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This paper will appear in a chapter in the book seriesodularity; and cost effectiveness though resources sharing
Advances in Computerg\cademic Press, edited by Marvirand open systems. An increasingly important class of dis-

Zelkowitz, to appear in 1999. tributed applications require stringent quality of service (QoS)
guarantees. These applications include telecommunication
Abstract systems command and control systems, multimedia systems,

and simulations.
Many types of applications can benefit from flexible and openn addition to requiring QoS guarantees, distributed appli-
middleware. CORBA is an emerging middleware standaggtions must be flexible and reusable. Flexibility is needed to
for Object Request Brokers (ORBs) that simplifies the dev@lspond rapidly to evolving functional and QoS requirements
opment of distributed applications and services. Experiengggistributed applications. Reusability is needed to yield sub-
with CORBA demonstrates that it is suitable for traditionakantial improvements in productivity and to enhance the qual-

RPC-style applications. However, the lack of performance qg, performance, reliability, and interoperability of distributed
timizations and quality of service (QoS) features in convedplication software.

tional CORBA implementations make them unsuited for high-T

: N he Common Object Request Broker Architecture
performance and real-time applications. ’]%

: I , ORBA) [1] is an emerging standard for distributed object
This paper makes fqur.contrlt_)utlops to the design mputing (DOC) middleware. DOC middleware resides
CORBA ORBs for applications with high-performance a tween clients and servers. It simplifies application develop-

real-time requirements. First, it describes the design of TAQent by providing a uniform view of heterogeneous network
which is our high-performance, real-time CORBA—compIia%d 0S layers

RB. i TAO'’s Real-ti h li - . .
© second, it presents TAO'S Real-time Scheduling Setb\tthe heart of DOC middleware agbject Request Brokers

vice, which provides QoS guarantees for deterministic real-
time CORBA applications. Third, empirically evaluates t RBs), 'su'ch as CORBA .[1]’ DCOM [2], and Java RMI [3].
)RBs eliminate many tedious, error-prone, and non-portable

effects of priority inversion and non-determinism in conve . T o L
tional ORBs and shows how these hazards are avoided in TR@DeCtS of developing and maintaining distributed applications
g low-level network programming mechanisms like sock-

Fourth, it presents a case study of key patterns used to devéld

TAO and quantifies the impact of applying patterns to redu€ [4]'. In particular, ORBs-automatg common net_work pro-
the complexity of common ORB tasks. gramming tasks such as object location, object activation, pa-

rameter marshaling/demarshaling, socket and request demulti-
plexing, fault recovery, and security. Thus, ORBs facilitate the
1 Introduction development of flexible distributed applications and reusable
services in heterogeneous distributed environments.

Distributed computing helps improve application performanceThe remainder of this paper is organized as follows:
through multi-processing; reliability and availability througlsection 2 evaluates the suitability of CORBA for high-
replication; scalability, extensibility, and portability througlperformance, real-time systems; Section 3 outlines the real-

*This work was supported in part by NSF grant NCR-9628218, DARFI,&me feature enhancements and performance optimizations

contracts 9701516 and S30602-98-C-0187, Boeing, Lucent, Motorola, SARtIPPOrted by TAO, WhiCh is our high—performance, real-time
Siemens, and Sprint. ORB endsystem; Section 4 describes the design of TAO's real-




time Scheduling Service; Section 5 qualitatively and quantita- INTERFACE IDL IMPLEMENTATION
tively evaluates alternative ORB Core concurrency and con- | REPOSITORY COMPILER REPOSITORY

nection architectures; Section 6 qualitatively and quantita
tively evaluates the patterns that resolve key design challeng
we faced when developing TAO; and Section 7 presents coh=
cluding remarks.
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performance, Real-time Systems [ % ]

This section provides an overview of CORBA, explains why@ STANDARD INTERFACE (D) STANDARD LANGUAGE MAPPING

the current CORBA specification and conventional ORB im{D) ORB-speciFic INTERFACE () STANDARD PROTOCOL
plementations are currently inadequate for high-performance

and real-time systems, and outlines the steps required to dégure 1. Components in the CORBA 2.x Reference Model
velop ORBs that can provide end-to-end QoS to applications.

. object —operation(args) . Figure 1 shows the under-
2.1 Overview of the CORBA Reference Model |ying components described below that ORBs use to transmit

CORBA Object Request Brokers (ORBs) [1] allow clients gemote operation requests transparently from client to object.

invoke operations on distributed objects without concern férbject:

At In CORBA, an object is an instance of an Interface
the following issues [5]:

Definition Language (IDL) interface. The object is identified

Objectlocation: CORBA objects can be collocated with th&y anobject referencewhich uniquely names that instance

client or distributed on a remote server, without affecting théfross servers. A@bjectldassociates an object with its ser-
implementation or use. vant implementation, and is unique within the scope of an Ob-

ject Adapter. Over its lifetime, an object has one or more ser-

Programming language: The languages supported bYants associated with it that implement its interface.
CORBA include C, C++, Java, Ada95, COBOL, and

Smalltalk, among others. Servant: This component implements the operations de-
, fined by an OMG Interface Definition Language (IDL) in-
.OS plf';\tform: CORBA runs on many OS platforms, 'nCIUC,jierface. In languages like C++ and Java that support object-
ing Win32, UNIX, MVS, and real-time embedded systems like. .+ (O0) programming, servants are implemented us-
VxWorks, Chorus, and LynxOS. ing one or more class instances. In non-O0 languages, like
Communication protocols and interconnects: The com- C, servants are typically implemented using functions and
munication protocols and interconnects that CORBA can r&ffuct —s. A client never interacts with a servant directly, but
oninclude TCP/IP, IPX/SPX, FDDI, ATM, Ethernet, Fast Ethalways through an object.

ernet, embedded system backplanes, and shared memory.ORB Core: When a client invokes an operation on an ob-

Hardware: CORBA shields applications from side-effectfect, the ORB Core is responsible for delivering the request to
stemming from differences in hardware such as storage laytgt object and returning a response, if any, to the client. For
and data type sizes/ranges. objects executing remotely, a CORBA-compliant ORB Core
communicates via a version of the General Inter-ORB Proto-
Figure 1 illustrates the components in the CORBA 2.x ref@ol (GIOP), most commonly the Internet Inter-ORB Protocol
ence model, all of which collaborate to provide the portabilit{}l OP), which runs atop the TCP transport protocol. An ORB
interoperability, and transparency outlined above. Each cor@re is typically implemented as a run-time library linked into
ponent in the CORBA reference model is outlined below: both client and server applications.

Client: This program entity performs application tasks b®RB Interface: An ORB is an abstraction that can be im-
obtaining object references to objects and invoking opememented various ways,g, one or more processes or a set
tions on them. Objects can be remote or collocated retd-libraries. To decouple applications from implementation
tive to the client. Ideally, accessing a remote object showldtails, the CORBA specification defines an interface to an
be as simple as calling an operation on a local objeet, ORB. This ORB interface provides standard operations that



(1) initialize and shutdown the ORB, (2) convert object refvhose interface was not known when the program was com-
erences to strings and back, and (3) create argument listspitad, yet, be able to determine what operations are valid on the
requests made through tbgnamic invocation interfagll). object and make invocations on it. In addition, the Interface
Repository provides a common location to store additional in-

OMG IDL ?tUbS,, and Skeletons; IDL stubs and Skeleton.sformation associated with interfaces to CORBA objects, such
serve as a “glue” between the client and servants, respecuvggl

: o type libraries for stubs and skeletons.
and the ORB. Stubs provide a strongly-typsthtic invoca- ] . ] .
tion interface(Sll) that marshals application parameters into/@Plémentation Repository:  The Implementation Reposi-
common data-level representation. Conversely, skeletons!@/ [8] contains information that allows an ORB to activate

marshal the data-level representation back into typed paraffdVers to process servants. Most of the information in the Im-
ters that are meaningful to an application. plementation Repository is specific to an ORB or OS environ-

ment. In addition, the Implementation Repository provides a
IDL Compiler:  An IDL compiler automatically transformscommon location to store information associated with servers,
OMG IDL definitions into an application programming lansuch as administrative control, resource allocation, security,
guage like C++ or Java. In addition to providing programmd activation modes.
ming language transparency, IDL compilers eliminate com-

mon sources of network programming errors and provide %>  Limitations of CORBA for Real-time Ap-
portunities for automated compiler optimizations [6]. ' plications

Dynamic Invocation Interface (DII): The DIl allows

clients to generate requests at run-time. This flexibility %L.'r experience using CORBA on telecommunication [9],

useful when an application has no compile-time knowled glonics [10.]‘ and medical imaging projects [11] indigates that
of the interface it accesses. The DIl also allows clients tg> well-suited for conventional RPC-style applications that

makedeferred synchronousalls, which decouple the reques‘?Ossess “best-effqrt” quality of ;ervice (QOS.) requirements.
and response portions of twoway operations to avoid blocki'ﬁ| wever, qonventlonal CORBA mplemen?aﬂqns are not yet
the client until the servant responds. In contrast, in CORi) ited for high-performance, real-time applications for the fol-

2.x, Sll stubs only suppottvoway i.e., request/response, an wing reasons.
onewayi.e., request-only operatioris. Lack of QoS specification interfaces: The CORBA 2.x

) ) standard does not provide interfaces to specify end-to-end QoS
Dynamic Skeleton Interface (DSI): The DSl is the server's yoqirements. For instance, there is no standard way for clients
analogue to the client's DII. The DSl allows an ORB to delivgf, jngicate the relative priorities of their requests to an ORB.
requests to servants that have no compile-time knowledgq gle\yise, there is no interface for clients to inform an ORB
the IDL interface they implement. Clients making requesife rate at which to execute operations that have periodic pro-
need not know whether the server ORB uses static skeletonéecgfsing deadlines.
dynamic skeletons. Likewise, servers need not know if clientsthe cORBA standard also does not define interfaces that

use the DIl or Sl to invoke requests. allow applications to specify admission control policies. For

Object Adapter: An Object Adapter associates a serva?ﬂSta”C.e’ a video serv'er'might prefer to use available network
with objects, demultiplexes incoming requests to the servat@ndwidth to serve a limited number of clients and refuse ser-
and collaborates with the IDL skeleton to dispatch the appiice to add!tlonal cllgnts, rather than admit all clients and pro-
priate operation upcall on that servant. CORBA 2.2 portgde poor video quality [12]. Conversely, a stock quote service
bility enhancements [1] define the Portable Object Adapf@,tghtwantto admltalarge numbgrofcllents and distribute all
(POA), which supports multiple nested POAs per ORB. ofvailable bandwidth and processing time equally among them.
ject Adapters enable ORBs to support various types of sesck of QoS enforcement: Conventional ORBs do not pro-
vants that possess similar requirements. This design resultgiife end-to-end QoS enforcemeng., from application-to-

a smaller and simpler ORB that can support a wide rangeapiplication across a network. For instance, most ORBs trans-
object granularities, lifetimes, policies, implementation stylasiit, schedule, and dispatch client requests in FIFO order.
and other properties. However, FIFO strategies can yield unbounded priority in-

. . ., _Vversions [13, 14], which r when a lower priority r
Interface Repository: The Interface Repository provide ersions [13, 14, ch occu en a lower priority request

T ; i ) L locks the execution of a higher priority request for an indefi-
run-time information about IDL interfaces. Using this mforr-]iEe period. Likewise, conventional ORBs do not allow appli-

mation, it is possible for a program to encounter an ObjecCations to specify the priority of threads that process requests.

1The OMG has standardized an asynchronous method invocation interfacetandard ORBS also' do not provide fine'grain?d control of
in the Messaging specification [7], which will appear in CORBA 3.0. servant execution. For instance, they do not terminate servants




that consume excess resources. Moreover, most ORBsdus2.3  Overcoming CORBA Limitations for High-

hocresource allocation. Consequently, a single clientcancon-  performance and Real-time Applications

sume all available network bandwidth and a misbehaving ser-

vant can monopolize a server’s CPU. Meeting the QoS needs of next-generation distributed appli-
. : ) cations requires much more than defining IDL interfaces or
Lack of real-time programming features: The CORBA adding preemptive real-time scheduling to an OS. Instead, it

2.x specification does not define key features that are nPeCduires a vertically and horizontally integrat8®B endsys-

essary to support real-time programming. For instance, {Q?nthat can deliver end-to-end QoS guarantees at multiple lev-

CORBA General I_nter-ORB Protocol (GIOP) supports asyH[s throughout a distributed system. The key components in an
chronous messaging. However, no standard programming Ié

. <ts in CORBA 2.x 10 t it client B endsystem include the network interfaces, operating sys-
guage mapping exists in X 10 transmit chent Tes, /0 subsystems, communication protocols, and common

guests asynchronogsly, though the Me.ssag.ing Spedﬁcaﬁoﬂﬂﬂdleware object services.
CORBA 3.0 will define this mapping. L'keW'S?’ the CORBA Implementing an effective framework for real-time CORBA
zgquires ORB endsystem developers to address two types of
iIssues: QoS specificatiomnd QoS enforcementFirst, real-

e applications must meet certain timing constraints to en-

re the usefulness of the applications. For instance, a video-

(r:‘nferencing application may require an upper bound on the
propagation delay of video packets from the source to the des-
Lack of performance optimizations: Conventional ORB tination. Such constraints are defined by eS specifica-
endsystems incur significant throughput [11] and latency [1#jn of the system. Thus, providing effective OO middleware
overhead, as well as exhibiting many priority inversions amngquires a real-time ORB endsystem that supports the mech-
sources of non-determinism [17], as shown in Figure 2. Theg#isms and semantics for applications to specify their QoS
requirements. Second, the architecture of the ORB endsys-
tem must be designed carefullyeéaforcethe QoS parameters
specified by applications.

Section 3 describes how we are developing such an inte-

transport layer flow control occurs, nor does it support tim
operations [15]. As a result, it is hard to develop portable a
efficient real-time applications that behave deterministica
when ORB endsystem or network resources are unavalil
temporarily.

in args
operation()

out args + return value
+—O0

(SERVANT)

7 grated middleware framework callethe ACE ORBTAO)
v [22]. TAO is a high-performance, real-time CORBA-
(—&mm compliant ORB endsystem developed using the ACE frame-
ADAPTER . . . .
work [24], which is a highly portable OO middleware commu-

nication framework. ACE contains a rich set of C++ compo-
% e] nents that implement strategic design patterns [25] for high-

performance and real-time communication systems. Since
TAO is based on ACE it runs on a wide range of OS platforms
including general-purpose operating systems, such as Solaris
and Windows NT, as well as real-time operating systems such
as VxWorks, Chorus, and LynxOS.
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4) SERVER PROTOCOL QUEUEING 8) METHOD EXECUTION

Figure 2: Sources of Latency and Priority Inversion in Co
ventional ORBs

overheads stem from (1) non-optimized presentation layer$ Identifying enhancements to standard ORB specifica-
that copy and touch data excessively [6] and overflow proces- tONS. particularly OMG CORBA, that will enable appli-
sor caches [18]; (2) internal buffering strategies that produce Cations to specify their QoS requirements concisely and
non-uniform behavior for different message sizes [19]; (3) in- Precisely to ORB endsystems [26].

efficient demultiplexing and dispatching algorithms [20]; (4) e Empirically determining the features required to build
long chains of intra-ORB virtual method calls [21]; and (5) real-time ORB endsystems that can enforce determin-
lack of integration with underlying real-time OS and network istic and statistical end-to-end application QoS guaran-
QoS mechanisms [22, 23, 17]. tees [23].

