The Design and Performance of a Pluggable Protocols
Framework for Object Request Broker Middleware

Fred Kuhns, Carlos O’Ryan, Douglas C. Schmidt, Ossama Othman, and Jeff Parsons
{fredk,coryan,schmidt,othman,parsp@cs.wustl.edu
Department of Computer Science, Washington University
St. Louis, MO 63130, USA

This paper appeared in the proceedings of the IEfPIn- an implementation detail and (2) the next-generation of op-
ternational Workshop on Protocols For High-Speed Netwottksized, standards-based CORBA middleware can replace ad
(PfHSN '99), August 25-27, 1999, Salem, MA. hoc and proprietary solutions.

Subject areas:Frameworks; Design Patterns; Distributed and

Real-Time Systems
Abstract y

To be an effective platform for performance-sensitive real-time
and embedded applications, off-the-shelf CORBA middleware
must preserve communication-layer quality of service (QO(E

properties to applications end-to-end. However, the standaf Lre has been substantial R&D emphasisigh-speed net-
I

CORBA's GIOP/IIOP interoperability protocols are not we Ki doerf timizatiorfer network el i
suited for applications that cannot tolerate the message fodringandperiormance optimizationist network elements
Qd protocols. As a result, networks are now available off-

print size, latency, and jitter associated with general-purpo b-shelf that can support Gbps on every perg, Giga-

messaging and transport protocols. It is essential, therefoJe, :
to develop standard pluggable protocols frameworks that it Ethe'rn'et gnd ATM switches. .Moreove'r, 622 Mbps ATM
nnectivity in WAN backbones is becoming commonplace.

low custom messaging and transport protocols to be confTﬁ- .
flexibl | lications. networks anq GigaPoPs, such as the Advanced Technol-
ured flexibly and used transparently by applications ogy Demonstration Network (ATDnet) [1], 2.4 Gbps (OC-48)

This paper provides three contributions to research on pluﬁ’ﬁk speeds are being deployed. However, the general lack of

gable protocols frameworks for performance-sensitive coms : e .
o . . X . r?bust and flexibleommunication middlewartr program-
munication middleware. First, we outline the key design chal-

lenges faced by pluggable protocols developers. Second ming, provisioning, and controlling these networks has limited

i&rate at which applications have been developed to leverage
describe how TAO, our high-performance, real-time CORBW— which app . P 9
. L vances in high-speed networking.
compliant ORB, addresses these challenges in its plugga%(li% Y . ; .
ommunication middleware resides between client and

protocols framework. Third, we present the results of bencsh_rver applications in distributed systems. It simplifies appli-
marks that pinpoint the impact of TAO’s OO design on its end- pp Y ' P bp

to-end efficiency, predictability, and scalability. cation development by providing a uniform view of heteroge-

. o k I I . Attheh f -
Our results demonstrate how applying optimizations Peous networks, protocols, and OS layers. Atthe heart of com

communication middleware can yield highly flexible/reusab eun|cat|on middieware ar@bject Request BrokeORBS),

X . .- .) . tch as CORBA [2], DCOM [3], and Java RMI [4], which
designs and highly efficient/predictable implementations. : .
) . eliminate many of tedious, error-prone, and non-portable as-
particular, the overall round-trip latency of a TAO two-wa . AP i N
. . . ; cts of developing and maintaining distributed applications
method invocation using the standard inter-ORB protocol a Jarammed using low-level mechanisms like sockets. In
using a commercial, off-the-self Pentium Il Xeon 400 MHZ 9 9 '

Z
workstation running in loopback mode 48125 usecs. The

particular, ORBs automate common network programming
. . tasks, such as object location, object activation, parameter
ORB middleware accounts for approximately 48% ~o80 d)) P
usecs of the total round-trip latency. These results iIIustra&e

Introduction

rrent trends and limitations: During the past decade,

e)marshaling, socket and request demultiplexing, fault re-
. ! . overy, and security.
that (1) communication middleware performance is lar e? o .
(1) P gely During the past decade there has also been substantial R&D
*This work was supported in part by Boeing, DARPA contract 970151€mpha5!3 on 'communlc.atlon mlddileware. As a result, com-
GDIS, NSF grant NCR-9628218, Nortel, Siemens, and Sprint. munication middleware is now available off-the-shelf that al-

lows clients to invoke operations on distributed componemisrtions of the CORBA specification that are relevant to our
without concern for component location, programming lapresent topici.e., object addressing and inter-ORB protocols.

guage, OS platform, communication protocols and intercngject addressing synopsis: To identify objects, CORBA

tnh(?ctsf,_f?trhh?rgwl?re [ri]rﬁHr?iwet\i/er? :r?i?jglecverfl Ifac;k Of;’Uppozﬂgfines a generic format called the Interoperable Object Ref-
s ofi-the-shell communicatio eware for QoS spec érgnce (IOR). An object reference identifies one instance of

cation and enforcement features, integration with high-spege object and associates one or more paths or routes by which

)) 2 a
networking technology, and performance, predictability, aﬂgat object can be accessed. The same object may be located
scalability optimizations [6], has limited the rate at which ap; :

lications have been developed to leverage advances in ¢ P(ngifferent object references,g, if a server is re-started on
piication : P 9 2 Mew port or migrated to another host. Likewise, multiple
munication middleware.

server locations can be referenced by one I@B, if a server
Overcoming communication middleware limitations with has multiple network interfaces connecting it to distinct net-
pluggable protocols: To address the shortcomings of com¥0rks, there may be multiple network addresses.

munication middleware described above, we have developefeferences to server locations are cajedfiles A pro-

The ACE ORBTAO) [6]. TAO is open-sourcé,standards- flé provides an opague, protocol-specific representation of an
based, high-performance, real-time ORB endsystem comrabiect location. Profiles can be used to annotate the server lo-
nication middleware that supports applications with determfftion with QoS information, such as the priority of the thread
istic and statistical QoS requirements, as well as “best-effore"vVINg each endpoint or redundant addresses to enhance fault-
requirements. TAO is the first ORB to support end-to-end Q&@erance.

guarantees over ATM/IP networks [7, 8]. Protocol model synopsis: CORBA Inter-ORB Protocols
We have used TAO to research many dimensions (@P)s define interoperability between ORB endsystems.

high-performance and real-time ORB endsystems, includi@Ps provide data representation formats and ORB messag-

static [6] and dynamic [9] scheduling, request demultipleig protocol specifications that can be mapped onto stan-

ing [10], event processing [11], ORB Core connection agidrd and/or customized transport protocols. Regardless of the

concurrency architectures [12], IDL compiler stub/skelet@hoice of ORB messaging or transport protocol, however, the

optimizations [13], systematic benchmarking of multipletandard CORBA programming model is exposed to the appli-

ORBs [14], I/0 subsystem integration [8], and patterns feation developers. Figure 1 shows the relationships between

ORB extensibility [15]. This paper focuses on a previousiiese various components and layers.

unexamined dimension in the high-performance and real-time

ORB endsystem design spactite design and performance STANDARD CORBA PROGRAMMING API

of a pluggable protocols framewotkat supports high-speed -~ - ---""""""""""""""-"""--""--"~"=--~---~

protocols and networks, real-time embedded system interd@fRRB MESSAGING

nects, and standard TCP/IP protocols over the Internet. COMPONENT E B

Paper organization: The remainder of this paper is orgaORB TRANSPORT

nized as follows: Section 2 outlines the CORBA protocol ilrkpAPTER COMPONENT IIoP VME-IOP ATM -IOP

.- . . . RELIABLE
teroperability architecture; Section 3 motivates the need for--------------s7-2-~~7-=------- SEQUENGED
a CORBA pluggable protocols framework and describes hQW,\sporT LAVER TCP
TAO's pluggable protocols framework is designed; Section 4 VME AALS
illustrates the performance characteristics of TAO’s pluggable "~~~ """ """ ""TpRIVER |
protocols framework; Section 5 compares TAO with relatetETWORK LAYER IP ATM

work; and Section 6 presents concluding remarks.

