to real-time 1/0 threads so that the schedulaljfns include: (1) optimizing for the common case, (2) elim-
ity of application components and ORB endsystem resourf2ing gratuitous waste, (3) replacing general-purpose meth-
can be enforced. When integrated with advanced hardw&@S With efficient special-purpose ones, (4) precomputing val-
such as the high-speed network interfaces described beldfs If POssible, (5) storing redundant state to speed up expen-
RIO can (1) perform early demultiplexing of /O events ontgV€ OPerations, (6) passing information between layers, and
prioritized kernel threads to avoid thread-based priority invéf) OPtimizing for processor cache affinity.

sion and (2) maintain distinct priority streams to avoid packet—-l-hiS paper does not discuss how TAO solves the limitations

bgsed priority inyersion. TAO algo runs efficiently and as prean sunsoft 110P outlined above, which are described in de-
dictably as possible on conventional I/O subsystems that Iq&h in [10, 20]. Instead, we focus on how TAO uses patterns

advanced QoS features. to implement an ORB that overcomes the following SunSoft
High-speed network interface: At the core of TAO's I/O I[IOP limitations while simultaneously preserving its QoS ca-
subsystem is a “daisy-chained” network interface consistipgbilities:

of one or more ATM Port Interconnect Controller (APIC - ] o

chips [27]. The APIC is designed to sustain an aggregate ik of portability:  Like most communication software,
directional data rate of 2.4 Gbps using zero-copy buffering opnSoft 1IOP is programmed directly using low-level net-
timization to avoid data copying across endsystem layers. "YfArking and OS APIs, such as sockesslect , and POSIX
addition, TAO runs on conventional real-time interconnecfdthreads. Not only are these APIs tedious and error-prone,

such as VME backplanes and multi-processor shared merff§y are also not portable across OS platforeng, many op-
environments, as well as TCP/IP. erating systems lack Pthreads support. Section 3.3.1 illustrates

, , ) . how we used theNrapper Facadepattern [15] to improve
TAO internals: TAO is developed using lower-level m'd'TAO’S portability.

dleware called ACE [28], which implements core concur-

rency and distribution patterns [8] for communication soft-ack of configurability:  Like many ORBs and other mid-
ware. ACE provides reusable C++ wrapper facades and framlieware, SunSoft IIOP is configuredatically, which makes
work components that support the QoS requirements of highhard to extend without modifying its source code directly.



This violated a key design goal of TAO, namelynamicadap- tion process is not well-suited for application domains, such
tation to diverse application requirements and system enviras-telecom call processing, that requiseZ4 availability [34].
ments. Sections 3.3.7, 3.3.6, and 3.3.8 explain how we u
the Abstract Factonf15], Strategy{15], andComponent Con-
figurator[8] patterns to simplify the TAO’s configurability for
different use-cases.

?ﬁgfficiency: Statically-configured ORBs can be inefficient,
both in terms of space and time. Space inefficiency can oc-
cur if unnecessary components are always statically config-
ured into an ORB. This can increase the ORB’s memory foot-
Lack of software cohesion: Like many applications, Sun-print, forcing applications to pay a space penalty for features
Soft IIOP focuses on solving a specific problera,, imple- they do not require. Overly large memory footprints are par-
menting an ORB Core and an IIOP protocol engine. It ageularly problematic for embedded systems, such as cellular
complish this using a tightly-coupledd-hocimplementation phones or telecom switch line cards [35].

that hard-codes key ORB design decisions. Sections 3.3.Time inefficiency can stem from restricting an ORB to use
and 3.3.6 explain how we usédstract FactoryandStrategy statically configured algorithms or data structures for key pro-
to decrease the unnecessary coupling and increase cohasigsing tasks, thereby making it hard for application develop-
when evolving SunSoft IIOP to TAO. ers to customize an ORB to handle new use-cases. For in-
stance, real-time avionics systems [11] often can instantiate

. all their servants off-line. These systems can benefit from an
3 Applymg a Pattern Language 10 ORB that uses perfect hashing or active demultiplexing [36] to

Build Extensible ORB Middleware demultiplex incoming requests to servants. Thus, ORBs that
are configured statically to use a general-purpose, “one-size-

3.1 Why We Need Dynamically Configurable fits-all” demultiplexstrategy such as dynamic hashing, may
' Middleware perform poorly for mission-critical systems.

I . . In theory, the drawbacks with static configuration described
A key motivation for ORB middieware is to offload complex bove arenternalto ORBs and should not affect application

lower-level distributed system infrastructure tasks from app evelopers directly. In practice, however, application devel-

cation developers to ORB developers. ORB developers ar€ders are inevitably affected since the quality, portability, us-

sponsible for implementing reusable middleware componen SiIity and performance of the ORB middleware is reduced.
that handle connection management, interprocess commu Srefore, an effective way to improve ORB extensibility is

tion, concurrency, transport endpoint demultiplexing, SChedH)'deveIop ORB middleware that can be both staticalyl

ing, dispatching, (de)marshaling, and error handling. The&)?namically configured

components are typically compiled into a run-time ORB li- . ' . L .
. . 2 . Dynamic configuration enables the selective integration of
brary, linked with application objects that use the ORB com- : ; : .
. customized implementations for key ORB strategies, such as
ponents, and executed in one or more OS processes.

Although this separation of concerns can simplify a ”chnnection management, communication, concurrency, de-
. g P A . Pty app ultiplexing, scheduling, and dispatching. This design allows
tion development, it can also yield inflexible and inefficie

applications and middleware architectures. The primary reaI—QB developers to concentrate on foectionality of ORB

) . i X ith itting th I I
son is that many conventional ORBs are configustdically ;0:] Eggiggsﬁﬁw S,aﬂ?;n%?rg{g'stgncgo:n ecr)r:]seen\tlse Sl\ﬁ(rﬁgsgrr edy _tO
at compile-time and link-time by ORB developers, rather th P 9 P ) » &Y

dynamicallyat installation-time or run-time by application mic configuration enables application developers and ORB

. X . developers to change design decisions late in the system life-
developers. Statically configured ORBs have the fOHOW'nc?/cle,i.e., at installation-time or run-time.

drawbacks [28]: Figure 3 illustrates the following key dimensions of ORB
Inflexibility:  Statically-configured ORBs tightly coupleextensibility:

each component’anplementatiorwith the configurationof

internal ORB components.e., which components work to-
gether and how they work together. As a result, extendiff S
statically-configured ORBs requires modifications to existifggmponents that shield it from non-portable system mecha-

source code. In commercial non-open-source ORBS, this cORNS: .SUCh. as those for threading, Communication.’ and event
may not be accessible to application developers. demultiplexing. OS platforms such as POSIX, Win32, Vx-

Even if source code is available, extending staticallg\:/orks’ and MVS provide a wide variety of system mecha-

configured ORBs requires recompilation and relinking. Mor ISmS.
over, any currently executing ORBs and their associated @b- Extensibility via custom implementation strategies,
jects must be shutdown and restarted. This static reconfiguvaich can be tailored to specific application requirements. For

1. Extensibility to retarget the ORB on new platforms,
ich requires that the ORB be implemented using modular



e DLLs ( cLENT )

STRATEGY |

THREAD -SPECIFIC

COMPONENT ( SERVANT )

CONFIGURATOR D

LEADER/
FOLLOWERS

II

ABSTRACT
FACTORY

STORAGE
CONNECTOR ACCEPTOR
@ rosix, winsz, RTOSs, MVS REACTOR
Figure 3: Dimensions of ORB Extensibility | WRAPPER FACADES
OS KERNEL OS KERNEL
D D
instance, ORB components can be customized to meet perl_______J (

odic deadlines in real-time systems [11]. Likewise, ORB com- Figure 4: Applying a Pattern Language to TAO

ponents can be customized to account for particular system

characteristics, such as the availability of asynchronous I/O or

high-speed ATM networks. The intent and usage of the patterns in this language are