The TAO project focuses on the following topics related to
Peal-time CORBA and ORB endsystems:



¢ Integrating the strategies for 1/0 subsystem architecture€QoS specification is not addressed by the CORBA 2.x spec-
and optimizations [17] with ORB middleware to providéication, though there is an OMG special interest group (SIG)
end-to-end bandwidth, latency, and reliability guarantegevoted to this topic. Section 4.3 explains how TAO allows
to distributed applications. applications to specify their QoS requirements using a combi-

e Capturing and documenting the key design patterns [mtion of standard OMG IDL and QoS-aware ORB services.

necessary to develop, maintain, configure, and exteDdS enforcement from real-time operating systems and
real-time ORB endsystems. networks: Regardless of the ability tepecifyapplication
. o . . . QoS requirements, an ORB endsystem cannot deliver end-to-
In addition to providing a real-time ORB, TAO is an inteaq guarantees to applications without network and OS sup-
grated ORB endsystem that consists of a high-performangeg; tor QosSenforcement Therefore, ORB endsystems must
/O subsystem [27, 28] and an ATM Port Interconnect Co canaple of scheduling resources such as CPUs, memory,
troller (APIC) [29]. Figure 4 illustrates the main componentg, j network connection bandwidth and latency. For instance,
in TAO's ORB endsystem architecture. 0S scheduling mechanisms must allow high-priority client re-
guests to run to completion and prevent unbounded priority
2.3.2 Requirements for High-performance and Real-time jnversion.
ORB Endsystems Another OS requirement is preemptive dispatching. For ex-
The remainder of this section describes the requireme%@ple'athread may be_come runnablethathasahigherpriority
rf%g_n one currently running a CORBA request on a CPU. In this

and features of ORB endsystems necessary to meet h the | iority thread th ted b )
performance and real-time application QoS needs. It outli €, the fow-priorily thread must be preempted by removing
{h om the CPU in favor of the high-priority thread.

key performance optimizations and provides a roadmap for

ORB features and optimizations presented in subsequent set _efctlon 3.1 de_sc;rlbest.the Otﬁ !I{gosu_li_ahs_ys.tefm etnd tn etw_ork
tions. Figure 3 summarizes the material covered below. Interface we are integrafing wi - 'S Infrastructure 1

designed to scale up to support performance-sensitive appli-
in args cations that require end-to-end gigabit data rates, predictable
operation() SERVANT — Presaremion scheduling of 1/O within an ORB endsystem, and low latency
out A7ES + returs value to CORBA applications.
— %cﬂﬁn Efficient and predictable real-time communication proto-
| semmouzne, COIS @nd protocol engines: The throughput, latency, and re-
g [ ,NT(;‘,}FECE} (—%(——:E‘;ﬁgﬁf liability requirements of multimedia applications like telecon-
< ferencing are more stringent and diverse than those found in
| cor |4 {lf= weoms  traditional applications like remote login or file transfer. Like-
masrorr — WiSe, the channel speed, bit-error rates, and services (such as
(T RO OS KERNEL OO isochronous and bounded-latency delivery guarantees) of net-
s — 2o works like ATM exceed those offered by traditional networks
< wmow like Ethernet. Therefore, ORB endsystems must provide a pro-
NETWORK aparmR - tocol engine that is efficient, predictable, and flexible enough
to be customized for different application QoS requirements
Figure 3: Features and Optimizations for Real-time OR#d network/endsystem environments.
Endsystems Section 3.2.1 outlines TAO's protocol engine, which pro-
vides real-time enhancements and high-performance opti-

mizations to the standard CORBA General Inter-ORB Proto-

Policies and mechanisms for specifying end-to-end appli- . =e ,
cation QoS requirements: ORB endsystems must allow ap®°! (GIOP) [1]. The GIOP implementation in TAO's protocol

plications to specify the QoS requirements of their IDL ofz"9ine specifies (1) a connection and concurrency architecture

erations using a small number of application-centric, ratfBft minimizes priority inversion and (2) a transport protocol

than OS/network-centric parameters. Typical QoS pararH%@t enables efficient, predictable, and interoperable process-

ters include computation time, execution period, and barfgd @nd communication among heterogeneous ORB endsys-
width/delay requirements. For instance, video-conferencﬁ?ﬁns'

groupware [30, 12] may require high throughput atatisti- Efficient and predictable request demultiplexing and dis-

cal real-time latency deadlines. In contrast, avionics missipatching: ORB endsystems must demultiplex and dispatch
control platforms [10] may require rate-based periodic primcoming client requests to the appropriate operation of the tar-
cessing withdeterministiceal-time deadlines. get servant. In conventional ORBs, demultiplexing occurs at

<
<
<!




multiple layers, including the network interface, the protoctiigh-performance” requirements. This is not necessarily the
stack, the user/kernel boundary, and several levels in an ORfise. For instance, an Internet audio-conferencing system may
Object Adapter. Demultiplexing client requests through albt require high bandwidth, but it does require predictably low
these layers is expensive, particularly when a large numbetat&ncy to provide adequate QoS to users in real-time.
operations appear in an IDL interface and/or a large numbeOther multimedia applications, such as teleconferencing,
of servants are managed by an ORB endsystem. To minintiz@e both real-time and high-performance requirements. Ap-
this overhead, and to ensure predictable dispatching behgications in other domains, such as avionics and process con-
ior, TAO applies the perfect hashing and active demultipleixel, have stringent periodic processing deadline requirements
ing optimizations [20] described in Section 3.3 to demultipléw the worst-case. In these domains, achieving predictability in
requests ir0(1) time. the worst-case is often more important than high performance

Efficient and predictable presentation layer: ORB pre- in the average-case.

sentation layer conversions transform application-level data{t is important to recognize that high-performance require-

into a portable format that masks byte order, alignment aW&ntTQ‘ may confligt with .re.al-time requirements. Fpr ins:t_ance,
word length differences. Many performance optimizatioﬁ al-time scheduling policies often rely on the predictability of

have been designed to reduce the cost of presentation | ystem operations like thread scheduling, demultiplexing,

conversions. For instance, [31] describes the tradeoffs ac messagie bufferlngt. trl]—|owever, cerftaln g.pilrrglii?tlogs can
tween using compiled vs. interpreted code for presentat‘mprove periormance at tn€ expense of predictabiiily. For in-
layer conversions. Compiled marshaling code is efficient, gnce, using a self-organizing search structure to demultiplex

requires excessive amounts of memory. This can be probl(g 2Nt requests in an ORB's Object Adapter can increase the

atic in many embedded real-time environments. In Comra@(?rgge—ggse performance of operguons, which decreases the
dictability of any given operation in the worst-case.

interpreted marshaling code is slower, but more compact d Al licati | h . deoffs b
can often utilize processor caches more effectively. 0 allow applications to select the appropriate tradeofts be-

Section 3.4 outlines how TAO supports predictable perfcﬁ\‘,‘-’een average-case and worst-case performance, TAQ is de-

mance guarantees for both interpreted and compiled marsRigned with an extensible software architecture based on key

ing operations via its GIOP protocol engine. This protoc8 mmunlcgtlon patterns [25]. When appropnat_e,_TAO em-
engine applies a number of innovative compiler techniques f3PYS algorithms and data structures that can optimize for both

and optimization principles [18]. These principles include op rformance and predictability. For instance, the de-layered

timizing for the common case; eliminating gratuitous wast%?tive demultiplexing scheme described in Section 3.3 can in-

replacing general purpose operations with specialized, effigase ORB performaneadpredictability by eliminating ex-

cient ones; precomputing values, if possible; storing redundﬁﬂ?i'vle ;earlch|ng azng avoiding priority inversions across de-
state to speed up expensive operations; passing informaﬂBH iplexing layers [20].

between layers; and optimizing for the cache.

Efficient and predictable memory management: Onmod- 3  Architectural Components and Fea-

ern high-speed hardware platforms, data copying consumes a .
significant amount of CPU, memory, and I/O bus resources tures for ngh'performance’ Real-

[32]. Likewise, dynamic memory managementincurs a signi-  time ORB Endsystems

icant performance penalty due to locking overhead and non-

determinism due to heap fragmentation. Minimizing daO’s ORB endsystem contains the network interface, 1/0
copying and dynamic memory allocation requires the collaubsystem, communication protocol, and CORBA middleware
oration of multiple layers in an ORB endsysteim,, the net- components shown in Figure 4. These components include the
work interfaces, 1/0 subsystem protocol stacks, ORB Core &otlowing.

Object Adapter, presentation layer, and application-specific . )
servants. I/O subsystem: which send/receives requests to/from

Section 3.5 outlines TAO's vertically integrated memor§/i€nts in real-time across a network (such as ATM) or back-
management scheme that minimizes data copying and 18&"e (such as VME or compactPCl).

contention throughoutits ORB endsystem. 2. Run-time scheduler: which determines the priority at
which requests are processed by clients and servers in an ORB
2.3.3 Real-time vs. High-performance Tradeoffs endsystem.

There is a common misconception [33] that applications wiBh ORB Core: which provides a highly flexible, portable,
“real-time” requirements are equivalent to application witfficient, and predictable CORBA inter-ORB protocol engine
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that delivers client requests to the Object Adapter and returns
responses (if any) to clients.

4. Object Adapter:

active demultiplexing.

5. Stubs and skeletons: which optimize key sources of mar-
shaling and demarshaling overhead in the code generated au-
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which demultiplexes and dispatches
client requests optimally to servants using perfect hashing and

TAO'’s I/O subsystem and portions of its run-time scheduler
and memory manager run in the kernel. Conversely, TAO’s
ORB Core, Object Adapter, stubs/skeletons, and portions of
its run-time scheduler and memory manager run in user-space.

The remainder of this section describes components 1, 3,
4, 5, and 6 and explains how they are implemented in TAO
to meet the requirements of high-performance, real-time ORB
endsystems described in Section 2.3. Section 4 focuses on
components 2 and 7, which allow applications to specify QoS
requirements for real-time servant operations. This paper dis-
cusses both high-performance and real-time features in TAO
since it is designed to support applications with a wide range
of QoS requirements.

3.1 High-performance, Real-time 1/O Subsys-
tem
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E‘ié);ure 5: Components in TAO’s High-performance, Real-time
Subsystem

which allows applications and higher-level An /O subsystem is responsible for mediating ORB and ap-

CORBA services to specify their QoS parameters using an @lization access to low-level network and OS resources such

programming model.

as device drivers, protocol stacks, and CPU(s). The key chal-



lenges in building a high-performance, real-time 1/0O subsy&rnel threads are co-scheduled with a pool of application
tem are to (1) make it convenient for applications to specityreads. The kernel threads run at the same priority as the
their QoS requirements, (2) enforce QoS specifications application threads, which prevents the real-time scheduling
minimize priority inversion and non-determinism, and (3) efvazards outlined above.
able ORB middleware to leverage QoS features provided bylo ensure predictable performance, the kernel threads be-
the underlying network and OS resources. long to areal-time 1/O scheduling class. This scheduling
To meet these challenges, we have developed a higlass uses rate monotonic scheduling (RMS) [36, 37] to sup-
performance, real-time network 1/0O subsystem that is cymrt real-time applications with periodic processing behavior.
tomized for TAO [17]. The components in this subsystem afnce a real-time 1/O thread is admitted by the OS kernel,
shown in Figure 5. They include (1) a high-speed ATM netAO’s RIO subsystem is responsible for (1) computing its pri-
work interface, (2) a high-performance, real-time 1/O subsyarity relative to other threads in the class and (2) dispatching
tem, (3) a real-time Scheduling Service and Run-Time Schék thread periodically so that its deadlines are met.

uler, and (4) an admission controller, as described below. Real-time Scheduling Service and Run-Time Scheduler:

High-speed network interface: Atthe bottom of TAO’s I/O The scheduling abstractions defined by real-time operating
subsystem is a “daisy-chained” interconnect containing osi¢stems like VxWorks, LynxOS, and POSIX 1003.1c [38] im-
or more ATM Port Interconnect Controller (APIC) chips [29]plementations are relatively low-level. For instance, they re-
APIC can be used both as an endsystem/network interface @uice developers to map their high-level application QoS re-
as an I/0 interface chip. It sustains an aggregate bi-directiogigirements into lower-level OS mechanisms, such as thread
data rate of 2.4 Gbps. priorities and virtual circuit bandwidth/latency parameters.
Although TAO is optimized for the APIC 1/O subsystem, i his manual mapping step is non-intuitive for many applica-
is designed using a layered architecture that can run on cé@n developers, who prefer to design in terms of objects and
ventional OS platforms, as well. For instance, TAO has be@perations on objects.
ported to real-time interconnects, such as VME and compactTo allow applications to specify their scheduling require-
PCI backplanes [17] and multi-processor shared memory 8tents in a higher-level, more intuitive manner, TAO provides
vironments, and QoS-enabled networks, such as IPv6 witReal-time Scheduling Service. This service is a CORBA ob-
RSVP [34]. ject that is responsible for allocating system resources to meet

. the QoS needs of the applications that share the ORB endsys-
Real-time 1/0O Subsystem: Some general-purpose operatsm.

ing systems like Solaris and Windows NT now support real- opjications can use TAO's Real-time Scheduling Service

time scheduling. For example, Solaris 2.x provide;a real-ti.%especify the processing requirements of their operations in
scheduling class [14] that attempts to bound the time requitgfl,s of various parameters, such as computation Gpee-

X \ , these priority assignments are then used by TAO
tation does not support QoS guarantees since STREAMS Riiof scheduler. The Run-time Scheduler maps client requests

cessing is performed at system thread priority, which is oW} 4 ticular servant operations into priorities that are under-
than all real-time threads [17]. Therefore, the Solaris I/O sufy; o by the local endsystem’s OS thread dispatcher. The
system is prone to priority inversion since low-priority réalyisnatcher then grants priorities to real-time 1/0 threads and
time threads can preempt the I/0 operations of hlgh_-prlort%rforms preemption so that schedulability is enforced at run-
threads. Unbounded priority inversion is highly undesirable g, section 4.2 describe the Run-Time Scheduler and Real-

many real-time environments. . time Scheduling Service in detail.
TAO enhances the STREAMS model provided by Solaris

and real-time operating systems like VxWorks and Lynx0&dmission Controller: To ensure that application QoS re-
TAO’s real-time I/0 (RIO) subsystem minimizes priority induirements can be met, TAO performs admission control for
version and hidden schedulfthat arise during protocol pro-its real-time 1/0 scheduling class. Admission control allows
cessing. TAO minimizes priority inversion by pre-allocating &€ OS to either guarantee the specified computation time or

pool of kernel threads dedicated to protocol processing. Thé&gefuse to admit the thread. Admission control is useful for
real-time systems with deterministic and/or statistical QoS re-
2Hidden scheduling occurs when the kernel performs work asyquirements_

chronously without regard to its priority. STREAMS processing in Solaris is his paper focuses primarily on admission control for ORB
an example of hidden scheduling since the computation time is not accountezl—

for by the application or OS scheduler. To avoid hidden scheduling, the kerﬁé\dsys'tems-. AdmiSSion control is also impprtant at high?r'
should perform its work at the priority of the thread that requested the workevels in a distributed system, as well. For instance, admis-




sion control can be used for global resource managers [39, Bestream. An ORB supports GIOP if applications can use
that map applications onto computational, storage, and ritbe ORB to send and receive standard GIOP messages.
work resources in a large-scale distributed system, such as Bhe GIOP specification consists of the following elements:

ship-board computing environment. e Common Data Representation (CDR) definition: The

GIOP specification defines a common data representation
3.2 Efficient and Predictable ORB Cores (CDR). CDR is a transfer syntax that maps OMG IDL types

from the native endsystem format to a bi-canonical format,
The ORB Core is the component in the CORBA architectufighich supports both little-endian and big-endian binary data

that manages transport connections, delivers client requestgimats. Data is transferred over the network in CDR encod-
an Object Adapter, and returns responses (if any) to clieqﬁgs_

The ORB Core typically implements the ORB's transport end- _ o
point demultiplexing and concurrency model, as well. * GIOP Message Formats: The GIOP specification de-

The key challenges to developing a real-time ORB coiiges messages for sending requests, receiving replies, locating

are (1) implementing an efficient protocol engine for CORB@RPIECtS, and managing communication channels.

inter-ORB protocols like GIOP and IIOP, (2) determining a ¢ GIOP Transport Assumptions: The GIOP specifica-
suitable connection and concurrency model that can sharefbg describes what types of transport protocols can carry
aggregate processing capacity of ORB endsystem componei)itsp messages. In addition, the GIOP specification describes
predictably among operations in one or more threads of c@idw connections are managed and defines constraints on mes-
trol, and (3) designing an ORB Core that can be adapted easlge ordering.

to new endsystem/network environments and application QoS

requirements. The following describes how TAO’s ORB Cord'€ CORBA Inter-ORB Protocol (IIOP) is a mapping of GIOP
is designed to meet these challenges. onto the TCP/IP protocols. ORBs that use [IOP are able to

communicate with other ORBSs that publish their locations in

) aninteroperable object referend¢OR) format.
3.2.1 TAO’s Inter-ORB Protocol Engine ] o ]
Implementing GIOP/IIOP efficiently and predictably: In

TAO's protocol engine is a highly optimized, real-time versioBorba 2.x, neither GIOP nor 1IOP provide support for speci-

of the SunSoft IIOP reference implementation [18] that is ifising or enforcing the end-to-end QoS requirements of appli-
tegrated with the high-performance 1/0O subsystem descrilggdions® This makes GIOP/IIOP unsuitable for real-time ap-

in Section 3.1. Thus, TAO’s ORB Core on the client, serveglications that cannot tolerate the latency overhead and jitter
and any intermediate nodes can collaborate to process requsfSICP/IP transport protocols. For instance, TCP functional-

in accordance with their QoS attributes. This design allows like adaptive retransmissions, deferred transmissions, and
clients to indicate the relative priorities of their requests agélayed acknowledgments can cause excessive overhead and
allows TAO to enforce client QoS requirements end-to-endlatency for real-time applications. Likewise, routing proto-

To increase portability across OS/network platforms, TAO®Is like IPv4 lack functionality like packet admission policies
protocol engine is designed as a separate layer in TAO’s ORM& rate control, which can lead to excessive congestion and
Core. Therefore, it can either be tightly integrated with theissed deadlines in networks and endsystems.
high-performance, real-time 1/0O subsystem described in SecTo address these shortcomings, TAO’'s ORB Core supports
tion 3.1 or run on conventional embedded platforms linked ta- priority-based concurrency architecture, a priority-based
gether via interconnects like VME or shared memory. connection architecture, and a real-time inter-ORB protocol

Below, we outline the existing CORBA interoperability profRIOP), as described below.
tocols and describe how TAO implements these protocolsin an

e X ! iority- hi re:
efficient and predictable manner. TAO’s priority-based concurrency architecture

TAO’s ORB Core can be configured to allocate a real-time
thread for each application-designated priority level. Ev-
Overview of GIOP and IIOP: CORBA is designed to runery thread in TAO’s ORB Core can be associated with a
over multiple transport protocols. The standard ORB interdReactor , which implements the Reactor pattern [43] to pro-
erability protocol is known as the General Inter-ORB Protocalde flexible and efficient endpoint demultiplexing and event
(GIOP) [1]. GIOP provides a standard end-to-end interdpandler dispatching.

erability protocol between potentially heterogeneous ORBs- _ _ o _ _
GIOP specifies an abstract interface that can be mapBaeég;jr;l?t;-orthcommg real-time CORBA specification [41] will support this
onto transport protocols that meet certain requiremerns, 4, addition, TAO's ORB Core can be configured to support thread pool,
connection-oriented, reliable message delivery, and untygeehd-per-connection, and single-threaded reactive dispatching [42].