PROTOCOL CONFIGURATIONS

. Figure 1. Relationship Between Inter-ORB Protocols and

teroperability Architecture _ - _
In the CORBA protocol interoperability architecture, the
The CORBA specification [2] defines an architecture for ORgiandardGeneral Inter-ORB Protoco{GIOP) is defined by
interoperability. Although a complete description of the mod&le CORBA specification [2]. In addition, CORBA defines

is beyond the scope of this paper, this section outlines thé CP/IP mapping of GIOP, which is called thi¢ernet Inter-
ORB ProtocolllOP). ORBs must support [IOP to be “interop-

LTAO is available awww.cs.wustl.edu/ ~schmid/TAO.html . erability compliant.” Other mappings of GIOP onto different

transport protocols are allowed by the specification, as are &@SIOP synopsis: In addition to the standard GIOP and [IOP
ferent inter-ORB protocols, which are knownBsvironment protocols, the CORBA specification allows ORB implemen-
Specific Inter-ORB Protocol&SIOP)s. tors to define Environment Specific Inter-ORB Protocols (ES-

Regardless of whether GIOP or an ESIOP is used,I@P)s. ESIOPs can define unique data representation for-
CORBA IOP must define a data representation, an ORB mewts, ORB messaging protocols, ORB transport protocols or
sage format, an ORB transport protocol or transport protot@insport protocol adapters, and object addressing formats.
adapter, and an object addressing format. Below, we outliflgese protocols can exploit the QoS features and guaran-
how GIOP defines each of these IOP elements. tees provided in certain domains, such as telecommunications

. L) or avionics, to satisfy performance-sensitive applications that

GIQP synopsis: The GIOP specification consists of the fo'have stringent bandwidth, latency, and jitter requirements.
lowing elements: Only one ESIOP protocol is defined in the CORBA 2.x

e A Common Data Representation (CDR) definition: family of specifications: the DCE Common Inter-ORB Pro-
CDR is a transfer syntax that maps IDL types from thei@col (DCE-CIOP) [2]. Figure 1 illustrates two ESIOPs we
native host format into a low-levédi-canonicalrepresenta- are developing, GIOPlite and an ATM ESIOP. In addition, the
tion, which supports both little-endian and big-endian formaf@MG is considering other protocols for domains such as wire-
CDR-encoded messages are used to transmit CORBA requ€sgsand mobile systems [16], which have unique performance
and server responses across a network. All IDL data types@taracteristics and optimization points.
marshaled using the CDR syntax intoencapsulatiopwhich

is an octet stream that holds marshaled data.
3 A Pluggable Protocols Framework
e GIOP message formats: The GIOP specification de-

fines seven types of messages that send requests, receivefor CORBA

replies, locate objects, and manage communication channels.

The following table lists the seven types of messages in GIOBE CORBA specification provides a standard for general-
1.0% and the permissible originators of each type: purpose communication middleware. Within the scope of this

specification, however, ORB implementors are free to opti-

Message Type | Originator | Value mize internal data structures and algorithms [10]. Moreover,
Request Client 0 ORBs may use specialized inter-ORB protocols and ORB ser-
Reply Server 1 vices and still comply with the CORBA specificatiénThis
CancelRequest | Client 2 section identifies the limitations of current ORBs with respect
LocateRequest | Client 3 to thei t | t d ibes h TAO's bl bl
LocateReply Server 7 o their protocol support, describes how s pluggable pro-
CloseConnection| Server 5 tocols framework is designed to overcome these limitations,
MessageError | Both 6 and then describes how TAO can be applied to develop mid-

dleware for high-performance multimedia applications.

¢ GIOP transport adapter: The GIOP specification de-
scribes the features of an ORB transport protocol that @M Protocol Limitations of Conventional ORBs
carry GIOP messages. Such protocols must be reliable and
connection-oriented. In addition, GIOP defines a connectigPRBAS standard GIOP/IIOP protocols are well suited for

management protocol and a set of constraints for GIOP mggoventional request/response applications with best-effort
sage ordering. QoS requirements [13]. They are not well suited, however,

for high-performance, real-time, and/or embedded applica-

e Object addressing: An Interoperable Object Referencgjons that cannot tolerate the message footprint size of GIOP
(IOR) is a sequence of opagpeofiles each representing aor the latency, overhead, and jitter of the TCP/IP-based IlOP
protocol-specific representation of an object’s location. Fgansport protocol. For instance, TCP functionality, such as
example, an IIOP profile includes the IP address and port nuggaptive retransmissions, deferred transmissions, and delayed
ber where the server accepts connections, as well as the okjerhowledgments, can cause excessive overhead and latency
key that identifies an ObjeCt within a particular server. Theﬂ'@' real-time app"cations [17] Likewise, networking proto-
may be multiple paths or routes to an object. Therefore, s, such as IPv4, lack the functionality of packet admission
same IOR can contain multiple IIOP profiles, along with prewlicies and rate control, which can lead to excessive conges-

files for other prOtOCOIS, such as GIOP over ATM or non-qufbn and missed deadlines in networks and endsystemsl
protocols

2Version 1.1 of GIOP addedRragment message and version 1.2 relaxes 3An ORB mustimplement GIOP/IIOP, however, to be interoperability-
the restrictions with respect to message originators. compliant.

Therefore, applications with more stringent QoS requirg- Use standard CORBA programming and control inter-
ments need optimized protocol implementations, QoS-awéaees: To ensure application portability, clients should pro-
interfaces, custom presentations layers, specialized mengmgm to standard application interfaces defined in CORBA
managementg(g, shared memory between ORB and 1/0 sultbL, even if pluggable ORB messaging or transport protocols
system), and alternative transport programming ARg,(are used. Likewise, object implementors need not be aware
sockets vs. TLI). Domains where highly optimized ORB mesf the underlying framework. However, developers should be
saging and transport protocols are particularly important imble to set policies that control the ORB’s choice of protocols
clude (1) multimedia applications running over high-speetid protocol properties. Moreover, these interfaces should
networks, such as Gigabit Ethernet or ATM, and (2) reatansparently support certain real-time ORB features, such as
time applications running over embedded system intercatatter/gather I/O, optimized memory management, and strate-
nects, such as VME or CompactPCI. gized concurrency models [10].

Conventional CORBA implementations have the following gimultaneous use of multiple ORB messaging and trans-
limitations that make it hard for them to support performancgat protocols: To address the lack of support for multi-
sensitive applications effectively: ple inter-ORB protocols in conventional ORBs, a pluggable
protocols framework should support different messaging and
transport protocolsimultaneouslyvithin an ORB endsystem.
)f'he framework should transparently configure inter-ORB pro-
tocols either staticallyi,e., during ORB initialization [18], or

2. Lack of protocol control interfaces: Many ORBs do not dynamically;i.e., during run-time ORB initialization.

allow applications to configure key protocol policies and prog: Support for multiple address representations: This re-
erties, such as peak virtual circuit bandwidth or cell pacir@iirement addresses the lack of support for multiple Inter-
rate. ORB protocols and dynamic protocol configurations in con-

. . ventional ORBs. For example, each pluggable protocol imple-
3. Single protocol support: Many ORBs do not support si- e ntation can potentially have a different profile and object
multaneous use of multiple inter-ORB messaging or tranSpQ&jressing scheme. Therefore, a pluggable protocols frame-
protocols. work should provide a general mechanism to represent these

4. Lack of real-time protocol support: Many ORBs have disparate address formats transparently, while also supporting
%tandard IOR address representations efficiently.

