Supporting High-performance 1/O in
QoS-enabled ORB Middleware

Fred Kuhns and David Levine Douglas C. Schmidt and Carlos O’'Ryan
{fredk,leving @cs.wustl.edu {schmidt,coryah@uci.edu
Department of Computer Science, Washington University Electrical & Computer Engineering Dept.
St. Louis, MO 63130 University of California, Irvine, CA 92697

This paper will appear iCluster Computing: the Journall Introduction
on Networks, Software, and Applications

1.1 Current Limitations of High-performance
Distributed Computing

During the past decade, there has been substantial R&D em-
Abstract phasis orhigh-performance networkingndperformance op-
timizationsfor network elements and protocols. This effort
has paid off such that networking products are now available
To be an effective platform for high-performance distributeaff-the-shelf that can support Gbps on every perg, Gigabit
applications, off-the-shelf Object Request Broker (ORB) migthernet and ATM switches. Moreover, 622 Mbps ATM con-
dleware, such as CORBA, must preserve communication-layectivity in WAN backbones are becoming standard and 2.4
guality of service (QoS) properties both vertically (i.e., neGbps is starting to appear. In networks and GigaPoPs being
work interface< application layer) and horizontally (i.e.,deployed for the Next Generation Internet (NGI), such as the
end-to-end). However, conventional network interfaces, IAdlvanced Technology Demonstration Network (ATDnet), 2.4
subsystems, and middleware interoperability protocols are ri&bps (OC-48) link speeds have become standard. However,
well-suited for applications that possess stringent througthe general lack of flexible software tools and standards for
put, latency, and jitter requirements. It is essential, therprogramming, provisioning, and controlling these networks
fore, to develop vertically and horizontally integrated ORBas limited the rate at which applications have been developed
endsystems that can be (1) configured flexibly to support hitghieverage advances in high-performance networks.
performance network interfaces and 1/O subsystems and (2puring the same time period, there has also been substan-
used transparently by performance-sensitive applications. tia] R&D emphasis on object-oriented (OO) communication

Thi DIOVi hr ntributions to r rch on hi liddlewarg including open standards like OMG’s Common
perforsnE);rf)cee FI)/(g Scljji)i):)rteff)l’c %;S?gggblztggsganfidglewg pject Request B roker Architectgre (C.:ORBA), [1].’ as well
First, we outline the key research challenges faced by highe popular proprletary solutions like Microsoft's I?lstr|buted
performance ORB endsystem developers. Second, we des ponent OpJeCt Model (DCOM) [2] and Sun§ Remote
how our real-time /O (RIO) subsystem and pluggable pr lethod In\(ocatlon(RMl) [3]. Th_ese efforts have paid off such
tocol framework enables ORB endsystems to preserve hi t 00 m|ddleware IS now avaﬂgblg off-the-sheif that alloyvs
performance network interface QoS up to applications ru lients to invoke operations on d_|str|buted components with-
ning on off-the-shelf hardware and software. Third, we iIIu%Ut concern for compqnept location, programmlng language,
trate empirically how highly optimized ORB middleware c S platform, communication protocols and interconnects, or
be integrated with real-time 1/0 subsystem to reduce late @rdware [4].
bounds on communication between high-priority clients with- HHowever, off-the-shelf communication middleware has sev-
out unduly penalizing low-priority and best-effort clients. O#ral limitations. In particular, it historically has lacked (1)
results demonstrate how it is possible to develop ORB end$yport for QoS specification and enforcement, (2) integration
tems that are both highly flexible and highly efficient. with high-performance networking technology, and (3) perfor-
mance, predictability, and scalability optimizations [5]. These
omissions have limited the rate at which performance-sensitive
applications, such as video-on-demand, teleconferencing, and

*This work was supported in part by Boeing, NSF grant NCR—962821%(;"iemiﬁ_C computin.g, have 'been developed to leverage ad-
DARPA contract 9701516, and Sprint. vances in communication middleware.

1.2 Overcoming Current Limitations with TAO 1. Optimizing QoS-enabled 1/0 subsystems to support
high-performance network interfaces: A key ORB end-
To address the flexibility and QoS performance limitatioRgstem research challenge is to implement and optimize QoS-
outlined above, we have developEde ACE ORETAO) [5]. enabled OS I/0 subsystems and network interfaces. This paper
TAO is a high-performance, real-time Object Request Brgresents the design and performance of a real-time I/0 (RIO)
ker (ORB) endsystem targeted for applications with determiishsystem that enhances the Solaris 2.5.1 kernel to enforce
istic and statistical QoS requirements, as well as best efigj QoS features in TAO’s ORB endsystem [6]. RIO pro-
requirements. The TAO ORB endsystem contains the n@les QoS guarantees for vertically integrated ORB endsys-
work interface, OS I/O subsystem, communication protoc@dms that can (1) increase throughput, (2) decrease latency, and
and CORBA-compliant middleware components and featu(g§ improve end-to-end predictability for distributed applica-
shown in Figure 1. tions. RIO supports periodic protocol processing, guarantees
I/O resources to applications, and minimizes the effect of flow
control in communication streams end-to-end. A novel feature
of the RIO subsystem is its integration of real-time scheduling
and protocol processing, which allows RIO to support both
bandwidth guarantees and low-delay applications.

IDL v Many RIO mechanisms and features are implemented in its

REAL-TIME| network interface drivers, which makes it uniquely suited for

in args

operation() OBJECT
(SERVANT)

out args + return value

OBJECT . .
apaptEr | high-performance network interface technology. For example,

network interface architectures, such as the ATM Port Inter-
connect Controller (APIC) [7], U-Net [8], and the Virtual In-
terface Architecture (VIA [9]), support the vertical integration

of 1/0 subsystems, which can minimize extraneous memory
reads and writes using advanced I/O techniques, such as pro-
tected DMA [10]. RIO can exploit these techniques to sup-
port user-space protocol implementations and zero-copy I/O.
Likewise, network interface drivers can take advantage of RIO
to support intelligent polling, periodic 1/0, co-scheduling of
user- and kernel-threads, and strategized buffer management.

0P

OS KERNEL o R L R R OS KERNEL
REAL-TIME 1/O REAL-TIME 1/O
SUBSYSTEM SUBSYSTEM
HIGH-SPEED HIGH-SPEED
NETWORK INTERFACE NETWORK NETWORK INTERFACE

Figure 1: Components in the TAO ORB Endsystem

TAO's ORB Core, Object Adapter, stubs/skeletons, ard P€Veloping a pluggable protocols framework to inte-
servants run in user-space and handle connection man&%@t-e new protocols that can leverage high-performance

ment, data transfer, endpoint and request demultiplexing, cBRMOTK interfaces: ~ Another key ORB endsystem research

currency, (de)marshaling, and application operation roce%@@"e”ge is to integrate the optimized, QoS-enabled I/O sub-
Y, (de) g PP P P stem and network interfaces with higher-level OO middle-

ing. In contrast, TAO'’s real-time 1/0 (RIO) subsystem runy

in the OS kernel and sends/receives requests to/from clidh@se features, such as parameter (de)marshaling, request de-

across high-performance networks or 1/0 backplanes. TA(gglltiplexing, concurrency control, and fault tolerance. This

pluggable protocol framework provides the “glue” that inter_equires an efficient framework supporting custom protocols

grates its higher-level ORB Core and Object Adapter comﬁBf"t leverage underlying, platform-specific hardware/OS.fea—
nents with its lower-level 1/0 subsystem and network interfal¥€S. However, the framework must also meet the seemingly

components. Developers can use TAO's pluggable protocgqgtradictory goal of providing a flexible platform-neutral API

framework to implement new ORB messaging protocols afith® ORB and applications.

transport adapters that leverage underlying high-performanc®AO’s pluggable protocols framework can be used to cre-

communication protocols and network interface hardware. ate custom inter-ORB protocols or to exploit features of the
specialized hardware or software within the OS I/O subsys-

tem. For example, if a VIA interface is used a specialized
1.3 Key Research Challenges transport adaptor can be developed that is optimized for VIA

features. In particular, this adaptor can leverage the shared
This paper focuses on the techniques used in TAO to resalvemory model offered by VIA and integrate it with the ORB’s
the following research challenges that arise when developintgrnal request buffering mechanisms, thereby yielding more
high-performance and real-time ORB endsystems: efficient memory management.

1.4 Paper Organization USER SPACE
The paper is organized as follows: Section 2 provides a ¢

eral overview of the TAO ORB endsystem architecture; S

tion 3 describes how the RIO subsystem enhances the ORB CORE/ SEF?;BCES ors core/ M ors core/

laris 2.5.1 OS kernel to support end-to-end QoS for T SERVICES [N SERVICES SERVICES

applications; Section 4 describes TAO's pluggable protog — ORB — —

framework; Section 5 illustrates how TAO’s RIO subsy INTER-ORB | o otocoL | NTER-ORB INTER -ORB
PROTOCOL PROTOCOL PROTOCOL

tem and pluggable protocols framework can seamlessly g =t PROCESSINGL —

age high-performance network interfaces; Section 6 pres| kernet space — -1 M | I —

empirical results from systematically benchmarking the | /0 SUBSYSTEM NETWORK

ciency and predictability of TAO and RIO over an ATM ng ”RO;"?OLS

work; Section 7 compares RIO and TAO'’s pluggable prg o M gg

pols framework with related work; Section 8 presents concl Nemem e | I

ing remarks. For completeness, Appendix A provides a b DRIVER PROTOCOLS

overview of CORBA and Appendix B provides and overvi¢
of the Solaris operating system.

Figure 2: Typical ORB Endsystem Architecture
2 Supporting High-performance 1/O in
the TAO Endsystem 2.2.1 Alleviating Thread-based Priority Inversions

As outlined in Section 1, key research challenges faced Wt'll'éHead—based pr|or|ty.|'nver5|on can occur when a h|gher.pr|.or—
thread blocks awaiting a resource held by a lower priority

integrating high-performance 1/0O within an ORB endsystelﬁ)f

involve optimizing 1/0 subsystem mechanisms and ORB inté _read [12]. V_\/h_en _consujermg the kernel or I/Q subsy;tem,
ORB protocols to exploit the underlying hardware and I/ is type of priority inversion occurs when real-time applica-

subsystem. In this section we outline an ORB endsystem f}:{?n threads depend on system level processing which is per-

chitecture that addresses these two challenges. ormed at priority .Ievels that are either higher or Iower than
the currently running thread. For example, the Solaris kernel

performs protocol processing asynchronously at either SYS or
2.1 Context INT priorities [13, 14, 12F Likewise, in NetBSD the process-

As shown in Figure 2, CORBA endsystems can be divided irmg of the callout queue that service TCP timeouts occurs at a
’ ftware interrupt priority that preempts all application-level

several components, including the operating system’s /0O s Beads

system, Inter-ORB protocol processing, and ORB Core sefr--=" L .
vices. In this environment application threads acquire ob-As illustrated above, thread-based priority inversion occur

ject references, invoke remote operations, and performalf@€n either the kernel performs asynchronous or synchronous

application-specific processing. CORBA objects are imp%r_ocessing without regard to the relative priority of the bene-

mented within the context of a server ORB. which is respofﬁ-mg thread or process. In practice thifs generally translates to
sible for performing incoming upcalls on target objects aifit® Of two cases: 1) system processing performed by kernel
sending replies back to the cliertavioreover, CORBA sup- thregds w!th their own scheduling .attnbutes or 2) event pro-
ports both synchronous and asynchronous invocation mG@SSing with hardware or software interrupt priorities.

els [11]. Asynchronous processing with kernel threads: Modern

UNIX operating systems, such as Solaris, rely on kernel
2.2 Design Challenges threads to perform asynchronous or synchronous system ac-
tivities, such as callout queue processing, page replacement, or
cessinggTREAMSsvC functions. In Solaris, these threads
erate with global priorities that are lower than those for the
I-time scheduling class. Other operating systems perform
ilar processing using software interrupt priorities. In both
cases, application threads can experience unbounded priority

1CORBA client applications also can issue one-way invocations whereiRversion [15].
reply is sent from the server. 2Appendix B presents an overview of the Solaris scheduling model.

Developers of ORB endsystem that use general-purpose
erating systems, such as Solaris, Windows NT, or NetB

must address the following design challenges in order to m
the QoS requirements of high-performance and real-time am,
plications.