When playing the role of a server, TAOReactor (s) de- necttothe ORB instance running at a particular thread priority.
multiplex incoming client requests to connection handlers thO can be configured so that each priority level has its own
perform GIOP processing. These handlers collaborate witbceptor port. For instance, in statically scheduled, rate-
TAQ's Object Adapter to dispatch requests to application-lewssed avionics mission computing systems [46], ports 10020,
servant operations. Operations can either execute at (1)18610, 10005, 10001 could be mapped to the 20 Hz, 10 Hz,
priority of the client that invoked the operation or (2) at the Hz, and 1 Hz rate groups, respectively. Requests arriving
priority of the real-time ORB Core thread that received ttad these socket ports can then be processed by the appropriate
operation. The latter design is well-suited for deterministicxed-priority real-time threads.
real-time applications since it minimizes priority inversion and Once a client connects, thcceptor  in the server ORB
non-determinism in TAO’s ORB Core [44]. In addition, it reereates a new socket queue and a GIOP connection handler to
duces context switching and synchronization overhead sigegvice that queue. TAO’s I/O subsystem uses the port number
servant state must be locked only if servants interact acrosatained in arriving requests as a demultiplexing key to asso-
different thread priorities. ciate requests with the appropriate socket queue. This design

TAO’s priority-based concurrency architecture is optimizadinimizes priority inversion through the ORB endsystem via
for statically configured, fixed priority real-time applicationsarly demultiplexind27, 28, 29], which associates requests
In addition, it is well suited for scheduling and analysis techtriving on network interfaces with the appropriate real-time
niques that associate priority withte, such as rate monotonicthread that services the target servant. As described in Sec-
scheduling (RMS) and rate monotonic analysis (RMA) [36ion 8, early demultiplexing is used in TAO to vertically in-
37]. For instance, avionic mission computing systems cotagrate the ORB endsystem’s QoS support from the network
monly execute their tasks fates groupsA rate group assem-interface up to the application servants.
bles all periodic processing operations that occur at particular
rates €.g, 20 Hz, 10 Hz, 5 Hz, and 1 Hz) and assigns them to® TAO’s Real-time inter-ORB protocol (RIOP):  TAO'’s
a pool of threads using fixed-priority scheduling. connection-per-priority scheme described above is optimized

, . . . R for fixed-priority applications that transfer their requests at

° TAOS priority-based connection grch|tectqre. F|_g—_ articular rates through statically allocated connections ser-

ure 6 illustrates how TAO can be configured with a priority-.

based " hitect In thi del h cli iced at the priority of real-time server threads. Applications
ased connection architecture. In this moael, eac C'?I%t possess dynamic QoS characteristics, or that propagate the

p ~  priority of a client to the server, require a more flexible proto-
col, however. Therefore, TAO supports a real-time Inter-ORB
*i *2 Protocol (RIOP)

RIOP is an implementation of GIOP that allows ORB
endsystems to transfer their QoS attributes end-to-end from
clients to servants. For instance, TAO's RIOP mapping can
transfer thamportanceof an operation end-to-end with each
GIOP message. The receiving ORB endsystem uses this QoS
attribute to set the priority of a thread that processes an opera-
I/0 SUBSYSTEM I/0 SUBSYSTEM tion in the server.

To maintain compatibility with existing IIOP-based ORBs,
TAO’s RIOP protocol implementation transfers QoS in-
Figure 6: TAO’s Priority-based Connection and Concurrent§rmation in the service _context —member of the
Architectures GIOP::requestHeader . ORBs that do not sup-

port TAO's RIOP extensions can transparently ignore the
thread maintains €onnector [45] in thread-specific stor- service _context member. Incidentally, the RIOP feature
age. EachConnector manages a map of pre-establishedlill be standardized as a QoS property in the asynchronous
connections to servers. A separate connection is maintainegssaging portion of the CORBA 3.0 specification.
for each thread priority in the server ORB. This design en-The TAO RIOP service _context passed with each
ables clients to preserve end-to-end priorities as requestsdhiant invocation contains attributes that describe the opera-
verse through ORB endsystems and communication links [44)n’s QoS parameters. Attributes supported by TAO's RIOP

Figure 6 also shows how thReactor in each thread extensions include priority, execution period, and communica-
priority in a server ORB can be configured to use daion class. Communication classes supported by TAO include
Acceptor [45]. TheAcceptor is a socket endpoint fac-isocHRONoOUSfor continuous mediagURST for bulk data,
tory that listens on a specific port number for clients to comeSSAGE for small messages with low delay requirements,
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and MESSAGE.STREAM for message sequences that must bgeration execution.
processed at a certain rate [28]. TAO ports easily to many OS platforms since it is built using
In addition to transporting client QoS attributes, TAO'8CE components based on the patterns described above. Cur-
RIOP is designed to map CORBA GIOP on a variety of netntly, ACE and TAO have been ported to a wide range of OS
works including high-speed networks like ATM LANs angblatforms including Win32i(e., WinNT 3.5.x/4.x, Win95, and
ATM/IP WANSs [47]. RIOP also can be customized for specifie/inCE), most versions of UNIXg.g, SunOS 4.x and 5.x, SGI
application requirements. To support applications that do fRtX 5.x and 6.x, HP-UX 9.x, 10.x, and 11.x, DEC UNIX 4.x,
require complete reliability, TAO’s RIOP mapping can selegdX 4.x, Linux, SCO, UnixWare, NetBSD, and FreeBSD),
tively omit transport layer functionality and run directly atopeal-time operating systems., VxWorks, Chorus, LynxOS,
ATM virtual circuits. For instance, teleconferencing or certasmd pSoS), and MVS OpenEdition.
types of imaging may not require retransmissions or bit-levelFigure 7 illustrates the components in the client-side

error detection. and server-side of TAO's ORB Core.  The client-
3.2.2 Enhancing the Extensibility and Portability of IDL
TAO’s ORB Core CLIENT COMPILER OBJECT
J/ \ (SERVANT)
Although most conventional ORBs interoperate via IIOP over ,/ Y 4 2

TCP/IP, an ORB is not limited to running over these transports.

For instance, while TCP can transfer GIOP requests reliably — SKELEm;] DSI| ¥
its flow control and congestion control algorithms may pre-| pu SI’RIII;S ORB ’ PORTABLE]
INTERFACE

clude its use as a real-time protocol. Likewise, shared memo ADAPTE!
may be a more effective transport mechanism when clients a
servants are co-located on the same endsystem. Therefo
key design challenge is to make an ORB Core extensible g
portable to multiple transport mechanisms and OS platform
To increase extensibility and portability, TAO’s ORB Corg
is based on patterns in the ACE framework [24]. Section
describes the patterns used in TAO in detail. The followin
outlines the patterns that are used in TAO’s ORB Core.
TAO’s ORB Core uses th&trategyand Abstract Factory

| 5
; 5: REQUES Hand) papqp Handler
[ asronst N
Handler \
0N \4: CREATE &
patterns [48] to allow the configuration of multiple schedulin
algorithms, such as earliest deadline first or maximum urgen

\ ACTIVATE
Strategy
Connector
first [49]. Likewise, theBridge pattern [48] shields TAO’s

ORB Core from the choice of scheduling algorithm. TAO use CLIENT
ACE components based on tiservice Configuratopattern
[50] to allow new algorithms for scheduling, demultiplexing,
concurrency, and dispatching to be configured dynamically,
i.e, at runtime. On platforms with C++ compilers that opti-
mize virtual function calls, the overhead of this extensibility de uses &trategy _Connector to create and cache
negligible [10]. Connection _Handler s that are bound to each server.
Other patterns are used in TAO’s ORB Core to simpliffhese connections can be pre-allocated during ORB initial-
its connection and concurrency architectures. For instanafion. Pre-allocation minimizes the latency between client
the Acceptor-Connectqrattern [45] defines ACE component#ivocation and servant operation execution since connections
used in TAO to decouple the task of connection establishmean be establisheslpriori using TAO’s explicit binding oper-
from the GIOP processing tasks performed after connectiion.
establishment. TAO uses tlieactorpattern [43], which de- On the server-side, thReactor detects new incoming
fines an ACE component that simplifies the event-driven paeennections and notifies thetrategy _Acceptor . The
tions of the ORB core by integrating socket demultiplexir§trategy _Acceptor accepts the new connection and as-
and the dispatching of the corresponding GIOP connect®urtiates it with aConnection _Handler that executes in
handlers. Likewise, thActive Objecipattern [51] defines ana thread with an appropriate real-time priority. The client’s
ACE component used in TAO to configure multiple concu€onnection _Handler can pass GIOP requests (described
rency architectures by decoupling operation invocation fram Section 3.2.1) to the server8Sonnection _Handler .

ADAPTER

1:loperation() ORB CORE

Connep” Conne Connectio!

2: connect()

—> —>

SERVER

Figure 7: Components in the TAO’s ORB Core
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This handler upcalls TAO’s Object Adapter, which dispatch8s3.1 Conventional ORB Demultiplexing Strategies

the requests to the appropriate servant operation. . . . .
q pprop P A standard GIOP-compliant client request contains the iden-

] ) ) . ] tity of its remote object and remote operation. A remote ob-
3.2.3 Real-time Scheduling and Dispatching of Client Re-ject is represented by an Object Kegtet sequence  and
quests a remote operation is represented atrimg . Conventional

TAO's ORB Core can be configured to implement cuQRBs demultiplex client requests to the appropriate operation

tom mechanisms that process client requests accordingt§1€ Servantimplementation using tiagered demultiplex-
application-specific real-time scheduling policies. To prdd architecture shown in Figure 8. These steps perform the

vide a guaranteed share of the CPU among application opera-
tions [28, 10], TAO’s ORB Core uses the real-time Scheduling
Service described in Section 4. One of the strategies provided
by TAO's ORB Core is variant of periodic rate monotonic
scheduling implemented with real-time threads and real-time

LAYERED
DEMUXING

OPERATIONK

OPERATION2

OPERATION]1

6: DEMUX TO

upcalls (RTUs) [28]. e —

TAO’s ORB Core contains an object reference to its Run- (SK'EDt 1) (sxlff 2) eee QKIE%M)
Time Scheduler shown in Figure 4. This scheduler dispatches 5:pEmux To L — ]
client requests in accordance with a real-time scheduling pol- =~ SKELETON (SERVANT 1) (SERVANT 2) oo GERVANT N)

[ I ]
I

icy configured into the ORB endsystem. The Run-Time 4 v 1o
Scheduler maps client requests to real-time thread priorities  sgrvant
and connectors. (OBJECT ADAPTER)

TAO's initial implementation supports deterministic real- 3:PEMUX TO |
OBJECT ADAPTER

time applications [17]. In this case, TAO’s Run-Time Sched- ( )

uler consults a table of request priorities generated off-line. At  2: pgmux o

run-time, TAO’s ORB Core dispatches threads to the CPU(s) /O HaNDLE 0] LGLLLIE

according to its dispatching mechanism. We are have extended
1: DEMUX THRU

TAO to support dynamically scheduling and applications with ™o = "

statistical QoS requirements [46].
Figure 8: Layered CORBA Request Demultiplexing

3.3 Efficient and Predictable Object Adapters
IoIIowing tasks:

The Object Adapter is the component in the CORBA arcﬁ -
tecture that associates a servant with an ORB, demultipleé@ps 1 and 2: The OS protocol stack demultiplexes the in-
incoming client requests to the servant, and dispatches thecgning client request multiple times,g, through the data
propriate operation of that servant. The key challenges ad#tk, network, and transport layers up to the user/kernel bound-
ciated with designing an Object Adapter for real-time ORBgY and the ORB Core.

are determining how to demultiplex client requests efficientlsgt(_:.pS 3, 4, and 5: The ORB Core uses the addressing in-
scalably, and predictably. formation in the client's Object Key to locate the appropriate

TAQ is the first CORBA ORB whose Object Adapter implegpject Adapter, servant, and the skeleton of the target IDL op-
ments the OMG POA (Portable Object Adapter) specificatigpstion.

[1]. The POA specification defines a wide range of features, _ , ,
including: user- or system-supplied Object Ids, persistent arigP 6:  The IDL skeleton locates the appropriate operation,

transient objects, explicit and on-demand activation, multiglgmarshals the request buffer into operation parameters, and
servant— CORBA object mappings, total application contrdi€rforms the operation upcall.

over object behavior and existence, and static and DSI ser- . . . .
vants [52, 53]. However, layered demultiplexing is generally inappropriate

The demultiplexing and dispatching policies in TAO's odor high-performance and real-time applications for the fol-

ject Adapter are instrumental to ensuring its predictabilifg"Ving reasons [54]:

and efficiency. This subsection describes how TAO's OBecreased efficiency: Layered demultiplexing reduces per-
ject Adapter can be configured to use perfect hashing or fmmance by increasing the number of internal tables that
tive demultiplexing to map client requests directly to semust be searched as incoming client requests ascend through
vant/operation tuples i®(1) time. the processing layers in an ORB endsystem. Demultiplexing
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client requests through all these layers is expensive, particiFAO uses the GNWperf [55] tool to generate perfect
larly when a large number of operations appear in an IDL ihash functions for object keys and operation names. This per-
terface and/or a large number of servants are managed bfeahhashing scheme is applicable when the keys to be hashed
Object Adapter. are knowna priori. In many deterministic real-time systems,
such as avionic mission control systems [10, 46], the servants

Increased priority inversion and non-determinism:  Lay- and operations can be configured statically. For these appli-

ered demultlplexmg can cause priority |nver.S|01f|s.becaLts ions, it is possible to use perfect hashing to locate servants
servant-level quality of service (QoS) information is inacceg | operations

sible to the lowest-level device drivers and protocol stacks in
the 1/0 subsystem of an ORB endsystem. Therefore, an @tive demultiplexing:  TAO also provides a more dynamic
ject Adapter may demultiplex packets according to their FIFg@multiplexing strategy calledctive demultiplexingshown
order of arrival. FIFO demultiplexing can cause higher pridf Figure 9(B). In this strategy, the client passes an object key
ity packets to wait for an indeterminate period of time whildat directly identifies the servant and operatioiifi) time
lower priority packets are demultiplexed and dispatched [17] the worst-case. The client obtains this object key when it
) ) ) ) ~_ obtains a servant’s object referenegy, via a Naming service

Conventional implementations of CORBA incur significardr Trading service. Once the request arrives at the server ORB,
dem.ultlplexmg overhead. Forinstance, [21, 16].showthat CQAe Object Adapter uses the object key the CORBA request
ventional ORBs spenet17% of the total server time processnheader to locate the servant and its associated operation in a
ing demultiplexing requests. Unless this overhead is reduggghle step.
and demultiplexing is performed predictably, ORBs cannotynplike perfect hashing, TAO's active demultiplexing strat-
provide uniform, scalable QoS guarantees to real-time apgljy does not require that all Object Ids be knoavipriori.

cations. This makes it more suitable for applications that incarnate and
etherealize CORBA objects dynamically.

