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Abstract

Commercial off-the-shelf (COTS) middleware increasingly of-
fers not only functional support for standard interfaces, but
also the ability to optimize their resource consumption pat-
terns. For example, a Real-time CORBA object request bro-
ker (ORB) permits application developers to configure server
thread pooling policies. This flexibility makes it possible to
use standard functional interfaces in applications where they
were not applicable previously. However, the non-standard
nature of the optimization mechanisms—i.e., the “knobs and
dials”—against the very product-independence that standard-
ized COTS interfaces are intended to provide.

This chapter provides three contributions to the study of pat-
terns and mechanisms for reducing the life- cycle costs and
improving the quality of service (QoS) of distributed real-time
and embedded (DRE) systems. First, we describe key sources
of dependencies that reduce the flexibility and increase total
ownership costs of DRE software. Second, we present an ar-
chitectural pattern called Quality Connector, which is a meta-
programming technique that enables applications to specify
the QoS they require from their infrastructure, and then man-
ages the operations that optimize the middleware to implement
those QoS requirements. Third, we describe how Quality Con-
nectors are being implemented in practice to allocate commu-
nication resources automatically for Real-time CORBA event
propagation. Although middleware that configures itself in
response to QoS requests has been investigated and applied
in general-purpose computing contexts, the present work is
among the first to put such capabilities into mission-critical
DRE systems with stringent QoS requirements.

1 Introduction

1.1 Emerging Trends for DRE Systems

New and planned commercial and military distributed real-
time and embedded (DRE) systems take input from many
remote sensors, and provide geographically-dispersed opera-

tors with (1) the ability to interact with the collected infor-
mation and (2) to control remote effectors. In circumstances
where the presence of humans in the loop is too expensive
or their responses are too slow, these systems must respond
autonomously and flexibly to unanticipated combinations of
events at runtime. Moreover, these DRE systems are increas-
ingly being networked to form long-lived “systems of sys-
tems” that must run unobtrusively and autonomously, shield-
ing operators from unnecessary details, while simultaneously
communicating and responding to mission-critical informa-
tion at heretofore infeasible rates. In such environments, it is
hard to enumerate, even approximately, all possible physical
system configurations or workload mixes a priori.

It is possible in theory to develop these types of complex
DRE systems from scratch. However, contemporary economic
and organizational constraints, as well as increasingly com-
plex requirements and competitive pressures, make it infea-
sible to do so in practice. The proportion of DRE systems
made up of commercial-off-the-shelf (COTS) hardware and
middleware has therefore increased dramatically, which helps
reduce the initial non-recurring cost of these systems. In the
context of this chapter, middleware is software that function-
ally bridges the gap between application programs and the
lower-level underlying operating systems and network proto-
col stacks [1].

The qualities of the services that middleware provides are
critical to DRE systems. Moreover, the required qualities of a
given service can vary over time. For example, consider a crew
entertainment video that is distributed over a shipboard back-
bone network. This video distribution requires a low jitter, and
therefore constitutes a high priority flow of information. But
when the platform detects an incoming anti-ship cruise missile
and enters battle mode, however, the priority of the crew enter-
tainment video must drop to zero and yield the backbone net-
work to mission critical data flows. In general, DRE systems
require middleware that exposes mechanisms for the program-
matic control of qualities of service.

Recent advances in fundamental software technologies,
such as aspect-weaving software [2] and adaptive and reflec-

1



tive middleware, are beginning to provide the mechanisms
described above. Adaptive middleware [3, 4, 5] is software
whose functional and/or quality of service (QoS)-related prop-
erties can be modified either:

� Statically, e.g., to reduce footprint or to use and configure
resources that can optimized in advance in deeply embed-
ded systems or

� Dynamically, e.g., in response to changes in environ-
mental conditions or requirements, such as changing
component interconnection topologies; component fail-
ure or degradation; changing power levels; changing
CPU demands; changing network bandwidth and laten-
cies; and changing priority, security, and dependability
needs.

In DRE systems, adaptive middleware is responsible for mak-
ing these modifications while still meeting stringent end-to-
end QoS requirements.

Reflective middleware [6, 7, 8, 9] permits programmatic
examination of the capabilities it offers, and then permits
programmatic adjustment of those capabilities. Reflective
middleware supports a more advanced form of adaptive be-
havior, in that the necessary adaptations can be performed
autonomously (or semi-autonomously) based on conditions
within the system, in the system’s environment, or in the doc-
trine defined by system operators and/or administrators. Such
automatic adaptations must be implemented carefully to en-
sure that distributed optimizations retain system stability and
converge rapidly.

1.2 Problem: Dependencies of Applications on
Middleware

In many commercial application domains, such as e-
commerce or consumer electronics, application software
evolves faster than middleware software. As a result, most
mainstream COTS middleware products focus on presenting
a powerful set of services that are attractive to new applica-
tions, so that existing applications can evolve freely. Long-
lived DRE systems, however, often have the reverse problem,
i.e., how to write applications that can remain stable, while
permitting and exploiting the relatively rapid evolution of the
underlying infrastructure.

In the DRE domain, applications are often maintained over
long periods,e.g., 20 to 30 years. When combined with free-
market economics, this simple fact has far-reaching technical
consequences. For example, consider the Theater Air Planner
(TAP), which is the air tasking order generation function of the
US Department of Defense (DoD) Theater Battle Management
Core Systems (TBMCS). TAP is currently using version 7 of
a popular COTS database product, which is the same version
that was used when TAP was first written in 1995. Since then,

there have been two major releases of this database product
– version 8 in 1998 and recently version 9 – and these revi-
sions provide functionality that would significantly enhance
TAP. Unfortunately, TAP could not be upgraded to use these
newer products easily due to a complex web of dependencies
among its infrastructure components:
� The database
� The OS it runs on
� The implementation of the display widgets and
� The supporting Government-standard product set defined

by the Defense Information Infrastructure Common Op-
erating Environment (DII COE).

