
 Domain-Specific Modeling Languages for Configuring and  
Evaluating Enterprise DRE System Quality of Service 

 
Stoyan Paunov, James Hill, and Douglas Schmidt 

Vanderbilt University 
Nashville, TN 

{s.paunov,j.hill,d.schmidt}@vanderbilt.edu 

Steve D. Baker and John M. Slaby 
Raytheon 

Portsmouth, RI 
{Steve_D_Baker, john_m_slaby@raytheon.com}@raytheon.com 

 
Abstract 

The quality of service (QoS) of enterprise distributed 
real-time and embedded (DRE) systems can degrade under 
certain operating conditions and system architectures. This 
paper provides two contributions to research on model-
driven development (MDD) tools and methods that help 
identify and rectify these QoS problems in component-
based enterprise DRE systems.  First, we show how MDD 
tools can be used to simplify and automate the evaluation 
of component-based DRE systems to identify QoS prob-
lems. Second, we show how MDD tools can be used to 
specify alternative QoS polices for component-based DRE 
systems and synthesize metadata automatically to simplify 
system (re)configurations that rectify QoS problems. We 
illustrate our MDD tools on a case study of multi-layer 
resource management services for shipboard computing 
systems that automate many aspects of power, navigation, 
command and control, and tactical operations.  

 
1. Introduction 

Enterprise distributed real-time and embedded (DRE) 
systems, such as total ship computing environments, air 
traffic control systems, and supervisory control and data 
acquisition (SCADA) systems, are growing in complexity 
and importance as more computing devices are being net-
worked together to help automate tasks previously done by 
human operators.  These types of systems are characterized 
by stringent quality-of-service (QoS) requirements, such as 
low latency and jitter, expected in real-time and embedded 
systems, as well as high throughput, scalability, and reli-
ability expected in enterprise distributed systems.  There-
fore, it is hard enough to satisfy these QoS properties inde-
pendently and even harder to satisfy them in concert. 

A particularly vexing problem facing researchers and 
developers of large and layered enterprise DRE systems, 
such as major defense, aerospace, and commercial pro-
grams, is that the inadequacies of system architectures may 
not be ascertained until years into development. At the 
heart of this problem is the serialized phasing of layered 
system development, which postpones the discovery of 
design flaws that affect system QoS until late in the lifecy-
cle, i.e., at integration time. A hallmark of serialized phas-
ing is that application components are not created until 
after their underlying system infrastructure components, 
such as naming and discovery, event and notification, secu-
rity and fault tolerance, and resource management.  
In systems built using serialized phasing, the implementa-
tions, configurations, and deployments of infrastructure 
components are often not tested adequately under realistic 

workloads, which makes it hard to know how well they 
will satisfy key system QoS properties, such as the maxi-
mum number of clients the system can handle before it 
saturates and the effects of average and worst-case re-
sponse time for various workloads, even after application 
components are completed. Moreover, the handcrafted 
software designs used in many enterprise DRE systems to 
address these concerns make it hard to conduct “what if” 
experiments with alternative system architectures and im-
plementations to determine valid configurations to obtain 
performance goals for a particular workload. Making any 
significant changes to these types of handcrafted systems 
late in their lifecycle can be costly due to the impact on the 
design, implementation, deployment, and (re)validation of 
many application and infrastructure software/hardware 
components. 

 
Figure 1. Evaluating the QoS of a Shipboard Com-

puting Enterprise DRE System 

To address these problems, this paper describes a 
methodology and associated suite of model-driven devel-
opment (MDD) tools [7] shown in Figure 1 that are de-
signed to simplify the:  
1. Emulation of application component behavior in 

terms of computations, database activities, memory 
accesses, and network communication. 

2. Configuration, deployment, and execution of these 
emulated application components atop actual infra-
structure component deployments and configurations 
to determine their impact on QoS empirically in actual 
runtime environments. 



3. Process of feeding back the results to enhance sys-
tem architectures and components to improve QoS.  
Over time as the actual application components ma-

ture, they can replace the emulated components, thereby 
providing an ever more realistic evaluation environment.   

We are applying the methodology and MDD tools 
shown in Figure 1 in the context of the DARPA ARMS 
program [25], which is developing multi-layer resource 
management (MLRM) technologies to coordinate a grid of 
computers that manage and automate many aspects of Na-
val shipboard computing. This paper uses ARMS as a case 
study to show how our emulation-based approach yields 
several advantages over conventional methods for evalu-
ating enterprise DRE system QoS. For example, it provides 
earlier feedback to developers, rather than forcing them to 
wait until the actual application components are complete 
to conduct performance experiments. Likewise, unlike pure 
simulation, models of application component configura-
tions and deployment plans in our emulation-based meth-
odology can be used directly in the final production sys-
tem. To use emulation-based methods most effectively, 
however, requires the creation of MDD tools and domain-
specific modeling languages (DSMLs) [10] to simplify and 
automate key aspects of QoS configuration and evaluation.  

The remainder of this paper is organized as follows: 
Section 2 introduces the ARMS MLRM services that moti-
vate our work on MDD tools and DSMLs and explains key 
challenges we faced when developing and evaluating these 
services; Section 3 describes the structure and functionality 
of two DSMLs: the QoS Policy Modeling Language 
(QoSPML), which specifies QoS properties for component-
based DRE systems and automatically synthesizes QoS 
configuration metadata, and the Workload Modeling Lan-
guage (WML), which simplifies and automates the specifi-
cation of component behavior for evaluating end-to-end 
QoS in component-based DRE systems; Section 4 explains 
how we applied QoSPML and WML to our ARMS MLRM 
case study to resolve the challenges described in Section 2; 
Section 5 compares our work with related research; and 
Section 6 presents concluding remarks and lessons learned. 

 
2. Case Study: Multi-Layer Resource Man-
agement for Shipboard Computing 

This section describes the enterprise DRE system case 
study from the ARMS program that motivated our work on 
the MDD tools and DSMLs. This case study focuses on the 
ARMS multi-layer resource management (MLRM) frame-
work for Naval shipboard computing systems and the chal-
lenges encountered while developing and evaluating it.  

