Half-Sync/Half-Async

An Architectural Pattern for Efficient and Well-structured Concurrent 1/0

Douglas C. Schmidt and Charles D. Cranor
schmidt@cs.wustl.edu and chuck@mariawustl.edu
Department of Computer Science
Washington University
St. Louis, MO 63130, (314) 935-7538

An earlier version of this paper appeared in a chapter in
the book “Pattern Languages of Program Design 2" I1SBN
0-201-89527-7, edited by John Vlissides, Jim Coplien, and
Norm Kerth published by Addison-Wesley, 1996.

Abstract

This paper describes the Half-Sync/Half-Async pattern,
which integrates synchronous and asynchronous I/0 models
to support both programming simplicity and execution effi-
ciency in complex concurrent software systems. In this pat-
tern, higher-level tasks use a synchronous 1/0 model, which
simplifies concurrent programming. In contrast, lower-level
tasks use an asynchronous 1/0 model, which enhances ex-
ecution efficiency. This pattern is widely used in operating
systems such as UNI X, Mach, WindowsNT, and VMS, aswel |
as other complex concurrent systems.

1 Intent

The Half-Sync/Haf-Async pattern decouples synchronous
I/0O from asynchronous|/Oinasystemto simplify concurrent
programming effort without degrading execution efficiency.

2 Motivation

To illustrate the Half-Sync/Ha f-Async pattern, consider the
software architecture of the BSD UNIX [1] networking sub-
system shown in Figure 1. The BSD UNIX kernel coor-
dinates I/O between asynchronous communication devices
(such as network adapters and terminals) and applications
running on the OS. Packets arriving on communication de-
vices are ddivered to the OS kernel via interrupt handlers
initiated asynchronously by hardware interrupts. These han-
dlers receive packets from devices and trigger higher layer
protocol processing (such as IR, TCP, and UDP). Vaid pack-
ets containing application dataare queued at the Socket layer.
The OS then dispatches any user processes waiting to con-
sume the data. These processes synchronously receive data
from the Socket layer using ther ead system call. A user
process can make r ead calls at any point; if the data is not

SYNC USER
PROCESS |

USER-LEVEL
PROCESSES

SOCKET QUEUES |_ _____

/ 3: enqueue (data)
ASYNC

PROTOCOL
PROCESSING

SOCKET
LAYER
[
[
[
[
!

BSD UNIX
KERNEL

NETWORK
INTERFACES

Figure1: BSD UNIX Software Architecture

availablethe processwill slegp until thedata arrivesfrom the
network.

In the BSD architecture, the kernd performs 1/0 asyn-
chronoudly in response to device interrupts. In contrast,
user-level applicationsperform 1/O synchronously. This sep-
aration of concerns into a “half synchronous and half asyn-
chronous’ concurrent 1/O structure resolves the following
two forces:

e Need for programming simplicity: Programming an
asynchronous I/O model can be complex because input and
output operations are triggered by interrupts. Asynchrony
can cause subtle timing problems and race conditions when
the current thread of control is preempted by an interrupt
handler. Moreover, interrupt-driven programs require ex-
tra data structures in addition to the run-time stack. These
data structures are used to save and restore state explicitly

when events occur asynchronously. In addition, debugging
asynchronous programs is hard since external events occur
at different points of time during program execution.

In contrast, programming applicationswith a synchronous
I/O modd is easier because I/O operations occur at well de-
fined pointsin the processing sequence. Moreover, programs
that use synchronous I/O can block awaiting the completion
of 1/O operations. The use of blocking 1/0 allows programs
to maintain state information and execution history in arun-
time stack of activation records, rather than in separate data
structures. Thus, there is a strong incentive to use a syn-
chronous I/0 model to simplify programming.

o Need for execution efficiency: The asynchronous /0O
model maps efficiently onto hardware devicesthat aredriven
by interrupts. Asynchronous!/O enables communication and
computation to proceed simultaneously. In addition, context
switching overhead is minimized because the amount of in-
formation necessary to maintain program state is relatively
small [2]. Thus, there is a strong incentive to use an asyn-
chronous 1/0 model to improve run-time performance.

In contrast, a completely synchronous 1/0 model may be
inefficient if each source of events (such as network adapter,
terminal, or timer) is associated with a separate active object
(such as a process or thread). Each of these active objects
contain a number of resources (such as a stack and a set of
registers) that alow it to block while waiting on its source
of events. Thus, this synchronous I/O model increases the
time and space required to create, schedule, dispatch, and
terminate separate active objects.

3 Solution

To resolve the tension between the need for concurrent
programming simplicity and execution efficiency use the
Half-Sync/Half-Async pattern. This pattern integrates syn-
chronous and asynchronous I/O models in an efficient and
well-structured manner. In this pattern, higher-level tasks
(such as database queries or file transfers) use a synchronous
I/0 model, which simplifies concurrent programming. In
contrast, lower-level tasks (such as servicing interruptsfrom
network controllers) use an asynchronous I/0O model, which
enhances execution efficiency. Because there are usualy
more high-level tasks than low-level tasks in a system, this
pattern localizes the complexity of asynchronous processing
within a single layer of a software architecture. Communi-
cation between tasks in the Synchronous and Asynchronous
layersis mediated by a Queueing layer.