When the consequences of these and similar dependencies
are taken into account, what might seem to be a simple version
replacement may in fact require a large-scale, prohibitively ex-
pensive effort. Not surprisingly, these types of problems are
also found in long-lived commercial systems, such as complex
telecom switches.

1.2.1 Primary Dependency of DRE Applications on Mid-
dleware

If COTS components are available only through proprietary
interfaces, DRE application developers system will be locked
into using a particular set of COTS products. While the use
of proprietary COTS may decrease initial system acquisition
costs, it can increase maintenance and evolution costs. These
costs can be non-trivial for long-lived systems since the typ-
ical cost to maintain a software product is from 60% to 80%
of total life cycle costs [10]. Using COTS products that of-
fer only vendor-specific interfaces is therefore not generally in
the long-term best interest of DRE system owners. Primary
dependency of DRE applications on middleware arises when
applications are designed and written to use a single infras-
tructure product, as shown in Figure 1.

hardware & OS

application

non-standard

interface

custom

middleware

designed into

application

Figure 1: Historical Primary Dependencies

Traditionally, such unique infrastructure products were cre-
ated as part of the same effort that produced the applications.
Two (historically valid) reasons have been used to justify the
development of custom application infrastructure:
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1. The system required qualities of service (e.g., latency or
reliability) that were not available from any existing func-
tionally appropriate COTS infrastructure component and

2. No existing functionally appropriate COTS infrastructure
components would execute on the lower levels of infras-
tructure.

The following example of primary dependencies is taken
from a production DRE system development effort:

� A custom-built database was required because the oper-
ating system was custom-built and no existing database
would run on it,

� Likewise, the operating system was custom-built because
the hardware was custom-built and no existing operating
system would run on it, and

� Likewise, the hardware was custom-built because, among
other reasons, no existing hardware could provide the re-
quired I/O throughput.

Although the initial, non-recurring costs of systems such as
this were high, the maintenance costs could be low, simply be-
cause little maintenance was required. If no enhancements to
such a system were needed, it could continue to run for many
years, subject only to the availability of replacement hardware.
Unfortunately, these systems were often brittle, in the sense
that a small modification to the software, or a small modifi-
cation to the function of the hardware, would require large-
scale software changes. Moreover, these systems could not
be evolved to leverage rapid improvements in COTS hardware
and infrastructure software.

Today, the procurement costs of such systems—particularly
if they are mission-critical DRE systems— are often unaccept-
able due to budgetary constraints. Moreover, brittle end prod-
ucts are also often unacceptable due to

1. The rapidly changing nature of mission-critical require-
ments and

2. The expanding universe of what is possible. In particular,
if DRE systems can now support rapid response to an in-
ternational humanitarian crisis, commercial aviation free-
flight, and coordination of autonomous entities to clean
up environmentally toxic situations, then those possibili-
ties must not be foreclosed by the high cost of software
evolution.

Fortunately, the functional interface to DRE middleware
products can be—and increasingly is—standardized. As a re-
sult, the powerful new capabilities of COTS components are
increasingly available to DRE applications through open stan-
dard interfaces, such as Real-time CORBA [11], Real-time
Java [12], and Real-time POSIX [13]. These standards en-
able system integrators to choose among various COTS im-
plementations, which can reduce the on-going, recurring cost

of these systems. Moreover, some implementations of these
open, standard interfaces can be configured to provide qual-
ities of service that are suitable for many DRE applications.
For example, standards-compliant Real-time CORBA imple-
mentations [14] can now be selected and configured such that
their resource consumption overhead is low enough and their
qualities of service are high enough for all but the most de-
manding DRE applications.

1.2.2 Secondary Dependency of DRE Applications on
Middleware

Fortunately, many middleware products that implement stan-
dard functional interfaces are also adaptive and reflective in
the sense that they permit their qualities of service to be ma-
nipulated programmatically. The interface through which such
reflection and adaptation is accomplished, namely, the qual-
ity interface, is not yet standardized, however. Instead, these
capabilities are provided via ad hoc proprietary configuration
and control parameters.

Thus, the capabilities of COTS components to optimize
their performance and resource consumption are not generally
available through open standard interfaces. Consequently, any
system that uses the quality interface–as DRE systems in gen-
eral must–loses its infrastructure independence. This situation
results in DRE systems that are once again locked in to using a
single product, which significantly weakens the recurring cost
advantage of COTS, often to the point where life-cycle system
costs actually increase by using COTS [15].

Secondary dependency of applications on middleware arises
precisely from the process of optimizing the middleware by
selecting implementation and configuration options for open
standard DRE middleware, as illustrated in Figure 2. In this

middleware interface standard
(functional only)

hardware & OS

middleware

application

middleware
configuration/control
interface is

not standardized

Figure 2: Secondary Dependencies
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chapter, we call these user-selectable values the properties of
middleware services. For example, consider a distributed ap-
plication program that is designed to use the CORBA Event
Service [16] for data distribution. This program has avoided
the primary dependency problem, since there are many prod-
ucts available on the open market that implement the standard
CORBA Event Service. However, these products differ in their
properties, such as
� Transports and protocols supported
� Support for fault tolerance
� ORB initialization options
� Efficiency of marshaling and demarshaling event param-

eters
� Efficiency of demultiplexing incoming method calls
� Threading models and thread priority settings and
� Buffer sizes, flow control, and buffer overflow handling

Most of these properties are critical to the correct end-to-end
behavior of the DRE system in which the middleware is em-
bedded.

