
Supporting High-performance I/O in
QoS-enabled ORB Middleware

Fred Kuhns and David Levine Douglas C. Schmidt and Carlos O’Ryan
ffredk,levineg@cs.wustl.edu fschmidt,coryang@uci.edu

Department of Computer Science, Washington University Electrical & Computer Engineering Dept.
St. Louis, MO 63130 University of California, Irvine, CA 92697�

This paper will appear inCluster Computing: the Journal
on Networks, Software, and Applications.

Abstract

To be an effective platform for high-performance distributed
applications, off-the-shelf Object Request Broker (ORB) mid-
dleware, such as CORBA, must preserve communication-layer
quality of service (QoS) properties both vertically (i.e., net-
work interface$ application layer) and horizontally (i.e.,
end-to-end). However, conventional network interfaces, I/O
subsystems, and middleware interoperability protocols are not
well-suited for applications that possess stringent through-
put, latency, and jitter requirements. It is essential, there-
fore, to develop vertically and horizontally integrated ORB
endsystems that can be (1) configured flexibly to support high-
performance network interfaces and I/O subsystems and (2)
used transparently by performance-sensitive applications.

This paper provides three contributions to research on high-
performance I/O support for QoS-enabled ORB middleware.
First, we outline the key research challenges faced by high-
performance ORB endsystem developers. Second, we describe
how our real-time I/O (RIO) subsystem and pluggable pro-
tocol framework enables ORB endsystems to preserve high-
performance network interface QoS up to applications run-
ning on off-the-shelf hardware and software. Third, we illus-
trate empirically how highly optimized ORB middleware can
be integrated with real-time I/O subsystem to reduce latency
bounds on communication between high-priority clients with-
out unduly penalizing low-priority and best-effort clients. Our
results demonstrate how it is possible to develop ORB endsys-
tems that are both highly flexible and highly efficient.

�This work was supported in part by Boeing, NSF grant NCR-9628218,
DARPA contract 9701516, and Sprint.

1 Introduction

1.1 Current Limitations of High-performance
Distributed Computing

During the past decade, there has been substantial R&D em-
phasis onhigh-performance networkingandperformance op-
timizationsfor network elements and protocols. This effort
has paid off such that networking products are now available
off-the-shelf that can support Gbps on every port,e.g., Gigabit
Ethernet and ATM switches. Moreover, 622 Mbps ATM con-
nectivity in WAN backbones are becoming standard and 2.4
Gbps is starting to appear. In networks and GigaPoPs being
deployed for the Next Generation Internet (NGI), such as the
Advanced Technology Demonstration Network (ATDnet), 2.4
Gbps (OC-48) link speeds have become standard. However,
the general lack of flexible software tools and standards for
programming, provisioning, and controlling these networks
has limited the rate at which applications have been developed
to leverage advances in high-performance networks.

During the same time period, there has also been substan-
tial R&D emphasis on object-oriented (OO) communication
middleware, including open standards like OMG’s Common
Object Request Broker Architecture (CORBA) [1], as well
as popular proprietary solutions like Microsoft’s Distributed
Component Object Model (DCOM) [2] and Sun’s Remote
Method Invocation (RMI) [3]. These efforts have paid off such
that OO middleware is now available off-the-shelf that allows
clients to invoke operations on distributed components with-
out concern for component location, programming language,
OS platform, communication protocols and interconnects, or
hardware [4].

However, off-the-shelf communication middleware has sev-
eral limitations. In particular, it historically has lacked (1)
support for QoS specification and enforcement, (2) integration
with high-performance networking technology, and (3) perfor-
mance, predictability, and scalability optimizations [5]. These
omissions have limited the rate at which performance-sensitive
applications, such as video-on-demand, teleconferencing, and
scientific computing, have been developed to leverage ad-
vances in communication middleware.

1

1.2 Overcoming Current Limitations with TAO

To address the flexibility and QoS performance limitations
outlined above, we have developedThe ACE ORB(TAO) [5].
TAO is a high-performance, real-time Object Request Bro-
ker (ORB) endsystem targeted for applications with determin-
istic and statistical QoS requirements, as well as best effort
requirements. The TAO ORB endsystem contains the net-
work interface, OS I/O subsystem, communication protocol,
and CORBA-compliant middleware components and features
shown in Figure 1.

NETWORKNETWORK

ORBORB RUN RUN--TIMETIME

SCHEDULERSCHEDULER

operation()operation()

IDLIDL
STUBSSTUBS

IDLIDL
SKELETONSKELETON

in argsin args

out args + return valueout args + return value

CLIENTCLIENT

OS KERNELOS KERNEL

HIGHHIGH--SPEEDSPEED

NETWORK INTERFACENETWORK INTERFACE

REALREAL--TIME ITIME I//OO
SUBSYSTEMSUBSYSTEM

OBJECTOBJECT
((SERVANTSERVANT))

OS KERNELOS KERNEL

HIGHHIGH--SPEEDSPEED

NETWORK INTERFACENETWORK INTERFACE

REALREAL--TIME ITIME I//OO
SUBSYSTEMSUBSYSTEM

ACEACE COMPONENTSCOMPONENTS

OBJOBJ

REFREF

REALREAL--TIMETIME ORBORB CORECORE
IOPIOP

PLUGGABLEPLUGGABLE

ORBORB & & XPORTXPORT

PROTOCOLSPROTOCOLS

IOPIOP
PLUGGABLEPLUGGABLE

ORBORB & & XPORTXPORT

PROTOCOLSPROTOCOLS

REALREAL--TIMETIME

OBJECTOBJECT

ADAPTERADAPTER

Figure 1: Components in the TAO ORB Endsystem

TAO’s ORB Core, Object Adapter, stubs/skeletons, and
servants run in user-space and handle connection manage-
ment, data transfer, endpoint and request demultiplexing, con-
currency, (de)marshaling, and application operation process-
ing. In contrast, TAO’s real-time I/O (RIO) subsystem runs
in the OS kernel and sends/receives requests to/from clients
across high-performance networks or I/O backplanes. TAO’s
pluggable protocol framework provides the “glue” that inte-
grates its higher-level ORB Core and Object Adapter compo-
nents with its lower-level I/O subsystem and network interface
components. Developers can use TAO’s pluggable protocols
framework to implement new ORB messaging protocols and
transport adapters that leverage underlying high-performance
communication protocols and network interface hardware.

1.3 Key Research Challenges

This paper focuses on the techniques used in TAO to resolve
the following research challenges that arise when developing
high-performance and real-time ORB endsystems:

1. Optimizing QoS-enabled I/O subsystems to support
high-performance network interfaces: A key ORB end-
system research challenge is to implement and optimize QoS-
enabled OS I/O subsystems and network interfaces. This paper
presents the design and performance of a real-time I/O (RIO)
subsystem that enhances the Solaris 2.5.1 kernel to enforce
the QoS features in TAO’s ORB endsystem [6]. RIO pro-
vides QoS guarantees for vertically integrated ORB endsys-
tems that can (1) increase throughput, (2) decrease latency, and
(3) improve end-to-end predictability for distributed applica-
tions. RIO supports periodic protocol processing, guarantees
I/O resources to applications, and minimizes the effect of flow
control in communication streams end-to-end. A novel feature
of the RIO subsystem is its integration of real-time scheduling
and protocol processing, which allows RIO to support both
bandwidth guarantees and low-delay applications.

Many RIO mechanisms and features are implemented in its
network interface drivers, which makes it uniquely suited for
high-performance network interface technology. For example,
network interface architectures, such as the ATM Port Inter-
connect Controller (APIC) [7], U-Net [8], and the Virtual In-
terface Architecture (VIA [9]), support the vertical integration
of I/O subsystems, which can minimize extraneous memory
reads and writes using advanced I/O techniques, such as pro-
tected DMA [10]. RIO can exploit these techniques to sup-
port user-space protocol implementations and zero-copy I/O.
Likewise, network interface drivers can take advantage of RIO
to support intelligent polling, periodic I/O, co-scheduling of
user- and kernel-threads, and strategized buffer management.

2. Developing a pluggable protocols framework to inte-
grate new protocols that can leverage high-performance
network interfaces: Another key ORB endsystem research
challenge is to integrate the optimized, QoS-enabled I/O sub-
system and network interfaces with higher-level OO middle-
ware features, such as parameter (de)marshaling, request de-
multiplexing, concurrency control, and fault tolerance. This
requires an efficient framework supporting custom protocols
that leverage underlying, platform-specific hardware/OS fea-
tures. However, the framework must also meet the seemingly
contradictory goal of providing a flexible platform-neutral API
to the ORB and applications.

TAO’s pluggable protocols framework can be used to cre-
ate custom inter-ORB protocols or to exploit features of the
specialized hardware or software within the OS I/O subsys-
tem. For example, if a VIA interface is used a specialized
transport adaptor can be developed that is optimized for VIA
features. In particular, this adaptor can leverage the shared
memory model offered by VIA and integrate it with the ORB’s
internal request buffering mechanisms, thereby yielding more
efficient memory management.

2

1.4 Paper Organization

The paper is organized as follows: Section 2 provides a gen-
eral overview of the TAO ORB endsystem architecture; Sec-
tion 3 describes how the RIO subsystem enhances the So-
laris 2.5.1 OS kernel to support end-to-end QoS for TAO
applications; Section 4 describes TAO’s pluggable protocols
framework; Section 5 illustrates how TAO’s RIO subsys-
tem and pluggable protocols framework can seamlessly lever-
age high-performance network interfaces; Section 6 presents
empirical results from systematically benchmarking the effi-
ciency and predictability of TAO and RIO over an ATM net-
work; Section 7 compares RIO and TAO’s pluggable proto-
cols framework with related work; Section 8 presents conclud-
ing remarks. For completeness, Appendix A provides a brief
overview of CORBA and Appendix B provides and overview
of the Solaris operating system.

2 Supporting High-performance I/O in
the TAO Endsystem

As outlined in Section 1, key research challenges faced when
integrating high-performance I/O within an ORB endsystem
involve optimizing I/O subsystem mechanisms and ORB inter-
ORB protocols to exploit the underlying hardware and I/O
subsystem. In this section we outline an ORB endsystem ar-
chitecture that addresses these two challenges.

2.1 Context

As shown in Figure 2, CORBA endsystems can be divided into
several components, including the operating system’s I/O sub-
system, Inter-ORB protocol processing, and ORB Core ser-
vices. In this environment application threads acquire ob-
ject references, invoke remote operations, and performance
application-specific processing. CORBA objects are imple-
mented within the context of a server ORB, which is respon-
sible for performing incoming upcalls on target objects and
sending replies back to the clients.1 Moreover, CORBA sup-
ports both synchronous and asynchronous invocation mod-
els [11].

2.2 Design Challenges

Developers of ORB endsystem that use general-purpose op-
erating systems, such as Solaris, Windows NT, or NetBSD,
must address the following design challenges in order to meet
the QoS requirements of high-performance and real-time ap-
plications.

1CORBA client applications also can issue one-way invocations where no
reply is sent from the server.

NETWORK INTERFACE

DRIVER

INTER -ORB

PROTOCOL

ORB CORE/
SERVICES

NETWORK

PROTOCOLS

LINK

PROTOCOLS

INTER -ORB

PROTOCOL

ORB CORE/
SERVICES

INTER -ORB

PROTOCOL

ORB CORE/
SERVICES

...
APPLICATION APPLICATION APPLICATION

OS

SCHEDULER

ORB

PROTOCOL

PROCESSING

ORB

SERVICES

PROCESSING

KERNEL SPACE

I/O SUBSYSTEM

USER SPACE

Figure 2: Typical ORB Endsystem Architecture

2.2.1 Alleviating Thread-based Priority Inversions

Thread-based priority inversion can occur when a higher prior-
ity thread blocks awaiting a resource held by a lower priority
thread [12]. When considering the kernel or I/O subsystem,
this type of priority inversion occurs when real-time applica-
tion threads depend on system level processing which is per-
formed at priority levels that are either higher or lower than
the currently running thread. For example, the Solaris kernel
performs protocol processing asynchronously at either SYS or
INT priorities [13, 14, 12].2 Likewise, in NetBSD the process-
ing of the callout queue that service TCP timeouts occurs at a
software interrupt priority that preempts all application-level
threads.

As illustrated above, thread-based priority inversion occur
when either the kernel performs asynchronous or synchronous
processing without regard to the relative priority of the bene-
fiting thread or process. In practice this generally translates to
one of two cases: 1) system processing performed by kernel
threads with their own scheduling attributes or 2) event pro-
cessing with hardware or software interrupt priorities.

Asynchronous processing with kernel threads: Modern
UNIX operating systems, such as Solaris, rely on kernel
threads to perform asynchronous or synchronous system ac-
tivities, such as callout queue processing, page replacement, or
processingSTREAMSsvc functions. In Solaris, these threads
operate with global priorities that are lower than those for the
real-time scheduling class. Other operating systems perform
similar processing using software interrupt priorities. In both
cases, application threads can experience unbounded priority
inversion [15].

2Appendix B presents an overview of the Solaris scheduling model.

3

Protocol processing with interrupt priorities: Another
source of thread-based priority inversion occurs when proto-
col processing of incoming packets is performed in an inter-
rupt context. Traditional UNIX implementations treat all in-
coming packets with equal priority, regardless of the priority
of the application thread that ultimately receives the data.

