
Applying a Pattern Language to Develop Extensible ORB Middleware

Douglas C. Schmidt Chris Cleeland
schmidt@uci.edu cleelandc@ociweb.com

Electrical & Computer Engineering Dept. Object Computing Inc.
University of California, Irvine, USA St. Louis, MO, USA�

This paper appeared as a chapter in the bookDesign Pat-
terns in Communications, (Linda Rising, ed.), Cambridge Uni-
versity Press, 2000. An abridged version appeared in the IEEE
Communications Magazine Special Issue on Patterns (Linda
Rising, ed.), Volume 37, No. 4, April 1999.

Abstract

Distributed object computing forms the basis of next-
generation communication software. At the heart of dis-
tributed object computing are Object Request Brokers (ORBs),
which automate many tedious and error-prone distributed pro-
gramming tasks. Like much communication software, conven-
tional ORBs use statically configured designs, which are hard
to port, optimize, and evolve. Likewise, conventional ORBs
cannot be extended without modifying their source code, which
forces recompilation, relinking, and restarting running ORBs
and their associated application objects.

This paper makes two contributions to the study of extensi-
ble ORB middleware. First, it presents a case study illustrating
how a pattern language can be used to develop dynamically
configurable ORBs that can be customized for specific appli-
cation requirements and system characteristics. Second, we
quantify the impact of applying this pattern language to re-
duce the complexity and improve the maintainability of com-
mon ORB tasks, such as connection management, data trans-
fer, demultiplexing, and concurrency control.

1 Introduction

Four trends are shaping the future of commercial software de-
velopment. First, the software industry is moving away from
programmingapplications from scratch tointegratingapplica-
tions using reusable components [1]. Second, there is great de-
mand fordistribution technologythat provides remote method
invocation and/or message-oriented middleware to simplify
application collaboration. Third, there are increasing efforts
to define standard software infrastructure frameworks that per-
mit applications to interwork seamlessly throughoutheteroge-
neousenvironments [2]. Finally, next-generation distributed

�This work was supported in part by ATD, BBN, Boeing, Cisco, DARPA
contract 9701516, Motorola Commercial Government and Industrial Solu-
tions Sector, Motorola Laboratories, Siemens, and Sprint.

applications such as video-on-demand, teleconferencing, and
avionics requirequality-of-service(QoS) guarantees for la-
tency, bandwidth, and reliability [3].

A key software technology supporting these trends isdis-
tributed object computing (DOC) middleware. DOC mid-
dleware facilitates the collaboration of local and remote ap-
plication components in heterogeneous distributed environ-
ments. The goal of DOC middleware is to eliminate many te-
dious, error-prone, and non-portable aspects of developing and
evolving distributed applications and services. In particular,
DOC middleware automates common network programming
tasks, such as object location, implementation startup (i.e.,
server and object activation), encapsulation of byte-ordering
and parameter type size differences across dissimilar architec-
tures (i.e., parameter marshaling), fault recovery, and security.
At the heart of DOC middleware areObject Request Brokers
(ORBs), such as CORBA [4], DCOM [5], and Java RMI [6].

This paper describes how we have applied apattern lan-
guageto develop and evolve dynamically configurable ORB
middleware that can be extended more readily than statically
configured middleware. In general, pattern languages help to
alleviate the continual re-discovery and re-invention of soft-
ware concepts and components by conveying a family of re-
lated solutions to standard software development problems [7].
For instance, pattern languages are useful for documenting the
roles and relationships among participants in common com-
munication software architectures [8]. The pattern language
presented in this paper is a generalization of the one presented
in [9] and has been used successfully to build flexible, effi-
cient, event-driven, and concurrent communication software,
including ORB middleware.

To focus our discussion, this paper presents a case study
that illustrates how we have applied this pattern language to
developThe ACE ORB(TAO) [10]. TAO is a freely avail-
able, highly extensible ORB targeted for applications with
real-time QoS requirements, including avionics mission com-
puting [11], multimedia applications [12], and distributed in-
teractive simulations [13]. A novel aspect of TAO is its ex-
tensible design, which is guided by a pattern language that en-
ables the ORB to be customized dynamically to meet specific
application QoS requirements and network/endsystem charac-
teristics.

The remainder of this paper is organized as follows: Sec-

1

tion 2 presents an overview of CORBA and TAO; Section 3
motivates the need for dynamic configuration and describes
the pattern language that resolves key design challenges faced
when developing extensible ORBs; Section 3.5 evaluates and
quantifies the contribution of the pattern language to ORB
middleware; and Section 4 presents concluding remarks.

2 Overview of CORBA and TAO

This section outlines the CORBA reference model and
describes the enhancements that TAO provides for high-
performance and real-time applications.

2.1 Overview of the CORBA Reference Model

CORBA Object Request Brokers (ORBs) [14] allow clients to
invoke operations on distributed objects without concern for
the following issues:

Object location: A CORBA object either can be collocated
with the client or distributed on a remote server, without af-
fecting its implementation or use.

Programming language: The languages supported by
CORBA include C, C++, Java, Ada95, COBOL, and
Smalltalk, among others.

OS platform: CORBA runs on many OS platforms, includ-
ing Win32, UNIX, MVS, and real-time embedded systems,
such as VxWorks, Chorus, and LynxOS.

Communication protocols and interconnects: The com-
munication protocols and interconnects that CORBA run on
include TCP/IP, IPX/SPX, FDDI, ATM, Ethernet, Fast Ether-
net, embedded system backplanes, and shared memory.

Hardware: CORBA shields applications from side effects
stemming from hardware diversity, such as different storage
layouts and data type sizes/ranges.

Figure 1 illustrates the components in the CORBA refer-
ence model, all of which collaborate to provide the portability,
interoperability and transparency outlined above.

Each component in the CORBA reference model is outlined
below:

Client: A client is a role that obtains references to objects
and invokes operations on them to perform application tasks.
Objects can be remote or collocated relative to the client.
Clients can access remote objects just like a local object,i.e.,
object !operation(args) . Figure 1 shows how the
underlying ORB components described below transmit remote
operation requests transparently from client to object.

INTERFACE

REPOSITORY

IMPLEMENTATION

REPOSITORY

IDL
COMPILER

DII ORB
INTERFACE

ORBORB CORECORE GIOPGIOP//IIOPIIOP//ESIOPSESIOPS

IDLIDL
STUBSSTUBS

operation()operation()
in args

out args + return value

CLIENT
OBJECT
(SERVANT)

OBJ

REF

STANDARD INTERFACE STANDARD LANGUAGE MAPPING

ORB-SPECIFIC INTERFACE STANDARD PROTOCOL

INTERFACE

REPOSITORY

IMPLEMENTATION

REPOSITORY

IDL
COMPILER

IDL
SKELETON

DSI

OBJECT

ADAPTER

Figure 1: Components in the CORBA Reference Model

Object: In CORBA, an object is an instance of an OMG
Interface Definition Language (IDL) interface. Each object
is identified by anobject reference, which associates one or
more paths through which a client can access an object on a
server. Anobject IDassociates an object with its implemen-
tation, called a servant, and is unique within the scope of an
Object Adapter. Over its lifetime, an object has one or more
servants associated with it to implement its interface.

Servant: This component implements the operations de-
fined by an OMG IDL interface. In object-oriented (OO) lan-
guages, such as C++ and Java, servants are implemented us-
ing one or more class instances. In non-OO languages, such
as C, servants are typically implemented using functions and
struct s. A client never interacts with servants directly, but
always through objects identified by object references. To-
gether, an object and its servant form an implementation of
the Bridge pattern [15], withobjectas theRefinedAbstraction
andservantas theConcreteImplementor.

ORB Core: When a client invokes an operation on an ob-
ject, the ORB Core is responsible for delivering the request
to the object and returning a response, if any, to the client.
An ORB Core is implemented as a run-time library linked
into client and server applications. For objects executing re-
motely, a CORBA-compliant ORB Core communicates via a
version of the General Inter-ORB Protocol (GIOP), such as
the Internet Inter-ORB Protocol (IIOP) that runs atop the TCP
transport protocol. In addition, custom Environment-Specific
Inter-ORB protocols (ESIOPs) can also be defined [16].

ORB Interface: An ORB is an abstraction that can be im-
plemented various ways,e.g., one or more processes or a set
of libraries. To decouple applications from implementation
details, the CORBA specification defines an interface to an
ORB. This ORB interface provides standard operations to ini-
tialize and shut down the ORB, convert object references to

2

strings and back, and create argument lists for requests made
through thedynamic invocation interface(DII).

OMG IDL Stubs and Skeletons: IDL stubs and skeletons
serve as a “glue” between the client and servants, respectively,
and the ORB. Stubs implement theProxy pattern [15] and
provide a strongly-typed,static invocation interface(SII) that
marshals application parameters into a common message-level
representation. Conversely, skeletons implement theAdapter
pattern [15] and demarshal the message-level representation
back into typed parameters that are meaningful to an applica-
tion.

IDL Compiler: An IDL compiler transforms OMG IDL
definitions into stubs and skeletons that are generated automat-
ically in an application programming language, such as C++
or Java. In addition to providing programming language trans-
parency, IDL compilers eliminate common sources of network
programming errors and provide opportunities for automated
compiler optimizations [17].

Dynamic Invocation Interface (DII): The DII allows
clients to generate requests at run-time, which is useful when
an application has no compile-time knowledge of the inter-
face it accesses. The DII also allows clients to makedeferred
synchronouscalls, which decouple the request and response
portions of two-way operations to avoid blocking the client
until the servant responds. CORBA SII stubs support both
synchronous and asynchronoustwo-way, i.e., request/response
andone-way, i.e., request-only operations.

Dynamic Skeleton Interface (DSI): The DSI is the server’s
analogue to the client’s DII. The DSI allows an ORB to deliver
requests to servants that have no compile-time knowledge of
the IDL interface they implement. Clients making requests
need not know whether the server ORB uses static skeletons or
dynamic skeletons. Likewise, servers need not know if clients
use the DII or SII to invoke requests.

Object Adapter: An Object Adapter is a composite compo-
nent that associates servants with objects, creates object refer-
ences, demultiplexes incoming requests to servants, and col-
laborates with the IDL skeleton to dispatch the appropriate
operation upcall on a servant. Object Adapters enable ORBs
to support various types of servants that possess similar re-
quirements. This design results in a smaller and simpler ORB
that can support a wide range of object granularities, lifetimes,
policies, implementation styles, and other properties.

Interface Repository: The Interface Repository provides
run-time information about IDL interfaces. Using this infor-
mation, it is possible for a program to encounter an object
whose interface was not known when the program was com-
piled, yet be able to determine what operations are valid on the
object and make invocations on it using the DII. In addition,
the Interface Repository provides a common location to store

additional information associated with interfaces to CORBA
objects, such as type libraries for stubs and skeletons.

Implementation Repository: The Implementation Reposi-
tory [18] contains information that allows an ORB to activate
servers to process servants. Most of the information in the Im-
plementation Repository is specific to an ORB or OS environ-
ment. In addition, the Implementation Repository provides a
common location to store information associated with servers,
such as administrative control, resource allocation, security,
and activation modes.