Moreover, for certain CORBA ORBs, some of these prop-
erties will be controllable by the application through idiosyn-
cratic mechanisms, such as compilation options, link options,
runtime environment variables, parameters passed to the ORB
at initialization, and runtime interfaces for property value al-
teration. For example, consider the large-scale, HLA/RTI dis-
tributed interactive simulation environment described in [16].
In that work, numerous critical event-distribution optimiza-
tions are defined, and the mechanisms by which they were
implemented are described. Examples of these optimizations
include

1. Sophisticated event filtering to limit execution overhead
and unnecessary data traffic

2. Selectable locking strategies to use when the implementa-
tion is iterating over a set of consumers that are to receive
an event and

3. Selectable strategies for the choice of thread that is to dis-
patch an event to a consumer.

Although these optimizations may be critical to the perfor-
mance of an end system, they are not controllable through
open standard interfaces. Consequently, DRE applications that
require specific qualities of services—even through open stan-
dard interfaces—must still be built to use specific products,
thereby reducing the recurring cost savings from using COTS.

In general, the process of tuning middleware components to
provide specified qualities of service is hard. Moreover, the
more flexibility that a middleware component or framework
provides, the higher the level of skill required to configure its
properties. The difficulty of obtaining the required QoS for
applications in mission-critical DRE systems is compounded
by the fact that the association of required qualities with ser-
vices may change dynamically when some set of events has

caused a significant change in the operational characteristics
of the system.

In DRE systems the time allotted to respond to mode
changes may be very short. In fact, this requirement is one
of the key technical differences between mission-critical DRE
applications and mainstream commercial business applica-
tions. This issue is discussed further in Sidebar 1,Mission
Critical System Modes, on page 10.

1.3 Solution: Meta-Programming Techniques
for DRE Middleware

Meta-programming [17] is a term given to a collection of
technologies designed to improve software adaptability by de-
coupling application behavior from the various cross-cutting
aspects [18] and resources used by applications. Applying
meta-programming involves identifying and dissecting pro-
gramming constructs into the following entities:

� Base-objects, which implement certain application-
centric functionality and

� Meta-objects, which provide access to certain proper-
ties of base-objects, such as persistence, concurrency,
scheduling, atomicity, ordering, state, replication, and
change notifications, including the ability to modify these
properties at runtime.

Meta-programming techniques can be applied to DRE mid-
dleware, where various aspects of application behavior can be
affected by meta-objects, such as the smart proxies, intercep-
tors, and interface repositories [8]. These meta-objects present
a higher level of control than the base-objects that perform
application-specific processing. For example, meta-objects
can help connect clients to their remote server (base-)objects.
They can also coordinate the QoS of resources used by DRE
middleware in support of client and server applications end-to-
end. A primary factor that distinguishes the QoS requirements
of DRE systems from those of “best-effort” commercial sys-
tems is that best-effort commercial systems are concerned pri-
marily with average values of qualities of service, while DRE
systems are concerned with extreme values of their distribu-
tions.

Meta-programming techniques have become prevalent in
DRE middleware R&D. For example, the Quality Object
(QuO) middleware [3] developed at BBN Technologies ap-
plies meta-programming techniques, such as smart proxies, in-
terceptors, and bridges, to imbue regular CORBA base-objects
with QoS characteristics controlled by meta-objects. Like-
wise, the dynamicTAO [7] and TAO [8] reflective ORBs apply
meta-programming techniques to dynamically configure ORB
properties for concurrency, scheduling, security, and monitor-
ing. As these R&D activities mature and transition into COTS
middleware, they can help address the secondary dependency
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problems described in Section 1.2.2,Secondary Dependency
of DRE Applications on Middleware.

To illustrate the concept of meta-programming concretely,
Section 2 describes the intent, structure, interactions, and im-
plementation of the Quality Connector pattern and shows how
this pattern can be used to address secondary dependency
problems. The remainder of this chapter then discusses re-
lated work, and presents concluding remarks and a synopsis
of current and future directions of work in this area.

2 The Quality Connector Pattern

The Quality Connector architectural pattern decouples appli-
cation components from the QoS configuration mechanisms
provided by infrastructure components to permit the infras-
tructure to evolve without requiring that the application be re-
vised. As illustrated in Figure 3, the Quality Connector medi-

hardware & OS

Quality
Connector

application

QoS-based

middleware

configuration/control

interface

Figure 3: Role of the Quality Connector in DRE Systems

ates between the application and the non-standard configura-
tion and control interface of the middleware.

2.1 Example

CORBA event channels decouple communication between
suppliers and consumers of data, as shown in Figure 4. An
event channel logically mediates the communication from
each supplier to all consumers, where by “logical” media-
tion we mean that the actual communication may use unicast,
broadcast, or multicast. In many implementations, however,
the event channel base-object physically mediates these com-
munications,i.e., all events are routed through a process where
an event channel base-object resides. In either case, the com-
munication between suppliers and consumers is decoupled in
the sense that

� It is asynchronous,i.e., consumers will receive data some
time after a supplier has completed its push() operation,
and
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Proxy
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Proxy
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push()
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Figure 4: A Simple CORBA Event Channel

� The suppliers and consumers must be aware of the event
channel’s identity, but need not be aware of each other’s
identities.

There is no pre-defined limit on the number of suppliers and
consumers that can be connected to an event channel at any
time. Moreover, they can connect and disconnect at any time.
There may be many event channels active at one time in a DRE
system.

The CORBA specification intentionally leaves many as-
pects of event channel behavior unspecified. For example, the
following properties of event delivery are not specified:

� Latency of event delivery
� Where and how often event data are copied
� Threading and synchronization policies for event dis-

patching
� What communication mechanism is used to convey the

event data from the supplier to the consumers;e.g., which
of several radio channels will be used

� How and where event data are buffered, and how large
the event data buffers are

� What happens when an event data buffer overflows
� Reliability of event delivery
� Whether events from one supplier will be delivered to

each consumer in the order in which they were supplied
� If supplier Alpha supplies an event E1 to an event chan-

nel, and only after consuming E1 does Beta, who is both
a supplier and consumer, supply an event E2 to the same
event channel, and if consumer Omega consumes both
events, must Omega receive E1 before E2?