. . . ) . outlined below:
3. Extensibility via dynamic configuration of custom

strategieswhich takes customization to the next level by dy/rapper Facade [8]: This pattern encapsulates the func-
namically linking only those strategies that are necessary fdigs and data provided by existing non-OO APIs within
specific ORB “personality.” For example, different applicatioffore concise, robust, portable, maintainable, and cohesive
domains, such as medical systems or telecom call processig, class interfaces. TAO uses this pattern to avoid tedious,
may require custom combinations of concurrency, schedulifign-portable, and non-typesafe programming of low-level,
or dispatch strategies. Configuring these strategies at run-tiagsespecific system calls, such as the Socket API or POSIX
from dynamically linked libraries (DLLs) can (1) reduce théreads.

memory footprint of an ORB and (2) make it possible for aReactor [8]: This pattern structures event-driven applica-
plication developers to extend the ORB without requiring agons, particularly servers, that receive requests from multiple
cess or changes to the original source code. clients concurrently but process them iteratively. TAO uses
Below, we describe the pattern language applied to enhatnhitse pattern to notify O.RB-specific handlers synchronou'sly
the extensibility of TAO along each dimension outlined abovg. " I/.O events oceur in the OS. The Reagtor pattern drives
e main event loop in TAO’s ORB Core, which accepts con-

nections and receives/sends client requests/responses.

3.2 Overview of a Pattern Language that Im- Acceptor-Connector [8]: This pattern decouples connec-
proves ORB Extensibility tion establishment and service initialization from service pro-
) ) ) cessing in a networked system. TAO uses this pattern in the
This section uses TAO as a case study to illustrate a pati®iRg Core on servers and clients to passively and actively es-

language that can help developers of applications and ORElish GIOP connections that are independent of the underly-
build, maintain, and extend communication software by rgy transport mechanisms.

ducing the coupling between components. Figure 4 shows the

patterns in the pattern language that we applied to develog-§9€" FoIIowerz [|81: Tr?.ish pattlernl prﬁvid((ajs ank efficient
extensible ORB architecture for TAO. It is beyond the Scoﬁgncurrency model in which muftiple threads take turns to
of this paper to describe each pattern in detail or to disc&e @ Set of event sources to detect, demultiplex, dispatch

all the patterns used within TAO. Instead, we focus on hdwd process service requests that occur on the event sources.

key patterns can improve the extensibility and performanceToofO uses this pattern uses this pattern to facilitate the use of

real-time ORB middleware. The references in [9, 15] Comdﬁl‘ult'iple concurrency stra’gegies that can be configured flexibly
comprehensive descriptions of these patterns and [8] expl&ii Its ORB Core at run-time.

how the patterns can be woven together to form a pattern l@hread-Specific Storage [8]: This pattern allows multiple
guage. threads to use a “logically global” access point to retrieve an



object that is local to a thread, without incurring locking ovecation developers, are responsible for tedious, low-level net-
head for each access to the object. TAO uses this pattermvtmk programming tasks, such as demultiplexing events, send-
minimize lock contention and priority inversion for real-timéng and receiving GIOP messages across the network, and
applications. spawning threads to execute client requests concurrently. Fig-

Strategy [15]: This pattern provides an abstraction for séie 5 illustrates a common approach used by SunSoft IIOP,
lecting one of several candidate algorithms and packaging it

into an object. TAO uses this.pattern throughout its sof'tware SunSoft TIOP's ORB Core
architecture to extensibly configure custom ORB strategies for

. . . . . pthread_create() socket(), bind()) gettimeofday(),
concurrency, communication, scheduling, and demultiplexing. | pthread_mutex_*  recv0), send0 | select(), et.
Abstract Factory [15]:  This pattern provides a single com-  generar

Socket

ponent that builds related objects. TAO uses this pattern to POSIX &BJeNi BSD  Macros Other OS
. . . . ML Pthreads Sockets . System Calls
consolidate its dozens @trategyobjects into a manageable  sgrvices WinSock

number of abstract factories that can be reconfigarechasse
into clients and servers conveniently and consistently. TAO

components use these factories to access related strategies | ) ) )
without specifying their subclass name explicitly. which is programmed internally using system mechanisms,

i . such as socketselect , and POSIX threads.
Component Configurator [8]: This pattern allows an ap- ] ) ] )
plication to link and unlink its component implementations &roblem:  Developing an ORB is hard. Itis even harder if
run-time without having to modify, recompile or statically redevelopers must wrestle with low-level system mechanisms
link the application. It also supports the reconfiguration $ffitten in languages like C, which often yield the following
components into different processes without having to siipPlems:
down and re-start running processes. TAO uses this patterm ORB developers must have intimate knowledge of many
to dynamically interchangabstract factoryimplementations OS platforms Implementing an ORB using system-level C
in order to customize ORB personalities at run-time. APIs forces developers to deal with non-portable, tedious, and
- : .error-prone OS idiosyncrasies, such as using untyped socket
The patterns consiituting this pattern language are not | andles to identify transport endpoints. Moreover, these APls

ited to ORBs or communication middleware. They have begrne not portable across OS platforms. For example, Win32

appliedin many other communication application domains, I‘:'cks POSIX Pthreads and has subtly different semantics for
cluding telecom call processing and switching, avionics flig
s%ckets andelect

control systems, multimedia teleconferencing, and distribute . _
interactive simulations. e Increased maintenance effort One way to build an
ORB is to handle portability variations via explicit conditional
compilation directives in ORB source code. However, using
3.3 Howto Use a Pattern Language to R(':'Soweconditional compilation to address platform-specific variations

ORB Design Challenges at all points of uséncreases the complexity of the source code,

In the following discussion, we outline the forces underlyirﬁ‘i;hown in Section 3.5. Extending such ORBs is hard since
the key design challenges that arise when developing extef Iform-specmc detaIIS.are scattered throughout the imple-
ble real-time ORBs. We also describe which pattern(s) in dlIEntation source code files.
pattern language resolve these forces and explain how theselnconsistent programming paradigms System mecha-
patterns are used in TAO. In addition, we show how the ahisms are accessed through C-style function calls, which cause
sence of these patterns in an ORB leaves these forces uane“impedance mismatch” with the OO programming style
solved. To illustrate this latter point concretely, we compasapported by C++, the language we use to implement TAO.
TAO with SunSoft IIOP. Since TAO evolved from the SunSoft : . .

. : ) . .~ How can we avoid accessing low-level system mechanisms
IIOP release, it provides an ideal baseline to evaluate the im-

) . °
pact of patterns on the software qualities of ORB middlewars. <" implementing an ORB?

Solution — the Wrapper Facade pattern: An effective
way to avoid accessing system mechanisms directly is to use
the Wrapper Facadgattern [8], which is a variant of the Fa-
cade pattern [15]. The intent of the Facade pattern is to sim-
Context: One role of an ORB is to shield applicationplify the interface for a subsystem. The intent of the Wrapper
specific clients and servants from the details of low-level sysacade pattern is more specific: it provides typesafe, modu-
tems programming. Thus, ORB developers, rather than apfali; and portable OO interfaces that encapsulate lower-level,

Figure 5: SunSoft IIOP Operating System Interaction

3.3.1 Encapsulate Low-level System Mechanisms with
the Wrapper FacadePattern



stand-alone system mechanisms, such as sockeles;t , READ, andWRITE events to occur on multiple socket handles.
and POSIX threads. In general, the Wrapper Facade patt@ommon event demultiplexing mechanisms inclediect
should be applied when existing system-level APIs are ndNaitForMultipleObjects , 1/0 completion ports, and
portable and non-typesafe. threads.