3.3.2 TAO's Optimized ORB Demultiplexing Strategies  goth perfect hashing and active demultiplexing can demul-

To address the limitations with conventional ORBs, TAO préPlex client requests efficiently and predictably. Moreover,

vides the demultiplexing strategies shown in Figure 9. TadRese strategies perform optimally regardless of the number of
active connections, application-level servant implementations,

(A) LAYERED DEMUXING, (B) DE-LAYERED ACTIVE and operations defined in IDL interfaces. [20] presents a de-
% % % PERFECT HASHING oemuxine . tailed study of these and other request demultiplexing strate-
E E E =lel 2] |z |2 gies for a range of target objects and operations.
Ell §loes| & gl e < g g TAO's Object Adapter uses the Service Configurator pattern
hash(operation) HEIRE g 2| [50] to select perfect hashing or active demultiplexing dynam-
DL oL ) ,..( DL S Sloes| Slees| Rloee| | ically during ORB installation [25]. Both strategies improve
i g g g E E request demultiplexing performance and predictabdibpve
(SERVANT 1) (SERVANT 2) OOO(SERVANT N) E E E E & the ORB Core.
2= ﬁ L2l L&l  To improve efficiency and predictabilitpelow the ORB

hash(object key) index(object key/operationy ~ Core, TAO uses the ATM Port Interconnect Controller (APIC)
) despnbed in Section 3.1 to d_|regtly dispatch pllent requegts as-
sociated with ATM virtual circuits [17]. This vertically in-
tegrated, optimized ORB endsystem architecture reduces de-
multiplexing latency and supports end-to-end QoS on either a

Figure 9: Optimized CORBA Request Demultiplexing Strate- ; .
gies per-request or per-connection basis.

optimized demultiplexing strategies include the following: 3.4  Efficient and Predictable Stubs and Skele-

. . - n
Perfect hashing: The perfect hashing strategy shown in Fig- tons

ure 9(A) is a two-step layered demultiplexing strategy. Th&ubs and skeletons are the components in the CORBA archi-
strategy uses an automatically-generated perfect hashing faecture responsible for transforming typed operation param-
tion to locate the servant. A second perfect hashing functieters from higher-level representations to lower-level repre-
is then used to locate the operation. The primary benefitsgntations (marshaling) and vice versa (demarshaling). Mar-
this strategy is that servant and operation lookups reqit¢ shaling and demarshaling are major bottlenecks in high-
time in the worst-case. performance communication subsystems [56] due to the sig-
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nificant amount of CPU, memory, and I/O bus resources thaye service or when the worst-case scenarios are still suffi-
consume while accessing and copying data. Therefore, k@nt to meet deadlines.
challenges for a high-performance, real-time ORB are to de-
sign an efficient presentation layer that performs marshaling
and demarshaling predictably, while minimizing the use of . .
costly operations like dynamic memory allocation and da8&a® Efficient and Predictable Memory Manage-
copying. ment
In TAO, presentation layer processing is performed by
client-side stubs and server-side skeletons that are gener@maentional ORB endsystems suffer from excessive dynamic
automatically by a highly-optimizing IDL compiler [6]. Inmemory managementand data copying overhead [21]. For in-
addition to reducing the potential for inconsistencies betwegtance, many 1/0O subsystems and ORB Cores allocate a mem-
client stubs and server skeletons, TAO'’s IDL compiler supry buffer for each incoming client request and the 1/0O sub-
ports the following optimizations: system typically copies its buffer to the buffer allocated by the
. ) , . ORB Core. In addition, standard GIOP/IIOP demarshaling
Reduced use of dynamic memory: TAO's IDL compiler
. code allocates memory to hold the decoded request parame-
analyzes the storage requirements for all the messages_ex-", ., . )
t%sé. Likewise, IDL skeletons dynamically allocate and delete

changed between the client and the server. This enables .
4 . o . copies of client request parameters before and after upcalls,
compiler to allocate sufficient storagepriori to avoid re- respectively

peated run-time tests that determine if sufficient storage is _ _ _
available. In addition, the IDL compiler uses the run-time IN general, dynamic memory management is problematic

stack to allocate storage for unmarshaled parameters. for real-time systems. For instance, heap fragmentation can
yield non-uniform behavior for different message sizes and

Redugeql data.copying: TAO’s IDL compﬂer analyzes different workloads. Likewise, in multi-threaded ORBSs, the
when it is possible to perform block copies for atomic dajgcks required to protect the heap from race conditions in-
types rather than copying them individually. This reduces &Xwase the potential for priority inversion [44]. In general, ex-

cessive data access since it minimizes the number of load gggsive data copying throughout an ORB endsystem can sig-
store instructions. nificantly lower throughput and increase latency and jitter.

Reduced function call overhead: TAO's IDL compilercan  TAO is designed to minimize and eliminate data copying at
selectively optimize small stubs vialining, thereby reducing multiple layers in its ORB endsystem. For instance, TAO’s
the overhead of function calls that would otherwise be incurrpdffer management system uses the APIC network interface
by invoking these small stubs. to enhance conventional operating systems wittem-copy
TAO's IDL compiler supports multiple strategies for mart_)uffer.managem'ent systgm [29]. .At the device level, the
shaling and demarshaling IDL types. For instance, TAC59‘PIC mteracts directly \.N'th the main system bus and other
) : . . 1/O devices. Therefore, it can transfer client requests between
IDL compiler can generate either compiled and/or mterpretends stem buffer pools and ATM virtual circuits with no addi-
IDL stubs and skeletons. This design allows applicationsteio Iyd t TP
select between (linterpretedstubs/skeletons, which can pgonal data copying.
somewhat slower, but more compact in size ancc@ppiled The APIC buffer pools for I/O devices described in Sec-
stubs/skeletons, which can be faster, but larger in size [31]1ion 3.1 can be configured to suppearly demultiplexing
Likewise, TAO can cache premarshaled application d&hperiodic and aperiodic client requests into memory shared
units (ADUS) that are used repeatedly. Caching improves p&fong user- and kernel-resident threads. These APIs allow
formance when ADUs are transferred sequentially in “requ€8€nt requests to be sent/received to/from the network with-
chains” and each ADU varies only slightly from one transmigUt incurring any data copying overhead. Moreover, these
sion to the other. In such cases, it is not necessary to mar$ifers can be preallocated and passed between various pro-
the entire request every time. This optimization requires ti€&Ssing stages in the ORB, thereby minimizing costly dynamic
the real-time ORB perform flow analysis [57, 58] of applicd€mory management.
tion code to determine what request fields can be cached. In addition, TAO uses the Thread-Specific Storage pattern
Although these techniques can significantly reduce marsH&B] to minimize lock contention resulting from memory al-
ing overhead for the common case, applications with striotation. TAO can be configured to allocate its memory from
real-time service requirements often consider only worst-calseead-specific storage. In this case, when the ORB requires
execution. As a result, the flow analysis optimizations deemory it is retrieved from a thread-specific heap. Thus, no
scribed above can only be employed under certain circulmeks are required for the ORB to dynamically allocate this
stancesg.g, for applications that can accept statistical realhemory.
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4 Supporting Real-time Scheduling in that all processing requirements will be met. For real-time ap-
CORBA plications with statistical QoS requirements, the Scheduling
Service tries to meet system processing requirements within

Section 3 described the architectural components used in T desired tolerance, while also trying to maximize CPU uti-

to provide a high-performance ORB endsystem for real-ti at|on.. . , . . , .
CORBA. TAO's architecture has been realized with minimal The initial design and implementation of TAO's real-time

changes to CORBA. However, the CORBA 2.x specificatic)??hedu”ng Servi_ce [23].targeteq determir!istic reaI—Fime appli-
does not yet address issues related to real-time scheduf ons that require off-line, static scheduling on a single CPU.

Therefore, this section provides in-depth coverage of the co g g}’ef:b‘he dSche|dyIing Sk(]ar\éiclv'e is also ”ﬁefu' forhdyn?mic
ponents TAO uses to implement a Real-time Scheduling - |shtr|du'|[_e rea -t!me.scdef.u '39’ as well [46]. Tb“ere ore,
vice, based on standard CORBA features. the Scheduling Service is defined as a CORBA objeet,

as an implementation of an IDL interface. This design en-

ables the Scheduling Service to be accessed either locally or

4.1 Synopsis of Application Quality of Service remotely without having to reimplement clients that use it.
Requirements TAO’s Real-time Scheduling Service has the following off-

i ) line and on-line responsibilities:
The TAO ORB endsystem [23] is designed to support vari-

ous classes of quality of service (QoS) requirements, incleff-line scheduling feasibility analysis: TAO's Scheduling

ing applications with deterministic and statistical real-timeervice performs off-line feasibility analysis of all IDL opera-
requirements. Deterministic real-time applications, such #gns that register with it. This analysis results in a determina-
avionics mission computing systems [10], must meet periodign of whether there are sufficient CPU resources to perform
deadlines. These types of applications commonly use stalldequested operations, as discussed in Section 4.5.

scheduling and analysis techniques, such as rate monoteRif jest priority assignment: Request priorityis the rela-
analysis (RMA) and rate monotonic scheduling (RMS). e priority of a requestto any other. It is used by TAO to
. Statlstlc_:al real-time applications, such.as teleconfereta%patch requests in order of their prioritythread priority
ing and video-on-demand, can tolerate minor fluctuations;inhe priority that corresponds to that of the thread that will
scheduling and reliability guarantees, byt nonetheless redif{ke the request. During off-line analysis, the Scheduling
QoS guarantees. These types of applications commonly 686 ice 1) assigns a request priority to each request and 2) as-
dynamic scheduling techniques [46], such as earliest deadlijgs each request to one of the preconfigured thread priorities.
first (EDF), minimum laxity first (MLF), or maximum urgencya vn-time, the Scheduling Service provides an interface that
first (MUF,)', , ) . allows TAO's real-time ORB endsystem to access these priori-
Deterministic real-time systems have traditionally begs priorities are the mechanism for interfacing with the local
more amenable to well-understood scheduling analysis te@Hdsystem’s 0S dispatcher, as discussed in Section 4.4.
niques. Consequently, our research efforts were initially di-
rected toward static scheduling of deterministic real-time sys-A high-level depiction of the steps involved in the off-line
tems. However, the architectural features and optimizatigil on-line roles of TAO’s Scheduling Service is shown in
that we studied and developed are applicable to real-time dyigure 10. In step 1, the Scheduling Service constructs graphs
tems with statistical QoS requirements, such as constraifédependent operations using the QoS information registered
latency multimedia systems or telecom call processing. THigh it by the application. This QoS information is stored in
section describes the static scheduling service [23] that we Bd-Info  structures described in Section 4.3.3. In step 2, it
veloped to support scheduling for hard real-time systems wigigntifies threads by looking at the terminal nodes of these de-
deterministic QoS requirements. pendency graphs and populatesaninfo repository in step
3. In step 4 it assesses schedulability and assigns priorities,
L ereg . . __generating the priority tables as compilable C++ code in step
4.2 Responsibilities of a Real-time SChedu“nQS. These five steps occur off-line during the (static) schedule

Service configuration process. Finally, the priority tables generated in
This subsection examines the analysis capabilities AfigP 5 are used atrun-time in step 6 by TAO's ORB endsystem.

scheduling policies provided by TAO’s Real-time Schedulin T(A)OS r(.aal-umel Schhedulmg Serwfjg guaLandtee.shthatﬁ.aII
Service. This service is responsible for allocating CPU re-- p.eratlons m; € jysflm are dispatche I'V\at h_su ;
sources to meet the QoS needs of the applications that offifat time to meet their deadlines. To accomplish this, the
th? 'ORB endSySt_em- For real-time applications with deter-sa requestis the run-time representation of an operation in an IDL inter-
ministic QoS requirements, the Scheduling Service guarant@esthat is passed between client and server.
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3:pouae | OFF-LINE | port to ORB middleware [15, 40]. This subsection describes
wrrostiony [P the real-time OO programming model used by TAO. TAO sup-

% ports the specification of QoS requirements on a per-operation
ool basis using TAO's real-time IDL schemas.

REI‘O_SITORY

struct RT_Info {
Time worstcase_exec_time_;
Period period_;
Criticality criticality_;
Importance importance_;

4: ASSESS
SCHEDULABILITY

1: CONSTRUCT CALL -

CHAINS OF RT_OPERATIONS DEPENDS UPON =

EXECUTES AFTER

4.3.1 Overview of QoS Specification in TAO

5: ASSIGN OS THREAD
PRIORITIES AND
DISPATCH QUEUE

2: IDENTIFY THREADS

Several ORB endsystem resources are involved in satisfying

RT RT

T . . . . .
Operation | | Operation | | Operation | 6SUPPLY oy ORDERING application QoS requirements, including CPU cycles, mem-
PRIORITIES SCHEDULER SUBPRIORITIES . .
OBJECT ADAPTER 10 ORB Priorit, ory, network connections, and storage devices. To support
T10r1! . .
[ ]‘— Subpriority end-to-end scheduling and performance guarantees, real-time
: : : : oo per ORBs must allow applications to specify their QoS require-
= = seLpcron ments so that an ORB subsystem can guarantee resource avail-

1/0 SUBSYSTEM

ability. In non-distributed, deterministic real-time systems,
) _ . , ) CPU capacity is typically the scarcest resource. Therefore,
Figure 10: Steps Involved with Off-line and On-line Schedyye amount of computing time required to process client re-
Ing guests must be determinadpriori so that CPU capacity can
be allocated accordingly. To accomplish this, applications
Scheduling Service can be implemented to perform variqndélSt spemfy their C'.DU capacity requirements to TAQ's off-
) . . . Ine Scheduling Service.
real-time scheduling policies. [23] describes the rate mono-

tonic scheduling implementation used by TAO’s Schedulin%In _general, scheduling research on real-_tlme _systems that
Service. consider resources other than CPU capacity relies upon on-

Below, we outline the information that the service requir line scheduling [60]. Therefore, we focus on the specification

B1.CPU resource requirements. TAO'’s QoS mechanism for ex-

to build and execute a feasible system-wide schedule. AfeaEIsrle-Ssing CPU resource requirements can be readily extended

ble schedule is one that is schedulable on the available sys, €M or shared resources, such as network and bus bandwidth,

resources; in other words, it can be verified that none of toﬁce scheduling and analysis capabilities have matured.

operations in the critical set will miss their deadlines. The : . : .
" . . .~ The remainder of this subsection explains how TAO sup-
critical setof operations is the subset of all system operations

whose failure to execute before the respective deadline wo?:?drts QoS spgmﬂcaﬂon_ for the purpose of CPU s_chedulmg
: : ) or IDL operations that implement real-time operations. We
compromise system integrity.

N . .outline our Real-time IDL (RIDL) schemaRT_Operation
To simplify the presentation, we focus on ORB SChmu'"ﬁ%’terface and itRT_Info struct . These schemas convey

for a single CPU. The distributed scheduling problem is n LS information.e g, CPU requirements, to the ORB on a

addres;ed in. thi§ pre§entation. [46] outlines the approac &S-operation ba,sis.’ We believe that thié is an intuitive QoS

we are investigating with TAO. specification model for developers since it maps directly onto
the OO programming paradigm.

4.3 Specifying QoS Requirements in TAO using
Real-time IDL Schemas 4.3.2 The RT.Operation Interface

Invoking operations on objects is the primary collaboratidi'e RT-Operation  interface is the mechanism for convey-
mechanism between components in an OO system [15]. Hdwe CPU requirements from processing tasks performed by ap-
ever, QoS research at the network and OS layers has Ritg@tion operations to TAO's Scheduling Service, as shown in
addressed key requirements and usage characteristics oft@gjollowing CORBA IDL interface
middleware. For instance, research on QoS for ATM networks
.. . . module RT_Scheduler

has focused largely on policies for allocating bandwidth ornya
per-connection basis [29]. Likewise, research on real-time op# Module TimeBase defines the OMG Time Service.
erating systems has focused largely on avoiding priority inver{ypedef TimeBase::TimeT Time; // 100 nanoseconds
sion and non-determinism in synchronization and schedulinéyloedef Time Quantum;
meChanismS fOI’ mu|ti-thl’eaded app|icati0n8 [13] typedef |0ng Period; // 100 nanoseconds

Determining how to map the insights and mechanisms pro-
duced by QoS work at the network and OS layers onto an OQsthe remainder of th&T_Scheduler module IDL description is shown
programming model is a key challenge when adding QoS sitsection 4.5.1.
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enum Importance

/I Defines the importance of the operation,

/I which can be used by the Scheduler as a

/I "tie-breaker" when other scheduling

/I parameters are equal.

{
VERY_LOW_IMPORTANCE,
LOW_IMPORTANCE,
MEDIUM_IMPORTANCE,
HIGH_IMPORTANCE,
VERY_HIGH_IMPORTANCE

h

typedef long handle_t;
/I RT_Info's are assigned per-application
/I unique identifiers.

struct Dependency_Info
{
long number_of_calls;
handle_t rt_info;
/I Notice the reference to the RT_Info we
/I depend on.

3
typedef sequence<Dependency_Info> Dependency_Set;

typedef long OS_Priority;
typedef long Sub_Priority;
typedef long Preemption_Priority;

struct RT_Info
/I = TITLE
/I Describes the QoS for an "RT_Operation".

/I = DESCRIPTION

/I The CPU requirements and QoS for each
/I "entity" implementing an application

/I operation is described by the following

/I information.

/I Application-defined string that uniquely
/I identifies the operation.
string entry_point_;

/I The scheduler-defined unique identifier.
handle_t handle_;

/I Execution times.
Time worstcase_execution_time_;
Time typical_execution_time_;

/I To account for server data caching.
Time cached_execution_time_;

/I For rate-base operations, this expresses
/I the rate. 0 means "completely passive",
/I i.e., this operation only executes when
/I called.

Period period_;

/I Operation importance, used to "break ties".
Importance importance_;

/I For time-slicing (for BACKGROUND
/I operations only).

Quantum quantum_;

/I The number of internal threads contained
/I by the operation.
long threads_;

/I The following attributes are defined by
/I the Scheduler once the off-line schedule
/I is computed.