� If a consumer connects to an event channel, and if an
event is supplied to that channel one minute later, will
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that consumer receive that event? Does the answer de-
pend on whether the supplier and consumer are on differ-
ent continents?

Consider a DRE application that uses the CORBA Event
Service and that will meet or not meet its requirements de-
pending on the value of one or more or the event delivery
properties outlined above. Such an application cannot – or
certainly should not – pass any design review since its correct
functioning cannot be predicted with any certainty. The appli-
cation may or may not pass its acceptance test, depending on
the properties of the chosen Event Service implementation and
the cleverness of the test plan. The application may fail if it is
ported to a platform that includes a different Event Service im-
plementation. Finally, the application may fail if a new Event
Service implementation is installed in the field, including the
case when the new implementation is a “minor” revision to
the same vendor’s previous implementation. This situation is
clearly unacceptable.

2.2 Context

The Quality Connector pattern can be applied in a DRE system
that has the following characteristics:

� It uses components via standardized functional inter-
faces,

� The qualities of the services provided by those compo-
nents are critical to the system’s conformance to its re-
quirements, and

� Long-term maintainability and portability are necessary
for the success of the system.

2.3 Problem

Implementations of services that are available through stan-
dardized functional interfaces expose only non-standard
mechanisms for controlling the qualities of the services pro-
vided. When an application uses such a service implementa-
tion, four forces arise:

� A quality-sensitive application should be able to monitor
and control the qualities of its supporting services. The
required qualities should be permitted to depend on sys-
tem mode (see Sidebar 1).

� A long-lived application should be capable of executing
without manual modifications on multiple implementa-
tions of infrastructure services with standard functional
interfaces.

� Applications that are programmed to use non-standard
QoS control mechanisms directly are vulnerable to the
secondary dependencies described in Section 1.2.2,Sec-
ondary Dependency of DRE Applications on Middleware.

� For time-critical mode transitions, infrastructure re-
sources must be reallocated quickly to provide the ser-
vices required in the new mode.

Sidebar 1: Mission-Critical System Modes

Mission-critical systems are often characterized as a
hierarchy of parts that we call configuration items. A
configuration item may be small (such as a mother-
board in a computer) or large (such as a ship). A con-
figuration item may exist statically (as does a router)
or may be created and destroyed dynamically (as is a
thread within a process). Configuration items may con-
tain other configuration items; this containment relation
forms a directed acyclic graph.

We assume that every configuration item is always
in one of a fixed, finite set of states. For example, a
workstation may be in a training state or an operational
state, and a radar may be in a search state, tracking
state, self-test state, or off-line state. The state of a
configuration item may (but need not) be a function of
the states of its contained configuration items.

We can now define a system mode as a Boolean
function on the states of its constituent configuration
items. For example, “the ship is in battle state” is a
mode, and “all ATM backbone configuration items are
in their operational states” is a mode. The value of a
mode can change abruptly. For example, the failure of
a component can affect the modes of a system.

The qualities of distributed communication ser-
vices that applications require will differ in different
modes. The example was given above of a crew en-
tertainment video whose priority drops when the ship
enters battle mode. Similarly, the importance of pro-
cesses within a nuclear reactor control system might
be expected to change when the reactor enters the
“over-temperature” mode.

The mode-change problem can be addressed by
permitting applications to specify QoS as a function
of mode. The result is that resource allocations can
be made in advance of their need. A related problem
arises when a mode changes but QoS requirements
do not change. When the failure of a resource, such
as a LAN, occurs and requirements which that LAN
had been supporting remain in effect, then new re-
sources must be identified and configured into oper-
ation as quickly as possible. This operation is often
called “fault reconfiguration.”
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2.4 Solution

For each infrastructure component that provides only a non-
standard QoS-control interface, implement a Quality Connec-
tor object. The Quality Connector object configures the in-
frastructure component to provide, if possible, the requested
QoS in the specified system modes. The interface between the
application and the Quality Connector object should be inde-
pendent of the choice of infrastructure component implemen-
tation, and be concerned only with

� The qualities of the service provided,
� The load that will be imposed on the service, and
� The modes of the system.

If a new infrastructure implementation is employed, then
a corresponding Quality Connector object will be required
that provides the same interface to the application as before.
The application will therefore not require manual modifica-
tion. The runtime interface between the Quality Connector
object and the component implementation depends on the in-
frastructure component’s QoS-control interface.

2.5 Structure

application

running

system

infrastructure

static

application

connector

static

infrastructure

connector

software

development

link &

load

dynamic

connector

Figure 5: Quality Connector Participants

The Quality Connector pattern includes the participants
shown in Figure 5 and described below.

� The Static Application Connector component acts on the
application source code before it is compiled and is akin
to aspect weaving tools, such as AspectJ [2]. That is,
the Static Application Connector scans that application
source code to detect statements and declarations that are

related to the service being provided; this detection pro-
cess may be as sophisticated as that used in globally opti-
mizing compilers, or as simple as the detection of flags
embedded in comments. Then the Static Application
Connector modifies the source code at certain of these
locations, generating new source code.

! For example, consider an application that intends to
supply events to an Event Service, as described in section
2.1, and whose QoS requirements are known statically.
Such an application must first create an Event Service ac-
cess point called a ProxyPushConsumer by invoking the
obtain_push_consumer() method. The Static Ap-
plication Connector component of the Quality Connec-
tor locates these method invocations in the application
source code, and inserts new code after each that pro-
poses the appropriate contract.

� The Static Infrastructure Connector component acts on
the underlying middleware components before they are
linked into the deployed system. This action may be as
simple as selecting one of several implementations of an
interface, and may be as complex as re-compiling and re-
linking the middleware component using appropriately
chosen values for configuration parameters such as in-
clude file search paths, macro symbol definitions, and
compiler options.