limited or no support for specifying and enforcing real-tim
protocol requirements across a backplane, network, or InterfieBupport CORBA 2.2 features and future enhancements:

end-to-end. A pluggable protocol framework should support CORBA 2.2

features, such as object reference forwarding, connection

) transparency, preservation of foreign IORs and profiles, and

3.2 Pluggable Protocols Framework Require- the complete GIOP 1.1 protocol, in a manner that does not de-

ments grade end-to-end performance and predictability. Moreover,

a pluggable protocols framework should accommodate future

The limitations of conventional ORBs described in Section 3{l3nges and enhancements to the CORBA specification, such
make it hard for developers to leverage existing implemenia- (1) the GIOP 1.2 protocol, which allows bi-directional re-
tions, expertise, and ORB optimizations across projects or §fiests over the same connection, (2) real-time CORBA [18],
plication domains. Defining a standaptiiggable protocols \hich includes features to reserve connection and threading
frameworkfor CORBA ORBs is an effective way to addresgasoyrces on a per-object basis, and (3) asynchronous messag-

this problem. The requirements of such a pluggable protocgis 191, which exports QoS policies to application developers.
framework for CORBA include the following:

1. Static protocol configurations: Many ORBs support a
limited number of statically configured protocols, typicall
only GIOP/IIOP over TCP/IP.

6. Optimized inter-ORB bridging: A pluggable protocols
1. Define standard, unobtrusive protocol configuration in- framework should ensure that protocol implementors can cre-
terfaces: To address limitations with conventional ORBSs, ate efficient, high-performance inter-ORBline bridges An
pluggable protocols framework should define a standard seirofine bridge converts inter-ORB messages or requests from
components and APIs to install ESIOPs and their transpame type of IOP to another. This makes it possible to bridge
dependent instances. Most applications need not use thigligparate ORB domains efficiently without incurring unneces-
terface directly. Therefore, the pluggable protocol interfasary context switching, synchronization, or data movement.

should be exposed only to application developers interesfedp\ide common protocol optimizations and real-time

in defining new protocols or in configuring existing protocql 1 res: A pluggable protocols framework should support
implementations in new ways.

features required by real-time CORBA applications [18], supluggable protocols framework can be entirely transparent to
as resource pre-allocation and reservation, end-to-end prid®RBA application developers.

ity propagation, and mechanisms to control properties specifi¢igure 2 also illustrates the key components in TAO’s plug-
to real-time protocols. These features should be implemengedble protocols framework: (1) the ORB messaging compo-
without modifying the standard CORBA programming APlgent, (2) the ORB transport adapter component, and (3) the
used by conventional applications that do not possess real-tdfB policy control component, which are outlined below.
QoS requirements.

8. Dynamic protocol bindings: To address the limitation 3-3-1 ORB Messaging Component

of static protocol bindings in conventional ORBs, a pluggabjg,;g component is responsible for implementing ORB mes-

protocols frameworks should support dynamic associationS%f ing protocols, such as the standard CORBA GIOP ORB
specific ORB messaging protpcols \,Nith spec.ific in,St,anceSncffssaging protocol, as well as custom ESIOPs. As described
ORB. transport protocpls. This design permits efficient a,"ﬂ‘f’ Section 2, ORB messaging protocols should define a data
predictable configurations for both standard and Cusmm'zr%gresentation an ORB message format, an ORB transport

IOPs. protocol or transport adapter, and an object addressing for-
mat. Within this framework, ORB protocol developers are
3.3 Architectural Overview of TAO’s Plug- free to implement optimized Inter-ORB protocols and en-
gable Protocols Framework hanced transport adaptors, as long as the ORB interfaces are
respected.
To overcome the limitations described in Section 3.1, we idenEach ORB messaging protocol implementation inherits
tified logical communication component layers within TACffom a common base class that defines a uniform interface.
factored out common features, defined general framework Titis interface can be extended to include new capabilities
terfaces, and implemented components to support differeaeded by special protocol-aware policies. For example, ORB
concrete inter-ORB protocols. Higher-level services in tlead-to-end resource reservation or priority negotiation can
ORB, such as stubs, skeletons, and standard CORBA pselgoimplemented in an ORB messaging component. TAQO's
objects, are decoupled from the implementation details of paldggable protocols framework ensures consistent operational
ticular protocols, as shown in Figure 2. This decoupling @éharacteristics and enforces general IOP syntax and semantic
constraints, such as error handling.

IN ARGS

CLIENT operation (args) OBJECT (SERVANT)
oUt Ams & RETUR VALUE 3.3.2 ORB Transport Adapter Component

This component maps a specific ORB messaging protocol,

OTHER

H ORB vessaons covronent N such as GIOP or DCE-CIOP, onto a specific instance of an
E GIOPure || FAGEYE || e || Erecnoee SGVESI underlying transport protocol, such as TCP or ATM. Figure 2

l ESioP shows an example in which TAO's transport adapter maps the
: S — GIOP messaging protocol onto TCP (this standard mapping is
3 e called IIOP). In this case, the ORB transport adapter combined
% with TCP corresponds to the transport layer in the Internet ref-

ORB TRANSPORT ADAPTER COMPONENT

erence model. However, if ORBs are communicating over an
e embedded interconnect, such as a VME bus, the bus driver and
COMMUNICATION INFRASTRUCTURE ’ DMA controller provide the “transport layer” in the commu-
nication infrastructure.
Figure 2: TAO’s Pluggable Protocols Framework Architecture TAO’s ORB transport component accepts a byte stream
from the ORB messaging component, provides any additional
essential to resolve several limitations of conventional ORBrocessing required, and passes the resulting data unit to the
outlined in Section 3.1. underlying communication infrastructure. Additional process-
In general, the higher-level components and servicesimg that can be implemented by protocol developers includes
TAO use a facade [20] interface to access the mechanigi)sconcurrency strategies, (2) endsystem/network resource
provided by its pluggable protocols framework. Thus, apeservation protocols, (3) high-performance techniques, such
plications can (re)configure custom protocols without requas zero-copy I/O, shared memory pools, periodic I/O, and in-
ing global changes to the ORB. Moreover, because applitarface pooling, (4) enhancement of underlying communica-
tions typically access only the standard CORBA APIs, TAOt®ns protocolse.g, provision of a reliable byte stream proto-

HIGH SPEED NETWORK INTERFACE

col over ATM, and (5) tight coupling between the ORB and e&nd real-time CORBA applications. This scenario is based on
ficient user-space protocol implementations, such as Fast Mag- experience developing high-bandwidth, low-latency au-

sages [21]. dio/video streaming applications [22] and avionics mission
computing [11] systems. In previous work [8], we addressed
3.3.3 ORB Policy Control Component the network interface and 1/0 system and how to achieve pre-

dictable, real-time performance. In the discussion below, we
This component allows applications to control the QoS d@bcus on ORB support for alternate protocols.
tributes of configured ORB transport protocols explicitly.

t . . o o
is not possible to determiree priori all attributes defined by Low-latency, high-bandwidth - multimedia _streaming:

; Aultimedia applications running over high-speed networks
all protocols. Therefore, TAO's pluggable protocols fram%ﬁquire optimizations to utilize available link bandwidth,

work provides an extensibfgolicy controlcomponent, which while still meetina apolication deadiines. For example
implements the QoS framework defined in the CORBA Mes- g app ' P'e,

saging [19] and Real-time CORBA [18] specifications. consider Figure 3, where network interfaces supporting 1.2

The CORBA QoS framework allows applications to speci
variouspoliciesto control the QoS attributes in the ORB. Th
CORBA specification uses policies to define semantic prog
ties of ORB features precisely without (1) over-constrainik
ORB implementations or (2) increasing interface complexil
for common use cases. Example policies relevant for plug-os cusieo ore