Using the Wrapper Facade patternin TAO: TAO accesses Figure 7 illustrates a typical event demultiplexing se-
all system mechanisms via the wrapper facades provideddgnce for SunSoft IIOP. Inlj, the server enters its event

ACE [28]. Figure 6 illustrates how the ACE C++ wrapper
facades improve TAO'’s robustness and portability by encap-

. - - ‘ APPLICATION SERVANT
sulating and enhancing native OS concurrency, communica- RN e P——
tion, memory management, event demultiplexing, and dy- :
namic linking mechanisms with typesafe OO interfaces. The

OBJECT
5: DISPATCH
2|: GET REQUEST ADAPTER |

TAO's ORB Core

1 | [
open(), | dlopen()

spawn()
1

close(),

handle_events() dllsymO

ACE acquire() recv(), send() \
WRAPPER Y v A v 3:BLOCK FOR CONNECTION 6: INCOMING
FACADES THREAD SOCKETS/| | SELECT/ | [DYNAMIC MESSAGE

WRAPPERS TLI 10 COMP LINKING server
\ endpoints
GENERAL
PROCESS/ VIRTUAL
MMUNICATT
P(‘)gl)g 2& THREAD co SUBISI\N(S(”:I‘EMON MEMORY
IN SUBSYSTEM SUBSYSTEM 4: select()
SERVICES

Figure 6: Using the Wrapper Facade Pattern to Encapsulate
Native OS Mechanisms

Figure 7: The SunSoft IIOP Event Loop

0O encapsulation provided by ACE alleviates the need fepp by @) calling get -request on the Object Adapter.

TAO to access weakly-typed system APIs directly. Thus, C#heget _request method then3) calls the static method

compilers can detect type system violations at compile-tif@ck _for _connection  on the server _endpoint

rather than waiting for the problems to occur at run-time.  This method manages all aspects of server-side connection
The ACE wrapper facades use C++ features to elimin&f@nagement, ranging from connection establishment to GIOP

performance penalties that would otherwise be incurred fr@ptocol handling. The ORB remains blockel ¢nselect

its additional type safety and layer of abstraction. For instantétil the occurrence of 1/0O event, such as a connection

inlining is used to avoid the overhead of calling small metgvent or a request event. When a request event occurs,

ods. Likewise, static methods are used to avoid the overhbiagk _for _connection  demultiplexes that request to a

of passing a C++this  pointer to each invocation. specificserver _endpoint and §) dispatches the event to

that endpoint. The GIOP Engine in the ORB Core th@mré¢-

Although the ACE wrapper facades resolve several CommQq, o5 data from the socket and passes it to the Object Adapter,

low-level develppmentproblgms, they are just the.:f'lrst step {orich demultiplexes it, demarshals it, arg) dispatches the

wards developing an extensible ORB. The remaining pattefis, oo riate method upcall to the user-supplied servant.

described in this section build on the encapsulation provide

by the ACE wrapper facades to address more challenging ORi@blem:  One way to develop an ORB Core is to hard-
design issues. code it to use one event demultiplexing mechanism, such as

select . Relying on just one mechanism is undesirable, how-
ever, since no single scheme is efficient on all platforms or for
all application requirements. For instance, asynchronous 1/O
completion ports are highly efficient on Windows NT [37],
Context: An ORB Core is responsible for demultiplexingvhereas synchronous threads are an efficient demultiplexing
I/0 events from multiple clients and dispatching their assmechanism on Solaris [33].

ciated event handlers. For instance, a server-side ORB CorAnother way to develop an ORB Core is to tightly couple its
listens for new client connections and reads/writes GIOP eent demultiplexing code with the code that performs GIOP
guests/responses from/to connected clients. To ensurepretocol processing. For instance, the event demultiplexing
sponsiveness to multiple clients, an ORB Core uses @§ic of SunSoft IIOP is not a self-contained component. In-
event demultiplexing mechanisms to wait foONNECTION, stead, it is closely intertwined with subsequent processing of

3.3.2 Demultiplexing ORB Core Events Using the Reac-
tor Pattern



tons. In this case, however, the demultiplexing codg ca}nnot 'be 1 RUN EVENT LOOP
reused as a blackbox component by other communication mid-
dleware applications, such as HTTP servers [37] or video-on- [

client request events by the Object Adapter and IDL skele- { T AT (:)SERVANT }
5:UPCALL

demand servers. Moreover, if new ORB strategies for thread-
ing or Object Adapter request scheduling algorithms are in-
troduced, substantial portions of the ORB Core must be re-
written.

How then can an ORB implementation decouple itself from

OBJECT ACTIVE OBJECT MAP
ADAPTER 4: DISI;ATCH

a specific event demultiplexing mechanism and decouple its Connection
demultiplexing code from its handling code? Handler

. . Reactor Connection
Solution — the Reactor pattern: An effective way to re- Handler
duce coupling and increase the extensibility of an ORB Core 2: select() x Connection
is to apply theReactorpattern [8]. This pattern supports 3: handle_input() Handler

synchronous demultiplexing and dispatching of multglent . _ :
handlers which are triggered by events that can arrive concurFigure 8: Using the Reactor Pattern in TAO’s Event Loop
rently from multiple sources. The Reactor pattern simplifies

event-driven applications by integrating the demultiplexing Oflent demultiplexing system call can be used on Win-
events and the dispatching of their corresponding event han- s NT. whereasselect can be used on UNIX plat-

dlers. In general, the Reactor pattern should be applied w L
9 P P ms. Moreover, the Reactor pattern simplifies the con-

applications or components, such as an ORB Core, must . ; .
bp b jguration of new event handlers. For instance, adding a

dle events from multiple clients concurrently, without becorrr1]- w Secure _Connection _Handler that performs en-
ing tightly coupled to a single low-level mechanism, such QEW - - N nat p
select cryption/decryption of all network traffic will not affect the

eactor 's implementation. Finally, unlike the event demul-

Note that applying the Wrapper Facade pattern is not Suﬁ'_lexing code in SunSoft IIOP, which is tightly coupled to

. . . U
cient to resolve the event demultiplexing p.roblems Ou“m%gle use-case, the ACE implementation of the Reactor pattern
above. A wrapper facade faelect may improve ORB

Core portability somewhat. However, this pattern alone d 8; used by TAO has been applied in many other OO event-

not resolve the need to completely decouple the IOW'Ie\{FﬂV:;V?gr?ilcl;(;a}::?rgsst:izﬁl?g][flrg]m HTTP servers [37] to real-

event demultiplexing logic from the higher-level client reques
processing logic in an ORB Core. Recognizing the limitations ] ] ) .
of the Wrapper Facade pattern, and then applying the Readtgr3 Managing Connections in an ORB Using the
pattern to overcome the limitations, is one of the benefits of ~ Acceptor-Connector Pattern

applying a pattern language, rather than just isolated patteifigntext: Managing connections is another key responsi-

Using the Reactor pattern in TAO: TAO uses the Re- blllty of an ORB Core. For instance, an ORB Core that
actor pattern to drive the main event loop in its ORBplements the IIOP protocol must establish TCP connec-
Core, as shown in Figure 8. A TAO servet)(initi- tions and initialize the protocol handlers for each IIOP
ates an event loop in the ORB CoreReactor , where Server _endpoint . By localizing connection management
it (2) remains blocked orselect until an 1/O event oc- logic in the ORB Core, application-specific servants can focus
curs. When a GIOP request event occurs, Reactor ~ Solely on processing client requests, rather than dealing with
demultiplexes the request to the appropriate event handRw-level network programming tasks.