The MLRM services developed in ARMS are de-
signed to support total ship computing environments 
(TSCEs), which form the basis for next-generation Naval 
programs.  A TSCE is a coordinated grid of computers that 
manage many aspects of a ship's power, navigation, com-
mand and control, and tactical operations.  To make TSCE 
an effective platform requires coordinated MLRM services 
that can support multiple QoS requirements, such as sur-

vivability, predictability, security, and efficient resource 
utilization. 

 
Figure 2. Component-based Architecture of the 
ARMS Multi-Layer Resource Manager (MLRM) 

The ARMS MLRM integrates multiple resource man-
agement and control algorithms based on the CIAO [21] 
Lightweight CORBA Component Model (CCM) [15] and 
Real-time CORBA [14] mechanisms for (re)deploying and 
(re)configuring application components in DRE systems. 
As shown in Figure 2, the ARMS MLRM top domain layer 
contains infrastructure components that interact with the 
mission manager of TSCE by receiving command and pol-
icy inputs and passing them to the resource pool layer. The 
resource pool layer is an abstraction for a set of computer 
nodes managed by a pool manager. The pool manager is an 
infrastructure component that interacts with the resource 
allocator in the resource pool layer to run algorithms that 
deploy application components to various nodes within a 
resource pool. The actual computing resources reside in the 
third layer called the resource layer, which have infrastruc-
ture components called node provisioners that receive 
commands to spawn applications in every node from a pool 
manager.  The application string manager is an infrastruc-
ture component that controls the resource utilization for a 
group of applications through the node provisioners.  The 
ARMS MLRM services have hundreds of different types 
and instances of infrastructure components written in 
~300,000 lines of C++ code and residing in ~750 files de-
veloped by different teams at different locations. 

The component-based MLRM infrastructure for a 
TSCE is designed to support the highly heterogeneous 
environment in which long-lived shipboard computing 
systems operate.  For example, the TSCE that provides the 
operational context for the ARMS MLRM services is de-
signed to support different versions of (1) component mid-
dleware, such as CIAO and OpenCCM, (2) general-pur-
pose operating systems, such as Linux and Solaris, (3) real-
time operating systems, such as VxWorks and LynxOS, (4) 
hardware chipsets, such as x86, PowerPC, and SPARC 
processors, (5) a wide range of high-speed wired intercon-
nects, such as Gigabit Ethernet and VME backplanes, and 
(6) different transport protocols, such as TCP/IP and 
SCTP. 

In the first eighteen month phase of ARMS, we made 
the mistake of waiting until the integration phase of our 
schedule to begin benchmarking the system. Unfortunately, 
we quickly learned that none of the QoS requirements were 
met due to improperly designed and configured MLRM 



infrastructure components. As a consequence, our schedule 
slipped and the process of reconfiguring and redeploying 
ARMS application and middleware components to meet 
the QoS requirements required significant manual effort.  

To prevent the same problems in the second eighteen 
month phase of ARMS, we used the Component Workload 
Emulator (CoWorkEr) Utilization Test Suite (CUTS) [19], 
which is a system execution modeling toolkit [20] that 
helps systems engineers and software architects automate 
the steps in Figure 1 to emulate application behavior in 
component-based enterprise DRE systems, as well as col-
lect and automate performance statistics provided by that 
emulation. We used CUTS to determine which configura-
tion and deployment strategies (i.e., the customization and 
placement of components on nodes in the ARMS MLRM) 
could meet critical path end-to-end application QoS re-
quirements. By emulating key properties the ARMS appli-
cation components using CUTS and evaluating QoS results 
prior to the integration phase, we hoped to decrease the 
amount of time spent integrating and testing the actual 
components after they were completed. 

While developing and evaluating the phase two 
ARMS MLRM services and the actual and emulated appli-
cation components atop of it using CUTS and CIAO we 
encountered the challenges described below. 

Challenge 1. Using standard Real-time CORBA 
APIs to configure the QoS of ARMS components. One 
way to ensure that ARMS application and MLRM infra-
structure components exhibit the necessary QoS properties 
is to tightly couple the necessary QoS mechanisms into 
them imperatively. While this approach is common, it re-
quires that developers be intimately familiar with Real-
time CORBA to handle its accidental complexities. More-
over, hand-coding QoS properties into components impera-
tively can yield convoluted and inflexible implementations 
that are hard to evolve. 

Challenge 2. Ensuring the right granularity of QoS. 
The ARMS application and infrastructure components 
have diverse characteristics and QoS requirements includ-
ing, but not limited to, high throughput of continuously 
refreshed data, hard real-time deadlines associated with 
periodic processing, well-defined computational paths 
traversing multiple components, soft real-time processing 
of many tasks, and operator display and control require-
ments. Specifying the right granularity of QoS for these 
components imperatively using Real-time CORBA APIs is 
hard. 

Challenge 3. Specifying system behavior to test in-
frastructure and resource utilization prior to system 
integration. While trying to assemble ARMS applications 
from reusable components, we ran into problems creating 
benchmarks that evaluated end-to-end QoS prior integra-
tion. In the first phase of ARMS we handcrafted code to 
test and collect benchmarking data about MLRM’s infra-
structure and resource utilization. As a result, much of the 
handcrafted benchmarking code could not be used in other 
contexts of the second phase of ARMS. 

Challenge 4. Managing new complexities associated 
with CUTS. Emulation toolkits, such as CUTS, are con-

stantly evolving to introduce new features and enhance or 
remove existing features. To handle these complexities, 
conventional methods include manually evolving existing 
resources, such as migrating source and descriptor files to 
handle new schemas. Although these methods suffice for 
small-scale prototypes, they scale poorly for enterprise 
DRE systems, e.g., managing the new complexities associ-
ated with the initial XML-based CUTS tools on the ARMS 
program introduced significant complexities. 

Challenge 5. Managing large scale system configu-
rations. In enterprise DRE systems like ARMS with many 
components, manually tracking every configuration for 
every component and assembly of components is hard. 
Hand-coding QoS properties into component implementa-
tions provides a way to track component configurations, 
but makes it hard for developers to review component 
specifications quickly. Even worse, if testing and bench-
marking yields weak points in the system design, or func-
tional requirements change, developers must manually read 
the code, find all relevant code snippets, and update each 
accordingly to reconfigure the necessary components, 
which is tedious and error-prone. 