2.2 Overview of TAO

TAO is a high-performance, real-time ORB endsystem tar-
geted for applications with deterministic and statistical QoS
requirements, as well as best-effort requirements. TAO’s ORB
endsystem contains the network interface, OS, communication
protocol, and CORBA-compliant middleware components and
services shown in Figure 2. TAO supports the standard OMG

NETWORKNETWORK

ORBORB RUN RUN--TIMETIME

SCHEDULERSCHEDULER

operation()operation()

IDLIDL
STUBSSTUBS

IDLIDL
SKELETONSKELETON

in argsin args

out args + return valueout args + return value

CLIENTCLIENT

OS KERNELOS KERNEL

HIGHHIGH--SPEEDSPEED

NETWORK INTERFACENETWORK INTERFACE

REALREAL--TIME ITIME I//OO
SUBSYSTEMSUBSYSTEM

OBJECTOBJECT
((SERVANTSERVANT))

OS KERNELOS KERNEL

HIGHHIGH--SPEEDSPEED

NETWORK INTERFACENETWORK INTERFACE

REALREAL--TIME ITIME I//OO
SUBSYSTEMSUBSYSTEM

ACEACE COMPONENTSCOMPONENTS

OBJOBJ

REFREF

REALREAL--TIMETIME ORBORB CORECORE
IOPIOP

PLUGGABLEPLUGGABLE

ORBORB & & XPORTXPORT

PROTOCOLSPROTOCOLS

IOPIOP
PLUGGABLEPLUGGABLE

ORBORB & & XPORTXPORT

PROTOCOLSPROTOCOLS

REALREAL--TIMETIME

OBJECTOBJECT

ADAPTERADAPTER

Figure 2: Components in the TAO Real-time ORB Endsystem

CORBA reference model [14] and Real-time CORBA speci-
fication [19], with enhancements designed to ensure efficient,
predictable, and scalable QoS behavior for high-performance
and real-time applications. In addition, TAO is well-suited for
general-purpose distributed applications. Below, we outline
the features of TAO’s components shown in Figure 2.

Optimized IDL Stubs and Skeletons: IDL stubs and skele-
tons perform marshaling and demarshaling of application op-
eration parameters, respectively. TAO’s IDL compiler gener-
ates stubs/skeletons that can selectively use highly optimized
compiled and/or interpretive (de)marshaling [20]. This flex-
ibility allows application developers to selectively trade off

3

time and space, which is crucial for high-performance, real-
time, and/or embedded distributed systems.

Real-time Object Adapter: An Object Adapter associates
servants with the ORB and demultiplexes incoming requests
to servants. TAO’s real-time Object Adapter uses perfect hash-
ing [21] and active demultiplexing [22] optimizations to dis-
patch servant operations in constantO(1) time, regardless of
the number of active connections, servants, and operations de-
fined in IDL interfaces.

Run-time Scheduler: TAO’s run-time scheduler [19] maps
application QoS requirements, such as bounding end-to-end
latency and meeting periodic scheduling deadlines, to ORB
endsystem/network resources, such as CPU, memory, network
connections, and storage devices. TAO’s run-time scheduler
supports both static [10] and dynamic [23] real-time schedul-
ing strategies.

Real-time ORB Core: An ORB Core delivers client re-
quests to the Object Adapter and returns responses (if any) to
clients. TAO’s real-time ORB Core [24] uses a multi-threaded,
preemptive, priority-based connection and concurrency archi-
tecture [20] to provide an efficient and predictable CORBA
protocol engine. TAO’s ORB Core allows customized proto-
cols to be plugged into the ORB without affecting the standard
CORBA application programming model [25].

Real-time I/O subsystem: TAO’s real-time I/O (RIO) sub-
system [26] extends support for CORBA into the OS. RIO as-
signs priorities to real-time I/O threads so that the schedulabil-
ity of application components and ORB endsystem resources
can be enforced. When integrated with advanced hardware,
such as the high-speed network interfaces described below,
RIO can (1) perform early demultiplexing of I/O events onto
prioritized kernel threads to avoid thread-based priority inver-
sion and (2) maintain distinct priority streams to avoid packet-
based priority inversion. TAO also runs efficiently and as pre-
dictably as possible on conventional I/O subsystems that lack
advanced QoS features.

High-speed network interface: At the core of TAO’s I/O
subsystem is a “daisy-chained” network interface consisting
of one or more ATM Port Interconnect Controller (APIC)
chips [27]. The APIC is designed to sustain an aggregate bi-
directional data rate of 2.4 Gbps using zero-copy buffering op-
timization to avoid data copying across endsystem layers. In
addition, TAO runs on conventional real-time interconnects,
such as VME backplanes and multi-processor shared memory
environments, as well as TCP/IP.

TAO internals: TAO is developed using lower-level mid-
dleware called ACE [28], which implements core concur-
rency and distribution patterns [8] for communication soft-
ware. ACE provides reusable C++ wrapper facades and frame-
work components that support the QoS requirements of high-

performance, real-time applications and higher-level middle-
ware like TAO. ACE and TAO run on a wide range of OS plat-
forms, including Win32, most versions of UNIX, and real-time
operating systems, such as Sun/Chorus ClassiX, LynxOS, and
VxWorks.

To expedite our project goals, and to avoid re-inventing ex-
isting components, we based TAO on SunSoft IIOP, which is
a freely available C++ reference implementation of the Inter-
net Inter-ORB Protocol (IIOP) version 1.0. Although SunSoft
IIOP provides core features of a CORBA ORB it also has the
following limitations:

Lack of standard ORB features: Although SunSoft IIOP
provides an ORB Core, an IIOP 1.0 protocol engine, and a
DII and DSI implementation, it lacks an IDL compiler, an
Interface Repository and Implementation Repository, and a
Portable Object Adapter (POA). TAO implements all these
missing features and provides newer CORBA features, asyn-
chronous method invocations [29], real-time CORBA [19] fea-
tures [30], and fault tolerance CORBA features [31, 32].

Lack of IIOP optimizations: Due to the excessive marshal-
ing/demarshaling overhead, data copying, and high-levels of
function call overhead, SunSoft IIOP performs poorly over
high-speed networks. Therefore, we applied a range of opti-
mization principle patterns [22] that improved its performance
considerably [33]. The principles that directed our optimiza-
tions include: (1) optimizing for the common case, (2) elim-
inating gratuitous waste, (3) replacing general-purpose meth-
ods with efficient special-purpose ones, (4) precomputing val-
ues, if possible, (5) storing redundant state to speed up expen-
sive operations, (6) passing information between layers, and
(7) optimizing for processor cache affinity.

This paper does not discuss how TAO solves the limitations
with SunSoft IIOP outlined above, which are described in de-
tail in [10, 20]. Instead, we focus on how TAO uses patterns
to implement an ORB that overcomes the following SunSoft
IIOP limitations while simultaneously preserving its QoS ca-
pabilities:

Lack of portability: Like most communication software,
SunSoft IIOP is programmed directly using low-level net-
working and OS APIs, such as sockets,select , and POSIX
Pthreads. Not only are these APIs tedious and error-prone,
they are also not portable across OS platforms,e.g., many op-
erating systems lack Pthreads support. Section 3.3.1 illustrates
how we used theWrapper Facadepattern [15] to improve
TAO’s portability.

Lack of configurability: Like many ORBs and other mid-
dleware, SunSoft IIOP is configuredstatically, which makes
it hard to extend without modifying its source code directly.

4

This violated a key design goal of TAO, namelydynamicadap-
tation to diverse application requirements and system environ-
ments. Sections 3.3.7, 3.3.6, and 3.3.8 explain how we used
theAbstract Factory[15], Strategy[15], andComponent Con-
figurator [8] patterns to simplify the TAO’s configurability for
different use-cases.

Lack of software cohesion: Like many applications, Sun-
Soft IIOP focuses on solving a specific problem,i.e., imple-
menting an ORB Core and an IIOP protocol engine. It ac-
complish this using a tightly-coupled,ad-hocimplementation
that hard-codes key ORB design decisions. Sections 3.3.7
and 3.3.6 explain how we usedAbstract FactoryandStrategy
to decrease the unnecessary coupling and increase cohesion
when evolving SunSoft IIOP to TAO.

3 Applying a Pattern Language to
Build Extensible ORB Middleware

3.1 Why We Need Dynamically Configurable
Middleware

A key motivation for ORB middleware is to offload complex,
lower-level distributed system infrastructure tasks from appli-
cation developers to ORB developers. ORB developers are re-
sponsible for implementing reusable middleware components
that handle connection management, interprocess communica-
tion, concurrency, transport endpoint demultiplexing, schedul-
ing, dispatching, (de)marshaling, and error handling. These
components are typically compiled into a run-time ORB li-
brary, linked with application objects that use the ORB com-
ponents, and executed in one or more OS processes.

Although this separation of concerns can simplify applica-
tion development, it can also yield inflexible and inefficient
applications and middleware architectures. The primary rea-
son is that many conventional ORBs are configuredstatically
at compile-time and link-time by ORB developers, rather than
dynamicallyat installation-time or run-time by application
developers. Statically configured ORBs have the following
drawbacks [28]:

Inflexibility: Statically-configured ORBs tightly couple
each component’simplementationwith the configurationof
internal ORB components,i.e., which components work to-
gether and how they work together. As a result, extending
statically-configured ORBs requires modifications to existing
source code. In commercial non-open-source ORBs, this code
may not be accessible to application developers.

Even if source code is available, extending statically-
configured ORBs requires recompilation and relinking. More-
over, any currently executing ORBs and their associated ob-
jects must be shutdown and restarted. This static reconfigura-

tion process is not well-suited for application domains, such
as telecom call processing, that require 7�24 availability [34].

Inefficiency: Statically-configured ORBs can be inefficient,
both in terms of space and time. Space inefficiency can oc-
cur if unnecessary components are always statically config-
ured into an ORB. This can increase the ORB’s memory foot-
print, forcing applications to pay a space penalty for features
they do not require. Overly large memory footprints are par-
ticularly problematic for embedded systems, such as cellular
phones or telecom switch line cards [35].

Time inefficiency can stem from restricting an ORB to use
statically configured algorithms or data structures for key pro-
cessing tasks, thereby making it hard for application develop-
ers to customize an ORB to handle new use-cases. For in-
stance, real-time avionics systems [11] often can instantiate
all their servants off-line. These systems can benefit from an
ORB that uses perfect hashing or active demultiplexing [36] to
demultiplex incoming requests to servants. Thus, ORBs that
are configured statically to use a general-purpose, “one-size-
fits-all” demultiplexstrategy, such as dynamic hashing, may
perform poorly for mission-critical systems.

In theory, the drawbacks with static configuration described
above areinternal to ORBs and should not affect application
developers directly. In practice, however, application devel-
opers are inevitably affected since the quality, portability, us-
ability, and performance of the ORB middleware is reduced.
Therefore, an effective way to improve ORB extensibility is
to develop ORB middleware that can be both staticallyand
dynamically configured.

Dynamic configuration enables the selective integration of
customized implementations for key ORB strategies, such as
connection management, communication, concurrency, de-
multiplexing, scheduling, and dispatching. This design allows
ORB developers to concentrate on thefunctionalityof ORB
components, without committing themselves prematurely to
a specificconfigurationof these components. Moreover, dy-
namic configuration enables application developers and ORB
developers to change design decisions late in the system life-
cycle,i.e., at installation-time or run-time.

