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Abstract

ZEN is a CORBA ORB designed to support distributed, real-
time, and embedded (DRE) applications that have stringent
memory constraints. This paper discusses the design and per-
formance of ZENs portable object adapter (POA) which is
an important component in a CORBA object request broker
(ORB). This paper makes the following three contributions
to the study of middleware for memory-constrained DRE ap-
plications. First, it presents three alternative designs of the
CORBA POA. Second, it explains how design patterns can be
applied to improve the quality and performance of POA im-
plementations. Finally, it presents empirical measurements
based on the ZEN ORB showing how memory footprint can
be reduced significantly while throughput is comparable to a
conventional ORB implementation.

Keywords. Distributed Real-time and Embedded Systems,
Real-time CORBA, Portable Object Adapter, Real-time Java.

1 Introduction to Distributed, Real-
time, Embedded Systems

Distributed, real-time, and embedded (DRE) systems are be-
coming increasingly widespread and important. There are
many types of DRE systems, but they have one thing in
common: the right answer delivered too late becomes the
wrong answer. Common DRE systems include telecommu-
nication networks (em e.g., wireless phone services), tele-
medicine (e.g., remote surgery), manufacturing process au-
tomation (e.g., hot rolling mills), and defense applications
(e.g., avionics mission computing systems).

Over the past decade, distributed object computing (DOC)
middleware frameworks, such as CORBA [1], COM+ [2], Java
RMI [3], and SOAP/.NET [4], have emerged to help reduce
the complexity of developing distributed applications. DOC
middleware simplifies application development for distributed
systems by off-loading many tedious and error-prone aspects
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of distributed computing from application developers to mid-
dleware developers. It has been used successfully in large-
scale business systems where scalability, evolvability, and in-
teroperability are essential for success.

Real-time CORBA [5] is a rapidly maturing DOC middle-
ware technology standardized by the OMG that can simplify
many challenges for DRE applications, just as CORBA has
for large-scale business systems. Real-time CORBA is de-
signed for applications with hard real-time requirements, such
as avionics mission computing [6]. It can also handle ap-
plications with stringent soft real-time requirements, such as
telecommunication call processing and streaming video [7].

ZEN [8] is an open-source Real-time CORBA object re-
quest broker (ORB) implemented in Real-time Java [9]. ZEN
is inspired by many of the patterns, techniques, and lessons
learned in The ACE ORB (TAO) [6], which is a widely-used,
open-source implementation of Real-time CORBA written in
C++. A key difference between the design of ZEN and that of
earlier CORBA ORBs is its extensive application of the Vir-
tual Component pattern [10]. This pattern helps reduce the
memory footprint contributed by the middleware by factoring
out optional or rarely-used functionality from a specific ap-
plication of the middleware. Many earlier ORB designs were
monolithic because they included code that supports all of the
possible features, choices, and variants specified in the volu-
minous CORBA specification [1].

Early generations of distributed applications used text mes-
sages and message passing over TCP/IP sockets. One key
difference between standard message passing and DOC mid-
dleware is that the latter allows programmers to exploit tools
and techniques developed for stand-alone object-oriented pro-
gramming. A substantial and significant component of an
ORB supporting this style of object-oriented distributed com-
puting is the portable object adapter (POA). One or more
POAs reside in each server process and provide the following
capabilities:

� Creates object references with the appropriate policies
� Activates and deactivates objects
� Etherealizes and incarnates object implementations

(known as servants in CORBA terminology) and



� Demultiplexes requests sent by remote clients to the ap-
propriate servants in the server.

It is important that an ORB’s POA implementation be de-
signed and optimized efficiently and predictably since conven-
tional ORBs spend a significant amount of the total server time
demultiplexing requests to servants [11, 12].

This paper makes the following contributions to the design
of POAs for Real-time CORBA middleware:

1. It describes three alternative designs of the Portable Ob-
ject Adapter (POA): monolithic, coarse-grain, and fine-
grain architectures.

2. It explains how design patterns [13, 14] can be applied to
improve the quality and performance of POA implemen-
tations.

3. It presents empirical measurements based on the ZEN
ORB showing how memory footprint can be reduced sig-
nificantly while throughput is comparable to a mono-
lithic/conventional ORB implementation.

The remainder of this paper is organized as follows: Sec-
tion 2 gives a brief overview of ZEN the Real-time CORBA
ORB for Real-time Java; Section 3 explains the capabilities of-
fered by portable object adapters (POAs); Section 4 describes
the benefits of a highly-modular architecture and two alterna-
tive highly-modular architectures for a POA. Section 5 pro-
vides empirical results for the alternative POA designs and
compares the performance of ZEN’s POA against the perfor-
mance of JacORB’s POA; Section 6 compares our work on
POAs with related work; and Section 7 presents concluding
remarks and outlines future work.

2 An Overview of the ZEN Real-time
ORB

ZEN [15] is a Real-time CORBA ORB implemented us-
ing Real-time Java [9], thereby combining the benefits of
these two standard technologies. CORBA middleware has ad-
dressed many challenges posed by distribution for mainstream
applications since the early 1990s. Until the past several years,
however, relatively little has been done to meet the challenges
specific to DRE systems. CORBA middleware supporting
DRE systems must do the following:

� Provide a full range of CORBA services for distributed
systems, to meet the needs of a wide variety of applica-
tion developers.

� Meet a number of stringent QoS requirements, includ-
ing achieving low and bounded jitter for ORB operations,
eliminating sources of priority inversion, allowing appli-
cations access to Real-time programming language fea-
tures, and minimizing startup latency.

� Reduce middleware footprint to enable memory-
constrained embedded systems development.

� Achieve satisfactory level of throughput and scalability.
� Make the ORB easier for application developers to con-

figure and maintain.
� Make the ORB easily extensible and configurable both

statically and dynamically, thereby allowing application
developers to trade off maximal efficiency and flexibility.
One of the chief research challenges associated with sup-
porting dynamic configuration is to minimize latency and
to ensure satisfaction of end-to-end deadlines.