Challenge 6. Using metadata to configure compo-
nents for QoS and to define behavioral components. 
Many middleware platforms, such as EJB, CCM, and 
.NET, have chosen XML as their configuration language 
since it enables different (1) application developers to cre-
ate interoperable subsystems and (2) middleware develop-
ers to evolve different layers of their frameworks inde-
pendently. Although XML is expressive, it is hard to 
manually read and write due to its accidental complexities. 
For example, although its elements are organized in a hier-
archical form specified by the schema to which they con-
form, XML documents have a flat structure, are highly ver-
bose, and lack intuitive relationships to the domain they 
represent. Evolving and debugging XML code manually is 
therefore extremely cumbersome, which makes it hard to 
reuse XML-based configurations. 

Challenge 7. Refining system QoS properties. En-
terprise DRE systems inevitably evolve due to changing 
functional requirements and specifications, deeper under-
standing of the domain, or hardware/software platform 
refresh. As a result, the associated QoS properties defined 
for a particular version of the system must also evolve. 
Hand-coding QoS properties therefore creates systems that 
scale poorly and fail to evolve rapidly to reflect new re-
quirements and specifications. 

The rest of this paper shows how we developed and 
applied MDD tools to address these challenges. 

 
3. The Structure and Functionality of 
QoSPML and WML 

Previous generations of enterprise DRE systems were 
largely handcrafted to provide precisely the capabilities 
required for a specific set of requirements and operating 
conditions, which made them inflexible and hard to evolve. 
Modern enterprise DRE systems are increasingly running 
atop standards-based middleware frameworks that support 



the composition of loosely-coupled and distributable com-
ponents capable of being reused in different contexts.  Al-
though component-based DRE systems are more flexible 
and easier to develop, other complexities still exist, such as 
automatically configuring application QoS policies and 
evaluating the QoS of groups of application and infra-
structure components early in their lifecycle, i.e., before 
the system integration phase.   

A promising means of addressing these complexities 
is to use MDD tools to create DSMLs that automate key 
portions of QoS-enabled component middleware configu-
ration, deployment, and evaluation. This section describes 
the QoS Modeling Language (QoSPML) and Workload 
Modeling Language (WML), which are DSMLs developed 
using the Generic Modeling Environment (GME) [10] to 
model Real-time CORBA and CUTS capabilities, re-
spectively. QoSPML is used to specify QoS for application 
and infrastructure components in CIAO DRE systems and 
WML is used to specify behavior of CoWorkErs in CUTS. 

  
3.1 Overview of QoSPML 
3.1.1 Motivation. Standard distributed object computing 
(DOC) middleware provides application programming 
interfaces (APIs) that developers use to configure infra-
structure and application components imperatively to pro-
vide predictability, satisfy timing constraints, and preserve 
prioritized access to shared resources. Standards-compliant 
[14] Real-time CORBA DOC middleware provides stan-
dard APIs and policies that allow enterprise DRE systems 
to configure and control various resources, such as (1) 
processor resources via priority mechanisms, thread pools, 
and synchronizers, for real-time applications with fixed 
priorities, (2) communication resources via protocol prop-
erties and explicit bindings to server objects using priority 
bands and private connections, and (3) memory resources 
via bounding the size of request buffers and thread pools.  

The standard APIs for programming QoS policies in 
Real-time CORBA, however, are complicated. Moreover, 
the imperative model for programming these features re-
quires application developers to have detailed knowledge 
of the underlying semantics, implementation, and order to 
configure these policies correctly. Over the past several 
years, however, QoS-enabled component middleware, such 
as CIAO [21], Qedo [16], and Prism [17], has evolved to 
support QoS configuration via standard XML descriptors 
that are specified declaratively and processed automati-
cally by middleware deployment and configuration runtime 
environments [2].  

Although using XML descriptors to configure the QoS 
properties of the system reduces the amount of code writ-
ten imperatively, it also introduced new complexities, such 
as verbose syntax, lack of readability at scale, and a high 
degree of accidental complexity and fallibility. To alleviate 
these complexites, we developed the Quality of Service 
Modeling Language (QoSPML), which is a DSML that 
configures key QoS properties of Real-time CORBA Com-
ponent Model (CCM) [21] components.   
3.1.2 Structure of QoSPML. The Real-time CORBA 
specification provides many QoS policies for controlling 

application behavior. To comply with the standards, and as 
illustrated in Figure 3, the following QoS policy types can 
be modeled in QoSPML: a priority model policy, a thread 
pool policy, and a connection policy. QoSPML organizes 
policies into logical groups named policy sets, which en-
able the specification of alternative configurations in the 
same QoS model. The connection and thread pool policies 
are modeled as references to actual resources to permit 
resource sharing among separate policy sets. For example, 
the same thread pool policy can be shared between two 
different policy sets, but both policy sets define a different 
connection and priority policy. 

 
Figure 3. GME Metamodel of QoSPML 

3.1.3 Functionality of QoSPML. QoSPML enables de-
velopers of enterprise DRE systems to specify and control 
the following Real-time CORBA QoS policies via visual 
models:  

Propagation of priorities. Real-time CORBA defines 
two ways to propagate end-to-end priorities: server-de-
clared and client-propagated. In the server-declared model 
the priority at which requests run is determined by the 
server, whereas in the client-propagated model the server 
honors the request priority assigned by the client. These 
priority propagation schemes are modeled using the Pri-
orityModelPolicy element. The type of propagation scheme 
is selected using the PriorityModel enumeration attribute 
and the priority is specified with the priority attribute.  