which is the GIOPConnection _Handler that is associ- An ORB Core is notimited to running over lIOP and TCP

ated with each connected socket. Reactor (3) then calls transports, however. For instance, while TCP can transfer
Connection _Handler::handle _input , which @) dis- GIOP requests reliably, its flow control and congestion control
patches the request to TAO's Object Adapter. The Obj@dgorithms can preclude its use as a real-time protocol [10].
Adapter demultiplexes the request to the appropriate updakewise, it may be more efficient to use a shared memory
method on the servant an) dispatches the upcall. transport mechanism when clients and servants are collocated
The Reactor pattern enhances the extensibility of TAZ) the same endsystem. Thus, an ORB Core should be flexible
by decoupling the event handling portions of its ORBNOugh to support multiple transport mechanisms [16].
Core from the underlying OS event demultiplexing mecR+oblem: The CORBA architecture explicitly decouples (1)
anisms. For example, thé/aitForMultipleObjects the connection management tasks performed by an ORB Core



from (2) the request processing performed by application-e Inefficiency: Many internal ORB strategies can be op-
specific servants. However, a common way to implemeimized by allowing both ORB developers and application de-
an ORB's internal connection management activities is twelopers to select appropriate implementations late in the soft-
use low-level network APIs, such as Sockets. Likewise, thare development cycles.g, after systematic performance
ORB'’s connection establishment protocol is often tightly coprofiling. For example, to reduce lock contention and over-
pled with its communication protocol. head, a multi-threaded, real-time ORB client may need to store

For example, Figure 9 illustrates the connection managg@nsport endpoints in thread-specific storage [8]. Similarly,
ment structure of SunSoft IIOP. The client-side of SunSdfte concurrency strategy for a CORBA server might require
that each connection run in its own thread to eliminate per-
request locking overhead. If connection management mech-
anisms are hard-coded and tightly bound with other internal
ORB strategies, however, it is hard to accommodate efficient
new strategies.

1: lookup()
server
endpoint
5: read()/write() How then can an ORB Core’s connection management com-
. server onents support multiple transports and allow connection-
client endpoint . . . .
endpoint 3: select() related behaviors to be (re)configured flexibly late in the de-

velopment cycle?

Solution — the Acceptor-Connector pattern: An effective
way to increase the flexibility of ORB Core connection man-
agement and initialization is to apply theceptor-Connector
pattern [8]. This pattern decouples connection initialization
Figure 9: Connection Management in SunSoft lOP ~ from the processing performed after a connection endpoint is
initialized. TheAcceptor component in this pattern is re-
sponsible fopassivenitialization, i.e., the server-side of the
ORB Core. Conversely, thEonnector component in the
ggttern is responsible factiveinitialization, i.e., the client-
endpoint wheneverlj client _endpoint:lookup is Side of the ORB Core. In gener.al, the Accep_tor—Connector pat-
tern should be applied when client/server middleware must al-

called. If no unusedlient = .endpoint ~ to the server is low flexible configuration of network programming APIs and
in the cache, a new connectio?) (s initiated; otherwise an i€ conig .  programming
musst maintain proper separation of initialization roles.

existing connection is reused. Likewise, the server-side use
a linked list ofserver _endpoint  objects to generate theUsing the Acceptor-Connector patternin TAO:  TAO uses
read/write bitmasks required by th8)(select event de- the Acceptor-Connector pattern in conjunction with the Reac-
multiplexing mechanism. This list maintains passive transp#t pattern to handle connection establishment for GIOP/IIOP
endpoints that4) accept connections anf)(receive requests communication.  Within TAO's client-side ORB Core, a
from clients connected to the server. Connector initiates connections to serversin response to an

The problem with SunSoft IIOP’s design is that it tightl pergtion invocation or an explicit binding to a remote object.
couples (1) the ORB’s connection management implemelithin TAO's server-side ORB Core, akcceptor — creates a
tation with the socket network programming APl and (5§/OP Connection Handler  to service each new client
the TCP/IP connection establishment protocol with the Gl¢g@nnection. Acceptor s and Connection —_Handler s

communication protocol, thereby yielding the following drawRoth derive from arEvent Handler , which enable them
backs: to be dispatched automatically byReeactor .

TAO’s Acceptors andConnectors can be configured
e Inflexibility:  If an ORB's connection management datgith any transport mechanisms, such as Sockets or TLI, pro-

structures and algorithms are too closely intertwined, substgjted by the ACE wrapper facades. In addition, TAO's
tial effort is required to modlfy the ORB Core. For inStanC%Cceptor and Connector can be imbued with custom
tightly coupling the ORB to use the Socket APl makes it haggrategies to select an appropriate concurrency mechanism, as
to change the underlying transport mechanigng, to use described in Section 3.3.4.
shared memory rather than Sockets. Thus, it can be hard tpigure 10 illustrates the use dicceptor-Connectostrate-
port such a tightly coupled ORB Core to new communicatigfies in TAO's ORB Core. When a clientl) invokes
mechanisms, such as ATM, Fibrechannel, or shared mem@rytemote operation, it makes @nnect call through a
or different network programming APIs, such as TLI or Win38trategy _Connector . This Strategy _Connector
Named Pipes.

client
endpoint

listener

client -
endpoint

endpoint

4: accept()

IIOP implements a hard-coded connection caclstrgtegy
that uses a linked-list oflient _endpoint objects. As
shown in Figure 9, this list is traversed to find an unus

10



QoS requirements, it is important to develop ORBs that im-

1: operation REB R 6: . L.
i : pIsEATCH plement these various concurrency APlIs efficiently [24]. Con-

5: rREQUEsT/ | Conne[ - . currency allows long-running operations to execute simulta-
Cglxglteu:n RESPONSE Ham ") Cg’;ﬁﬂgn neously without impeding the progress of other operations.
Likewise, preemptive multi-threading is crucial to minimize

GIOP O.N T 4: CREATE & the dispatch latency of real-time systems [11].
Handler AT Concurrency is often implemented via the multi-threading
Cached C"S“;‘;::;'y‘“y capabilities available on OS platforms. For instance, Sun-
;J:;::eect Strategy 'Soft'IIOP supports.the two concurrency 'archltec'Fures shown
d Acceptor] in Figure 11: a single-threaded Reactive architecture and
2: connect()  3: accept() a thread-per-connection architecture. SunSoft IIOP’s reac-

Strategy
Connector Reactor _>2
1 RVER
select() —> select() —»
Figure 10: Using the Acceptor-Connector Pattern in TAO's |2:NOTIFY |2:NOT[FY

Connection Management

(2) consults itsconnection strategyo obtain a connection. endpoint endpoint

7

rve

poi

In this example, the client uses a “caching connection straf _'2
3:READ

r server
nt endpoint
—» i

egy” that recycles connections to the server and only creats
new connections when existing connections are all busy. Thi
caching strategy minimizes connection setup time, thereby re

ducing end-to-end request latency. : 1: ARRIVAL

In the server-side ORB Core, thReactor notifies THREAD-PER
TAO’s Strategy _Acceptor to (3) accept newly con- CONNECTION
nected clients and createonnection _Handlers . The Figure 11: SunSoft IIOP Concurrency Architectures

Strategy _Acceptor delegates the choice of concurrency
mechanism to one of TAO'soncurrencystrategiese.g, reac- tive concurrency architecture usselect  within a sin-
tive, thread-per-connection, or thread-per-priority, describgl# thread to dispatch each arriving request to an individual
in Section 3.3.4. After &onnection _Handler is acti- server _endpoint object, which subsequently reads the re-
vated @) within the ORB Core, it performs the requisite GIORuest from the appropriate OS kernel queue.1n & request
protocol processing5j on a connection and ultimately disarrives and is queued by the OS. Theelect fires, @) no-
patches §) the request to the appropriate servant via TAOBying the associatederver _endpoint of a waiting re-
Object Adapter. quest. Theserver _endpoint finally (3) reads the request

from the queue and processes it.