Figure 3 illustrates the following key dimensions of ORB
extensibility:

1. Extensibility to retarget the ORB on new platforms,
which requires that the ORB be implemented using modular
components that shield it from non-portable system mecha-
nisms, such as those for threading, communication, and event
demultiplexing. OS platforms such as POSIX, Win32, Vx-
Works, and MVS provide a wide variety of system mecha-
nisms.

2. Extensibility via custom implementation strategies,
which can be tailored to specific application requirements. For

5

1 POSIX,POSIX, WWININ32,32, RTOSRTOSSS,, MVSMVS

3 DLLDLLSS

2

strategy2

strategy1

strategy3 profile2

profile1

profile3

profile4

Figure 3: Dimensions of ORB Extensibility

instance, ORB components can be customized to meet peri-
odic deadlines in real-time systems [11]. Likewise, ORB com-
ponents can be customized to account for particular system
characteristics, such as the availability of asynchronous I/O or
high-speed ATM networks.

3. Extensibility via dynamic configuration of custom
strategies,which takes customization to the next level by dy-
namically linking only those strategies that are necessary for a
specific ORB “personality.” For example, different application
domains, such as medical systems or telecom call processing,
may require custom combinations of concurrency, scheduling,
or dispatch strategies. Configuring these strategies at run-time
from dynamically linked libraries (DLLs) can (1) reduce the
memory footprint of an ORB and (2) make it possible for ap-
plication developers to extend the ORB without requiring ac-
cess or changes to the original source code.

Below, we describe the pattern language applied to enhance
the extensibility of TAO along each dimension outlined above.

3.2 Overview of a Pattern Language that Im-
proves ORB Extensibility

This section uses TAO as a case study to illustrate a pattern
language that can help developers of applications and ORBs
build, maintain, and extend communication software by re-
ducing the coupling between components. Figure 4 shows the
patterns in the pattern language that we applied to develop an
extensible ORB architecture for TAO. It is beyond the scope
of this paper to describe each pattern in detail or to discuss
all the patterns used within TAO. Instead, we focus on how
key patterns can improve the extensibility and performance of
real-time ORB middleware. The references in [9, 15] contain
comprehensive descriptions of these patterns and [8] explains
how the patterns can be woven together to form a pattern lan-
guage.

ACCEPTORCONNECTOR

ABSTRACT
FACTORY

SERVANTCLIENT

OS KERNELOS KERNEL

LEADER /
FOLLOWERS

THREAD -SPECIFIC
STORAGE

COMPONENT
CONFIGURATOR

REACTOR

WRAPPER FACADES

STRATEGY

Figure 4: Applying a Pattern Language to TAO

The intent and usage of the patterns in this language are
outlined below:

Wrapper Facade [8]: This pattern encapsulates the func-
tions and data provided by existing non-OO APIs within
more concise, robust, portable, maintainable, and cohesive
OO class interfaces. TAO uses this pattern to avoid tedious,
non-portable, and non-typesafe programming of low-level,
OS-specific system calls, such as the Socket API or POSIX
threads.

Reactor [8]: This pattern structures event-driven applica-
tions, particularly servers, that receive requests from multiple
clients concurrently but process them iteratively. TAO uses
this pattern to notify ORB-specific handlers synchronously
when I/O events occur in the OS. The Reactor pattern drives
the main event loop in TAO’s ORB Core, which accepts con-
nections and receives/sends client requests/responses.

Acceptor-Connector [8]: This pattern decouples connec-
tion establishment and service initialization from service pro-
cessing in a networked system. TAO uses this pattern in the
ORB Core on servers and clients to passively and actively es-
tablish GIOP connections that are independent of the underly-
ing transport mechanisms.

Leader/Followers [8]: This pattern provides an efficient
concurrency model in which multiple threads take turns to
share a set of event sources to detect, demultiplex, dispatch
and process service requests that occur on the event sources.
TAO uses this pattern uses this pattern to facilitate the use of
multiple concurrency strategies that can be configured flexibly
into its ORB Core at run-time.

Thread-Specific Storage [8]: This pattern allows multiple
threads to use a “logically global” access point to retrieve an

6

object that is local to a thread, without incurring locking over-
head for each access to the object. TAO uses this pattern to
minimize lock contention and priority inversion for real-time
applications.

Strategy [15]: This pattern provides an abstraction for se-
lecting one of several candidate algorithms and packaging it
into an object. TAO uses this pattern throughout its software
architecture to extensibly configure custom ORB strategies for
concurrency, communication, scheduling, and demultiplexing.

Abstract Factory [15]: This pattern provides a single com-
ponent that builds related objects. TAO uses this pattern to
consolidate its dozens ofStrategyobjects into a manageable
number of abstract factories that can be reconfigureden masse
into clients and servers conveniently and consistently. TAO
components use these factories to access related strategies
without specifying their subclass name explicitly.

Component Configurator [8]: This pattern allows an ap-
plication to link and unlink its component implementations at
run-time without having to modify, recompile or statically re-
link the application. It also supports the reconfiguration of
components into different processes without having to shut
down and re-start running processes. TAO uses this pattern
to dynamically interchangeabstract factoryimplementations
in order to customize ORB personalities at run-time.

The patterns constituting this pattern language are not lim-
ited to ORBs or communication middleware. They have been
applied in many other communication application domains, in-
cluding telecom call processing and switching, avionics flight
control systems, multimedia teleconferencing, and distributed
interactive simulations.

3.3 How to Use a Pattern Language to Resolve
ORB Design Challenges

In the following discussion, we outline the forces underlying
the key design challenges that arise when developing extensi-
ble real-time ORBs. We also describe which pattern(s) in our
pattern language resolve these forces and explain how these
patterns are used in TAO. In addition, we show how the ab-
sence of these patterns in an ORB leaves these forces unre-
solved. To illustrate this latter point concretely, we compare
TAO with SunSoft IIOP. Since TAO evolved from the SunSoft
IIOP release, it provides an ideal baseline to evaluate the im-
pact of patterns on the software qualities of ORB middleware.

3.3.1 Encapsulate Low-level System Mechanisms with
the Wrapper FacadePattern

Context: One role of an ORB is to shield application-
specific clients and servants from the details of low-level sys-
tems programming. Thus, ORB developers, rather than appli-

cation developers, are responsible for tedious, low-level net-
work programming tasks, such as demultiplexing events, send-
ing and receiving GIOP messages across the network, and
spawning threads to execute client requests concurrently. Fig-
ure 5 illustrates a common approach used by SunSoft IIOP,

POSIXPOSIX
PthreadsPthreads

BSDBSD
SocketsSockets

WinSockWinSock

SocketSocket
MacrosMacros Other OSOther OS

System CallsSystem Calls

pthread_create()pthread_create()

pthread_mutex_*pthread_mutex_*

socket(), bind(),socket(), bind(),

recv(), send()recv(), send()

gettimeofday(),gettimeofday(),

select(), etc.select(), etc.

SunSoft IIOP's ORB CoreSunSoft IIOP's ORB Core

GENERALGENERAL

POSIXPOSIX &&
WWININ3232

SERVICESSERVICES

Figure 5: SunSoft IIOP Operating System Interaction

which is programmed internally using system mechanisms,
such as sockets,select , and POSIX threads.

Problem: Developing an ORB is hard. It is even harder if
developers must wrestle with low-level system mechanisms
written in languages like C, which often yield the following
problems:

� ORB developers must have intimate knowledge of many
OS platforms: Implementing an ORB using system-level C
APIs forces developers to deal with non-portable, tedious, and
error-prone OS idiosyncrasies, such as using untyped socket
handles to identify transport endpoints. Moreover, these APIs
are not portable across OS platforms. For example, Win32
lacks POSIX Pthreads and has subtly different semantics for
sockets andselect .

� Increased maintenance effort: One way to build an
ORB is to handle portability variations via explicit conditional
compilation directives in ORB source code. However, using
conditional compilation to address platform-specific variations
at all points of useincreases the complexity of the source code,
as shown in Section 3.5. Extending such ORBs is hard since
platform-specific details are scattered throughout the imple-
mentation source code files.

� Inconsistent programming paradigms: System mecha-
nisms are accessed through C-style function calls, which cause
an “impedance mismatch” with the OO programming style
supported by C++, the language we use to implement TAO.

How can we avoid accessing low-level system mechanisms
when implementing an ORB?

Solution ! the Wrapper Facade pattern: An effective
way to avoid accessing system mechanisms directly is to use
theWrapper Facadepattern [8], which is a variant of the Fa-
cade pattern [15]. The intent of the Facade pattern is to sim-
plify the interface for a subsystem. The intent of the Wrapper
Facade pattern is more specific: it provides typesafe, modu-
lar, and portable OO interfaces that encapsulate lower-level,

7

stand-alone system mechanisms, such as sockets,select ,
and POSIX threads. In general, the Wrapper Facade pattern
should be applied when existing system-level APIs are non-
portable and non-typesafe.

Using the Wrapper Facade pattern in TAO: TAO accesses
all system mechanisms via the wrapper facades provided by
ACE [28]. Figure 6 illustrates how the ACE C++ wrapper
facades improve TAO’s robustness and portability by encap-
sulating and enhancing native OS concurrency, communica-
tion, memory management, event demultiplexing, and dy-
namic linking mechanisms with typesafe OO interfaces. The

TAO's ORB CoreTAO's ORB Core

spawn()spawn()

acquire()acquire()

open(),open(),
close(),close(),

recv(), send()recv(), send()

dlopen()dlopen()

dlsym()dlsym()

COMMUNICATIONCOMMUNICATION

SUBSYSTEMSUBSYSTEM

VIRTUALVIRTUAL

 MEMORY MEMORY

SUBSYSTEMSUBSYSTEM

GENERALGENERAL

POSIXPOSIX &&
 WWININ3232

SERVICESSERVICES

PROCESSPROCESS//
THREADTHREAD

SUBSYSTEMSUBSYSTEM

THREADTHREAD

WRAPPERSWRAPPERS

DYNAMIC

LINKING

SELECT/
IO COMP

SOCKETS/
TLI

ACE
WRAPPER

FACADES

handle_events()

Figure 6: Using the Wrapper Facade Pattern to Encapsulate
Native OS Mechanisms

OO encapsulation provided by ACE alleviates the need for
TAO to access weakly-typed system APIs directly. Thus, C++
compilers can detect type system violations at compile-time
rather than waiting for the problems to occur at run-time.

The ACE wrapper facades use C++ features to eliminate
performance penalties that would otherwise be incurred from
its additional type safety and layer of abstraction. For instance,
inlining is used to avoid the overhead of calling small meth-
ods. Likewise, static methods are used to avoid the overhead
of passing a C++this pointer to each invocation.

Although the ACE wrapper facades resolve several common
low-level development problems, they are just the first step to-
wards developing an extensible ORB. The remaining patterns
described in this section build on the encapsulation provided
by the ACE wrapper facades to address more challenging ORB
design issues.

3.3.2 Demultiplexing ORB Core Events Using the Reac-
tor Pattern

Context: An ORB Core is responsible for demultiplexing
I/O events from multiple clients and dispatching their asso-
ciated event handlers. For instance, a server-side ORB Core
listens for new client connections and reads/writes GIOP re-
quests/responses from/to connected clients. To ensure re-
sponsiveness to multiple clients, an ORB Core uses OS
event demultiplexing mechanisms to wait forCONNECTION,

READ, andWRITE events to occur on multiple socket handles.
Common event demultiplexing mechanisms includeselect ,
WaitForMultipleObjects , I/O completion ports, and
threads.