Specification of threading model. Each ThreadPool 
model encapsulates data that specifies the properties of a 
thread pool in Real-time CORBA. For example, developers 
can set the stack size associated with the thread pool, al-
low/disallow request buffering and set the maximum num-
ber of requests to be buffered and the corresponding buffer 
size. A thread pool has a set number of pre-spawned static 
threads and up to a maximum limit of dynamic threads 
spawned on-demand only if all static threads are in use. 
QoSPML supports two types of thread pools: (1) the Sim-
pleThreadPool model, which has a single priority lane and 
allows lower priority client-propagated requests to exhaust 
all the static and dynamic threads and starve higher priority 
requests and (2) the ThreadPoolWithLanes model, which 
creates multiple lanes for different priorities to prevent 
lower priority client-propagated requests from exhausting 
all pool’s threads. If thread borrowing is enabled, higher 



priority requests can temporarily promote a thread from a 
lower priority pool to run the request at the higher priority. 

Specification of connection bands. Another Real-
time CORBA feature supported by QoSPML is banded 
connections, which are specified by the BandedConnec-
tions policy element. These connections are logically di-
vided into ConnectionBands and have a low and high at-
tribute for specifying its range of priorities. 

 
Figure 4. Example QoS Configuration 

QoSPML and a Snippet of the XML Interpretation 

Figure 4 illustrates portions of an example QoS con-
figuration using QoSPML. The highlighted region of the 
figure illustrates the priority model policy and defines ref-
erences to the connection bands and the thread pool with 
lanes elements. The XML below the highlighted region is 
its interpretation in the generated XML descriptor file. 

In summary, QoSPML addresses challenges 1, 2, 5, 6, 
and 7 from Section 2. In particular, it allows developers to 
avoid writing applications that use the convoluted Real-
time CORBA imperative APIs directly, while still provid-
ing control over QoS policies. QoSPML also enables ap-
plication developers and performance engineers to pro-
vision the QoS of applications in enterprise DRE systems 
via higher-level models that QoSPML converts automati-
cally into lower-level Real-time CORBA QoS policies 
expressed using XML. 
3.2. Overview of WML 
3.2.1 Motivation. Emulation and benchmarking environ-
ments [1] provide methods of configuring the behavior of 
emulated components, which in many instances is done 
using external metadata. In prior work [19], we developed 
the Component Workload Emulator (CoWorkEr) Utiliza-
tion Test Suit (CUTS).described in Section 2. The initial 
version of CUTS used XML descriptor files to specify the 
behavior of application components in terms of their com-
putations, database activities, memory accesses, and event-
based network communication, as shown in Figure 5.  

While the initial version of CUTS was useful, experi-
ence applying it to the ARMS shipboard computing enter-
prise DRE system revealed that it introduced new com-

plexities related to understanding the various types of 
workloads and behaviors allowed in a CoWorkEr. In par-
ticular, learning the convoluted XML syntax used to spec-
ify CoWorkEr behavior was tedious, error-prone, and re-
quired detailed knowledge of its syntax and semantics. 
Moreover, as CUTS evolved, the concrete semantics and 
syntax used in its XML descriptor files changed and re-
quired low-level knowledge to transform existing descrip-
tor files.  

 
Figure 5. A CoWorkEr Assembly in CUTS 

To alleviate these complexities, we developed WML 
Workload Modeling Language (WML), which is a DSML 
that allows users and performance engineers to define the 
behavior of components in an enterprise DRE system 
graphically using models. WML then automatically and 
correctly transforms these models into XML metadata de-
scriptor files, which can be processed automatically by 
CUTS to define the behavior of the emulated components 
being evaluated.   
3.2.2 Structure of WML. Figure 6 shows the GME 
metamodel for WML. As illustrated in the figure, either the  

 
Figure 6. GME Metamodel of WML 

Characterization or CharacterizationLibrary model is the 
basis for defining all behavior is WML. Each Characteri-
zation model contains zero or more Action elements, such 
as DatabaseAction, MemoryAllocate, MemoryDeallocate, 
CPUAction, and OutputEvent, which are interconnected 
using ActionConnection connections. Characterization 
models also contain different types of workloads, such as 
PeriodicActivity, StartupActivity and EventDrivenActivity. 
Lastly, characterization models contain zero or more In-



putEvent elements that specify the handling of events by 
CoWorkEr components in CUTS. 

Characterization libraries are models in GME that al-
low grouping of characterization models for organizational 
purposes. For example, characterization libraries are ideal 
for hierarchically grouping characterizations that have 
similar traits. 
3.2.3 Functionality of WML. WML enables users and 
performance engineers who evaluate enterprise DRE sys-
tems to specify and control the following CoWorkEr poli-
cies via visual models:  

Specification of worker actions.  As shown in Figure 
5, each CoWorkEr assembly-based component in CUTS 
contains four monolithic worker components: Database-
Worker, MemoryWorker, CPUWorker, and EventProducer. 
These components can be assigned work and the number of 
repetitions to repeat the specified work using the following 
action types: (1) a DatabaseAction for specifying work 
completed by a DatabaseWorker component and the asso-
ciated minimum and maximum size of data inserted to and 
deleted from the test database, (2) a MemoryAllocate and 
MemoryDeallocate for specifying the MemoryWorker’s 
memory allocation and deallocation, respectively, (3) a 
CPUAction for specifying work to be completed by the 
CPUWorker, and (4) an OutputEvent for specifying the 
transmission of a user-defined event and the associated 
minimum and maximum size of data transmitted, which is 
handled by an EventProducer. 

Specification of workloads. The ActionConnection 
connector element is used to connect the previously de-
scribed actions to one another. When a one of more action 
elements is connected sequentially, a characterization 
string is defined. Figure 7 illustrates an example charac-
terization string for an EventDrivenActivity in WML and a 
snippet of the generated XML metadata. This example 
shows that receiving an event causes the following se-
quence of actions: (1) allocate memory, (2) perform CPU 
operations, (3) perform database operations, (4) perform 
CPU operations, (5) deallocate memory, and (6) transmit 
an event. 