In BSD UNIX-based systems [16], for instance, the in-
terrupt handler for the network driver deposits the incoming
packet in the IP queue and schedules a software interrupt that
invokes theip input function. Before control returns to the
interrupted application process, the software interrupt handler
is run andip input is executed. Theip input function
executes at the lowest interrupt level and processes all pack-
ets in its input queue. Only when this processing is complete
does control return to the interrupted process. Thus, not only
is the process preempted, but it will be charged for the CPU
time consumed by input protocol processing.

In STREAMS-based UNIX operating systems, protocol pro-
cessing can either be performed in an interrupt context (as in
Solaris) or withsvc functions scheduled asynchronously. Us-
ing svc functions can yield the unbounded priority inversion
described above. Similarly, processing all input packets in an
interrupt context can cause unbounded priority inversion.

Modern high-speed network interfaces can saturate the sys-
tem bus, memory, and CPU, leaving little time available for
application processing. It has been shown [14] that if proto-
col processing on incoming data is performed in an interrupt
context this can lead toinput livelock. Livelock is a condi-
tion where the overall endsystem performance degrades due
to input processing of packets in an interrupt context. In ex-
treme cases, an endsystem can spend the majority of its time
processing input packets, resulting in little or no useful work
being done. Thus, input livelock can prevent an ORB endsys-
tem from meeting its QoS commitments to applications.

2.2.2 Alleviating Packet-based Priority Inversions

Packet-based priority inversion [15], also known as “head-of-
line” blocking, can occur when packets for high-priority appli-
cations are queued behind packets for low-priority application
threads. This inversion can occur as a result of serializing the
processing of incoming or outgoing network packets. To meet
deadlines of time-critical applications, it is important to elim-
inate, or at least minimize, packet-based priority inversion.

To illustrate this problem, consider a general-purpose ORB
endsystem that must support both soft real-time applications,
such as audio/video (A/V) conferencing [17], and “best-effort”
applications, such as remote file transfer. This endsystem must
transmit both (1) time critical video frames and audio pack-
ets and (2) relatively low-priority file buffers. For the system
to operate correctly, A/V frames must be delivered periodi-
cally with strict bounds on latency and jitter. Conversely, bulk

data file transfers occur periodically and inject a large num-
ber of packets into the I/O subsystem, which are queued at
the network interface. Unfortunately, packets containing high-
priority A/V frames can be queued in the network interface
behindlow-priority bulk data packets containing file buffers,
thereby yielding packet-based priority inversion. Thus, A/V
frames may arrive too late to meet end-to-end application QoS
requirements.

2.2.3 Alleviating Limitations with Inter-ORB Protocol
Implementations

CORBA’s standard interoperability protocols are well-suited
for conventional request/response applications with best-effort
QoS requirements [18]. They are not well-suited, however,
for high-performance real-time and/or embedded applications
that cannot tolerate the message footprint size or the latency,
overhead, and jitter of the TCP/IP-based Inter-ORB transport
protocol [19]. For instance, TCP functionality, such as adap-
tive retransmissions, deferred transmissions, and delayed ac-
knowledgments, can cause excessive overhead and latency for
real-time applications [20]. Likewise, best-effort networking
protocols, such as IPv4, lack the functionality of packet ad-
mission policies and rate control, which can lead to excessive
congestion and missed deadlines in networks and endsystems.

Therefore, applications with stringent QoS requirements
need optimized protocol implementations, QoS-aware inter-
faces, custom presentations layers, specialized memory man-
agement (e.g., shared memory between ORB and I/O subsys-
tem), and alternative transport programming APIs (e.g., sock-
ets vs. VIA [9]). Domains where highly optimized ORB
messaging and transport protocols are particularly important
include (1) multimedia applications running over high-speed
networks, such as Gigabit Ethernet or ATM [21] and (2) real-
time applications running over embedded system intercon-
nects, such as VME or CompactPCI.

2.3 Solutions

To address the challenges outlined above, we have adopted a
protocol-centric view to develop a high-performance and real-
time ORB endsystem, which is shown in Figure 3. Our prior
research on CORBA middleware has explored the efficiency,
predictability, and scalability aspects of ORB endsystem de-
sign, including static [5] and dynamic [22] scheduling, event
processing [23], synchronous [24] and asynchronous [11]
ORB Core architectures, systematic benchmarking of multiple
ORBs [25], and optimization principle patterns for ORB per-
formance [26]. This paper extends our earlier work by focus-
ing on the integration of the following topics:(1) event-driven
demultiplexing, (2) real-time I/O scheduling, (3) network pro-
tocol processing, and (4) inter-orb protocol processing.Fig-

4

FLOW CLASSIFIER

QOS ENFORCEMENTCLASSIFIEREARLY DEMULTIPLEXING

(MINIMAL DRIVER /SMART NIC)

NETWORK

PROTOCOLS

INTER -ORB

PROTOCOL

ORB CORE/
SERVICES

NETWORK

PROTOCOLS

INTER -ORB

PROTOCOL

ORB CORE/
SERVICES

NETWORK

PROTOCOLS

INTER -ORB

PROTOCOL

ORB CORE/
SERVICES

...
APPLICATION APPLICATION APPLICATION

RIO

SCHEDULER

I/O

PROTOCOL

PROCESSING

ORB

PROTOCOL

PROCESSING

ORB

SERVICES

PROCESSING

REAL -TIME

ORB ENDSYSTEM

EVENT DRIVEN I /O

Figure 3: Architecture of a High-performance and Real-time
ORB Endsystem

ure 3 deliberately does not delineate the protection boundary
between the kernel and user domains. In principle, topics 2–
4 can be performed in either domain and do not necessarily
require privileged access to resources [27, 28].

In addition to identifying the horizontal layers of an ORB
endsystem, Figure 3 also depicts its vertical partitions, where
resources are dedicated to active connections. Each active con-
nection is associated with a set of preallocated resources along
a path [29] through the endsystem that ranges from network
interface to application. We use this design strategy to ame-
liorate the effects of using shared queues and processing con-
texts [6].

Our solution addresses thread and packet-based priority in-
versions and inflexible inter-ORB protocols. These problems
essentially are resource management issues on and between
the endsystems. This can be addressed with a judicious use
of preallocated resources, prioritizing I/O processing and pro-
viding the middleware with mechanisms to exploit optimized
I/O features. Consequently, our solution must provide mecha-
nisms for minimizing work performed with interrupt priorities,
providing I/O processing threads in the kernel, preallocating
memory and other I/O resources and facilities for inter-ORB
protococols to exploit available optimizations in the underly-
ing I/O subsystem.

Early demultiplexing: This feature is concerned with re-
ducing unbounded priority inversion [30, 31, 15] by (1) mini-
mizing the time spent processing packets with interrupt priori-
ties and (2) associating all incoming and outgoing packets with
preallocated resources. Incoming packets are demultiplexed
and associated with the correct priorities and a specific Stream
early in the packet processing sequence,i.e., in the network
interface driver [10]. RIO’s design minimizes thread-based

priority inversion by vertically integrating packets received at
the network interface with the corresponding thread priorities
in TAO’s ORB Core. Section 3.1 describes how the TAO’s
RIO subsystem implements early demultiplexing.

Schedule-driven protocol processing: To minimize thread-
based priority inversions, this feature performs all protocol
processing with threads that are scheduled with the appropri-
ate real-time priorities [32, 31, 14]. RIO’s design schedules
network interface bandwidth and CPU time to minimize prior-
ity inversion and decrease interrupt overhead during protocol
processing. Section 3.2 describes how the TAO’s RIO subsys-
tem implements schedule-driven protocol processing.

Dedicated STREAMS: This feature addresses packet-based
priority inversions by isolating request packets belonging to
different priority groups to minimize FIFO queueing and
shared resource locking overhead [33]. RIO’s design alleviates
resource conflicts that can otherwise cause thread-based and
packet-based priority inversions. Section 3.3 describes how
the TAO’s RIO subsystem implements Dedicated STREAMS.

ORB Pluggable protocols framework: To address the lim-
itations with inter-ORB protocol implementations outlined in
Section 2.2.3, it must be possible for an ORB endsystem to
add new protocol adaptors and exploit underlying hardware.
Achieving this integration requires the ORB endsystem to sat-
isfy the following seemingly contradictory goals:

� Abstracting away from platform variation: To max-
imize flexibility, application should be shielded from depen-
dencies on specialized hardware or OS interfaces. In particu-
lar, applications should not require modifications when new
platforms and communications links are configured. Thus,
platform- and network-specific information should be encap-
sulated within the middleware framework

� Leveraging custom platform features: To maximize
performance, applications that use middleware should bene-
fit from specialized hardware, OS, and communication links
available on a particular platform. For example, available
network signaling and optimized network interface architec-
tures may provide custom features, such as zero-copy I/O,
bandwidth reservations, low latency connections, or optimized
buffering strategies.

To achieve both these goals, we developed a highly extensi-
ble pluggable protocols framework[19] for TAO that presents
a uniform, yet extensible, network programming interface. We
use this framework to extend TAO’s concurrency architec-
ture and thread priority mechanisms into its RIO subsystem,
thereby minimizing key sources of priority inversion that can
cause non-determinism and jitter.

These features are augmented by RIO’s zero-copy buffer
management optimizations [7, 10]. These optimizations elim-

5

inate unnecessary data-copying overhead between applica-
tion processes/threads, network protocol stacks, and high-
performance network interfaces that support advanced I/O
features, such as protected DMA, read/write directly to host
memory, priority queues, programmable interrupts, and paced
transmission. Section 4 presents TAO’s pluggable protocols
frameworks and Section 5 describes how it is used to integrate
high-performance network interfaces with ORB endsystems.

3 Implementing TAO’s Real-Time I/O
(RIO) Subsystem for Solaris

This section describes the implementation of TAO’s real-time
I/O (RIO) subsystem [6] for Solaris over an ATM network. We
selected Solaris to explore kernel space protocol implementa-
tions and architectural implementation, as well as to extend
earlier work on NetBSD [27].

The RIO subsystem enhances the Solaris 2.5.1 OS kernel
and a Fore ATM interface driver by providing QoS specifica-
tion and enforcement features that complement TAO’s highly
predictable real-time concurrency and connection architec-
ture [24]. Figure 4 presents the architectural components in
the RIO subsystem and illustrates their relationship to other
TAO ORB endsystem components.

rQ 2 rQ 31sQ 2 3sQ1 sQrQ

rQwQ

Classifier

<timers>
UDP/TCP

TS Class

user thread

TS Class

user thread

APIC

RIO

wQ

wQ rQ
(routing tables)

IP - Multiplexor
wQ rQ rQ

SYS:61
rkt3

kernel

IOP

Best Effort

TAO

Application
ORB Endsystem
Real-time

framework
pluggable protocol

UDP/TCP

wQ rQ
<timers>

rQ

UDP/TCP

wQ
<timers>

UDP/TCP

wQ rQ
<timers>

wQ rQ

IP - Mod

wQ rQ

IP - Mod

RTStd

thread0
Thread1

other

Scheduler

ut-2-kt

Run/Sleep Queues

Callout Queues

RIO Scheduler

Thread3

FLOW DEMUX

RT:110
10Hz

rkt1 rkt2
RT:105

5Hz

Figure 4: Architecture of the RIO Subsystem and Its Relation-
ship to TAO

TAO’s RIO subsystem is targeted currently for ATM/IP net-
work interfaces, such as 155 Mbps FORE Systems SBA-200e
ATM interfaces and 1.2 Gbps ATM Port Interconnect Con-
troller (APIC) network interface. The APIC is particularly in-
teresting because it supports optimized protocol development,
zero-copy semantics, and real-time performance [7, 10]. How-
ever, RIO is designed to support other high-performance net-

work interfaces, such as VIA [9], that provide similar QoS-
enabled I/O features.

Below, we outline each of RIO’s features, explain how they
relate to features in the Solaris I/O subsystem, and justify our
design and implementation decisions. Our discussion focuses
on how we resolved the key design challenges faced when
building the RIO subsystem.

3.1 Early Demultiplexing

Context: ATM is a connection-oriented network protocol
that uses virtual circuits (VCs) to switch ATM cells at high
speeds [34]. Each ATM connection is assigned a virtual cir-
cuit identifier (VCI)3 that is included as part of the cell header.

Problem: In Solaris STREAMS, packets received by the
ATM network interface driver are processed sequentially and
passed up to the IP multiplexor in FIFO order. Therefore, any
information containing the packets’ priority or specific con-
nection is lost.

Solution: The RIO subsystem uses a packet classifier [35] to
exploit the early demultiplexing feature of ATM [10] by verti-
cally integrating its ORB endsystem architecture, as shown in
Figure 5. Early demultiplexing uses the VCI field in a request

������������������������������

PROCESSING

DEVICE
QUEUE

NETWORK

1. INTERRUPT

2. LOOK-UP

Priority1 Priority 4Priority 3

2

VCI QueueID(ptr)

1 3232323

3435345

32323554

PACKET
CLASSIFIER

3. ENQUEUE

PACKET

THREADS
(RIO kthreads)

reactor 5Hz reactor 10Hz

user threadORB Core

Figure 5: Early Demultiplexing in the RIO Subsystem

packet to determine its final destination thread efficiently.

3A virtual path identifier is also assigned, though we only consider the VCI
in this paper.

6

Early demultiplexing helps alleviate packet-based priority
inversion because packets need not be queued in FIFO order.
Instead, RIO supportspriority-based queueing, where packets
destined for high-priority applications are delivered ahead of
low-priority packets. In contrast, the Solaris default network
I/O subsystem processes all packets at the same priority, re-
gardless of the destination application thread.