4 Applicability

Use the Half-Sync/Hal f-Async pattern when

o A system possesses the following characteristics:

— The system must perform tasks in respond to ex-
ternal events that occur asynchronously, and

()

1, 4: read(dk ! !
|

| MESSAGE QUEUES

TASK LAYER

/3: enqueue(data)

\2: interrupt

EXTERNAL
EVENT SOURCES

ASYNCHRONOUS QUEUEING SYNCHRONOUS
TASK LAYER LAYER

. J/

Figure2: TheStructureof ParticipantsintheHalf-Sync/Half-
Async Pattern

— it is inefficient to dedicate a separate thread of
control to perform synchronous!/Ofor each source
of external events, and

— the higher-level tasks in the system can be sim-
plified significantly if 1/O is performed syn-
chronously.

e One or more tasks in a system must run in a single-
thread of control, while other tasks may benefit from
multi-threading.

— For example, legacy librarieslike X windowsand
Sun RPC are often non-reentrant. Therefore, mul-
tiple threads of control cannot safely invoke these
library functions concurrently. However, to ensure
quality of service or to take advantages of multiple
CPUs, it may be necessary to perform bulk data
transfers or database queries in separate threads.
The Half-Sync/Hal f-Async pattern can be used to
decouple the single-threaded portions of an ap-
plication from the multi-threaded portions. This
decoupling enables non-reentrant functions to be
used correctly, without requiring changesto exist-
ing code.

5 Structure and Participants

Figure2illustratesthe structure of participantsin theHalf-
Sync/Half-Async pattern. These participants are described
bel ow.

e Synchronoustask layer (User processes)

— Thetasksinthislayer perform high-level 1/0 oper-
ationsthat transfer data synchronously to message
gueues in the Queueing layer. Unlike the Asyn-
chronouslayer, tasks in the Synchronouslayer are
active objects [3] that have their own run-time
stack and registers. Therefore, they can block
while performing synchronous /0.

e Queueing layer (Socket | ayer)

— Thislayer provides a synchronization and buffer-
ing point between the Synchronoustask layer and
the Asynchronoustask layer. 1/0 events processed
by asynchronous tasks are buffered in message
gueues at the Queueing layer for subsequent re-
trieval by synchronoustasks (and vice versa).

e Asynchronoustask layer (BSD UNI X ker nel)

— The tasks in this layer handle lower-level events
from multipleexternal event sources (such as net-
work interfaces or terminas). Unlike the Syn-
chronous layer, tasks in the Asynchronous layer
are passive objects that do not have their own run-
time stack or registers. Thus, they cannot block
indefinitely on any single source of events.

o External event sources (Net wor k i nt er f aces)

— Externa devices (such as network interfaces and
disk controllers) generate events that are received
and processed by the Asynchronoustask layer.

6 Collaborations

Figure 3illustratesthe dynamic collaboration among partici-
pantsinthe Half-Sync/Half-Async pattern when input events
arrive at an external event source (output event processing is
similar). These collaborations are divided into the following
three phases:

¢ Async phase — in this phase externa sources of events
interact with the Asynchronoustask layer viainterrupts
or asynchronous event notifications.

¢ Queueing phase—in this phase the Queueing layer pro-
vides a well-defined synchronization point that buffers
messages passed between the Synchronous and Asyn-
chronoustask layersin response to input events.

e Sync phase — in this phase tasks in the Synchronous
layer retrieve messages placed into the Queueing layer
by tasks in the Asynchronous layer. Note that the pro-
tocol used to determine how datais passed between the
Synchronous and Asynchronous task layers is orthogo-
nal to how the Queueing layer mediates communication
between the two layers.

The Asynchronous and Synchronous layers in Figure 3
communicate in a“producer/consumer” manner by passing

External Async Message Sync
Event Source Task Queue Task

I notification() | i i

.
U &y EXTERNAL EVENT | |
) | |
E § RECV MSG | read(msg) !
? oY : work() |
o PROCESS MSG : m— :
) enqueue(msg)
% % ENQUEUE MSG : 4’?

% E | | | read(msg)

3 ~ DEQUEUE MSG : : :4—

| | I work()

o R | I |

E E EXECUTE TASK : ! N

| | T

“) [| I l

\
Figure 3: Collaboration between Layers in the Half-

Sync/Half-Async Pattern

messages. The key to understanding the pattern isto recog-
nize that Synchronous tasks are active objects. Thus, they
can make blocking read or wite cdls a any point in
accordance with their protocol. If the data is not yet avail-
able tasks implemented as active objects can sleep until the
data arrives. In contrast, tasks in the Asynchronous layer
are passive objects. Thus, they cannot block on r ead calls.
Instead, tasks implemented as passive objects are triggered
by notificationsor interruptsfrom externa sources of events.

7 Conseguences

The Half-Sync/Half-Async pattern yiel ds the following ben-
efits:

o Higher-level tasks are simplified because they are
shielded from lower-level asynchronous I/O. Complex
concurrency control, interrupt handling, and timing is-
sues are del egated to the Asynchronoustask layer. This
layer handles the low-level details (such as interrupt
handling) of programming an asynchronous 1/O sys-
tem. The Asynchronouslayer also manages theinterac-
tion with hardware-specific components (such asDMA,
memory management, and device registers).

e Synchronization policies in each layer are decoupled.
Therefore each layer need not use the same concurrency
control strategies. For example, in the single-threaded
BSD UNIX kernel the Asynchronous task layer imple-
ments concurrency control via low-level mechanisms
(such as raising and lowering CPU interrupt levels). In
contrast, user processes in the Synchronous task layer
implement concurrency control via higher-level syn-
chronization constructs (such as semaphores, message
queues, condition variables, and record locks).