Protocol processing with interrupt priorities: Another data file transfers occur periodically and inject a large num-
source of thread-based priority inversion occurs when prob@r of packets into the 1/0 subsystem, which are queued at
col processing of incoming packets is performed in an intéine network interface. Unfortunately, packets containing high-
rupt context. Traditional UNIX implementations treat all inpriority A/V frames can be queued in the network interface
coming packets with equal priority, regardless of the prioribehindlow-priority bulk data packets containing file buffers,
of the application thread that ultimately receives the data. thereby yielding packet-based priority inversion. Thus, A/V
In BSD UNIX-based systems [16], for instance, the irframes may arrive too late to meet end-to-end application QoS
terrupt handler for the network driver deposits the incomimgquirements.
packet in the IP queue and schedules a software interrupt that
invokes thep -input function. Before control returnsto the; 5 3 pjleviating Limitations with Inter-ORB Protocol
!nterruptec_j apphcauop process, the sqftwgre mterrupt_handler Implementations
is run andip _input is executed. Th@ _input function
executes at the lowest interrupt level and processes all pde@RBAs standard interoperability protocols are well-suited
ets in its input queue. Only when this processing is complé® conventional request/response applications with best-effort
does control return to the interrupted process. Thus, not oRI9S requirements [18]. They are not well-suited, however,
is the process preempted, but it will be charged for the CFeJ high-performance real-time and/or embedded applications
time consumed by input protocol processing. that cannot tolerate the message footprint size or the latency,
In sSTREAMS-based UNIX operating systems, protocol pr@verhead, and jitter of the TCP/IP-based Inter-ORB transport
cessing can either be performed in an interrupt context (agf@tocol [19]. For instance, TCP functionality, such as adap-
Solaris) or withsvc functions scheduled asynchronously. Ugive retransmissions, deferred transmissions, and delayed ac-
ing svc functions can yield the unbounded priority inversiolinowledgments, can cause excessive overhead and latency for
described above. Similarly, processing all input packets in&@al-time applications [20]. Likewise, best-effort networking
interrupt context can cause unbounded priority inversion. protocols, such as IPv4, lack the functionality of packet ad-
Modern high-speed network interfaces can saturate the $péssion policies and rate control, which can lead to excessive
tem bus, memory, and CPU, leaving little time available fépngestion and missed deadlines in networks and endsystems.
application processing. It has been shown [14] that if proto-Therefore, applications with stringent QoS requirements
col processing on incoming data is performed in an interruped optimized protocol implementations, QoS-aware inter-
context this can lead tmput livelock Livelock is a condi- faces, custom presentations layers, specialized memory man-
tion where the overall endsystem performance degrades dgementé.g, shared memory between ORB and 1/O subsys-
to input processing of packets in an interrupt context. In éem), and alternative transport programming ARI(sock-
treme cases, an endsystem can spend the majority of its t#tfevs. VIA [9]). Domains where highly optimized ORB
processing input packets, resulting in little or no useful wofkessaging and transport protocols are particularly important
being done. Thus, input livelock can prevent an ORB endsyiclude (1) multimedia applications running over high-speed

tem from meeting its QoS commitments to applications. hetworks, such as Gigabit Ethernet or ATM [21] and (2) real-
time applications running over embedded system intercon-

2.2.2 Alleviating Packet-based Priority Inversions nects, such as VME or CompactPCl.
I?ac,!<et—ba§ed priority inversion [15], also krjown as .“head—gjs Solutions
line” blocking, can occur when packets for high-priority appli-
cations are queued behind packets for low-priority applicatido address the challenges outlined above, we have adopted a
threads. This inversion can occur as a result of serializing fh®tocol-centric view to develop a high-performance and real-
processing of incoming or outgoing network packets. To mehe ORB endsystem, which is shown in Figure 3. Our prior
deadlines of time-critical applications, it is important to elimresearch on CORBA middleware has explored the efficiency,
inate, or at least minimize, packet-based priority inversion. predictability, and scalability aspects of ORB endsystem de-
To illustrate this problem, consider a general-purpose OREn, including static [5] and dynamic [22] scheduling, event
endsystem that must support both soft real-time applicatiopgcessing [23], synchronous [24] and asynchronous [11]
such as audio/video (A/V) conferencing [17], and “best-effor©RB Core architectures, systematic benchmarking of multiple
applications, such as remote file transfer. This endsystem n@RBs [25], and optimization principle patterns for ORB per-
transmit both (1) time critical video frames and audio pactermance [26]. This paper extends our earlier work by focus-
ets and (2) relatively low-priority file buffers. For the systerimg on the integration of the following topicél) event-driven
to operate correctly, A/V frames must be delivered periodlemultiplexing, (2) real-time 1/0O scheduling, (3) network pro-
cally with strict bounds on latency and jitter. Conversely, butkcol processing, and (4) inter-orb protocol processirkig-

REAL -TIME priority inversion by vertically integrating packets received at

ORE ENDSYSTEM the network interface with the corresponding thread priorities
R A o in TAO’s ORB Core. Section 3.1 describes how the TAO's

E}f orRB [ne/ | [oms core/ RIO subsystem implements early demultiplexing.

SERVICES S SERVICES SERVICES

PROCESIMSESSSS — Schedule-driven protocol processing: To minimize thread-
ter-ore | oo O [nTer-ore || INTER-ORS based priority inversions, this feature performs all protocol
PROTOCOL | ppocessingl ZROTO¢O | | PROTOCOL processing with threads that are scheduled with the appropri-

REAL-TIME ORB

1/o —
NETWORK | joorooor | NETWORK NETWORK

PROTOCOLS PROCESSING PROTOCOLS PROTOCOLS

ate real-time priorities [32, 31, 14]. RIO’s design schedules
network interface bandwidth and CPU time to minimize prior-
ity inversion and decrease interrupt overhead during protocol
processing. Section 3.2 describes how the TAO’s RIO subsys-
tem implements schedule-driven protocol processing.

RIO
SCHEDULER

EARLY DEMULTIPLEXING
(MINIMAL DRIVER /SMART NIC)

v \

% AQOKNFORCEMENT

REAL-TIME 1/0

FLOW CLASSIFIER
EVENT DRIVEN | /O

Dedicated STREAMS. This feature addresses packet-based

priority inversions by isolating request packets belonging to
Figure 3: Architecture of a High-performance and Real-tingifferent priority groups to minimize FIFO queueing and
ORB Endsystem shared resource locking overhead [33]. RIO’s design alleviates
resource conflicts that can otherwise cause thread-based and
packet-based priority inversions. Section 3.3 describes how
ure 3 deliberately does not delineate the protection bound#y§ TAO’s RIO subsystem implements DedicatetkREAMS.

between the kernel and user domains. In principle, topics @rp pluggable protocols framework: To address the lim-

4 can be performed in either domain and do not necessafilions with inter-ORB protocol implementations outlined in

require privileged access to resources [27, 28]. Section 2.2.3, it must be possible for an ORB endsystem to
In addition to identifying the horizontal layers of an ORB,qq new protocol adaptors and exploit underlying hardware.

endsystem, Figure 3 also depicts its vertical partitions, Whgnieving this integration requires the ORB endsystem to sat-
resources are dedicated to active connections. Each active f@the following seemingly contradictory goals:

nection is associated with a set of preallocated resources along
a path [29] through the endsystem that ranges from networl® Abstracting away from platform variation: ~ To max-
interface to application. We use this design strategy to arifBize flexibility, application should be shielded from depen-
liorate the effects of using shared queues and processing &i1cies on specialized hardware or OS interfaces. In particu-
texts [6]. lar, applications should.not_ requ?re modificatiqns when new
Our solution addresses thread and packet-based priorityRftforms and communications links are configured. Thus,
versions and inflexible inter-ORB protocols. These problem@tform- and network-specific information should be encap-
essentially are resource management issues on and betsEE{ed within the middleware framework
the endsystems. This can be addressed with a judicious use| everaging custom platform features: To maximize
of preallocated resources, prioritizing I/O processing and pg&rformance, applications that use middleware should bene-
viding the middleware with mechanisms to exploit optimizegt from specialized hardware, OS, and communication links
I/O features. Consequently, our solution must provide mechgajlable on a particular platform. For example, available
nisms for minimizing work performed with interrupt prioritiespetwork signaling and optimized network interface architec-
providing I/O processing threads in the kernel, preallocatiiges may provide custom features, such as zero-copy /O,

memory and other I/O resources and facilities for inter-ORRndwidth reservations, low latency connections, or optimized
protococols to exploit available optimizations in the underlyuffering strategies.

ing I/O subsystem.

To achieve both these goals, we developed a highly extensi-
Early demultiplexing: This feature is concerned with redble pluggable protocols framewofk 9] for TAO that presents
ducing unbounded priority inversion [30, 31, 15] by (1) minia uniform, yet extensible, network programming interface. We
mizing the time spent processing packets with interrupt priotise this framework to extend TAO’s concurrency architec-
ties and (2) associating all incoming and outgoing packets wiitiie and thread priority mechanisms into its RIO subsystem,
preallocated resources. Incoming packets are demultiple’eereby minimizing key sources of priority inversion that can
and associated with the correct priorities and a specific Strezmnse non-determinism and jitter.
early in the packet processing sequeriae, in the network These features are augmented by RIO’s zero-copy buffer
interface driver [10]. RIO’s design minimizes thread-basedanagement optimizations [7, 10]. These optimizations elim-

inate unnecessary data-copying overhead between appleoak interfaces, such as VIA [9], that provide similar QoS-
tion processes/threads, network protocol stacks, and highabled I/O features.

performance network interfaces that support advanced I/elow, we outline each of RIO’s features, explain how they
features, such as protected DMA, read/write directly to hastate to features in the Solaris 1/0 subsystem, and justify our
memory, priority queues, programmable interrupts, and padssign and implementation decisions. Our discussion focuses
transmission. Section 4 presents TAO'’s pluggable protocots how we resolved the key design challenges faced when
frameworks and Section 5 describes how it is used to integratélding the RIO subsystem.

high-performance network interfaces with ORB endsystems.

3.1 Early Demultiplexing
3 Implementing TAO’s Real-Time 1/O context: ATM is a connection-oriented network protocol

(R|O) Subsystem for Solaris that uses virtual circuits (VCs) to switch ATM cells at high
speeds [34]. Each ATM connection is assigned a virtual cir-

This section describes the implementation of TAO’s real-tingit identifier (VCI that is included as part of the cell header.

/10 (RIO) Subsystem [6] for Solaris over an ATM ne.tWOI’k. Wprob|em: In Solaris STREAMS, packets received by the
selected Solaris to explore kernel space protocol implemenigin network interface driver are processed sequentially and
tions and architectural implementation, as well as to extepglssed up to the IP multiplexor in FIFO order. Therefore, any

earlier work on NetBSD [27]. _ information containing the packets’ priority or specific con-
The RIO subsystem enhances the Solaris 2.5.1 OS ker<ion is lost.

and a Fore ATM interface driver by providing QoS specifica- . .

tion and enforcement features that complement TAO’s high¢!ution: The RIO subsystem uses a packet classifier [35] to
predictable real-time concurrency and connection archit&&Ploit the early demultiplexing feature of ATM [10] by verti--
ture [24]. Figure 4 presents the architectural component<R!Y integrating its ORB endsystem architecture, as shown in
the RIO subsystem and illustrates their relationship to otffdgure 5. Early demultiplexing uses the VCl field in a request

TAO ORB endsystem components.

Real-time Application
ORB Endsystem TS Class TS Class

user thread

g g ’é PACKET
-

framework Priority1 Priority 3 Priority 4 THREADS

o =t . M RIO kthreads

T T Teesendy) (’
UDP/TCP UDP/TCP UDP/TCP uUDP/TCP
RIO <timers> <timers> <timers> <timers>
wQ rQ wQ rQ wQ Q wQ rQ

Scheduler \l/ 1\ \l/ /I\ \va\Q wQ/ o
e T e || 5ewen [T N /

threa _ . routing tables;

aneagl IP - Mod IP - Mod wo 0 3. ENQUEUE
heady $ T 3 i T j 2 ¢ y e PACKET
Callout Queues B B S CLASSIFIER J™ |

| I | I 2. LOOK-UP
sQ, 2 T, SQZ‘—\‘l mQ, sQ, U ",
\

RIO Scheduler

1. INTERRUPTT

APIC VClI QueuelD(ptr)
1 3232323
DEVICE
. . . QUEUE 2 3435345
Figure 4: Architecture of the RIO Subsystem and Its Relation-
; 4 3232355
ship to TAO

7777777277777 NETWORK

TAO's RIO subsystem is targeted currently for ATM/IP net-
work interfaces, such as 155 Mbps FORE Systems SBA-200e _ i o
ATM interfaces and 1.2 Gbps ATM Port Interconnect Con- 19ure 5: Early Demultiplexing in the RIO Subsystem
troller (APIC) network interface. The APIC is particularly in- L . -
teresting because it supports optimized protocol developmé’ﬁ?ket to determine its final destination thread efficiently.
zero-copy semantics, and real-time performance [7, 10]. HOw=p yiral path identifier is also assigned, though we only consider the VCI
ever, RIO is designed to support other high-performance nethis paper.