/I The operations we depend upon.
Dependency_Set dependencies_;

/I The OS por processing the events generated
/I from this RT_Info.
OS_Priority priority_;

/I For ordering RT_Info's with equal priority.
Sub_Priority subpriority_;

/I The queue number for this RT_Info.
Preemption_Priority preemption_priority_;
h
h

As shown above, thRT_Operation interface contains type
definitions and its key feature, th&T_Info struct , Which
is described below.

4.3.3 The RT.Info Struct

Applications that use TAO must specify all their scheduled re-
source requirements. This QoS information is currently pro-
vided to TAO before program execution. In the case of CPU
scheduling, the QoS requirements are expressed using the fol-
lowing attributes of alRT_Info IDL struct

Worst-case execution time: The worst-case execution time,

C, is the maximum execution time that tRI_Operation
requires. Itis used in conservative scheduling analysis for ap-
plications with strict real-time requirements.

Typical execution time: The typical execution time is the
execution time that thRT_Operation  usually requires. The
typical execution time may be useful with some scheduling
policies, e.g, statistical real-time systems that can relax the
conservative worst-case execution time assumption. How-
ever, it is not currently used in TAO’s deterministic real-time
Scheduling Service.

Cached execution time: If an operation can provide a
cached result in response to service requests, then the cached
execution time is set to a non-zero value. During execution,
for periodic functions, the worst-case execution cost is only
incurred once per period if caching is enabliegl, if this field

is non-zero. The scheduling analysis incorporates caching by
only including one term with the worst-case execution time
for the operation, per period, no matter how many times it is
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called, and by using the cached execution time for all other R SERVANTS

p RT
calls. Op RT Op::’:tion Work 5: REQUEST DISPATCHED
. . . o . . sk| Operation SKELETON Operation TO SERVANT
Period: The period is the minimum time between successive OFFLINE | @ 4: REQUEST DEQUEVED
iFeratio'ns of the qperation. If the operation executes as an ac-  |SCHEDULER ( } s
tive object [50] with multiple threads of control, then at least OBJECT ADAPTER PRIORITY
one of those threads must execute at least that often. 9 3: REQUEST QUELED
_»i _»z _»z _>i ACCORDING TO

REQUEST PRIORITY

A period of 0 indicates that the operation is totalgac- £ =

tive, i.e, it does not specify a period. Reactive operations 4, e dme RUN-TIME
always called in response to requests by one or more clie| fea-tine Scfifﬁut;“

Although the Run-Time Scheduler in TAO need Nnot treat 1| ‘spedemci Subpriority
. . . . . . ; able Per
active operations as occurring periodically, it must account 16 Mode VO SUBSYSTEM

their execution time.

2:RUN-TIME SCHEDULER
DETERMINES PRIORITY
OF REQUEST

1:1/0 SUBSYSTEM
RECEIVES REQUEST
FROM CLIENT

Criticality: The operation criticality is an enu- Figure 11: TAO Run-time Scheduling Participants
meration value ranging from lowest criticality,i.e.

VERY_LOW_CRITICALITY, up to highest criticality, i.e., . , .
VERY_HIGH_CRITICALITY. Certain scheduling s'[rategies4'4 Overview of TAO's Scheduling Model

implemented in the Scheduling Service (notably maximum #ia0's on-line scheduling model includes the following partic-
gency first [49]) consider criticality as the primary d|st|nct|orpams, as shown in Figure 11:

between operations when assigning priority. ) . . ]
Work _Operation: A Work_Operation is a unit of work

Importance: The operation importance is an eNUpat encapsulates application-level processing or communi-

meration value ranging from lowest importancee. cafion activity. For example, utility functions that read
VERY_LOW_IMPORTANCE, Up to highest importanceile., ot  print output, or convert physical units can be

VERY_HIGH_IMPORTANCE. The Scheduling Service USeSyork_Operations In some real-time environments, a

importance as a “tie-breaker” to order the execution Work_Operation is called amoduleor process but we

RT.Operations ~ when data dependencies or other factofgoiq these terms because of their overloaded usage in OO
such as criticality do not impose an ordering. and OS contexts.

Quantum: Operations within a given priority may be t'me'RT_Operation: An  RT Operation is a type of

sliced,i.e., preempted at any time by the ORB endsystem d|s; rk_Operation  that has timing constraints.  Each

patcher “‘-‘S””.‘ed ata later t'.me' Ifa “”.‘e q“ar?t“m IS spemf _Operation s considered to be an operation defined on
for an operation, then that is the maximum time that it wi

. . CORBA IDL interface, that has its own QoS information
be allowed to run before preemption, if there are any otfg

bl i t that priority. This ti liced sched ecified in terms of the attributes in its run-time information
runnable operations at tha pr_lorlly. IS ime-sliced schedifsr |hto ) descriptor. Thus, an application-level object with
ing is intended to provide fair access to the CPU for lo

_ . : .~ 'multiple operations may require multipRT_Operation

est priority operations. Quantum is not currently used in t fstances, one for each distinct class of QoS specifications.
Scheduling Service. ’
) - Thread: Threads are units of concurrent execution. A
Dependency Info: This is an array of handles to othe[ : : . .

: . . thread can be implemented with various threading APIs,
RT.Info instances, one for eadRT_Operation that this e.0. a Solaris or POSIX thread. an Ada task a VxWorks
one directly depends on. The dependencies are used dufif] ' '

scheduling analysis to identify threads in the system: eatc , OF @ Windoyvs NT thread. Al thr.eads are cqn_tained
thin RT_Operation s. An RT.Operation containing

separate dependency graph indicates a thread. In addition"the

. L . _bne or more threads is attive objec{51]. In contrast, an
number of times that the dependent operation is called is spIS(I:-O eration  that contains zero threads ispassive ob-
ified, for accurate execution time calculation. 2P sha

ject Passive objects only execute in the context of another

The RIDL schemas outlined above can be used to SpR'I:_Operatlon , i.e,, they “borrow” the calling operation’s

. . . - . read of control to run.

ify the run-time execution characteristics of object opera-

tions to TAO’s Scheduling Service. This information is usedS dispatcher: The OS dispatcher uses request priorities to

by TAO to (1) validate the feasibility of a schedule and (Zelect the next runnable thread that it will assign to a CPU. It

allocate ORB endsystem and network resources to procesaoves a thread from a CPU when the thread blocks, and
RT_Operations . A single RT.Info instance is requiredtherefore is no longer runnable, or when the threagres

for eachRT_Operation . emptedoy a higher priority thread. Witpreemptive dispatch-
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ing, any runnable thread with a priority higher than any rumodule RT_Scheduler
ning thread will preempt a lower priority thread. Then, thle _ .
higher priority, runnable thread can be dispatched onto théjXCTeh‘;t'?pp'ﬂg;:‘o'f/?sT Etr—y':'rthE &
available CPU. Il register the same task again.
Our analysis assumdixed priority, i.e., the OS does not

unilaterally change the priority of a thread. TAO currently
runs on a variety of platforms, including real-time operating
systems, such as VxWorks and LynxOS, as well as generakxception NOT_SCHEDULED {};
purpose operating systems with real-time extensions, such ds The application is trying to obtain
Solaris 2.x [14] and Windows NT. All these platforms provide Z ;Ch:falfllgnb?e_'nformat'on’ but none
fixed priority real-time scheduling. Thus, from the point of
view of an OS dispatcher, the priority of each thread is con-exception UTILIZATION_BOUND_EXCEEDED ({};
stant. The fixed priority contrasts with the operation of time- €xception

: . ) INSUFFICIENT_PRIORITY_LEVELS {};
shared OS schedulers, which typicadigelong-running pro- ¢, ceniion TASK_COUNT MISMATCH {};

cesses by decreasing their priority over time [61]. /I Problems while computing off-line
/I scheduling.

exception UNKNOWN_TASK {};
/I The RT_Info handle was not valid.

RT_Info: As described in Section 4.3, &T_Info struc-
ture specifies aRT_Operation s scheduling characteristics typedef sequence<RT_Info> RT_Info_Set;

such as computation time and execution period. interface Scheduler

: _ . . . /I = DESCRIPTION
Run-Time Scheduler:  Atrun-time, the primary visible ves- ;115 166 holds all the RT Info's

tige of the Scheduling Service is the Run-Time Scheduler. /  for a single application.

The Run-Time Scheduler maps client requests for particulat o _
servant operations into priorities that are understood by the ha?:ifést ?E)elj‘;eugZTSé”r,‘\lgA&g}’—po'm)
local OS dispatcher. Currently, these priorities are assigned ; creates a new RT Info entry for the
statically prior to run-time and are accessed by TAO's ORB // function identifier "entry point",

endsystem via a®(1) time table lookup. /I'it can be any string, but the fully
/I qualified name function name is suggested.

/I Returns a handle to the RT_lInfo.

4.5 Ovemew of TAO's Off-line Scheduling handle_t lookup (in string entry. point)
Service /I Lookups a handle for entry_point.

To meet the demands of statically scheduled, deterministic RT_Info get (in handle_t handle)
real-time systems, TAO's Scheduling Service usésline raises (UNKNOWN_TASK);

. . . . /I Retrieve information about an RT_Info.
schedulingwhich has the following two high-level goals: -
void set (in handle_t handle,

1. Schedulability analysis: If the operations cannot be in Time time,
scheduled because one or more deadlines could be missed, in Time typical_time,
then the off-line Scheduling Service reports that prior to run- in Time cached_time,
time in Period period,

in Importance importance,

- : , [ t tum,
2. Request priority assignment: If the operations can be h %gntmaﬁ,g;’m i

n
scheduled, the Scheduling Service assigns a priority to each  raises (UNKNOWN_TASK);
request. This is the mechanism that the Scheduling Service // Set the attributes of an RT_lInfo.
uses to convey execution order requirements and constraints // Notice that some values may not
} . /I be modified (like priority).
to TAO's ORB endsystem dispatcher.

void add_dependency
(in handle_t handle,
in handle_t dependency,
in long number_of_calls)
. . raises (UNKNOWN_TASK);
The key types and operations of the IDL interface for TAO'S | aqds <(dependency; to <)hand|e>

off-line Scheduling Service are defined below

45.1 Off-line Scheduling Service Interface

void priority
“The remainder of thRT_Scheduler module IDL description is shown (in handle_t handle,
in Section 4.3.2. out OS_Priority priority,
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out Sub_Priority subpriority, e The Event Channel in TAO’s Real-time Event Service

_ out Preemption_Priority p_priority) [10], which registers itRT_Operations  with the off-
raises (UNKNOWN_TASK, NOT_SCHEDULED); line Scheduling Service:

void entry_point_priority
(in string entry_point, ¢ Application-level schedulable operations that do not use

out OS_Priority priority, .
out Sub_Priority subpriority, the Event Channel;

out Preemption_Priority p_priority) e TAO's real-time ORB endsystem, which accesses these

raises (UNKNOWN_TASK, NOT_SCHEDULED); interfaces to determine client request dispatch priorities.
/I Obtain the run time priorities.

void compute_scheduling The remainder of this subsection clarifies the operation of
(in long minimum_priority, TAQO'’s Scheduling Service, focusing on how it assigns request
in long maximum_priority, priorities, when it is invoked, and what is stored in its internal
out RT_Info_Set infos) d b
raises (UTILIZATION_BOUND_EXCEEDED, atabase.

INSUFFICIENT_PRIORITY_LEVELS,
TASK_COUNT_MISMATCH);

/I Computes the scheduling priorities,

/I returns the RT_Info’s with their

/I priorities properly filled. This info

4.5.2 RT.Operation Priority Assignments

The off-line Scheduling Service assigns priorities to each

/I can be cached by a Run_Time Scheduler RT_Operation . Because the current implementation of the
Il service or dumped into a C++ file for Scheduling Service utilizes a rate monotonic scheduling pol-
/I compilation and even faster (static) icy, priorities are assigned based on an operation’s rate. For
) /1" lookup. eachRT_Operation in the repository, a priority is assigned
¥ based on the following rules:

' : ule 1. If the RT.Info::period of an operation is non-
Not shown are accessors to system configuration data tha , , . . I
: . zerg, TAO'’s off-line Scheduling Service uses this informa-
the scheduler contains, such as the number of operations an : o .
i tion to map the period to a thread priority. For instance, 100
threads in the system.

In general, the Scheduling Service interface need not ‘pace periods may map to priority 0 (the highes), 200 msec

viewed by application programmers; the only interface th griods may map to priority 1, and so on. With rate mono-
Y app progra ' y : dhic scheduling, for example, higher priorities are assigned to
need to use is th&kT.Info interface, described in Sec

tion 4.3.3. This division of the Scheduling Service inten‘acset]Orter periods.

into application and privileged sections is shown in Figure 1Rule 2: If the operation does not have a rate requirement,

i.e., its RT_Info::period is 0, then its rate requirement
struct RT_Info must be implied from theoperation _dependencies _
{ o o RT field stored in theRT.Info struct . The RT.Info
WC_exec_time peration ) . . .
cached exec_time ; Operation struct  with the smallest period, ie, with the fastest rate,
period_; in the RT.Info::operation _dependencies _ list will
:ﬁggﬁ‘;ﬁg; ) OFF-LINE s be treated as the operation’s implied rate requirement, which
1 - SCHEDULER | 4prLICATION is then mapped to a priority. The priority values com-
INTERFACE puted by the off-line Scheduling Service are stored in the
RT RT_Info::priority _ field, which the Run-Time Sched-
(o || prviEGED Operation uler can query at run-time via thpgiority ~ operation.
[NTERFACE The final responsibility of TAO’s off-line Scheduling Ser-
= o o vice is to verify the schedulability of a system configuration.
Onsaton]) [{Onceation]) [[Oneraton This validation process provides a definitive answer to the
(__OBuECT ADAPTER ) nterface Scheduler question “given the current system resources, what is the low-
{ _ est priority level whose operations all meet their deadlines?”
;i%‘:;lrlg‘(’f_em“on(); The off-line Scheduling Service uses a repositoriR@finfo
priority(); structures shown in Figure 14 to determine the utilization re-

; quired by each operation in the system. By comparing the
Figure 12: TAO’s Two Scheduling Service Interfaces total required utilization for each priority level with the known
resources, an assessment of schedulability can be calculated.
The privileged interface is only used by common TAO ser- TAO'’s off-line Scheduling Service currently uses the
vices, such as: RT.Info attributes of applicatioRT_Operations  to build
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the static schedule and assign priorities according to the f&, or directly with the Scheduling Service, Step 3B, for oper-
lowing steps: ations that do not use TAO. The application notifies TAO, Step
1. Extract RT_Infos: Extract allRT.Info instances for all 3C; Which in tum notifies the Scheduling Service, when all
theRT.Operations  in the system. registrations have finished. TAO invokes the off-line schedul-

) ) ) ing process, Step 4A. Finally, the application exits, Step 4B.
2. Identify real-time threads: Determine all the real- it off-line scheduling, thRT.Info s are not needed at
time threads by building and traversing operation dependepgy-time. Therefore, one space-saving optimization would be
graphs. to conditionally compileRT_Info s only during configuration
3. Determine schedulability and priorities: Traverse the runs.
dependency graph for each thread to calculate its executiofihe application should use tlestroy operation to no-
time and periods. Then, assess schedulability based ontifiyethe Scheduling Service when the program is about to exit
thread properties and assign request priorities. so that it can release any resources it holds. It is necessary to
4. Generate request priority table: Generate a table Ofrelease memory during configuration runs in order to permit
request priority assignments. This table is subsequently figpeated runs on OS platforms, such as VxWorks, that do not

tegrated into TAO’s run-time system and used to schedﬁ%ease hegp-allocgted sto.ragg when a program termilnates.
For consistency in application code, the Scheduling Ser-

application-level requests. . . . S ; :
PP q vice configuration and run-time interfaces are identical. The
These steps are described further in the remainder of this sggredule  operation is essentially ao-opin the run-time

tion. version; it merely performs a few checks to ensure that all op-
erations are registered and that the number of priority values
4.5.3 Extract RT_Infos are reasonable.

The Scheduling Service is a CORBA object that can be ac- . ,
cessed by applications durimgnfiguration runs To use the 4-2-4 ldentify Real-time Threads

Scheduling Service, users must instantiate Bidnfo in-  After collecting all of theRT.Info instances, the Schedul-
stantiation for eacRT Operation  in the system. A config- jng Service identifies threads and performs its schedulabil-
uration run is an execution of the application, TAO, and TA%, analysis. Athreadis defined by a directed acyclic graph
services which is used to provide the services with any infj RT.Operations . An RT.Info instance is associated
mation needed for static configuration. The interactions Rgith each RT.Operation by the application developer;
tween the and Scheduling Service during a configuration rgf |nfo  creation has been automated using the informa-
are shown in Figure 13. tion available to TAO’s Real-time Event ServicRT.Info s
contain dependency relationships and other informagamn,

o KoY v importance which determines possible run-time ordering of

1: APPLICATIONS CONSTRUCT
we_exe_ti

chen suee e ; (D RT_NFOS RT_Operation invocations. Thus, graphof dependencies
period_; |

o from eachRT_Operation can be generated mechanically,
; ©2: COMPILE AND LINK PROGRAM using the following algorithm:

b
(use -DSCHEDCONFIG=1)

RT
Operation

it it 1. Build arepository of RT_Info instances: This task con-

® 3: RUN CONFIGURATION PROGRAM

OBJECT ADAPTER ) ¢ gmtcanons s o sists of the following two steps:
WITH THE SL‘HEDULER;
[C)] B APPCATIONS REGITER iR CTLY e Visit eachRT.Info instance; if not already visited, add
S = OFF-LINE C: oo rroms o e i
1/0 SUBSYSTEM SCHEDULER REGISTRATIONS ARE COMPLETE to repOSItory! and

© OFF-LINE SCHEDULER'S TASKS: % |0 4: COMPLETE PROGRAM ¢ Visit the RT.Info of each dependent operation, depth
o o || RO ety o first, and add a link to the dependent operation’s internal
€ GENERATES OUTPUT FILES B: reoaws ars (to the Scheduling Servic&ependency _Info array.