 
Figure 7. Example of a Workload Specification in 

WML and a Snippet of the XML Interpretation 

The execution of a characterization string by a worker 
can occur at three stages of execution: InitialActivity, Peri-
odicActivity, or EventDrivenActivity. Initial activity is 
specified by connecting an InitialActivity element with the 

first action element of the characterization string. Work of 
this type is executed in the ccm_activate() hook 
method of a CoWorkEr during the startup time of CUTS. 
Periodic activity is specified by connecting a PeriodicAc-
tivity element to the first action in the characterization 
string. Work of this type contains a probability factor to 
define non-deterministic behavior to perform at user-de-
fined intervals. Event-driven activity is specified in two 
steps: (1) an EventType element is connected to an Event-
DrivenActivity element and (2) the EventDrivenActivity is 
connected to the first action in a characterization string. 
Since the EventType element must be connected to an 
EventDrivenActivity, users can associate multiple Event-
Types with an EventDrivenActivity. Work of this type is 
processed after receiving a user-defined event, and the 
number of events needed to perform work.  

 
Figure 8. Example WML Model with Disabled Actions 

Temporarily disabling actions from workload specifica-
tion. The CharacterizationElement is the base type for all 
action elements in WML. Since all actions derive from this 
single element, we defined an attribute called enabled to 
allow inclusion or exclusion of actions in the generated 
metadata descriptors, depending on whether enabled is set 
to true or false, respectively. Moreover, because an enabled 
element has the same image as one that is not enabled, we 
created a GME decorator that masks a cancellation icon on 
top of elements that are not enabled, which allowed us to 
temporarily disable portions of the workload for certain 
kinds of analysis without losing the original definition and 
without having to make copies of the workload model for 
minor variations in the behavior. Figure 8 illustrates the 
same workload specification in Figure 7 with the Memory-
Allocate and CPUAction elements disabled. 

In summary, WML addresses challenges 3, 4, and 6 
from Section 2. In particular, it removes the complexity of 
developers having to learn the syntax and semantic of the 
XML metadata descriptor files for defining behavior in 
CUTS, which is especially useful as CUTS evolves. WML 
also allows developers to capture behavior in models, 
which can be archived and used in other domains or pro-
jects that utilize CUTS. 

 
4.  Resolving ARMS MLRM Challenges 
with QoSPML and WML 

We now examine how the QoSPML and WML 
DSMLs described in Section 3 can be applied to address 
the challenges discussed in Section 2 that arose when de-
veloping, evolving, and evaluating the ARMS MLRM case 
study for shipboard computing enterprise DRE systems. 

 
4.1 Configuring MLRM Infrastructure and Ap-
plication Components for QoS 



Challenge 1 in Section 2 described the difficulties as-
sociated with writing applications using the Real-time 
CORBA API imperatively. QoSPML provides a more 
scalable and robust approach to configuring the QoS prop-
erties of the CCM components being developed, or reused, 
by enabling developers to specify these properties declara-
tively and visually. Developers use QoSPML to specify the 
QoS policies that determine the threading, connection, and 
priority propagation mechanisms used for a particular 
component and group these policies into policy sets. The 
specified mechanisms are modeled in terms of the actual 
system resources that implement them, which enables dif-
ferent policy sets to share the same instance of a resource 
at the middleware layer.  QoSPML also enables developers 
to verify the correctness of their models by providing con-
straint checking mechanisms embedded in the language. 
The QoS models can be interpreted by means of a model 
interpreter that generates correct metadata descriptors un-
derstood by the Real-time CCM middleware runtime.  

In the context of ARMS, QoSPML facilitates the 
seamless configuration of components for QoS in each 
layer of MLRM because it allows application developers to 
bypass the tedious tasks of hard-coding the Real-time 
CORBA code or hand-crafting the XML descriptors that 
can be used to describe the QoS configuration. 

 
4.2 Using QoSPML to Meet the QoS Needs of 
the Various MLRM Subsystems 

Challenge 2 in Section 2 discussed the diversity of 
services and QoS requirements supported by the ARMS 
MLRM infrastructure. Each of these QoS requirements is 
hard to achieve separately and even harder to achieve in 
combination. Fortunately, QoSPML detaches configuration 
developers from the inherent complexities of the configu-
ration code and allows them to concentrate on the business 
logic of application components.  

In the context of ARMS, a major cause of missed 
deadlines is priority inversions, where lower priority re-
quests access a resource at the expense of higher priority 
requests. Priority inversions must be prevented or bounded 
since they can cause the ARMS applications to miss their 
deadlines. QoSPML’s ThreadPoolWithLanes element can 
be used in conjunction with the BandedConnection and the 
PriorityModelPolicy elements to configure MLRM prop-
erly and reduce priority inversions. 

The ThreadPoolWithLanes feature of QoSPML can be 
used to meet some of the QoS needs of ARMS. By using 
this feature, the MLRM will be configured so that lower 
priority requests cannot exhaust threads allocated for 
higher priority requests when a request is executed. Long-
running requests in MLRM can also exhaust the maximum 
number of static threads, causing the system to miss dead-
lines. QoSPML therefore allows ARMS MLRM develop-
ers to specify the maximum number of dynamically 
spawned threads to better manage long running requests 
and periodic high loads. 

The BandedConnection element in QoSPML allows 
MLRM developers to control network resources effectively 
by separating lower and higher priority requests so they do 

not share the same multiplexed connection. In multiplexed 
connections, requests are queued and serviced on a FIFO 
basis, where low priority requests could be scheduled first. 
By using priority bands, developers can partition the com-
munication links between application and MLRM compo-
nents based on a range of priority values. This QoS policy 
ensures that low priority requests travel separate paths 
from high priority requests, therefore preventing priority 
inversions. A beneficial side-effect of this partitioning 
mechanism is that it decreases latency and improves re-
sponse time. 

It is also important to ensure the portability of priori-
ties in cases when ARMS application and MLRM compo-
nent run atop different OS platforms with different priority 
ranges. Once the necessary priority mappings have been 
defined, QoSPML’s PriorityModelPolicy feature can be 
used to preserve the end-to-end priorities and to define the 
priority propagation scheme used to configure Real-time 
CORBA policies. As discussed in Section 3.1.3, there are 
currently two types of policies: server declared and client 
propagated.  