Early demultiplexing helps alleviate packet-based priority When sending packets to another host, protocol processing
inversion because packets need not be queued in FIFO oridarften performed within the context of the application thread
Instead, RIO supporriority-based queueingvhere packets that performed thevrite operation. The resulting packet is
destined for high-priority applications are delivered ahead mdissed to the driver forimmediate transmission on the network
low-priority packets. In contrast, the Solaris default netwoikterface link. With ATM, a pacing value can be specified for
I/O subsystem processes all packets at the same priority,a@sh active VC, which allows simultaneous pacing of multiple
gardless of the destination application thread. packets out the network interface. However, pacing may not

be adequate in overload conditions because output buffers can

Implementing early demultiplexing in RIO: The packet oyerflow, thereby losing or delaying high-priority packets.
classifier in TAO’s I/O subsystem can consult TAO's real-time

scheduling service to determine where the packet shouldsdution: RIO’s solution is to performschedule-driven
placed. This is required when multiple applications use a sfather than demand-driven, protocol processing of network I/O
gle VC, as well as when the link layer is not ATM. In theseequests. This solutioco-schedulekernel-threads with real-
cases, it is necessary to identify packets and associate tHg application threads to integrate a priority-based concur-
with rates/priorities on the basis of higher-level protocol agency architecture vertically throughout the ORB endsystem.
dresses like TCP port numbers. Moreover, the APIC devig protocol processing is performed in the context of kthreads
driver can be modified to search the TAO's run-time schelffat are scheduled with the appropriate real-time priorities.

uler [5] inthe ORB’s memory. TAO’srun-tlmeschedulermarﬁsnplementing Schedule-driven protocol processing in

TCP port numbers to rate groups in const) time. . RIO: The RIO subsystem uses thread pool[24] con-
At the lowest level of the RIO endsystem, the ATM driveg,,rency model to implement its schedule-driven kthreads.
distinguishes between packets based on their VCIs and stefig%ad pools are appropriate for real-time ORB endsystems

them in the appropriate RIO queus)for read queue andye .o se they (1) amortize thread creation run-time overhead
wQ for write queue). Each RIO queue pair is associated Wi}y (o) place an upper limit on the total percentage of CPU
exactly one Stream, but each Stream can be associated Wr% used by RIO kthread overhead.

zero or more RIO queuesse,, there is a many to one relation-
ship for the RIO queues. The RIO protocol processing kerne

thread (kthread) associated with the RIO queue then delivers
the packets to TAO’s ORB Core, as shown in Figure 4. 3 The reactor thread consues gy 2 ORB Core
Figure 4 also illustrates how all periodic connections are \

,:igure 6 illustrates the thread pool model used in RIO. This

assigned a dedicated Stream, RIO queue pair, and RIO kthread user
for input protocol processing. RIO kthreads typically service kemel Y
their associated RIO queues at the periodic rate specified by an
application. In addition, RIO can allocate kthreads to process 2. rRiokthread -3
the output RIO queue. Sxeautes the TCP/IP
the packet to the TCP/IP
ORB Core/Application Code f 3
3.2 Schedule-driven Protocol Processing N

1. Interrupt thread consults the Packet
Context: Many real-time applications require periodic 1/0 g:?;gggggzﬂi‘hemke““
processing [32]. For example, avionics mission computers
must process sensor data periodically to maintain accurate sit- - [
uational awareness [23]. If the mission computing system fails
unexpectedly, corrective action must occur immediately.

ATM Driver

i Demultiplexing i ¢
§

VCI #n

VCI #2

VCI #1

Packet Classifier
Problem: Protocol processing of input packets in Solaris
STREAMS is demand-drivepi.e, when a packet arrives theFigure 6: RIO Thread Pool Processing of TCP/IP with QoS
STREAMS I/O subsystem suspends all user-level processiagpport
and performs protocol processing on the incoming packet.
Demand-driven I/O can incur priority inversion, such as whemwol of protocol processing kthreads (RIO kthreads), is created
the incoming packet is destined for a thread with a priorigt I/O subsystem initialization. Initially these threads are not
lower than the currently executing thread. Thus, the ORB ettdund to any connection and are inactive until needed.
system may fail to meet the QoS requirements of the higheEach kthread in RIO’s pool is associated with a queue. The
priority thread. gueue links the various protocol modules in a Stream. Each

thread is assigned a particuleate, based on computations4 Overview of TAO'’s Pluggable Proto-
from TAO’s static scheduling service [5]. This rate corre-
sponds to the frequency at which requests are specified to ar- cols Framework
rive from clients. Packets are placed in the queue by the ap- o)
plication (for clients) or by the interrupt handler (for serverspimply providing enhancements to an I/O subsystem will not
Protocol code is then executed by the thread to shepherditfigessarily provide performance gains to applications built
packet through the queue to the network interface card orQiptop of middleware. Middleware provides transparency to
to the application. many aspects of communication in order to isolate the appli-
Applications can use the standard real-time CORBA [36ftion developers from inherent and accidental complexity as-
middleware APIs provided by TAO to schedule network intefociated with developing large, distributed applications [37].
face bandwidth and CPU time to minimize priority inversiohlOWever, in order to realize the full benefit of an optimized

and decrease interrupt overhead during protocol processing© Subsystem and advanced network interfaces, the inter-
RB protocol processing components of the middleware must

. provide a facility for leveraging the 1/0 subsystem. We have
3.3 Dedicated Streams implemented the ORB protocol processing components as a
Context: The RIO subsystem is responsible for enforcirfi@mework that allows for both novel protocol implementa-
QoS requirements for statically scheduled real-time applié@ns and for application developers to specify protocol at-
tions with deterministic requirements. tributes.

Problem: Unbounded priority inversions can result when
packets are processed in the I/O subsystem asynchronously, .
without respect for their priorities. 4.1 The CORBA Protocol Interoperability Ar-

Solution: The effects of priority inversion in the /0O subsys- chitecture

tem are minimized by isolating data paths throsgiREAMS o]]

to minimize resource contention. This is done in RIO by pré€ CORBA specification [1] defines an architecture for ORB
viding adedicatedsTREAM connection path that (1) allocatednteroperability. Although a complete description of the model
separate buffers in the ATM driver and (2) associates kerffgpeyond the scope of this paper, this section outlines the parts
threads with the appropriate RIO scheduling priority for prélat are relevant to our present topie,, inter-ORB protocols
tocol processing. This design resolves resource conflicts #g4thigh-performance network interfaces and QoS-enabled I/0
can otherwise cause thread-based and packet-based priorit4RSystems.

versions. CORBA Inter-ORB Protocols (IOP)s define interoperability
between ORB endsystems. I0Ps provide data representation

picts our implementation of DedicatedREAMS in RIO. In- formats and ORB messaging protocol specifications that can

coming packets are demultiplexed in the driver and passet?‘la mapped onto standard and/or customized transport proto-

the appropriate Stream. A map in the driver’s interrupt haf2'>: Regardless of the choice of ORB messaging or transport

dler determines (1) the type of connection and (2) whether gtocol, however, the .star_1dard CORBA programming model
@) P @) i posed to the application developers. Figure 7 shows the

packet should be placed on a queue or processed at inten’ﬁ@(.) .
context. relationships between these various components and layers.

Typically, low-latency connections are processed in inter-In the CORBA protocol interoperability architecture, the
rupt context. All other connections have their packets plac@@ndard General Inter-ORB Protocol (GIOP) is defined by
on the appropriats TREAM queue. Each queue has an assoéite CORBA specification [1]. In addition, CORBA defines
ated protocol kthread that processes data through the Stredffansport-specific mapping of GIOP onto the TCP/IP proto-
These threads may have different priorities assigned by TAG® suite called the Internet Inter-ORB Protocol (IIOP). ORBs
scheduling service. must support [IOP to be “interoperability compliant.” Other

Akey feature of RIO’s DedicatesirREAMSdesign is its use Mappings of GIOP onto different transport protocols are al-
of multiple output queues in the client's ATM driver. With thidowed by the specification, as are different inter-ORB pro-
implementation, each connection is assigned its own transr§0ls, known as Environment Specific Inter-ORB Protocols
sion queue in the driver. The driver services each transmissig®!OP)s.
gueue according to its associated priority. This design allowsRegardless of whether GIOP or an ESIOP is used, a
RIO to associate low-latency connections with high-prioritfORBA I0P must define a data representation, an ORB mes-
threads to assure that its packets are processed before all atige format, an ORB transport protocol or transport protocol
packets in the system. adapter, and an object addressing format.

Implementing Dedicated STREAMs in RIO: Figure 4 de-

IN ARGS

STANDARD CORBA PROGRAMMING API o——»
__ CLIENT operation (args) OBJECT (SERVANT)

ORB MESSAGING OUT ARGS & RETURN VALUE
GIOP GIOPLITE ESIOP

COMPONENT OTHER
__ E ORB MESSAGING COMPONENT ORB
CORE
ORB TRANSPORT IOP VME-IOP ATM -IOP E G10Pure || FEATE || oLesst || evecooeo SERVICES
ADAPTER COMPONENT RELIABLE 5 ESIOP
""""""""""""""""""" SEQUENCED z —
£ RELIABLE, ORB T
TRANSPORT LAYER TCP | TCP BYTE-STREAVI
VME AALDS :
2
)

ORB TRANSPORT ADAPTER COMPONENT

NETWORK LAYER IP ATM ADAPTIVE Communication Environment (ACE)

REAL -TIME | /O SUBSYSTEM
__ COMMUNICATION INFRASTRUCTURE EETETeIreee)

PROTOCOL CONFIGURATIONS

Figure 7: Relationship Between Inter-ORB Protocols amdoure 8: TAO's Pluggable Protocols Framework Architecture
Transport-specific Mappings

gable protocols framework: (1) the ORB messaging compo-

4.2 TAO'’s Pluggable Protocols Framework Ar- nent, (2) the ORB transport adapter component, and (3) the
chitecture ORB policy control component, which are outlined below.

TAO's p]uggable protocols framework allows custom OR_ 2.1 ORB Messaging Component
messaging and transport protocols to be configured flexibly
and used transparently by CORBA applications. For exampijs component is responsible for implementing ORB mes-
if ORBs communicate over a high-performance networkisgging protocols, such as the standard CORBA GIOP ORB
protocol like ATM AALS, then simpler, optimized ORB mesmessaging protocol, as well as custom ESIOPs. As described
saging and transport protocols can be configured to eliminatg§1], ORB messaging protocols should define a data repre-
unnecessary features and overhead of the standard CORBAtation, an ORB message format, an ORB transport protocol
General Inter-ORB Protocol (GIOP) and Internet Inter-OR® transport adapter, and an object addressing format. Within
Protocol (IIOP). Likewise, TAO’s pluggable protocols framethis framework, ORB protocol developers are free to imple-
work makes it straightforward to support customized embetlent optimized Inter-ORB protocols and enhanced transport
ded system interconnects, such as CompactPCl or VME, urafgsiptors as long as the ORB interfaces are respected.
standard CORBA inter-ORB protocols like GIOP. Each ORB messaging protocol implementation inherits
To address the research challenges identified in Section fr@dn a common base class that defines a uniform interface.
we identified logical communication component layers withifhis interface can be extended to include new capabilities
TAO, factored out common features, defined general franmeeded by special protocol-aware policies. For example, ORB
work interfaces, and implemented components to support difid-to-end resource reservation or priority negotiation can
ferent concrete inter-ORB protocols. Higher-level compbe implemented in an ORB messaging component. TAO'’s
nents in the ORB, such as stubs, skeletons, and stangduggable protocols framework ensures consistent operational
CORBA pseudo-objects, are decoupled from the implemengharacteristics and enforces general IOP syntax and semantic
tion details of particular protocols, as shown in Figure 8. Thisnstraints, such as error handling.
decoupling is essential to resolve the various limitations with|n general, it is not necessary to re-implement all aspects of
conventional ORBs outlined in Section 1.1 and discussed fafr ORB messaging protocol. For example, TAO has a highly
ther in [19]. optimized presentation layer implementation that can be used
In general, the higher-level components in TAO use abstragtnew protocols [26]. This presentation layer data represen-
interfaces to access the mechanisms provided by its pluggasli®n contains well-tested and highly-optimized memory allo-
protocols framework. Thus, applications can (re)configuration strategies and data type translations. Thus, protocol de-
custom protocolswithout requiring global changes to thevelopers can simply identify new memaory or connection man-
ORB. Moreover, because applications typically access oalyement strategies that can be used within the existing plug-
the standard CORBA APIs, TAO's pluggable protocols framgable protocols framework.
work is transparent to CORBA application developers. Other key parts of TAO's ORB messaging component are
Figure 8 also illustrates the key components in TAO's plugs message factories. During connection establishment, these

©

factories instantiate objects that implement various ORB mégation to define semantic properties of ORB features pre-
saging protocols. These objects are associated with a specifiely without (1) over-constraining ORB implementations or
connection and ORB transport adapter componentthe ob- (2) increasing interface complexity for common use cases.
ject that implements the component, for the duration of theCertain policies, such as timeouts, can be shared between
connection. multiple protocols. Other policies, such as ATM virtual circuit
bandwidth allocation, may apply to a single protocol. Each
configured protocol can query TAO's policy control compo-
nent to determine its policies and use them to configure itself
This component maps a specific ORB messaging protodol, user needs. Moreover, a protocol implementation can sim-
such as GIOP or DCE-CIOP, onto a specific instance of ply ignore policies that do not apply to it.
underlying transport protocol, such as TCP or ATM. Figure 8 TAO'’s policy control component also allows applications
shows an example in which TAO’s transport adapter maps tbeselect their protocol(s). This choice can be controlled
GIOP messaging protocol onto TCP (this standard mappingisthe ClientProtocolPolicy defined in the Real-time
called IIOP). In this case, the ORB transport adapter combir@@RBA specification [36]. Using this policy, the application
with TCP corresponds to the transport layer in the Internet refdicates its preferred protocol(s) and TAO's policy control
erence model. However, if ORBs are communicating over @amponent attempts to match that preference with the set of
embedded interconnect, such as a VME bus, the bus driver available protocols. Yet another policy controls the behavior
DMA controller provide the “transport layer” in the commuef the ORB if an application’s preferences cannot be satisfied,
nication infrastructure. e.g, either an exception is raised or another available protocol
TAO’s ORB transport component accepts a byte-stredsrselected transparently.
from the ORB messaging component, provides any additional

processing required, and passes the resulting data unit to the]]

underlying communication infrastructure. Additional proces® Integrating High-Performance Net-

ing that can be impleme_nted by protocol developers includes work Interfaces with ORB Endsys-