WUGS HIGH- SPEED CITD)
NETWORK

ONSUMER
TAO QOS-ENABLED ORB

gable protocols include buffer pre-allocations, fragmentaticns — oo Y
bandwidth reservation, and maximum transport queue sizeSE_Jue -
Policies in CORBA can be set at the ORB, thread, or ob~R/© suesvsteu RIO SUBSYSTEM

ject level. Thus, application developers can set global pdfigure 3: Example CORBA-based Audio/Video (A/V) Appli-
cies that take effect for any request issued in a particular OFBtion
Moreover, these global settings can be overridden on a per- .
thread basis, a per-object basis, or even before a particulaf@PS 0r 2.4 Mbps link speeds are used for a CORBA-based
quest. In general, CORBA' Policy framework provides veRfudio quality audio/video (A/V) appllcr'mon.
fine-grained control over the ORB behavior, while providinfg In this example, we can use TAO's pluggable protocols
simplicity for the common case. ran_\ework to replace GIOP/IIOP with a cgstom ORB mes-
Certain policies, such as timeouts, can be shared betwg@@ng and transport protocol that transmits A/V frames us-
multiple protocols. Other policies, such as ATM virtual circulf'd TAO'S real-time I/0 (RIO) subsystem [8, 23]. At the core
bandwidth allocation, may apply to a single protocol. Eadj RIO is the high-speed ATM port interconnect controller
configured protocol can query TAO's policy control comp&AmC) [24]. APICis a hlgh-performance ATM interface card
nent to determine its policies and use them to configure itsgt SUPPOrts standard ATM host interface features, such as
for user needs. Moreover, protocol implementations can siti2L> (SAR). In addition, the APIC supports (1) shared mem-
ply ignore policies that do not apply to it. ory pools between user and kernel space, (2) per-VC pacing,

TAO's policy control component enables applications @) two levels of priority queues, and (4) interrupt disabling on

select their protocol(s). This choice can be controlled ByPer-VC bases. ,
the ClientProtocolPolicy defined in the Real-time _\Ve areé leveraging the APIC features and the underlying

CORBA specification [18]. Using this policy, an applicatioA' M network to support end-to-end QoS guarantees for TAO
can indicate its preferred protocol(s) and TAO's policy contrgiiddieware. In particular, pluggable ORB message and trans-
component attempts to match that preference with the seP8ft Protocols can be created to provide QoS services to ap-
available protocols. TAO provides other policies that contrdtications, while the ORB middleware encapsulates the actual
the behavior of the ORB if an application’s preferences canfiggCUrce allocation and QoS enforcement mechanisms. Lever-
be satisfied. For example, either an exception can be raise@@P9 the underlying APIC hardware requires the resolution of
another available protocol can be selected transparently. "€ following two design challenges:
1. Custom protocols: The first challenge is to create cus-

; tom ORB messaging and transport protocols that can exploit
3.4 APluggable Protocol Scenario high-speed ATM network interface hardware. A careful ex-
To illustrate how TAO’s pluggable protocols framework caamination of the system requirements along with the hardware
be applied in practice, we now describe a scenario where plage communication infrastructure is required in order to deter-
gable protocols can be used to support performance-sensitige both the set of optimizations required and the best par-

titioning of the solution into ORB messaging, transport and
policy components. movieship (frame) DEMARSHAL P

The A/V streaming application is primarily concerned with ﬁ ER Frames A IDL AcTvE
pushing data to clients (i.e., one-way method invocations) ar l e, | ORBuanAGeD | h
with meeting a specific set of latency and jitter requirements. FRAVES | DATARUFERS !
Considering this, a simple frame sequencing protocol carthe{ors vessaonell ™ cor
used as the ORB's ESIOP. Moreover, because multimedia @e.t ore TransrorT Il ¢ B3
has diminishing value over time, a reliable protocol, such as /
TCP, is notrequired. Thus, the overhead of full GIOP is not re-

ONINOINI

port protocol with the semantics of TCP.
A key goal of this scenario is to simplify the ORB messag-
ing and transport protocol, while adding QoS-related informa-
tion to support timely delivery of the video frames and audio.
For example, a CORBA request could correspond to one video
frame or audio packet. To facilitate synchronization between
endpoints, a timestamp and sequence number can be sent with

each request. The Inter-ORB messaging protocol can perfejfiide the use of resource locks. For example, in the scheme
a similar function as the real-time protocol (RTP) and real-tirggpicted in Figure 4, each active connection is assigned its
control protocol (RTCP) [25]. own send and receive queues. Likewise, there are two free
The ORB messaging protocol can be mapped onto an ORBfer pools per connection, one for receive and one for send.
transport protocol using AAL5. The transport adapter is then L .
responsible for exploiting any local optimizations to hardware AN ORB can guarantee that only one application thread will
or the endsystem. For example, conventional ORBs copy LD.l%;\ctlve within the send or receive operation of the transport

parameters into internal buffers used for marshaling. Th@§apter. Therefore, buffer allocation and de-allocation can
buffers may be allocated from global memory or possibly froff¢ Performed without locking. A similar buffer management

a memory pool maintained by the ORB. In either case, at leS&f€mMe is described in [24]

one system call is required to obtain mutexes, allocate buffersThe following two approaches are ways that the buffering

and copy the data. Thus, not only is an additional data cofsheme described above can interact with user applications:
incurred, but this scenario is rife with opportunities for prior-

ity inversion and jitter while waiting for ORB endsystem re-

sources. 1. Zero-copy- The application requests a set of send buffers
from the ORB that it uses for video and audio data. In
this case, application developers must not reuse a buffer
after it has been given to the ORB. When the original
set of buffers are exhausted, the application must request
additional buffers.

2. Optimized protocol implementations: The second
challenge is to implement an optimized pluggable protocol
that implements the design described above. For example,
memory can be shared throughout the ORB endsysten,
between the application, ORB middleware, OS kernel, and
network interface, by allocating memory from a common
buffer pool [24, 10]. This optimization eliminates memory 2. Single-copy- The ORB copies application data into the
copies between user- and kernel-space when data is sent or re-ORB managed buffers. While this scheme incurs one
ceived. Moreover, the ORB endsystem can manage this mem- data copy, the application developer need not be con-
ory, thereby relieving application developers from this respon- cerned with how or when buffers are used in the ORB.
sibility. In addition, the ORB endsystem can manage the APIC
interface driver, interrupt rates, and pacing parameters, as out-
lined in [8]. Well-designed ORBs can be strategized to allow applications

Figure 4 illustrates a buffering strategy where the ORB man-decide whether data are copied into ORB buffers or not. For
ages multiple pools of buffers to be used by applications seistance, it may be more efficient to copy relatively small re-
ing multimedia data to remote nodes. These ORB huffers greest data into ORB buffers, rather than using shared buffers
shared between the ORB and APIC driver in the kernel. Tivihin the ORB endsystem. By using TAO'’s protocol poli-
transport adapter implements this shared buffer pool on a mees, this decision can be configured on a per-connection, per-
connection and possibly per-thread basis to minimize or teread, per-object or per-operation basis.