¢ Inter-layer communicationislocalized at a single point
because all interaction is mediated by the Queueing
layer. The Queueing layer buffers messages passed

between the other two layers. This éiminates the com-
plexity of locking and serialization that would occur if
the Synchronous and Asynchronoustask layers directly
accessed each other’s memory.

e Performance isimproved on multi-processors. The use
of synchronous I/O can simplify programming and im-
prove performance on multi-processor platforms. For
example, long-duration data transfers (such as down-
loading a large medical image from a database) can
be simplified and performed efficiently by using syn-
chronous 1/0. One processor can be dedicated to the
thread transferring the data, which enables the instruc-
tion and data cache of that CPU to be associated with
the entire transfer operation.

TheHalf-Sync/Ha f-Async pattern hasthefollowing draw-
backs:

¢ Aboundary-crossing penalty may beincurred from syn-
chronization, data copying, and context switching over-
head. Thisoverhead typically occurswhen dataistrans-
ferred between the Synchronousand Asynchronoustask
layer viathe Queueing layer. In particular, most operat-
ing systems that use the Half-Sync/Ha f-Async pattern
place the Queueing layer at the boundary between the
user and kernel protection domains. A significant per-
formance penalty may be incurred when crossing this
boundary. For example, the socket layer in BSD UNIX
accounts for a large percentage of the overal TCP/IP
networking overhead [4].

o Asynchronous I/0O for higher-level tasksislacking. De-
pending onthedesign of system interfaces, it may not be
possiblefor higher-level tasksto utilizelow-level asyn-
chronous 1/0 devices. Thus, the system I/O structure
may prevent applicationsfrom utilizingthe hardwareef-
ficiently, even if externa devices support asynchronous
overlap of computation and communication.

8 Implementation

Thissection describes how toimplement the Half-Sync/Hal f-
Async pattern by factoring tasks in the system into
Synchronous and Asynchronous layers that communicate
through a Queueing layer.

8.1 Identify Long-duration Tasks and Imple-
ment Them Using Synchronous1/O

Many tasks in a system can be simplified by alowing them
to perform synchronous 1/0. Often, these are long-duration
tasks that transfer large streams of data [5] or perform
database queriesthat may block for prolonged periods await-
ing responses from servers.

I mplement theselong-durationtasks using an active object
model [3]. Since active objectshavetheir own run-timestack
and registers they can block while performing synchronous

[/0. Implementing an active object mechanism requires a
method of switching between different threads of control. At
thelowest level, thismeans having aplaceto storethecurrent
thread’s hardware state (e.g., the values in all its registers,
including its stack pointer) and load in the state of the new
thread. This functiondity is sufficient to implement a non-
premptive threading mechanism with no memory protection.
“User level threads’ packages typicaly provide this type of
functionality.

However, more functionality is required to implement ac-
tive objectsasthreadsand processesin arobust, multi-tasking
operating system. In this case, each thread of control has
its own address space that is managed by the processor’s
memory management unit (MM U). When switching between
threads the new process's address space info must be |oaded
into the MMU. Cache flushing may aso be required, espe-
cialy with certain types of virtualy addressed cache. In
addition to an address space, an OS process often has a“ user
identification.” This tells the operating system what access
rightsthe process has and how much system resourcesit can
consume.

To prevent a single process from taking over the system
indefinitely, there must be a way to preempt it. Preemption
isgenerally donewith atimer. Periodicaly (e.g., 1/100 of a
second) the timer generates an clock interrupt. During this
interrupt the operating systems checks to see if the currently
running process needs to be preempted. If so, it saves the
process's state and |oads the state of the next process to run.
When the interrupt returns, the new process will be running.

8.2 Ildentify Short-duration Tasks and Imple-
ment Them Using Asynchronous1/O

Certain tasks in a system cannot block for prolonged periods
of time. Often, these tasks run for a short-duration and inter-
act with external sources of events (such as graphical user in-
terfaces or interrupt-driven hardware network interfaces). To
increase efficiency and ensure response-time, these sources
of events must be serviced rapidly without blocking.

Implement these short-durationtasks using areactive, pas-
sive object model [6]. Passive objects borrow their thread of
control from elsewhere (such as the caler or a separate in-
terrupt stack). Therefore, these tasks must use asynchronous
I/0 since they cannot block for long periods of time. The
primary motivation for not blocking is to ensure adequate
response time for other system tasks (such as high-priority
hardware interruptslike clock timers).

There are severa waysto develop awell-structured frame-
work for asynchronous 1/0O:

o Demultiplex events using the Reactor pattern—The Re-
actor pattern [6] manages a single-threaded event loop
that supportsthe demultiplexing and dispatching of mul-
tiple event handlers, which are triggered concurrently
by multiple events. This pattern combines the simplic-
ity of single-threaded event loopswith the extensibility

offered by object-oriented programming. The Reac-
tor pattern serializes event handling within a process or
thread and often eliminates the need for more compli-
cated threading, synchronization, or locking.

A Reactor may beimplemented to run atop synchronous
and/or asynchronous sources of events. The behavior
it providesto its event handlers, however, is distinctly
asynchronous. Thus, a handler cannot block without
disrupting the response timefor other sources of events.

o Implement a multi-level interrupt scheme — These im-
plementations alow non-time critical processing to be
interrupted by higher-priority tasks (such as hardware
interrupts) if higher priority events must be handled be-
forethe current processing isdone. Datastructuresused
by the Asynchronous layer must be protected (e.g., by
raising the processor priority or using semaphores) to
prevent interrupt handlers from corrupting shared state
while they are being accessed.

For example, in an operating system kernel the need for
amulti-level interrupt scheme is strongly influenced by
the hardware interrupt service time. If thistime can be
reduced significantly it may be more efficient to perform
all processing at the hardware interrupt level to avoid
the overhead of an extra software interrupt. |mplemen-
tationsof TCP/IP have reduced inbound packet protocol
processing overhead to the point where the cost of the
two-level interrupt scheme dominatesthe overall packet
processing time.