 
4.3 Specifying System Behavior to Test Infra-
structure and Available Resources Prior to Sys-
tem Development and Integration 

Challenge 3 in Section 2 discussed the complexities of 
specifying application component behavior to evaluate the 
QoS of enterprise DRE system infrastructure implementa-
tions, deployments, and configurations. In many instances, 
behavioral code is handcrafted and hard-coded, which 
makes it confined to the current project. Fortunately, WML 
provides an alternative for specifying system behavior us-
ing its high-level representation of workload behavior, 
which makes it easy to apply and reusable in other projects 
and areas. 

In the context of ARMS, one of the main capabilities 
of the MLRM is determining optimal (re)deployment and 
(re)configuration strategies of a component-based system 
depending on its current behavior. Unfortunately, many of 
the application components that the ARMS MLRM will 
manage are not available for extended periods of time dur-
ing MLRM development, so we used CUTS to emulate 
their behavior and guide the MLRM design and imple-
mentation. Although CUTS allows the MLRM to be tested 
prior to receiving the actual components on which it will 
act, we needed to create behavior specifications that will 
drive CUTS’s QoS experiments. WLM therefore provides 
testers of MLRM with the necessary tools to (re)define and 
(re)configure the behavior of components in CUTS without 
having to handcraft or hardcode the behavior of emulated 
components.  

 
4.4 Managing New Complexities Associated 
with CUTS  

Challenge 4 in Section 2 described the challenge of 
managing new complexities of CUTS as features are added 
or removed. WML addresses this challenge evolving in 
parallel with CUTS. As features are added and removed 



from CUTS, therefore, WML reflects these changes in its 
modeling language and interpreter, which removes the 
complexity of managing syntactic changes in the underly-
ing XML metadata descriptors from end users. 

In the context of ARMS, the MLRM software has 
evolved continuously over several years, during which 
time CUTS has also evolved. Using WML to model the 
behavior specification for CUTS to test the MLRM there-
fore minimizes the complexity of manually managing the 
XML metadata descriptors as CUTS evolves. For example, 
as features are added, enhanced, and removed from CUTS, 
the existing WML models in use by MLRM will need to 
reflect these modifications. 

 
4.5 Using MDD Tools to Generate XML Meta-
data 

Challenge 6 in Section 2 discussed the complexities 
introduced by applying XML metadata to configure DRE 
systems. We used QoSPML and WML to bypass the XML 
coding necessary to configure application and middleware 
components, which raised the level of abstraction by means 
of visual modeling and DSMLs. We used these MDD tools 
to formally model the configuration space and enable the 
automatic generation of configuration code. QoSPML and 
WML therefore  allow developers to concentrate on the 
actual design of the enterprise DRE system, while shield-
ing them from the accidental complexities of the configu-
ration artifacts. They also make rapid (re)configuration 
possible, thus allowing developers to evolve their systems 
more conveniently.  

In the context of ARMS, we had initially used valida-
tion tools, such as XML SPY, to verify the syntactic cor-
rectness of the XML metadata against the schema to which 
they conform. Unfortunately, these validation tools miss 
many problems with handcrafted XML. In contrast, 
QoSPML and WML provide a more effective solution 
since they use GME’s powerful constraint-checking facil-
ity to ensure that models are correct-by-construction. The 
XML descriptors they generate are therefore correct as 
long as the QoSPML and WML interpreters conform to the 
XML schemas that describe the documents. 

 
4.6 Managing and Refining the System Con-
figuration Space 

Challenge 5 in Section 2 described how managing a 
large amount of XML metadata is cumbersome and hard to 
extract information from it without significant effort. Like-
wise, challenge 7 in Section 2 described how it is even 
harder to modify XML-based configuration files in re-
sponse to (1) changing system requirements, (2) better 
understanding of the QoS needs to the application, or (3) 
uncovered design weaknesses. For example, even a single 
typo in an XML file can compromise the document struc-
ture and cause the parsers to fail, which make handcrafted 
XML files extremely hard to manage and evolve.  

In the context of ARMS, by using QoSPML and 
WML ARMS developers no longer have to deal with XML 
metadata directly. Instead, they can use visual models to 

perform their tasks from a domain-centric perspective. 
After making the necessary changes to the system con-
figuration, they can regenerate the descriptors quickly and 
correctly, which scales much better for enterprise DRE 
systems like ARMS. 

 
5. Related Work 

This section compares our work on using DSMLs and 
MDD tools for configuring and evaluating QoS for enter-
prise DRE system with related research efforts. 

DSMLs for Modeling System Behavior. Several 
DSMLs exist that can be used to model system behavior. 
For example, KLAPER [4] is a modeling language for 
specifying system behavior of component-based systems. 
Similar to WML, KLAPER allows the specification of 
workloads, such as resource utilization, but it does not 
specify handling of events. In KLAPER, component be-
havior is based on the provided and required services, 
whereas WML defines behavior based on resource utiliza-
tion within a component. WML thus enhances KLAPER 
by allowing sequential specification of resource utilization, 
specification of event transmission, and receipt, classifica-
tion of workload types, such as event-driven, periodic, or 
startup.  

The Action Language [13] is another modeling lan-
guage that can be used to define system behavior using 
semantics similar to statecharts [5]. Similar to WLM, the 
Action Language allows the specification of event han-
dling, actions and workloads based on event-handling, but 
not periodic or system startup workloads as an apparent 
language feature. In contrast, WLM focuses on resource 
utilization in DRE systems, places guards and conditions 
only at the beginning of a workload specification instead of 
on each individual action in a workload specification, and 
is tailored to the functionality of CoWorkEr components in 
CUTS. 

WinFX Workflow [26] is a modeling language devel-
oped by Microsoft Corporation that is part of the Windows 
Workflow Foundation [27]. It allows developers to express 
programs as declarative, long-running processes called 
workflows. Similar to WinFX, WML permits the expres-
sion of workflows for a system and its processes. WinFX, 
however, is tightly coupled to the Microsoft .NET frame-
work, whereas WML can be applied across multiple SOAs, 
including Microsoft .NET, Real-time CCM, and EJB. 