Implementing early demultiplexing in RIO: The packet
classifier in TAO’s I/O subsystem can consult TAO’s real-time
scheduling service to determine where the packet should be
placed. This is required when multiple applications use a sin-
gle VC, as well as when the link layer is not ATM. In these
cases, it is necessary to identify packets and associate them
with rates/priorities on the basis of higher-level protocol ad-
dresses like TCP port numbers. Moreover, the APIC device
driver can be modified to search the TAO’s run-time sched-
uler [5] in the ORB’s memory. TAO’s run-time scheduler maps
TCP port numbers to rate groups in constantO(1) time.

At the lowest level of the RIO endsystem, the ATM driver
distinguishes between packets based on their VCIs and stores
them in the appropriate RIO queue (rQ for read queue and
wQ for write queue). Each RIO queue pair is associated with
exactly one Stream, but each Stream can be associated with
zero or more RIO queues,i.e., there is a many to one relation-
ship for the RIO queues. The RIO protocol processing kernel
thread (kthread) associated with the RIO queue then delivers
the packets to TAO’s ORB Core, as shown in Figure 4.

Figure 4 also illustrates how all periodic connections are
assigned a dedicated Stream, RIO queue pair, and RIO kthread
for input protocol processing. RIO kthreads typically service
their associated RIO queues at the periodic rate specified by an
application. In addition, RIO can allocate kthreads to process
the output RIO queue.

3.2 Schedule-driven Protocol Processing

Context: Many real-time applications require periodic I/O
processing [32]. For example, avionics mission computers
must process sensor data periodically to maintain accurate sit-
uational awareness [23]. If the mission computing system fails
unexpectedly, corrective action must occur immediately.

Problem: Protocol processing of input packets in Solaris
STREAMS is demand-driven, i.e., when a packet arrives the
STREAMS I/O subsystem suspends all user-level processing
and performs protocol processing on the incoming packet.
Demand-driven I/O can incur priority inversion, such as when
the incoming packet is destined for a thread with a priority
lower than the currently executing thread. Thus, the ORB end-
system may fail to meet the QoS requirements of the higher
priority thread.

When sending packets to another host, protocol processing
is often performed within the context of the application thread
that performed thewrite operation. The resulting packet is
passed to the driver for immediate transmission on the network
interface link. With ATM, a pacing value can be specified for
each active VC, which allows simultaneous pacing of multiple
packets out the network interface. However, pacing may not
be adequate in overload conditions because output buffers can
overflow, thereby losing or delaying high-priority packets.

Solution: RIO’s solution is to performschedule-driven,
rather than demand-driven, protocol processing of network I/O
requests. This solutionco-scheduleskernel-threads with real-
time application threads to integrate a priority-based concur-
rency architecture vertically throughout the ORB endsystem.
All protocol processing is performed in the context of kthreads
that are scheduled with the appropriate real-time priorities.

Implementing Schedule-driven protocol processing in
RIO: The RIO subsystem uses athread pool [24] con-
currency model to implement its schedule-driven kthreads.
Thread pools are appropriate for real-time ORB endsystems
because they (1) amortize thread creation run-time overhead
and (2) place an upper limit on the total percentage of CPU
time used by RIO kthread overhead.

Figure 6 illustrates the thread pool model used in RIO. This

user

kernel

...

ORB Core3. The reactor thread consumes
the data

2. RIO kthread
executes the TCP/IP
code and delivers
the packet to the
ORB Core/Application

1. Interrupt thread consults the Packet
Classifier to enqueue the packet in
the appropriate queue

Packet Classifier

TCP/IP
Code

ATM Driver

Demultiplexing

V
C

I
#1

V
C

I
#2

V
C

I
#n

Figure 6: RIO Thread Pool Processing of TCP/IP with QoS
Support

pool of protocol processing kthreads (RIO kthreads), is created
at I/O subsystem initialization. Initially these threads are not
bound to any connection and are inactive until needed.

Each kthread in RIO’s pool is associated with a queue. The
queue links the various protocol modules in a Stream. Each

7

thread is assigned a particularrate, based on computations
from TAO’s static scheduling service [5]. This rate corre-
sponds to the frequency at which requests are specified to ar-
rive from clients. Packets are placed in the queue by the ap-
plication (for clients) or by the interrupt handler (for servers).
Protocol code is then executed by the thread to shepherd the
packet through the queue to the network interface card or up
to the application.

Applications can use the standard real-time CORBA [36]
middleware APIs provided by TAO to schedule network inter-
face bandwidth and CPU time to minimize priority inversion
and decrease interrupt overhead during protocol processing.

3.3 Dedicated Streams

Context: The RIO subsystem is responsible for enforcing
QoS requirements for statically scheduled real-time applica-
tions with deterministic requirements.

Problem: Unbounded priority inversions can result when
packets are processed in the I/O subsystem asynchronously,
without respect for their priorities.

Solution: The effects of priority inversion in the I/O subsys-
tem are minimized by isolating data paths throughSTREAMS

to minimize resource contention. This is done in RIO by pro-
viding adedicatedSTREAM connection path that (1) allocates
separate buffers in the ATM driver and (2) associates kernel
threads with the appropriate RIO scheduling priority for pro-
tocol processing. This design resolves resource conflicts that
can otherwise cause thread-based and packet-based priority in-
versions.

Implementing Dedicated STREAMs in RIO: Figure 4 de-
picts our implementation of DedicatedSTREAMS in RIO. In-
coming packets are demultiplexed in the driver and passed to
the appropriate Stream. A map in the driver’s interrupt han-
dler determines (1) the type of connection and (2) whether the
packet should be placed on a queue or processed at interrupt
context.

Typically, low-latency connections are processed in inter-
rupt context. All other connections have their packets placed
on the appropriateSTREAM queue. Each queue has an associ-
ated protocol kthread that processes data through the Stream.
These threads may have different priorities assigned by TAO’s
scheduling service.

A key feature of RIO’s DedicatedSTREAMSdesign is its use
of multiple output queues in the client’s ATM driver. With this
implementation, each connection is assigned its own transmis-
sion queue in the driver. The driver services each transmission
queue according to its associated priority. This design allows
RIO to associate low-latency connections with high-priority
threads to assure that its packets are processed before all other
packets in the system.

4 Overview of TAO’s Pluggable Proto-
cols Framework

Simply providing enhancements to an I/O subsystem will not
necessarily provide performance gains to applications built
on top of middleware. Middleware provides transparency to
many aspects of communication in order to isolate the appli-
cation developers from inherent and accidental complexity as-
sociated with developing large, distributed applications [37].
However, in order to realize the full benefit of an optimized
I/O subsystem and advanced network interfaces, the inter-
ORB protocol processing components of the middleware must
provide a facility for leveraging the I/O subsystem. We have
implemented the ORB protocol processing components as a
framework that allows for both novel protocol implementa-
tions and for application developers to specify protocol at-
tributes.

4.1 The CORBA Protocol Interoperability Ar-
chitecture

The CORBA specification [1] defines an architecture for ORB
interoperability. Although a complete description of the model
is beyond the scope of this paper, this section outlines the parts
that are relevant to our present topic,i.e., inter-ORB protocols
for high-performance network interfaces and QoS-enabled I/O
subsystems.

CORBA Inter-ORB Protocols (IOP)s define interoperability
between ORB endsystems. IOPs provide data representation
formats and ORB messaging protocol specifications that can
be mapped onto standard and/or customized transport proto-
cols. Regardless of the choice of ORB messaging or transport
protocol, however, the standard CORBA programming model
is exposed to the application developers. Figure 7 shows the
relationships between these various components and layers.

In the CORBA protocol interoperability architecture, the
standard General Inter-ORB Protocol (GIOP) is defined by
the CORBA specification [1]. In addition, CORBA defines
a transport-specific mapping of GIOP onto the TCP/IP proto-
col suite called the Internet Inter-ORB Protocol (IIOP). ORBs
must support IIOP to be “interoperability compliant.” Other
mappings of GIOP onto different transport protocols are al-
lowed by the specification, as are different inter-ORB pro-
tocols, known as Environment Specific Inter-ORB Protocols
(ESIOP)s.

Regardless of whether GIOP or an ESIOP is used, a
CORBA IOP must define a data representation, an ORB mes-
sage format, an ORB transport protocol or transport protocol
adapter, and an object addressing format.

8

ORB MESSAGING

COMPONENT

ORB TRANSPORT

ADAPTER COMPONENT

TRANSPORT LAYER

NETWORK LAYER

GIOP

IIOP

TCP

IP

VME

DRIVER

AAL 5

ATM

GIOPLITE

VME-IOP

ESIOP

ATM -IOP
RELIABLE

SEQUENCED

PROTOCOL CONFIGURATIONS

STANDARD CORBA PROGRAMMING API

Figure 7: Relationship Between Inter-ORB Protocols and
Transport-specific Mappings

4.2 TAO’s Pluggable Protocols Framework Ar-
chitecture

TAO’s pluggable protocols framework allows custom ORB
messaging and transport protocols to be configured flexibly
and used transparently by CORBA applications. For example,
if ORBs communicate over a high-performance networking
protocol like ATM AAL5, then simpler, optimized ORB mes-
saging and transport protocols can be configured to eliminate
unnecessary features and overhead of the standard CORBA
General Inter-ORB Protocol (GIOP) and Internet Inter-ORB
Protocol (IIOP). Likewise, TAO’s pluggable protocols frame-
work makes it straightforward to support customized embed-
ded system interconnects, such as CompactPCI or VME, under
standard CORBA inter-ORB protocols like GIOP.

To address the research challenges identified in Section 1.3,
we identified logical communication component layers within
TAO, factored out common features, defined general frame-
work interfaces, and implemented components to support dif-
ferent concrete inter-ORB protocols. Higher-level compo-
nents in the ORB, such as stubs, skeletons, and standard
CORBA pseudo-objects, are decoupled from the implementa-
tion details of particular protocols, as shown in Figure 8. This
decoupling is essential to resolve the various limitations with
conventional ORBs outlined in Section 1.1 and discussed fur-
ther in [19].

In general, the higher-level components in TAO use abstract
interfaces to access the mechanisms provided by its pluggable
protocols framework. Thus, applications can (re)configure
custom protocolswithout requiring global changes to the
ORB. Moreover, because applications typically access only
the standard CORBA APIs, TAO’s pluggable protocols frame-
work is transparent to CORBA application developers.

Figure 8 also illustrates the key components in TAO’s plug-

CLIENT

STUBS SKELETONS

TCP

MULTICAST

IOP

VMEUDP

ORB MESSAGING COMPONENT

ORB TRANSPORT ADAPTER COMPONENT

ESIOP

REAL -TIME

IOP
EMBEDDED

IOP

RELIABLE,
BYTE-STREAM

ATM
TCP

MEMORY

MANAGEMENT

CONCURRENCY

MODEL

OTHER

ORB
CORE

SERVICES

COMMUNICATION INFRASTRUCTURE
HIGH SPEED NETWORK INTERFACE

REAL -TIME I /O SUBSYSTEM

ORB MESSAGE

FACTORY

ORB TRANSPORT

ADAPTER FACTORY

OBJECT ADAPTER

GIOP GIOPLITE

ADAPTIVE Communication Environment (ACE)

OBJECT (SERVANT)operation (args)
IN ARGS

OUT ARGS & RETURN VALUE

POLICY

CONTROL

Figure 8: TAO’s Pluggable Protocols Framework Architecture

gable protocols framework: (1) the ORB messaging compo-
nent, (2) the ORB transport adapter component, and (3) the
ORB policy control component, which are outlined below.

4.2.1 ORB Messaging Component

This component is responsible for implementing ORB mes-
saging protocols, such as the standard CORBA GIOP ORB
messaging protocol, as well as custom ESIOPs. As described
in [1], ORB messaging protocols should define a data repre-
sentation, an ORB message format, an ORB transport protocol
or transport adapter, and an object addressing format. Within
this framework, ORB protocol developers are free to imple-
ment optimized Inter-ORB protocols and enhanced transport
adaptors as long as the ORB interfaces are respected.

Each ORB messaging protocol implementation inherits
from a common base class that defines a uniform interface.
This interface can be extended to include new capabilities
needed by special protocol-aware policies. For example, ORB
end-to-end resource reservation or priority negotiation can
be implemented in an ORB messaging component. TAO’s
pluggable protocols framework ensures consistent operational
characteristics and enforces general IOP syntax and semantic
constraints, such as error handling.

In general, it is not necessary to re-implement all aspects of
an ORB messaging protocol. For example, TAO has a highly
optimized presentation layer implementation that can be used
by new protocols [26]. This presentation layer data represen-
tation contains well-tested and highly-optimized memory allo-
cation strategies and data type translations. Thus, protocol de-
velopers can simply identify new memory or connection man-
agement strategies that can be used within the existing plug-
gable protocols framework.

Other key parts of TAO’s ORB messaging component are
its message factories. During connection establishment, these

9

factories instantiate objects that implement various ORB mes-
saging protocols. These objects are associated with a specific
connection and ORB transport adapter component,i.e., the ob-
ject that implements the component, for the duration of the
connection.

4.2.2 ORB Transport Adapter Component

This component maps a specific ORB messaging protocol,
such as GIOP or DCE-CIOP, onto a specific instance of an
underlying transport protocol, such as TCP or ATM. Figure 8
shows an example in which TAO’s transport adapter maps the
GIOP messaging protocol onto TCP (this standard mapping is
called IIOP). In this case, the ORB transport adapter combined
with TCP corresponds to the transport layer in the Internet ref-
erence model. However, if ORBs are communicating over an
embedded interconnect, such as a VME bus, the bus driver and
DMA controller provide the “transport layer” in the commu-
nication infrastructure.