(1) concurrency strategies, (2) endsystem/network resource

reservation protocols, (3) high-performance techniques, such tems

as zero-copy /O, shared memory pools, periodic I/O, and in-

terface poo"ng, (4) enhancement of under'ying Communic-ajis section Comp|ementS Section 3 and Section 4 by illus-
tions protocolse.g, provision of a reliable byte-stream prototrating how TAO's RIO subsystem and pluggable protocols
col over ATM, and (5) tight coupling between the ORB and eftamework can be integrated with high-performance network

ficient user-space protocol implementations, such as Fast MB&rfaces. To focus the discussion, we present a use-case
sages [38]. where ORB endsystems must support a high-performance,

real-time CORBA application using the ATM Port Intercon-

nect Controller (APIC) [7, 10] developed at Washington Uni-

versity. This scenario is based on our experience developing

This component allows applications to explicitly control theigh-bandwidth, low-latency audio/video streaming applica-

QoS attributes of configured ORB transport protocols. Siné@ns [17] and avionics mission computing [23, 19].

it is not possible to determirgepriori all attributes defined by

all protocols, an extensiblgolicy controlcomponent is pro- 5 1 High-performance Network Interface Fea-

vided by TAO’s pluggable protocols framework. TAO's policy tures

control component implements the QoS framework defined in

the CORBA Messaging [39] and Real-time CORBA [36] speés shown in Figure 9, the TAO ORB endsystem can be con-

ifications. figured with a high-performance network interface and a real-
To control the QoS attributes in the ORB, the CORBAme I/O (RIO) subsystem [6] designed to maximize available

QoS framework allows applications to specify variqai- bandwidth to a mix of demanding applications. In this use-

cies such as buffer pre-allocations, fragmentation, bandwidthase, RIO is configured to support the 1.2 Gbps ATM Port

reservation, and maximum transport queue sizes. These gaoterconnect Controller (APIC) network interface.

cies can be set at the ORB-, thread-, or object-léxe] appli- The APIC is custom 1/O chipset that incorporates several

cation developers can set global policies that take effect for angchanisms designed to improve throughput and reduce la-

request issued in a particular ORB. These global settings tamcy. These mechanisms include £&)o-copyshared mem-

be overridden on a per-thread, per-object, or even per-requegtpools between user- and kernel-space, (2) per-VC pacing,

basis. In general, the use of policies enables the CORBA sp@&}-two levels of priority queues, (4) interrupt disabling on a

4.2.2 ORB Transport Adapter Component

4.2.3 ORB Policy Control Component

10

CLIENT \

obj->op (par‘ams)

| lish network reservations that enfqrce their dgsired bandwidth

- and delay. Although the connection establishment and QoS

s g DEMARSHAL \ IDL e negotiations are part of the underlying network protocol and
STUBS

SKELETON ap) . . .
PARAMS LS osparcH | (—osreot oaF the ORB's IOP, they will be transparent to the application.

MESSAGE |
4

BUFFER
MANAGEMENT

ORB MESSAGING ORB MESSAGING
ORB TRANSPORT E [E E ORB TRANSPORT

REAL-TIME | /O REAL-TIME | /O
\

APIC APIC Leveraging the underlying APIC network interface hardware
T o o] omver to meet the end-to-end QoS requirements of the multimedia
[]

application described above necessitates the resolution of the
Figure 9: Real-Time ORB Endsystem Example following design challenges:

5.3 Meeting ORB Endsystem Integration De-
sign Challenges

OUTGOING
ONINOINI

1. Custom protocols: This challenge centers on creating
per-VC basis, and (5)rotected DMAThe APIC’s zero-copy custom ORB messaging and transport protocols that can ex-
mechanism [7] uses system memory to buffer cells, thergligit the high-performance APIC network interface hardware.
minimizing on-board memory, which reduces its cost. Theor the multimedia streaming application, a simple frame se-
APIC’s protected DMA [10] mechanism allows user-spacgiencing protocol can be used as an ESIOP. The goal is to
protocols to queue buffers for transmission or reception dimplify the messaging protocol, while adding any QoS re-
the network interface directly, thereby providing separate ptated information to support the timely delivery of the video
tected data channels to each active connection. To imprénegnes and audio. For example, an ORB message would cor-
end-to-end throughput and latency, protected DMA bypassespond to one video frame or audio packet. A timestamp and
intermediate kernel-level processing. sequence number can be sent along with each ORB message to
facilitate synchronization between endpoints. The ORB mes-
saging protocol can perform a similar function as the real-time
protocol (RTP) and real-time control protocol (RTCP) [40].

This ORB messaging protocol can be mapped onto an ORB
Multimedia applications running over high-performance ndfansport protocol using ATM AALS. The ORB's transport
works require special optimizations to utilize available linRd@pter is then responsible for exploiting any local optimiza-
bandwidth while reducing overall load on system resourdé&s to hardware or OS I/O subsystem. For example, tradi-
such as memory and bus bandwidth. For example, consit@pal ORB implementations will copy user parameters into

Figure 10, where network interfaces supporting 1.2 Mb B buffers used for marshaling. These may be allocated
rom global memory or possibly from a memory pool main-

tained by the ORB. In either case, at least one system call is
required to obtain mutexes, allocate buffers and finally copy
data. Thus, not only is an additional data copy incurred, but
this scenario is rife with opportunities for priority inversion

5.2 Multimedia Streaming Application Fea-
tures

WUGS HIGH- SPEED CITI))

['suppLER | NETWORK == and indefinite application blocking.
TAO QOS-ENABLED ORB TAO QOS-ENABLED ORB .) 3 .)
0o 5 g 15— 2. Optimized protocol implementations: This challenge
C T J s Centers on optimizing communication protocol implementa-

RIO SUBSYSTEM RIO SUBSYSTEM tions, e.g, by sharing memory between the application, TAO

Figure 10: Example CORBA-based Multimedia ApplicatiotDRB middleware, RIO’s I/O subsystem in the OS kernel, and
the APIC network interface. This sharing can be achieved by

or 2.4 Mbps link speeds are used for a multimedia applicgaquiring the message encapsulation process to use memory
tion based on the CORBA Audio/Video (A/V) Streaming Seellocated from a common buffer pool [10, 26], which elim-
vice [17]. inates memory copies between user- and kernel-space when

In this scenario, we replaced GIOP/IIOP with a custodata is sent and received. The ORB endsystem manages this
ORB messaging and transport protocol that transmits Afvemory, thereby relieving application developers from this re-
frames using AAL5 over ATM to take full advantage of a highsponsibility. In addition, the ORB endsystem can transpar-
performance ATM port interconnect controller (APIC) [10fently manage the APIC interface driver, interrupt rates, and
For example, applications can use the APICs features to espa®ing parameters, as outlined in [6].

11

5.4 Bringing the Components Together 6 ORB Endsystem Benchmarking Re-
sults

Figure 11 shows how the various ORB endsystem componef{f section presents empirical results that show how the
described above can be configured together to support ourggy sybsystem decreases the upper bound on round-trip delay
ample multimedia streaming application. In this configuratiog,, low-latency applications and provides periodic processing
guarantees for bandwidth-sensitive applications. The test sys-
tems are relatively slow compared to systems currently avail-
able however the relative speeds of the network interface, I/O
bus and CPU remains valid. These empirical benchmarks that

CONSUMER I

) —
SUPPLIER l

_>ship (frame) DEMARSHAL) j i . .
e >SE'F' e Fraves [show how TAO’s vertically integrated ORB endsysteira,,
\ 4 (sketeron its Object Adapter, ORB Core, pluggable protocols frame-
MARSHAL ! ORBMANAGED I m .
FRAMES | DATABUFFERS | work, RIO subsystem, and network interface, can (1) decrease

OUTGOING
ONIWOINI

=D . . the upper bound on round-trip delay for latency-sensitive ap-
ORB MESSAGING CDR ORB pevux T ORB MESSAGING X " N T N
E CORE plications and (2) provide periodic processing guarantees for
ore TRaNSPORTIN ¢ . 7 e .
% bandwidth-sensitive applications. Earlier work has reported

GET FREE // APPEND ..
empirical results for separate benchmarks of each component
in TAO’s ORB endsystem, including the Object Adapter [6],
ORB Core [24], pluggable protocols framework [19], and RIO
] subsystem [6, 15]. This section extends these results by high-
[] lighting the major features of TAO’s ORB endsystem archi-
tecture that have bedntegratedwith an optimized network

Figure 11: Shared Buffer Strategy interface and driver.

OS KERNFEL OS KERNEL

\
REC FREE|

APIC

ATM LINK

GET FREE

6.1 Hardware Configuration

the ORB.manages all the memory on behalf of the appht@ar experiments were conducted using a FORE Systems
tion. For instance, the application can request a set of buffﬂ -1000 ATM switch connected to two SPARCS: a uni-
from the ORB, which it uses to send and receive video a cessor 300 MHz UltraSPARC? with 256 MB RAM and
audio data. TAO can be configured to allocate these buffgri70 MHz SPARCS with 64 MB RAM. Both SPARCS ran
within memory shared between the application, ORB middlgblaris 2.5.1 and were connected via a FORE Systems SBA-

ware, RIO subsystem, and APIC driver in the kernel. T Oe ATM network interface to an OC3 155 Mbps port on the

ORB's transport adapter manages this shared buffer p°°'A°§‘x-1000. The testbed configuration is shown in Figure 12.
a per-connection basis to minimize lock contentieug, each

active connection is assigned its own send and receive queues _ _
in Figure 11. Likewise, there are two free buffer pools pe6.2 Measuring the End-to-end Real-time Per-

connection, one for incoming packets and one for outgoing formance of the RIO Subsystem

packets. .) . .
Below, we present results that quantify the benefits gained in

The ORB's pluggable protocols framework can ensure tatms of bounded latency response times and periodic process-
only one application thread will be active within the send @ng guarantees. RIO uses a periodic processing model to pro-
receive operation of the transport adapter. Therefore, buffete bandwidth guarantees and to bound maximum throughput
allocation and de-allocation can be performed without exti@a each connection.
neous locking [10]. Moreover, TAO's ORB endsystem config-
uration can be strategized so that application video and aug
data can be copied conditionally into ORB buffers. For in-
stance, it may be more efficient to copy relatively small dataur experiments were performed using the testbed configura-
into ORB buffers, rather than use shared buffers between tloa shown in Figure 12. To measure round-trip latency we use
ORB and the network interface. By using TAO’s policy cora client application that opens a TCP connection to an “echo
trol component described in Section 4.2, applications can server” located on the SPARC5. The client sends a 64 byte
lect their degree of sharing on a per-connection, per-threddta block to the echo server, waits on the socket for data to
per-object, or per-operation basis. return from the echo server, and records the round-trip latency.

i?.l Benchmarking Configuration

12

) kthreads.
Services

6.2.2 Measuring Low-latency Connections with Compet-
ing Traffic
(o] c1 Cn

Object Adapter

Client SarviET Benchmark design: This experiment measures the deter-

minism of the RIO subsystem while performing prioritized
protocol processing on a heavily loaded server. The results
illustrate how RIO behaves when network I/0O demands ex-
ceed the ability of the ORB endsystem to process all requests.
LEET) Sparc 5 The SPARCS is used as the server in this test because it can
process only~75% of the full link speed on an OC3 ATM
interface usingtcp with 8 KB packets.

Two different classes of data traffic are created for this test:
(1) a low-delay, high-priority message stream and (2) a best-
FORE ASX-1000 effort (low-priority) bulk data transfer stream. The message
stream is simulated using the latency application described
in Section 6.2.1. The best-effort, bandwidth intensive traffic
is simulated using a modified version of tliep program,

The client application performs 10,000 latency measu}'&bmh sends 8 KB pqckets from.the chent' tothe SErver. .
ments, then calculates the mean latency, standard deviation '€ latency experiment was first run with competing traffic
and standard error. Both the client and server run at the saffie'd the default Solaris I/0 subsystem. Next, the RIO subsys-

thread priority in the Solaris real-time (RT) scheduling clasdem was enabled, RIO kthreads and priorities were assigned to

Bandwidth tests were conducted using a modified versi%?nCh connection, and the experiment was repeated. The RIO

of ttcp [41] that sent 8 KB data blocks over a TCP COA(_threads used for processing the low-delay, high-priority mes-

nection from the UltraSPARC2 to the SPARCS5. Threads tl‘feﬂges were assigned a real-time global p”of“y of 100. The
receive bandwidth reservations are run in the RT schedul ibncy client and echo server were also assigned a real-time

ATM Switch

Figure 12: ORB Endsystem Benchmarking Testbed

class, whereas best-effort threads run in the TS schedu al priority of 100. L .
class. he best-effort bulk data transfer application was run in the

The default behavior of the Solaris I/O subsystem is to pgme-shanng CLanS' i Thel corre;;?]ondlrllgbl?llo _ktr_]rea?%(;anl n
form network protocol processing at interrupt context [1 1e system scheauling class W.'t a global priority o). N
Our measurements reveal the effect of performing netw gneral, all b.ESt effort cpnnectlons use a RIO kthrgad in the
protocol processing at interrupt context versus performin S Sczed“"r}g cIas; W]Lth ahglcl;tl)gl Iprlorlty gf GOH F'gllire 13
in a RIO kthread. With the interrupt processing model, the infows the configuration for the atency benchmark.
put packet is processed immediately up through the netwgyk,
protocol stack. Conversely, with the RIO kthreads model, thgy 1 900 samples in each configuration are summarized in the
packet is placed in a RIO queue and the interrupt thread exity) ;e pelow:

This causes a RIO kthread to wake up, dequeue the packet,

chmark results and analysis: The results from collect-

and perform protocol processing within its thread context. Mean Max Min Jitter
A key feature of using RIO kthreads for protocol process- Default | 1072us | 3158us | 594us | 497 us
ing is their ability to assign appropriate kthread priorities and RIO 946pus | 2038us | 616us | 282us

to defer protocol processing for lower priority connections.
Thus, if a packet is received on a high-priority connection, tfidis table compares the behavior of the default Solaris 1/0
associated kthread will preempt lower priority kthreads to preubsystem with RIO. It illustrates how RIO lowers the upper
cess the newly received data. bound on latency for low-delay, high-priority messages in the
Our previous results [6] revealed that using RIO kthreadspresence of competing network traffic. In particular, RIO low-
the RT scheduling class results in a slight increase of 13-dred the maximum round-trip latency by 35% (1,1&), the
1S in the round-trip processing times in our testing enviroaverage latency by 12% (126), and jitter by 43% (215s).
ment. This latency increase stems from RIO kthread dispalfidie distribution of samples are shown in Figure 14. This fig-
latencies and queuing delays. However, the significant resuk highlights how RIO lowers the upper bound of the round-
was the overall reduction in latency jitter for real-time RI@ip latency values.