! For example, the TAO ORB, which we use for its
Event Service, is highly configurable by both runtime and
compile-time mechanisms. Specifically, we exploit the
efficiencies available when the target system is known to
be homogeneous by enabling a macro in an include file
that streamlines the marshalling and de-marshalling pro-
cess.

� The Dynamic Connector component is linked in with the
application and acts during its operation. This compo-
nent allocates resources, such as ATM circuits, proces-
sors, and radios, to data flows. When the quality connec-
tor object receives a request for a QoS contract, it uses
the Configuration object (see below) or similar mecha-
nism to discover the infrastructure base-objects and cor-
responding meta-objects that might be used to provide the
requested service in the specified mode. It then negotiates
with the meta-objects in an attempt to obtain support for
the requested service. If these negotiations are success-
ful, the quality connector object records the successful
strategy, and directs the meta-objects involved to record
their commitment to this contract.

! For example, since an Event Service is permitted
by the CORBA specification to use any mechanism to
propagate events from suppliers to consumers, the Dy-
namic Connector component can (and should) examine
the available communication resources to determine the
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best means of propagating events.

In addition to the participants of the Quality Connector pat-
tern described above, there are several optional participants,
including

� Configuration tools that assist system engineers in select-
ing compatible sets of infrastructure components that im-
plement required services,

� Simulation tools to determine whether locally specified
qualities of service will combine to meet system-level re-
quirements, and

� A Configuration object that provides visibility at runtime
of the set of configuration items that currently comprise
the executing system.

These optional participants are not addressed in this chapter.

2.6 Dynamics

application

design

quality

connector
system build application

components

service

components

Figure 6: Quality Connector Dynamics

The behavior of the Quality Connector pattern can be di-
vided into the three phases shown in Figure 6 and described
below:

1. Pre-runtime. When the identities of the services to
which QoS requests will be made are known, the applica-
tion source code is, if necessary, modified automatically
to insert the code that makes the runtime requests. Infras-
tructure components are selected and constructed using
whatever information is known about the QoS required
and load imposed on the service.

2. Runtime preparation. At runtime, the application re-
quests a QoS in a specified mode, including the spec-
ification of a load. The Quality Connector determines
whether that request could be satisfied using the presently
available infrastructure, considering the QoS contracts
accepted previously. If the request would be feasible,
the application is granted a contract, and the strategy by
which the service would be provided is recorded. More-
over, listeners are attached to the configuration items
whose mode changes might signal transition to or from
the relevant mode.

3. Runtime employment. After a QoS contract has been
established, when the system enters the mode to which
that contract applies, the Quality Connector receives no-
tification of the mode change, and reallocates infrastruc-
ture resources immediately according to its pre-computed
strategy.

2.7 Implementation

After a configurable infrastructure service has been selected, a
quality connector for that service can be implemented as fol-
lows:

1. Define a small language in which acceptable values (or
sets of acceptable values) of the service’s qualities can
be specified, depending on the system mode. Consider
defining this language using XML so that it can be un-
derstood readily by humans and parsed easily by COTS
tools. This activity can take place even in advance of the
system design; ideally the language will be defined by an
open standard.

2. Provide configuration-time tools to check for feasibility
and consistency of the requested quality values, and to set
the properties of the middleware components to provide
the required qualities.

3. Implement the Dynamic Connector. This is the Dy-
namic Connector component of the Quality Connector,
described in section 2.5; it carries out the runtime alloca-
tion of resources.

We describe each of these implementation activities below.

2.7.1 Specify the Quality Connector QoS Language

Define a Quality Connector QoS language that is capable of
specifying

� Values for all qualities of the this service that are of inter-
est in the system,

� Values for all relevant parameters of the load that the
clients will impose on the service,

� Relative priorities of clients, for use when not all requests
can be supported, and

� System modes in which quality requests apply.

Consider specifying this language in a form that is easy for
humans to read, such as XML.
! A QoS language that applies to a CORBA Event Service is
illustrated in Figure 7. We have not used worst-case bounds
for qualities such as latency, on the ground that if “worst case”
is interpreted literally, then resource utilization will necessar-
ily be low. Rather, we assume that latencies will be con-
strained by a conjunction of one or more conditions of the
form “<proportion> of latencies shall be less than or equal
to <time-interval>.” For example, a QoS specification for
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Proposal applies in this

mode

<proposal>

<mode>

<or>

<ci name="radioVHF" state="onLine"/>

<ci name="radioUHF" state="onLine"/>

</or>

</mode>

<QoS type="latency">

<upperPoint secs="1.0" prob="0.99"/>

<upperPoint secs="4.0" prob="0.9999"/>

</QoS>

<load type="interMessageTime">

<upperPoint secs="1.0" prob="0.0001"/>

<lowerPoint secs="1.0" prob="0.9999"/>

</load>

<load type="messageSize">

<upperPoint bytes="256" prob="1.0"/>

<upperPoint bytes="32" prob="0.5"/>

</load> <load type="priority">

<urgency val="10"/>

<importance val="2"/>

</load>

</proposal>

There are QoS types other

than latency -- e.g., jitter

Flow is periodic

Priority determines how

this request will compete

with others for resources

Figure 7: A Proposal in XML

latency might be “99% of latencies less than or equal to 1.0
seconds and 99.99% of latencies less than or equal to 4.0 sec-
onds.”

The load that will be imposed by the event service is spec-
ified in terms of a distribution of event sizes, in bytes, and a
distribution of the times between event-push invocations. Rel-
ative priorities of clients are specified by two integers: urgency
and importance:

� The urgency of a request determines which of several el-
igible requests will get access to a shared resource. For
example, if either of two packets of data could be sent
over a communication link, the packet with the higher ur-
gency will be sent.