Figure 7 illustrates a typical event demultiplexing se-
quence for SunSoft IIOP. In (1), the server enters its event

ORB COREORB CORE

1: RUN EVENT LOOP

OBJECTOBJECT

ADAPTERADAPTER

APPLICATIONAPPLICATION

2: GET REQUEST

3: BLOCK FOR CONNECTION 6: INCOMING

 MESSAGE

5: DISPATCH

SERVANTSERVANT

7: UPCALL

GIOPGIOP

EngineEngine
4: select()

serverserver

endpointsendpoints

Figure 7: The SunSoft IIOP Event Loop

loop by (2) calling get request on the Object Adapter.
The get request method then (3) calls the static method
block for connection on the server endpoint .
This method manages all aspects of server-side connection
management, ranging from connection establishment to GIOP
protocol handling. The ORB remains blocked (4) onselect
until the occurrence of I/O event, such as a connection
event or a request event. When a request event occurs,
block for connection demultiplexes that request to a
specificserver endpoint and (5) dispatches the event to
that endpoint. The GIOP Engine in the ORB Core then (6) re-
trieves data from the socket and passes it to the Object Adapter,
which demultiplexes it, demarshals it, and (7) dispatches the
appropriate method upcall to the user-supplied servant.

Problem: One way to develop an ORB Core is to hard-
code it to use one event demultiplexing mechanism, such as
select . Relying on just one mechanism is undesirable, how-
ever, since no single scheme is efficient on all platforms or for
all application requirements. For instance, asynchronous I/O
completion ports are highly efficient on Windows NT [37],
whereas synchronous threads are an efficient demultiplexing
mechanism on Solaris [33].

Another way to develop an ORB Core is to tightly couple its
event demultiplexing code with the code that performs GIOP
protocol processing. For instance, the event demultiplexing
logic of SunSoft IIOP is not a self-contained component. In-
stead, it is closely intertwined with subsequent processing of

8

client request events by the Object Adapter and IDL skele-
tons. In this case, however, the demultiplexing code cannot be
reused as a blackbox component by other communication mid-
dleware applications, such as HTTP servers [37] or video-on-
demand servers. Moreover, if new ORB strategies for thread-
ing or Object Adapter request scheduling algorithms are in-
troduced, substantial portions of the ORB Core must be re-
written.

How then can an ORB implementation decouple itself from
a specific event demultiplexing mechanism and decouple its
demultiplexing code from its handling code?

Solution ! the Reactor pattern: An effective way to re-
duce coupling and increase the extensibility of an ORB Core
is to apply theReactorpattern [8]. This pattern supports
synchronous demultiplexing and dispatching of multipleevent
handlers, which are triggered by events that can arrive concur-
rently from multiple sources. The Reactor pattern simplifies
event-driven applications by integrating the demultiplexing of
events and the dispatching of their corresponding event han-
dlers. In general, the Reactor pattern should be applied when
applications or components, such as an ORB Core, must han-
dle events from multiple clients concurrently, without becom-
ing tightly coupled to a single low-level mechanism, such as
select .

Note that applying the Wrapper Facade pattern is not suffi-
cient to resolve the event demultiplexing problems outlined
above. A wrapper facade forselect may improve ORB
Core portability somewhat. However, this pattern alone does
not resolve the need to completely decouple the low-level
event demultiplexing logic from the higher-level client request
processing logic in an ORB Core. Recognizing the limitations
of the Wrapper Facade pattern, and then applying the Reactor
pattern to overcome the limitations, is one of the benefits of
applying a pattern language, rather than just isolated patterns.

Using the Reactor pattern in TAO: TAO uses the Re-
actor pattern to drive the main event loop in its ORB
Core, as shown in Figure 8. A TAO server (1) initi-
ates an event loop in the ORB Core’sReactor , where
it (2) remains blocked onselect until an I/O event oc-
curs. When a GIOP request event occurs, theReactor
demultiplexes the request to the appropriate event handler,
which is the GIOPConnection Handler that is associ-
ated with each connected socket. TheReactor (3) then calls
Connection Handler::handle input , which (4) dis-
patches the request to TAO’s Object Adapter. The Object
Adapter demultiplexes the request to the appropriate upcall
method on the servant and (5) dispatches the upcall.

The Reactor pattern enhances the extensibility of TAO
by decoupling the event handling portions of its ORB
Core from the underlying OS event demultiplexing mech-
anisms. For example, theWaitForMultipleObjects

ORB COREORB CORE

1: RUN EVENT LOOP

OBJECTOBJECT

ADAPTERADAPTER

APPLICATIONAPPLICATION

3: handle_input()

4: DISPATCH

SERVANTSERVANT

5: UPCALL

ACTIVE OBJECT MAPACTIVE OBJECT MAP

2: select()

ReactorReactor

ConnectionConnection
HandlerHandler

ConnectionConnection
HandlerHandler

ConnectionConnection
HandlerHandler

Figure 8: Using the Reactor Pattern in TAO’s Event Loop

event demultiplexing system call can be used on Win-
dows NT, whereasselect can be used on UNIX plat-
forms. Moreover, the Reactor pattern simplifies the con-
figuration of new event handlers. For instance, adding a
new Secure Connection Handler that performs en-
cryption/decryption of all network traffic will not affect the
Reactor ’s implementation. Finally, unlike the event demul-
tiplexing code in SunSoft IIOP, which is tightly coupled to
one use-case, the ACE implementation of the Reactor pattern
[8] used by TAO has been applied in many other OO event-
driven applications ranging from HTTP servers [37] to real-
time avionics infrastructure [11].

3.3.3 Managing Connections in an ORB Using the
Acceptor-Connector Pattern

Context: Managing connections is another key responsi-
bility of an ORB Core. For instance, an ORB Core that
implements the IIOP protocol must establish TCP connec-
tions and initialize the protocol handlers for each IIOP
server endpoint . By localizing connection management
logic in the ORB Core, application-specific servants can focus
solely on processing client requests, rather than dealing with
low-level network programming tasks.

An ORB Core is notlimited to running over IIOP and TCP
transports, however. For instance, while TCP can transfer
GIOP requests reliably, its flow control and congestion control
algorithms can preclude its use as a real-time protocol [10].
Likewise, it may be more efficient to use a shared memory
transport mechanism when clients and servants are collocated
on the same endsystem. Thus, an ORB Core should be flexible
enough to support multiple transport mechanisms [16].

Problem: The CORBA architecture explicitly decouples (1)
the connection management tasks performed by an ORB Core

9

from (2) the request processing performed by application-
specific servants. However, a common way to implement
an ORB’s internal connection management activities is to
use low-level network APIs, such as Sockets. Likewise, the
ORB’s connection establishment protocol is often tightly cou-
pled with its communication protocol.

For example, Figure 9 illustrates the connection manage-
ment structure of SunSoft IIOP. The client-side of SunSoft

ORB COREORB CORE
1: lookup()

2: connect() 4: accept()

5: read()/write()

5: read()/write()
clientclient

endpointendpoint

clientclient
endpointendpoint

clientclient
endpointendpoint

serverserver
endpointendpoint

listenerlistener
endpointendpoint

serverserver
endpointendpoint

3: select()3: select()

SERVERCLIENT

Figure 9: Connection Management in SunSoft IIOP

IIOP implements a hard-coded connection cachingstrategy
that uses a linked-list ofclient endpoint objects. As
shown in Figure 9, this list is traversed to find an unused
endpoint whenever (1) client endpoint::lookup is
called. If no unusedclient endpoint to the server is
in the cache, a new connection (2) is initiated; otherwise an
existing connection is reused. Likewise, the server-side uses
a linked list ofserver endpoint objects to generate the
read/write bitmasks required by the (3) select event de-
multiplexing mechanism. This list maintains passive transport
endpoints that (4) accept connections and (5) receive requests
from clients connected to the server.

The problem with SunSoft IIOP’s design is that it tightly
couples (1) the ORB’s connection management implemen-
tation with the socket network programming API and (2)
the TCP/IP connection establishment protocol with the GIOP
communication protocol, thereby yielding the following draw-
backs:

� Inflexibility: If an ORB’s connection management data
structures and algorithms are too closely intertwined, substan-
tial effort is required to modify the ORB Core. For instance,
tightly coupling the ORB to use the Socket API makes it hard
to change the underlying transport mechanism,e.g., to use
shared memory rather than Sockets. Thus, it can be hard to
port such a tightly coupled ORB Core to new communication
mechanisms, such as ATM, Fibrechannel, or shared memory,
or different network programming APIs, such as TLI or Win32
Named Pipes.

� Inefficiency: Many internal ORB strategies can be op-
timized by allowing both ORB developers and application de-
velopers to select appropriate implementations late in the soft-
ware development cycle,e.g., after systematic performance
profiling. For example, to reduce lock contention and over-
head, a multi-threaded, real-time ORB client may need to store
transport endpoints in thread-specific storage [8]. Similarly,
the concurrency strategy for a CORBA server might require
that each connection run in its own thread to eliminate per-
request locking overhead. If connection management mech-
anisms are hard-coded and tightly bound with other internal
ORB strategies, however, it is hard to accommodate efficient
new strategies.

How then can an ORB Core’s connection management com-
ponents support multiple transports and allow connection-
related behaviors to be (re)configured flexibly late in the de-
velopment cycle?

Solution! the Acceptor-Connector pattern: An effective
way to increase the flexibility of ORB Core connection man-
agement and initialization is to apply theAcceptor-Connector
pattern [8]. This pattern decouples connection initialization
from the processing performed after a connection endpoint is
initialized. TheAcceptor component in this pattern is re-
sponsible forpassiveinitialization, i.e., the server-side of the
ORB Core. Conversely, theConnector component in the
pattern is responsible foractive initialization, i.e., the client-
side of the ORB Core. In general, the Acceptor-Connector pat-
tern should be applied when client/server middleware must al-
low flexible configuration of network programming APIs and
must maintain proper separation of initialization roles.

Using the Acceptor-Connector pattern in TAO: TAO uses
the Acceptor-Connector pattern in conjunction with the Reac-
tor pattern to handle connection establishment for GIOP/IIOP
communication. Within TAO’s client-side ORB Core, a
Connector initiates connections to servers in response to an
operation invocation or an explicit binding to a remote object.
Within TAO’s server-side ORB Core, anAcceptor creates a
GIOP Connection Handler to service each new client
connection. Acceptor s and Connection Handler s
both derive from anEvent Handler , which enable them
to be dispatched automatically by aReactor .

TAO’s Acceptors andConnectors can be configured
with any transport mechanisms, such as Sockets or TLI, pro-
vided by the ACE wrapper facades. In addition, TAO’s
Acceptor and Connector can be imbued with custom
strategies to select an appropriate concurrency mechanism, as
described in Section 3.3.4.