13

Ultra2 SPARCS ports real-time I/O. The results in this section demonstrate this:

ey RIO achieved latencies no greater than 2.038 ms, even when
TECP 3 TTCP eChgs" ' the ORB endsystem was heavily loaded with best-effort data
Q transfers.
N \ Figure 15 shows the average bandwidth used by the mod-
: — ified ttcp applications during the experiment. The dip in
TCP TCP TCP TCP
13
\l/ \& /p /p Q/ /F Default Behavior <
O T B B O) e T
IP IP IP IP 12 ey RS ER G S e S
ﬁ ﬂ\ ¢ P VY f :
= i H ; i
RTO SYS0 RTO g } b
% T 10 o
ATM Driver ATM Driver E ol -
N L7 ~ 27 g L
m 8 & 2 R
High Priority VCI = 130 ‘ f‘
Low Priority VCI = 100 7 b
Figure 13: RIO Low-latency Benchmark Configuration 6
0 10 20 30 40 50 60
80 Sample Number
| Default Behavior Figure 15: Bandwidth of Competing Traffic
70 sing
60 throughput between sample numbers 10 and 20 occurred when
3 ! the high-priority latency test was run, which illustrates how
£ 50 ; RIO effectively reallocates resources when high-priority mes-
% 20 13 sage traffic is present. Thus, the best-effort traffic obtains
5 | slightly lower bandwidth when RIO is used.
= 30
< 20 6.2.3 Measuring Bandwidth Guarantees for Periodic
Processing
10
o Benchmark design: RIO can enforce bandwidth guarantees
%5 1 15 25 3 35 because it implements a schedule-driven protocol processing
milli seconds model [6], whichco-schedulegernel threads with real-time
Figure 14: Latency with Competing Traffic application threads in the TAO’s ORB Core. In contrast, the

default Solaris 1/0 subsystem processes all input packets on-
demand at interrupt context., with a priority higher than all
These performance results are particularly relevant for resther application threads and non-interrupt kernel threads.
time systems where ORB endsystem predictability is cru-The following experiment demonstrates the advantages and
cial. The ability to specify and enforce end-to-end prioritiescuracy of RIO’s periodic protocol processing model. The
over transport connections helps ensure that ORB endsysterperiment was conducted using three threads that receive spe-
achieve end-to-end determinism. cific periodic protocol processinge., bandwidth, guarantees
Another advantage of RIO’s ability to preserve end-to-efidm RIO. A fourth thread sends data using only best-effort
priorities is that the overall system utilization can be increasgglarantees.
For instance, the experiment above illustrates how the upAll four threads run thetcp program, which sends 8 KB
per bound on latency was reduced by using RIO to presedata blocks from the UltraSPARC?2 to the SPARCS. For each
end-to-end priorities. For example, system utilization mdyandwidth-guaranteed connection, a RIO kthread was allo-
be unable to exceed 50% while still achieving a 2 ms uppeated in the real-time scheduling class and assigned appro-
bound for high-priority message traffic. However, higher sygriate periods and packet countg,, computation time. The
tem utilization can be achieved when an ORB endsystem shpst-effort connection was assigned the default RIO kthread,

14

which runs with a global priority of 60 in the system schedul- 14
ing class. Thus, there were four RIO kthreads, three in the | Rt By = 3 MaPs
real-time scheduling class and one in the system class. The Requested BW = 1.6 MBps =
following table summarizes the RIO kthread parameters for 10
the bandwidth experiment.
" 8

RIO Config | Period | Priority | Packets | Bandwidth @ ‘

kthread 1 | 10ms | 110 8 6.4 MBps = 6

kthread 2 10 ms | 105 4 3.2 MBps |

kthread 3 10ms | 101 2 1.6 MBps 4

kthread 4 | Async | 60 Available | Available A M S

(best-effort) L2 I A VS oot VOV ptpiviiiest v

_The three application thregds that received lspecific banQ— 0 0 5 2 6 8 0 12 14

width guarantees were run with the same real-time global pri- sec
orities as their associated RIO kthreads. These threads were Figure 16: Bandwidth Guarantees in RIO

assigned priorities related to their guaranteed bandwidth re-

quirements — the higher the bandwidth the higher the priority.

Thettcp application thread and associated RIO kthread witiection in the experiment above receive no more than 40% of
a guaranteed 6.4 MBps were assigned a real-time prioritytio¢ available bandwidth on a given network interface.

110. The application and RIO kernel threads with a bandwidth

of 3.2 MBps and 1.6 MBps were assigned real-time prioriti%s_3 Measuring the End-to-end Real-time Per-

of 105 and 101, respectively.
RIO kthreads are awakened at the beginning of each period. formance of the TAO/RIO ORB Endsystem

They first check their assigned RIO queue for packets. Afgction 6.2 measured the performance of the RIO subsystem

processing their assigned number of packets they sleep waitingolation. This section combines RIO and TAO to create a

for the start of the next period. vertically integrated real-time ORB endsystem and then mea-
The best-effort application thread runs in the time sharisgres the impact on end-to-end performance when run with

class. Its associated RIO kthread, called the “best-effort” Rjftototypical real-time ORB application workloads [24].

kthread, is run in the system scheduling class with a global

priority of 60. The best-effort RIO kthread is not schedulegl 1 Benchmark Design

periodically. Instead, it waits for the arrival of an eligible net-

work 1/0 packet and processes it “on-demand.” End-to-eftie benchmark outlined below was performed twice: (1) with-

priority is maintained, however, because the best-effort RE@t RIO,i.e., using the unmodified default Solaris 1/0 subsys-

kthread has a global priority lower than either the applicatié@m and (2) using our RIO subsystem enhancements. Both

threads or RIO kthreads that handle connections with bahé@nchmarks recorded average latency and the standard devi-
width guarantees. ation of the latency values.e., jitter. The server and client

benchmarking configurations are described below.
Benchmark results and analysis: In the experiment, the)) o o
best-effort connection starts first, followed by the 6.4 MBpSErver benchmarking configuration: As shown in Fig-

3.2 MBps, and 1.6 MBps guaranteed connections resp\éﬁe— 12, the server hostis the 170 MHz SPARCS5. This hostruns

tively. Figure 16 presents the results, showing the effect Gf real-time ORB with two servants in the Object Adapter.
the guaranteed connection on the best-effort connection. Thep'gh'pr'c’:ti’ servant runs in a thread W't? an RT prior-
This figure clearly shows that the guaranteed connectidps® 130. Thelow-priority servant runs in a lower priority

received their requested bandwidths. In contrast, the b {_ead with an RT threaq priority of 100'. Each thread pro-
?E;ses requests sent to it by the appropriate client threads on

effort connection loses bandwidth proportional to the ban :
> UltraSPARC2. The SPARCS is connected to a 155 Mpbs

width granted to guaranteed connections. The measuringt) o
C3 ATM interface so the UltraSPARC?2 can saturate it with
etwork traffic.

terval was small enough for TCPs “slow start” algorithm [4
to be observed.

Periodic protocol processing is useful to guarantee ba@lient benchmarking configuration: As shown in Fig-
width and bound the work performed for any particular conre 12, the clientis the 300 MHz, uni-processor UltraSPARC2,
nection. For example, we can specify that the best-effort cavhich runs the TAO real-time ORB with one high-priority

15

client Cy andn low-priority clients, Cy... C,,. The high- number of requests per period, so they have the same priori-

priority client is assigned an RT priority of 130, which is th&es. Thus, only one RIO kthread is used. Moreover, because it

same as the high-priority servant. It invokes two-way CORBA desirable to treat low-priority messages as best-effort traffic,

operations at a rate of 20 Hz. the RIO kthread is placed in the system scheduling class and
All low-priority clients have the same RT thread priority ofissigned a global priority of 60.

100, which is the same as the low-priority servant. They in-To minimize latency, high-priority requests are processed

voke two-way CORBA operations at 10 Hz. In each call tHey threads in the Interrupt (INTR) scheduling class. Therefore,

client thread sends a value of ty@ORBA::Octet to the we create two classes of packet traffic: (1) low-latency, high

servant. The servant cubes the number and returns the respiiority and (2) best-effort latency, low-priority. The high-
The benchmark program creates all the client threadspsiprity packet traffic preempts the processing of any low-

startup time. The threads block on a barrier lock until all clieptiority messages in the 1/0O subsystem, ORB Core, Object

threads complete their initialization. When all threads inforAdapter, and/or servants.

the main thread that they are ready, the main thread unblocks

the clients. The client threads then invoke 4,000 CORBA twg3 2 Benchmark Results and Analysis

way operations at the prescribed rates. . _ _ _
This experiment shows how RIO increases overall determin-

RIO subsystem configuration: When the RIO subsystem isism for high-priority, real-time applications without sacrific-
used, the benchmark has the configuration shown in Figureihg. the performance of best-effort, low-priority, and latency-
With the RIO subsystem, high- and low-priority requests agensitive applications. RIO’s impact on overall determinism
of the TAO ORB endsystem is shown by the latency and jitter
Ultra2 SPARC5S results for the high-priority clienfy and the average latency
Client Application Server ORB Core and.jitter forpto 49 low-priority clients}; ... C.,. .
Figure 18 illustrates the average latency results for the high-
and low-priority clients both with and without RIO. This figure

ORB Core

Reactor Reactor
10Hz 20Hz

12000
’El‘ Default High Priority Clients -
Default Low Priority Clients, -+
p— ‘ y | y | 10000 O™ High Prisiity Clight 575
TCP TCP TCP TCP ., 8000
\L 2
i :
2 6000
IP IP IP IP .g
/I\ /r /r /r € 4000 : .
RT RT_ }
Periodic| INT Periodic | INT 2000 e s M s S
0
ATM Driver ATM Driver 0 5 10 15 20 25 30 35 40 45 50
// \ \ // Number of Low Priority Clients
\ N Figure 18: Measured Latency for All Clients with and without

RIO

High Priority VCI = 130 L Lo .
Low Priority VCI = 100 shows how TAO eliminates many sources of priority inversion

within the ORB. Thus, high-priority client latency values are
Figure 17: ORB Endsystem Benchmarking Configurationre|atively constant, compared with low-priority latency values.
Moreover, the high-priority latency values decrease when the
treated separately throughout the ORB and 1/O subsystemthe RIO subsystem is enabled. In addition, the low-priority
Low-priority client threads transmit requests at 10 Helients’ average latency values track the default /0O subsys-
There are several ways to configure the RIO kthreads. Fortems behavior, illustrating that RIO does not unduly penalize
stance, we could assign one RIO kthread to each low-priotitgst-effort traffic. At 44 and 49 low-priority clients the RIO-
client. However, the number of low-priority clients varies fromanabled endsystem outperforms the default Solaris 1/0 subsys-
0to 50. Plus all clients have the same period and send the stane

16

Figure 19 presents a finer-grained illustration of the round- 16900
trip latency and jitter values for high-priority client vs. the 14000 Default Law P ?g%yc(':'ﬁ’e‘ft e
number of competing low-priority clients. This figure illus- 12000
2100 . , 10000
Default High Priority Clients —— g
2000 R O HI h PIIJIIt_y CIICIIt 8 8000
(0]
1900 2 sono
1800 £
0 4000
e 1700 %
S 2000 |+
8 1600
§ 1500 0
E 2000
1400 0 5 10 15 20 25 30 35 40 45 50
1300 Number of Clients
1200 I Figure 20: Low-priority Client Latency
1
1100 .
0 5 10 15 20 22 0¥ 40 45 50 chitectures [24], and IDL compiler stub/skeleton optimiza-