TAO’s ORB transport component accepts a byte-stream
from the ORB messaging component, provides any additional
processing required, and passes the resulting data unit to the
underlying communication infrastructure. Additional process-
ing that can be implemented by protocol developers includes
(1) concurrency strategies, (2) endsystem/network resource
reservation protocols, (3) high-performance techniques, such
as zero-copy I/O, shared memory pools, periodic I/O, and in-
terface pooling, (4) enhancement of underlying communica-
tions protocols,e.g., provision of a reliable byte-stream proto-
col over ATM, and (5) tight coupling between the ORB and ef-
ficient user-space protocol implementations, such as Fast Mes-
sages [38].

4.2.3 ORB Policy Control Component

This component allows applications to explicitly control the
QoS attributes of configured ORB transport protocols. Since
it is not possible to determinea priori all attributes defined by
all protocols, an extensiblepolicy controlcomponent is pro-
vided by TAO’s pluggable protocols framework. TAO’s policy
control component implements the QoS framework defined in
the CORBA Messaging [39] and Real-time CORBA [36] spec-
ifications.

To control the QoS attributes in the ORB, the CORBA
QoS framework allows applications to specify variouspoli-
cies, such as buffer pre-allocations, fragmentation, bandwidth
reservation, and maximum transport queue sizes. These poli-
cies can be set at the ORB-, thread-, or object-level,i.e., appli-
cation developers can set global policies that take effect for any
request issued in a particular ORB. These global settings can
be overridden on a per-thread, per-object, or even per-request
basis. In general, the use of policies enables the CORBA spec-

ification to define semantic properties of ORB features pre-
cisely without (1) over-constraining ORB implementations or
(2) increasing interface complexity for common use cases.

Certain policies, such as timeouts, can be shared between
multiple protocols. Other policies, such as ATM virtual circuit
bandwidth allocation, may apply to a single protocol. Each
configured protocol can query TAO’s policy control compo-
nent to determine its policies and use them to configure itself
for user needs. Moreover, a protocol implementation can sim-
ply ignore policies that do not apply to it.

TAO’s policy control component also allows applications
to select their protocol(s). This choice can be controlled
by theClientProtocolPolicy defined in the Real-time
CORBA specification [36]. Using this policy, the application
indicates its preferred protocol(s) and TAO’s policy control
component attempts to match that preference with the set of
available protocols. Yet another policy controls the behavior
of the ORB if an application’s preferences cannot be satisfied,
e.g., either an exception is raised or another available protocol
is selected transparently.

5 Integrating High-Performance Net-
work Interfaces with ORB Endsys-
tems

This section complements Section 3 and Section 4 by illus-
trating how TAO’s RIO subsystem and pluggable protocols
framework can be integrated with high-performance network
interfaces. To focus the discussion, we present a use-case
where ORB endsystems must support a high-performance,
real-time CORBA application using the ATM Port Intercon-
nect Controller (APIC) [7, 10] developed at Washington Uni-
versity. This scenario is based on our experience developing
high-bandwidth, low-latency audio/video streaming applica-
tions [17] and avionics mission computing [23, 19].

5.1 High-performance Network Interface Fea-
tures

As shown in Figure 9, the TAO ORB endsystem can be con-
figured with a high-performance network interface and a real-
time I/O (RIO) subsystem [6] designed to maximize available
bandwidth to a mix of demanding applications. In this use-
case, RIO is configured to support the 1.2 Gbps ATM Port
Interconnect Controller (APIC) network interface.

The APIC is custom I/O chipset that incorporates several
mechanisms designed to improve throughput and reduce la-
tency. These mechanisms include (1)zero-copyshared mem-
ory pools between user- and kernel-space, (2) per-VC pacing,
(3) two levels of priority queues, (4) interrupt disabling on a

10

MARSHAL
PARAMS

OBJECT (SERVANT)

OBJECT ADAPTER

ACTIVE

OBJECT

 MAP

IDL
SKELETON

ATM LINK

APIC
DRIVER

REAL-TIME I /O

APIC
DRIVER

IDL
STUBS

ORB MESSAGING

ORB TRANSPORT

CLIENT

BUFFER

MANAGEMENT

SEND MESSAGE

ORB MESSAGING

ORB TRANSPORT

DEMARSHAL
PARAMS

DISPATCH

MESSAGE

ORB
CORE

obj->op (params)

DEMUX

REAL-TIME I /O

Figure 9: Real-Time ORB Endsystem Example

per-VC basis, and (5)protected DMA. The APIC’s zero-copy
mechanism [7] uses system memory to buffer cells, thereby
minimizing on-board memory, which reduces its cost. The
APIC’s protected DMA [10] mechanism allows user-space
protocols to queue buffers for transmission or reception to
the network interface directly, thereby providing separate pro-
tected data channels to each active connection. To improve
end-to-end throughput and latency, protected DMA bypasses
intermediate kernel-level processing.

5.2 Multimedia Streaming Application Fea-
tures

Multimedia applications running over high-performance net-
works require special optimizations to utilize available link
bandwidth while reducing overall load on system resources
such as memory and bus bandwidth. For example, consider
Figure 10, where network interfaces supporting 1.2 Mbps

WUGS HIGH- SPEED
NETWORK

TAO QOS-ENABLED ORB

RIO SUBSYSTEM

SUPPLIER
CONSUMER

TAO QOS-ENABLED ORB

RIO SUBSYSTEM

Figure 10: Example CORBA-based Multimedia Application

or 2.4 Mbps link speeds are used for a multimedia applica-
tion based on the CORBA Audio/Video (A/V) Streaming Ser-
vice [17].

In this scenario, we replaced GIOP/IIOP with a custom
ORB messaging and transport protocol that transmits A/V
frames using AAL5 over ATM to take full advantage of a high-
performance ATM port interconnect controller (APIC) [10].
For example, applications can use the APICs features to estab-

lish network reservations that enforce their desired bandwidth
and delay. Although the connection establishment and QoS
negotiations are part of the underlying network protocol and
the ORB’s IOP, they will be transparent to the application.

5.3 Meeting ORB Endsystem Integration De-
sign Challenges

Leveraging the underlying APIC network interface hardware
to meet the end-to-end QoS requirements of the multimedia
application described above necessitates the resolution of the
following design challenges:

1. Custom protocols: This challenge centers on creating
custom ORB messaging and transport protocols that can ex-
ploit the high-performance APIC network interface hardware.
For the multimedia streaming application, a simple frame se-
quencing protocol can be used as an ESIOP. The goal is to
simplify the messaging protocol, while adding any QoS re-
lated information to support the timely delivery of the video
frames and audio. For example, an ORB message would cor-
respond to one video frame or audio packet. A timestamp and
sequence number can be sent along with each ORB message to
facilitate synchronization between endpoints. The ORB mes-
saging protocol can perform a similar function as the real-time
protocol (RTP) and real-time control protocol (RTCP) [40].

This ORB messaging protocol can be mapped onto an ORB
transport protocol using ATM AAL5. The ORB’s transport
adapter is then responsible for exploiting any local optimiza-
tions to hardware or OS I/O subsystem. For example, tradi-
tional ORB implementations will copy user parameters into
ORB buffers used for marshaling. These may be allocated
from global memory or possibly from a memory pool main-
tained by the ORB. In either case, at least one system call is
required to obtain mutexes, allocate buffers and finally copy
data. Thus, not only is an additional data copy incurred, but
this scenario is rife with opportunities for priority inversion
and indefinite application blocking.

2. Optimized protocol implementations: This challenge
centers on optimizing communication protocol implementa-
tions,e.g., by sharing memory between the application, TAO
ORB middleware, RIO’s I/O subsystem in the OS kernel, and
the APIC network interface. This sharing can be achieved by
requiring the message encapsulation process to use memory
allocated from a common buffer pool [10, 26], which elim-
inates memory copies between user- and kernel-space when
data is sent and received. The ORB endsystem manages this
memory, thereby relieving application developers from this re-
sponsibility. In addition, the ORB endsystem can transpar-
ently manage the APIC interface driver, interrupt rates, and
pacing parameters, as outlined in [6].

11

5.4 Bringing the Components Together

Figure 11 shows how the various ORB endsystem components
described above can be configured together to support our ex-
ample multimedia streaming application. In this configuration,

MARSHAL
FRAMES

CONSUMER

OBJECT ADAPTER

ACTIVE

OBJECT

 MAP

IDL
SKELETON

OS KERNEL

APIC
DRIVER

OS KERNEL

APIC
DRIVER

IDL
STUBS

ORB MESSAGING

ORB TRANSPORT

SUPPLIER

ORB MANAGED

DATA BUFFERS

ATM LINK

ORB MESSAGING

ORB TRANSPORT

DEMARSHAL
FRAMES

ORB
CORE

movie->ship (frame)

DEMUX

SENDFREE

APPENDGET FREE

RECV FREE

GET RECV

CDR

ADD FREE

Figure 11: Shared Buffer Strategy

the ORB manages all the memory on behalf of the applica-
tion. For instance, the application can request a set of buffers
from the ORB, which it uses to send and receive video and
audio data. TAO can be configured to allocate these buffers
within memory shared between the application, ORB middle-
ware, RIO subsystem, and APIC driver in the kernel. The
ORB’s transport adapter manages this shared buffer pool on
a per-connection basis to minimize lock contention,e.g., each
active connection is assigned its own send and receive queues
in Figure 11. Likewise, there are two free buffer pools per-
connection, one for incoming packets and one for outgoing
packets.

The ORB’s pluggable protocols framework can ensure that
only one application thread will be active within the send or
receive operation of the transport adapter. Therefore, buffer
allocation and de-allocation can be performed without extra-
neous locking [10]. Moreover, TAO’s ORB endsystem config-
uration can be strategized so that application video and audio
data can be copied conditionally into ORB buffers. For in-
stance, it may be more efficient to copy relatively small data
into ORB buffers, rather than use shared buffers between the
ORB and the network interface. By using TAO’s policy con-
trol component described in Section 4.2, applications can se-
lect their degree of sharing on a per-connection, per-thread,
per-object, or per-operation basis.

6 ORB Endsystem Benchmarking Re-
sults

This section presents empirical results that show how the
RIO subsystem decreases the upper bound on round-trip delay
for low-latency applications and provides periodic processing
guarantees for bandwidth-sensitive applications. The test sys-
tems are relatively slow compared to systems currently avail-
able however the relative speeds of the network interface, I/O
bus and CPU remains valid. These empirical benchmarks that
show how TAO’s vertically integrated ORB endsystem,i.e.,
its Object Adapter, ORB Core, pluggable protocols frame-
work, RIO subsystem, and network interface, can (1) decrease
the upper bound on round-trip delay for latency-sensitive ap-
plications and (2) provide periodic processing guarantees for
bandwidth-sensitive applications. Earlier work has reported
empirical results for separate benchmarks of each component
in TAO’s ORB endsystem, including the Object Adapter [6],
ORB Core [24], pluggable protocols framework [19], and RIO
subsystem [6, 15]. This section extends these results by high-
lighting the major features of TAO’s ORB endsystem archi-
tecture that have beenintegratedwith an optimized network
interface and driver.

6.1 Hardware Configuration

Our experiments were conducted using a FORE Systems
ASX-1000 ATM switch connected to two SPARCs: a uni-
processor 300 MHz UltraSPARC2 with 256 MB RAM and
a 170 MHz SPARC5 with 64 MB RAM. Both SPARCs ran
Solaris 2.5.1 and were connected via a FORE Systems SBA-
200e ATM network interface to an OC3 155 Mbps port on the
ASX-1000. The testbed configuration is shown in Figure 12.

6.2 Measuring the End-to-end Real-time Per-
formance of the RIO Subsystem

Below, we present results that quantify the benefits gained in
terms of bounded latency response times and periodic process-
ing guarantees. RIO uses a periodic processing model to pro-
vide bandwidth guarantees and to bound maximum throughput
on each connection.

6.2.1 Benchmarking Configuration

Our experiments were performed using the testbed configura-
tion shown in Figure 12. To measure round-trip latency we use
a client application that opens a TCP connection to an “echo
server” located on the SPARC5. The client sends a 64 byte
data block to the echo server, waits on the socket for data to
return from the echo server, and records the round-trip latency.

12

2Ultra

OC3
155 Mbps

����������������
���� ����������

OC3
155 Mbps ��

ATM Switch

FORE ASX-1000

Sparc 5

Client

...

C1 CnC0

Server
Object Adapter

Services

Figure 12: ORB Endsystem Benchmarking Testbed

The client application performs 10,000 latency measure-
ments, then calculates the mean latency, standard deviation,
and standard error. Both the client and server run at the same
thread priority in the Solaris real-time (RT) scheduling class.

Bandwidth tests were conducted using a modified version
of ttcp [41] that sent 8 KB data blocks over a TCP con-
nection from the UltraSPARC2 to the SPARC5. Threads that
receive bandwidth reservations are run in the RT scheduling
class, whereas best-effort threads run in the TS scheduling
class.

The default behavior of the Solaris I/O subsystem is to per-
form network protocol processing at interrupt context [15].
Our measurements reveal the effect of performing network
protocol processing at interrupt context versus performing it
in a RIO kthread. With the interrupt processing model, the in-
put packet is processed immediately up through the network
protocol stack. Conversely, with the RIO kthreads model, the
packet is placed in a RIO queue and the interrupt thread exits.
This causes a RIO kthread to wake up, dequeue the packet,
and perform protocol processing within its thread context.