4 The Performance of TAO'’s Plug- in four different Inter-ORB Protocols: GIOP over TCP (IIOP),
gable Protocols Framework L overlosal IR o changes s 16qultad 0 our sar-

- . F . ard CORBA benchmarking tool, calld®L _Cubit [12],
Despite the growing demand for off-the-shelf mddlewa?e either of the ORB messaging and transport protocol im-

in many application domains, a widespread belief persists %)
the embedded systems community that OO techniques areprh%rinentatlons.

suitable for real-time systems due to performance penalties

attributed to the OO paradigm [11]. In particular, the d@.2 Blackbox Benchmarks

namic binding properties of OO programming languages ar]dBIackbox benchmarks measure the end-to-end performance
the indirection implied in OO designs seem antithetical to real-

. :) - of a system from an external application perspective. In our
time systems, which require low latency and jitter. The re- — "
S . o xperiments, we used blackbox benchmarks to compute the
sults presented in this section are significant, therefore, Bk : X : :
. o . i . average two-way response time incurred by clients sending
cause they illustrate empirically how the it is possible to im- " .)
.) . various types of data using the four different Inter-ORB trans-
plement very predictable, efficient, and scalable middleware
. . : . ort protocols.
without compromising non-functional requirements, such 53
portability, flexibility, reusability, and maintainability, offered
by CORBA 9000 - 60.00%
To quantify the benefits and costs of TAO's pluggable pi ‘jgg‘; I
tocols framework, we conducted several benchmarks us £, |
two different ORB messaging protocols, GIOP and GIOPIi & s |
and two different transport protocols, POSIX local IPC (al & 400+
known as UNIX-domain sockets) and TCP/IP. These ben 7 %1
marks are based on our experience developing communice | |
middleware for avionics mission computing applications [1 0
and multimedia applications [22]. &
Note that POSIX local IPC is not a traditional higt
performance networking environment. However, it does p
vide the opportunity to obtain an accurate measure of O — S
and pluggable protocols framework overhead. Based on tf ‘ IO e Increase B UIOP/GIOPiite ‘
measurements, we have isolated the overhead associatecd. ...
each component, which provides a baseline for future workfyyre 5: TAO's Pluggable Protocols Framework Performance
high-performance protocol development and experimentatigfyer |ocal IPC and TCP/IP

50.00%

40.00%

30.00%

20.00%

alls per Second

C
N
1S]

Performance Improvement (%)

10.00%

+ 0.00%

Data Type

4.1 Hardware/Software Benchmarking Plat- Measurement technique: A single-threaded client is used
form in the IDL _Cubit benchmark to issue two-way IDL opera-

tions at the fastest possible rate. The server performs the oper-

All benchmarks in this section were run on a Quad-CPU lation, which cubes each parameter in the request. For two-way
tel Pentium 1l Xeon 400 MHz workstation, with one gigabytealls, the client thread waits for the response and checks that
of RAM. The operating system used for the benchmarkirtgs correct. Interprocess communication is performed over
was Debian GNU/Linux “potato” (glibc 2.1) with Linux ker-selected IOPs, as described above.
nel version 2.2.10. GNU/Linux is an open-source operatingWWe measure throughput for operations using a variety of
system that supports true multi-tasking, multi-threading, aHalL data types, includingoid , sequence , andstruct
symmetric multiprocessing. types. Thevoid data type instructs the server not to per-

Our benchmarks were run using the standard GIOP ORBmM any processing other than that necessary to prepare and
messaging protocol, as well as TAO's GIOPlite messagiagnd the responség., it does not cube any input parame-
protocol, described in Section 3.4. For the TCP/IP tests, tiees. Thesequence andstruct data types exercise TAO’s
GIOP and GIOPLite ORB messaging protocols were run ge)marshaling engine. Theruct contains aroctet , a
ing the standard CORBA [IOP transport adapter along wittng , and ashort , along with padding necessary to align
the Linux TCP/IP socket “brary and the I.OODbaCk interface. 4For historical reasons, TAO retains the expression “UNIX-domain” in
For the local IPC tests, GIOP and GIOPLite were used alofGocal IPC pluggable protocol implementation, which is where the name
with the optimized local IPC transport adapter. This resultadoP” derives from.

those fields. We also measure throughput using long and slmoiigure 6 along with the timeprobe locations used for these
sequences of thtong andoctet types. Thelong se- benchmarks.

guences contain 4,096 bytes (1,024 four Bgtey s or 4,096
octet s) and the short sequences are 4 bytes (one four

sz.tf.l Measurement Techniques
long or fouroctet s).

Blackbox results: The blackbox benchmark results are One way to measure performance overhead of operations in

shown in Eiqure 5. Al blackbox benchmarks were avera c¢gmplex communication middleware is to use a profiling tool
over 100 Oogo two—Wa operation calls for each data t egﬁaéa Quantify [26]. Quantify instruments an application’s bi-

) ' y-op yp 'nary instructions and then analyzes performance bottlenecks
depicted by the bars in Figure 5.

by identifying sections of code that dominate execution time.
UIOP performance surpassed IIOP performance for all d fying

types. The benchmarks show UIOP improves performan) %antify is useful because it can measure the overhead of
from 20% to 50% depending on the data type and size. |§ rtem calls and third-party libraries without requiring source

. . code access.
smaller data sizes and basic types, suchast ~andlong , Unfortunately, Quantify is not available for Linux kernel-

i . : 0
the performance improvement is approximately 50%. HOY:\)I ed operating systems for which whitebox measurement of

) as
ever, for larger data payload sizes and more complex d‘?iabs performance is needed. Moreover, Quantify modifies
types, the performance improvements are reduced. Th|%h|s

; . . € binary code to collect timing information. Therefore, it is
a direct result of the increasing cost of both the data copies : . .
)) : : . : ost useful for measuringlative overhead of different op-
associated with performing I/O and increasing complexity ot _.. . . :
: ; erations in a system, rather than measudhgoluterun-time
marshaling structures other than the basic data types.

. . . erformance.
For certain data types, additional improvements are &)

.) . ; To avoid the limitations of Quantify, we therefore used a
tained by reducing the number of data copies required. Suc . : . .
N : . : Ightweight timeprobe mechanism provided by TAO to pre-
a situation exists when marshaling and demarshaling data

: |gisely pinpoint the amount of time spent in various ORB com-
type octet andlong . For complicated data types, suc . s .
as a largesequence of struct s, ORB overhead is par_ponents and layers. The TAO timeprobe mechanism provides

. L highly accurate, low-cost timestamps that record the time
ticularly prevalent. Large ORB overhead implies lower effi- . .
seo_ent between regions of code in a software system. These

ciency, which accounts for the smaller performance improy . .
timeprobes have minimal performance impaeg, 1-2 usec

ment gal'ned by UIOP over IlOP for complex data types. overhead per timeprobe, and no binary code instrumentation
GIOPIlite outperformed GIOP by a small margin. F% required

IIOP, GIOPIlite performance increases over GIOP ranged fro epending on the underlying platform, TAO's timeprobes

0.36% to 4.74%, with an average performance increase (r)e implemented either by high-resolution OS timers or b
2.74%. GIOPIlite performance improvements were sligh% b y g y

better over UIOP due to the fact that UIOP is more efficie h-precision timing hardware. An example of the latter is the

: . : Etro board, which is a VME bus monitor. VMEtro writes
than IIOP. GIOPIlite over UIOP provided improvements ranghique TAO timeprobe values to an otherwise unused VME
i 0 0, I 0
ing from 0.37% 10 5.29%, with an average of 3.26 /0.' address. These values record the duration between timeprobe
Our blackbox results suggest that more substantial changes

. . arkers across multiple processors using a single clock. This
to the GIOP message protocol are required to achieve Slﬁ piep g 9

nificant performance improvements. However, these resei ables TAO to collect synchronized timestamps and accu-
P P) ’ a?ely measure communication delays end-to-end across dis-

also illustrate that the GIOP message footprint has a ririﬁuted CPUs.

tively minor performance impact over high-speed netwo Below, we examine the client and server whitebox perfor-

and embedded interconnects. Naturally, the impact of trk]l'e nce in detail
GIOP message footprint for lower-speed links, such as secontt '
generation wireless systems or low-speed modems, is more

significant. 4.3.2 Whitebox Results

_ Figure 6 shows the points in a two-way operation request
4.3 Whitebox Benchmarks path where timeprobes were inserted. Each labeled number

in. the figure corresponds to an entry in Table 1 and Table 2

Whitebox benchmarks measure the performance of speqifiG,, The results presented in the tables and figures which
components or layers in a system from an internal perspecty@o,, where averaged over 1,000 samples
In our experiments, we used whitebox benchmarks to pinpoint ’

the time spent in key components in TAO’s client and servélient performance: Table 1 depicts the time in microsec-
ORBs. The ORB logical layers, or components, are shownds (:S) spent in each sequential activity that a TAO client

PARAMETERS
CLIENT OBJECT (SERVANT)
OPERATION
MARSHAL @
- o | PARAMETERS
Z &
8 — | ORB MESSAGING
z 8 SEND
Z Z
Q &) | ORB TRANSPORT
SEND

OUTGOING INCOMING

Figure 6: Timeprobe Locations for Whitebox Experiment

performs to process an outgoing operation request and itstne-way, the transport component waits for and processes the
ply. response.