Figure 19: High-priority Client Latency and Jitter tions [26]. This paper extends results in [6, 19] to illustrate
how the TAO's real-time 1/O subsystem and pluggable proto-
trates how not only did RIO decrease average latency, butGesS framework can exploit underlying hardware and software
jitter results were substantially better, as shown by the erfiftimizations for high-performance network interfaces. The
bars in the figure. The high-priority clients averaged a 13ggmainder of this section compares our work on TAO with re-
reduction in latency with RIO. Likewise, jitter was reduced dtéd ORB endsystem research.
an average of 51%, ranging from a 12% increase with no com-

petilng Iow_-prioritly clitents to a69% reduction with 44 compet7 1 Related Work on QoS-enabled 1/0
ing low-priority clients. Subsvstems
In general, RIO reduced average latency and jitter because y
it used RIO kthreads to process low-priority packets. CoQur real-time 1/0 (RIO) subsystem incorporates advanced
versely, in the default SolarisTREAMS I/O subsystem, ser-techniques [8, 10, 31, 33, 14] for high-performance and real-
vant threads are more likely to be preempted because thra@fe protocol implementations. Below, we compare RIO with
from the INTR scheduling class are used for all protocol preelated work on 1/O subsystems.
cessing. Our results illustrate how this preemption can signif-
icantly increase latency and jitter values. I/0 subsyste_m support for QoS: The Scout OS [29] em-
Figure 20 shows the average latency of low-priority clieR{OYS the notion of athto expose the state and resource re-
threads. This figure illustrates that the low-priority clients ifluirements of all processing components ffoa. Similarly,
curred no appreciable change in average latency. There wQSgRIO subsystem reflects the path principle and incorporates
slight increase in jitter for some combinations of clients due fgVith TAO and Solaris to create a vertically integrated real-
the RIO kthreads dispatch delays and preemption by the higi{& ORB endsystem. For instance, RIO subsystem resources
priority message traffic. This result demonstrates how the R|&¢ CPU, memory, and network interface and network band-
design can enhance overall end-to-end predictability for re4fdth are allocated to an application-level connection/thread
time applications while maintaining acceptable performanq:\é”ng connection establishment, which is similar to Scout’s

for traditional, best-effort applications. inding of resources to a path. o o
Scout represents a fruitful research direction, which is com-

plementary with our emphasis on demonstrating similar ca-
7 Related Work pabilities in existing operating systems, such as Solaris and

NetBSD. At present, paths have been used in Scout largely
High-performance and real-time ORB endsystems are fan MPEG video decoding and display and not for protocol
emerging field of study. We have used TAO to research kggpcessing or other I/O operations. In contrast, we have suc-
dimensions of ORB endsystem design including static [5] anéssfully used RIO for a number of real-time avionics applica-
dynamic [22] scheduling, request demultiplexing [26], evetions [23] with deterministic QoS requirements.
processing [23], ORB Core connection and concurrency arSPIN [43, 44] provides an extensible infrastructure and a

17

core set of extensible services that allow applications to safalpts are recognized as a key source of non-determinism and
change the OS interface and implementation. Applicatidi2) schedule-driven protocol processing is proposed as a solu-
specific protocols are written in a type-safe langudjexus tion.

and configured dynamically into the SPIN OS kernel. BecausaVhile RIO shares many elements of the approaches de-
these protocols execute within the kernel, they can access setibed above, we have combined these concepts to create the
work interfaces and other OS system services efficiently. fligt vertically integrated real-time ORB endsystem. The re-
the best of our knowledge, however, SPIN does not suppsutting ORB endsystem provides scalable performance, peri-
end-to-end QoS guarantees. odic processing guarantees and bounded latency, as well as an

end-to-end solution for real-time distributed object computing
Enhanced I/O subsystems: Other related research has fomiddleware and applications.

cused on enhancing performance and fairness of I/O subsys-

tems, though not specifically for the purpose of providing real-

time QoS guarantees. These techniques are directly applich% Related Work on Pluggable Protocol
to designing and implementing real-time 1/0O and providing Frameworks

QoS guarantees, however, so we compare them with our RI

subsystem below. fluenced by prior research on the design and optimization of

[33] applies several high-performance techniques t0,gy. .o frameworks for communication subsystems, as de-
STREAMSbased TCP/IP implementation and compares t iRARAMYY. communication frameworks: The x

results to a BSD-based TCP/IP implementation. This wo)
is similar to RIO, because Roca and Diot parallelize thdifMe! [45], System V STREAMS [46], Conduit+ [47],

STREAMS implementation and use early demultiplexing arﬁDAPTI\./E .[48]’ and F-CSS [49] are all- configurable
dedicated STREAMS, known as Communication Channel§9Mmunication frameworks that provide a protocol back-

(CC). The use of CC exploits the built-in flow control mecH;ll‘r’me consisting of standard, reusable sgrvices _that support
anisms ofSTREAMS to control how applications access th etwork protocol development and experimentation. These

I/0 subsystem. This work differs from RIO in that it focuse ameworks support flexible composition of modular protocol

entirely on performance issues and not sources of priority pfocessing components, such as connection-oriented and con-

version. For example, minimizing protocol processing in Qx@ct;onless message delivery and routing, based on uniform
interrupt context is not addressed. Intertaces.

(14, 1] examines the efectof protocol processing with i 2/ ST T TR RITE SONIES
terrupt priorities and the resulting priority inversions and live P 9 P Y

o . rejatively low-level programming APls, such as sockets. In
lock [14]. ‘Both approaches focus on providing faimess ar&%’ntrast, TAQ's pluggable protocols framework focuses on im-

scalability under network load. In [31], a network /O SUb|5Iementing and/or adapting to transport protocols beneath a
m archi r llddzy receiver pr in(LRP) i . .
system architecture callddzy receiver processing.RP) is | her-level OO middleware API,e. the standard CORBA

used to provide stable overload behavior. LRP uses ear i U .
gramming API. Therefore, existing communication sub-

demultiplexing to classify packets, which are then placg i .
into per-connection queues or on network interface channg%‘f‘tem framewo'rks can provide building block protocol com-
nts for TAO's pluggable protocols framework.

These channels are shared between the network interfacePHf
OS. Application threads read/write from/to network interfad@ORBA pluggable protocol frameworks: The architec-
channels so input and output protocol processing is perforni@e of TAO’s pluggable protocols framework is based on the
in the context of application threads. In addition, a scher@RkBacus Open Communications Interface (OCI) [50]. The
is proposed to associate kernel threads with network interf&@e! framework provides a flexible, intuitive, and portable in-
channels and application threads in a manner similar to Rtéxface for pluggable protocols. The framework interfaces are
However, LRP does not provide QoS guarantees to applidafined in IDL, with a few special rules to map critical types,
tions. such as data buffers.

[14] proposed a somewhat different architecture to min-Defining pluggable protocol interfaces with IDL permits de-
imize interrupt processing for network 1/0. They propose\elopers to familiarize themselves with a single programming
polling strategy to prevent interrupt processing from consumedel that can be used to implement protocols in different lan-
ing excessive resources. This approach focuses on scalalgiitgges. In addition, the use of IDL makes possible to write
under heavy load. It did not address QoS issues, however, suiciggable protocols that are portable among different ORB
as providing per-connection guarantees for fairness or bamdplementations and platforms.
width, nor does it charge applications for the resources theyrhough the OCI pluggable protocols frameworks is useful
use. It is similar to our approach, however, in that (1) intder many applications and ORBs, TAO implements a highly

Orhe design of TAO's pluggable protocols framework is in-

18

optimized pluggable protocol framework that is tuned f@ndsystem that can deliver end-to-end QoS guarantees at mul-

high-performance and real-time application requirements. Epie levels. The ORB endsystem described in this paper ad-

example, TAO's pluggable protocols framework can be intgresses this need by combining a real-time 1/0 (RIO) subsys-

grated with zero-copy high-speed network interfaces [10, 8tém with the TAO ORB Core [24] and Object Adapter [26],

20], embedded systems [23], or high-performance communhich are designed explicitly to preserve end-to-end QoS

cation infrastructures like Fast Messages [38]. properties in distributed real-time systems. RIO is designed
to operate with high-performance interfaces such as the 1.2
Gbps ATM port interconnect controller (APIC) [10].

8 Concludlng Remarks Schedule-driven protocol processing reduces jitter signifi-
cantly: After integrating RIO with TAO, we measured a sig-
To be an effective platform for performance-sensitive appliGgficant reduction in average latency and jitter. Moreover, the
tions, ORB endsystems must preserve communication lajgency and jitter of low-priority traffic were not affected ad-
QoS properties to applications end-to-end. It is essentiglysely. Our results illustrate how configuring asynchronous
therefore, to define wertically (i.e., network interface~ ap- protocol processing [32] strategies in the Solaris kernel can
plication layer) anchorizontally (i.e., end-to-end) integratedprovide significant improvements in ORB endsystem behav-
high-performance ORB endsystem. This paper presents j§lecompared with the conventional Solaris I/O subsystem. As
design and performance of such an ORB endsystem, caliegsult of our RIO enhancements to Solaris, TAO is the first

TAO, which provides a pluggable protocols framework t§andards-based, ORB endsystem to support end-to-end QoS
leverage high-performance network interfaces and real-tig\@arantees over ATM/IP networks [34].

I/0 (RIO) subsystems. . . .
(RIO) y . Input livelock is a dominant source of ORB endsystem

TAO's pluggable protocols framework provides an In'2?—determinism: During the development and experimen-

tegrated set of (1) connection concurrency strategies, .
endsystem/network resource reservation protocols, (3) hi% fzpn?iziz:r?;/vvgznozﬁicleelgiﬁlt zlt]h?/vici)cmhIgintrzgggcgvzfrgl?n_
performance techniques, such as zero-copy /0, shared m ﬁn_s stem erforrr;ance b roc:essin all igncomin ackets
ory pools, periodic I/O, and interface pooling, that can be us%dfj y P y P SINg 8 . 9 pa

at interrupt context. In particular, priority inversion resulting

integr lications with high-performance | m . . . ;
to integrate applications with high-performance /O SUbSySt‘?rom processing all input packets at interrupt context is unac-

and protocol implementations. The RIO subsystem enhances:table for many real-time applications. Using RIO kthreads

the Solaris 2.5.1 kernel to enforce the QoS features of the TAD. .) g
fﬁ)_r input packet processing yielded the largest gain in overall

ORB endsystem. RIO supports a vertically integrated, hi X - . .
performance ORB endsystem that provides three classeg%y(%{em prgd|ctablllty. The underscores the |mpo'rtance o'f In-
I/O, best-effort, periodic and low latency, which can be used %;ratlng high-performance netwprk mterfaces V.V't.h real_- tlme
: . middleware and I/O subsystems in order to minimize priority
(1) increase throughput, (2) decrease latency, and (3) improve "
end-to-end predictability. In addition, RIO supports periodl@vers'ons'
protocol processing, guarantees I/O resources to applicationguture RIO research is focusing on integrating other OS
and minimizes the effect of flow control within each Streamplatforms and network interfaces, as well as exporting a
A novel feature of the RIO subsystem and TAO's pluggab#éandardized programming API to higher-level ORB mid-
protocols framework is the integration of real-time schedulleware. We continue to enhance TAO's pluggable proto-
ing and protocol processing, which allows TAO to suppce®! framework [19] to support new ORB messaging, trans-
guaranteed bandwidth and low-delay applications. To accapat protocols, and platforms. The TAO research ef-
plish this, we extended TAO’s real-time concurrency archprt has influenced the OMG Real-time CORBA specifi-
tecture and thread priority mechanisms into RIO. This desigation [36]. The C++ source code for TAO and the
minimizes sources of priority inversion that can cause ndsenchmarks presented in Section 6 is freely available at
determinism and jitter. www.cs.wustl.edu/ ~schmidt/TAO.html . The RIO
The following are the key lessons we learned from our ifbsystem is available to Solaris source licensees.

tegration of RIO with TAO and its pluggable protocol frame-
work: References

Vertical integration of ORB endsystems is essential for [1] Object Management Groufihe Common Object Request Broker:
end-to-end priority preservation: Conventional operating Architecture and Specificatio@.2 ed., Feb. 1998.
systems and ORBs do not provide adequate support for th’(iz D. BO’I‘I' Eise”“a' COMAjd'SO”'I‘C’i"eS'ey' Re‘f'”gc'i M’Q' 1997'd g

: [4 [3] A. Wollrath, R. Riggs, and J. Waldo, “A Distributed Object Model for
QoS rquwements of dlstnbut'ed, real t!me apphcatmns [é, the Java SystemPSENIX Computing Systemal. 9,
15]. Meeting these needs requires a vertically integrated ORB November/December 1996.

19

(4]

(5]

(6]

(7]

(8]

(9

[10]

(11]

[12]

(23]

[14]

[15]

[16]

[17]

(28]

[19]

[20]

[21]

[22]

S. Vinoski, “CORBA: Integrating Diverse Applications Within
Distributed Heterogeneous Environment&EE Communications
Magazine vol. 14, February 1997.

D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request BrokeZaimputer
Communicationsvol. 21, pp. 294-324, Apr. 1998.

F. Kuhns, D. C. Schmidt, and D. L. Levine, “The Design and
Performance of a Real-time 1/0 Subsystem Pimceedings of that"
IEEE Real-Time Technology and Applications Sympos{iancouver,
British Columbia, Canada), pp. 154-16BHE, June 1999.

Z.D. Dittia, J. R. Cox, Jr., and G. M. Parulkar, “Design of the APIC: A
High Performance ATM Host-Network Interface Chip,”llBEE 26]
INFOCOM 95 (Boston, USA), pp. 179-187, IEEE Computer Societ
Press, April 1995.

T. v. Eicken, A. Basu, V. Buch, and W. Vogels, “U-Net: A User-Level
Network Interface for Parallel and Distributed Computing,1Bth
ACM Symposium on Operating System Principh&SM, December
1995.