In contrast, SunSoft IIOP’s thread-per-connection architec-

the ture executes eackerver _endpoint in its own thread

of control, servicing all requests arriving on that connection

Context: After the Object Adapter has dispatched a clieMfithin its thread. After a connegtio’n is establisheelect
request to the appropriate servant, the servant executes th&/aliS for events on the connection’s descriptor. WhBmg-
quest. Execution may occur in the same thread of controlESts are received by the OS, the thread perforseigrt
theConnection _Handler that received it. Conversely, ex{2) reads one from the queue and) (hands it off to a
ecution may occur in a different thread, concurrent with oth®f"Ver -endpoint for processing.
request executions. Problem: In many ORBs, the concurrency architecture is
The Real-time CORBA specification [38] defines a threogrammed directly using the OS platform’s multi-threading
pool API. In addition, the CORBA specification defines an ifsP!, such as the POSIX threads API [39]. However, there are
terface on the POA for an application to specify that all réeveral drawbacks to this approach:
guests be handled by a single thread or be handled using an Non-portable Threading APIs are highly platform-
ORB’s internal multi-threading policy. To meet applicatiospecific. Even IEEE standards, such as POSIX threads [39],

3.3.4 Simplifying ORB Concurrency Using
Leader/Followers Pattern

11



are not available on many widely-used OS platforms, includ-While Wrapper Facadegrovide the basis for portability,
ing Win32, VxWorks, and pSoS. Not only is there no direthey are simply a thin syntactic veneer over the low-level na-
syntactic mapping between APIs, but there is no clear maéipe OS APIs. Moreover, a facade’s semantic behavior may
ping of semantics either. For instance, POSIX threads sgfil vary across platforms. Therefore, the Leader/Followers
port deferred thread cancellation, whereas Win32 threadspadtern defines a higher-level concurrency abstraction that
not. Moreover, although Win32 has a thread termination ABhields TAO from the complexity of low-level thread fa-
the Win32 documentation strongly recommemas using it cades. By raising the level of abstraction for ORB developers,
since it does not release all thread resources after a threadlex1 eader/Followers pattern makes it easier to define more
its. Moreover, even POSIX Pthread implementations are nportable, flexible, and conveniently programmed ORB concur-
portable since many UNIX vendors support different drafts ofncy strategies. For example, if the number of threads in the
the Pthreads specification. pool is 1, the Leader/Followers pattern behaves just like the

e Hard to program correctly Portability aside, program- Reactor pattern.
ming a multi-threaded ORB is hard since application and ORH‘P

developers must ensure that access to shared data is seri zstlangg the Leader/Followers patter in TAO: TAO uses

properly in the ORB and its servants. In addition, the tec € eaqer/FoIIowers pattern to demulpplex GIOP events to
nnection _Handler s handlers within a pool of threads.

nigues required to robustly terminate servants executing ¢ r% : . o .
) . : en using this pattern, an application pre-spawrfxed
currently in multiple threads are complicated, non-portable

and non-intuitive number of threads. When these threads invoke TAO'’s stan-
- ) dardORB:run method, one thread will become the leader
* Non-extensible The choice of an ORB concurrency,q wait for a GIOP event. After the leader leader thread de-

strategy depends largely on external factors like applicatigiis he event, it promotes an arbitrary thread to become the
requirements and network/endsystem characteristics. ForjBe jeader it and then demultiplexes the event to its associated
stance, reactive single-threading [8] is an appropriate strategy naction _Handler , which processes the event concur-

for short duration, compute-bound requests on a uni-procesgifiy with respect to other threads in the ORB. This sequence
If these external factors change, however, an ORB'’s deslﬁ%teps is shown in Figure 12.

should be extensible enough to handle alternative concurrency
strategies, such as thread pool or thread-per-priority [24].

(4: dispatch upcall POA j

When ORBs are developed using low-level threading APIs,

they are hard to extend with new concurrency strategits ORB CORE

out affecting other ORB components. For example, adding a

thread-per-request architecture to SunSoft IIOP would require DISPATCHER FOLLOWERS
extensive changes in order to (1) store the requestfimead- *2 2: read() *2_,2_,2_,i
specific storag€T SS) variable during protocol processing, (2) 3: release()

pass the key to the TSS variable through the scheduling and

demarshaling steps in the Object Adapter, and (3) access the Reactor

request stored in TSS before dispatching the operation on the LEADER |

servant. Thus, there is no easy way to modify SunSoft IIOP’s 1: select()

concurrency architecture without drastically changing its in-

ternal structure.

How then can an ORB support a simple, extensible, and
portable concurrency mechanism?
Solution — the Leader/Followers pattern: An effective Figure 12: Using the Leader/Followers Pattern to Structure
way to increase the portability, correctness, and extensibill§C’s Concurrency Strategies
of ORB concurrency strategies is to apply treader/Follwers
pattern [8]. This pattern provides an efficient concurrencyAs shown in Figure 12, a pool of threads is allocated and
model in which multiple threads take turns to share a setafeader thread is chosen select (1) on connections for
event sources to detect, demultiplex, dispatch and processakservants in the server process. When a request arrives, this
vice requests that occur on the event sources. In genetakad reads?) it into an internal buffer. If this is a valid
the Leader/Followers pattern should be used when an apmguest for a servant, a follower thread in the pool is released to
cation needs to minimize context switching, synchronizatidrecome the new leade3)(and the leader thread dispatches the
and data copying, while still allowing multiple threads to runpcall @). After the upcall is dispatched, the original leader
concurrently. thread becomes a follower and returns to the thread pool. New

12



requests are queued in socket endpoints until a thread in th

pool is available to execute the requests. THREAD A THREAD B
1: ACE OS::thr_getspecific(key) .
3.3.5 Reducing Lock Contention and Priority Inversions — THREAD-SPECIFIC
with the Thread-Specific Storage Pattern OBJECT TABLES

INDEXED BY KEY

CIT T T T T T 1 CIT T T T T 1T 1
2: get state(key)

Context: The Leader/Followers pattern allows applications
and components in the ORB to run concurrently. The primary
drawback to concurrency, however, is the neededdalize
access to shared resources. In an ORB, common shared
sources include the dynamic memory heap, an ORB pseud
object reference created by tORBA::ORRBinit initial-
ization factory, théActive ObjectMap in a POA [22], and the
Acceptor , Connector and Reactor components de- Figure 13: Using the Thread-Specific Storage Pattern in TAO
scribed earlier. A common way to achieve serialization is to

use mutual-exclusion locks on each resource shared by m
ple threads.

Reactor Reactor

Acceptor Acceptor

ORB THREAD-

eliicainy  SPECIFIC STATE Connector

[tj-
%.é.G Support Interchangeable ORB Behaviors with the

. . ) Strategy Pattern
Problem: In theory, multi-threading an ORB can improve

performance by executing multiple instruction streams sim@ontext: Extensible ORBs must support multiple request
taneously. In addition, multi-threading can simplify intedemultiplexing and scheduling strategies in their Object
nal ORB design by allowing each thread to execute syhdapters. Likewise, they must support multiple connection es-
chronously, rather than reactively or asynchronously. In prégblishment, request transfer, and concurrent request process-
tice, however, multi-threaded ORBs often perform no bett#tg strategies in their ORB Cores.

or even worse, than single-threaded ORBs due to (1) the g8gfplem: One way to develop an ORB is to provide only
of acquiring/releasing locks and (2) priority inversions thafatic, non-extensible strategies, which are typically config-
arise when high-and low-priority threads contend for the sagy@q in the following ways:

locks [40]. In addition, multi-threaded ORBSs are hard to pro- ) )
e Preprocessor macros Some strategies are determined

gram due to complex concurrency control protocols used to ;
avoid race conditions and deadlocks by the value of preprocessor macros. For example, since