2.1 ZEN’s Pluggable ORB Architecture

ZEN’s ORB architecture is based on the concept of layered
pluggability, where various components of the middleware
may be “plugged” (included into) or “unplugged” (removed
from) on an as-needed basis, thereby allowing flexible mid-
dleware configuration. Based on our earlier work with TAO,
we identified these eight core ORB services (shown in Fig-
ure 1) as candidates to be factored out of the ORB by applying
the Virtual Component pattern to reduce its memory footprint
and increase its flexibility. We call the remaining portion of
code the ZEN kernel.
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Figure 1: Micro-ORB Architecture of ZEN

Each ORB service itself is decomposed into smaller plug-
gable components that can be loaded into the ORB only when
needed. This pluggable design makes ZEN a good research
platform, because alternative implementations of various ORB
components can be plugged-in and profiled with standard
benchmarks to determine their utility.
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3 Portable Object Adapter Functional-
ity and Architecture

The CORBA portable object adapter (POA) is a standard
component that enables programmers to compose servants
portably across ORB implementations. Unlike its woe-
fully underspecified predecessor—the basic object adapter
(BOA)—the POA specification is well designed and provides
standardized APIs for the POA operations. For example, the
POA specification standardizes the API for registering ser-
vants, which was unspecified by the BOA.

3.1 Summary of POA Functionality

The following paragraphs summarize the important function-
ality provided by the POA:

1. Generating object references. The POA is responsi-
ble for generating object references for the CORBA objects
it maintains. These references contain addressing information
that allows remote clients to invoke operations on each ob-
ject in a distributed system. This information is provided to
the POA by the ORB Core and underlying operating system
transport.

2. Behavior governed by policies. The POA provides a ex-
tensible mechanism for associating policies with servants in a
POA. The values for policies are specified when a POA is cre-
ated. Currently there are seven standard policies for the POA:
thread, lifespan, object id uniqueness, object id assignment,
servant retention, request processing, and implicit activation.

3. Activation and deactivation of objects. The creation of
object references stem from the creation of a CORBA object.
Once created, an object can alternate between activated and
deactivated states. An object can service requests only if it is
activated. The deactivate_object() operation is used
to deactivate an object. It is important to note that the lifetime
of a CORBA object is different from that of the servant that
implements it, as discussed next.

4. Incarnation and etherealization of servants. Servants
implement CORBA object interfaces and can be registered
with the POA implicitly or explicitly by application develop-
ers. To have requests delivered to it, however, an object must
be incarnated by a servant. The POA can incarnate servants
on demand. Etherealization of a servant breaks the association
between it and its CORBA object.

5. Demultiplexing requests to servants. Client requests
are sent as messages across the underlying OS transport. The
POA demultiplexes these requests to the appropriate servants.
The POA then invokes the appropriate operation on this ser-
vant.

6. SSI and DSI support. The POA allows programmers
to construct skeletons that inherit from static skeleton inter-
face (SSI) classes or a dynamic skeleton interface (DSI) class.
Clients need not be aware that the request is serviced by a SSI
or a DSI servant. Two CORBA objects supporting the same
interface can be serviced, one by a DSI servant and one by a
SSI servant. Further an object can be serviced by a DSI ser-
vant for some period of time, while being serviced by the IDL
servant for the remaining time.

3.2 POA Structure and Dynamics

The ORB is an abstraction visible to both the client and server.
The POA, in contrast, is only necessary in a process perform-
ing the server role, so clients do not require the services of a
POA. In ZEN, the ORB and the POA interact through a well-
defined ServerRequestHandler interface. This design
prevents the tight coupling of the ORB and the POA. This in-
terface is specific to ZEN since the OMG has not standardized
the interface between the ORB and the POA. In ZEN, the POA
is only one specific type of ServerRequestHandler.
Variants, such as Real-time POA or Multicast POA, may han-
dle requests and perform other POA activities, as well.

User-supplied servants are registered with the POA. Each
client has an object reference, representing the remote servant,
upon which it can invoke requests. When a request is made,
it is passed as a message to the server. The POA then decides
which servant the request corresponds to and invokes that op-
eration on the appropriate servant. Figure 2 shows the POA ar-
chitecture. The architecture shown in this figure is implied by
the interface to, and specification of, the POA in the CORBA
specification. As long as an implementation of this architec-
ture meets the designated CORBA semantics, however, it need
not follow any prescribed design.

Figure 2 shows a special POA (called the RootPOA) that is
always available to an application through the ORB factory
method resolve_initial_references(). Applica-
tion developers can register servants with the root POA if the
policies of the root POA specified in the POA specification are
suitable for their applications.

A server application may establish multiple POAs to create
a naming hierarchy (similar to the hierarchical directory struc-
ture found in an OS file system) that also allows setting of
individual servant policies. For example, a server application
might have two POAs:

� One supporting transient CORBA objects, whose lifetime
can not exceed the POA in which it was activated and

� The other supporting persistent CORBA objects, whose
lifetime can exceed that of its activating POA.

Child POAs are created by invoking the create_POA() fac-
tory method on a parent POA.

3



POA Manager

Object Id
Object Id
Object Id
Object Id

Active Object Map

default servant

POA A

Active Object Map

POA B

adapter activator

Object Id
Object Id
Object Id

POA C

Active Object Map

RootPOA

Object Id

SERVANT

SERVANT

SERVANT

SERVANT SERVANT

SERVANT

SERVANT

Servant
Activator

POA Manager

User defined
object

POA object

Pointer

Object reference

Legend

Adapter
Activator

servant
locator

servant
activator

Servant
Locator

Figure 2: The POA Architecture

The server application in Figure 2 contains three other
nested POAs: A, B, and C. POA A and B are children of the
root POA; POA C is B’s child. Each POA has an active object
map that associates object ids to servants. Other key compo-
nents in a POA are discussed below.

Adapter Activator. An adapter activator can be associated
with a POA by an application. The ORB will invoke an op-
eration on an adapter activator when a request is received for
a child POA that does not yet exist. The adapter activator can
then decide whether or not to create the required POA on de-
mand.

POA Manager. A POA manager encapsulates the process-
ing state of one or more POAs. By invoking operations on a
POA manager, server applications can cause requests for the
associated POAs to be queued or discarded.

Servant Manager. A servant manager is a locality con-
strained servant that is provided by the application developer.
The ORB uses a servant manager to activate and deactivate
servants on demand. Servant managers are responsible for (1)
managing the association of an object (as characterized by its
Object Id value) with a particular servant and (2) for determin-
ing whether or not an object exists. There are two types of
servant managers: ServantActivator and ServantLocator. The

type used in a particular situation depends on the policies in a
POA, which are described in section /refPOAarch.