Compag, Intel, and Microsoft, “Virtual Interface Architecture, Version
1.0.” http://www.viarch.org, 1997.

Z.D. Dittia, G. M. Parulkar, and J. R. Cox, Jr., “The APIC Approach tpg]
High Performance Network Interface Design: Protected DMA and
Other Techniques,” iffroceedings of INFOCOM '9qKobe, Japan),

pp. 179-187, IEEE, April 1997.

A. B. Arulanthu, C. O'Ryan, D. C. Schmidt, M. Kircher, and

J. Parsons, “The Design and Performance of a Scalable ORB
Architecture for CORBA Asynchronous Messaging,Hroceedings of
the Middleware 2000 Conferenc@CM/IFIP, Apr. 2000.

L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority Inheritance
Protocols: An Approach to Real-time Synchronizatid&EEE
Transactions on Computergol. 39, September 1990.

Khanna, S.et al, “Realtime Scheduling in SunOS 5.0,” Rroceedings [31]
of the USENIX Winter Conferengep. 375-390, USENIX Association,
1992.

J. C. Mogul and K. Ramakrishnan, “Eliminating Receive Livelock in an
Interrupt-driver Kernel,” inProceedings of the USENIX 1996 Annual [32]
Technical ConferencgSan Diego, CA), USENIX, Jan. 1996.

F. Kuhns, D. C. Schmidt, and D. L. Levine, “The Design and
Performance of RIO — A Real-time /O Subsystem for ORB
Endsystems,” ifProceedings of the International Symposium on
Distributed Objects and Applications (DOA'9gEdinburgh, Scotland),
OMG, Sept. 1999.

M. K. McKusick, K. Bostic, M. J. Karels, and J. S. Quarterm@hge
Design and Implementation of the 4.4BSD Operating Sysfeidison
Wesley, 1996.

S. Mungee, N. Surendran, and D. C. Schmidt, “The Design and
Performance of a CORBA Audio/Video Streaming Service,” in
Proceedings of the Hawaiian International Conference on System
SciencesJan. 1999.

A. Gokhale and D. C. Schmidt, “Optimizing a CORBA 11OP Protocol 36]
Engine for Minimal Footprint Multimedia Systemslburnal on

Selected Areas in Communications special issue on Service Enabling
Platforms for Networked Multimedia Systemsl. 17, Sept. 1999. [37]

C. O'Ryan, F. Kuhns, D. C. Schmidt, O. Othman, and J. Parsons, “The
Design and Performance of a Pluggable Protocols Framework for
Real-time Distributed Object Computing Middleware,”Rnoceedings
of the Middleware 2000 Conferenc&CM/IFIP, Apr. 2000.

R. S. Madukkarumukumana and H. V. Shah and C. Pu, “Harnessing
User-Level Networking Architectures for Distributed Object
Computing over High-Speed Networks,” Rroceedings of the 2nd
Usenix Windows NT SymposiuAugust 1998.

Vishal Kachroo, Yamuna Krishnamurthy, Fred Kuhns, Ronald G.
Akers, Pradeep Avasthi, Surender Kumar, and Vidya Narayanan,
“Design and Implementation of QoS enabled OO Middleware,” in
Internet2 QoS Workshopebruary 2000.

C. D. Gill, D. L. Levine, and D. C. Schmidt, “The Design and
Performance of a Real-Time CORBA Scheduling Servitag
International Journal of Time-Critical Computing Systems, special
issue on Real-Time Middlewar2000.

(23]

[24]

[25]

[27]

[29]

(33]

[34]

[35]

(38]

[39]

[40]

[41]
[42]

20

T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The Design and
Performance of a Real-time CORBA Event Service Pioceedings of
OOPSLA '97 (Atlanta, GA), ACM, October 1997.

D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale,
“Software Architectures for Reducing Priority Inversion and
Non-determinism in Real-time Object Request Brokeis(irnal of
Real-time Systems, special issue on Real-time Computing in the Age of
the Web and the Interneto appear 2000.

A. Gokhale and D. C. Schmidt, “Measuring the Performance of
Communication Middleware on High-Speed Networks,Pioceedings
of SIGCOMM 96 (Stanford, CA), pp. 306—-317, ACM, August 1996.

I. Pyarali, C. O'Ryan, D. C. Schmidt, N. Wang, V. Kachroo, and
A. Gokhale, “Applying Optimization Patterns to the Design of
Real-time ORBs,” irProceedings of the*" Conference on
Object-Oriented Technologies and Systef8an Diego, CA),
USENIX, May 1999.

R. Gopalakrishnan and G. M. Parulkar, “Efficient User Space Protocol
Implementations with QoS Guarantees using Real-time Upcalls,” Tech.
Rep. 96-11, Washington University Department of Computer Science,
March 1996.

R. Gopalakrishnan and G. Parulkar, “A Real-time Upcall Facility for
Protocol Processing with QoS Guarantees, 3" Symposium on
Operating System Principles (poster sessi¢@ppper Mountain
Resort, Boulder, CO), ACM, Dec. 1995.

D. Mosberger and L. Peterson, “Making Paths Explicit in the Scout
Operating System,” iProceedings of OSDI '96Dct. 1996.

] R. Gopalakrishnan and G. Parulkar, “Quality of Service Support for

Protocol Processing Within Endsystems,’ High-Speed Networking
for Multimedia ApplicationgW. Effelsberg.et al,, ed.), Kluwer
Academic Publishers, 1995.

P. Druschel and G. Banga, “Lazy Receiver Processing (LRP): A
Network Subsystem Architecture for Server SystemsPlioceedings
of the15* Symposium on Operating Systems Design and
ImplementationUSENIX Association, October 1996.

R. Gopalakrishnan and G. Parulkar, “Bringing Real-time Scheduling
Theory and Practice Closer for Multimedia Computing,” in
SIGMETRICS ConferencéPhiladelphia, PA), ACM, May 1996.

T. B. Vincent Roca and C. Diot, “Demultiplexed Architectures: A
Solution for Efficient STREAMS-Based Communication StackSEE
Network Magazingevol. 7, July 1997.

G. Parulkar, D. C. Schmidt, and J. S. Turnertt¥m: a Strategy for
Integrating IP with ATM,” inProceedings of the Symposium on
Communications Architectures and Protocols (SIGCOMAMIM,
September 1995.

M. L. Bailey, B. Gopal, P. Sarkar, M. A. Pagels, and L. L. Peterson,
“Pathfinder: A pattern-based packet classifier,Pioceedings of the
15t Symposium on Operating System Design and Implementation
USENIX Association, November 1994.

Object Management GrouRealtime CORBA Joint Revised
SubmissionOMG Document orbos/99-02-12 ed., March 1999.

D. C. Schmidt, “Using Design Patterns to Develop High-Performance
Object-Oriented Communication Software Frameworks,” in
Proceedings of the 8th Annual Software Technology Conferdre
1996.

M. Lauria, S. Pakin, and A. Chien, “Efficient Layering for High Speed
Communication: Fast Messages 2.x.,Hroceedings of the 7th High
Performance Distributed Computing (HPDC7) confergr{€hicago,
lllinois), July 1998.

Object Management Grou@ORBA Messaging Specificatic@MG
Document orbos/98-05-05 ed., May 1998.

H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “Rtp: A
transport protocol for real-time applicationiNetwork Information
Center RFC 1889January 1996.

USNA, TTCP: a test of TCP and UDP Performand2ec 1984.

W. R. StevensTCP/IP lllustrated, Volume.1Reading, Massachusetts:
Addison Wesley, 1993.

[43] B. Bershad, “Extensibility, Safety, and Performance in the Spin A SynOpSIS of CORBA
Operating System,” ilProceedings of theé5t» ACM SOSP

pp. 267-284, 1995. . . .
[44] M. Fiuczynski and B. Bershad, “An Extensible Protocol Architecture CORBA Object Request Brokers (ORBs) allow clients to in-

for Application-Specific Networking,” ifProceedings of the 1996 YOke operations on diStripUted objects without concern for ob-

Winter USENIX Conferencdan. 1996. ject location, programming language, OS platform, commu-
[45]][\l (IZ Hlutchintson ﬁn?w L. k ;ettersc;nl,E‘Eléé_(rernel: At_n Architgct#\:f nication protocols and interconnects, and hardware [51]. Fig-

or Implementing Networ rotocols! ransactions on sortware . :

Engineering vol. 17, pp. 64—76, January 1991. ure 21 illustrates the key components in the CORBA reference
[46] D. Ritchie, “A Stream Input-Output SysterAT&T Bell Labs moglel [52] that' gollaborate to provide this degree of portabll-

Technical Journalvol. 63, pp. 311-324, Oct. 1984. ity, interoperability, and transparentyeach component in the

[47] H.Hueni, R. Johnson, and R. Engel, “A Framework for Network
Protocol Software,” irProceedings of OOPSLA '9%Austin, Texas),

in args
ACM, October 1995. operation() OBJECT
[48] D.C. Schmidt, D. F. Box, and T. Suda, “ADAPTIVE: A Dynamically out args + return value (SERVANT)
Assembled Protocol Transformation, Integration, and eValuation «—O T
Environment,"Journal of Concurrency: Practice and Experience
vol. 5, pp. 269-286, June 1993. IDL IDL A

< ———] B
COMPILER

IDL SKELETON| | opjECT

ADAPTER

[49] M. Zitterbart, B. Stiller, and A. Tantawy, “A Model for
High-Performance Communication SubsystertSEEE Journal on
Selected Areas in Communicatioml. 11, pp. 507-519, May 1993.

[50] I. Object-Oriented Concepts, “ORBacus User Manual - Version 3.1.2.’[GIOP/LIOP éé]

WwWw.00c.com/ob, 1999.

[51] M. Henning and S. Vinoskiddvanced CORBA Programming With (_) STANDARD INTERFACE () STANDARD LANGUAGE MAPPING
C++. Addison-Wesley Longman, 1999. Q ORB-SPECIFIC INTERFACE QSTANDARD PROTOCOL
[52] Object Management Groufgshe Common Object Request Broker:

Architecture and Specificatio2.3 ed., June 1999. . .
Figure 21: K mponents in th RBA 2.x Referen
[53] E. Gamma, R. Helm, R. Johnson, and J. VlissidEssign Patterns: gure ey Components the CO eterence

Elements of Reusable Object-Oriented Softw&eading, MA: Model
Addison-Wesley, 1995.

[54] E.Eide, K. Frei, B. Ford, J. Lepreau, and G. Lindstrom, “Flick: A CORBA reference model is outlined below:
Flexible, Optimizing IDL Compiler,” inProceedings of ACM SIGPLAN
‘97 Conference on Programming Language Design and
Implementation (pLDl)%_as Veg%S, N\g/), XCM, Jugne 1997. Client: A client is arole that obtains references to objects
[55] J. Eykholt, S. Kleiman, S. Barton, R. Faulkner, A. Shivalingiah, and invokes operations on them to perform application tasks.

M. Smith, D. Stein, J. Voll, M. Weeks, and D. Williams, “Beyond Objects can be remote or collocated relative to the client. Ide-

Multiprocessing... Multithreading the SunOS Kernel,Aroceedings
of the Summer USENIX Conferen¢8an Antonio, Texas), June 1992. ally, a client can access a remote object just like a local object,

[56] T. Harrison, D. C. Schmidt, A. Gokhale, and G. Parulkar, “Operating 1.€., ObJeCt . —>operat|on(args)) F'Q“re 21 shows hOW
System Support for High-Performance, Real-time CORBA,” in the underlying ORB components described below transmit re-

Proceedings of the" International Workshop on Object-Orientation i ; i
in Operating System¢EEE, October 1996, mote operation requests transparently from client to object.

[57] D. C. Schmidt, A. Gokhale, T. Harrison, and G. Parulkar, “A [N ; ; ;
High-Performance Endsystem Architecture for Real-time CORBA,” Object: In C_:QRBA’ an object is a‘n. instance of an OMG
IEEE Communications Magazineol. 14, February 1997. Interface Definition Language (IDL) interface. Each object

[58] J. Nieh, J. G. Hanko, J. D. Northcutt, and G. A. Wall, “SVR4 UNIX IS identified by anobject referencewhich associates one or

Scheduler Unacceptable for Multimedia Applications, Piroceedings i i i
of the 4th International Workshop on Network and Operating Systemgnore paths through which a client can access an object on a

Support for Digital Audio and Video (NOSSDAV '9@)ancaster, U.K., SEIVer. Anobject ID associates an object with its implemen-

New Hampshire), pp. 35-48, November 1993. tation, called a servant, and is unique within the scope of an
(59] S anena k- Z?£2°§+EEY rang, V. verma, and "f]ﬂK”SVF‘,”an, “Pitfalhject Adapter. Over its lifetime, an object has one or more

In Multithreading anda other Vveigntiess Processes,

in Proceedings of the Winter USENIX Confereri@an Diego, CA), Servants associated with it that implement its interface.

pp. 85-106, Jan. 1993.