CONTAINING PRIORITIES

Figure 13: Scheduling Steps During a Configuration Run2. Find terminal nodes of dependent operation graphs:
As noted in Section 4.5.2, identification of real-time threads
The RT.Info instantiations, Step 1, are compiled anihvolves building and traversing operation dependency graphs.
linked into the main program, Step 2. The application is th&me terminal nodes of separate dependent operation graphs in-
executed, Step 3. It registers edRM. Operation with ei- dicate, and are used to identify, threads. The operation de-
ther TAO (currently, via TAO'’s Real-time Event Service), Stependency graphs capture data dependengy, if operation
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A calls operation B, then operation A needs some data tRatInfo reference and an array of tH&€T_Operations
operation B produces, and therefore operation A dependstloat it depends upon. The&T_Operation dependencies
operation B. If the two operations execute in the context obae depicted by blocks with arrows to the dependent opera-
single thread, then operation B must execute before operations. TheDependency _Info arrays are initialized while

A. Therefore, the terminal nodes of the dependency graphsfitst traversing theRT_Info instances, to identify threads.
lineate threads. Terminal nodes of the dependent operation graphs are iden-

3 Traverse dependent operation arachs: After identi- tified; these form the starting point for thread identification.
) ¥ b grapns. PassiveRT Operations , i.e,, those without any internal

fying the terminal nodes.of dgpendent ope.ratlon graphs, m(raeads of their own, do not appear as terminal nodes of de-
graphs are traversed to identify the operations that compose .
endent operation graphs. They may appear further down a

each thread. Each traversal starts from a dependent operation : . . :
) . ependent operation graph, in which case their worst-case and
graph terminal node, and continues towards the dependentto -

L X S . ical execution times are added to the corresponding execu-
eration’s roots until termination. An operation may be part

R ion times of the calling thread. However, cached execution
more than one thread, indicating that each of the threads may . ; iodic f X .
call that operation imes may be added m;tegd, or periodic functions, dependmg
: n whether result caching is enabled and whether the operation

The algorithm described above applies several restrictic?(:%ss been visited already in the current period

on the arrangement of operation dependencies. First, a threaf:ine algorithm for identifying real-time threads may appear

may be identified by only one operation; this CorresPon%Scomplicate the determination of operation execution times.

dlrectly_ oa thread. having a single entry point. Mg_ny © or instance, instead of specifying a thread’s execution time,
thread implementations support only a single entry paiet,

. ) S : an operation’s execution time must be specified. However, this
a unique funp’uop which is called'\./vhen the thrgad IS Starteod(;s:ign is instrumental in supporting an OO programming ab-
;g ts;orr(:ns;rlctlon imposes no additional constraints on thogﬁaction that provides QoS specification and enforcement on

per-operation basis. The additional information is valuable

The second _restn_ctlon IS t.hat gycles are proh|b|teq n C{%'accurately analyze the impact of object-level caching and to
pendency relationships. Again, this has a reasonable inter r&’vide finer granularity for reusingT Info s. In addition

tation. If there was a cycle in a dependency graph, there wo approach makes it convenient to measure the execution
be no bound, known to the scheduler, on the number of tin}gﬁ

. : o . mes of operations; profiling tools typically provide that in-
the cycle could repeat. To alleviate this restriction, the applufﬁ- Ot operan profiing ypically provi !
. ) . rrpatlon directly.
tion can absorb dependency graph cycles into an operation thai
encapsulates them. IBT_Info would reflect the (bounded) ) - o
number of internal dependency graph cycles in its worst-cdse-> Determine Schedulability and Priorities

execution time. Starting from terminal nodes that identify threads, the
TheRT.Info repository that the Scheduling Service build® 1-"fo dependency graphs are traversed to determine
is depicted in Figure 14. thread properties, as follows:

Traverse each graph: summing the worst case and typical
execution times along the traversal. To determine the period at

- N 23 Ms/20 Hz=> PRIORITY 1
f:ji amn / which the thread must run, save the minimum period of all of
o | | |mr1vp|ma|xs | | | RT Orsaion; :?;szsna;fero periods of all of tHeT_Info s visited during the
Operation 8 ms/20 Hz '
CALL-CHAIN Assign priorities: depending on the scheduling strategy
LEAF / 15Ms/10 Hz=> PRIORITY 2 used, higher priority is assigned to higher criticality, higher
— DEPENDENCIES RT OPERATIONZ rate’etc'
RT -
Operation | | | | | | | | | 5 ms/10 Hz Based on the thread properties, and the scheduling strat-
egy used, schedule feasibility is assessed. For example, with
RMA, EDF, or MLF, if the total CPU utilization is below the
Work DEPENDENCIES RT_OPEraTION; utilization bound, then the schedule for the set of threads is
Operation | | | | | | | | | 10 Ms feasible. With MUF, if utilization by all operations in the
critical set is below the utilization bound, then the schedule
Figure 14: TheRT_Info Repository is feasible, even though schedulability of operations outside

the critical set may or may not be guaranteed. If the sched-
The Scheduling ServiceRT_Info repository includes the ule is feasible, request priorities are assigned according to the
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scheduling strategy,e., for RMS requests with higher ratesand concurrency architectures manage the aggregate process-
are assigned higher priorities, for MUF requests with highieg capacity of ORB endsystem components and application
criticality levels are assigned higher prioritietc. operations.

Sections 5.3, 5.4, and 5.5 then present quantitative results
that illustrate empirically how the concurrency architectures
used by CORBAplus, COOL, MT-Orbix, and TAO perform on

The Scheduling Service generates a table of request priongfa'is, which is a general-purpose OS with real-time exten-
assignments. Every thread is assigned a unique integer idetiti’S; and Chorus Classix, whichis a real-time operating sys-
fier. This identifier is used at run-time by TAO's ORB endsyf€M- CORBAplus and MT-Orbix were not designed to support
tem to index into the request priority assignment table. Thégplications with real-time requirements. The Chorus COOL

priorities can be accesseddr(1) time because all schedulind®RB was designed for embedded systems with small memory
analysis is performed off-line. ootprints. TAO was designed to support real-time applica-

Output from the Scheduling Service is produced in theforttlﬂns with deterministic and statistical guality of service re-
of an initialized static table that can be compiled and Iinké’('f"rements’ as well as best effort requirements, as described

into the executable for run-timee., other than configuration,In Section 3.
runs. The Scheduling Service provides an interface for the
TAO's ORB endsystem to access the request priorities c@{  Alternative ORB Core Connection Archi-
tained |.n.the tablg. - . o tectures

The initial configuration run may contain, at worst, initial
estimates oRT_Operation  execution times. Likewise, it There are two general strategies for structuring connection ar-
may include some execution times based on code simulaidhitecture in an ORB Coranultiplexedandnon-multiplexed
or manual instruction counts. Successive iterations should\ie describe and evaluate various design alternatives for each
clude actual measured execution times. The more accurateafygroach below, focusing on client-side connection architec-
input, the more reliable the schedulability assessment. tures in our examples.

Off-line configuration runs can be used to fill in the
Dependency _Info arrays and calibrate the execution tim . . :
of theRT.Info instances for each of tHRT_Operations . e§_1_1 Multiplexed Connection Architectures

The initial implementation of the Scheduling Service requirgfost conventional ORBs multiplex all client requests emanat-
that this input be gathered manually. TAO’s Real-time Eveig from a single process through one TCP connection to their
Service [10] fills in theDependency _Info arrays for its corresponding server process. This multiplexed connection ar-
suppliers. Therefore, applications that manage all of their regitecture is commonly used to build scalable ORBs by min-
time activity through TAO’s Event Service do not require mafmizing the number of TCP connections open to each server.
ual collection of dependency information. When multiplexing is used, however, a key challenge is to de-
One user of the Scheduling Service has written a thin layigin an efficient ORB Core connection architecture that sup-
interface for calibrating th®T_Info  execution times on VxX- ports concurrentead andwrite operations.
Works, which provides a system call for timing the execution TCP provides untyped bytestream data transfer semantics.
of a function. During a configuration run, conditionally comfherefore, multiple threads cannetad or write  from the
piled code issues that system call for ed®iOperation  same socket concurrently. Likewiseyrite s to a socket
and stores the result in tHT_Info  structure. shared within an ORB process must be serialized. Serializa-
tion is typically implemented by having a client thread acquire
o ] a lock before writing to a shared socket.
5 Designing a Real-time ORB Core For oneway operations, there is no need for additional lock-
ing or processing once a request is sent. Implementing twoway
Section 4 examined the components used by TAO to angerations over a shared connection is more complicated,
lyze and generate feasible real-time schedules based onhalwever. In this case, the ORB Core must allow multiple
stract descriptions of CORBA operations. To ensure tihteads to concurrentlyréad ” from a shared socket end-
these schedules operate correctly at run-time requires an QrRBt.
Core that executes operations efficiently and predictably endH server replies are multiplexed through a single TCP con-
to-end. This section describes alternative designs for OR&ction then multiple threads cannaad simultaneously
Core concurrency and connection architectures. SectionsfBoin that socket endpoint. Instead, the ORB Core must de-
and 5.2 qualitatively evaluate how the ORB Core connectionultiplex incoming replies to the appropriate client thread by

45.6 Generate Request Priority Table
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using the GIOP sequence number sent with the original client APPLICATION
request and returned with the servant’s reply. -
. . . . »> 1:invoke_twoway()
Several common ways of implementing connection multi- 2

=

plexing to allow concurrentead andwrite operations are %
described below. %
% =]

Active connection architecture: One approach is thactive E LEADER FOLLOWERS é
connectionarchitecture shown in Figure 15. An application E :
) . 4

APPLICATION : = 000
il: invoke twoway() =
SEMAPHORES
7: dequeue() _3: select .
2: enqueue()i & return - 0

I/0 SUBSYSTEM

Figure 16: Leader/Follower Connection Architecture

3: dequeue()

& write()

5: read()
— sent across the socket immediatey, (sing the thread of the
— application to perform therrite . Moreover, no single thread
/O SUBSYSTEM in the ORB Core is dedicated to handling all the socket I/O in
the leader/follower architecture. Instead, the first thread that
Figure 15: Active Connection Architecture attempts to wait for a reply on the multiplexed connection will

block inselect waiting for a reply 8). This thread is called

thread () invokes a twoway operation, which enqueues thigeleader
request in the ORB2). A separate thread in the ORB Core Tq avoid corrupting the socket bytestream, only the leader
services this queued) and performs avrite  operation on thread carselect on the socket(s). Thus, all client threads
the multiplexed socket. The ORB threselect s (4) onthe hat“follow the leader”taead replies from the shared socket
socket waiting for the server to rephgad s the reply fromthe il block on semaphores managed by the ORB Core. If
socket £), and enqueues the reply in a message qUBUEL  replies return from the server in FIFO order this strategy is
nally, the application thread retrieves the reply from this queggtimal since there is no unnecessary processing or context
(7) and returns back to its caller. _ . ~switching. However, replies may arrive in non-FIFO order.

The advantage of the active connection architecture is thatd instance, the next reply arriving from a server could be for
simplifies ORB implementations by using a uniform queueirw,y one of the client threads blocked on semaphores.
mechanism. In addition, if every socket handles packets of th‘When the next reply arrives from the server, the leader

same priority levelj.e., packets of different prioritie; are Noto o s the reply 4). It uses the sequence number returned
received on the same socket, the active connection can hane G1op reply header to identify the correct thread to re-
dle these packets in FIFO order without causing request-leygl « he reply. If the reply is for the leader's own request,

priority inversion [17]. e leader releases the semaphore of the next foll d
The disadvantage with this architecture, however, is that furns to its caller@). The ngxt follower becomeﬂ]e;r(new
active connection forces an extra context switch on all twow%d er and blocks ossélect

operations. To minimize their overhead, many ORBs use

X . ) ) . e}f the reply isnot for the leader, however, the leader must
variant of the active connection architecture described next.. . .
Signal the semaphore of the appropriate thread. The signaled

Leader/Followers connection architecture: An alternative thread then wakes upead s its reply, and returns to its caller.

to the active connection model is theader/followersarchi- Meanwhile, the leader thread continuessilect  for the

tecture shown in Figure 16. As before, an application threggixt reply.

invokes a twoway operation callX. Rather than enqueueing compared with active connections, the advantage of the

the request in an ORB message queue, however, the requgghiger/follower connection architecture is that it minimizes the
8Theselect call is typically used since a client may have multiple mulUmber of context switches incurrédeplies arrive in FIFO

tiplexed connections to multiple servers. order. The drawback, however, is that the complex implemen-
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tation logic can yield significant locking overhead and prictions, such as avionics mission computing systems [17], which
ity inversion. The locking overhead stems from the need possess a small, fixed number of connections.

acquire mutexes when sending requests and to block on the

semaphores w.hil_e'waiting for r.e.plies. The priority inversiog_z Alternative ORB Core Concurrency Archi-
occurs if the priorities of the waiting threads are not respected tectures

by the leader thread when it demultiplexes replies to client
threads. There are a variety of strategies for structuring the multi-
threading architecture in an ORB. Below, we describe a num-
ber of alternative ORB Core multi-threading architectures, fo-
cusing on server-side multi-threading.

One technique for minimizing ORB Core priority inversion is Thread pool is a common architecture for structuring ORB
to use a non-multiplexed connection architecture, such as mdti-threading, particularly for real-time ORBs [44]. Below,
one shown in Figure 17. In this connection architecture, eah describe and evaluate several common thread pool archi-

5.1.2 Non-multiplexed Connection Architectures

tectures.
APPLICATION

—| 1: invoke_twoway() 5.2.1 The Worker Thread Pool Architecture
2 "i *z This ORB multi-threading architecture uses a design similar to
E the active connection architecture described in Section 5.1.1.
a As shown in Figure 18, the components in a worker thread
=
(=]
: [ SERVANTS

+3

—>

I/0 SUBSYSTEM 3: enqueue()
Figure 17: Non-multiplexed Connection Architecture L2 read()

client thread maintains a table of pre-established connections
to servers in thread-specific storage [59]. A separate connec-
tion is maintained in each thread for every priority level,
Py, P, P;, etc. As a result, when a twoway operation is
invoked ) it shares no socket endpoints with other threagsgyre 18: Server-side Worker Thread Pool Multi-threading
Therefore, thewrite , (2), select (3), read (4), and re- architecture
turn (5) operations can occur without contending for ORB re-
sources with other threads in the process. pool include an I/O thread, a request queue, and a pool of
The primary benefit of a non-multiplexed connection aworker threads. The 1/O threazklect s (1) on the socket
chitecture is that it preserves end-to-end priorities and misdpointsyeads (2) new client requests, and)(inserts them
mizes priority inversion while sending requests through ORRBo the tail of the request queue. A worker thread in the pool
endsystems. In addition, since connections are not shatstjueues4) the next request from the head of the queue and
this design incurs low synchronization overhead becausedigpatches it%).
additional locks are required in the ORB Core when send-The chief advantage of the worker thread pool multi-
ing/receiving twoway requests. threading architecture is its ease of implementation. In par-
The drawback with a non-multiplexed connection architeieular, the request queue provides a straightforward pro-
ture is that it can use a larger number of socket endpoidtscer/consumer design. The disadvantages of this model stem
than the multiplexed connection model, which may increafsem the excessive context switching and synchronization re-
the ORB endsystem memory footprint. Therefore, it is magtiired to manage the request queue, as well as request-level
effective when used for statically configured real-time applicariority inversion caused by connection multiplexing. Since

I/0 SUBSYSTEM
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different priority requests share the same transport conng@.3 Threading Framework Architecture

tion, a high-priority request may wait until a low-priority re- ) ) . )

quest that arrived earlier is processed. Moreover, thread-Iv&ery flexible way to implement an ORB multi-threading ar-
priority inversions can occur if the priority of the thread th&hitecture is to allow application developers to customize hook

originally read s the request is lower than the priority of th@'€thods provided by hreading framework One way of
servant that processes the request. structuring this framework is shown in Figure 20. This de-