4 The Design of ZEN’s POA

This section details both the goals for ZEN’s POA and several
alternative POA design that may achieve those goals. Each
alternative design is implemented and the benchmark compar-
isons are presented in Section 5.

4.1 Goals of ZEN’s POA design

Our experience building TAO taught us that to achieve a small
middleware footprint, feature subsetting must be planned early
in the design stages since it is hard to reduce footprint after an
implementation has become tightly coupled. Pluggability of
optional components, ease of extension, and footprint reduc-
tion are primary design goals for ZEN and the POA. More
specifically, we have the following goals for ZEN’s POA de-
sign:

� Minimize footprint. An important goal of ZEN’s POA
design is to achieve a small memory footprint for the
middleware suitable for DRE systems. Each application
should only incorporate the sections of middleware code
that it actually needs. By decomposing the POA into vir-
tual components, the POA requires minimal memory for
each application using ZEN.

� Ease adaptation to new changes in the CORBA spec-
ification. A pluggable, highly-modular POA design ap-
plies the core software engineering concept of separation
of concerns. Each of the virtual components in ZEN’s
POA encapsulates the implementation for a particular
POA policy.

� Facilitate addition of new custom POA polices.ZEN
is a research platform, so it is important to enable experi-
ments with new algorithms, data structures, and capabili-
ties.

4.2 Alternative POA Architectures

This section presents an overview of each of the three alterna-
tive POA design architectures we implemented, measured, and
compared: monolithic POA, coarse-grain POA, and fine-grain
POA.

4.2.1 Monolithic POA Architecture

In a monolithic POA architecture, the POA is a single large
component that contains the semantics needed to implement
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(1) policies in the OMG’s POA specification and (2) ORB-
specific policies. The monolithic design can increase the foot-
print (both code and data size) of the POA considerably since
the POA implements the behavior required by the entire set of
policies, rather than a minimal subset.

Monolithic POA also cannot be easily extended as new po-
lices are added to the CORBA POA specification. Moreover,
monolithic POA implementations complicate the addition of
ORB-specific policies. Monolithic POA implementations also
suffer from inefficiency in terms of redundant checking re-
quired to determine the appropriate course of action based on
POA policies.

For example, during most operations a monolithic POA
needs to check for the presence/absence of policies to incor-
porate the necessary behavior dictated by the policies associ-
ated with the POA. This overhead would be incurred each time
the operation was performed. For example, to process a client
request, the POA would have to check for the request process-
ing policy value associated with the POA, which would then
dictate how the request is processed.

4.2.2 Coarse-grain POA Architecture

In a coarse-grain POA architecture, the POA is still a single
large component, but we apply the Virtual Component pattern
to the entire POA so it can be plugged-in or removed as shown
in Figure 3. A coarse-grain POA architecture is useful for pure

Figure 3: Pluggable Object Adapters

clients, which need no object adapter and can reduce their
footprint by completely removing all POA methods. It also
useful for pure servers, which can reduce their footprint and
achieve custom functionality by loading the most appropriate
POA (e.g., the RootPOA or a special group communication
POA [16]) on demand. The coarse-grain pluggable POA de-
sign also simplifies the addition of new object adapters as they
are standardized by the OMG.

4.2.3 Fine-grain POA Architecture

The coarse-grained POA architecture has been implemented in
TAO [17] using the Component Configurator [13] pattern and
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Figure 4: Fine-grain Architecture of the ZEN POA

dynamic link libraries (DLLs) to load each POA implementa-
tion variant. In ZEN, we have more aggressively applied the
Virtual Component pattern to also support a fine-grain POA ar-
chitecture. In this approach, instead of an all-or-nothing load-
ing of the POA, individual components of the POA can be
loaded as needed.

Based on our work with TAO [18], we observed it is pos-
sible to divide the POA into smaller pieces and make them
virtual components. Such a fine-grain level of control can fur-
ther reduce the footprint of a POA when it is needed by an
application. We have found it useful to decompose the POA
as dictated by the values of the POA policies. Each of the
CORBA POA policies has a set of policy values that specify
the behavior of the POA with that policy. By breaking down
the policies according to their possible values, it is therefore
possible to load only the pieces that the POA needs, based on
the list of policies specified at POA creation time. For ex-
ample, Figure 4 shows the fine-grain architecture of the ZEN
POA, where each POA policy is factored out into a separate
strategy class, as described next in Section 4.3.

4.3 The Design of ZEN’s Fine-grain POA Ar-
chitecture

The remainder of this section describes how ZEN’s POA is de-
composed into modular components in accordance with POA
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policy values. We then provide an overview of each POA pol-
icy and explain how ZEN implements this policy in a highly
modular manner using the virtual components of ZEN’s fine-
grain POA architecture.

4.3.1 Primary POA Components

The four strategies described below are considered to be pri-
mary components in ZEN, i.e., their behavior does not depend
on other components. At POA creation time, these compo-
nents are created first and hold the smallest amount of state.
The following are the primary components of the POA.
ThreadStrategy component. This component implements
the Thread policy, which is used to specify the threading
model used in the POA. The POA can have one of the fol-
lowing threading models: single thread, ORB controlled, or
main thread. If the POA is single-threaded, all the requests of
the POA are processed sequentially. In a multi-threaded en-
vironment, all upcalls to the servant are invoked in a manner
that is safe for multi-thread unaware code. In contrast, in the
ORB-controlled model, multiple requests may be delivered si-
multaneously using multiple threads.

All requests to a main thread POA are processed sequen-
tially in the thread that runs the main() function. All upcalls
made by POAs with this policy to servants are made in a man-
ner that is safe for thread-unaware code. If the environment
has special requirements that some code must run on a distin-
guished main thread, servant upcalls will be processed on that
thread.

Using the Strategy pattern [19], the semantics of im-
plementing the Thread policy can be strategized into
two alternatives: class SingleThread and class
ORBControlModel. Each class encapsulates the state
and the logic of implementing the behavior specified by
the policy. In Zen,the main thread model strategy and
the single thread strategy are equivalent. Figure 5 shows
the class diagram for ZEN’s ThreadPolicyStrategy
alternatives..

At POA creation time, a factory method {init()}in the
base class ThreadPolicyStrategy creates the appropri-
ate strategy instance based on the POA’s policy list. Since the
ORBControl component does not maintain state specific to
a POA, it is implemented using the Flyweight pattern [19].
This pattern uses sharing to support large numbers of fine-
grain objects efficiently, which means there is one instance of
the ORBControl object. Each POA with that value for the
ThreadPolicyStrategy policy will have a reference to
that single object, thereby reducing memory usage.