, . _ threading is not available on all OS platforms, conditional
Solution — the Thread-Specific Storage pattern: An ef- oo hiiation is often used to select a feasible concurrency
fective way to minimize the amount of locking required tg,,qel.

serialize access to resources shared within an ORB is to use . ] )

the Thread-Specific Storageattern [8]. This pattern allows ® Command-line options Other strategies are controlled
multiple threads in an ORB to use one logically global acce@é the presence or at_)sence. of flags on the command—_llne. For
point to retrieve thread-specific datdthoutincurring locking instance, command-line options can be used to selectively en-
overhead for each access. able ORB concurrency strategies for platforms that support

In general, the Thread-Specific Storage pattern shouldBelti-threading [24].
used when the data shared by objects within each thread mug{jje these two configuration approaches are widely used,
be accessed through a globally visible access pointthatis “Iggsy are inflexible. For instance, preprocessor macros only
ically” shared with other threads, but “physically” unique foéupport compile-time strategy selection, whereas command-
each thread. line options convey a limited amount of information to an
Using the Thread-Specific Storage Pattern in TAO: TAO ORB. Moreover, these hard-coded configuration strategies are
uses the Thread-Specific Storage pattern to minimize lock cdivorced completely from any code they might affect. Thus,
tention and priority inversion for real-time applications. IN©RB components that want to use these options must (1) know
ternally, each thread in TAO uses thread-specific storageofdheir existence, (2) understand their range of values, and (3)
store its ORB Core componentsg, Reactor , Acceptor , provide an appropriate implementation for each value. Such
andConnector . When a thread accesses any of these corastrictions make it hard to develop highly extensible ORBs
ponents, they are retrieved by usinkey as an index into that are composed from transparently configurable strategies.
the thread’s internal thread-specific state, as shown in FigHow then does an ORB (1) permit replacement of subsets of
ure 13. Thus, no additional locking is required to accessmponent strategies in a manner orthogonal and transparent
thread-specific ORB state. to other ORB components and (2) encapsulate the state and
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behavior of each strategy so that changes to one compor¥dif/ Consolidate ORB Strategies Using the Abstract
do not permeate throughout an ORB haphazardly? Factory Pattern

Context: There are many potential strategy variants sup-
Solution — the Strategy pattern: An effective way to sup- Ported by TAO. Table 1 shows a simple example of the strate-
apply theStrategypattern [15]. This pattern factors out sim- _ _
ilarities among algorithmic alternatives and explicitly assp-— Strategy Configuration
. S . Application Concurrency| Dispatching | Demultiplexing | Protocol
ciates the name of a strategy with its algorithm and stg

. ﬁvionics Thread-per | Priority Perfect VME
Moreover, the Strategy pattern removes I§X|cal dependencties priority -based hashing backplane
on strategy implementations since applications access speCigkdical Thread-per | FIFO Active TCP/IP
ized behaviors only through common base class interfaces. Inaging connection demultiplexing

general, the Strategy pattern should be used when an applica- o )
tion's behavior can be configured via multiple interchangeai@ble 1: Example Applications and their ORB Strategy Con-
strategies. figurations

Using the Strategy Pattern in TAO: TAO uses a variety IS an avionics application with deterministic real-time require-
of strategies to factor out behaviors that are often hard-code@nts [11]. Configuration 2 is an electronic medical imaging
in conventional ORBs. Several of these strategies are il@@plication [41] with high throughput requirements. In gen-
trated in Figure 14. For instance, TAO supports multiple rgtal, the forces that must be resolved to compose all ORB
strategies correctly are the need to (1) ensure the configura-
tion of semantically compatible strategies and (2) simplify the
management of a large number of individual strategies.

Problem: An undesirable side-effect of using the Strategy
pattern extensively in complex ORB software—as well as other
types of software—is that it becomes hard to manage extensi-
bility for the following reasons:

e Complicated configuration and evolutian ORB source

code can become littered with hard-coded references to strat-

hash(object key) OBJECT gy types, which complicates configuration and evolution. For
ORBCORE ADAPTER  oyample, within a particular application domain, such as real-
time avionics or medical imaging, many independent strate-
gies must act harmoniously. Identifying these strategies indi-
Thread- Cached Reactive || Threaded vidually by name, however, requires tedious replacement of
(S:gflfl‘g:t Connect C"S“c“mﬂcy C°S“°“"°“°Y selected strategies in one domain with a potentially different
Strategy Strategy (rategy frateey set of strategies in another domain.

(A) PERFECT HASHING (B) ACTIVE DEMUXING STRATEGY

DEMUXING
STRATEGY

OPERATION1
OPERATION2
OPERATIONK|

hash(operation)
DL IDL P DL
SKEL 1 SKEL 2 SKEL N

| SERVANT 1 | | SERVANT 2 | eoe | SERVANT N |

SERVANT1::0PERATION1

SERVANT1::OPERATION2
ERVANTN::OPERATION1

ISERVANTN::OPERATIONK

ISERVANT1::0PERATIONK

index(object key)

e St . Sem_antic incompatibilitie; It i; not al\_/vays possible _

Connector Acce[ffym for certain ORB strategy configurations to interact compati-
bly. For instance, the FIFO strategy for scheduling requests

shown in Table 1 may not work with the thread-per-priority
concurrency architecture. The problem stems from semantic
Figure 14: ORB Core and POA Strategies in TAO incompatibilities between scheduling requests in their order of
arrival (.e., FIFO queueing) vs. dispatching requests based on

. ) ) ) _ their relative prioritiesi(e., preemptive priority-based thread

quest demultiplexing strategies g, perfect hashing vs. activeyispatching). Moreover, some strategies are only useful when
demultiplexing [36]) and dispatching strategies(FIFO VS. certain preconditions are met. For instance, the perfect hash-

rate-based) in it§ Object Adapter,_ as well as connect?on MY demultiplexing strategy is generally feasible only for sys-
agement strategies.g, process-wide cached connections Vgms that statically configure all servants off-line [22].
thread-specific cached connections) and handler concurrency _ _ .
strategies .9, Reactive vs. variations of Leader/Followers) How can a highly-configurable ORB reduce the complexi-
in its ORB Core. ties required to manage its myriad strategies, as well as enforce
semantic consistency when combining discrete strategies?
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Solution — the Abstract Factory pattern: An effective cation requirements and system characteristics, these patterns
way to consolidate multiple ORB strategies into semanticatign still cause the following problems for extensible ORBs:

compatible configurations is to apply thestract Factonpat- i resource utilization  Widespread use of the Strat-

Fern [15]. This pattgrn provides a s'mgle access point t pattern can substantially enlarge the number of strategies
integrates all strategies used to configure an ORB. Concrg figured into an ORB, which can increase the system re-
subclasses then aggregate compatible appIication—specifigoqjrces required to run a’n ORB

domain-specific strategies, which can be replaaedassén
semantically meaningful ways. In general, the Abstract Fac Unavoidable system downtime If strategies are config-
tory pattern should be used when an application must consbled statically at compile-time or static link-time using ab-
date the configuration of many strategies, each having multipleact factories, it is hard to enhance existing strategies or add
alternatives that must vary together. new strategies without (1) changing the existing source code

Using the Abstract Factory patternin TAO:  All of TAO's for the consumer of thetrategyor the abstract factory (2)

ORB strategies are consolidated into two abstract factories 1% ompiling aqd rel|r.1k|n_g an ORB, and (3) restarting running
esBS and their application servants.

are implemented as Singletons [15]. One factory encapsula
client-specific strategies, the other factory encapsulates servenlthough it does not use the Strategy pattern explicitly, Sun-
specific strategies, as shown in Figure 15. These abstract &sft 110P does permit applications to vary certain ORB strate-
gies at run-time. However, these different strategies must
Thread- | | Coneurrency | | Thread- be configured statically into SunSqft lIOP at compile-time.
per- Strategy per- Moreover, as the number of alternatives increases, so does the
Connection Priority . . .
amount of code required to implement them. For instance,

Figure 16 illustrates SunSoft IIOP’s approach to varying the
Medical ORB 1 ..
Imagi Server Avionics|cOncurrencystrategy
e FIFO VTS Perfect | | Concrete
(;?ncrete Dispatchi Factory N Factory
actory P 5 \ / ) i
OBJECT ADAPTER
Dispatching Demuxing if (do_thread)
Strategy Strategy DEMUXING // thread...
CODE 7 else .
Active )< Rate-based // single-threaded
Demuxing Dispatching

Figure 15: Factories used in TAO SRR ENEY

CODE

if (do_thread)
// take lock...

tories encapsulate request demultiplexing, scheduling, and dis-
patch strategies in the server, as well as concurrency strategie
in both client and server. By using the Abstract Factory pat-
tern, TAO can configure different ORB personalities conve-

niently and consistently.