Figure 10 illustrates the use ofAcceptor-Connectorstrate-
gies in TAO’s ORB Core. When a client (1) invokes
a remote operation, it makes aconnect call through a
Strategy Connector . This Strategy Connector

10

GIOPGIOP

HandlerHandler

 Strategy Strategy
ConnectorConnector

 Cached Cached

ConnectConnect

StrategyStrategy

ConnectionConnection
HandlerHandler

ReactorReactor

ORBORB CORECORE

SERVERSERVERCLIENTCLIENT

5:5: REQUEST REQUEST//
RESPONSERESPONSE

2: connect()2: connect() 3: accept()3: accept()

0..N

6: DISPATCH()

4: CREATE &
 ACTIVATE

1: operation()

Connection
Handler

Connection
Handler

Connection
Handler

Concurrency

Strategy

 Strategy
Acceptor

Figure 10: Using the Acceptor-Connector Pattern in TAO’s
Connection Management

(2) consults itsconnection strategyto obtain a connection.
In this example, the client uses a “caching connection strat-
egy” that recycles connections to the server and only creates
new connections when existing connections are all busy. This
caching strategy minimizes connection setup time, thereby re-
ducing end-to-end request latency.

In the server-side ORB Core, theReactor notifies
TAO’s Strategy Acceptor to (3) accept newly con-
nected clients and createConnection Handlers . The
Strategy Acceptor delegates the choice of concurrency
mechanism to one of TAO’sconcurrencystrategies,e.g., reac-
tive, thread-per-connection, or thread-per-priority, described
in Section 3.3.4. After aConnection Handler is acti-
vated (4) within the ORB Core, it performs the requisite GIOP
protocol processing (5) on a connection and ultimately dis-
patches (6) the request to the appropriate servant via TAO’s
Object Adapter.

3.3.4 Simplifying ORB Concurrency Using the
Leader/Followers Pattern

Context: After the Object Adapter has dispatched a client
request to the appropriate servant, the servant executes the re-
quest. Execution may occur in the same thread of control as
theConnection Handler that received it. Conversely, ex-
ecution may occur in a different thread, concurrent with other
request executions.

The Real-time CORBA specification [38] defines a thread
pool API. In addition, the CORBA specification defines an in-
terface on the POA for an application to specify that all re-
quests be handled by a single thread or be handled using an
ORB’s internal multi-threading policy. To meet application

QoS requirements, it is important to develop ORBs that im-
plement these various concurrency APIs efficiently [24]. Con-
currency allows long-running operations to execute simulta-
neously without impeding the progress of other operations.
Likewise, preemptive multi-threading is crucial to minimize
the dispatch latency of real-time systems [11].

Concurrency is often implemented via the multi-threading
capabilities available on OS platforms. For instance, Sun-
Soft IIOP supports the two concurrency architectures shown
in Figure 11: a single-threaded Reactive architecture and
a thread-per-connection architecture. SunSoft IIOP’s reac-

select()select()

2: NOTIFY

ORB CORE

server
endpoint

REACTIVE

1: ARRIVAL

3: READ

server
endpoint

select()

2: NOTIFY

ORB CORE

server
endpoint

1: ARRIVAL

3: READ

server
endpoint

THREAD-PER
CONNECTION

Figure 11: SunSoft IIOP Concurrency Architectures

tive concurrency architecture usesselect within a sin-
gle thread to dispatch each arriving request to an individual
server endpoint object, which subsequently reads the re-
quest from the appropriate OS kernel queue. In (1), a request
arrives and is queued by the OS. Then,select fires, (2) no-
tifying the associatedserver endpoint of a waiting re-
quest. Theserver endpoint finally (3) reads the request
from the queue and processes it.

In contrast, SunSoft IIOP’s thread-per-connection architec-
ture executes eachserver endpoint in its own thread
of control, servicing all requests arriving on that connection
within its thread. After a connection is established,select
waits for events on the connection’s descriptor. When (1) re-
quests are received by the OS, the thread performingselect
(2) reads one from the queue and (3) hands it off to a
server endpoint for processing.

Problem: In many ORBs, the concurrency architecture is
programmed directly using the OS platform’s multi-threading
API, such as the POSIX threads API [39]. However, there are
several drawbacks to this approach:

� Non-portable: Threading APIs are highly platform-
specific. Even IEEE standards, such as POSIX threads [39],

11

are not available on many widely-used OS platforms, includ-
ing Win32, VxWorks, and pSoS. Not only is there no direct
syntactic mapping between APIs, but there is no clear map-
ping of semantics either. For instance, POSIX threads sup-
port deferred thread cancellation, whereas Win32 threads do
not. Moreover, although Win32 has a thread termination API,
the Win32 documentation strongly recommendsnot using it
since it does not release all thread resources after a thread ex-
its. Moreover, even POSIX Pthread implementations are non-
portable since many UNIX vendors support different drafts of
the Pthreads specification.

� Hard to program correctly: Portability aside, program-
ming a multi-threaded ORB is hard since application and ORB
developers must ensure that access to shared data is serialized
properly in the ORB and its servants. In addition, the tech-
niques required to robustly terminate servants executing con-
currently in multiple threads are complicated, non-portable,
and non-intuitive.

� Non-extensible: The choice of an ORB concurrency
strategy depends largely on external factors like application
requirements and network/endsystem characteristics. For in-
stance, reactive single-threading [8] is an appropriate strategy
for short duration, compute-bound requests on a uni-processor.
If these external factors change, however, an ORB’s design
should be extensible enough to handle alternative concurrency
strategies, such as thread pool or thread-per-priority [24].

When ORBs are developed using low-level threading APIs,
they are hard to extend with new concurrency strategieswith-
out affecting other ORB components. For example, adding a
thread-per-request architecture to SunSoft IIOP would require
extensive changes in order to (1) store the request in athread-
specific storage(TSS) variable during protocol processing, (2)
pass the key to the TSS variable through the scheduling and
demarshaling steps in the Object Adapter, and (3) access the
request stored in TSS before dispatching the operation on the
servant. Thus, there is no easy way to modify SunSoft IIOP’s
concurrency architecture without drastically changing its in-
ternal structure.

How then can an ORB support a simple, extensible, and
portable concurrency mechanism?

Solution ! the Leader/Followers pattern: An effective
way to increase the portability, correctness, and extensibility
of ORB concurrency strategies is to apply theLeader/Follwers
pattern [8]. This pattern provides an efficient concurrency
model in which multiple threads take turns to share a set of
event sources to detect, demultiplex, dispatch and process ser-
vice requests that occur on the event sources. In general,
the Leader/Followers pattern should be used when an appli-
cation needs to minimize context switching, synchronization,
and data copying, while still allowing multiple threads to run
concurrently.

While Wrapper Facadesprovide the basis for portability,
they are simply a thin syntactic veneer over the low-level na-
tive OS APIs. Moreover, a facade’s semantic behavior may
still vary across platforms. Therefore, the Leader/Followers
pattern defines a higher-level concurrency abstraction that
shields TAO from the complexity of low-level thread fa-
cades. By raising the level of abstraction for ORB developers,
the Leader/Followers pattern makes it easier to define more
portable, flexible, and conveniently programmed ORB concur-
rency strategies. For example, if the number of threads in the
pool is 1, the Leader/Followers pattern behaves just like the
Reactor pattern.

Using the Leader/Followers pattern in TAO: TAO uses
the Leader/Followers pattern to demultiplex GIOP events to
Connection Handler s handlers within a pool of threads.
When using this pattern, an application pre-spawns afixed
number of threads. When these threads invoke TAO’s stan-
dardORB::run method, one thread will become the leader
and wait for a GIOP event. After the leader leader thread de-
tects the event, it promotes an arbitrary thread to become the
next leader it and then demultiplexes the event to its associated
Connection Handler , which processes the event concur-
rently with respect to other threads in the ORB. This sequence
of steps is shown in Figure 12.

ORB CORE

LEADER

FOLLOWERS

2: read()

Reactor

1: select()

3: release()

server endpoint

DISPATCHER

server endpoint

4: dispatch upcall POA

Figure 12: Using the Leader/Followers Pattern to Structure
TAO’s Concurrency Strategies

As shown in Figure 12, a pool of threads is allocated and
a leader thread is chosen toselect (1) on connections for
all servants in the server process. When a request arrives, this
thread reads (2) it into an internal buffer. If this is a valid
request for a servant, a follower thread in the pool is released to
become the new leader (3) and the leader thread dispatches the
upcall (4). After the upcall is dispatched, the original leader
thread becomes a follower and returns to the thread pool. New

12

requests are queued in socket endpoints until a thread in the
pool is available to execute the requests.

3.3.5 Reducing Lock Contention and Priority Inversions
with the Thread-Specific Storage Pattern

Context: The Leader/Followers pattern allows applications
and components in the ORB to run concurrently. The primary
drawback to concurrency, however, is the need toserialize
access to shared resources. In an ORB, common shared re-
sources include the dynamic memory heap, an ORB pseudo-
object reference created by theCORBA::ORBinit initial-
ization factory, theActive ObjectMap in a POA [22], and the
Acceptor , Connector , and Reactor components de-
scribed earlier. A common way to achieve serialization is to
use mutual-exclusion locks on each resource shared by multi-
ple threads.

Problem: In theory, multi-threading an ORB can improve
performance by executing multiple instruction streams simul-
taneously. In addition, multi-threading can simplify inter-
nal ORB design by allowing each thread to execute syn-
chronously, rather than reactively or asynchronously. In prac-
tice, however, multi-threaded ORBs often perform no better,
or even worse, than single-threaded ORBs due to (1) the cost
of acquiring/releasing locks and (2) priority inversions that
arise when high- and low-priority threads contend for the same
locks [40]. In addition, multi-threaded ORBs are hard to pro-
gram due to complex concurrency control protocols used to
avoid race conditions and deadlocks.

Solution ! the Thread-Specific Storage pattern: An ef-
fective way to minimize the amount of locking required to
serialize access to resources shared within an ORB is to use
the Thread-Specific Storagepattern [8]. This pattern allows
multiple threads in an ORB to use one logically global access
point to retrieve thread-specific datawithoutincurring locking
overhead for each access.

In general, the Thread-Specific Storage pattern should be
used when the data shared by objects within each thread must
be accessed through a globally visible access point that is “log-
ically” shared with other threads, but “physically” unique for
each thread.

Using the Thread-Specific Storage Pattern in TAO: TAO
uses the Thread-Specific Storage pattern to minimize lock con-
tention and priority inversion for real-time applications. In-
ternally, each thread in TAO uses thread-specific storage to
store its ORB Core components,e.g., Reactor , Acceptor ,
andConnector . When a thread accesses any of these com-
ponents, they are retrieved by using akey as an index into
the thread’s internal thread-specific state, as shown in Fig-
ure 13. Thus, no additional locking is required to access
thread-specific ORB state.

THREAD ATHREAD A THREAD BTHREAD B

1: ACE_OS::thr_getspecific(key)

2: get_state(key)

ORB THREAD-
SPECIFIC STATE

Reactor

Acceptor

Connector

Reactor

Acceptor

Connector

THREAD-SPECIFIC
OBJECT TABLES

INDEXED BY KEY

Figure 13: Using the Thread-Specific Storage Pattern in TAO

3.3.6 Support Interchangeable ORB Behaviors with the
Strategy Pattern

Context: Extensible ORBs must support multiple request
demultiplexing and scheduling strategies in their Object
Adapters. Likewise, they must support multiple connection es-
tablishment, request transfer, and concurrent request process-
ing strategies in their ORB Cores.