[60] S.RagoUNIX System V Network Programmingeading, MA: Servant: This component implements the operations de-
Addison-Wesley, 1993. fined by an OMG IDL interface. In object-oriented (OO) lan-
(61] f/ll_m Min?SyStelmﬁTMREA{V'S i’/rogragﬁAmiAI;lg Gutidl%tég revision o, 9U30ES, such as C++ and Java, servants are implemented us-
61 O';“;Sys eTIS ne. Goun;m 1w, - 'duguls e Sev's_':n *ing one or more class instances. In non-OO languages, such
pecial Interest Groupransport Provider Interface Specification H . H .
December 1992. as C, servants are typ|ca!ly |mplemgnted using functions and
[63] OSI Special Interest Groupletwork Provider Interface Specification struct - s. A C“ent, neve_r mtelr.acts W|th.servants dlreCtIy’ but
December 1992. always through objects identified by object references.
[64] OSI Special Interest Groupata Link Provider Interface Specificatipn ~ “This overview only focuses on the CORBA components relevant to this
December 1992. paper. For a complete synopsis of CORBA's components see [52].

21

ORB Core: When a client invokes an operation on an oiB.1 Synopsis of the Solaris Scheduling Model

ject, the ORB Core is responsible for delivering the requer[iaii lication-level . del of Solaris SUDDOTLS
to the object and returning a response, if any, to the clie 1€ application-level programming model of Solans supp
ultiple threads of control within a single application process.

An ORB Core is implemented as a run-time library linke X . .
into client and server applications. For objects executing olaris prowdes'a tvi/o-level thread scheglulmg model tha}t con-
motely, a CORBA-compliant ORB Core communicates viaSéSts of an application-level sc_heduler in the thrgad; library
version of the General Inter-ORB Protocol (GIOP), such Qd a global s_ystem scheduler in the kernel. Appl|c§t|on Ieyel
the Internet Inter-ORB Protocol (IIOP) that runs atop the T eads are either bouhridhto or schei(]jule(:]to frun on I|gritwe|ght
transport protocol. In addition, custom Environment-SpeciEéot(i:ieestsher;(lla\évi?bsr)ér\;v Ilr(i tu(iine?;:; I(_)Vli/% isob:jn\clilrttginiigrs,
Inter-ORB protocols (ESIOPs) can also be defined. nel thread Kthread3 which is scheduled by the global system
scheduler to run on the available CPUs. Note, there are ker-
OMG IDL Stubs and Skeletons: IDL stubs and skeletonsnpe| threads which are not associated with any LWP, these are
serve as a “glue” between the client and servants, respectiviined system threads.
and the ORB. Stubs implement tioxy pattern [53] and The traditional UNIX scheduling policy targets time-
provide a strongly-typedstatic invocation interfac€Sll) that - sharing, interactive environments. This traditional scheduler is
marshals application parameters into a common message-|gkgémptive, time-sliced, priority based where the highest pri-
representation. Conversely, skeletons implementitepter ority runnable thread is always scheduled. The priorities vary
pattern [53] and demarshal the message-level representafiog function of the threads CPU usage pattern: the more CPU
back into typed parameters that are meaningful to an appligare used by a thread the lower its priority. Thus, compute
tion. bound threads will have progressively lower priorities until
some lower limit is reached. For threads with the same prior-
IDL Compiler: An IDL compiler transforms OMG IDL ity time slicing is used. Generally, the lower a threads priority
definitions into stubs and skeletons that are generated autofth-larger its time slice. Newer implementations of the time
ically in an application programming language, such as C$haring class have additional parameters however the policy
or Java. In addition to providing programming language trari&émains the same. While this approach is well suited for tra-
parency, IDL compilers eliminate common sources of netwddiional time sharing UNIX environments it does not satisfy
programming errors and provide opportunities for automatée scheduling needs for the new class of multimedia and real-
compiler optimizations [54]. time DOC applications [56, 57, 58].

Object Adapter: An Object Adapter is a composite Compo_Scheduling classes: Solaris extends the traditional UNIX
nent that associates servants with objects, creates object rdf8-sharing scheduler [16] to provide a flexible framework
ences, demultiplexes incoming requests to servants, and it allows dynamic linking of custostheduling classesor
laborates with the IDL skeleton to dispatch the approprid@Stance, itis possible to implement a new scheduling policy
operation upcall on a servant. Object Adapters enable ORESs? scheduling glass and load it into a running Solaris kernel.
to support various types of servants that possess similar§¥.default, Solaris supports the four scheduling classes. shown
quirements. This design results in a smaller and simpler ORElered by decreasing global scheduling priority below:

tha.t can supporta Widp range of object granularitigs, Iifetime:ii, Scheduling Class| Priorities |
policies, implementation styles, and other properties.

Typical purpose |
Interrupt (INTR) | 160-169 | Interrupt Servicing
Real-Time (RT) 100 - 159 | Fixed priority scheduling
System (SYS) 60-99 OS-specific threads

B OvervieW Of Solaris Time-Shared (TS) 0-59 Time-Shared scheduling

The Time-Sharing (TS)class is similar to the traditional

The Solaris kernel is preemptive, multi-threaded, real-timelJNIX scheduler [16], with enhancements to support interac-
and dynamically loade@nplementation of UNIX SVR4 and tive windowing systems. The System class (SYS) is used to
POSIX. It is designed to work on uni-processors and shassthedule system kthreads, including I/O processing, and is not
memory symmetric multi-processors. Solaris contains a reabailable to application threads. The Real-Time (RT) schedul-
time nucleus that supports multiple threads of control in tieg class uses fixed priorities above the SYS class. Finally, the
kernel. Most control flows in the kernel, including interrupts; 5 this di ; ; . L

n this discussion we include the Interactive (lA) class, which is used

are threaded [55]. Beloi/v, we summarize the Solaris SChequﬁarily by Solaris windowing systems, with the TS class because they share
ing model and communication I/O subsystem. the same range of global scheduling priorities.

22

highest system priorities are assigned to the Interrupt (INTR) ©
scheduling class [55]. USER

By combining a threaded, preemptive kernel with a fixed
priority real-time scheduling class, Solaris attempts to provide
a worst-case bound on the time required to dispatch applica-
tion threads or kernel threads [13]. The RT scheduling class
supports both Round-Robin and FIFO scheduling of threads.
For Round-Robin scheduling, a time quantum specifies the
maximum time a thread can run before it is preempted by an-
other RT thread with the same priority. For FIFO scheduling,
the highest priority thread can run for as long as it chooses, un-
til it voluntarily yields control or is preempted by an RT thread STREAM
with a higher priority. Tail

DOWNSTREAM
WVAYLS

Timer mechanisms: Many kernel components use the So- NETWORK INTERFACY_ T
laris timeout facilities. To minimize priority inversion, So- OR PSEUDO-DEVICES)
laris separates its real-time and non-real-time timeout mecha- @ %
nisms [;3]. This dec'oupling is implemented via two gallout ML e — el
gueue timer mechanisms: (galtime _timeout , which QUEUE _QUEUE
supports real-time callouts and {&nheout , which supports

non-real-time callouts. Figure 22: General Structure of aSEAM

The real-time callout queue is serviced at the lowest inter-

rupt level, after the current clock tick is processed. In con- .)
trast, the non-real-time callout queue is serviced by a thrd4ech are referenced through the read and write queues. The

running with a SYS thread priority of 60. Therefore, non-redfut function provides the mechanism to send messages

time timeout functions cannot preempt threads running in fH&oNouslybetween modules, drivers, and tieream head.
RT scheduling class. In contrast, thesvc function processes messagesyn-

chronouslywithin a module or driver. A background thread
in the kernel's SYS scheduling class russ functions at
B.2 Synopsis of the Solaris Communication 1/O priority 60. In addition,svc functions will run after certain
Subsystem STREAMSrelated system calls, such esad , write , and

) o . ioctl . When this occurs, thevc function runs in the con-
The Solaris communication I/O subsystem is an enhanggg of the thread invoking the system call.

version of the SVR4TREAMS framework [46] with proto-
cols like TCP/IP implemented usirgrREAMS modules and Flow control: - Each module can specify a high and low wa-
drivers. STREAMS provides a bi-directional path between agermark for its queues. If the number of enqueued messages
plication threads and kernel-resident drivers. In Solaris, f¥ceeds theliGH_WATERMARK the STREAM enters the flow-
STREAMS framework has been extended to support multipf@ntrolled state. At this point, messages will be queued up-
threads of control within 8TREAM [59]. stream or downstream until flow control abates.

Below, we outline the key components of tsereams For example, assume &aTREAM driver has queued

framework and describe how they affect communication I/JGH-WATERMARK+1 messages on its write queue. The first
performance and real-time determinism. module atop the driver that detects this will buffer messages

on its write queue, rather than pass them downstream. Be-
use thesTREAM is flow-controlled, thesvc function for

General structure of a STREAM: A STREAM is composed c
of asTREAM head, a driver and zero or more modules Iinkﬁﬁ

together by read queues (RQ) and write queues (WQ), %module will not run. When the number of messages on

shown in Figure 22. TheTREAM head provides an interfac (RS driver's write queue drops below thew WATERMARK

S e eﬂFeSTREAM will be re-enable automatically. At this point, the
between an application process and a specific instance of a

STREAM in the kernel. It copies data across the user/kerndl function for this queue will be scheduled to run.

boundary, notifies application threads when data is availal@ReEaM Multiplexors: Multiple STREAMS can be linked
and manages the configuration of modules inErREAM. together using a special type of driver callednaltiplexor
Each module and driver must define a set of entry points thamultiplexor acts like a driver to modules above it and as
handleopen/close operations and processTREAM mes- a STREAM head to modules below it. Multiplexors enable
sages. The message processing entry poingsdreandsvc , thesTREAaMSframework to support layered network protocol

23

stacks [60]. In Solaris, the concurrency level of IP is “per-module” with
Figure 23 shows how TCP/IP is implemented using the Smncurrentput , TCP andsockmod are “per-queue-pair,”
laris STREAMS framework. IP behaves as a multiplexor bgnd UDP is “per-queue-pair” with concurreptit . These
perimeters provide sufficient concurrency for common use-
cases. However, there are cases where IP must raise its locking
level when manipulating global tables, such as the IP routing

Object Adaptor table. When this occurs, messages entering the IP multiplexor

3 are placed on a special queue and processed asynchronously
' when the locking level is lowered [59, 55].
¢ Callout queue callbacks: The SolarisTREAMSframework
77777 =N provides functions to set timeouts and register callbacks. The
kemel STREAM head STREAM head STREAM head gtimeout function adds entries to the standard non-real-
v A A time callout queue. This queue is serviced by a system thread
upPrTCP uDP/TCP UpprTer wit_h a SYS priority of 6Q, as describggl in Secti(_)n B.1. So-
wQ rQ wQ rQ wQ rQ laris TCP and IP use this callout facility for their protocol-
A r‘ specific timeouts, such as TCP keepalive and IP fragmenta-
tion/reassembly.
v Another mechanism for registering a callback function is
Schedue euks e xﬁltiggxo"rm © bufcall . Thebufcall function registers a callback func-
(routing tables) tion that is invoked when a specified size of buffer space be-
threadO wQ rQ . . .
Thread] comes available. For instance, when buffers are unavailable,
other e e bufcall is used by &sTREAM queue to register a function,
Callout Queues such asllocb , which is called back when space is available
[RT o again. These callbacks are handled by a system thread with
FIFO Queuing priority SYS 60.
ATM Driver Network 1/0: The Solaris network 1/0 subsystem provides

service interfaces that reflect the OSI reference model [60].
These service interfaces consist of a collection of primitives
and a set of rules that describe the state transitions.

joining different transport protocols with one or more link F19uré 23 shows how TCP/IP is structured in the Solaris

layer interfaces. Thus, IP demultiplexes both incoming afdREAMSTramework. In this figure, UDP and TCP implement
outgoing datagrams. the Transport Protocol Interface (TPI) [62], IP the Network

Each outgoing IP datagram is demultiplexed by locatifgoVider Interface (NPI) [63] and ATM driver the Data Link
its destination address in the IP routing table, which det&fovider Interface (DLPI) [64]. Service primitives are used
mines the network interface it must be forwarded to. Likewigd;) 10 communicate control (state) information and (2) to pass
each incoming IP datagram is demultiplexed by examining ffigl@ messages between modules, the driver, ansmREAM

transport layer header in STREAMS message to locate thenead.

transport protocol and port number that designates the corre@@t@ messages (as opposed to control messages) in the So-
upstream queue. laris network 1/0 subsystem typically follow the traditional

i) BSD model. When an application thread sends data it is copied
Multi-threaded STREAMs: Solaris STREAMS allows mul- ;4 kernel buffers. which are passed through HRREAM
tiple kernel threads to be active BTREAMS I/O modules, heaq 1o the first module. In most cases, these messages are
drivers, and multiplexors concurrently [61]. This multishen passed through each layer and into the driver through a

threadedsTREAMS framework supports several levels of Coryegted chain gput s [59]. Thus, the data are sent to the net-
currency, which are implemented using therimeters[S9] ok interface driver within the context of the sending pro-

shown below: cess and typically are not processed asynchronously by mod-

Figure 23: Conventional Protocol Stacks in Sol&#TREAMS

Per-module with single threading ule svc functions. At the driver, the data are either sent out
Per-queue-pair single threading immediately or are queued for later transmission if the inter-
Per-queue single threading face is busy.

Any of the above with unrestrictedput and svc When data arrive at the network interface, an interrupt is
Unrestricted concurrency generated and the data (usually referred to as a frame or

24

packet) is copied into kernel buffer. This buffer is then passed
up through IP and the transport layer in interrupt context,
where it is either queued or passed to #TREAM head via
the socket module. In general, the usesw€ functions is
reserved for control messages or connection establishment.

25