Prior to making the upcall on the servant, the POA uses
the ThreadPolicyStrategy’s enter() method. If the
SingleThread strategy is in place, this method acquires
a mutex lock. After the upcall is performed, the exit()

Thread Strategy
#singleThreadStrategy: SingleThreadStrategy
#multiThreadedStrategy: ORBControlStrategy
+enter(invokeHandler:InvokeHandler): void
+exit(invokeHandler:InvokeHandler): void
+init(): ThreadStrategy

SingleThread Strategy
-lock: Object

ORBControl Strategy

1 

Figure 5: ZEN’s Thread Strategies

method releases the lock. This synchronization is not present
in the ORBControlModel strategy.
LifespanStrategy component. This component imple-
ments the Lifespan policy, which is used to specify whether
the CORBA object references created within a POA are per-
sistent or transient. Persistent object references can outlive the
process in which they are created. Unlike persistent object
references, transient object references cannot outlive the POA
instance in which they were first created. After the POA is
deactivated, the use of object references generated from it will
result in an OBJECT_NOT_EXIST exception.

The mechanism for implementing the POA’s Lifespan
policy has been separated into ZEN’s Persistent and
Transient strategies. Figure 6 shows the class diagram of
the LifespanStrategy component.

LifespanStrategy
#persistent: PersistentStrategy
+init(policyList:Policy): LifespanStrategy
+create(path_name:String,oid:byte[]): ObjectKey
+validate(policyType:int ): void

TransientStrategy
#timeStamp: long

LifespanStrategy

1 

Figure 6: ZEN’s Lifespan Strategy

The responsibilities of the strategy include the creation of
object ids for objects registered with the POA and validation
of object keys contained in the client requests.

When asked to activate an object, the POA uses the
create() method to generate an object id for the CORBA
object. The object id generated depends on the concrete strat-
egy loaded into the ORB. For example, the object id gener-
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ated by a transient transient POA has a time stamp. When a
client request is received, the validate() method of the
LifespanStrategy determines whether it was this POA
that generated the object id. If the POA is transient and the
above is not true then a OBJECT_NOT_EXIST exception is
returned to the client. In the persistent case, the adapter acti-
vator of the closest existing ancestor is used to create the POA
automatically.

In ZEN, the persistent strategy does not maintain state spe-
cific to a POA, so it can be implemented as a flyweight
PersistentStrategy object.

ActivationStrategy component. This component imple-
ments the Activation policy, which is used to specify
whether implicit activation of servants is supported in the
POA. If the implicit activation policy is active, it causes two
things to happen when the servant method {_this()}is
called:

1. The servant is registered with the POA and

2. The object reference for that servant is implicitly created.

Without this policy, the server must call either activate_
object() or activate_object_with_id() to
achieve this effect.

ZEN uses the ActivationStrategy shown in Figure 7,
to implement the behavior required by the ImplicitActivation
policy. The validate() method is invoked to check if

ActivationStrategy
#implicitActivation: ImplicitActivation
#explicitActivation: ExplicitActivation
+init(policyList:Policy): ActivationStrategy
+validate(policyType:int): boolean

ImplcitActivationStrategy ExplicitActivationStrategy

1 1 

Figure 7: ZEN’s Activation Strategy

implicit activation is permitted, on this POA. Depending on
the concrete strategy that is plugged into the ORB, the oper-
ation returns true or false. For example, the servant_to_
id() andservant_to_reference()operations use the
method to check if implicit activation is allowed.

Both concrete strategies,
ImplicitActivationStrategy and
ExplicitActivationStrategy do not maintain any
state within them and hence are implemented as flyweights to
for space utilization.

4.3.2 Secondary POA Components

The secondary components in ZEN are strategies whose be-
havior depends on the values of primary strategies. These de-
pendencies can lead to conflicts. When two policies cannot
co-exist they are said to be in conflict. If the policy list speci-
fied at POA creation has conflicts, the strategies would also be
in conflict. For example, if the ImplicitActivation policy value
is IMPLICIT_ACTIVATION, the IdAssignment policy value
cannot be USER_ID.

In ZEN, these conflicts are identified at strategy creation
time (i.e. before processing client requests), and appropriate
response can be taken (e.g., raise an exception to the user, ap-
ply reflection to automatically select a non-conflicting set of
policies, etc).

IdAssignmentStrategy component. This component im-
plements the IdAssignment policy, which is used to specify
whether object ids in the POA are generated by the application
or by the POA. The possible object id assignment policy val-
ues are either User-assigned or System-assigned.
Moreover, if the POA has both the system-id policy and per-
sistent lifespan policy enabled, object ids generated must be
unique across all instantiations of the same POA. If the POA
has the ImplicitActivation policy, this policy’s value cannot be
USER_ID. This subtle interaction between POA policy values
is implicit, but must be enforced at POA creation time.

In ZEN, the IdAssignmentStrategy class models the
behavior required by the Id Assignment policy. The inter-
face of the IdAssignmentStrategy is shown in Figure 8.
The init() factory method, that creates the concrete strat-

IdAssignmentStrategy
#userId: UserIdStrategy
+init(policyList:Policy): IdAssignmentStrategy
+nextId(): byte[]
+validate(policyType:int): boolean

SystemIdStrategy
#IdGenerator: int

UserIdStrategy

1 

Figure 8: ZEN’s Id Assignment Strategy

egy also checks for conflicts and raises the WRONG_POLICY
exception if necessary. The only responsibility of this strategy
is to generate object ids for registering objects with the POA.

Under certain conditions, POA operations, such as
activate_object() and servant_to_id(), can ac-
tivate servant using POA generated object ids. The
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{nextId()}method generates the new object id if the sys-
tem id policy value is present in the POA. If the user id policy
value is present, a WRONG_POLICY exception is raised. The
semantics of incorporating the above behavior is present each
of the concrete strategies.

The UserIdStrategy does not maintain any state spe-
cific to a POA, so it is designed as a flyweight.
IdUniquenessStrategy component. This component im-
plements the IdUniqueness policy, which is used to specify
if the servants activated in the POA must have unique object
ids. If the policy value is unique id, servant activated by the
POA support exactly one object Id. With the multiple id pol-
icy, servants activated by the POA may support multiple ob-
ject Ids. The use of unique id policy value in conjunction
with the NonRetain policy is meaningless. The OMG speci-
fication allows the ORB not to report an error if this combina-
tion is used, in ZEN this is considered to be in conflict and a
WRONG_POLICY exception is raised.