_ . . 5. Thesend operation in théDRB transportcomponent
Table 1:useconds Spentin Each Client Processing Stepimplements the connection concurrency strategy and invokes

[Direction [Client Activities | Absolute Time (us) | the appropriate ACE 1/0O operation. TAO maintains a linked
Outgoing | 1. Initialization 6.30 list of CDR buffers [10], which allows it to use “gather-write”
2. Get object reference 15.6 OS calls, such asritev . Thus, multiple buffers can be writ-
3. Parameter marshal 0.74 (param. dependent
2. ORB messaging send 778 ten atomically without requiring multiple system calls or un-
5. ORB transport send 1.02 necessary memory allocation and data copying.
6.1/0 8.70 (op. dependent
7. ORB transport recv 50.7 6. Thel/O operation represents the time the client spends
g- SRB messgg'”g rerf . 9-dZ5 in the receive system call. This time is generally dominated
- Parameter demarshal op. dependent by the cost of copying data from the kernel to user supplied
buffers.

Each client outgoing step is outlined below: N . . .
going step Each client incoming step is outlined below:

1. Intheinitialization step, the client invocation is created,
and constructors are called for the input and output Commor?- Thel/O receiveoperation copies the data from a kernel
Data Representation (CDR) stream objects that handle ni#ffer to a receive CDR stream and returns control to the ORB
shaling and demarshaling of operation parameters. transport component.

2. TAO's connector caches connections, so even thougl8. Therecv operation in theORB transporfayer dele-
its connect method is called for every operation, existingates the reading of the received messages header and body
connections are reused for repeated calls. For statically condigthe ORB messaging component. If the message header is
ured systems, such as avionics mission computing, TAO pyatid, then the remainder of the message is read. This also in-
establishes connections, so the initial connection setup owlides time when the client is blocked waiting for the server
head can be avoided entirely. to read the supplied data.

. 3. In the parameter marshabtep, the outgoingn a”,d . The recv operation in theORB messagindayer

mout' parameters arhe marshgled.'The oveLhead of th'sfpéﬂécks the message type of the reply, and either raises an ap-
cessing depends on the Qperatlon S|gna§wet e number o propriate exception, initiates a location forward, or returns the
data parameters and their type complexity. reply to the calling application.

4. Inthesend operation in th@ORB messaginkayer, the) .
client creates a request header and frames the message. The [N the parameter demarshaitep, the incoming reply
messaging layer then passes the message to the ORB 1Qfs-andinout parameters are demarshaled. The overhead

port component for transmission to the server. If the reques‘PEhis’tStep depends, as it does with the server, on the operation
signature.

10

Server performance: Table 2 depicts the time in microsec- 9. The time for theuser upcallstep depends upon the ac-
onds (4s) spent in each activity as a TAO server processetual implementation of the operation in the servant.
request. Each outgoing server step is outlined below:

10. Inthereturn value marshadtep, theeturn ,inout
Table 2:useconds Spent in Each Server Processing Step andout parameters are marshaled. This time also depends on
the signature of the operation.

| Direction | Server Activities | Absolute Time (us) ||

Incoming | 1.1/0 7.0 (op. dependent 11. The send operation in theORB messagindayer
2. ORB transport recv 24.8 passes the marshaled return data down to the ORB transport
3. ORB messaging rec 4.5 layer.
g: ggzlgge;?fd ey fég 12. Thegend operation in theéORB transporilayer adds
6. Servant demux 26 the appropriate IOP header to the reply, sends the reply, and
7. Operation demux 452 closes the connection if it detects an error. Also included in the
8. User upcall 3.84 (op. dependent category is the time the server is blocked in the send operation

Outgoing | 9. ORB messaging send 4.56 while the client runs.
10. ORB transport seng 93.6 13. Thel/Osend operation gets the peer /0O handle from

Each incoming server step is outlined below: the server connection handler and calls the appropsitd
]] operation. As in the client-side 1/68end operation described
. 1. Thel/O operation represents the time the server speq}c@ove, the server uses a gather-write I/O call.
in the read system call. _ _
Depending on the type and number of operation parame-

2. Therecv operation in theDRB transportayer dele- ters, theORB transport recwstep typically requires the most
gates the reading of the received message header to the @R processing time. This time is dominated by the required
messaging component. If it is a valid message, then the ggta copies. By using a transport adapter which implements a

maining data is read and passed to the ORB messaging ceRared buffer strategy these costs can be reduced significantly.

onent. . :
P Component costs: Figure 7 compares the relative over-

3. The recv operation in theORB messagindayer
checks the type of the message and forwards it to the P 55
Otherwise it handles the message or reports an error bac
the client.

N

o

o
L

4. The Parsing object keystep comes before any othe
POA activity. The time in the table includes the acquisitir
of a lock that is held through all POA activitieBQA demux
Servant demyxandOperation demu

=
a1
o

=
o
o

Total Time (usecs)

5. ThePOA demustep locates the POA where the serve
resides. The time in this table is for a POA that is one le
deep, although in general, POAs can be many levels deep

a1
o
L

52
51

0 ‘ ‘ ‘
1op 1IOP W/GIOPlite uloP UIOP w/GIOPlite
Transport Protocol

6. The servant demustep looks up a servant in the ta
get POA. The time shown in the table for this step is bas
on TAO's active demultiplexing strategy [10], which locates

servant in constant time regardless of the number of objeci... ., :
a POA g) Figure 7: Comparison of ORB and Transport/OS Overhead

Using Timeprobes
7. The skeleton associated with the operation resides in
the operation demustep. TAO uses perfect hashing [10] thead attributable to the ORB messaging component, transport
locate the appropriate operation. adaptor, ORB and OS for two-wdipL _Cubit calls to the
) . cube _void operation for each possible protocol combina-
8. Intheparameter demarshattep, the incoming requestjon This figure shows that when using 11OP the 1/0 and OS

in “andinout - parameters are demarshaled. The overhead,gl heaqd accounts for just over 50% of the total round trip
this step depends, as it does with the client, on the operaq%ncy_

signature.

‘III OS and /O mORB E Transport B Messaging‘

11

It also shows that the difference in performance betweerlin general, the use of UIOP demonstrates the advantages of
IIOP and UIOP is primarily due to the larger OS and I/O ovethis framework and how optimized, domain-specific protocols
head that TCP/IP has, as compared to local IPC. can be deployed.

The only overhead that depends on siz&is)marshaling
which depends on the type complexity, number, and size of
operation parameters, amhta copying which depends on5 Related Work
the size of the data. In our whitebox experiment, only the
parameter size changes., thesequence s vary in length. The design of TAO’s pluggable protocols framework is influ-
Moreover, TAO's (de)marshaling optimizations incur minimanced by prior research on the design and optimization of pro-
overhead when running between homogeneous ORB endsysel frameworks for communication subsystems. This sec-
tems. tion outlines this research and compares it with our work.