A key feature of using RIO kthreads for protocol process-
ing is their ability to assign appropriate kthread priorities and
to defer protocol processing for lower priority connections.
Thus, if a packet is received on a high-priority connection, the
associated kthread will preempt lower priority kthreads to pro-
cess the newly received data.

Our previous results [6] revealed that using RIO kthreads in
the RT scheduling class results in a slight increase of 13-15
�s in the round-trip processing times in our testing environ-
ment. This latency increase stems from RIO kthread dispatch
latencies and queuing delays. However, the significant result
was the overall reduction in latency jitter for real-time RIO

kthreads.

6.2.2 Measuring Low-latency Connections with Compet-
ing Traffic

Benchmark design: This experiment measures the deter-
minism of the RIO subsystem while performing prioritized
protocol processing on a heavily loaded server. The results
illustrate how RIO behaves when network I/O demands ex-
ceed the ability of the ORB endsystem to process all requests.
The SPARC5 is used as the server in this test because it can
process only�75% of the full link speed on an OC3 ATM
interface usingttcp with 8 KB packets.

Two different classes of data traffic are created for this test:
(1) a low-delay, high-priority message stream and (2) a best-
effort (low-priority) bulk data transfer stream. The message
stream is simulated using the latency application described
in Section 6.2.1. The best-effort, bandwidth intensive traffic
is simulated using a modified version of thettcp program,
which sends 8 KB packets from the client to the server.

The latency experiment was first run with competing traffic
using the default Solaris I/O subsystem. Next, the RIO subsys-
tem was enabled, RIO kthreads and priorities were assigned to
each connection, and the experiment was repeated. The RIO
kthreads used for processing the low-delay, high-priority mes-
sages were assigned a real-time global priority of 100. The
latency client and echo server were also assigned a real-time
global priority of 100.

The best-effort bulk data transfer application was run in the
time-sharing class. The corresponding RIO kthreads ran in
the system scheduling class with a global priority of 60. In
general, all best effort connections use a RIO kthread in the
SYS scheduling class with a global priority of 60. Figure 13
shows the configuration for the RIO latency benchmark.

Benchmark results and analysis: The results from collect-
ing 1,000 samples in each configuration are summarized in the
table below:

Mean Max Min Jitter
Default 1072�s 3158�s 594�s 497�s
RIO 946�s 2038�s 616�s 282�s

This table compares the behavior of the default Solaris I/O
subsystem with RIO. It illustrates how RIO lowers the upper
bound on latency for low-delay, high-priority messages in the
presence of competing network traffic. In particular, RIO low-
ered the maximum round-trip latency by 35% (1,120�s), the
average latency by 12% (126�s), and jitter by 43% (215�s).
The distribution of samples are shown in Figure 14. This fig-
ure highlights how RIO lowers the upper bound of the round-
trip latency values.

13

IP

TCP

IP

TCP TCP TCP

IPIP

TTCP
latencyTTCP

Ultra2 SPARC5

RT 0 RT 0SYS 0

High Priority VCI = 130
Low Priority VCI = 100

ATM Driver ATM Driver

echo svr

Figure 13: RIO Low-latency Benchmark Configuration

0

10

20

30

40

50

60

70

80

0.5 1 1.5 2 2.5 3 3.5

N
um

be
r

of
 S

am
pl

es

milli seconds

Default Behavior
Using RIO

Figure 14: Latency with Competing Traffic

These performance results are particularly relevant for real-
time systems where ORB endsystem predictability is cru-
cial. The ability to specify and enforce end-to-end priorities
over transport connections helps ensure that ORB endsystems
achieve end-to-end determinism.

Another advantage of RIO’s ability to preserve end-to-end
priorities is that the overall system utilization can be increased.
For instance, the experiment above illustrates how the up-
per bound on latency was reduced by using RIO to preserve
end-to-end priorities. For example, system utilization may
be unable to exceed 50% while still achieving a 2 ms upper
bound for high-priority message traffic. However, higher sys-
tem utilization can be achieved when an ORB endsystem sup-

ports real-time I/O. The results in this section demonstrate this:
RIO achieved latencies no greater than 2.038 ms, even when
the ORB endsystem was heavily loaded with best-effort data
transfers.

Figure 15 shows the average bandwidth used by the mod-
ified ttcp applications during the experiment. The dip in

6

7

8

9

10

11

12

13

0 10 20 30 40 50 60

B
an

dw
id

th
 in

 M
B

ps

Sample Number

Default Behavior
RIO Enabled

Figure 15: Bandwidth of Competing Traffic

throughput between sample numbers 10 and 20 occurred when
the high-priority latency test was run, which illustrates how
RIO effectively reallocates resources when high-priority mes-
sage traffic is present. Thus, the best-effort traffic obtains
slightly lower bandwidth when RIO is used.

6.2.3 Measuring Bandwidth Guarantees for Periodic
Processing

Benchmark design: RIO can enforce bandwidth guarantees
because it implements a schedule-driven protocol processing
model [6], whichco-scheduleskernel threads with real-time
application threads in the TAO’s ORB Core. In contrast, the
default Solaris I/O subsystem processes all input packets on-
demand at interrupt context,i.e., with a priority higher than all
other application threads and non-interrupt kernel threads.

The following experiment demonstrates the advantages and
accuracy of RIO’s periodic protocol processing model. The
experiment was conducted using three threads that receive spe-
cific periodic protocol processing,i.e., bandwidth, guarantees
from RIO. A fourth thread sends data using only best-effort
guarantees.

All four threads run thettcp program, which sends 8 KB
data blocks from the UltraSPARC2 to the SPARC5. For each
bandwidth-guaranteed connection, a RIO kthread was allo-
cated in the real-time scheduling class and assigned appro-
priate periods and packet counts,i.e., computation time. The
best-effort connection was assigned the default RIO kthread,

14

which runs with a global priority of 60 in the system schedul-
ing class. Thus, there were four RIO kthreads, three in the
real-time scheduling class and one in the system class. The
following table summarizes the RIO kthread parameters for
the bandwidth experiment.

RIO Config Period Priority Packets Bandwidth
kthread 1 10 ms 110 8 6.4 MBps
kthread 2 10 ms 105 4 3.2 MBps
kthread 3 10 ms 101 2 1.6 MBps
kthread 4 Async 60 Available Available
(best-effort)

The three application threads that received specific band-
width guarantees were run with the same real-time global pri-
orities as their associated RIO kthreads. These threads were
assigned priorities related to their guaranteed bandwidth re-
quirements – the higher the bandwidth the higher the priority.
Thettcp application thread and associated RIO kthread with
a guaranteed 6.4 MBps were assigned a real-time priority of
110. The application and RIO kernel threads with a bandwidth
of 3.2 MBps and 1.6 MBps were assigned real-time priorities
of 105 and 101, respectively.

RIO kthreads are awakened at the beginning of each period.
They first check their assigned RIO queue for packets. After
processing their assigned number of packets they sleep waiting
for the start of the next period.

The best-effort application thread runs in the time sharing
class. Its associated RIO kthread, called the “best-effort” RIO
kthread, is run in the system scheduling class with a global
priority of 60. The best-effort RIO kthread is not scheduled
periodically. Instead, it waits for the arrival of an eligible net-
work I/O packet and processes it “on-demand.” End-to-end
priority is maintained, however, because the best-effort RIO
kthread has a global priority lower than either the application
threads or RIO kthreads that handle connections with band-
width guarantees.

Benchmark results and analysis: In the experiment, the
best-effort connection starts first, followed by the 6.4 MBps,
3.2 MBps, and 1.6 MBps guaranteed connections, respec-
tively. Figure 16 presents the results, showing the effect of
the guaranteed connection on the best-effort connection.

This figure clearly shows that the guaranteed connections
received their requested bandwidths. In contrast, the best-
effort connection loses bandwidth proportional to the band-
width granted to guaranteed connections. The measuring in-
terval was small enough for TCPs “slow start” algorithm [42]
to be observed.

Periodic protocol processing is useful to guarantee band-
width and bound the work performed for any particular con-
nection. For example, we can specify that the best-effort con-

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

M
B

ps

sec

Requested BW = 6.4 MBps
Requested BW = 3.2 MBps
Requested BW = 1.6 MBps

Best Effort

Figure 16: Bandwidth Guarantees in RIO

nection in the experiment above receive no more than 40% of
the available bandwidth on a given network interface.

6.3 Measuring the End-to-end Real-time Per-
formance of the TAO/RIO ORB Endsystem

Section 6.2 measured the performance of the RIO subsystem
in isolation. This section combines RIO and TAO to create a
vertically integrated real-time ORB endsystem and then mea-
sures the impact on end-to-end performance when run with
prototypical real-time ORB application workloads [24].

6.3.1 Benchmark Design

The benchmark outlined below was performed twice: (1) with-
out RIO,i.e., using the unmodified default Solaris I/O subsys-
tem and (2) using our RIO subsystem enhancements. Both
benchmarks recorded average latency and the standard devi-
ation of the latency values,i.e., jitter. The server and client
benchmarking configurations are described below.

Server benchmarking configuration: As shown in Fig-
ure 12, the server host is the 170 MHz SPARC5. This host runs
the real-time ORB with two servants in the Object Adapter.
The high-priority servant runs in a thread with an RT prior-
ity of 130. Thelow-priority servant runs in a lower priority
thread with an RT thread priority of 100. Each thread pro-
cesses requests sent to it by the appropriate client threads on
the UltraSPARC2. The SPARC5 is connected to a 155 Mpbs
OC3 ATM interface so the UltraSPARC2 can saturate it with
network traffic.

Client benchmarking configuration: As shown in Fig-
ure 12, the client is the 300 MHz, uni-processor UltraSPARC2,
which runs the TAO real-time ORB with one high-priority

15

client C0 andn low-priority clients,C1. . . Cn. The high-
priority client is assigned an RT priority of 130, which is the
same as the high-priority servant. It invokes two-way CORBA
operations at a rate of 20 Hz.

All low-priority clients have the same RT thread priority of
100, which is the same as the low-priority servant. They in-
voke two-way CORBA operations at 10 Hz. In each call the
client thread sends a value of typeCORBA::Octet to the
servant. The servant cubes the number and returns the result.

The benchmark program creates all the client threads at
startup time. The threads block on a barrier lock until all client
threads complete their initialization. When all threads inform
the main thread that they are ready, the main thread unblocks
the clients. The client threads then invoke 4,000 CORBA two-
way operations at the prescribed rates.

RIO subsystem configuration: When the RIO subsystem is
used, the benchmark has the configuration shown in Figure 17.
With the RIO subsystem, high- and low-priority requests are

IP IP

TCPTCP

Ultra2 SPARC5

Low Priority VCI = 100

10Hz
Reactor

...

Connector

Client Application

ORB Core

20Hz

High Priority VCI = 130

TCP TCP

Reactor

Server ORB Core

IPIP

ATM Driver ATM Driver

INTPeriodic
RT

Periodic
RT

INT

Figure 17: ORB Endsystem Benchmarking Configuration

treated separately throughout the ORB and I/O subsystem.
Low-priority client threads transmit requests at 10 Hz.

There are several ways to configure the RIO kthreads. For in-
stance, we could assign one RIO kthread to each low-priority
client. However, the number of low-priority clients varies from
0 to 50. Plus all clients have the same period and send the same

number of requests per period, so they have the same priori-
ties. Thus, only one RIO kthread is used. Moreover, because it
is desirable to treat low-priority messages as best-effort traffic,
the RIO kthread is placed in the system scheduling class and
assigned a global priority of 60.

To minimize latency, high-priority requests are processed
by threads in the Interrupt (INTR) scheduling class. Therefore,
we create two classes of packet traffic: (1) low-latency, high
priority and (2) best-effort latency, low-priority. The high-
priority packet traffic preempts the processing of any low-
priority messages in the I/O subsystem, ORB Core, Object
Adapter, and/or servants.

6.3.2 Benchmark Results and Analysis

This experiment shows how RIO increases overall determin-
ism for high-priority, real-time applications without sacrific-
ing the performance of best-effort, low-priority, and latency-
sensitive applications. RIO’s impact on overall determinism
of the TAO ORB endsystem is shown by the latency and jitter
results for the high-priority clientC0 and the average latency
and jitter for 0 to 49 low-priority clients,C1 . . . Cn.

Figure 18 illustrates the average latency results for the high-
and low-priority clients both with and without RIO. This figure

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30 35 40 45 50

m
ic

ro
se

co
nd

s

Number of Low Priority Clients

Default High Priority Clients
Default Low Priority Clients

RIO High Priority Client
RIO Low Priority Client

Figure 18: Measured Latency for All Clients with and without
RIO

shows how TAO eliminates many sources of priority inversion
within the ORB. Thus, high-priority client latency values are
relatively constant, compared with low-priority latency values.
Moreover, the high-priority latency values decrease when the
the RIO subsystem is enabled. In addition, the low-priority
clients’ average latency values track the default I/O subsys-
tems behavior, illustrating that RIO does not unduly penalize
best-effort traffic. At 44 and 49 low-priority clients the RIO-
enabled endsystem outperforms the default Solaris I/O subsys-
tem.

16

Figure 19 presents a finer-grained illustration of the round-
trip latency and jitter values for high-priority client vs. the
number of competing low-priority clients. This figure illus-

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

0 5 10 15 20 25 30 35 40 45 50

m
ic

ro
se

co
nd

s

Number of Clients

Default High Priority Clients
RIO High Priority Client

Figure 19: High-priority Client Latency and Jitter

trates how not only did RIO decrease average latency, but its
jitter results were substantially better, as shown by the error
bars in the figure. The high-priority clients averaged a 13%
reduction in latency with RIO. Likewise, jitter was reduced by
an average of 51%, ranging from a 12% increase with no com-
peting low-priority clients to a 69% reduction with 44 compet-
ing low-priority clients.