The IdUniquenessStrategy enforces the be-
havior required by the policy. Figure 9 shows
the class diagram and the concrete strategies that
extend the IdUniquenessStrategy. The

IdUniquenessStrategy
#multipleId: MultipleIdStrategy
#uniqueId: UniqueIdStrategy
+init(policyList:Policy): IdUniquenessStrategy
+validate(policyType:int): boolean

UniqueIdStrategy MultipleIdStrategy

1 1 

Figure 9: ZEN’s Id-Uniqueness Strategy

{validate()}methodis used by the POA to check
for the policy value associated with the POA. For example,
{activate_object()}operationbefore activation of
an already existing servant, calls the {validate()}method
to check if re-registration is permitted. Both the concrete
strategies do not maintain any state within them and hence are
designed as flyweight references.
ServantRetentionStrategy component. This component
implements the Servant Retention policy, which is used to
specify if the POA retains the active servants in an active ob-
ject map. This policy can either have retain or non-retain as
the possible policy values. Some combinations of POA poli-
cies are not allowed. For example, the ServantRetention policy
may have a value of NON_RETAIN and an ImplicitActivation
policy may have a value of IMPLICIT_ACTIVATION, but

ServantRetentionStrategy
#nonRetain: NonRetainStrategy
+init(): ServantRetentionStrategy
+getServant(): Servant
+getObjectKey(): ObjectKey
+add(ObjectKey,Servant): void
+validate(): void
+servantPresent(Servant): boolean
+objectKeyPresent(Servant): ObjectKey

RetainStrategy
#AOM: ActiveObjectMap
+initialize()
+getAOM(): ActiveObjectMap
+deactivateObject(ObjectKey)
+destroyObjectKey(ObjectKey)

NonRetainStrategy

1 

Figure 10: ZEN’s Servant Retention Strategy

«Interface»
ActiveObjectMap

+add(ObjectKey,Servant): void
+getObjectKey(): ObjectKey
+getServant(ObjectKey): Servant
+servantPresent(Servant): boolean
+objectKeyPresent(Servant): boolean
+remove(ObjectKey): void

DualMap
#keyToServantMap: HashTable
#servantToKeyMap: HashTable

SingleMap
#keyToServantMap: HashTable

Figure 11: ZEN’s Active Object Map Interface

they cannot have those values simultaneously since they con-
flict with one another. Again, these implicit and subtle issues
must be enforced at POA creation time.

In ZEN, the ServantRetentionStrategy mod-
els the behavior required by the ServantRetention policy.
Figure 10 shows the concrete strategies that extend the
ServantRetentionStrategy.

The ServantRetentionStrategy maintains an ac-
tive object map where the association between the CORBA
object and the servant is maintained. If a POA has unique
id and retain policies, there exists a one-to-one relationship
between the object ids and servants and vice versa. In this
case, operations servant_to_id() and servant_to_
reference() support reverse lookups (e.g., given a pointer
to a servant, return the object associated with it). To speed up
these operations, ZEN uses a reverse map that maps servants
to their object ids. Since this reverse map is only needed in
certain cases, the active object map is further strategized into
SingleMap and DualMap. Figure 11 shows the active ob-
ject map interface.

The optimization describe above further reduces the foot-
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print of the POA when a multiple id policy value is used. In
the traditional approach, operations requiring lookups on the
active object map would have to be preceded by guard condi-
tions that check if the POA has the retain policy. In ZEN, de-
pending on the concrete strategy in place, these either produce
the desired behavior or raise the WRONG_POLICY exception.

The NonRetainStrategy encapsulates the mechanism
of enforcing the non-retain policy. This strategy does not
maintain any state specific to the POA and is implemented
as a flyweight. All POA’s having the non-retain policy have
references to this flyweight.

RequestProcessingStrategy component.This component
implements the RequestProcessing policy, which specifies
how the POA should process requests. On receipt of a request,
the POA based on the request processing policy value can do
one of the following.

� Consult the active object map only.The POA using the
object id searches the map for the associated Servant. It
then uses that servant to process the request. If unsuc-
cessful, an exception is returned to the client.

� Use a default servant. If the POA has the Retain pol-
icy and Step 1 is unsuccessful, then a default servant if
present is used to service the request. If a default ser-
vant has not been associated or the POA does not have
the policy an exception is returned to the client.

� Use Servant Manager.If the POA has the UseServant-
Manager policy, the application supplied manager can
be asked to incarnate/activate a servant for the object id.
This servant is used by the POA to service the request.
Depending on the ServantRetention policy, the servant
manager can either be a servant activator or a servant lo-
cator.

The RequestProcessing policy is strategized
along the three alternate courses of action men-
tioned above. Figure 12 shows the class dia-
gram for the RequestProcessingStrategy.
ActiveObjectMapOnlyStrategy encapsulates the
logic of request dispatch if the active object map only policy
is used. The POA uses the {handleRequest()}method
of the base strategy strategy to service requests.

The DefaultServantStrategy is associated with the
POA if the appropriate policy value is used. Depending on the
servant retention policy value, this strategy either consults the
active object map first for request dispatch, or uses the default
servant. If the non-retain policy value is used the POA, the
servant is directly used. In either of the cases, if no servant is
associated with the POA, an exception is raised.

The ServantManagerStrategy is associ-
ated with the POA if the Use Servant Manager pol-
icy value is specified. Moreover, depending on the

RequestProcessingStrategy

+init(): RequestProcessingStrategy
+setInvokehandler(): void
+getRequestProcessor(policType:int): Object
+validate(policyType:int): void
+handleRequest(): int

AOMOnlyStrategy
#aom: ActiveObjectMap
+initialize(): void

DefaultServantStrategy
+servant: Servant
+initialize(): void

ServantActivatorStrategy
#manager: ServantActivator
#aom: ActiveObjectMap
+initialize(): void

ServantLocatorStrategy
#manager: ServantLocator
+initialize(): void

ServantManagerStrategy

Figure 12: Request Processing Strategy

ServantRetention policy for the POA, this is strate-
gized into a ServantActivatorStrategy or a
ServantLocatorStrategy. Each of these concrete
strategies have the semantics necessary for request dispatch.