8.3 Implement a Queueing Layer

The Queueing layer provides a synchronization point for
buffering messages exchanged by tasksin the Asynchronous
and Synchronous layers. The following are several topics
that must be addressed when designing the Queueing layer:

e Concurrency control —If tasksin the Asynchronousand
Synchronous layer execute concurrently (either due to
multiple CPUs or hardware interrupts) it is necessary to
ensure that concurrent access to shared queue state is
serialized to avoid race conditions. Thus, the Queue-
ing layer is typically implemented using concurrency
control mechanisms such as semaphores, mutexes, and
conditionvariables. Thesemechani smsensurethat mes-
sages can be inserted and removed to and from the
Queueing layer without corrupting internal queue data
structures.

o Layer-to-layer flow control — Systems cannot devote an
unlimited amount of resources to buffer messagesinthe
Queueing layer. Therefore, itisnecessary to regulatethe
amount of datathat is passed between the Synchronous
and Asynchronous layers. For example, layer-to-layer
flow control prevents Synchronous tasks from flooding
the Asynchronous layer with more messages than can
be transmitted on network interfaces.

Tasks in the Synchronous layer can block. Therefore,
a common flow control policy is to put a task to sleep
if it produces and queues more than a certain amount
of data. When the Asynchronous task layer drains the
gueue below a certain level the Synchronous task can
be awakened to continue. In contrast, tasksinthe Asyn-
chronouslayer cannot block. Therefore, if they produce
an excessive amount of dataacommon flow control pol-
icy isto have the Queueing layer discard messages. If
the messages are associated with a reliable connection-
oriented network protocol the sender will eventualy
timeout and retransmit.

o Data copying overhead — Some systems (such as BSD
UNIX) place the Queueing layer a the boundary be-
tween the user and kernel protection domains. A com-
mon way to decoupl ethese protection domainsisto copy
messages from user to kernel and vice versa. However,
thisincreases system bus and memory load, which may
degrade performance significantly when large messages
are moved across domains.

One way to reduce data copying is to alocate a region
of memory that is shared between the Synchronoustask
layer and the Asynchronoustask layer [7]. Thisdlows
thetwo layersto exchangedatadirectly, without copying
datainthe Queueing layer. For example, [8] presentsan
1/0 subsystem that minimizes boundary-crossing penal -
ties by using polled interrupts to improve the handling
of continuous media /O streams. This approach also
provides a buffer management system that allows effi-
cient page remapping and shared memory mechanisms
to be used between user processes, the kernedl, and its
devices.

9 Sample Code

This section illustrates examples of the Half-Sync/Half-
Async pattern in two different parts of the BSD UNIX op-
erating system [1]. These examples illustrate how the Half-
Sync/Half-Async patternisused by the BSD kernel to enable
user processes to operate synchronously, while ensuring the
kernel operates asynchronoudly. Thefirst exampleillustrates
how thispatternis used in the networking subsystem to input
data through the TCP/IP protocol stack over Ethernet. The
second example illustrates how this pattern is used in the
file subsystem to implement interrupt-driven output for disk
controllers.

9.1 BSD Networking Subsystem Example

Thisexampleillustrateshow the Half-Sync/Hal f-Async pat-
ternisusedto structurethe synchronousinvocation of ar ead
system call, asynchronous reception and protocol processing
of data arriving on a network interface, and synchronous
completion of the r ead call. Figure 1 illustrates the par-
ticipants and structure of this pattern in BSD UNIX. For a

comprehensive explanation of the BSD UNIX networking
subsystem see [9].

9.1.1 SynchronousInvocation

Consider a user process that creates a passive-mode TCP
stream socket, accepts a connection, and receives TCP data
from the connected socket descriptor. To the user process,
the r ead system cal on the connection appears to be a
synchronous operation, i.e., the process makes the call and
thedataisreturned. However, many stepsoccur toimplement
this system call. When ther ead call isissued it trapsinto
the kerndl and gets vectored into the network socket code
synchronoudly. The thread of control endsup in thekernel’s
sor ecei ve function, which performs the Half-Sync part
of the processing. The sor ecei ve functionisresponsible
for transfering the data from the socket queue to the user. It
must handle many types of sockets (such as datagram sockets
and stream sockets). A simplifiedview of what sor ecei ve
doesisshown bel ow, with emphasison theboundary between
the Sync and Async layers:

/* Receive data froma socket. */

int soreceive (...)

{
for () {

sblock (...); /* lock socket recv queue */

/* mask of f network interrupts to protect queue */

s = splnet ()

if (not enough data to satisfy read request) {
sbunl ock (...); /* unlock socket queue */

/***** I\bte| *kk k%
The follow ng call fornms the boundary
between the Sync and Async | ayers. */

sbwait (...); /* wait for data */
spl x (s); /* drop splnet */

el se
br eak;

splx (s); /* drop splnet */

/* copy data to user’s buffer at normal priority */

ui onove (...);
s = splnet (); /* mask off network interrupts */

sbunl ock (...);
spl x (s)

/* unl ock socket queue */
/* restore spl */

return (error code); [/* returns O if no error */

}

The code above illustrates the boundary between the syn-
chronous user layer process and the asynchronous kernel
layer. Although the user process can deep while waiting
for data, the kernel cannot be suspended because other user
processes and devices in the system may require its services.

Therearesevera waystheuser’sread request ishandled by
sor ecei ve, depending on the characteristics of the socket
and the amount of data in the socket queue:

o Completely synchronous — If the data requested by the
user isin the socket queueit is copied out immediately
and the operation completes synchronoudly.