CONNECTION
MANAGEMENT
CODE

if (do_thread)
// release
lock...

Figure 16: SunSoft IIOP Hard-coded Strategy Usage
3.3.8 Dynamically Configure ORBs with the Component
Configurator Pattern Each area of code that might be affected by the choice

_ . of concurrency strategy is trusted to act independently of
Context: The cost of many computing resources, such gger areas. This proliferation of decision points adversely

memory and CPUs, continues to drop. However, ORBS Mygtreases the complexity of the code, complicating future

still avoid excessive consumption of finite system resourc@snancement and maintenance. Moreover. the selection of
This parsimony is particularly essential for embedded afi} gata type specifying the strategy complicates integration
real-time systems that require small memory footprints agd hew concurrency architectures because the tyoel()

predictable CPU utilization [20]. Many applications can alsgoy|d have to change, as well as the programmatic structure,
benefit from the ability to extend ORB/namically i.e., by (do _thread) then ... else ... that decodes
allowing their strategies to be configured at run-time. the strategy specifier into actions.

Problem: Although the Strategy and Abstract Factory pat- In general, static configuration is only feasible for a small,
terns simplify the customization of ORBs for specific applfixed number of strategies. However, configuring complex
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ORB middleware (1) statically complicates evolution, (2) i Medical
creases system resource utiligatioq, gnd (3) leads to unav| TAO | Priority-based Imaging | ;¢
able system downtime to modify existing components. PROCESS | Dispatching Concrete

How then does an ORB implementation reduce the “over —— Factory
large, overly-static” side-effects stemming from pervasive U | Thread-per Hashing :
of the Strategy and Abstract Factory patterns? Rate Active . FIFO

Concurrency Demuxing Dispatching

Solution — the Component Configurator pattern: An .
effective way to enhance the dynamism of an ORB Service IR oYionies Thread-per
to apply the Component Configuratopattern [8]. This Repository Factory CConnectlon
pattern uses explicit dynamic linking [28] mechanisms S
obtain, utilize, and/or remove the run-time address bind- sve.conf [qvmamic ORB Servics Obreet ®
. . . . ynamic ervice_Objec
ings of custom stratggy gnd abstract factpry object's into FILE avionics orbimake._orb() "-ORBport 2001§
an ORB at installation-time and/or run-time.  Widely
available explicit dynamic linking mechanisms include the o ] .
dlopen/disym/diclose functions in SVR4 UNIX [42] Figure 17: Using the Component Configurator Pattern in TAO

and thelLoadLibrary/GetProcAddress functions in

the WIN32 subsystem of Windows NT [43]. The ACE wrap- |, the configuration shown in Figure 17, the Component
per facades used by TAO portably encapsulate these OS AR|Syfigurator has consulted thmp.conf  script and in-

~ By using the Component Configurator pattern, Behav- giajied the avionics concrete factory in the process. Appli-
iors of ORB strategies are decoupled fravhenthe strategy caions using this ORB personality will be configured with a
implementations are configured into an ORB. For instanegyticylar set of ORB concurrency, demultiplexing, and dis-
ORB strategies can be linked into an ORB from dy”_am'cagitching strategies. The medical imaging concrete factory re-
linked libraries (DLL)s at compile-time, installation-time, Okjjes in a DLL outside of the existing ORB process. To config-

even during run-time. Moreover, the Component Configurgz 5 gifferent ORB personality, this factory could be installed
tor pattern can reduce the memory footprint of an ORB By namically during TAO's ORB server initialization phase.
allowing application developers and/or system administrators

to dynamically link only those strategies that are necessary for .
a specific ORB personality. §.4 Summary of Design Challenges and Pat-
In general, the Component Configurator pattern should be  terns That Resolve Them

us_ed when (1) an applicati_on wants to configur-e its ¢ able 2 summarizes the mapping between ORB design chal-
stituent components dynamically and (2) conventional teg hges and the patterns in the pattern language that we ap-

niques, such as Comm‘?‘f‘d"'”e optl'ons,'gre lnsuff!c!ent du%ﬁ%d to resolve these challenges in TAO. This table focuses
the number of possibilities or the inability to anticipate the

range of values. | Forces Resolving Pattern |
Using the Component Configurator pattern in TAO: Abstracting low-level system calls Wrapper Facade
TAO uses the Component Configurator pattern in conjunctignORB event demultiplexing Reactor

with the Strategy and Abstract Factory patterns to dynamicallyORB connection management | Acceptor-Connector
install the strategies it requires without (1) recompiling or stat- Efficient concurrency models | Leader/Followers
ically relinking existing code or (2) terminating and restarting ©u99able strategies Strategy
an existing ORB and its application servants. This design el-grOUp §'m'|ar !n't'al'zat.'ons . Abstract Factory ,

. . e ynamic run-time configuration | Component Configurato
lows the behavior of TAO to be tailored for specific platforms
and application requirements without requiring access to, ofaple 2: Summary of Forces and Their Resolving Patterns
modification of, ORB source code.

In addition, the Component Configurator pattern allows ap-

plications to customize the personality of TAO at run-time. Fon the forces resolved by individual patterns. However, TAO
instance, during TAO’s ORB initialization phase, it uses ttaso benefits from the collaborations amangltiple patterns
dynamic linking mechanisms provided by the OS (and encapthe pattern language. For example, the Acceptor and Con-
sulated by the ACE wrapper facades) to link in the appropriatector patterns utilize the Reactor pattern to notify them when
concrete factory for a particular use-case. Figure 17 shows temnection events occur at the OS level.
factories tuned for different application domains supported byMoreover, patterns often must collaborate to alleviate draw-
TAQO: avionics and medical imaging. backs that arise from applying them in isolation. For instance,
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the reason the Abstract Factory pattern is used in TAO is tdOther areas did not yield as much improvement. In par-

avoid the complexity caused by its extensive use of the Stiatular, GIOP Invocationtasks actually increased in size and

egy pattern. Although the Strategy pattern simplifies the effonaintained a consistentG). There were two reasons for this

required to customize an ORB for specific application requiiecrease:

ments and network/endsystem characteristics, it is tedious and

error-prone to manage a large number of strategy interactiorls The primary pattern applied in these cases was the Wrap-

manually. per Facade, which replaced the low-level system calls
with ACE wrappers but did not factor out common strate-

3.5 Evaluating the Contribution of Patterns to gies; and

ORB Middleware 2. SunSoft IIOP did not trap all the error conditions, which
TAO addressed much more completely. Therefore, the
Section 3.3 described the pattern language used in TAO and additional code in TAO is necessary to provide a more
qualitatively evaluated how these patterns helped to alleviate robust ORB.
limitations with the design of SunSoft IIOP. The discussion
below goes one step further and quantitatively evaluates th&he most compelling evidence that the systematic applica-
benefits of applying patterns to ORB middleware. tion of patterns can positively contribute to the maintainability
of complex software is shown in Figure 18. This figure illus-