In a traditional POA implementation, each time a POA re-
ceives a request it must check the value of the request process-
ing policy. In ZEN, however, the semantics of request pro-
cessing in each case is present in the concrete strategy for that
policy, so the policy value need not be checked at all.

4.4 ZEN’s POA Design Summary

Section 4.2 presented the alternative architectures that help
reduce the footprint of ZEN’s POA. Figure 4 shows the
fine-grain architecture of the ZEN POA. POA A and
B have the UserId and Persistent policy values present
and consequently share the corresponding strategy compo-
nents. Moreover, the ServantRetentionStrategy and
ActiveObjectMapOnlyStrategy components of POA
A share the active object map, as shown by the flyweight ref-
erences in the figure. POA B illustrates the scenario in which
the POA has the minimal footprint i.e., maximal number of
flyweight references.

A monolithically designed POA is a large body of code,
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whereas the micro-POA in ZEN consists of several indivisi-
ble components associated at creation time. In terms of im-
plementation ease, the monolithic design is easier to imple-
ment, whereas the micro-POA design requires subsetting and
grouping of behavior of the POA into well-defined compo-
nents. However, it is easier to add new policies and change
semantics specified by individual policies in a micro-POA de-
sign than in a monolithic-POA design.

POAs of several ORBs, such as TAO [6] and JacORB [20],
implement the monolithic design. In ZEN, we have embraced
the micro-POA design since it provides the advantages men-
tioned in Section 4. Below, we summary how our highly-
modular pluggable designs have achieved the goals for ZEN’s
POA outlined in Section 4.1:

� Minimize footprint. Application of the Virtual Compo-
nent pattern to both the entire POA (coarse-grain) and to
individual components of the POA (fine-grain) allows op-
timal selection of just the POA components required for
each application. The footprint measurement presented
in Section 5 demonstrate substantial footprint savings in
a variety of usage scenarios.

� Ease adaptation to new changes in the CORBA speci-
fication. If a the behavior specified by a POA policy were
to be changed, only the appropriate strategy would be af-
fected. For example, if the semantics of the ActiveOb-
jectMapOnly policy value were to change, only the spe-
cific class for handling that policy need to change. ZEN’s
micro-POA design therefore focuses the point of change
to one component.

� Facilitate addition of ORB-specific polices. The
highly-modular design of ZEN eases the addition of
new ORB-specific policy extensions for existing poli-
cies. For example, if we wish to add a new pol-
icy value, e.g., UseDatabaseManager, for the Request-
Processing policy, we only need to derive a new class
from the RequestProcessingStrategy that im-
plements the behavior of this new policy. Instances of this
new policy class can be plugged into the POA at creation
time using factories. This addition would not require re-
compilation of the POA – only compilation of the classes
for concrete strategy and for the concrete new policy.

ZEN’s highly-modular pluggable design has the additional
benefit of improving the time needed to create a POA. A
monolithic POA needs to check the request processing pol-
icy value with every request for request dispatch. In contrast,
the conflicts among the policies are identified in ZEN while
the strategies are being created. Based on the policy present
in the POA, the appropriate request processing component can
be plugged in. Thus, there is no need to first create the entire
policy list and then iterate over the list repeatedly to identify

the conflicts among the policies. This capability reduces the
creation time of the POA considerably, as shown in Figure 14.

5 Empirical Results

This section presents the results of both blackbox and white-
box benchmark measurements. These measurements were
performed on a dual-CPU Intel Xeon 1,700 Mhz processor
with 256 KB of main memory. The experiments compare
the results obtained from ZEN version 0.8 alpha with that of
JacORB [20] version 1.4 beta 4. All tests were conducted on
JVM version 1.4.0 running on Linux OS 2.4.18.

5.1 Blackbox Experiments

Blackbox experiments do not instrument the software internals
when evaluating the performance tests. In our case, each ORB
was benchmarked end-to-end without knowledge of its inter-
nal structure. Moreover, the benchmarks used operations pub-
lished by the ORB interfaces and did not modify or restructure
the ORB internals.

To eliminate differences in the POA configurations, the fol-
lowing properties were set in both ZEN and JacORB:

1. Logging was turned off
2. POA monitoring was turned off for JacORB in the prop-

erties file.
3. The number of threads in the thread pool was set to 10
4. Maximum queue size was set to 100 and
5. No priority was set for the threads doing the request pro-

cessing.

5.1.1 Root POA Metrics

Overview. As discussed in Section 3.2, the root POA is an
integral part of every CORBA server and is always present,
whether or not any other child POAs exist. A root POA suf-
fices for many applications, unless the server needs to provide
different QoS guarantees, such as object reference persistence.
Thus, minimizing the footprint of the root POA is vital to min-
imizing server footprint.

This test measures the increase in footprint after the root
POA has been associated with the ORB. The memory in-
crease prior to and after the call to the resolve_initial_
references() gives the foot print increase contributed by
the root POA.
Results and analysis. Figure 13 illustrates that the footprint
of the root POA in Zen is 61 kbytes, while that of JacORB is
180 kbytes. Thus, ZEN’s root POA is three times smaller than
JacORB. In ZEN, the creation of the root POA results in ini-
tialization of all the base abstract strategies and the creation of
the appropriate concrete strategies for the root POA policies.
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Figure 13: Root POA Footprint

The root POA maintains the maximum state among all POAs
in ZEN. This small footprint bolsters the micro POA design in
the ZEN. Since JacORB is designed monolithically, it suffers
from a higher footprint overhead.

5.1.2 Child POA Creation Time Metrics

Overview. We expect the design of the ZEN POA to reduce
the creation time of the POA since most of the concrete strate-
gies are implemented as flyweights. In many applications, a
POA could also be created as a side-effect of an upcall on the
servant. In this scenario, a slow creation time for a child POA
could decrease throughput and increase jitter.

This test measures the variation in creation time with the
number of POAs created. The child POAs that are created
have the same policies as the root POA. In ZEN, default policy
values (which are those used by the root POA) require more
memory and are more expensive to create than are non-default
policy values, so this test exercises the worst-case scenario.

Results and analysis. Figure 14 shows that both ZEN and
JacORB grow linearly with the increase in the number of
child POAs. However, the rate of increase for ZEN is smaller
than that of JacORB. From the samples, the average time for
POA creation in ZEN is 0.17 millisec while that of JacORB is
0.88 millisecs. On average, therefore, JacORB is seven times
slower than ZEN for child POA creation.