¢ Half-synchronous and half-asynchronous — If the data
requested by the user has not yet arrived the kernel will
cal thesbwai t functionto put theuser processto sleep
until the requested data arrives.

Oncesbwai t putsthe process to deep, the OS schedul er
will context switch to another process that is ready to run.
To the original user process, however, ther ead system call
appears to execute synchronously. When packet(s) contain-
ing the requested data arrive the kernel will process them
asynchronously as described in Section 9.1.2. When enough
data has been placed in the socket queue to satisfy the user’s
request the kernel will wakeup the origina process, which
completesther ead system call.

9.1.2 Asynchronous Reception and Protocol Processing

The Half-Async part of the user’s read request starts with
a packet arriving on a network interface, which causes a
hardware interrupt. All inbound packet processing is done
in the context of an interrupt handler. It is not possible to
sleep during an interrupt because there is no UNIX process
context and no separate thread of control. Therefore, an
interrupt handler must borrow the caller’s thread of control
(i.e, its stack and registers). The BSD UNIX kernel uses
this strategy to borrow the thread of control from interrupt
handlers and from user processes that perform system calls.

Most interrupt-driven computers assign priority levels to
the interrupts. For example, on a SPARC there are fifteen
interrupt levels with level one being the lowest level and
level fifteen being the highest level. Other processors have
different levels (e.g., the Motorola68030 has seven interrupt
levels). Under BSD UNIX, processor-specific interrupt lev-
el sare assigned machine independent symbolic names called
SPL levels (the term SPL originated in the PDP-11 days
of UNIX). For example, the highest network hardware in-
terrupt level is called SPLI MP, the clock interrupt is called
SPLCLOCK, and the highest possibleinterrupt level iscalled
SPLHI GH. For each of these levelsthereis a corresponding
function of the same name that sets the processor interrupt
level to that value. Thus, the spl i np function is called
to block out al network hardware level interrupts. All the
spl * functions will return the previous processor priority
level, which represents what the priority should be restored
to when the operation compl etes.

Conventional versions of BSD UNIX use atwo-level in-
terrupt scheme to handle packet processing. Hardware criti-
cal processing is done at a high priority (SPLI MP) and less
time critical software processing is done at alower priority
level (SPLNET). This two-level interrupt scheme prevents
the overhead of software protocol processing from delaying
the servicing of other hardware interrupts. The two-level
BSD UNIX packet processing scheme is divided into hard-
ware specific processing and protocol processing. When a

packet arrives on anetwork interfaceit causes an interrupt at
that interface's interrupt priority. All networking interfaces
have priority of < SPLI MP.

The operating system services the hardware interrupt and
then enqueues the packet on the input queue in the protocol
layer (such asthe IP protocol). A network software interrupt
is then scheduled to service that queue at a lower priority
(e.g., SPLNET). Once the network hardware interrupt is ser-
viced, therest of the protocol processing isdone at the lower
priority level as long as there are no other higher level in-
terrupts pending. The BSD kernd is carefully designed to
allow hardwareinterruptsto occur during asoftwareinterrupt
without losing data or corrupting buffers.

Asan example, consider ahostwithan AMD LANCE Eth-
ernet NIC chip. Thedevicedriver for thischipiscaled | e”
(for “LANCE Ethernet”). On packet arrival the | eri nt
functioniscalled from theinterrupt handler. It'sjobisto ac-
knowledgeand clear theinterrupt. It then extractsthe packet
from the network interface and copiesit into memory buffers
called nbuf s, asfollows:

int lerint (...)

/* perform hardware sanity checks */
whi l e (inbound buffers to process) {

/* get length and clear interrupt ... */
/* read the packet into nbufs */

ether_input (interface, ether_type, packet);
/* free buffer */

}
}

Thenbuf s arethen handed off from| er i nt tothefollow-
ing Ethernet function called et her _i nput :

int

ether _input (char *intf, int etype, struct nbuf *packet)

switch (etype) {

case ETHERTYPE_I P:
/* schedul e network interrupt */
schednetisr (NETISR | P);
ing = & pintrq;

br eak;
/* etc... */
}
s =splinp ();

/* Try to insert the packet onto the IP queue. */

if (IF_QFULL (inqg)) {

/* queue full, drop packet */
I F_DROP (inq);
m freem (packet);

} else

/* queue packet for net interrupt */
| F_ENQUEUE (ing, m;
splx (s);

Each network protocol has a packet queue associated with
it (e.g., the IP packet queue). The et her _i nput function
first determines which network protocol is being used and
puts the packet on the correct queue. It then arranges for a
network software level interrupt to occur. Thisinterrupt will

occur at the lower priority SPLNET level. At this point the
hardwareinterrupt has been handled and theinterrupt service
routine exits.

Once the hardware interrupt is done a network software
interrupt occurs at the SPLNET level (provided there are no
higher level interruptspending). If theinbound packetisan 1P
packet the kernel callstheIPinterruptroutine (i pi ntr). IP
protocol processing (such as header parsing, packet forward-
ing, fragmentation, and reassembly) is done in this routine.
If the packet isdestined for alocal process then it is handed
off to the transport protocol layer. The transport layer per-
forms additional protocol processing (such as TCP segment
reassembly and acknowledgements). Eventudly, the trans-
port layer appends the data to the receive socket queue and
calls sbwakeup. This call wakes up the origina process
that was sleeping in sor ecei ve waiting for data on that
socket queue. Once this is done, the software interrupt is
finished processing the packet.