� The importance of a request determines which of two re-
quests (both of which cannot be supported) will be ac-
cepted. For example, if both of two requests for event
data propagation cannot be supported on the present in-
frastructure, then the request with the higher importance
will be accepted and the other will be rejected. Moreover,
if a new request for service is received, and that request
can be accommodated only if some currently operating,
lower importance service is shut down, then that will be
done; in this case, we say that the lower importance re-
quest are abrogated.

The proposal in Figure 7 applies only when either of a pair
of tactical military or emergency response team radios is on-
line. In that case, the time between a supplier’s push() call
and all consumers’ corresponding push() calls for every event
are to be less than 1.0 second 99% of the time and less than
4 seconds 99.99% of the time. The sizes of the event data are
always at most 256 bytes and 50of the time are less than or
equal to 32 bytes. The supplier’s push() calls occur periodi-
cally, once per second. Note that the priority of the request

consists of the two integral values outlined above.

2.7.2 Providing Build-time Tools

Procure or build tools to help the programmers conduct the
configuration-time and runtime Quality Connector activities.
The decisions concerning which tools to use, if any, are sub-
ject to cost/benefit tradeoffs, such as the cost to build or buy the
tool plus the tool maintenance cost vs. the anticipated produc-
tivity improvement and risk reduction from its use. Consider
using design tools, such as design- tool interfaces, QoS lan-
guage checkers, simulators, and source code generators, such
as AspectJ [2] or scripts.
! For our Event Channel service, our QoS language is in
XML, so schemas are a natural mechanism for language
checking. Our application is written in C++, so we explicitly
mark locations in the source code where modifications are to
be applied, and we use a Perl script to insert the QoS requests
automatically.

2.7.3 Implement the Dynamic Connector

The Dynamic Connector component implements the runtime
functionality of the Quality Connector. This component is
therefore responsible for

� Receiving QoS contract requests from the application,
� Negotiating with the available resource meta-objects for

support,
� Replying to the application’s request with either a QoS

contract or an explicit denial, and
� Distributing strategies to the components that will em-

ploy them if the contract is granted.
� In our CORBA Event Service, QoS contracts are re-

quested by the application from the Proxy PushSupplier
and ProxyPushConsumer objects. These forward the re-
quest to the event channel object, which negotiates with
the resource meta-objects.

The event channel object first requests service from the re-
source meta-objects with a parameter called pullRank set to
false, which has the effect of attempting to provide the re-
quested service without disrupting any existing service con-
tracts. If this negotiation fails, then the event channel object
tries the negotiation again but with pullRank set to true; which
has the effect that if this second round of negotiation succeeds,
then at the time when the negotiated contract comes into force,
contracts of less importance than the present request may be
abrogated.

If the negotiation process succeeds, then a collection of
resources will be allocated for the event flow in the speci-
fied mode. The event channel object distributes strategy ob-
jects, represented as XML strings, to the affected service ob-
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jects. For example, the strategy given to a ProxyPushCon-
sumer might direct the immediate creation of a socket with
specified parameters to which supplied events should be writ-
ten.

2.8 Example Resolved

The use of the CORBA Event Service can be enhanced via
the Quality Connector pattern to allow applications to control
qualities of the event service without affecting its implemen-
tation. To accomplish this, we permit the application to asso-
ciate a QoS contract of the form shown in Figure 7 with each
consumer and supplier proxy. These contracts support the re-
quirement that QoS be permitted to depend on system mode.

To avoid manual modifications to the application source
code, we provide automatic tools possessing aspect-oriented
programming (AOP) [18] capabilities to insert the required
calls to request QoS contracts, following the creation of each
Event Service proxy. The rejection of a QoS request raises an
exception. As a result, no manual modification of application
code is required when a different event service implementation
is used, thereby avoiding secondary dependency problems.

The runtime result of a QoS-request is that the proposed
contract is forwarded from the proxy to the Event Service
object, where the negotiation for infrastructure support takes
place with the infrastructure meta-objects. If the mode spec-
ified in the contract is not the current mode, then the strategy
for the specified mode is retained in the proxy object, for use
when the specified mode is entered. As a result, the infras-
tructure resources are reallocated quickly when the mode is
entered, as required for time- critical mode transitions.

2.9 Known Uses

Meta-INterface for Real-time Embedded Systems (MIN-
ERS). There is an ongoing independent research and develop-
ment project at Lockheed Martin Tactical Systems in Eagan,
Minnesota, USA, called MINERS. MINERS is investigating
the use of meta-programming techniques to provide DRE ap-
plications with an open interface through which they can con-
figure and control the underlying middleware as they require.
This goal is achieved in MINERS as follows:
� DRE applications are built to use open, standard COTS

interfaces, such as CORBA and Real-time Java. In ad-
dition to the functional software that uses these inter-
faces, applications specify their required qualities of ser-
vice (QoS), such as the latency of event delivery or the
capacity of a wireless link. These QoS requirements
are stated in a declarative form and cannot depend on
middleware implementation details,e.g., they cannot as-
sume that inter-process communication is implemented
by sockets.

� A new meta-interface mechanism, operating automati-
cally during system development and at runtime, uses the
configuration/control interfaces of the (necessarily adap-
tive and reflective) middleware to monitor and enforce the
qualities of service specified by DRE applications.

QuO. The BBN Quality Objects (QuO) framework [3] was a
Quorum project that uses QoS definition languages [4] that are
based on the separation of concerns promoted by AOP [18]. In
particular, QuO includes the notion of a connection between
a client and an object, which encapsulates QoS requirements
and intended usage patterns; this is analogous to MINERS
contracts. QuO provides system condition objects, which are
similar to MINERS modes. QuO provides a Quality Descrip-
tion Language (QDL) that includes three aspect languages:
� A contract description language (CDL) that describes

contracts as outlined above,
� A structure description language (SDL) that describes

the internal structure of object implementations and the
amount of resources they require, and

� A resource description language (RDL) that describes the
available resources and their status.