5.1.3 Child POA Footprint Metrics

Overview. A key design goal of the micro POA architecture
is to miminize footprint for DRE systems. This paper would
therefore be incomplete without the results for the footprint
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Figure 14: Child POA Creation Time

analysis for the child POAs. A CORBA server creates child
POAs for the CORBA objects if the QoS parameters require
persistent object reference, memory reduction (e.g., associat-
ing multiple objects with a default servant), etc.

This test measures the variation of footprint with the num-
ber of POAs created. The increase in footprint prior to and
after the call to the create_POA() method is measured in
each of the case. Each of the POAs created have the follow-
ing policy values: (1) NonRetain policy, (2) ServantManager
policy, and (3) UserId policy. This combination is chosen as
since it minimizes the footprint for the ZEN POA.

Results and analysis. Figure 15 depicts the memory in-
crease with the number of child POAs. Both JacORB and
ZEN, grow linearly. Though ZEN seems to be constant, it rate
of growth is simply very low. The average size of the child
POAs in ZEN is 35 kbytes, while that of JacORB is around
300 kbytes. Thus, on average JacORB’s POA is larger by a
factor of 8.
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Figure 15: Child POA Footprint Results
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There could be several factors contributing to the footprint
increase than the POA per se. In the case of JacORB some of
these factors contribute significantly towards increased foot-
print. For example, in JacORB for every POA created:

1. A request controller is associated with each POA. The
Request controller is a thread pool that manages the re-
quest processing for that POA. In ZEN, the thread pool
is associated with the ORB and not with each POA. For
example, when 100 child POAs are created in JacORB,
each POA has its own thread pool and specified channel
capacity, adding significantly to the footprint of POA.

2. A POA monitor is initialized with every POA created
even if monitoring is disabled in the properties file.

Even if a POA has only default set of policies, however, due
to JacORB’s monolithic design it still has the semantics for
implementing ORB-specific policies, such as bi-directional
GIOP.

For the reasons mentioned above, the relative difference be-
tween the sizes of the POAs for ZEN and JacORB is large.
Even with these differences, ZEN’s design is more scalable
since the footprint increase is minimal with an increase in the
number of POAs created.

5.1.4 Cost in Memory per Object Activation

Overview. One of the key functionality of the POA is to gen-
erate object references. Thus, the cost in memory per object
activation provides an indication of footprint increase as ser-
vants are associated with the POA. In this test, a servant is
activated multiple times. Each time the servant is activated the
POA creates an association between the servant with its object
id in the active object map. The increase in footprint prior to
and after the activation of servants is measured for each case.
Results and analysis. Figure 16 illustrates that memory in-
creases linearly with an increase in the number of activations.
The average cost of memory per object activation is around
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Figure 16: Cost in Memory per Object Activation

240 bytes. Some factors contributing to the increase include:
the creation of object key for the servant, creating a hash map
structure for servant, and registering the association between
the object key and the hash map structure in the active object
map.

At the writing of this paper, JacORB does not support the
association of multiple objects with the same servant. Hence,
it is not possible for us to determine the growth of memory
with the number of object activated. We have reported this as
a bug to the JacORB developer group.

5.2 Whitebox Experiments

Whitebox benchmarks are a performance evaluation technique
where explicit knowledge of software internals is used to se-
lect the benchmark data. Unlike blackbox benchmarks, white-
box tests uses instrumentation of software internals to eval-
uate performance. Below, we present whitebox experiments
on POA-related demultiplexing that were conducted using
JacORB and ZEN.

A key function of a POA is demultiplexing of requests
to servants. Demultiplexing in conventional CORBA imple-
mentations is typically inefficient and unpredictable. For in-
stance, [11, 12] show that conventional ORBs spend 17% of
the total server time processing demultiplexing requests. Con-
stant time request demultiplexing regardless of organization
of the POA hierarchy or number of POAs, servants, or opera-
tions, allows an ORB to provide uniform, scalable QoS guar-
antees to real-time applications.

In the whitebox experiments, a single-threaded client issued
IDL operations at the fastest possible rate using a “flooding”
model. Timers used internally within the ORB Core measure
the dispatch time for each client request. Dispatch time was
measured as the time taken for request processing from the
time when the appropriate POA is found until the time the re-
quest was delivered to the servant. This definition of dispatch
time eliminated the demarshaling overhead and measured the
demultiplexing time required by the POA.

The average dispatch time was calculated by the experi-
ments. We also measured the variation of the dispatch time
with the depth of the POA hierarchy, breadth of the hierarchy,
the number of objects registered with a POA. These metrics
underscore the dependency of dispatch time on the aforemen-
tioned factors.

Below, we present the results from experiments that mea-
sure the three main demultiplexing steps that the affect POA
dispatch time.

5.2.1 POA Demultiplexing

Overview. The first step in the request delivery is to deter-
mine the POA that will service the request. As seen earlier,
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the POA hierarchy can be arbitrarily deep and broad. Tradi-
tionally, ORBs performed a look up for each level of the POA
hierarchy until the “leaf” POA is reached. This linear search
strategy is expensive, however, and increases the demultiplex-
ing time greatly. This test measures the variation in the POA
demultiplexing time with the increase in the depth, breadth and
number of objects of the POA hierarchy.
Results. Figure 17 shows the POA demultiplexing time
analysis for ZEN. Figure 18 compares the effect of the depth
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Figure 17: POA Demultiplexing Time Analysis for ZEN POA

of the POA hierarchy on the demultiplexing times for ZEN and
JacORB.
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Figure 18: POA Demux Time v/s Depth of the POA Hierarchy

The latency of ZEN and JacORB both increase with the
depth of the POA hierarchy. However, ZEN’s degradation
is more graceful than JacORB’s. This behavior stems from
the fact that ZEN flattens the POA hierarchy so the appropri-
ate POA servicing the request can be determined in a single

lookup.1 In contrast, JacORB incurs a lookup for ever depth
of the POA hierarchy, leading to the steep degradation of its
performance as the POA hierarchy deepens.

ZEN stores the complete POA path name (similar to the path
name of a directory or URL), along with the POA reference,
in a hash table.2 The linear increase in ZEN is due to the in-
crease in the length of the POA path name with the deepening
of the POA hierarchy. This increase in path name contributes
to comparison time needed for a successful lookup, though
ZEN is still much faster than JacORB.