The following code illustrates the general logic of the
thread of control running from i pintr, up through
t cpd nput, to sowakeup, which forms the boundary
between the Async and Sync layers. The first function is
i pi nt r,which handlesinbound IP packets:

int ipintr (...)

int s;
struct nbuf *m

/* loop, until there are no nore packets */
for (;;) {
s = splinmp ();

| F_DEQUEUE (& pintrgq, m; /* dequeue next packet */

spl x(s);
if (m==0) return;

if (packet not for us) {
/* route and forward packet */
} else {

/* packet for us... reassenble */

/* call protocol input, which is tcp_input() */
(*inetswip_protox[ip->ip_p]].pr_input)(m hlen);

}
}
}

Since our current example involves a TCP/IP packet, the
“protocol switch” i net swinvokes thet cp_i nput func-
tion, which handles an inbound tcp packet:

int tcp_input (m iphlen)
{

/* lots of conplicated protocol processing... */

/* We cone here to pass data up to the user */
sbappend (&so->so_rcv, n);

sowakeup((so0), &(so0)->so_rcv);

[

}

Thesowakeup functionwakes up the user process that was
adeepinr ead waiting for the packet to arrive. Asdiscussed
inthefollowing subsection, thisfunction formsthe boundary
between the Async and Sync layers.

/* return if no nore packets */

9.1.3 Synchronous Completion

When the data is appended to the socket queue, the
sowakeup isinvoked if a user process is adeep waiting
for datato be placed into its buffer.

voi d sowakeup (so, sh)

{
[* .00 %
if (a user process is asleep on this queue) {

/***** I\bte| *kk k%
The followi ng call fornms the boundary
bet ween the Async and Sync | ayers. */

wakeup ((caddr_t) &sb->sb_cc);

When aprocessgoesto sleep thereisa“handle” associated
withthat process. Towakeup asleeping processthewak eup
cal isinvoked onthat handle. A processwaiting for an event
will typically use the address of the data structure related to
that event asitshandle. Inthecurrent example, theaddress of
the socket receive queue (sb- >sc_cc) isused as ahandle.

If thereare no processes waiting for dataon asocket queue
nothing interesting will happen. However, in the example
shown in Section 9.1.1, the original process was deeping in
sor ecei ve waiting for data. The kernel will wake up this
process in the sor ecei ve function, which loops back to
check if enough data has arrived to satisfy ther ead request.
If al the datarequested by the user hasarrived sor ecei ve
will copy the datato the user’ sbuffer and the system call will
return.

To the user process the r ead call appeared to be syn-
chronous. However, this was an illusion supported by the
Half-Sync/Half-Async pattern. In particular, asynchronous
processing and context switching were performed while the
process was sleeping. Note that the kernel never blocks and
isaways doing something, even if that something is running
an “idle’ process.

9.2 Disk Controller Example

This example illustrates another example of the Half-
Sync/Half-Async patternin the context of theBSD UNI X file
subsystem. The previousexampleillustrateshow the pattern
is used to input data from the Ethernet interface, through the
TCP/IP protocol stack, and up to a user process. This exam-
pleillustrates how the pattern is used to output data from a
user process, through the BSD UNIX raw 1/O subsystem, to
adisk.

There are two ways to access UNIX storage devices such
asdisks. Oneisthroughtheir block-special devicesin/ dev,
the other isthroughtheir character-specia devices. Accesses
through the block-special devices go through alayer of soft-
warethat buffersdisk blocks. Thisbuffering takes advantage
of thelocality of datareferences. In contrast, access through
the character-special device (caled “raw” 1/0) bypasses the
buffering system and directly accesses the disk for each 1/0
operation. Raw 1/O is useful for checking theintegrity of a

filesystem beforemountingit, or for user-level databases that
have their own buffering schemes.

9.2.1 Synchronous I nvocation

If a process does an open on a character-specia file (e.g.,
/ dev/ r dkOa)andthendoesawr i t e, thethread of control
will end up in the device driver’'swr i t e entry point. This
performstheHalf-Sync part of the processing. Most raw disk
devices have awri t e entry point that references a globa
raw 1/O routinestored in the cdevswyvector. The following
illustratesthis entry:

/* Do a wite on a device for a user process. */
int raw wite (dev_t dev, struct uio *uio)

{
return physio (cdevsw maj or(dev)].d_strategy,
(struct buf *) NULL,
dev, B_WRITE, m nphys, uio);

This entry point is a synchronous redirect into physi o,
which isaroutine that does physical 1/0 on behaf of a user
process. Physica 1/0O writes directly from the raw device
to user buffers, bypassing the buffer cache. The physi o
routineis implemented as follows:
int
physio (int (*strategy)(),

struct buf *bp,
dev_t dev,

int flags,

u_int (*m nphys) (),
struct uio *uio);

struct iovec *iovp;
struct proc *p = curproc;
int error, done, i, nobuf, s, todo;

[* .00

/* read and wite, from above */
flags & B_READ | B WRI TE;

bp->b_flags = B BUSY | B_PHYS | B_RAW| flags;

/* call driver's strategy to start the transfer */
(*strategy) (bp);

/***** I\bte| *kk k%
The follow ng call fornms the boundary
between the Sync and Async | ayers. */

while ((bp->b_flags & B_DONE) == 0)
/* Wait for the transfer to conplete */
tsleep ((caddr_t) bp, PRIBIO + 1, "physio", 0);

[* .00

The physi o routineis given a user buffer, a device, and
that device's st r at egy routine. The strategy routine’sjob
isto initiate a read or write operation on a buffer and re-
turn immediately. Because the pointer to the user’s buffer
is provided by the user process, physi o must first validate
the buffer’saddress. Once the buffer has been validated it is
encapsulated in abuf structure. The flagsinthebuf struc-
ture are set to indicate if thisis a read or a write operation.