"i SERVANT
SKELp===-=

5.2.2 The Leader/Follower Thread Pool Architecture

— _,i SERVANT
3: dequeue, ] SKELETONS
The leader/follower thread pool architecture is an optimiza- filter (rpRpAD 4: dispatch
tion of the worker thread pool model. It is similar to gsg“iﬁemm upcall()
the leader/follower connection architecture discussed in Sec- q @ > OBJECT
tion5.1.1. As shown in Figure 19, a pool of threads is allocated @ i ADAPTER
() | 5
SERVANTS 2: t
( enqueue(data) ORB CORE
4: dispatch upcall() ORI ETIER TIETATS

ORB CORE
LEADER FOLLOWERS 1: recv()

() SEMAPHORE I/0 SUBSYSTEM

3: release
0 Figure 20: Server-side Thread Framework Multi-threading Ar-

chitecture

sign is based on the MT-Orbix thread filter framework, which
I/0 SUBSYSTEM is a variant of the Chain of Responsibility pattern [48].
In MT-Orbix, an application can install a thread filter at the
p of a chain of filters. Filters are application-programmable
hooks that can perform a number of tasks. Common tasks in-
clude intercepting, modifying, or examining each request sent
and a leader thread is chosensilect (1) on connections to and from the ORB.
for all servants in the server process. When a request arrivesn the thread framework architecture, a connection thread
this thread readQI it into an internal buffer. If this is a valid in the ORB Corgead s (1) a request from a socket endpoint
request for a servant, a follower thread in the pool is release@di@ enqueues the request on a request queue in the ORB Core
become the new leadeS)(and the leader thread dispatches the). Another thread then dequeues the requé)safd passes
upcall @). After the upcall is dispatched, the original leadef through each filter in the chain successively. The topmost
thread becomes a follower and returns to the thread pool. N@wér, i.e,, the thread filter, determines the thread to handle this
requests are queued in socket endpoints until a thread inféguest. In thehread-poolmodel, the thread filter enqueues
pool is available to execute the requests. the request into a queue serviced by a thread with the appropri-
Compared with the worker thread pool design, the chiafe priority. This thread then passes control back to the ORB,
advantage of the leader/follower thread pool architecturewbich performs operation demultiplexing and dispatches the
that it minimizes context switching overhead incurred by impcall @).
coming requests. Overhead is minimized since the requesthe main advantage of a threading framework is its flexibil-
need not be transferred from the thread that read it to anotityerThe thread filter mechanism can be programmed by server
thread in the pool that processes it. The disadvantages ofdbeelopers to support various multi-threading strategies. For
leader/follower architecture are largely the same as with tinetance, to implement a thread-per-request strategy, the filter
worker thread design. In addition, it is harder to implemeoan spawn a new thread and pass the request to this new thread.
the leader/follower model. Likewise, the MT-Orbix threading framework can be config-

Figure 19: Server-side Leader/Follower Multi-threading A[b
chitecture
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ured to implement other multi-threading architectures suchthe upcall at its thread priority.
thread-per-servant and thread-per-connection. EachReactor in an ORB server thread is also associated
There are several disadvantages with the thread framewaoith an Acceptor [45]. The Acceptor is a factory that
design, however. First, since there is only a single chain of fistens on a particular port number for clients to connect to that
ters, priority inversion can occur because each request mibigtad and creates a connection handler to process the GIOP
traverse the filter chain in FIFO order. Second, there megguests. In the example in Figure 21, there is a listener port
be FIFO queueing at multiple levels in the ORB endsystefar each priority level.
Therefore, a high priority request may be processed only aftefhe advantage of thdReactor -per-thread-priority ar-
several lower priority requests that arrived earlier. Third, tlehitecture is that it minimizes priority inversion and non-
generality of the threading framework may increase lockigterminism. Moreover, it reduces context switching and syn-
overheadeg.g, locks must be acquired to insert requests inttronization overhead by requiring the state of servants to be
the queue of the appropriate thread. locked only if they interact across different thread priorities. In
addition, this multi-threading architecture supports scheduling
and analysis techniques that associate priority with rate, such
as Rate Monotonic Scheduling (RMS) and Rate Monotonic

TheReactor -per-thread-priority architecture is based on thgnalysis (RMA) [36, 37].

Reactor pattern [43], which integrates transport endpoint deThe disadvantage with thReactor -per-thread-priority
multiplexing and the dispatching of the corresponding eveighitecture is that it serializes all client requests for each
handlers. This threading architecture associates a grougrefictor within a single thread of control, which can re-
Reactor s with a group of threads running at different prioriduce parallelism. To alleviate this problem, a variant of this

ties. As shown in Figure 21, the components inReactor - architecture can associatgaol of threads with each priority
level. Though this will increase potential parallelism, it can in-

5.2.4 The Reactor-per-Thread-Priority Architecture

cur greater context switching overhead and non-determinism,
( . SERVANTS j which may be unacceptable for certain types of real-time ap-
3: dispatch upcall() .
M plications.
TheReactor -per-thread-priority architecture can be inte-
*2 *i *i *i grated seamlessly with the non-multiplexed connection model
Ccc sWesc sWess ssse - described in Section 5.1.2 to provide end-to-end priority
HHEIIHIEELE preservation in real-time ORB endsystems, as shown in Fig-
ver p||EEE p||EEE P||EEE P ure 6. Inthis diagram, th&cceptor s listen on ports that cor-
2‘6"?@2 17 oflT1r o771 o respond to the 20 Hz, 10 Hz, 5 Hz, and 1 Hz rate group thread
123 R 123 R 123 R 123 R

priorities, respectively. Once a client connectsAiteeptor
creates a new socket queue and connection handler to service
that queue. The I/O subsystem uses the port number contained

REACTOR ) REACTOR }( REACTOR }{ REACTOR
Py

) (P3) (L]

1: select() in arriving requests as a demultiplexing key to associate re-
guests with the appropriate socket queue.
/O SUBSYSTEM The Reactor -per-thread-priority architecture minimizes

priority inversion through the entire distributed ORB endsys-

Figure 21: Server-side Reactor-per-Thread-Priority Multem by eagerly demultiplexing incoming requests onto the ap-

threading Architecture propriate real-time thread that services the priority level of the

target servant. As shown in Section 5.4, this design is well

per-thread-priority architecture include multiple pre-allocatedited for real-time applications with deterministic QoS re-

Reactor s, each of which is associated with its own real-tirguirements.

thread of control for each priority level in the ORB. For in-

stance, avionics mission compupng systems [10] comr'nogiys Benchmarking Testbed

execute their tasks in fixed priority threads corresponding 10

therates e.g, 20 Hz, 10 Hz, 5 Hz, and 1 Hz, at which operafhis section describes the experimental testbed we designed

tions are called by clients. to systematically measure sources of latency and throughput
Within each thread, thReactor demultiplexes) all in- overhead, priority inversion, and non-determinism in ORB

coming client requests to the appropriate connection handéggisystems. The architecture of our testbed is depicted in Fig-

i.e,, connect, conned, etc. The connection handlezad s ure 22. The hardware and software components used in the

(2) the request and dispatche3 {t to a servant that executesxperiments are outlined below.
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5.3.1 Hardware Configuration Figure 23: Hardware for the CORBA/ATM Testbed

The experiments in this section were conducted using a
FORE systems ASX-1000 ATM switch connected to two , corpaplus:  which uses the worker thread pool archi-

dual-processor UltraSPARC-2s running Solaris 2.5.1.  Th&y e described in Section 5.2.1. In version 2.1.1 of COR-
ASX-1000 is a 96 Port, OC12 622 Mbs/port switch. Eaghs;),s multi-threaded applications have an event dispatcher
UltraSPARC-2 contains two 168 MHz Super SPARC CPUs oo and a pool of worker threads. The dispatcher thread
with a 1 Megabyte cache per-CPU. The Solaris 2.5.1 TCP{l2. i e the requests and passes them to application worker
protocol stack is implemented using the STREAMS comMysia s which process the requests. In the simplest configura-

nication framework [35]. tion, an application can choose to create no additional threads
Each UltraSPARC-2 has 256 Mbytes of RAM and an ENL g rely upon the main thread to process all requests.

155s-MF ATM adaptor card, which supports 155 Megabits
per-sec (Mbps) SONET multimode fiber. The Maximum ® miniCOOL:  which uses the leader/follower thread pool
Transmission Unit (MTU) on the ENI ATM adaptor is 9,18@rchitecture described in Section 5.2.2. Version 4.3 of mini-
bytes. Each ENI card has 512 Kbytes of on-board memor@OL allows application-level concurrency control. The ap-
A maximum of 32 Kbytes is allotted per ATM virtual circuitplication developer can choose between thread-per-request or
connection for receiving and transmitting frames (for a total Bfread-pool. The thread-pool concurrency architecture was
64 Kb). This allows up to eight switched virtual connectiortsed for our benchmarks since it is better suited than thread-
per card. The CORBA/ATM hardware platform is shown iRer-request for deterministic real-time applications. In the
Figure 23. thread-pool concurrency architecture, the application initially
spawns a fixed number of threads. In addition, when the initial
. ] . _ thread pool size is insufficient, miniCOOL can be configured
5.3.2 Client/Server Configuration and Benchmarking {4 gynamically spawn threads on behalf of server applications
Methodology to handle requests, up to a maximum limit.

Server benchmarking configuration: As shown in Fig- e MT-Orbix:  which uses the thread pool framework ar-
ure 22, our testbed server consists of two servants withinghitecture based on the Chain of Responsibility pattern de-
ORB'’s Object Adapter. One servant runs in a higher priorig¢ribed in Section 5.2.3. Version 2.2 of MT-Orbix is used
thread than the other. Each thread processes requests thabatfeate two real-time servant threads at startup. The high-
sentto its servant by client threads on the other UltraSPARCpRiority thread is associated with the high-priority servant and
Solaris real-time threads [14] are used to implement sgiie low-priority thread is associated with the low-priority ser-
vant priorities. The high-priority servant thread hasltighest vant. Incoming requests are assigned to these threads using the
real-time priority available on Solaris and the low-priority se@rbix thread filter mechanism, as shown in Figure 20. Each

vant has théowestreal-time priority. priority has its own queue of requests to avoid priority inver-
The server benchmarking configuration is implementedsion within the queue. This inversion could otherwise occur
the various ORBs as follows: if a high-priority servant and a low-priority servant dequeue
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requests from the same queue. ically how and why the non-multiplexed, priority-based ORB
Core architecture used by TAO is more suited for many types

e TAO: which uses theReactor -per-thread-priority R)fr{eal time applications

concurrency architecture described in Section 5.2.4. Vers
1.0 of TAO integrates th&eactor -per-thread-priority con-
currency architecture with a non-multiplexed connection &-4.1 Blackbox Results
chitecture, as shown in Figure 21. In contrast, the other th@g

ORBs multiolex all requests from client threads in each pr the number of low-priority clients increases, the number of
Pl quest P I%w—priority requests sent to the server also increases. Ideally,
cess over a single connection to the server process.

a real-time ORB endsystem should exhibit no variance in the
latency observed by the high-priority client, irrespective of the
Client benchmarking configuration: ~ Figure 22 shows how number of low-priority clients. Our measurements of end-to-
the benchmarking test used one high-priority cli€gtandn  end twoway ORB latency yielded the results in Figure 24.
low-priority clients,Cy ... C,. The high-priority client runs
in a high-priority real-time OS thread and invokes operati 52

at 20 Hz,i.e,, it invokes 20 CORBA twoway calls per secor 48 || —® CORBAplus High Priority ~ —— CORBApIus Low Priority f
All low-priority clients have the same lower priority OS thre —a— MT-ORBIX High Priority ~ —%— MT-ORBIX Low Priority

prlorlty and InVOke Operatlons at 10 lee'i they Ianke 10 1 —®—miniCOOL High Priority =>¢=miniCOOL Low Priority
CORBA twoway calls per second. In each call, the clientse g ,, | |

a value of typeCORBA::Octet to the servant. The serva
cubes the number and returns it to the client.

When the test program creates the client threads, they |
on a barrier lock so that no client begins work until the ot
are created and ready to run. When all threads inform the |
thread they are ready to begin, the main thread unblock
client threads. These threads execute in an order deterr
by the Solaris real-time thread dispatcher. Each client invt
4,000 CORBA twoway requests at its prescribed rate.

w
(=2}
L

—&—TAO High Priority TAO Low Priority /
5.4 Performance Results on Solaris

. . . _ X

Two categories of tests were used in our benchmarking e | {Lﬁ %—1
iments:blackboxandwhitebox = ¢ %% g—t—
1 5 10 15 20 25 30 35 40 45 50

Blackbox benchmarks: We computed the average twow

response time incurred by various clients. In addition, Number of Low Priority Clients

computed twoway operation jitter, which is the standard deigure 24: Comparative Latency for CORBAplus, MT-Orbix,
viation from the average twoway response time. High levatgniCOOL, and TAO

of latency and jitter are undesirable for real-time applications

since they degrade worst-case execution time and reduce CPEigure 24 shows that as the number of low-priority clients
utilization. Section 5.4.1 explains the blackbox results. increases, MT-Orbix and CORBAplus incur significantly
higher latencies for their high-priority client thread. Com-
ared with TAO, MT-Orbix’s latency is 7 times higher and
ORBAplus’ latency is 25 times higher. Note the irregular
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Whitebox benchmarks: To precisely pinpoint thesources
of priority inversion and performance non-determinism,

employed whitebox benchmarks. These benchmarks used B avior of the average latency that miniCOOL displays,

filing tools such as UNIXruss andQuantify [62]. These : S
tools trace and log the activities of the ORBs and measure ey 10 msec latency running 20 low-priority clients down to

) ; ; : . msec with 25 low-priority clients. Such non-determinism is
time spent on various tasks, as explained in Section 5.4.2. . . o
clearly undesirable for real-time applications.

Together, the blackbox and whitebox benchmarks indicateThe low-priority clients for MT-Orbix, CORBAplus and
the end-to-end latencyijitter incurred by CORBA clients amdiniCOOL also exhibit very high levels of jitter. Compared
help explain the reason for these results. In general, thewith TAO, CORBAplus incurs 300 times as much jitter and
sults reveal why ORBs like MT-Orbix, CORBAplus, and miniMT-Orbix 25 times as much jitter in the worst case, as shown
COOL are not yet suited for applications with real-time pein Figure 25. Likewise, miniCOOL's low-priority clients dis-
formance requirements. Likewise, the results illustrate empitay an erratic behavior with several high bursts of jitter, which
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\ of the clients makes miniCOOL problematic for deterministic
== real-time applications.
\ The difference in latency between the high- and the low-

priority client is also unpredictable. For instance, it ranges
| from 0.55 msec to 10 msec. Section 5.4.2 reveals how this
behavior stems largely from the connection architecture used
by the miniCOOL client and server.
| The jitter incurred by miniCOOL is also fairly high, as
shown in Figure 25. This jitter is similar to that observed
by the CORBAplus ORB since both spend approximately the
| same percentage of time executing locking operation. Sec-
conmmenanrontion 5.4.2 evaluates ORB locking behavior.

MT-ORBIX Low Priority
MT-ORBIX High Priority

micoot Lowprotty - TAQ results:  Figure 24 reveals that as the number of low-

miniCOOL High Priority

o o ety priority clients increase from 1 to 50, the latency observed
Number of Low Priority Clients © s g by TAO's high-priority client grows by~0.7 msecs. How-
Figure 25: Comparative Jitter for CORBAplus, MT-Orbixgver, the difference between the low-priority and high-priority
miniCOOL and TAO clients starts at 0.05 msec and ends at 0.27 msec. In contrast,
in miniCOOL, it evolves from 0.55 msec to 10 msec, and in
) i L i .. CORBAplus it evolves from 0.42 msec to 15 msec. Moreover,
makes it undesirable for deterministic real-time gppllcatlon%e rate of increase of latency with TAO is significantly lower
The blackbox results for each ORB are explained below. 1, MT-Orbix, Sun miniCOOL, and CORBAplus. In partic-
CORBAplus results: CORBAplus incurs priority inversion ular, when there are 50 low-priority clients competing for the
at various points in the graph shown in Figure 24. After di€PU and network bandwidth, the low-priority client latency
playing a high amount of latency for a small number of lowpbserved with MT-Orbix is more than 7 times that of TAO, the
priority clients, the latency drops suddenly at 10 clients, theriniCOOL latency is~3 times that of TAO, and CORBAplus
eventually rises again. Clearly, this behavior is not suitable fer~25 times that of TAO.
deterministic real-time applications. Section 5.4.2 reveals hown contrast to the other ORBs, TAO's high-priority client al-
the poor performance and priority inversions stem largely fromays performs better than its low-priority clients. This demon-
CORBAplus’ concurrency architecture. Figure 25 shows ttsitates that the connection and concurrency architectures in
CORBAplus generates high levels of jitter, particularly whePAO’s ORB Core can maintain real-time request priorities
tested with 40, 45, and 50 low-priority clients. These resultad-to-end. The key difference between TAO and other ORBs
show an erratic and undesirable behavior for applications tisathat its GIOP protocol processing is performed on a dedi-
require real-time guarantees. cated connection by a dedicated real-time thread with a suit-
able end-to-end real-time priority. Thus, TAO shares the mini-
al amount of ORB endsystem resources, which substantially

version as the number of low-priority clients increase. Aft d wunities f Ot | . d locki
the number of clients exceeds 10, the high-priority client p %atéces opportunities for priority Inversion and focking over-

forms increasingly worse than the low-priority clients. Thi ' .
behavior is not conducive to deterministic real-time applica- 1 1€ TAO ORB produces very low jitter (less than 11 msecs)

tions. Section 5.4.2 reveals how these inversions stem lard@fhe low-priority requests and lower jitter (less than 1 msec)
from the MT-Orbix’s concurrency architecture on the servdP! the high-priority requests. The stability of TAO's latency is
In addition, MT-Orbix produces high levels of jitter, as showriearly desirable for applications that require predictable end-
in Figure 25. This behavior is caused by priority inversions f-énd performance.

its ORB Core, as explained in Section 5.4.2.