Problem: One way to develop an ORB is to provide only
static, non-extensible strategies, which are typically config-
ured in the following ways:

� Preprocessor macros: Some strategies are determined
by the value of preprocessor macros. For example, since
threading is not available on all OS platforms, conditional
compilation is often used to select a feasible concurrency
model.

� Command-line options: Other strategies are controlled
by the presence or absence of flags on the command-line. For
instance, command-line options can be used to selectively en-
able ORB concurrency strategies for platforms that support
multi-threading [24].

While these two configuration approaches are widely used,
they are inflexible. For instance, preprocessor macros only
support compile-time strategy selection, whereas command-
line options convey a limited amount of information to an
ORB. Moreover, these hard-coded configuration strategies are
divorced completely from any code they might affect. Thus,
ORB components that want to use these options must (1) know
of their existence, (2) understand their range of values, and (3)
provide an appropriate implementation for each value. Such
restrictions make it hard to develop highly extensible ORBs
that are composed from transparently configurable strategies.

How then does an ORB (1) permit replacement of subsets of
component strategies in a manner orthogonal and transparent
to other ORB components and (2) encapsulate the state and

13

behavior of each strategy so that changes to one component
do not permeate throughout an ORB haphazardly?

Solution! the Strategy pattern: An effective way to sup-
port multiple transparently “pluggable” ORB strategies is to
apply theStrategypattern [15]. This pattern factors out sim-
ilarities among algorithmic alternatives and explicitly asso-
ciates the name of a strategy with its algorithm and state.
Moreover, the Strategy pattern removes lexical dependencies
on strategy implementations since applications access special-
ized behaviors only through common base class interfaces. In
general, the Strategy pattern should be used when an applica-
tion’s behavior can be configured via multiple interchangeable
strategies.

Using the Strategy Pattern in TAO: TAO uses a variety
of strategies to factor out behaviors that are often hard-coded
in conventional ORBs. Several of these strategies are illus-
trated in Figure 14. For instance, TAO supports multiple re-

Thread-Thread-
SpecificSpecific
ConnectConnect
StrategyStrategy

 Cached Cached
ConnectConnect
StrategyStrategy

 Reactive Reactive
ConcurrencyConcurrency

StrategyStrategy

 Threaded Threaded
ConcurrencyConcurrency

StrategyStrategy

SERVANT SERVANT 11 SERVANT NSERVANT N

IDLIDL

SKEL SKEL 22
IDLIDL

SKEL NSKEL N

ORB COREORB CORE

SERVERSERVERCLIENTCLIENT

......

S
E

R
V

A
N

T
S

E
R

V
A

N
T
N

::
N

::
O

P
E

R
A

T
IO

N
O

P
E

R
A

T
IO

N
KK

S
E

R
V

A
N

T
S

E
R

V
A

N
T
N

::
N

::
O

P
E

R
A

T
IO

N
O

P
E

R
A

T
IO

N
11

S
E

R
V

A
N

T
S

E
R

V
A

N
T
1
::

1
::

O
P

E
R

A
T

IO
N

O
P

E
R

A
T

IO
N

KK

S
E

R
V

A
N

T
S

E
R

V
A

N
T
1
::

1
::

O
P

E
R

A
T

IO
N

O
P

E
R

A
T

IO
N

22

S
E

R
V

A
N

T
S

E
R

V
A

N
T
1
::

1
::

O
P

E
R

A
T

IO
N

O
P

E
R

A
T

IO
N

11

(B) ACTIVE DEMUXING STRATEGY

index(object key)
......

......

(A) PERFECT HASHING

 DEMUXING

STRATEGY

O
P

E
R

A
T

IO
N

O
P

E
R

A
T

IO
N

KK

O
P

E
R

A
T

IO
N

O
P

E
R

A
T

IO
N

22

......

O
P

E
R

A
T

IO
N

O
P

E
R

A
T

IO
N

11

hash(operation)

hash(object key) OBJECTOBJECT

ADAPTERADAPTER

IDLIDL

SKEL SKEL 11

SERVANT SERVANT 22

ORB COREORB CORE

ORB COREORB CORE

StrategyStrategy
AcceptorAcceptor

StrategyStrategy
ConnectorConnector

Figure 14: ORB Core and POA Strategies in TAO

quest demultiplexing strategies (e.g., perfect hashing vs. active
demultiplexing [36]) and dispatching strategies (i.e., FIFO vs.
rate-based) in its Object Adapter, as well as connection man-
agement strategies (e.g., process-wide cached connections vs.
thread-specific cached connections) and handler concurrency
strategies (e.g., Reactive vs. variations of Leader/Followers)
in its ORB Core.

3.3.7 Consolidate ORB Strategies Using the Abstract
Factory Pattern

Context: There are many potential strategy variants sup-
ported by TAO. Table 1 shows a simple example of the strate-
gies used to create two configurations of TAO. Configuration 1

Strategy Configuration
Application Concurrency Dispatching Demultiplexing Protocol

Avionics Thread-per Priority Perfect VME
priority -based hashing backplane

Medical Thread-per FIFO Active TCP/IP
Imaging connection demultiplexing

Table 1: Example Applications and their ORB Strategy Con-
figurations

is an avionics application with deterministic real-time require-
ments [11]. Configuration 2 is an electronic medical imaging
application [41] with high throughput requirements. In gen-
eral, the forces that must be resolved to compose all ORB
strategies correctly are the need to (1) ensure the configura-
tion of semantically compatible strategies and (2) simplify the
management of a large number of individual strategies.

Problem: An undesirable side-effect of using the Strategy
pattern extensively in complex ORB software–as well as other
types of software–is that it becomes hard to manage extensi-
bility for the following reasons:

�Complicated configuration and evolution: ORB source
code can become littered with hard-coded references to strat-
egy types, which complicates configuration and evolution. For
example, within a particular application domain, such as real-
time avionics or medical imaging, many independent strate-
gies must act harmoniously. Identifying these strategies indi-
vidually by name, however, requires tedious replacement of
selected strategies in one domain with a potentially different
set of strategies in another domain.

� Semantic incompatibilities: It is not always possible
for certain ORB strategy configurations to interact compati-
bly. For instance, the FIFO strategy for scheduling requests
shown in Table 1 may not work with the thread-per-priority
concurrency architecture. The problem stems from semantic
incompatibilities between scheduling requests in their order of
arrival (i.e., FIFO queueing) vs. dispatching requests based on
their relative priorities (i.e., preemptive priority-based thread
dispatching). Moreover, some strategies are only useful when
certain preconditions are met. For instance, the perfect hash-
ing demultiplexing strategy is generally feasible only for sys-
tems that statically configure all servants off-line [22].

How can a highly-configurable ORB reduce the complexi-
ties required to manage its myriad strategies, as well as enforce
semantic consistency when combining discrete strategies?

14

Solution ! the Abstract Factory pattern: An effective
way to consolidate multiple ORB strategies into semantically
compatible configurations is to apply theAbstract Factorypat-
tern [15]. This pattern provides a single access point that
integrates all strategies used to configure an ORB. Concrete
subclasses then aggregate compatible application-specific or
domain-specific strategies, which can be replaceden massein
semantically meaningful ways. In general, the Abstract Fac-
tory pattern should be used when an application must consoli-
date the configuration of many strategies, each having multiple
alternatives that must vary together.

Using the Abstract Factory pattern in TAO: All of TAO’s
ORB strategies are consolidated into two abstract factories that
are implemented as Singletons [15]. One factory encapsulates
client-specific strategies, the other factory encapsulates server-
specific strategies, as shown in Figure 15. These abstract fac-

Dispatching

Strategy

Demuxing

Strategy

ORB

Server

Abstract

Factory

 Concurrency

Strategy
 Thread-

per-

Connection

FIFO

Dispatching

 Perfect

Hashing

 Avionics Avionics
ConcreteConcrete
FactoryFactory

 Rate-based Rate-based

DispatchingDispatching

 Thread- Thread-

per-per-

PriorityPriority

ActiveActive

DemuxingDemuxing

 Medical Medical
ImagingImaging
ConcreteConcrete
FactoryFactory

Figure 15: Factories used in TAO

tories encapsulate request demultiplexing, scheduling, and dis-
patch strategies in the server, as well as concurrency strategies
in both client and server. By using the Abstract Factory pat-
tern, TAO can configure different ORB personalities conve-
niently and consistently.

3.3.8 Dynamically Configure ORBs with the Component
Configurator Pattern

Context: The cost of many computing resources, such as
memory and CPUs, continues to drop. However, ORBs must
still avoid excessive consumption of finite system resources.
This parsimony is particularly essential for embedded and
real-time systems that require small memory footprints and
predictable CPU utilization [20]. Many applications can also
benefit from the ability to extend ORBsdynamically, i.e., by
allowing their strategies to be configured at run-time.

Problem: Although the Strategy and Abstract Factory pat-
terns simplify the customization of ORBs for specific appli-

cation requirements and system characteristics, these patterns
can still cause the following problems for extensible ORBs:

� High resource utilization: Widespread use of the Strat-
egy pattern can substantially enlarge the number of strategies
configured into an ORB, which can increase the system re-
sources required to run an ORB.

� Unavoidable system downtime: If strategies are config-
ured statically at compile-time or static link-time using ab-
stract factories, it is hard to enhance existing strategies or add
new strategies without (1) changing the existing source code
for the consumer of thestrategyor theabstract factory, (2)
recompiling and relinking an ORB, and (3) restarting running
ORBs and their application servants.

Although it does not use the Strategy pattern explicitly, Sun-
Soft IIOP does permit applications to vary certain ORB strate-
gies at run-time. However, these different strategies must
be configured statically into SunSoft IIOP at compile-time.
Moreover, as the number of alternatives increases, so does the
amount of code required to implement them. For instance,
Figure 16 illustrates SunSoft IIOP’s approach to varying the
concurrencystrategy.

ORB COREORB CORE

OBJECTOBJECT ADAPTERADAPTER

DEMUXING

CODE

CONCURRENCY

CODE if (do_thread)
 // take lock...

...

if (do_thread)
 // release
lock...

CONNECTION

MANAGEMENT

CODE

if (do_thread)

 // thread...

else

 // single-threaded

Figure 16: SunSoft IIOP Hard-coded Strategy Usage

Each area of code that might be affected by the choice
of concurrency strategy is trusted to act independently of
other areas. This proliferation of decision points adversely
increases the complexity of the code, complicating future
enhancement and maintenance. Moreover, the selection of
the data type specifying the strategy complicates integration
of new concurrency architectures because the type (bool)
would have to change, as well as the programmatic structure,
if (do thread) then ... else ... , that decodes
the strategy specifier into actions.

In general, static configuration is only feasible for a small,
fixed number of strategies. However, configuring complex

15

ORB middleware (1) statically complicates evolution, (2) in-
creases system resource utilization, and (3) leads to unavoid-
able system downtime to modify existing components.

How then does an ORB implementation reduce the “overly-
large, overly-static” side-effects stemming from pervasive use
of the Strategy and Abstract Factory patterns?