Figure 19 compares the variation in the demultiplexing time
with the breadth of the POA hierarchy. This figure shows
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Figure 19: POA Demux Time v/s Breadth of POA Hierarchy

that the POA demultiplexing time remains constant for both
ZEN and JacORB as the breadth and the number of objects
in the POA hierarchy are increased. However, the latency in
JacORB is much higher than in ZEN, which can be attributed
to JacORB’s sequential traversal of the POA namespace.

To prevent the linear increase of demultiplexing time with
the depth of the POA hierarchy, an active demultiplexing strat-
egy (such as the one used in TAO [18]) should be used. Pre-
dictability is essential for real-time systems, so our first non-
alpha release of ZEN will use active demultiplexing.

5.2.2 Servant Demultiplexing

Overview. Once the ORB Core demultiplexes a client re-
quest to the right POA, this POA demultiplexes the request to
the corresponding servant. In this test, the variation of servant
demultiplexing time is measured with the number of active ob-
jects in the POA.

1If the lookup fails, the POA hierarchy is traversed sequentially and the
required POAs are activated using the user-supplied adapter activator.

2We are currently using Hashtable provided by Java, i.e., java.
util.Hashtable.
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Results. Figure 20 shows the variation of servant demulti-
plexing time with the increase in the number of servant in the
active object map. In ZEN, we are are currently using dynamic
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Figure 20: Servant Demultiplexing Time

hashing for this stage of demultiplexing (as before, we use the
hash table provided by Java’s java.util.Hashtable).
To locate the appropriate servant, the POA uses the object id
part of the object key to look up the servant in the active ob-
ject map, hence this stage is independent of the POA hierarchy.
There are three steps in locating a servant:

1. Parsing the object key
2. Checking if the key is present and
3. Looking up the appropriate hash data structure that con-

tains the servant.

ZEN’s servant demultiplexing implementation incurs a sig-
nificant overhead during hash table lookup operations that
contribute to its latency, which stems from the synchronized
methods of Java’s java.util.Hashtable class. Some
overhead is also necessary to compute the hash function,
which uses the hashCode() method of Java’s String
class. In addition, there is a gradual increase in the latency
with the increase in the number of active objects in the POA.
As stated above, in the first non-alpha release of ZEN we will
also be implementing an active demultiplexing scheme for this
stage of demultiplexing.

JacORB does not let the user associate multiple objects for
the same servant, even with the Multiple-Id policy value for
the POA. Hence we are unable to present its results.

5.2.3 Operation Demultiplexing

Overview. The final step at the Object Adapter layer in-
volves demultiplexing a request to the appropriate skeleton.
This skeleton then demarshals the request and dispatches the
designated operation upcall in the servant. For real-time em-
bedded systems, operation demultiplexing should be efficient,
scalable, and predictable.

To prevent variations in operation dispatch time with num-
ber of methods, we use a Java-variant of GPERF [21] called
JPERF, which is an open-source perfect hash function gener-
ator. JPERF automatically constructs perfect hash functions
from a user-supplied list of keywords. Perfect hashing is
predictable and efficient, and outperforms other search tech-
niques, such as binary search and dynamic hashing. JacORB
uses dynamic hashing for this stage (both ZEN and JacORB to
use java.util.Hashtable class for our experiments).

Results. Figure 21 illustrates the variation in operation de-
multiplexing time as the number of methods increases. This
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figure shows that operation lookup is constant in ZEN and
does not vary with the increase in the number of methods. La-
tency in ZEN is �1 �sec, while that of JacORB is �4 �secs.
The higher latency of JacORB stems from its dynamic hashing
overhead, which also increases the lookup time as the number
of methods increase.

6 Related Work

TAO’s Portable Object Adapter. TAO is an open-source,
high-performance real-time ORB written in C++. TAO had the
first implementation of the POA specification [18]. The design
of the POA is based on several design patterns, many of which
have been adopted in ZEN. TAO also uses an optimized set of
request processing strategies [22], e.g., active demultiplexing
and perfect hashing. These strategies allow TAO’s POA to
provide constant-time lookup of servants based on object keys
and operation names contained in CORBA requests.

In ZEN, we have based our design on several optimizations
used in the design of TAO’s POA, e.g., perfect hashing for
O(1) time servant lookups and flattening the POA hierarchy to
prevent a lookup for every level in the POA hierarchy. Apart
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from these, the main optimization present in ZEN is the fine-
grain control of the components that are loaded. The extensive
use of advanced strategies, such as the Virtual Component,
Strategy, and Flyweight patterns, has helped reduce footprint
of the ZEN POA. This design does not unduly compromise
performance, as shown in Section 5.

JacORB. JacORB [23] is an open-source Java ORB devel-
oped at the University of Berlin. Like TAO, JacORB has been
widely embraced in the industry. Likewise, JacORB has a
monolithic POA design. JacORB also has a POA monitoring
GUI that can be used to monitor the operations on the POA
and request dispatch. JacORB does not implement some of
the request demultiplexing techniques discussed earlier, e.g.,
perfect hashing or flattening the POA hierarchy that help in
bounding lookup times.

Reflective POAs. One other possible solution to fine-grain
control over the components of the POA is to apply advanced
meta-programming techniques, such as reflection [24, 25, 26],
aspect-oriented programming [27], and model-integrated com-
puting [28]. These techniques can be used to auto-generate
most of the POA in such a way that only a minimal amount
of space is used, while still supporting the standard CORBA
APIs. Our future research will focus on exploring this alterna-
tive.

7 Concluding Remarks and Future
Work

ZEN is a long-term research project with well-defined goals
targeting distributed, real-time, and embedded (DRE) applica-
tions. We learned from our experience with TAO that a small
memory footprint must be achieved during the initial design
phase. We also learned that configuration must be automated
as much as possible, to avoid placing an onerous burden on
application developers.

The POA has been decomposed into a highly-modular,
loosely coupled set of Virtual Components that may be loaded
either on a fine-grain or a coarse-grain bases - depending on
the application developers configuration options. This paper
presents empirical results that measure the footprint and per-
formance of three alternative POA designs. The conclusion
is that considerable footprint savings can result from the fine-
grain highly-modular design, without unduly reducing perfor-
mance relative to existing Java ORBs.
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