In general, RIO reduced average latency and jitter because
it used RIO kthreads to process low-priority packets. Con-
versely, in the default SolarisSTREAMS I/O subsystem, ser-
vant threads are more likely to be preempted because threads
from the INTR scheduling class are used for all protocol pro-
cessing. Our results illustrate how this preemption can signif-
icantly increase latency and jitter values.

Figure 20 shows the average latency of low-priority client
threads. This figure illustrates that the low-priority clients in-
curred no appreciable change in average latency. There was a
slight increase in jitter for some combinations of clients due to
the RIO kthreads dispatch delays and preemption by the higher
priority message traffic. This result demonstrates how the RIO
design can enhance overall end-to-end predictability for real-
time applications while maintaining acceptable performance
for traditional, best-effort applications.

7 Related Work

High-performance and real-time ORB endsystems are an
emerging field of study. We have used TAO to research key
dimensions of ORB endsystem design including static [5] and
dynamic [22] scheduling, request demultiplexing [26], event
processing [23], ORB Core connection and concurrency ar-

-2000

0

2000

4000

6000

8000

10000

12000

14000

16000

0 5 10 15 20 25 30 35 40 45 50

m
ic

ro
se

co
nd

s

Number of Clients

Default Low Priority Clients
RIO Low Priority Client

Figure 20: Low-priority Client Latency

chitectures [24], and IDL compiler stub/skeleton optimiza-
tions [26]. This paper extends results in [6, 19] to illustrate
how the TAO’s real-time I/O subsystem and pluggable proto-
cols framework can exploit underlying hardware and software
optimizations for high-performance network interfaces. The
remainder of this section compares our work on TAO with re-
lated ORB endsystem research.

7.1 Related Work on QoS-enabled I/O
Subsystems

Our real-time I/O (RIO) subsystem incorporates advanced
techniques [8, 10, 31, 33, 14] for high-performance and real-
time protocol implementations. Below, we compare RIO with
related work on I/O subsystems.

I/O subsystem support for QoS: The Scout OS [29] em-
ploys the notion of apath to expose the state and resource re-
quirements of all processing components in aflow. Similarly,
our RIO subsystem reflects the path principle and incorporates
it with TAO and Solaris to create a vertically integrated real-
time ORB endsystem. For instance, RIO subsystem resources
like CPU, memory, and network interface and network band-
width are allocated to an application-level connection/thread
during connection establishment, which is similar to Scout’s
binding of resources to a path.

Scout represents a fruitful research direction, which is com-
plementary with our emphasis on demonstrating similar ca-
pabilities in existing operating systems, such as Solaris and
NetBSD. At present, paths have been used in Scout largely
for MPEG video decoding and display and not for protocol
processing or other I/O operations. In contrast, we have suc-
cessfully used RIO for a number of real-time avionics applica-
tions [23] with deterministic QoS requirements.

SPIN [43, 44] provides an extensible infrastructure and a

17

core set of extensible services that allow applications to safely
change the OS interface and implementation. Application-
specific protocols are written in a type-safe language,Plexus,
and configured dynamically into the SPIN OS kernel. Because
these protocols execute within the kernel, they can access net-
work interfaces and other OS system services efficiently. To
the best of our knowledge, however, SPIN does not support
end-to-end QoS guarantees.

Enhanced I/O subsystems: Other related research has fo-
cused on enhancing performance and fairness of I/O subsys-
tems, though not specifically for the purpose of providing real-
time QoS guarantees. These techniques are directly applicable
to designing and implementing real-time I/O and providing
QoS guarantees, however, so we compare them with our RIO
subsystem below.

[33] applies several high-performance techniques to a
STREAMS-based TCP/IP implementation and compares the
results to a BSD-based TCP/IP implementation. This work
is similar to RIO, because Roca and Diot parallelize their
STREAMS implementation and use early demultiplexing and
dedicatedSTREAMS, known as Communication Channels
(CC). The use of CC exploits the built-in flow control mech-
anisms ofSTREAMS to control how applications access the
I/O subsystem. This work differs from RIO in that it focuses
entirely on performance issues and not sources of priority in-
version. For example, minimizing protocol processing in an
interrupt context is not addressed.

[14, 31] examines the effect of protocol processing with in-
terrupt priorities and the resulting priority inversions and live-
lock [14]. Both approaches focus on providing fairness and
scalability under network load. In [31], a network I/O sub-
system architecture calledlazy receiver processing(LRP) is
used to provide stable overload behavior. LRP uses early
demultiplexing to classify packets, which are then placed
into per-connection queues or on network interface channels.
These channels are shared between the network interface and
OS. Application threads read/write from/to network interface
channels so input and output protocol processing is performed
in the context of application threads. In addition, a scheme
is proposed to associate kernel threads with network interface
channels and application threads in a manner similar to RIO.
However, LRP does not provide QoS guarantees to applica-
tions.

[14] proposed a somewhat different architecture to min-
imize interrupt processing for network I/O. They propose a
polling strategy to prevent interrupt processing from consum-
ing excessive resources. This approach focuses on scalability
under heavy load. It did not address QoS issues, however, such
as providing per-connection guarantees for fairness or band-
width, nor does it charge applications for the resources they
use. It is similar to our approach, however, in that (1) inter-

rupts are recognized as a key source of non-determinism and
(2) schedule-driven protocol processing is proposed as a solu-
tion.

While RIO shares many elements of the approaches de-
scribed above, we have combined these concepts to create the
first vertically integrated real-time ORB endsystem. The re-
sulting ORB endsystem provides scalable performance, peri-
odic processing guarantees and bounded latency, as well as an
end-to-end solution for real-time distributed object computing
middleware and applications.

7.2 Related Work on Pluggable Protocol
Frameworks

The design of TAO’s pluggable protocols framework is in-
fluenced by prior research on the design and optimization of
protocol frameworks for communication subsystems, as de-
scribed below.Configurable communication frameworks: The x-
kernel [45], System V STREAMS [46], Conduit+ [47],
ADAPTIVE [48], and F-CSS [49] are all configurable
communication frameworks that provide a protocol back-
plane consisting of standard, reusable services that support
network protocol development and experimentation. These
frameworks support flexible composition of modular protocol
processing components, such as connection-oriented and con-
nectionless message delivery and routing, based on uniform
interfaces.

The frameworks for communication subsystems listed
above focus on implementing various protocol layers beneath
relatively low-level programming APIs, such as sockets. In
contrast, TAO’s pluggable protocols framework focuses on im-
plementing and/or adapting to transport protocols beneath a
higher-level OO middleware API,i.e., the standard CORBA
programming API. Therefore, existing communication sub-
system frameworks can provide building block protocol com-
ponents for TAO’s pluggable protocols framework.

CORBA pluggable protocol frameworks: The architec-
ture of TAO’s pluggable protocols framework is based on the
ORBacus Open Communications Interface (OCI) [50]. The
OCI framework provides a flexible, intuitive, and portable in-
terface for pluggable protocols. The framework interfaces are
defined in IDL, with a few special rules to map critical types,
such as data buffers.

Defining pluggable protocol interfaces with IDL permits de-
velopers to familiarize themselves with a single programming
model that can be used to implement protocols in different lan-
guages. In addition, the use of IDL makes possible to write
pluggable protocols that are portable among different ORB
implementations and platforms.

Though the OCI pluggable protocols frameworks is useful
for many applications and ORBs, TAO implements a highly

18

optimized pluggable protocol framework that is tuned for
high-performance and real-time application requirements. For
example, TAO’s pluggable protocols framework can be inte-
grated with zero-copy high-speed network interfaces [10, 8, 6,
20], embedded systems [23], or high-performance communi-
cation infrastructures like Fast Messages [38].

8 Concluding Remarks

To be an effective platform for performance-sensitive applica-
tions, ORB endsystems must preserve communication layer
QoS properties to applications end-to-end. It is essential,
therefore, to define avertically (i.e., network interface$ ap-
plication layer) andhorizontally (i.e., end-to-end) integrated
high-performance ORB endsystem. This paper presents the
design and performance of such an ORB endsystem, called
TAO, which provides a pluggable protocols framework to
leverage high-performance network interfaces and real-time
I/O (RIO) subsystems.

TAO’s pluggable protocols framework provides an in-
tegrated set of (1) connection concurrency strategies, (2)
endsystem/network resource reservation protocols, (3) high-
performance techniques, such as zero-copy I/O, shared mem-
ory pools, periodic I/O, and interface pooling, that can be used
to integrate applications with high-performance I/O subsystem
and protocol implementations. The RIO subsystem enhances
the Solaris 2.5.1 kernel to enforce the QoS features of the TAO
ORB endsystem. RIO supports a vertically integrated, high-
performance ORB endsystem that provides three classes of
I/O, best-effort, periodic and low latency, which can be used to
(1) increase throughput, (2) decrease latency, and (3) improve
end-to-end predictability. In addition, RIO supports periodic
protocol processing, guarantees I/O resources to applications,
and minimizes the effect of flow control within each Stream.

A novel feature of the RIO subsystem and TAO’s pluggable
protocols framework is the integration of real-time schedul-
ing and protocol processing, which allows TAO to support
guaranteed bandwidth and low-delay applications. To accom-
plish this, we extended TAO’s real-time concurrency archi-
tecture and thread priority mechanisms into RIO. This design
minimizes sources of priority inversion that can cause non-
determinism and jitter.

The following are the key lessons we learned from our in-
tegration of RIO with TAO and its pluggable protocol frame-
work:

Vertical integration of ORB endsystems is essential for
end-to-end priority preservation: Conventional operating
systems and ORBs do not provide adequate support for the
QoS requirements of distributed, real-time applications [6,
15]. Meeting these needs requires a vertically integrated ORB

endsystem that can deliver end-to-end QoS guarantees at mul-
tiple levels. The ORB endsystem described in this paper ad-
dresses this need by combining a real-time I/O (RIO) subsys-
tem with the TAO ORB Core [24] and Object Adapter [26],
which are designed explicitly to preserve end-to-end QoS
properties in distributed real-time systems. RIO is designed
to operate with high-performance interfaces such as the 1.2
Gbps ATM port interconnect controller (APIC) [10].

Schedule-driven protocol processing reduces jitter signifi-
cantly: After integrating RIO with TAO, we measured a sig-
nificant reduction in average latency and jitter. Moreover, the
latency and jitter of low-priority traffic were not affected ad-
versely. Our results illustrate how configuring asynchronous
protocol processing [32] strategies in the Solaris kernel can
provide significant improvements in ORB endsystem behav-
ior, compared with the conventional Solaris I/O subsystem. As
a result of our RIO enhancements to Solaris, TAO is the first
standards-based, ORB endsystem to support end-to-end QoS
guarantees over ATM/IP networks [34].

Input livelock is a dominant source of ORB endsystem
non-determinism: During the development and experimen-
tation of RIO, we observed that the dominant source of non-
determinism wasinput livelock[14], which degrades overall
endsystem performance by processing all incoming packets
at interrupt context. In particular, priority inversion resulting
from processing all input packets at interrupt context is unac-
ceptable for many real-time applications. Using RIO kthreads
for input packet processing yielded the largest gain in overall
system predictability. The underscores the importance of in-
tegrating high-performance network interfaces with real-time
middleware and I/O subsystems in order to minimize priority
inversions.

Future RIO research is focusing on integrating other OS
platforms and network interfaces, as well as exporting a
standardized programming API to higher-level ORB mid-
dleware. We continue to enhance TAO’s pluggable proto-
col framework [19] to support new ORB messaging, trans-
port protocols, and platforms. The TAO research ef-
fort has influenced the OMG Real-time CORBA specifi-
cation [36]. The C++ source code for TAO and the
benchmarks presented in Section 6 is freely available at
www.cs.wustl.edu/ �schmidt/TAO.html . The RIO
subsystem is available to Solaris source licensees.

References
[1] Object Management Group,The Common Object Request Broker:

Architecture and Specification, 2.2 ed., Feb. 1998.

[2] D. Box, Essential COM. Addison-Wesley, Reading, MA, 1997.

[3] A. Wollrath, R. Riggs, and J. Waldo, “A Distributed Object Model for
the Java System,”USENIX Computing Systems, vol. 9,
November/December 1996.

19

[4] S. Vinoski, “CORBA: Integrating Diverse Applications Within
Distributed Heterogeneous Environments,”IEEE Communications
Magazine, vol. 14, February 1997.

[5] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request Brokers,”Computer
Communications, vol. 21, pp. 294–324, Apr. 1998.

[6] F. Kuhns, D. C. Schmidt, and D. L. Levine, “The Design and
Performance of a Real-time I/O Subsystem,” inProceedings of the5th
IEEE Real-Time Technology and Applications Symposium, (Vancouver,
British Columbia, Canada), pp. 154–163, IEEE, June 1999.

[7] Z. D. Dittia, J. R. Cox, Jr., and G. M. Parulkar, “Design of the APIC: A
High Performance ATM Host-Network Interface Chip,” inIEEE
INFOCOM ’95, (Boston, USA), pp. 179–187, IEEE Computer Society
Press, April 1995.

[8] T. v. Eicken, A. Basu, V. Buch, and W. Vogels, “U-Net: A User-Level
Network Interface for Parallel and Distributed Computing,” in15th
ACM Symposium on Operating System Principles, ACM, December
1995.

[9] Compaq, Intel, and Microsoft, “Virtual Interface Architecture, Version
1.0.” http://www.viarch.org, 1997.