Solution ! the Component Configurator pattern: An
effective way to enhance the dynamism of an ORB is
to apply the Component Configuratorpattern [8]. This
pattern uses explicit dynamic linking [28] mechanisms to
obtain, utilize, and/or remove the run-time address bind-
ings of custom strategy and abstract factory objects into
an ORB at installation-time and/or run-time. Widely
available explicit dynamic linking mechanisms include the
dlopen/dlsym/dlclose functions in SVR4 UNIX [42]
and theLoadLibrary/GetProcAddress functions in
the WIN32 subsystem of Windows NT [43]. The ACE wrap-
per facades used by TAO portably encapsulate these OS APIs.

By using the Component Configurator pattern, thebehav-
iors of ORB strategies are decoupled fromwhenthe strategy
implementations are configured into an ORB. For instance,
ORB strategies can be linked into an ORB from dynamically
linked libraries (DLL)s at compile-time, installation-time, or
even during run-time. Moreover, the Component Configura-
tor pattern can reduce the memory footprint of an ORB by
allowing application developers and/or system administrators
to dynamically link only those strategies that are necessary for
a specific ORB personality.

In general, the Component Configurator pattern should be
used when (1) an application wants to configure its con-
stituent components dynamically and (2) conventional tech-
niques, such as command-line options, are insufficient due to
the number of possibilities or the inability to anticipate the
range of values.

Using the Component Configurator pattern in TAO:
TAO uses the Component Configurator pattern in conjunction
with the Strategy and Abstract Factory patterns to dynamically
install the strategies it requires without (1) recompiling or stat-
ically relinking existing code or (2) terminating and restarting
an existing ORB and its application servants. This design al-
lows the behavior of TAO to be tailored for specific platforms
and application requirements without requiring access to, or
modification of, ORB source code.

In addition, the Component Configurator pattern allows ap-
plications to customize the personality of TAO at run-time. For
instance, during TAO’s ORB initialization phase, it uses the
dynamic linking mechanisms provided by the OS (and encap-
sulated by the ACE wrapper facades) to link in the appropriate
concrete factory for a particular use-case. Figure 17 shows two
factories tuned for different application domains supported by
TAO: avionics and medical imaging.

dynamic ORB Service_Object *
 avionics_orb:make_orb() "-ORBport 2001"

Priority-basedPriority-based
DispatchingDispatching

TAOTAO
PROCESSPROCESS

DLLDLLSS

 Thread-per Thread-per
RateRate

ConcurrencyConcurrency

AvionicsAvionics
ConcreteConcrete
FactoryFactory

PerfectPerfect
HashingHashing

 Service Service
RepositoryRepository

ActiveActive
DemuxingDemuxing

MedicalMedical
ImagingImaging
ConcreteConcrete
FactoryFactory

FIFOFIFO
DispatchingDispatching

Thread-perThread-per
ConnectionConnection

ConcurrencyConcurrency

svc.conf
FILE

Figure 17: Using the Component Configurator Pattern in TAO

In the configuration shown in Figure 17, the Component
Configurator has consulted thecomp.conf script and in-
stalled the avionics concrete factory in the process. Appli-
cations using this ORB personality will be configured with a
particular set of ORB concurrency, demultiplexing, and dis-
patching strategies. The medical imaging concrete factory re-
sides in a DLL outside of the existing ORB process. To config-
ure a different ORB personality, this factory could be installed
dynamically during TAO’s ORB server initialization phase.

3.4 Summary of Design Challenges and Pat-
terns That Resolve Them

Table 2 summarizes the mapping between ORB design chal-
lenges and the patterns in the pattern language that we ap-
plied to resolve these challenges in TAO. This table focuses

Forces Resolving Pattern

Abstracting low-level system calls Wrapper Facade
ORB event demultiplexing Reactor
ORB connection management Acceptor-Connector
Efficient concurrency models Leader/Followers
Pluggable strategies Strategy
Group similar initializations Abstract Factory
Dynamic run-time configuration Component Configurator

Table 2: Summary of Forces and Their Resolving Patterns

on the forces resolved by individual patterns. However, TAO
also benefits from the collaborations amongmultiplepatterns
in the pattern language. For example, the Acceptor and Con-
nector patterns utilize the Reactor pattern to notify them when
connection events occur at the OS level.

Moreover, patterns often must collaborate to alleviate draw-
backs that arise from applying them in isolation. For instance,

16

the reason the Abstract Factory pattern is used in TAO is to
avoid the complexity caused by its extensive use of the Strat-
egy pattern. Although the Strategy pattern simplifies the effort
required to customize an ORB for specific application require-
ments and network/endsystem characteristics, it is tedious and
error-prone to manage a large number of strategy interactions
manually.

3.5 Evaluating the Contribution of Patterns to
ORB Middleware

Section 3.3 described the pattern language used in TAO and
qualitatively evaluated how these patterns helped to alleviate
limitations with the design of SunSoft IIOP. The discussion
below goes one step further and quantitatively evaluates the
benefits of applying patterns to ORB middleware.

3.5.1 Where’s the Proof?

Implementing TAO using a pattern language yielded signif-
icant quantifiable improvements in software reusability and
maintainability. The results are summarized in Table 3. This
table compares the following metrics for TAO and SunSoft
IIOP:

1. The number of methods required to implement key ORB
tasks (such as connection management, request transfer,
socket and request demultiplexing, marshaling, and dis-
patching).

2. The total non-comment lines of code (LOC) for these
methods.

3. The average McCabe Cyclometric Complexity metric
v(G) [44] of the methods. Thev(G) metric uses graph
theory to correlate code complexity with the number of
possible basic paths that can be taken through a code
module. In C++, a module is defined as a method.

The use of patterns in TAO significantly reduced the amount
of ad hoccode and the complexity of certain operations. For
instance, the total lines of code in the client-sideConnection
Managementoperations were reduced by a factor of 5. More-
over, the complexity for this component was substantially re-
duced by a factor of 16. These reductions in LOC and com-
plexity stem from the following factors:

� These ORB tasks were the focus of our initial work when
developing TAO.

� Many of the details of connection management and
socket demultiplexing were subsumed by patterns and
components in the ACE framework, in particular, the Ac-
ceptor, Connector, and Reactor.

Other areas did not yield as much improvement. In par-
ticular, GIOP Invocationtasks actually increased in size and
maintained a consistentv(G). There were two reasons for this
increase:

1. The primary pattern applied in these cases was the Wrap-
per Facade, which replaced the low-level system calls
with ACE wrappers but did not factor out common strate-
gies; and

2. SunSoft IIOP did not trap all the error conditions, which
TAO addressed much more completely. Therefore, the
additional code in TAO is necessary to provide a more
robust ORB.

The most compelling evidence that the systematic applica-
tion of patterns can positively contribute to the maintainability
of complex software is shown in Figure 18. This figure illus-

1 − 5 6 − 10 > 10
MVG Range

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0
%

 M
et

ho
ds

 in
 R

an
ge

SunSoft IIOP
TAO

Figure 18: Distribution ofv(G) Over ORB Methods

trates the distribution ofv(G) over the percentage of affected
methods in TAO. As shown in the figure, most of TAO’s code
is structured in a straightforward manner, with almost 70% of
the methods’v(G) falling into the range of 1-5.

In contrast, while SunSoft IIOP has a substantial percent-
age (55%) of its methods in that range, many of the remaining
methods (29%) havev(G) greater than 10. The reason for the
difference is that SunSoft IIOP uses a monolithic coding style
with long methods. For example, the average length of meth-
ods with v(G) over 10 is over 80 LOC. This yields overly-
complex code that is hard to debug and understand.

In TAO, most of the monolithic SunSoft IIOP methods were
decomposed into smaller methods when integrating the pat-
terns. The majority (86%) of TAO’s methods havev(G) under
10. Of that number, nearly 70% have av(G) between 1 and 5.

17

TAO SunSoft IIOP
ORB Task # Methods Total LOC Avg.v(G) # Methods Total LOC Avg.v(G)

Connection Management (Server) 2 43 7 3 190 14
Connection Management (client) 3 11 1 1 64 16
GIOP Message Send (client/Server) 1 46 12 1 43 12
GIOP Message Read (client/Server) 1 67 19 1 56 18
GIOP Invocation (client) 2 205 26 2 188 27
GIOP Message Processing (client/Server) 3 41 2 1 151 24
Object Adapter Message Dispatch (Server) 2 79 6 1 61 10

Table 3: Code Statistics: TAO vs. SunSoft IIOP

The relatively few (14%) methods in TAO withv(G) greater
than 10 are largely unchanged from the original SunSoft IIOP
TypeCode interpreter. Subsequent releases of TAO have com-
pletely removed the TypeCode interpreter and replaced it with
stubs and skeletons generated automatically by TAO’s IDL
compiler. Thus, there is no need for TAO ORB developers
to maintain this code anymore.

In general, the use of monolithic methods in SunSoft IIOP
not only increased its maintenance effort, it also degrades its
performance due to reduced processor cache hits [20]. There-
fore, we plan to experiment with the application of other pat-
terns, such asCommandandTemplate Method[15], to sim-
plify and optimize these monolithic methods into smaller,
more cohesive methods.

3.5.2 What are the Benefits?

In general, the applying a pattern language to TAO yielded the
following benefits:

Increased extensibility: Patterns such as Abstract Factory,
Strategy, and Component Configurator simplify the configura-
tion of TAO for a particular application domain by allowing
extensibility to be “designed into” the ORB. In contrast, DOC
middleware lacking these patterns is significantly harder to ex-
tend.

Enhanced design clarity: By applying a pattern language
to TAO, not only did we develop a more extensible ORB, we
also devised a richer vocabulary for expressing ORB middle-
ware designs. In particular, a pattern language captures and
articulates the design rationale for complex object-structures
in an ORB. Moreover, it helps to demystify and motivate the
structure of an ORB by describing its architecture in terms of
design forces that recur in many types of software systems.
The expressive power of a pattern language enabled us to con-
cisely convey the design of complex software systems, such as
TAO. As we continue to learn about ORBs and the patterns of
which they are composed, we expect our pattern vocabulary
to grow and evolve into an even more comprehensive pattern
language.

Increased portability and reuse: TAO is built atop the
ACE framework, which provides implementations of many
key communication software patterns[28]. Using ACE sim-
plified the porting of TAO to numerous OS platforms since
most of the porting effort was absorbed by the ACE frame-
work maintainers. In addition, since the ACE framework is
rich with configurable high-performance, real-time network-
oriented components, we were able to achieve considerable
code reuse by leveraging the framework. This is indicated by
the consistent decrease in lines of code (LOC) in Table 3.

3.5.3 What are the Liabilities?

The use of a pattern language can also incur some liabilities.
We summarize these liabilities below and discuss how we min-
imize them in TAO.

Abstraction penalty: Many patterns use indirection to in-
crease component decoupling. For instance, the Reactor pat-
tern uses virtual methods to separate the application-specific
Event Handler logic from the general-purpose event de-
multiplexing and dispatching logic. The extra indirection in-
troduced by using these pattern implementations can poten-
tially decrease performance. To alleviate these liabilities, we
carefully applied C++ programming language features (such
as inline functions and templates) and other optimizations
(such as eliminating demarshaling overhead [20] and demul-
tiplexing overhead [36]) to minimize performance overhead.
As a result, TAO is substantially faster than the original hard-
coded SunSoft IIOP [20].