These languages perform functions similar to the MINERS
QoS language described in section 2.7.1.

QuO has in the past emphasized reactive resource alloca-
tion [19], which monitors the QoS being provided and acting
to correct contract violations or anticipated violations. There
is nothing inherent in the structure of QuO, however, that pro-
hibits implementing the proactive resource allocation style de-
scribed in this paper.
Human uses. Applications behave analogously to an execu-
tive who gives a package to his staff with direction that it must
be delivered by a specified time. The Quality Connector acts,
analogously to the staff, by selecting mechanisms for transport
and setting the controllable parameters of those mechanisms.

2.10 Consequences

The Quality Connector pattern has the following benefits:
� Infrastructure independence. The Quality Connector

pattern decouples an application from dependencies on
the infrastructure it executes upon, even when that in-
frastructure requires explicit configuration to provide the
QoS that the application requires.

� Fast response to mode changes. The Quality Connector
negotiates contracts for service in modes other than the
current mode, and in so doing performs the possibly long
and difficult determination of the necessary resource allo-
cations. When the new mode in fact arises, the resources
can then be reallocated quickly.

The Quality Connector pattern also has the following liabili-
ties:
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� Reimplementation. When a new infrastructure is de-
ployed, a new Quality Connector object may be required.

� Potential for low utilization . Resource utilization may
be low if the Quality Connector implementations in a sys-
tem are unduly conservative in accepting contract propos-
als.

2.11 See Also

The Quality Connector pattern is related to the Component
Configurator pattern [20], which permits various component
implementations to be linked/unlinked into/from a running
application without shutting down the application. Both the
Quality Connector pattern and the Component Configurator
pattern provide means to change the behavior of a service dur-
ing application execution. The Component Configurator is
concerned with one mechanism – dynamic linking – for doing
so, while the Quality Connector focuses on policies and mech-
anisms that ensure rapid response to changing system state by
switching present components among pre-computed and pre-
supplied strategies.

The goal of the Quality Connector pattern is similar to that
of the Interceptor pattern [20], in that both adjust infrastructure
behavior without modifying the application manually. The In-
terceptor pattern accomplishes this by a highly flexible method
of adding services that are triggered automatically when speci-
fied events occur. The Interceptor pattern applies to the design
of a framework, specifying that it expose application-callback
interfaces, and that it open aspects of its internal state and
behavior to control by the application. The Quality Connec-
tor pattern imposes no design requirements on its constituent
components (although if the service components expose only
weak configuration controls, then the Quality Connector will
be unable to provide good resource utilization.) The Quality
Connector is concerned with service quality, while the Inter-
ceptor pattern is more general, and can provide functions such
as event logging.

The Reflection pattern [21] provides for the inclusion in a
running application of meta-objects that provide information
about, and control over, the base-objects that implement the
application logic. This pattern is clearly a basis on which
the Quality Connector pattern depends since the latter requires
that the infrastructure services support reflective capabilities.
The Proxy pattern [22] shields an application from details of
the implementation of a service,e.g., it hides the physical loca-
tion of a service implementation from its clients. The Quality
Connector pattern serves to modify the behavior of existing,
fully visible, service-providing components.

3 Related Work

Our work on Quality Connectors complements the work being
done on the DARPA Quorum program [23], particularly the
QuO framework [3]. Quorum’s goal was to develop technolo-
gies that allowed tactical applications with mission-critical
performance requirements to dynamically access distributed
COTS resources with guaranteed quality of service. Applica-
tions negotiate service contracts with the system, which are
then enforced through layered resource management mecha-
nisms and maintained through continual monitoring, adapta-
tion, and feedback control.

The Distributed Multimedia Research Group at Lancaster
University has proposed and implemented a prototype of next-
generation reflective middleware [6] called Adapt. Their mid-
dleware model concentrates on dynamic composition of ob-
jects through open-binding, which (1) allows object imple-
mentations to be configured dynamically and (2) determines
various aspects of object implementations, such as adding or
removing methods from an object. The Adapt project model
also facilitates QoS properties management and monitoring.
Compared to the Adapt project, MINERS concentrates on
identifying and using meta-programming techniques to imple-
ment and improve the implementation of an existing middle-
ware standard (CORBA), whereas the Adapt project defines
and implements the meta-space of a new middleware frame-
work at a higher level.

The Real-time (RT) CORBA 1.0 specification [11] ex-
tends the Object Management Group (OMG) CORBA stan-
dard to support real-time distributed, object-oriented applica-
tions. The initial 1.0 version of the RT CORBA specifica-
tion focuses on fixed-priority applications to ensure end-to-
end predictable behavior for information that flows between
distributed objects. It does this by giving developers explicit
control over allocation and use of the following resources:

� Processor resources are configured and controlled using
thread pools, priority control and synchronization mech-
anisms.

� Communication resources are managed through the abil-
ity to specify protocol properties and by making explicit
bindings to communication resources.

� Memory resources are managed through buffering re-
quests and limiting thread pool sizes.

� A global scheduling service is also available [5].

In addition to RT CORBA, the CORBA Notification Service
incorporates important QoS and filtering features into the pre-
viously defined CORBA Event Service. These middleware
capabilities, appearing in an open specification that is inde-
pendent of platform, OS, and vendor-specific communication
mechanisms, offer a solid foundation for an open implementa-
tion of meta-programming interfaces.
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The dynamic TAO [7] and Reflective CCM [8] projects have
demonstrated that CORBA can be reconfigured at runtime by
dynamically linking and unlinking certain components. Simi-
larly, AspectIX [9] is a novel CORBA-compliant middleware
architecture that defines and describes QoS requirements on
a per-object basis independently from functional interfaces.
Clients in AspectIX systems are allowed to set the QoS as-
pects of objects. Systems may adapt, report aspect changes
back to clients, or reflect to clients on how to adapt. The MIN-
ERS work, however, also focuses on QoS adaptation as a de-
ployable entity in the system to standardize and automate the
server-side QoS control/adaptation issues.