In Figure 8, the parameter size is varied and the above test

is repeated. It shows that as the size of the operation parafr@2figurable communication frameworks: The x-
kernel [27], Conduit+ [28], System V STREAMS [29],

ADAPTIVE [30], and F-CSS [31] are all configurable
communication frameworks that provide a protocol back-
250 plane consisting of standard, reusable services that support
network protocol development and experimentation. These
frameworks support flexible composition of modular protocol
processing components, such as connection-oriented and con-
nectionless message delivery and routing, based on uniform
interfaces.

The frameworks for communication subsystems listed
e ‘ ‘ above focus on implementing various protocol layers beneath

300

200

150 -

100 +

Total Time (usecs)

ol
o
I

o

4 8 16 32 64 128 256 512 1024 2048 relatively low-level programming APIs, such as sockets. In
Bytes in Octet Sequence contrast, TAO's pluggable protocols framework focuses on
[BOS and I/O MORB [Transport E Messaging] implementing and/or adapting to transport protocols beneath

a higher-level communication middleware ARg., the stan-

dard CORBA programming API. Therefore, existing commu-

giiggre 8: ORB and Transport/OS Overhead Versus ParamgieLiion subsystem frameworks can provide building block
ters increases, I/0 overhead grows faster than the overall Of§gtocol components for TAO's pluggable protocols frame-

overhead (including messaging and transport). This resultyerk.

lustrates that the overall ORB overhead is largely independlgﬁfterns-based communication frameworks: An increas-

of the request size. In particular, demultiplexing a requegl, nmber of communication frameworks are being designed

creating message head.ers, and invoking an operation upg% documented using patterns [15, 28]. In particular, Con-

are not affected by the size of the request. duit+ [28] is an OO framework for configuring network pro-
TAO employs standard buffer size and data copy tradeft,| software to support ATM signaling. Key portions of the

optimizations. This optimization is demonstrated in Figure&nquit+ protocol frameworke.g, demultiplexing, connec-

py the fact that there is a slight ingrease in the.time spent bﬂHiH management, and message buffering, were designed using

in the transport component and in the ORB itself when e o g jike Strategy, Visitor, and Composite [20]. Likewise,

sequence size is greater than 256 bytes. The data copy tradgaft ,ncyrrency, connection management, and demultiplexing

optimization is fully configurable via run-time command I'n%omponents in TAO's ORB Core and Object Adapter also have

options, so it is possible to configure TAO to further improjg, ., ey pjicitly designed using patterns like Reactor, Acceptor-
performance above the 256 byte data copy threshold. Connector, and Active Object [15].

For the operations tested in tigL. _Cubit benchmark, the
overhead of the ORB is dominated by memory bandwidth lir@ORBA pluggable protocol frameworks: The architec-
itations. Both the loopback driver and local IPC driver copyre of TAO’s pluggable protocols framework is based on the
data within the same host. Therefore, memory bandwidth lil@RBacus Open Communications Interface (OCI) [32]. The
tations should essentially be the same for both [IOP and UI@RC| framework provides a flexible, intuitive, and portable in-
This result is illustrated in Figure 7 by the fact that the tinterface for pluggable protocols. The framework interfaces are
spent in the ORB is generally constant for the four protoadfined in IDL, with a few special rules to map critical types,
combinations shown. such as data buffers.

12

Defining pluggable protocol interfaces with IDL permits dedesign leverages the testing, optimizations, wide range of plat-
velopers to familiarize themselves with a single programmifgrms, and the communication patterns supported and imple-
model that can be used to implement protocols in different lanented by ACE, enabling us to focus on the particular prob-
guages. In addition, the use of IDL makes it possible to wriems of developing a high-performance, real-time ORB. Using
pluggable protocols that are portable among different ORfEe OCI IDL-derived interfaces incurs an extra layer of adap-
implementations and platforms. tation between ACE and TAO, which unnecessarily increases

Though the OCI pluggable protocols framework is useffiamework overhead.
for many applications and ORBSs, the following aspects makeTAO implements a highly optimized pluggable protocol
it less suitable for high-performance and real-time systemsframework that is tuned for high-performance and real-time
¢ IDL interfaces add extra overhead: As mentioned application requirements.. For examp!e, TAO's pluggable pro-
above, the use of IDL has several advantages. However unﬁgccs)ls fre}mework can be integrated with zero-copy high-speed
! ' . network interfaces [24, 8].

new IDL mapping rules are approved for locality constraine :
objects, an ORB must set up a nontrivial amount of contextHowever’ TAO's pluggable protocols framework does not

information, e.g, to handle POA Servant Managers [33] tBreclude the use of more general frameworks like the ORBa-

make local invocations have the same semantics as remote€’| -OCI'. In fact, we plan to |m.plement' OC.I as a pluggable
vocations. Although overhead can be minimized by usidg protocol into TAO, thereby allowing application developers to

hoc optimizations, some additional method invocation ovet -Sft and use OCI pluggable_protocols. Ifapplications have very
head will be incurred by common IDL mappings. stringent performance requirements, developers canuse thein-

In contrast, the framework we propose utilizes regular Clgrnal TAO pluggable protocol framgyvork to obtain the higher
classes, this limits the portability of the system, but completéiﬁ? rformance and greater predictability.

eliminates the overhead introduced by the IDL interfaces.

e The current OCI version does not support zero-copy 6 Concluding Remarks
buffers: The OCI interfaces do not currently support zero-
copy I/O; which would permit the ORB to marshal data difo be an effective development platform for performance-
rectly into kernel buffers making a single copy or at most osensitive applications, OO middleware must preserve commu-
copy. TAO supports the use of different buffering strategiegation layer QoS properties of applications end-to-end. It is
which allow protocol developers to implement schemes whe&ssential, therefore, to define a pluggable protocols framework
memory can be shared between the application, ORB andl@t allows custom inter-ORB messaging and transport proto-
I/O subsystem. By supporting different buffering strategiesls to be configured flexibly and transparently by CORBA
the effectiveness of the framework for high-performance coapplications.
munication links is enhanced. For example, the transporfThis paper identifies the protocol-related limitations of cur-
adapter could manage a per-connection set of buffer pools.rBpt ORBs and describes a CORBA-based pluggable protocols
strategizing the CDR classes’ use of internal buffers, protof@mework we developed and integrated with TAO to address
implementers can focus on optimizing for specific hardwaretbese limitations. TAO’s pluggable protocols framework con-
communication channels rather than building general softwéms two main components: an ORB messaging component
components. and an ORB transport adapter component. These two com-
ponents allows applications developers and end-users to trans-

* The current OCI version does not optimize profile %arently extend their communication infrastructure to support

parsing: Parsing an IOP profile is a relatively expensive o
e e spor prtocols._reover, TADS 00 cesign males i
P pre-p P ' straightforward to develop custom inter-ORB protocol stacks

regeli]rtf;ar?gmgr:Sa::c;VZSes%fhgif;giﬁggpl?gﬁg;a;rzngglrecr'a_t can be optimized for particular application requirements
b ’ P y ﬁ? endsystem/network environments.

ated in a few instances, it is possible for them to parse the ol his paper illustrates empirically the performance of TAO's

stream representation and store itin a more convenientformﬂ}. able protocols framework when running CORBA ap-
The parsing can be also done on demand to minimize StaI%IJ 9 P 9 P

. i . ICations over high-speed interconnects, such as ATM. Our
time. The protocol implementor is free to choose the Strate%é(nchmarkin results demonstrate that applving approoriate
that best fits the application. 9 pplyIng approp

optimizations to communication middleware can yield highly

¢ ACE and OCl interfaces require extra adaptation lay- efficient and predictable implementations, without sacrificing
ers: TAO uses the ACE framework [34] to isolate itself fronflexibility or reuse. These results support our contention that
non-portable aspects of underlying operating systems. Toanmunication middleware performance is largely an imple-

e dynamic and/or static binding of new ORB messaging and

13

mentation issue. Thus, well-tuned, standard-based comm{t#} D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale,
cation middleware like TAO can replaea hocand propri-
etary solutions that are still commonly used in traditional dis-
tributed applications and embedded real-time systems.