[10] Z. D. Dittia, G. M. Parulkar, and J. R. Cox, Jr., “The APIC Approach to
High Performance Network Interface Design: Protected DMA and
Other Techniques,” inProceedings of INFOCOM ’97, (Kobe, Japan),
pp. 179–187, IEEE, April 1997.

[11] A. B. Arulanthu, C. O’Ryan, D. C. Schmidt, M. Kircher, and
J. Parsons, “The Design and Performance of a Scalable ORB
Architecture for CORBA Asynchronous Messaging,” inProceedings of
the Middleware 2000 Conference, ACM/IFIP, Apr. 2000.

[12] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority Inheritance
Protocols: An Approach to Real-time Synchronization,”IEEE
Transactions on Computers, vol. 39, September 1990.

[13] Khanna, S.,et al., “Realtime Scheduling in SunOS 5.0,” inProceedings
of the USENIX Winter Conference, pp. 375–390, USENIX Association,
1992.

[14] J. C. Mogul and K. Ramakrishnan, “Eliminating Receive Livelock in an
Interrupt-driver Kernel,” inProceedings of the USENIX 1996 Annual
Technical Conference, (San Diego, CA), USENIX, Jan. 1996.

[15] F. Kuhns, D. C. Schmidt, and D. L. Levine, “The Design and
Performance of RIO – A Real-time I/O Subsystem for ORB
Endsystems,” inProceedings of the International Symposium on
Distributed Objects and Applications (DOA’99), (Edinburgh, Scotland),
OMG, Sept. 1999.

[16] M. K. McKusick, K. Bostic, M. J. Karels, and J. S. Quarterman,The
Design and Implementation of the 4.4BSD Operating System. Addison
Wesley, 1996.

[17] S. Mungee, N. Surendran, and D. C. Schmidt, “The Design and
Performance of a CORBA Audio/Video Streaming Service,” in
Proceedings of the Hawaiian International Conference on System
Sciences, Jan. 1999.

[18] A. Gokhale and D. C. Schmidt, “Optimizing a CORBA IIOP Protocol
Engine for Minimal Footprint Multimedia Systems,”Journal on
Selected Areas in Communications special issue on Service Enabling
Platforms for Networked Multimedia Systems, vol. 17, Sept. 1999.

[19] C. O’Ryan, F. Kuhns, D. C. Schmidt, O. Othman, and J. Parsons, “The
Design and Performance of a Pluggable Protocols Framework for
Real-time Distributed Object Computing Middleware,” inProceedings
of the Middleware 2000 Conference, ACM/IFIP, Apr. 2000.

[20] R. S. Madukkarumukumana and H. V. Shah and C. Pu, “Harnessing
User-Level Networking Architectures for Distributed Object
Computing over High-Speed Networks,” inProceedings of the 2nd
Usenix Windows NT Symposium, August 1998.

[21] Vishal Kachroo, Yamuna Krishnamurthy, Fred Kuhns, Ronald G.
Akers, Pradeep Avasthi, Surender Kumar, and Vidya Narayanan,
“Design and Implementation of QoS enabled OO Middleware,” in
Internet2 QoS Workshop, February 2000.

[22] C. D. Gill, D. L. Levine, and D. C. Schmidt, “The Design and
Performance of a Real-Time CORBA Scheduling Service,”The
International Journal of Time-Critical Computing Systems, special
issue on Real-Time Middleware, 2000.

[23] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The Design and
Performance of a Real-time CORBA Event Service,” inProceedings of
OOPSLA ’97, (Atlanta, GA), ACM, October 1997.

[24] D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale,
“Software Architectures for Reducing Priority Inversion and
Non-determinism in Real-time Object Request Brokers,”Journal of
Real-time Systems, special issue on Real-time Computing in the Age of
the Web and the Internet, To appear 2000.

[25] A. Gokhale and D. C. Schmidt, “Measuring the Performance of
Communication Middleware on High-Speed Networks,” inProceedings
of SIGCOMM ’96, (Stanford, CA), pp. 306–317, ACM, August 1996.

[26] I. Pyarali, C. O’Ryan, D. C. Schmidt, N. Wang, V. Kachroo, and
A. Gokhale, “Applying Optimization Patterns to the Design of
Real-time ORBs,” inProceedings of the5th Conference on
Object-Oriented Technologies and Systems, (San Diego, CA),
USENIX, May 1999.

[27] R. Gopalakrishnan and G. M. Parulkar, “Efficient User Space Protocol
Implementations with QoS Guarantees using Real-time Upcalls,” Tech.
Rep. 96-11, Washington University Department of Computer Science,
March 1996.

[28] R. Gopalakrishnan and G. Parulkar, “A Real-time Upcall Facility for
Protocol Processing with QoS Guarantees,” in15

th Symposium on
Operating System Principles (poster session), (Copper Mountain
Resort, Boulder, CO), ACM, Dec. 1995.

[29] D. Mosberger and L. Peterson, “Making Paths Explicit in the Scout
Operating System,” inProceedings of OSDI ’96, Oct. 1996.

[30] R. Gopalakrishnan and G. Parulkar, “Quality of Service Support for
Protocol Processing Within Endsystems,” inHigh-Speed Networking
for Multimedia Applications(W. Effelsberg,et al., ed.), Kluwer
Academic Publishers, 1995.

[31] P. Druschel and G. Banga, “Lazy Receiver Processing (LRP): A
Network Subsystem Architecture for Server Systems,” inProceedings
of the1st Symposium on Operating Systems Design and
Implementation, USENIX Association, October 1996.

[32] R. Gopalakrishnan and G. Parulkar, “Bringing Real-time Scheduling
Theory and Practice Closer for Multimedia Computing,” in
SIGMETRICS Conference, (Philadelphia, PA), ACM, May 1996.

[33] T. B. Vincent Roca and C. Diot, “Demultiplexed Architectures: A
Solution for Efficient STREAMS-Based Communication Stacks,”IEEE
Network Magazine, vol. 7, July 1997.

[34] G. Parulkar, D. C. Schmidt, and J. S. Turner, “a
I
t
P
m: a Strategy for

Integrating IP with ATM,” inProceedings of the Symposium on
Communications Architectures and Protocols (SIGCOMM), ACM,
September 1995.

[35] M. L. Bailey, B. Gopal, P. Sarkar, M. A. Pagels, and L. L. Peterson,
“Pathfinder: A pattern-based packet classifier,” inProceedings of the
1
st Symposium on Operating System Design and Implementation,

USENIX Association, November 1994.

[36] Object Management Group,Realtime CORBA Joint Revised
Submission, OMG Document orbos/99-02-12 ed., March 1999.

[37] D. C. Schmidt, “Using Design Patterns to Develop High-Performance
Object-Oriented Communication Software Frameworks,” in
Proceedings of the 8th Annual Software Technology Conference, Apr.
1996.

[38] M. Lauria, S. Pakin, and A. Chien, “Efficient Layering for High Speed
Communication: Fast Messages 2.x.,” inProceedings of the 7th High
Performance Distributed Computing (HPDC7) conference, (Chicago,
Illinois), July 1998.

[39] Object Management Group,CORBA Messaging Specification, OMG
Document orbos/98-05-05 ed., May 1998.

[40] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “Rtp: A
transport protocol for real-time applications,”Network Information
Center RFC 1889, January 1996.

[41] USNA, TTCP: a test of TCP and UDP Performance, Dec 1984.

[42] W. R. Stevens,TCP/IP Illustrated, Volume 1. Reading, Massachusetts:
Addison Wesley, 1993.

20

[43] B. Bershad, “Extensibility, Safety, and Performance in the Spin
Operating System,” inProceedings of the15th ACM SOSP,
pp. 267–284, 1995.

[44] M. Fiuczynski and B. Bershad, “An Extensible Protocol Architecture
for Application-Specific Networking,” inProceedings of the 1996
Winter USENIX Conference, Jan. 1996.

[45] N. C. Hutchinson and L. L. Peterson, “Thex-kernel: An Architecture
for Implementing Network Protocols,”IEEE Transactions on Software
Engineering, vol. 17, pp. 64–76, January 1991.

[46] D. Ritchie, “A Stream Input–Output System,”AT&T Bell Labs
Technical Journal, vol. 63, pp. 311–324, Oct. 1984.

[47] H. Hueni, R. Johnson, and R. Engel, “A Framework for Network
Protocol Software,” inProceedings of OOPSLA ’95, (Austin, Texas),
ACM, October 1995.

[48] D. C. Schmidt, D. F. Box, and T. Suda, “ADAPTIVE: A Dynamically
Assembled Protocol Transformation, Integration, and eValuation
Environment,”Journal of Concurrency: Practice and Experience,
vol. 5, pp. 269–286, June 1993.

[49] M. Zitterbart, B. Stiller, and A. Tantawy, “A Model for
High-Performance Communication Subsystems,”IEEE Journal on
Selected Areas in Communication, vol. 11, pp. 507–519, May 1993.

[50] I. Object-Oriented Concepts, “ORBacus User Manual - Version 3.1.2.”
www.ooc.com/ob, 1999.

[51] M. Henning and S. Vinoski,Advanced CORBA Programming With
C++ . Addison-Wesley Longman, 1999.

[52] Object Management Group,The Common Object Request Broker:
Architecture and Specification, 2.3 ed., June 1999.

[53] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Patterns:
Elements of Reusable Object-Oriented Software. Reading, MA:
Addison-Wesley, 1995.

[54] E. Eide, K. Frei, B. Ford, J. Lepreau, and G. Lindstrom, “Flick: A
Flexible, Optimizing IDL Compiler,” inProceedings of ACM SIGPLAN
’97 Conference on Programming Language Design and
Implementation (PLDI), (Las Vegas, NV), ACM, June 1997.

[55] J. Eykholt, S. Kleiman, S. Barton, R. Faulkner, A. Shivalingiah,
M. Smith, D. Stein, J. Voll, M. Weeks, and D. Williams, “Beyond
Multiprocessing... Multithreading the SunOS Kernel,” inProceedings
of the Summer USENIX Conference, (San Antonio, Texas), June 1992.

[56] T. Harrison, D. C. Schmidt, A. Gokhale, and G. Parulkar, “Operating
System Support for High-Performance, Real-time CORBA,” in
Proceedings of the5th International Workshop on Object-Orientation
in Operating Systems, IEEE, October 1996.

[57] D. C. Schmidt, A. Gokhale, T. Harrison, and G. Parulkar, “A
High-Performance Endsystem Architecture for Real-time CORBA,”
IEEE Communications Magazine, vol. 14, February 1997.

[58] J. Nieh, J. G. Hanko, J. D. Northcutt, and G. A. Wall, “SVR4 UNIX
Scheduler Unacceptable for Multimedia Applications,” inProceedings
of the 4th International Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV ’93), (Lancaster, U.K.,
New Hampshire), pp. 35–48, November 1993.

[59] S. Saxena, J. K. Peacock, F. Yang, V. Verma, and M. Krishnan, “Pitfalls
in Multithreading SVR4 STREAMS and other Weightless Processes,”
in Proceedings of the Winter USENIX Conference, (San Diego, CA),
pp. 85–106, Jan. 1993.

[60] S. Rago,UNIX System V Network Programming. Reading, MA:
Addison-Wesley, 1993.

[61] Sun Microsystems,STREAMS Programming Guide. Sun
Microsystems, Inc., Mountain View, CA, August 1997. Revision A.

[62] OSI Special Interest Group,Transport Provider Interface Specification,
December 1992.

[63] OSI Special Interest Group,Network Provider Interface Specification,
December 1992.

[64] OSI Special Interest Group,Data Link Provider Interface Specification,
December 1992.

A Synopsis of CORBA

CORBA Object Request Brokers (ORBs) allow clients to in-
voke operations on distributed objects without concern for ob-
ject location, programming language, OS platform, commu-
nication protocols and interconnects, and hardware [51]. Fig-
ure 21 illustrates the key components in the CORBA reference
model [52] that collaborate to provide this degree of portabil-
ity, interoperability, and transparency.4 Each component in the

ORB CORE

OBJECT

ADAPTER

GIOP/IIOP

IDL
STUBS

operation()
in argsin args

out args + return valueout args + return value

CLIENTCLIENT
OBJECTOBJECT
((SERVANTSERVANT))

OBJOBJ

REFREF

STANDARD INTERFACESTANDARD INTERFACE STANDARD LANGUAGE MAPPINGSTANDARD LANGUAGE MAPPING

ORB-ORB-SPECIFIC INTERFACESPECIFIC INTERFACE STANDARD PROTOCOLSTANDARD PROTOCOL

IDLIDL
SKELETONSKELETON

IDL
COMPILER

IDL
COMPILER

Figure 21: Key Components in the CORBA 2.x Reference
Model

CORBA reference model is outlined below:

Client: A client is a role that obtains references to objects
and invokes operations on them to perform application tasks.
Objects can be remote or collocated relative to the client. Ide-
ally, a client can access a remote object just like a local object,
i.e., object !operation(args) . Figure 21 shows how
the underlying ORB components described below transmit re-
mote operation requests transparently from client to object.

Object: In CORBA, an object is an instance of an OMG
Interface Definition Language (IDL) interface. Each object
is identified by anobject reference, which associates one or
more paths through which a client can access an object on a
server. Anobject IDassociates an object with its implemen-
tation, called a servant, and is unique within the scope of an
Object Adapter. Over its lifetime, an object has one or more
servants associated with it that implement its interface.