3.5.1 Where’s the Proof?

Implementing TAO using a pattern language yielded signif- 700

icant quantifiable improvements in software reusability and SunSoft 110P
maintainability. The results are summarized in Table 3. This 600 Bl TA0 1
table compares the following metrics for TAO and SunSoft 500

IIOP: a i

Range

1. The number of methods required to implement key ORB £ “*° [ |
tasks (such as connection management, request transferg ., | |
socket and request demultiplexing, marshaling, and dis- %

patching). 200 | 1

2. The total non-comment lines of code (LOC) for these 00 |
methods. l

3. The average McCabe Cyclometric Complexity metric 0.0 1o5 6-10 ~10
v(@) [44] of the methods. The(G) metric uses graph MVG Range

theory to correlate code complexity with the number of
possible basic paths that can be taken through a code Figure 18: Distribution of:(G') Over ORB Methods
module. In C++, a module is defined as a method.

trates the distribution of(G) over the percentage of affected

The use of patterns in TAO significantly reduced the amouyfibthods in TAO. As shown in the figure, most of TAO's code
of ad hoccode and the complexity of certain operations. Fgf structured in a straightforward manner, with almost 70% of

instance, the total lines of code in the client-s@@@nnection e methodsb(G) falling into the range of 1-5.

Managemenoperations were reduced by a factor of 5. More- | contrast, while SunSoft IIOP has a substantial percent-
over, the complexity for this componenF was substantially '8ge (55%) of its methods in that range, many of the remaining

ducgd by a factor of 16. These reductions in LOC and cofathods (29%) have(G) greater than 10. The reason for the
plexity stem from the following factors: difference is that SunSoft IOP uses a monolithic coding style
o with long methods. For example, the average length of meth-

e These ORB tasks were the focus of our initial work whegyg withv(G) over 10 is over 80 LOC. This yields overly-
developing TAO. complex code that is hard to debug and understand.

e Many of the details of connection management andIin TAO, most of the monolithic SunSoft IIOP methods were
socket demultiplexing were subsumed by patterns aseicomposed into smaller methods when integrating the pat-
components in the ACE framework, in particular, the A¢erns. The majority (86%) of TAO’s methods haw@) under
ceptor, Connector, and Reactor. 10. Of that number, nearly 70% have @) between 1 and 5.
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TAO SunSoft IIOP
ORB Task # Methods| Total LOC | Avg.v(G) | # Methods| Total LOC | Avg.v(G)
Connection Management (Server) 2 43 7 3 190 14
Connection Management (client) 3 11 1 1 64 16
GIOP Message Send (client/Server) 1 46 12 1 43 12
GIOP Message Read (client/Server) 1 67 19 1 56 18
GIOP Invocation (client) 2 205 26 2 188 27
GIOP Message Processing (client/Servey)) 3 41 2 1 151 24
Object Adapter Message Dispatch (Servgr) 2 79 6 1 61 10

Table 3: Code Statistics: TAO vs. SunSoft IOP

The relatively few (14%) methods in TAO with(G) greater Increased portability and reuse: TAO is built atop the
than 10 are largely unchanged from the original SunSoft IEE framework, which provides implementations of many
TypeCode interpreter. Subsequent releases of TAO have ckay communication software patterns[28]. Using ACE sim-
pletely removed the TypeCode interpreter and replaced it witlified the porting of TAO to humerous OS platforms since
stubs and skeletons generated automatically by TAO'’s IDhost of the porting effort was absorbed by the ACE frame-
compiler. Thus, there is no need for TAO ORB developemork maintainers. In addition, since the ACE framework is
to maintain this code anymore. rich with configurable high-performance, real-time network-
In general, the use of monolithic methods in SunSoft IIORiented components, we were able to achieve considerable
not only increased its maintenance effort, it also degradescitsle reuse by leveraging the framework. This is indicated by
performance due to reduced processor cache hits [20]. Théne-consistent decrease in lines of code (LOC) in Table 3.
fore, we plan to experiment with the application of other pat-
terns, such a€ommandand Template Method15], to sim- 353 \What are the Liabilities?

plify and optimize these monolithic methods into smaller,
more cohesive methods. The use of a pattern language can also incur some liabilities.

We summarize these liabilities below and discuss how we min-
imize them in TAO.

Abstraction penalty: Many patterns use indirection to in-
In general, the applying a pattern language to TAO yielded ttrease component decoupling. For instance, the Reactor pat-
following benefits: tern uses virtual methods to separate the application-specific

| q ibility: P h as Ab F Event Handler logic from the general-purpose event de-
ncreased extensibility: - Patterns such as Abstract aCtorynultiplexing and dispatching logic. The extra indirection in-

Strategy, and Component Configurator simplify the Conﬁgu%duced by using these pattern implementations can poten-
tion of TAO for a particular application domain by aIIowin%

3.5.2 What are the Benefits?

e e L ially decrease performance. To alleviate these liabilities, we
extensibility to be “designed into” the ORB. In contrast, DO arefully applied C++ programming language features (such

midO(IjIeware lacking these patterns is significantly harderto%é- inline functions and templates) and other optimizations
tend. (such as eliminating demarshaling overhead [20] and demul-
Enhanced design clarity: By applying a pattern languagdiplexing overhead [36]) to minimize performance overhead.
to TAO, not only did we develop a more extensible ORB, was a result, TAO is substantially faster than the original hard-
also devised a richer vocabulary for expressing ORB middg#ded SunSoft 11OP [20].

ware designs. In particular, a pattern language captures agditional external dependencies: Whereas SunSoft IOP
articulates the design rationale for complex object-structutgfly depends on system-level interfaces and libraries, TAO de-
in an ORB. Moreover, it helps to demystify and motivate thgends on wrapper facades in the ACE framework. Since ACE
structure of an ORB by describing its architecture in terms Qflcapsmates a wide range of low-level OS mechanisms, the
design forces that recur in many types of software systergfiort required to port it to a new platform could potentially
The expressive power of a pattern language enabled us to ¢ghhigher than porting SunSoft HOP, which only uses a sub-
cisely convey the design of complex software systems, suclkasof the OS's APIs. However, since ACE has been ported to
TAO. As we continue to learn about ORBs and the patternsiginy platforms already, the effort to port to new platforms is

which they are composed, we expect our pattern vocabulgitively low. Most sources of platform variation have been
to grow and evolve into an even more comprehensive pattgyglated to a few modules in ACE.

language.
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4 Concluding Remarks [10]
This paper presented a case study illustrating how we appli
a pattern language to enhance the extensibility of TAO, whic
is a dynamically configurable ORB that is targeted for dis-
tributed applications with high-performance and real-time rd2]
qguirements. We found qualitative and quantitative evidence
that the use of this pattern language helped to clarify the strye;
ture of, and collaboration between, components that perform
key ORB tasks. These tasks include event demultiplexing and
event handler dispatching, connection establishment and fﬂi]
tialization of application services, concurrency control, and
dynamic configuration. In addition, patterns improved TAOI&5]
performance and predictability by making it possible to trans-
parently configure lightweight and optimized strategies fﬁra]
processing client requests.

A principal benefit of applying a pattern language to guide
TAO'’s design is that the systematic application of patter 15
in the language improved the decoupling and object- orlented
structure of the ORB significantly. The patterns we used were
applied in roughly the same order that they appear in Sﬁ%
tion 3.3. Each evolution of TAO leveraged upon the results of
prior evolutions. This iterative process revealed new insiglfits]
on which patterns in the language could be applied and how
they might be applied in subsequent stages. 20

The complete C++ source code, examples, and docu-
mentation for ACE and TAO is freely available at URIp21)
www.cs.wustl.edu/ ~schmidt/TAO.html

[22]
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