DSMLs for Configuring QoS. Several DSMLs are 
defined to capture QoS requirements in DRE systems. The 
Distributed QoS Modeling Environment (DQME) [22] is a 
DSML for modeling QoS, which is designed for runtime 
the adaptive capabilities provided by the Quality Objects 
(QuO) adaptive QoS middleware framework. The Object 
Constraint Modeling Language (OCML) [9] is another 
domain-independent modeling language that simplifies the 
specification and validation of complex DRE middleware 
and application configurations and their QoS requirements. 
Although DQME and OCML can be used to specify QoS 
for DRE system, QoSPML augments and focuses these 
types of capabilities by capturing the specifications and 



capabilities of Real-time CORBA and integrating them into 
CIAO to provide QoS for Real-time CCM.  

QoS-UniFrame [11] is a QoS modeling language that 
uses Petri-nets to model QoS requirements by producing 
reachability graphs to determine which QoS requirements 
are capable of being meet. Although QoS-UniFrame has a 
powerful constraint manager to verify that various QoS 
requirements will not conflict, and modeling which combi-
nations of QoS properties will be feasible for the DRE 
system, it is designed for AspectJ [8].  In contrast, 
QoSPML’s constraint management is based on valid QoS 
configurations in Real-time CORBA in C++ and Java.  

Performance evaluation techniques using RT-
UML. [18], [23], and [24] propose component-based soft-
ware performance engineering (CB-SPE) techniques for 
modeling and evaluating the behavior of component-based 
systems. These CB-SPE techniques use RT-UML to define 
services and QoS policies for components, though model-
ing system behavior is future work. The authors state that 
this technique is designed to be supported by external 
simulation tools, which are still under development. WML 
extends these efforts by providing a complete DSML that 
allows developers to specify a component-based system 
behavior, which is emulated by an existing MDD toolsuite 
called CUTS. QoSPML also extends related work on CB-
SPE by allowing system developers to specify QoS poli-
cies that are configured into the underlying middleware 
and emulated components. 

 
6. Concluding Remarks 

Our prior work focuses on the design, optimization, 
and configuration of Real-time CORBA and Real-time 
CCM [21] middleware and the development of the CUTS 
application emulation toolkit [19]. This paper focused on 
our experience gained integrating and applying the 
QoSPML and WML DSMLs to the DARPA ARMS multi-
layer resource management (MLRM) services for Naval 
shipboard computing enterprise DRE systems. The benefits 
we have observed by applying our MDD tools and DSMLs 
to the component-based ARMS applications and infra-
structure services thus far include: 
• Using highly configurable component middleware, 

such as CIAO [21] and DAnCE [2], enhances software 
development quality and productivity. Unfortunately it 
also introduces extra complexities, which are hard to 
handle in an ad hoc manner for enterprise DRE sys-
tems. 

• Using DSMLs expedites application development and 
system QoS evaluation by providing proper integra-
tion and tuning of MDD tools with the underlying 
component middleware infrastructure. In our ARMS 
MLRM case study, the QoSPML and WML DSMLs 
simplify the evaluation of many different system con-
figurations and facilitate QoS-related “what if” scenar-
ios prior to the integration or even the development 
phase. These DSMLs also play an important role in 
enterprise DRE system evolution because they provide 

a way to evaluate alternative system configurations 
visually and empirically. 

• The QoSPML and WML DSMLs complement each 
other in various ways.  For example, developers can 
use QoSPML to configure the QoS properties of Co-
WorkEr and infrastructure components. Likewise, de-
velopers to use the results from WML-based CUTS 
QoS evaluations to drive the evolution of QoSPML 
models. Developers can also experiment with various 
QoS properties captured in QoSPML models to deter-
mine which ones perform better with a specific WML-
based CUTS QoS configuration. 

• QoSPML and WML can help to reduce the learning 
curve for end users. For example, in the ARMS 
MLRM case study, application developers needed lit-
tle knowledge of the Real-time CORBA QoS policy 
APIs and the CIAO XML descriptors that declara-
tively configure these policies in Real-time CCM. In-
stead, they used higher-level models of QoS policy 
provisioning mechanisms provided by QoSPML and 
avoided the need to learn the low-level XML-related 
details of CUTS by using WML to specify the desired 
application component behavior. 

Although our MDD tools solve many hard problems en-
countered in the ARMS program, they also leave room for 
improvement and future work: 
• Despite the fact that QoSPML facilitates the QoS con-

figuration of enterprise DRE systems based on Real-
time CORBA, developers are still faced with the ques-
tion of what constitutes a “good” configuration. While 
WML and CUTS simplify the effort required to ad-
dress this question experimentally, developers are still 
ultimately responsible for determining the appropriate 
configurations.  

• Although QoSPML and WML remove many com-
plexities associated with handcrafted solutions, de-
velopers are still faced with the challenge of evolving 
existing models when the respective domain evolves. 
Although model evolution tools, such as GREAT [6], 
exist they are hard to use and only provide partially 
automated solutions.  
This experience motivates further research on auto-

mated QoS configuration and deployment techniques to 
uncover effective heuristics to guide us in the complicated 
process of enterprise DRE system QoS evaluation, as well 
as further research on model migration to simplify the 
process evolving DSMLs as the understanding of their 
respective domains matures. 

The open-source CIAO QoS-enabled component mid-
dleware can be downloaded from www.dre.vander-
bilt.edu/CIAO.  The GME domain-specific modeling tool-
kit is available in open-source format and can be 
downloaded from www.isis.vanderbilt.edu/projects/GME. 
QoSPML and WML are being integrated with the open-
source CoSMIC (www.dre.vanderbilt.edu/cosmic) and are 
available from the contact author upon request. 

 
 



8. References 
[1] Denaro, G., Polini, A., Wolfgang Emmerich, W. “Early 

Performance Testing of Distributed Software Applica-
tions,” 4th International Workshop on Software and 
Performance, Jan 2004.  

[2] Deng, G., Balasubramanian, J., and Otte, W., Schmidt, 
D. and Gokhale, A. “DAnCE: A QoS-enabled Com-
ponent Deployment and Conguration Engine,” Pro-
ceedings of the 3rd Working Conference on Compo-
nent Deployment. Grenoble, France, Nov 2005. 