Servant: This component implements the operations de-
fined by an OMG IDL interface. In object-oriented (OO) lan-
guages, such as C++ and Java, servants are implemented us-
ing one or more class instances. In non-OO languages, such
as C, servants are typically implemented using functions and
struct s. A client never interacts with servants directly, but
always through objects identified by object references.

4This overview only focuses on the CORBA components relevant to this
paper. For a complete synopsis of CORBA’s components see [52].

21

ORB Core: When a client invokes an operation on an ob-
ject, the ORB Core is responsible for delivering the request
to the object and returning a response, if any, to the client.
An ORB Core is implemented as a run-time library linked
into client and server applications. For objects executing re-
motely, a CORBA-compliant ORB Core communicates via a
version of the General Inter-ORB Protocol (GIOP), such as
the Internet Inter-ORB Protocol (IIOP) that runs atop the TCP
transport protocol. In addition, custom Environment-Specific
Inter-ORB protocols (ESIOPs) can also be defined.

OMG IDL Stubs and Skeletons: IDL stubs and skeletons
serve as a “glue” between the client and servants, respectively,
and the ORB. Stubs implement theProxy pattern [53] and
provide a strongly-typed,static invocation interface(SII) that
marshals application parameters into a common message-level
representation. Conversely, skeletons implement theAdapter
pattern [53] and demarshal the message-level representation
back into typed parameters that are meaningful to an applica-
tion.

IDL Compiler: An IDL compiler transforms OMG IDL
definitions into stubs and skeletons that are generated automat-
ically in an application programming language, such as C++
or Java. In addition to providing programming language trans-
parency, IDL compilers eliminate common sources of network
programming errors and provide opportunities for automated
compiler optimizations [54].

Object Adapter: An Object Adapter is a composite compo-
nent that associates servants with objects, creates object refer-
ences, demultiplexes incoming requests to servants, and col-
laborates with the IDL skeleton to dispatch the appropriate
operation upcall on a servant. Object Adapters enable ORBs
to support various types of servants that possess similar re-
quirements. This design results in a smaller and simpler ORB
that can support a wide range of object granularities, lifetimes,
policies, implementation styles, and other properties.

B Overview of Solaris

The Solaris kernel is apreemptive, multi-threaded, real-time,
and dynamically loadedimplementation of UNIX SVR4 and
POSIX. It is designed to work on uni-processors and shared
memory symmetric multi-processors. Solaris contains a real-
time nucleus that supports multiple threads of control in the
kernel. Most control flows in the kernel, including interrupts,
are threaded [55]. Below, we summarize the Solaris schedul-
ing model and communication I/O subsystem.

B.1 Synopsis of the Solaris Scheduling Model

The application-level programming model of Solaris supports
multiple threads of control within a single application process.
Solaris provides a two-level thread scheduling model that con-
sists of an application-level scheduler in the threads library
and a global system scheduler in the kernel. Application level
threads are either bound to or scheduled to run on lightweight
processes (LWPs), which can be thought of as virtual CPUs,
by the threads library. In turn, each LWP is bound to one ker-
nel thread (kthreads) which is scheduled by the global system
scheduler to run on the available CPUs. Note, there are ker-
nel threads which are not associated with any LWP, these are
termed system threads.

The traditional UNIX scheduling policy targets time-
sharing, interactive environments. This traditional scheduler is
preemptive, time-sliced, priority based where the highest pri-
ority runnable thread is always scheduled. The priorities vary
as a function of the threads CPU usage pattern: the more CPU
time used by a thread the lower its priority. Thus, compute
bound threads will have progressively lower priorities until
some lower limit is reached. For threads with the same prior-
ity time slicing is used. Generally, the lower a threads priority
the larger its time slice. Newer implementations of the time
sharing class have additional parameters however the policy
remains the same. While this approach is well suited for tra-
ditional time sharing UNIX environments it does not satisfy
the scheduling needs for the new class of multimedia and real-
time DOC applications [56, 57, 58].

Scheduling classes: Solaris extends the traditional UNIX
time-sharing scheduler [16] to provide a flexible framework
that allows dynamic linking of customscheduling classes. For
instance, it is possible to implement a new scheduling policy
as a scheduling class and load it into a running Solaris kernel.
By default, Solaris supports the four scheduling classes shown
ordered by decreasing global scheduling priority below:

Scheduling Class Priorities Typical purpose

Interrupt (INTR) 160-169 Interrupt Servicing
Real-Time (RT) 100 - 159 Fixed priority scheduling
System (SYS) 60-99 OS-specific threads
Time-Shared (TS) 0-59 Time-Shared scheduling

The Time-Sharing (TS)5 class is similar to the traditional
UNIX scheduler [16], with enhancements to support interac-
tive windowing systems. The System class (SYS) is used to
schedule system kthreads, including I/O processing, and is not
available to application threads. The Real-Time (RT) schedul-
ing class uses fixed priorities above the SYS class. Finally, the

5In this discussion we include the Interactive (IA) class, which is used
primarily by Solaris windowing systems, with the TS class because they share
the same range of global scheduling priorities.

22

highest system priorities are assigned to the Interrupt (INTR)
scheduling class [55].

By combining a threaded, preemptive kernel with a fixed
priority real-time scheduling class, Solaris attempts to provide
a worst-case bound on the time required to dispatch applica-
tion threads or kernel threads [13]. The RT scheduling class
supports both Round-Robin and FIFO scheduling of threads.
For Round-Robin scheduling, a time quantum specifies the
maximum time a thread can run before it is preempted by an-
other RT thread with the same priority. For FIFO scheduling,
the highest priority thread can run for as long as it chooses, un-
til it voluntarily yields control or is preempted by an RT thread
with a higher priority.

Timer mechanisms: Many kernel components use the So-
laris timeout facilities. To minimize priority inversion, So-
laris separates its real-time and non-real-time timeout mecha-
nisms [13]. This decoupling is implemented via two callout
queue timer mechanisms: (1)realtime timeout , which
supports real-time callouts and (2)timeout , which supports
non-real-time callouts.

The real-time callout queue is serviced at the lowest inter-
rupt level, after the current clock tick is processed. In con-
trast, the non-real-time callout queue is serviced by a thread
running with a SYS thread priority of 60. Therefore, non-real-
time timeout functions cannot preempt threads running in the
RT scheduling class.

B.2 Synopsis of the Solaris Communication I/O
Subsystem

The Solaris communication I/O subsystem is an enhanced
version of the SVR4STREAMS framework [46] with proto-
cols like TCP/IP implemented usingSTREAMS modules and
drivers. STREAMS provides a bi-directional path between ap-
plication threads and kernel-resident drivers. In Solaris, the
STREAMS framework has been extended to support multiple
threads of control within aSTREAM [59].

Below, we outline the key components of theSTREAMS

framework and describe how they affect communication I/O
performance and real-time determinism.

General structure of a STREAM: A STREAM is composed
of a STREAM head, a driver and zero or more modules linked
together by read queues (RQ) and write queues (WQ), as
shown in Figure 22. TheSTREAM head provides an interface
between an application process and a specific instance of a
STREAM in the kernel. It copies data across the user/kernel
boundary, notifies application threads when data is available,
and manages the configuration of modules into aSTREAM.

Each module and driver must define a set of entry points that
handleopen /close operations and processSTREAM mes-
sages. The message processing entry points areput andsvc ,

NETWORK INTERFACENETWORK INTERFACE

OR PSEUDOOR PSEUDO--DEVICESDEVICES

STREAMSTREAM
TailTail

MultiplexorMultiplexor

APPLICATIONAPPLICATION

StreamStream

STREAMSTREAM
HeadHead

APPLICATIONAPPLICATION

StreamStream

U
P
S
T
R
E
A
MD

O
W
N
S
T
R
E
A
M

MESSAGEMESSAGE WRITEWRITE

QUEUEQUEUE

READREAD

QUEUEQUEUE
MODULEMODULE

open()=0
close()=0
put()=0
svc()=0

USERUSER

KERNELKERNEL

Figure 22: General Structure of a STREAM

which are referenced through the read and write queues. The
put function provides the mechanism to send messagessyn-
chronouslybetween modules, drivers, and theSTREAM head.

In contrast, thesvc function processes messagesasyn-
chronouslywithin a module or driver. A background thread
in the kernel’s SYS scheduling class runssvc functions at
priority 60. In addition,svc functions will run after certain
STREAMS-related system calls, such asread , write , and
ioctl . When this occurs, thesvc function runs in the con-
text of the thread invoking the system call.

Flow control: Each module can specify a high and low wa-
termark for its queues. If the number of enqueued messages
exceeds theHIGH WATERMARK theSTREAM enters the flow-
controlled state. At this point, messages will be queued up-
stream or downstream until flow control abates.

For example, assume aSTREAM driver has queued
HIGH WATERMARK+1 messages on its write queue. The first
module atop the driver that detects this will buffer messages
on its write queue, rather than pass them downstream. Be-
cause theSTREAM is flow-controlled, thesvc function for
the module will not run. When the number of messages on
the driver’s write queue drops below theLOW WATERMARK

theSTREAM will be re-enable automatically. At this point, the
svc function for this queue will be scheduled to run.

STREAM Multiplexors: Multiple STREAMS can be linked
together using a special type of driver called amultiplexor.
A multiplexor acts like a driver to modules above it and as
a STREAM head to modules below it. Multiplexors enable
theSTREAMSframework to support layered network protocol

23

stacks [60].
Figure 23 shows how TCP/IP is implemented using the So-

laris STREAMS framework. IP behaves as a multiplexor by

Reactor - 5Hz

Std RT

Callout Queues

ATM Driver

FIFO Queuing

user

kernel

rQ

rQ rQ rQ
<timers> <timers> <timers>

UDP/TCP UDP/TCP UDP/TCP

wQ wQ wQ

rQwQ

wQ wQ rQ wQ rQ

wQ rQ

IP - Multiplexor
(routing tables)

STREAM head STREAM head STREAM head

Protocol Processing
in Interrupt Context

Object Adaptor

Servants

user threaduser thread

Run/Sleep Queues
Scheduler

Thread3

thread0
Thread1

other

ORB Core

Figure 23: Conventional Protocol Stacks in SolarisSTREAMS

joining different transport protocols with one or more link
layer interfaces. Thus, IP demultiplexes both incoming and
outgoing datagrams.

Each outgoing IP datagram is demultiplexed by locating
its destination address in the IP routing table, which deter-
mines the network interface it must be forwarded to. Likewise,
each incoming IP datagram is demultiplexed by examining the
transport layer header in aSTREAMS message to locate the
transport protocol and port number that designates the correct
upstream queue.

Multi-threaded STREAMs: Solaris STREAMS allows mul-
tiple kernel threads to be active inSTREAMS I/O modules,
drivers, and multiplexors concurrently [61]. This multi-
threadedSTREAMSframework supports several levels of con-
currency, which are implemented using theperimeters[59]
shown below:

Per-module with single threading
Per-queue-pair single threading
Per-queue single threading
Any of the above with unrestrictedput and svc
Unrestricted concurrency

In Solaris, the concurrency level of IP is “per-module” with
concurrentput , TCP andsockmod are “per-queue-pair,”
and UDP is “per-queue-pair” with concurrentput . These
perimeters provide sufficient concurrency for common use-
cases. However, there are cases where IP must raise its locking
level when manipulating global tables, such as the IP routing
table. When this occurs, messages entering the IP multiplexor
are placed on a special queue and processed asynchronously
when the locking level is lowered [59, 55].

Callout queue callbacks: The SolarisSTREAMSframework
provides functions to set timeouts and register callbacks. The
qtimeout function adds entries to the standard non-real-
time callout queue. This queue is serviced by a system thread
with a SYS priority of 60, as described in Section B.1. So-
laris TCP and IP use this callout facility for their protocol-
specific timeouts, such as TCP keepalive and IP fragmenta-
tion/reassembly.

Another mechanism for registering a callback function is
bufcall . Thebufcall function registers a callback func-
tion that is invoked when a specified size of buffer space be-
comes available. For instance, when buffers are unavailable,
bufcall is used by aSTREAM queue to register a function,
such asallocb , which is called back when space is available
again. These callbacks are handled by a system thread with
priority SYS 60.

Network I/O: The Solaris network I/O subsystem provides
service interfaces that reflect the OSI reference model [60].
These service interfaces consist of a collection of primitives
and a set of rules that describe the state transitions.

Figure 23 shows how TCP/IP is structured in the Solaris
STREAMSframework. In this figure, UDP and TCP implement
the Transport Protocol Interface (TPI) [62], IP the Network
Provider Interface (NPI) [63] and ATM driver the Data Link
Provider Interface (DLPI) [64]. Service primitives are used
(1) to communicate control (state) information and (2) to pass
data messages between modules, the driver, and theSTREAM

head.
Data messages (as opposed to control messages) in the So-

laris network I/O subsystem typically follow the traditional
BSD model. When an application thread sends data it is copied
into kernel buffers, which are passed through theSTREAM

head to the first module. In most cases, these messages are
then passed through each layer and into the driver through a
nested chain ofput s [59]. Thus, the data are sent to the net-
work interface driver within the context of the sending pro-
cess and typically are not processed asynchronously by mod-
ule svc functions. At the driver, the data are either sent out
immediately or are queued for later transmission if the inter-
face is busy.

When data arrive at the network interface, an interrupt is
generated and the data (usually referred to as a frame or

24

packet) is copied into kernel buffer. This buffer is then passed
up through IP and the transport layer in interrupt context,
where it is either queued or passed to theSTREAM head via
the socket module. In general, the use ofsvc functions is
reserved for control messages or connection establishment.

25