Additional external dependencies: Whereas SunSoft IIOP
only depends on system-level interfaces and libraries, TAO de-
pends on wrapper facades in the ACE framework. Since ACE
encapsulates a wide range of low-level OS mechanisms, the
effort required to port it to a new platform could potentially
be higher than porting SunSoft IIOP, which only uses a sub-
set of the OS’s APIs. However, since ACE has been ported to
many platforms already, the effort to port to new platforms is
relatively low. Most sources of platform variation have been
isolated to a few modules in ACE.

18

4 Concluding Remarks

This paper presented a case study illustrating how we applied
a pattern language to enhance the extensibility of TAO, which
is a dynamically configurable ORB that is targeted for dis-
tributed applications with high-performance and real-time re-
quirements. We found qualitative and quantitative evidence
that the use of this pattern language helped to clarify the struc-
ture of, and collaboration between, components that perform
key ORB tasks. These tasks include event demultiplexing and
event handler dispatching, connection establishment and ini-
tialization of application services, concurrency control, and
dynamic configuration. In addition, patterns improved TAO’s
performance and predictability by making it possible to trans-
parently configure lightweight and optimized strategies for
processing client requests.

A principal benefit of applying a pattern language to guide
TAO’s design is that the systematic application of patterns
in the language improved the decoupling and object-oriented
structure of the ORB significantly. The patterns we used were
applied in roughly the same order that they appear in Sec-
tion 3.3. Each evolution of TAO leveraged upon the results of
prior evolutions. This iterative process revealed new insights
on which patterns in the language could be applied and how
they might be applied in subsequent stages.

The complete C++ source code, examples, and docu-
mentation for ACE and TAO is freely available at URL
www.cs.wustl.edu/ �schmidt/TAO.html .

References
[1] R. Johnson, “Frameworks = Patterns + Components,”Communications

of the ACM, vol. 40, Oct. 1997.

[2] S. Vinoski, “CORBA: Integrating Diverse Applications Within Dis-
tributed Heterogeneous Environments,”IEEE Communications Maga-
zine, vol. 14, February 1997.

[3] J. A. Zinky, D. E. Bakken, and R. Schantz, “Architectural Support for
Quality of Service for CORBA Objects,”Theory and Practice of Object
Systems, vol. 3, no. 1, 1997.

[4] Object Management Group,The Common Object Request Broker: Ar-
chitecture and Specification, 2.2 ed., Feb. 1998.

[5] D. Box, Essential COM. Addison-Wesley, Reading, MA, 1997.

[6] A. Wollrath, R. Riggs, and J. Waldo, “A Distributed Object Model
for the Java System,”USENIX Computing Systems, vol. 9, Novem-
ber/December 1996.

[7] D. C. Schmidt, “Experience Using Design Patterns to Develop Reuse-
able Object-Oriented Communication Software,”Communications of
the ACM (Special Issue on Object-Oriented Experiences), vol. 38, Oc-
tober 1995.

[8] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,Pattern-
Oriented Software Architecture: Patterns for Concurrency and Dis-
tributed Objects, Volume 2. New York, NY: Wiley & Sons, 2000.

[9] D. C. Schmidt, “Applying a Pattern Language to Develop Application-
level Gateways,” inDesign Patterns in Communications(L. Rising, ed.),
Cambridge University Press, 2000.

[10] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and Perfor-
mance of Real-Time Object Request Brokers,”Computer Communica-
tions, vol. 21, pp. 294–324, Apr. 1998.

[11] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The Design and
Performance of a Real-time CORBA Event Service,” inProceedings of
OOPSLA ’97, (Atlanta, GA), ACM, October 1997.

[12] S. Mungee, N. Surendran, and D. C. Schmidt, “The Design and Perfor-
mance of a CORBA Audio/Video Streaming Service,” inProceedings of
the Hawaiian International Conference on System Sciences, Jan. 1999.

[13] C. O’Ryan, D. C. Schmidt, and D. Levine, “Applying a Scalable
CORBA Events Service to Large-scale Distributed Interactive Simula-
tions,” in Proceedings of the5th Workshop on Object-oriented Real-
time Dependable Systems, (Montery, CA), IEEE, Nov. 1999.

[14] Object Management Group,The Common Object Request Broker: Ar-
chitecture and Specification, 2.3 ed., June 1999.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Patterns: El-
ements of Reusable Object-Oriented Software. Reading, MA: Addison-
Wesley, 1995.

[16] C. O’Ryan, F. Kuhns, D. C. Schmidt, and J. Parsons, “Applying Patterns
to Develop a Pluggable Protocols Framework for ORB Middleware,” in
Design Patterns in Communications(L. Rising, ed.), Cambridge Uni-
versity Press, 2000.

[17] E. Eide, K. Frei, B. Ford, J. Lepreau, and G. Lindstrom, “Flick: A
Flexible, Optimizing IDL Compiler,” inProceedings of ACM SIGPLAN
’97 Conference on Programming Language Design and Implementation
(PLDI), (Las Vegas, NV), ACM, June 1997.

[18] M. Henning, “Binding, Migration, and Scalability in CORBA,”Com-
munications of the ACM special issue on CORBA, vol. 41, Oct. 1998.

[19] Object Management Group,Realtime CORBA Joint Revised Submis-
sion, OMG Document orbos/99-02-12 ed., March 1999.

[20] A. Gokhale and D. C. Schmidt, “Optimizing a CORBA IIOP Proto-
col Engine for Minimal Footprint Multimedia Systems,”Journal on Se-
lected Areas in Communications special issue on Service Enabling Plat-
forms for Networked Multimedia Systems, vol. 17, Sept. 1999.

[21] D. C. Schmidt, “GPERF: A Perfect Hash Function Generator,” inPro-
ceedings of the2nd C++ Conference, (San Francisco, California),
pp. 87–102, USENIX, April 1990.

[22] I. Pyarali, C. O’Ryan, D. C. Schmidt, N. Wang, V. Kachroo, and
A. Gokhale, “Using Principle Patterns to Optimize Real-time ORBs,”
Concurrency Magazine, vol. 8, no. 1, 2000.

[23] C. D. Gill, D. L. Levine, and D. C. Schmidt, “The Design and Perfor-
mance of a Real-Time CORBA Scheduling Service,”The International
Journal of Time-Critical Computing Systems, special issue on Real-Time
Middleware, to appear 2000.

[24] D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale, “Software
Architectures for Reducing Priority Inversion and Non-determinism in
Real-time Object Request Brokers,”Journal of Real-time Systems, spe-
cial issue on Real-time Computing in the Age of the Web and the Inter-
net, To appear 2000.

[25] C. O’Ryan, F. Kuhns, D. C. Schmidt, O. Othman, and J. Parsons, “The
Design and Performance of a Pluggable Protocols Framework for Real-
time Distributed Object Computing Middleware,” inProceedings of the
Middleware 2000 Conference, ACM/IFIP, Apr. 2000.

[26] F. Kuhns, D. C. Schmidt, C. O’Ryan, and D. Levine, “Supporting High-
performance I/O in QoS-enabled ORB Middleware,”Cluster Comput-
ing: the Journal on Networks, Software, and Applications, 2000.

[27] Z. D. Dittia, G. M. Parulkar, and J. R. Cox, Jr., “The APIC Approach
to High Performance Network Interface Design: Protected DMA and
Other Techniques,” inProceedings of INFOCOM ’97, (Kobe, Japan),
pp. 179–187, IEEE, April 1997.

[28] D. C. Schmidt, “Applying Design Patterns and Frameworks to Develop
Object-Oriented Communication Software,” inHandbook of Program-
ming Languages(P. Salus, ed.), MacMillan Computer Publishing, 1997.

[29] A. B. Arulanthu, C. O’Ryan, D. C. Schmidt, M. Kircher, and J. Par-
sons, “The Design and Performance of a Scalable ORB Architecture for
CORBA Asynchronous Messaging,” inProceedings of the Middleware
2000 Conference, ACM/IFIP, Apr. 2000.

19

[30] C. O’Ryan, D. C. Schmidt, F. Kuhns, M. Spivak, J. Parsons, I. Pyarali,
and D. Levine, “Evaluating Policies and Mechanisms for Supporting
Embedded, Real-Time Applications with CORBA 3.0,” inProceedings
of the6th IEEE Real-Time Technology and Applications Symposium,
(Washington DC), IEEE, May 2000.

[31] B. Natarajan, A. Gokhale, D. C. Schmidt, and S. Yajnik, “DOORS: To-
wards High-performance Fault-Tolerant CORBA,” inProceedings of the
2nd International Symposium on Distributed Objects and Applications
(DOA 2000), (Antwerp, Belgium), OMG, Sept. 2000.

[32] B. Natarajan, A. Gokhale, D. C. Schmidt, and S. Yajnik, “Applying
Patterns to Improve the Performance of Fault-Tolerant CORBA,” in
Proceedings of the 7th International Conference on High Performance
Computing (HiPC 2000), (Bangalore, India), ACM/IEEE, Dec. 2000.

[33] J. Hu, S. Mungee, and D. C. Schmidt, “Principles for Developing and
Measuring High-performance Web Servers over ATM,” inProceeedings
of INFOCOM ’98, March/April 1998.

[34] F. Kon, M. Roman, P. Liu, J. Mao, T. Yamane, L. Magalhaes, and
R. Campbell, “Monitoring, Security, and Dynamic Configuration with
the dynamicTAO Reflective ORB,” inProceedings of the Middleware
2000 Conference, ACM/IFIP, Apr. 2000.

[35] M. Roman, M. D. Mickunas, F. Kon, and R. Campbell, “LegORB and
Ubiquitous CORBA,” inReflective Middleware Workshop, ACM/IFIP,
Apr. 2000.

[36] A. Gokhale and D. C. Schmidt, “Measuring and Optimizing CORBA
Latency and Scalability Over High-speed Networks,”Transactions on
Computing, vol. 47, no. 4, 1998.

[37] J. Hu and D. C. Schmidt, “JAWS: A Framework for High Performance
Web Servers,” inDomain-Specific Application Frameworks: Frame-
works Experience by Industry(M. Fayad and R. Johnson, eds.), Wiley
& Sons, 1999.

[38] Object Management Group,OMG Real-time Request for Proposal,
OMG Document ptc/97-06-20 ed., June 1997.

[39] IEEE, Threads Extension for Portable Operating Systems (Draft 10),
February 1996.

[40] D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale, “Alleviat-
ing Priority Inversion and Non-determinism in Real-time CORBA ORB
Core Architectures,” inProceedings of the4th IEEE Real-Time Tech-
nology and Applications Symposium, (Denver, CO), IEEE, June 1998.

[41] I. Pyarali, T. H. Harrison, and D. C. Schmidt, “Design and Perfor-
mance of an Object-Oriented Framework for High-Performance Elec-
tronic Medical Imaging,”USENIX Computing Systems, vol. 9, Novem-
ber/December 1996.

[42] R. Gingell, M. Lee, X. Dang, and M. Weeks, “Shared Libraries in
SunOS,” inProceedings of the Summer 1987 USENIX Technical Con-
ference, (Phoenix, Arizona), 1987.

[43] D. A. Solomon,Inside Windows NT, 2nd Ed.Redmond, Washington:
Microsoft Press, 2nd ed., 1998.

[44] T. J. McCabe, “A Complexity Measure,”IEEE Transactions on Software
Engineering, vol. SE-2, Dec. 1976.

20