[3] Gokhale, A., Balasubramanian, K., Balasubramanian, 
J.,  Krishna, A.,  Edwards, G., Deng, G., Turkay, E., 
Parsons, J. , and Schmidt, D. (2005). “Model Driven 
Middleware: A New Paradigm for Deploying and 
Provisioning Distributed Real-time and Embedded 
Applications,” The Journal of Science of Computer 
Programming: Special Issue on Model Driven Archi-
tecture. [in  press]. 

[4] Grassi, V., Mirandola, R., and Sabetta, A., “From De-
sign to Analysis Models: A Kernel Language for Per-
formance and Reliability Analysis of Component-
based Systems,” Fifth International Workshop on 
Software and Performance, Jul 2005.  

[5] Harel, D., “Statecharts: A Visual Formalism for Com-
plex Systems”, Science of Computer Programming, 
1987. 

[6]  Karsai G. and Agrawal A. and Shi F. and Sprinkle J., 
“On the use of Graph Transformations in the Formal 
Specification of Computer-Based Systems,”  Pro-
ceedings of IEEE TC-ECBS and IFIP10.1 Joint Work-
shop on Formal Specifications of Computer-Based 
Systems, Huntsville, AL, Apr 2003. 

[7] Karsai, G., Sztipanovits, J., Ledeczi, A. and Bapty, T. 
“Model-Integrated Development of Embedded Soft-
ware,” Proceedings of the IEEE, Jan 2003. 

[8] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., 
Palm, J., and Griswold, W. G., “Getting started with 
AspectJ”, Communications of the ACM, 2001. 

[9] Krishna, A., Turkay, E., Gokhale, A., and Schmidt, D., 
“Model-Driven Techniques for Evaluating the QoS of 
Middleware Configurations for DRE Systems”, 11th 
IEEE Real-Time and Embedded Technology and Ap-
plications Symposium, Mar 2005.  

[10] Ledeczi, A., Maroti, M., Karsai G., and Nordstrom G., 
“Metaprogrammable Toolkit for Model-Integrated 
Computing", Proceedings of the IEEE International 
Conference on the Engineering of Computer-Based 
Systems Conference,  Mar 1999. 

[11] Liu, S., Bryant,B., Gray, J., Raje, R., Olson, M., and 
Auguston, M., “QoS-UniFrame: A Petri Net-Based 
Modeling Approach to Assure QoS Requirements of 
Distributed Real-Time and Embedded Systems”, 12th 
IEEE International Conference on the Engineering of 
Computer-Based Systems (ECBS 2005), Apr 2005. 

[12] Nordstrom, G.,“Formalizing the Specification of 
Model Integrated Program Synthesis Environments”, 
IEEE Aerospace Conference, Mar 2000. 

[13] Nordstrom, S., Shetty, S., Yao, D., Ahuja, S., Neema, 
S., Bapty, T., “The Action Language: Refining a Be-

havioral Modeling Language”, 12th IEEE Interna-
tional Conference on the Engineering of Computer-
Based Systems, Apr 2005. 

[14] Object Management Group (2002, Aug). Real-time 
CORBA Specification. Ed. OMG Document for-
mal/02-08-02. 

[15] Object Group Management (2003, May). Light 
Weight CORBA Component Model Revised Submis-
sion, Ed. OMG Document realtime/03-05-05. 

[16] Ritter, T., Born, M., Unterschutz, T., and Weis, T.,  
“A QoS Metamodel and its Realization in a CORBA 
Component Infrastructure,” Proceedings of the 36th 
Hawaii International Conference on System Sciences, 
Honolulu, Hawaii, Jan 2003. 

[17] Roll, W. “Towards Model-Based and CCM-Based 
Applications for Real-Time Systems,” Proceedings of 
the International Symposium on Object-Oriented 
Real-time Distributed Computing (ISORC), 
IEEE/IFIP, Hakodate, Hokkaido, Japan, May 2003. 

[18] Grassi, V. and Mirandola, R., “Towards Automatic 
Compositional Performance Analysis of Component-
based Systems,” Proceedings of the 4th International 
Workshop on Software and Performance, Jan 2004.  

[19] Slaby, J., Baker, S., Hill, J., Schmidt, D., “Applying 
System Execution Modeling Tools to Evaluate Enter-
prise Distributed Real-time and Embedded System 
QoS,” ISIS Technical Report ISIS-05-604, Oct 2005. 

[20] Smith, C., Performance Engineering of Software Sys-
tems, Addison Wesley, 1990. 

[21] Wang, N., Gill, C., Schmidt, D. and Subramonian, V. 
“Configuring Real-time Aspects in Component Mid-
dleware,” Proceedings of the International Symposium 
on Distributed Objects and Applications. Agia Napa, 
Cyprus, Oct 2004. 

[22] Ye, J., Loyall, J., Shapiro, R., Schantz, R., Neema, S., 
Abdelwahed, S., Mahadevan, N., Koets, M., Varner, 
D., “Model-Based Approach to Designing QoS Adap-
tive Applications”, 25th International Real-Time Sys-
tems Symposium, May 2004. 

[23] Bertolino, A. and Mirandola, R., “Software Perform-
ance Engineering of Component-based Systems,” 
Proceedings of the 4th International Workshop on 
Software and Performance, Jan 2004 

[24] Bertolino, A. and Mirandola, R., “Towards Compo-
nent-Based Software Performance Engineering” Pro-
ceedings of the 6th ICSE Workshop on Component-
Based Software Engineering, May,2003. 

[25] ARMS DARPA Website, 
dtsn.darpa.mil/ixodarpatech/ixo_FeatureDetail.asp?id
=6, Jan 2006. 

[26] Box, D. and Shukla, D., “WinFX workflow: Simplify 
Development with the Declarative Model of Windows 
Workflow Foundation,” MSDN Magazine, 21, Jan 
2006. 

[27] Andrew, P., Conard, J, Conrad, J., Flandars, J., & 
Woodgate, S., Presenting Windows Workflow Foun-
dation, Sams Publishing, 2005. 

 

http://dtsn.darpa.mil/ixodarpatech/ixo_FeatureDetail.asp?id=6
http://dtsn.darpa.mil/ixodarpatech/ixo_FeatureDetail.asp?id=6