The flags are a so set to indicate that thisisaraw 1/0 oper-
ation. Once the buf structure is set up, it is passed to the
device-specific st r at egy routine. The st r at egy rou-
tine schedules the I/O operation and returns. Next, physi o
deeps until the I/O operation is done.

9.2.2 Asynchronous Processing

Both buffered and raw /O requests enter the device driver
synchronoudly viathe device'sst r at egy routine;
voi d strategy (struct buf *bp)
{ I* o *l
s = splbio (); /* protect the queues */

/* sort the buffer structure into the
driver’s queue (e.g., using disksort()) */

if (drive is busy) { splx (s); return; }

/* flowcontrol is here.... if the
drive is busy the request stays in the queue */

/* start first request on the queue */
/* done! */

spl x (s)
return;

The st r at egy routineis designed to be genera so that
most device 1/0 can be routed through this interface (the
exception being somei oct | callsthat perform control op-
erations on a device such as formatting a cylinder on adisk).
The bookkeepinginformationrequiredto store stateinforma:
tion during the asynchronous I/O is stored in a data structure
accessible to the driver. The example above assumes that
the driver only handles one request at atime. It is possible
to have adevice that handles multiplerequests at atime. In
that case, multiplelistswould keep track of which buffersare
active and which are waiting for /0.

9.2.3 Synchronous Completion

A hardware interrupt is generated by disk controller when
the write request completes. This triggers an interrupt rou-
tine that tiesthe Asynchronous task layer back into the Syn-
chronoustask layer, as follows:

int intr (void *v)
struct buf *bp
/* get current request into "bp" */
/***** I\bte| *kk k%
The following ties the Async | ayer back
into the Sync layer. */
bi odone (bp); /* Wakeup the sleep in physio(). */
/* start next request on queue */

return (1); /* done */

The interrupt function services and clears the hardware in-
terrupt. This involves looking in the driver’s state table to
determine which 1/0 request has completed. The I/O request
is represented by a buf structure. Once the buf structure
has been identified the bi odone functionis called to signa
the higher level kernel software that the wr i t e request is
complete. This causes the deeping process to return from
t sl eep. Theinterrupt function must also start any queue’ d
wri t e requestsif necessary.

10 Variations

The conventional form of the Half-Sync/Hal f-Async pattern
for input uses “ push-driven” I/O from the Asynchronoustask
layer to the Queueing layer and “pull-driven” 1/O from the
Synchronous task layer to the Queueing layer. These roles
are reversed for output. The following variations appear in
some systems:

o Combining asynchronous notificationwith synchronous
I/O — it is possible for the Synchronous task layer to
be notified asynchronously when datais buffered at the
Queueing layer. Thisishow signal-driven1/Oisimple-
mented by the UNIX SIGIO mechanism. In this case,
asigna is used to “push” a notification to higher-level
user processes. Theseprocessesthenuser ead to*“pull”
the data synchronously from the queueing | ayer.

e Spawning synchronous threads on-demand from asyn-
chronous handlers — Another way to combine asyn-
chronous natification with synchronous 1/0 isto spawn
a thread on-demand when an asynchronous event oc-
curs. 1/O is then performed synchronoudly in the new
thread. This approach ensures that the resources de-
voted to 1/0O tasks are afunction of the number of work
requests being processed in the system.

e Providing asynchronous 1/0O to higher-level tasks —
Some systems extend the preceding model till fur-
ther by alowing notificationsto push data aong to the
higher-level tasks. Thisapproachisusedintheextended
signa interface for UNIX System V Release 4. In this
case, abuffer pointer ispassed alongwiththesignal han-
dler function. Windows NT supports a similar scheme
using overlapped I/O and I/O completion ports[10]. In
this case, when an asynchronous event completes an
overlapped 1/0O structure contains an indication of the
event that completed, along with the associated data.

e Providing synchronous|/Oto lower-level tasks— Single-
threaded operating systems(suchasBSD UNIX) usualy
support a hybrid synchronous/asynchronous 1/0 model
onlyfor higher-level applicationtasks. Inthesesystems,
lower-level kernel tasks are restricted to asynchronous
1/0. Multi-threaded systems permit synchronous!/O op-
erationsin the kernd if multiplewait contexts are sup-
ported via threads. This is useful for implementing
polled interrupts, which reduce the amount of context

switching for high-performance continuous media sys-
tems by dedicating a kernel thread to poll a field in
shared memory at regular intervals[8].

If the Asynchronoustask layer possesses its own thread
of control it can run autonomously and use the Queueing
layer to pass messages to the Synchronous task layer.
Micro-kernel operating systems typicaly use this de-
sign. The micro-kernd runs as a separate process that
exchanges messages with user processes [11].

Known Uses

The BSD UNIX networking subsystem [1] and the
origina System V UNIX STREAMS communication
framework [12] use the Half-Sync/Half-Async pattern
to structure the concurrent 1/O architecture of user pro-
cesses and the OS kernel. All 1/O in these kernels is
asynchronous and triggered by interrupts. The Queue-
ing layer is implemented by the Socket layer in BSD
and by STREAM heads in System V STREAMS. /O
for user processes is synchronous. Most UNIX applica
tions are developed as user processes that call the syn-
chronous higher-level read/wri t e interfaces. This
design shields devel opers from the complexity of asyn-
chronous OS handled by the kernel. There are provi-
sionsfor notifications (viathe SIGIO signal) that asyn-
chronously trigger synchronous1/O.