We are currently developing pluggable protocols for higﬁl-3] A. Gokhale and D. C. Schmidt, “Optimizing a CORBA [IOP
speed networks such as ATM and Myrinet. One focus of our
future work is to determine effective patterns for supporting
advanced I/O features, such as buffer management schemessystemsSept. 1999.

using intelligent I/O interfaces and shared memory, availak?iq] A. Gokhale and D. C. Schmidt

“Software Architectures for Reducing Priority Inversion and
Non-determinism in Real-time Object Request Brokers,”
Journal of Real-time SystemB appear 1999.

Protocol Engine for Minimal Footprint Multimedia Systems,”
Journal on Selected Areas in Communications special issue on
Service Enabling Platforms for Networked Multimedia

“Measuring the Performance

in current high-speed network adaptors. In addition, we are" of Communication Middleware on High-Speed Networks,” in
exploring the integration of high-speed messaging protocols, Proceedings of SIGCOMM '9¢Stanford, CA), pp. 306-317,
such as Fast Messages [21], with standard CORBA communi- ACM, August 1996.

cation middleware.

References

[15]

[16]

[1] ATD, “Advanced Technology Demonstration Network.”

(2]

(3]

http://www.atd.net/.

Object Management Groupghe Common Object Request [17]

Broker: Architecture and Specificatip8.2 ed., Feb. 1998.
D. Box, Essential COM Addison-Wesley, Reading, MA, 1997.

[4] A.Wollrath, R. Riggs, and J. Waldo, “A Distributed Object

(5]

(6]

(7]

(8]

(9]

[10]

[11]

Model for the Java SystemUSENIX Computing Systems

18
vol. 9, November/December 1996. [18]

S. Vinoski, “CORBA: Integrating Diverse Applications Within [19]
Distributed Heterogeneous Environmentg&EE

Communications Magazingol. 14, February 1997. [20]
D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request Brokers,”

Computer Communicationsol. 21, pp. 294-324, Apr. 1998.

G. Parulkar, D. C. Schmidt, and J. S. Turnet.t*m: a

Strategy for Integrating IP with ATM,” ilProceedings of the
Symposium on Communications Architectures and Protocols
(SIGCOMM) ACM, September 1995.

F. Kuhns, D. C. Schmidt, and D. L. Levine, “The Design and [22]
Performance of a Real-time 1/0 Subsystem,Piroceedings of
the 5" IEEE Real-Time Technology and Applications
Symposium(Vancouver, British Columbia, Canada), IEEE,
June 1999.

C. D. Gill, D. L. Levine, and D. C. Schmidt, “The Design and
Performance of a Real-Time CORBA Scheduling Servicag
International Journal of Time-Critical Computing Systems,
special issue on Real-Time Middlewat®99, to appear.

I. Pyarali, C. O'Ryan, D. C. Schmidt, N. Wang, V. Kachroo,
and A. Gokhale, “Applying Optimization Patterns to the
Design of Real-time ORBs,” iRroceedings of the*"
Conference on Object-Oriented Technologies and Systems
(San Diego, CA), USENIX, May 1999.

T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The Design
and Performance of a Real-time CORBA Event Service,” in
Proceedings of OOPSLA '97Atlanta, GA), ACM, October
1997.

[21]

[23]

[24]

[25]

[26]

14

D. C. Schmidt and C. Cleeland, “Applying Patterns to Develop
Extensible ORB Middleware JEEE Communications
Magazine vol. 37, April 1999.

Object Management Groupelecom Domain Task Force
Request For Information Supporting Wireless Access and
Mobility in CORBA - Request For Informatip@MG
Document telecom/98-06-04 ed., June 1998.

R. S. Madukkarumukumana and H. V. Shah and C. Pu,
“Harnessing User-Level Networking Architectures for
Distributed Object Computing over High-Speed Networks,” in
Proceedings of the 2nd Usenix Windows NT Sympgsium
August 1998.

Object Management GrouRealtime CORBA Joint Revised
SubmissionOMG Document orbos/99-02-12 ed., March 1999.

Object Management Grou@,ORBA Messaging Specificatjon
OMG Document orbos/98-05-05 ed., May 1998.

E. Gamma, R. Helm, R. Johnson, and J. Vlissif&Esign
Patterns: Elements of Reusable Object-Oriented Software
Reading, MA: Addison-Wesley, 1995.

M. Lauria, S. Pakin, and A. Chien, “Efficient Layering for
High Speed Communication: Fast Messages 2.x.,” in
Proceedings of the 7th High Performance Distributed
Computing (HPDC7) conferencéChicago, lllinois), July
1998.

S. Mungee, N. Surendran, and D. C. Schmidt, “The Design and
Performance of a CORBA Audio/Video Streaming Service,” in
Proceedings of the Hawaiian International Conference on
System Sciencedan. 1999.

F. Kuhns, D. C. Schmidt, and D. L. Levine, “The Design and
Performance of RIO — A Real-time 1/0O Subsystem for ORB
Endsystems,” ifProceedings of the International Symposium
on Distributed Objects and Applications (DOA’99)
(Edinburgh, Scotland), OMG, Sept. 1999.

Z. D. Dittia, G. M. Parulkar, and J. R. Cox, Jr., “The APIC
Approach to High Performance Network Interface Design:
Protected DMA and Other Techniques,”Pnoceedings of
INFOCOM 97, (Kobe, Japan), IEEE, April 1997.

H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson,
“Rtp: A transport protocol for real-time applicationgyetwork
Information Center RFC 188%anuary 1996.

P. S. Inc. Quantify User’s Guide PureAtria Software Inc.,
1996.

[27]

(28]

[29]

[30]

[31]

[32]
[33]

[34]

N. C. Hutchinson and L. L. Peterson, “TRke&ernel: An
Architecture for Implementing Network Protocol$ZEE
Transactions on Software Engineerjingl. 17, pp. 64—76,
January 1991.

H. Hueni, R. Johnson, and R. Engel, “A Framework for
Network Protocol Software,” iRProceedings of OOPSLA 95
(Austin, Texas), ACM, October 1995.

D. Ritchie, “A Stream Input—Output SystenAT&T Bell Labs
Technical Journglvol. 63, pp. 311-324, Oct. 1984.

D. C. Schmidt, D. F. Box, and T. Suda, “ADAPTIVE: A
Dynamically Assembled Protocol Transformation, Integration,
and eValuation EnvironmentJournal of Concurrency:

Practice and Experiencevol. 5, pp. 269-286, June 1993.

M. Zitterbart, B. Stiller, and A. Tantawy, “A Model for
High-Performance Communication SubsystertiSEE
Journal on Selected Areas in Communicatieal. 11,
pp. 507-519, May 1993.

I. Object-Oriented Concepts, “ORBacus User Manual -
Version 3.1.2.” www.ooc.com/ob, 1999.

M. Henning and S. Vinoskiddvanced CORBA Programming
With C++. Addison-Wesley Longman, 1999.

D. C. Schmidt and T. Suda, “An Object-Oriented Framework
for Dynamically Configuring Extensible Distributed
Communication SystemslEE/BCS Distributed Systems
Engineering Journal (Special Issue on Configurable
Distributed Systemsyol. 2, pp. 280-293, December 1994.

15