Our approach to specifying QoS at the application level in a
form that is relatively independent of the functional behavior
of the application is facilitated by the emerging research in As-
pect Oriented Programming (AOP). Work in this area is under-
way in various places, including Xerox PARC [18], IBM [24],
and MCC [25]. We have chosen to use AspectJ [2], which is an
aspect-oriented extension to the Java programming language.
AspectJ addresses the problem of cross-cutting concerns by
extending Java with constructs that can be used to implement
such concerns in a modular way. AspectJ is in the late beta
stages of development, yet promises to provide more general-
ized aspects than much of the related work being done in this
area.

A related area of research is generative programming [26],
which is an approach to constructing systems that involves
modeling an entire family of systems. Given requirements
for a particular member of that family, this approach gener-
ates that member as a composition of elementary components.
Both AOP and Generative Programming are being explored in
the context of the DARPA PCES program [27].

A number of enabling technologies are emerging that will
make it possible to implement meta-interface mechanisms
more easily in the future. Available at different levels, includ-
ing the middleware itself, these technologies provide various
forms of support for QoS. The IETF has specified mechanisms
for scalable differentiated [28] and integrated [29] classes of
service on the Internet.
� Differentiated services(DiffServ) provide QoS using a

small, well-defined set of building blocks from which
a variety of aggregate behaviors may be built. Service
characteristics may be specified in quantitative or statisti-
cal terms of throughput, delay, jitter, and/or loss, or they
may be specified in terms of priority of access to network
resources. A small bit-pattern in each packet is used to
mark the packet to receive a particular forwarding treat-
ment, or per-hop behavior, at each network node along
its path. The DiffServ specifications provide a common
understanding of the use and interpretation of this bit-
pattern. Sophisticated classification, marking, policing,
and shaping operations can now be implemented at net-

work boundaries or hosts. Network resources are allo-
cated to traffic streams by service provisioning policies
which govern how traffic is marked and conditioned upon
entry to a differentiated services-capable network, and
how that traffic is forwarded within that network.

� Integrated services (IntServ) provides the ability to
transport audio, video, real-time, and data traffic within
a single packet switched network infrastructure. IntServ
defines a minimal set of global requirements and services
which transition the Internet into an integrated-service
communications infrastructure. It includes interfaces to
specify an application’s end-to-end QoS requirements.

4 Concluding Remarks and Future Di-
rections

As COTS middleware becomes more capable, the proportion
of mission-critical system requirements that cannot be met us-
ing COTS middleware is shrinking dramatically. This trend
applies even to mission-critical distributed real-time and em-
bedded (DRE) systems, such as ship-board combat systems
and commercial avionics computing systems, that are subject
to stringent reliability and quality of service (QoS) require-
ments. The result is a substantial reduction in the initial, non-
recurring cost of these systems.

COTS middleware, such as Real-time CORBA [11], is
playing an increasingly important role in developing mission-
critical DRE systems due to

� Economic and organizational constraints, such as
severely constrained procurement budgets, and the move-
ment toward prime-vendor support contracts that allocate
the uncertainty in system maintenance costs to the devel-
oping contractor;

� Increasingly complex system requirements, such as
Global Air Traffic Management (GATM) [30] require-
ments for military aircraft that fly in commercial airspace;
and

� Competitive pressures, such as enticements for scientists
and engineers from many sectors of the global economy.

The potential affordability gains offered by COTS middle-
ware have therefore become strategically important. Without a
product- and component-independent mechanism to configure
COTS middleware optimally, however, this affordability gain
is threatened.

Our prior experience [16, 8, 14, 17, 5] illustrates that ef-
fective operation, interoperability, and integration of complex
DRE systems requires more than individual COTS standards
and tools. Instead, it requires that adaptability, assurability,
and affordability be designed into DRE system/network archi-
tectures a priori. Researchers and practitioners therefore have
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a pressing need to coordinate individual advances in the COTS
solution space that are being addressed by different sectors of
the DRE R&D community.

The problems faced by researchers and developers of DRE
systems are highly challenging, with many interlocking as-
pects [1]. Unless pieces of the emerging, independently de-
veloped, COTS solutions can be delivered to application de-
signers as coordinated, integrated packages, their value will
be diminished. In fact, COTS can even make matters worse
instead of better,e.g., due to excessive costs for COTS refresh
and integration [15]. This chapter proposes an architectural
pattern called Quality Connector that allows a variety of sepa-
rately developed, and continuously evolving, tools and compo-
nents to appear to application designers as an integrated, coor-
dinated, and stable infrastructure. Instantiations of the Quality
Connector pattern encapsulate the various configuration and
control mechanisms provided by COTS middleware, thereby
exposing a stable QoS-based interface to applications.

Implementation of the capabilities described in this chap-
ter is underway in the MINERS project at Lockheed Martin
Tactical Systems, in Eagan, Minnesota, as part of the DARPA
PCES Program [27]. We are using the ACE framework [31]
and the TAO Real-time CORBA ORB [14]. ACE and TAO
are highly configurable middleware based on patterns [20] that
support DRE applications with demanding QoS requirements.

In the longer term, if the mission-critical DRE system com-
munity can achieve a shared understanding of what qualities of
services need to be specified and how to specify them, we en-
vision the availability of middleware that can be configured to
meet such requirements, and the development of applications
that include their QoS requirements as part of their design.
These applications should be far more stable over evolving
infrastructure than current applications. Moreover, they may
also be verifiable independently of any infrastructure, based on
their QoS requirements, which will substantially reduce costs
in mission- critical DRE applications.
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