The multi-threaded version of Orbix 1.3 (MT-Orbix)
[13] uses several variations of the Haf-Sync/Half-
Async pattern to dispatch CORBA remote operationsin
aconcurrent server. In the Asynchronous layer of MT-
Orbix a separate thread is associated with each HAN-
DLE that is connected to a client. Each thread blocks
synchronously reading CORBA requestsfromtheclient.
When arequest isreceived it is formatted and then en-
gueued at the Queueing layer. An active object thread
in the Synchronous layer then wakes up, dequeues the
request, and processes it to completion by performing
an upcall on the CORBA object implementation.

The Motorolalridium system uses the Half-Sync/Hal f-
Async pattern in an application-level Gateway that
routes messages between satellites and ground con-
trol stations [14]. The Iridium Gateway implements
the Haf-Sync/Half-Async pattern with the ADAP-
TIVE Service eXecutive (ASX) framework [15]. The
React or [6] class category from the ASX frame-
work implements an object-oriented demultiplexing
and dispatching mechanism that handles events asyn-
chronously. The ASX Message Queue classimple-
ments the Queueing layer, and the ASX Task classim-
plements active objectsin the Synchronoustask layer.

The Conduit communication framework [16] from the
Choices OS project [17] implements an object-oriented
version of the Half-Sync/Half-Async pattern. User
processes are synchronous active objects, an Adapter

10

12

Conduit serves as the Queueing layer, and the Conduit
micro-kernel operates asynchronoudly.

Related Patterns

The Synchronoustask layer uses the Active Object pat-
tern[3].

The Asynchronoustask layer may use the Reactor pat-
tern [6] to demultiplex events from multiple sources of
events.

The Queueing layer provides a Facade [18] that simpli-
fies the interface to the Asynchronous task layer of the
system.

The Queueing layer isalso aMediator [18] that coordi-
nates the exchange of data between the Asynchronous
and Synchronoustask layers.

Acknowledgements

We would like to thank Lorrie Cranor and Paul McKenney
for comments and suggestions for improving this paper.

References

(1]

(2]

(3]

[4]

(5]

(6]

[7]

(8]

S. J. Leffler, M. McKusick, M. Karels, and J. Quarterman, The
Design and Implementation of the 4.3BSD UNIX Operating
System. Addison-Wesley, 1989.

D. C. Schmidt and T. Suda, “Measuring the Performance of
Parallel Message-based Process Architectures,” in Proceed-
ings of the Conferenceon Computer Communications (INFO-
COM), (Boston, MA), pp. 624633, |EEE, April 1995.

R. G. Lavender and D. C. Schmidt, “ Active Object: an Object
Behavioral Pattern for Concurrent Programming,” in Proceed-
ings of the 2"¢ Annual Conferenceon the Pattern Languages
of Programs, (Monticello, lllinais), pp. 1-7, September 1995.

N. C. Hutchinson and L. L. Peterson, “The x-kernel: An Ar-
chitecture for Implementing Network Protocols,” IEEE Trans-
actions on Software Engineering, vol. 17, pp. 64—76, January
1991.

D. C. Schmidt, T. H. Harrison, and E. Al-Shaer, “Object-
Oriented Components for High-speed Network Program-
ming,” in Proceedings of the 1° Conference on Object-
Oriented Technologies and Systems, (Monterey, CA),
USENIX, June 1995.

D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler Dis-
patching,” in Pattern Languages of Program Design (J. O.
Coplien and D. C. Schmidt, eds.), Reading, MA: Addison-
Wesley, 1995.

P. Druschel and L. L. Peterson, “Fbufs: A High-Bandwidth
Cross-Domain Transfer Facility,” in Proceedings of the 14"
Symposium on Operating System Principles (SOSP), Dec.
1993.

C. Cranor and G. Parulkar, “Design of Universal Continuous
Medial/O,” in Proceedingsof the 5th Inter national Workshop
on Network and Operating Systems Support for Digital Au-
dio and Video (NOSSDAV ’'95), (Durham, New Hampshire),
pp. 83-86, Apr. 1995.

(9]
[10]

[11]

[12]
[13]

[14]

[19]

[16]

[17]

[18]

W. R. Stevens, TCP/IP lllustrated, Volume 2. Reading, Mas-
sachusetts: Addison Wesley, 1993.

H. Custer, Inside Windows NT. Redmond, Washington: Mi-
crosoft Press, 1993.

D. L. Black, “Scheduling Support for Concurrency and Par-
alelism in the Mach Operating System,” IEEE Computer,
vol. 23, pp. 23-33, May 1990.

D. Ritchig, “ A Stream Input—Output System,” AT& T Bell Labs
Technical Journal, vol. 63, pp. 311-324, Oct. 1984.

C. Horn, “The Orbix Architecture,” tech. rep., IONA Tech-
nologies, August 1993.

D. C. Schmidt, “A Family of Design Patterns for Application-
level Gateways,” The Theory and Practice of Object Systems
(Special Issue on Patterns and Pattern Languages), vol. 2,
no. 1, 1996.

D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” in Proceedings of the
6" USENIX C++ Technical Conference, (Cambridge, Mas-
sachusetts), USENIX Association, April 1994,

J. M. Zweig, “The Conduit: a Communication Abstractionin
C++,” in Proceedings of the 2"¢ USENIX C++ Conference,
pp. 191-203, USENIX Association, April 1990.

R. Campbell, N. Islam, D. Raila, and P. Madany, “ Designing
and Implementing Choices: an Object-Oriented System in
C++,” Communications of the ACM, vol. 36, pp. 117-126,
Sept. 1993.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1995.

11