300

250

200

150

100

Jitter in milliseconds

50

MT-Orbix results:  MT-Orbix incurs substantial priority in-

In general, the blackbox results described above demon-
miniCOOL results:  As the number of low-priority clients strate that improper choice of ORB Core concurrency and
increase, the latency observed by the high-priority client alsonnection software architectures can play a significant role
increases, reaching10 msec, at 20 clients, at which point itn exacerbating priority inversion and non-determinism. The
decreases suddenly to 2.5 msec with 25 clients. This errddict that TAO achieves such low levels of latency and jitter
behavior becomes more evident as more low-priority cliemen run over the non-real-time Solaris /O subsystem further
are run. Although the latency of the high-priority client isemonstrates the feasibility of using standard OO middleware
smaller than the low-priority clients, the non-linear behavitike CORBA to support real-time applications.
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5.4.2 Whitebox Results

For the whitebox tests, we used a configuration of ten Geimsg Getmsg
current clients similar to the one described in Section - el
Nine clients were low-priority and one was high-priority. E
client sent 4,000 twoway requests to the server, which | "
low-priority servant and high-priority servant thread.

Our previous experience using CORBA for real-time av
ics mission computing [10] indicated that locks constitL
significant source of overhead, non-determinism and pot Reass ~ &% Reads wies
priority inversion for real-time ORBs. UsinQuantify and Client-side Server-side
truss , we measured the time the ORBs consumed perform-
ing tasks like synchronization, I/O, and protocol processing.

In addition, we computed a metric that records Figure 26: Whitebox Results for CORBAplus
the number of calls made to user-level locks
(mutex Jlock and mutex _unlock ) and kernel-level

locks  (lwp -mutex lock -wp -mutex -unlock , ure 18. This architecture uses a single 1/0O threaaldwept

_wp _sem nd _lwp _.sema.wait ). This metri . . .
p semapost and lwp -semawait ) S metric angread requests from socket endpoints. This thread inserts

computes the average number of lock operations per-requt%s request on a queue that is serviced by a pool of worker
In general, kernel-level locks are considerably more eXpen%Wr%eads

since they incur kernel/user mode switching overhead.
The whitebox results from our experiments are presented’he CORBAplus connection architecture and the server
below. concurrency architecture help reduce the number of simulta-

CORBAplus whitebox results: Our whitebox analysis of neous open connections and simplify the ORB implementa-

CORBAplus reveals high levels of synchronization overhegan' However, concurrent requests to the shared connection

from mutex and semaphore operations at the user-level Ingur high overhead because each send operation incurs a con-
Kt switch. In addition, on the client-side, threads of different

each twoway request, as shown in Figure 30. Synchroni i hare th ¢ ; i hich
tion overhead arises from locking operations that impIemeDrﬂOrl Ies can share e same transport connection, which can
use priority inversion. For instance, a high-priority thread

the connection and concurrency architecture used by COR - . 2 L
BAplus y y may be blocked until a low-priority thread finishes sending its

As shown in Figure 26, CORBAplus exhibits high synchr equest. Likewise, the priority of the thread that blocks on
' e semaphore to receive a reply from a twoway connection

nization overhead (52%) using kernel-level locks in the clie t reflect the priority of th that arrives f th
and the server incurs high levels of processing overhead (4§H/$y not refiect the priority of theequestnat arrives from the

due to kernel-level lock operations. server, thereby causing additional priority inversion.

For each CORBA request/response, CORBAplus’s cligniniCOOL whitebox results: Our whitebox analysis of
ORB performs 199 lock operations, whereas the server pginiCOOL reveals that synchronization overhead from mu-
forms 216 user-level lock operations, as shown in Figure 36x and semaphore operations consume a large percentage of
This locking overhead stems largely from excessive dynartfie total miniCOOL ORB processing time. As with COR-
memory allocation, as described in Section 5.6. Each dynaf#plus, synchronization overhead in miniCOOL arises from
allocation causes two user-level lock operatidres, one ac- locking operations that implement its connection and concur-

Mutexes

ORB 21%

Processing

35% ORB

Processing
45%

Semaphores
24%

Semaphores Writes

architecture described in Section 5.2.1 and depicted in Fig-

quire and one release. rency architecture. Locking overhead accountedf58% on
The CORBAplus connection and concurrency architectuit¢ client-side and more than 40% on the server-side, as shown
are outlined briefly below. in Figure 27).

For each CORBA request/response, miniCOOL’s client

* CORBAplus connection architecture: The_ COR- ORB performs 94 lock operations at the user-level, whereas
BAplus ORB connection architecture uses the active CONNBC: server performs 231 lock operations, as shown in Fig-

tion model described in Section 5.1.1 and depicted in F'l?r'e 30. As with CORBAplus, this locking overhead stems

ure 18. This design multiplexes all requests to the same se éely from excessive dynamic memory allocation. Each dy-
through one active connection thread, which simplifies O mic allocation causes two user-level lock operatios

implementation in niform ing mechanism. .
plementations by using a uniform queueing mechanis one acquire and one release.

e CORBAplus concurrency architecture; The COR-  The number of calls per-request to kernel-level locking
BAplus ORB concurrency architecture uses the thread pawchanisms at the server (shown in Figure 31) are unusually
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MT-Orbix whitebox results:  Figure 28 shows the whitebox
results for the client-side and server-side of MT-Orbix.

ORB
ORB Mutexes Processing

Processing 8% 12%

16% ORB

Processing

14% ORB
Writes Processing
13%

Mutexes
24%

Writes
11% Semaphores
35%

4%

Mutexes
36%

Writes
2%

Mutexes Reads
40% 6%

Semaphores Rec

Reads
23% 29%

Client-side Server-side

Semaphor Semaphores

Figure 27: Whitebox Results for miniCOOL Client-side Server-side

Figure 28: Whitebox Results for MT-Orbix
high. This overhead stems from the fact that miniCOOL uses

“system scoped” threads on Solaris, which require kernel in-

tervention for all Synchronization Operations [63] e MT-Orbix connection architecture: Like miniCOOL,
are outlined briefly below. chitecture. Although this model minimizes context switching

overhead, it causes intensive priority inversions.

e miniCOOL connection architecture: The mini- =0 50 concurrency architecture: In the MT-

COOL ORB connection architecture uses a variant of thg, . . . . .
leader/followers model described in Section 5.1.1. This Eﬁblx implementation of our benchmarking testbed, multiple

Ervant threads were created, each with the appropriate pri-
chitecture allows the leader thread to blocksialect ' pprop P

. ority, i.e,, the high-priority servant had the highest priority
the. ;hared socket. All f°"°W.'F‘9 threads block on semapho. Tead. A thread filter was then installed to look at each re-
waiting for one of two conditions: (1) the leader thread wi

d thei | d sianal thei h est, determine the priority of the request (by examining the
rea €Ir reply message and signai their semapnore or get object), and pass the request to the thread with the cor-
the leader thread willead its own reply and signal another

. . rect priority. The thread filter mechanism is implemented by a
;h;&a}g;geernter and block Eelect , thereby becoming thehigh-priority real-time thread to minimize dispatch latency.

The thread pool instantiation of the MT-Orbix mechanism

e mMiNiCOOL concurrency architecture: The Sun described in Section 5.2.3 is flexible and easy to use. However,
miniCOOL ORB  concurrency architecture  uses tH;a_suf_fers from high levels of priorit.y inversion gnd synphro-
leader/followers thread pool ~architecture described H7ation overhead. MT-Orbix provides ongnefilter chain.
Section 5.2.2. This architecture waits for connections in'QusS: all incoming requests must be processed sequentially by
single thread. Whenever a request arrives and validatiBR filters before they are passed to the servant thread with an
of the request is complete, the leader thread (1) Signa|§p£roprlate real-time priority. As a result, if a high-priority

follower thread in the pool to wait for incoming requests arf§auest arrives after a low-priority request, it must wait until
(2) services the request. the low-priority request has been dispatched before the ORB

processes it.

The miniCOOL connection architecture and the server condn addition, a filter can only be called after (1) GIOP pro-
currency architecture help reduce the number of simultanecassing has completed and (2) the Object Adapter has deter-
open connections and the amount of context switching whamed the target object for this request. This processing is
replies arrive in FIFO order. As with CORBAplus, howeveserialized since the MT-Orbix ORB Core is unaware of the re-
this design yields high levels of priority inversion. For inguest priority. Thus, a higher priority request that arrived after
stance, threads of different priorities can share the same tranlew-priority request must wait until the lower priority request
port connection on the client-side. Therefore, a high-prioritas been processed by MT-Orbix.
thread may block until a low-priority thread finishes sending MT-Orbix’s concurrency architecture is chiefly responsible
its request. In addition, the priority of the thread that blocks dor its substantial priority inversion shown in Figure 24. This
the semaphore to access a connection may not reflect thefijire shows how the latency observed by the high-priority
ority of theresponsdhat arrives from the server, which yieldglient increases rapidly, growing from2 msecs te-14 msecs
additional priority inversion. as the number of low-priority clients increase from 1 to 50.
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The MT-Orbix filter mechanism also causes an increasevitse, client requests sent to the low-priority servant are han-
synchronization overhead. Because there is just one filtdad by the low-priority real-time thread. Locking overhead is
chain, concurrent requests must acquire and release locksittimized since these two servant threads share minimal ORB
be processed by the filter. The MT-Orbix client-side performesourcesi.e., they have separaeactor s, Acceptor s,

175 user-level lock operations per-request, while the serv@bject Adapters, etc. In addition, the two threads service sep-
side performs 599 user-level lock operations per-request,asate client connections, thereby eliminating the priority inver-
shown in Figure 30. Moreover, MT-Orbix displays a highkion that would otherwise arises from connection multiplex-
number of kernel-level locks per-request, as shown in Figg, as exhibited by the other ORBs we tested.

ure 31.

TAO whitebox results: As shown in Figure 29, TAO ex-

" . o king overhead: Our whitebox tests measured user-level
hibits negligible synchronization overhead. TAO performs Afé’c. P
! glat Y 1zad v P ocking overhead (shown in Figure 30) and kernel-level lock-
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Figure 29: Whitebox Results for TAO
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user-level lock operations per-request on the client-side,
32 user-level lock operations per-request on the server-<
This low amount of synchronization results from the design
TAO’s ORB Core, which allocates a separate connection
each priority, as shown in Figure 6. Therefore, TAO's OF 4| o4
Core minimizes additional user-level locking operations p
request and uses no kernel-level locks in its ORB Core.

N
=]
=]

User Level Lock Operations per Request

e TAO connection architecture: TAO uses a nhon- TAO miniCOOL CORBAplus MT ORBIX
multiplexed connection architecture, which pre-establisl ORBs Tested
connections to servants, as described in Section 5.1.2. One
connection is pre-established for each priority level, thereby Figure 30: User-level Locking Overhead in ORBs
avoiding the non-deterministic delay involved in dynamic con-
nection setup. In addition, different priority levels have thejlig overhead (shown in Figure 31) in the CORBAplus, MT-
own connection. This design avoids request-level priority iybix, miniCOOL, and TAO ORBs. User-level locks are typ-
version, which would otherwise occur from FIFO queueingally used to protect shared resources within a process. A
acrossclient threads with different priorities. common example is dynamic memory allocation using global
e TAO concurrency architecture: TAO supports sev- C++ operatorsiew anddelete . These operators allocate
eral concurrency architectures, as described in [17]. Tmemory from a globally managed heap in each process.
Reactor -per-thread-priority architecture described in Sec- Kernel-level locks are more expensive since they typically
tion 5.2.4 was used for the benchmarks in this paper. In thésjuire mode switches between user-level and the kernel. The
concurrency architecture, a separate thread is created for e&thaphore and mutex operations depicted in the whitebox re-
priority level, i.e, each rate group. Thus, the low-prioritysults for the ORBs evaluated above arise from kernel-level
client issues CORBA requests at a lower rate than the hidfek operations.
priority client (10 Hz vs. 20 Hz, respectively). TAO limits user-level locking by using buffers that are pre-
On the server-side, client requests sent to the high-prio@tiocated off the run-time stack. This buffer is subdivided to
servant are processed by a high-priority real-time thread. Likecommodate the various fields of the request. Kernel-level
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It supports real-time applications and general-purpose appli-
cations.

The IPC mechanism used on ClassiX, Chorus IPC, provides
an efficient, location-transparent message-based communica-

16

14

14 tion facility on a single board and between multiple intercon-
g — nected boards. In addition, ClassiX has a TCP/IP protocol
g stack, accessible via the Socket API, that enables internet-
5 Bclient working connectivity with other OS platforms.
210 Bserver To determine the impact of a real-time OS on ORB perfor-
2 mance, this subsection presents blackbox results for TAO and
T, s miniCOOL using ClassiX.
e}
36 5.5.1 Hardware Configuration:
E . . The following experiments were conducted using two
g MVME177 VMEbus single-board computers. The
¥ MVMEL177 contains a 60 MHz MC68060 processor and
2 64 Mbytes of RAM. The MVME177 boards are mounted on
a MVME954A 6-slot, 32-bit, VME-compatible backplane. In
ol 2 addition, each MVME177 module has an 82596CA Ethernet
TAO miniCOOL CORBAplus MT ORBIX

ORBs Tested transceiver interface.

Figure 31: Kernel-level Locking Overhead in ORBs 55.2  Software Configuration:

The experiments were run on version 3.1 of ClassiX. The
S _ _ ORBs benchmarked were miniCOOL 4.3 and TAO 1.0. The
locking is minimized since TAO can be configured so thgfient/server configurations run were (1) localiye. client
ORB resources are not shared between its threads. and server on one board and (2) remoté@, between two
MVMEL177 boards on the same backplane.

The client/server benchmarking configuration implemented
is the sam¥ as the one run on Solaris 2.5.1 that is described
igpection 5.3.2. MiniCOOL was configured to use the Chorus
|5¥C communication facility to send messages on one board or
real-time 1/0 [14]. Therefore, Solaris cannot guarantee tRE™0SS boards.. .This is more efficient than the TCP/II.D protocol
availability of resources like I/O buffers and network ban§tacK - In addition, we conducted benchmarks of miniCOOL
width [17]. Moreover, the scheduling performed by the Sola@'d TAO using the TCP protocol. - In general, miniCOOL
/O subsystem is not integrated with the rest of its resoufdgforms more predictably using Chorus IPC as its transport
management strategies. mechanism.

So-called real-time operating systems (RTOS)s typically
provide mechanisms for priority-controlled access to OS f@5.3 Blackbox results:

sources. This allows applications to_ ensure_that QOS requwé computed the average twoway response time incurred by
ments ahredmtla_t. RTIOS QoShmechfanlsms tySplcaIIy '”C'Ulfj‘? rp\?e{'rious clients. In addition, we computed twoway operation
tlmltle sche Iu!ng cllz(aJsses that enforce QoS usage policies;ag igh levels of latency and jitter are undesirable for real-
well as real-ime to specify processing requirements afilr%e applications since they complicate the computation of

operation per|od§. ) ) worst-case execution time and reduce CPU utilization.
Choru$ ClassiX is a real-time OS that can scale down to_

small embedded configurations, as well as scale up to dRDICOOL using Chorus IPC:  As the number of low-
tributed POSIX-compliant platforms [64]. ClassiX provideBriority clients increase, the latency observed by the remote
a real-time scheduler that supports several scheduling algigh- and low-priority client also increases. It reache34

rithms, 'nCIUd'ng prlorlty-based FIFO preemptive SChEdUIIng-loNote the number of low-priority clients used was 5 rather than 50 due to a

bug in ClassiX that causesklect to fail if used to wait for events on more
9Chorus has been purchased by Sun Microsystems. than 16 sockets.

5.5 Performance Results on Chorus ClassiX

The performance results in Section 5.4 were obtained
Solaris 2.5.1, which provides real-time scheduling but n
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msec, increasing linearly, when the client and the servi

on different processor boards (remote) as shown in Figu k
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15 Figure 33: Jitter for miniCOOL with Chorus IPC on ClassiX

. / E//E
/ Figure 32 illustrates the difference in latency between the local

and remote configurations, which appears to stem from the
° @/&/ latency incurred by the network I/O driver.

miniCOOL using TCP: We also configured the miniCOOL

Latency per Two-way Request in milliseconds
N
o
-
IS

o 1 2 3 a4 s client/server benchmark to use the Chorus TCP/IP protocol

Number of Low Priority Clients stack. The TCP/IP implementation on ClassiX is not as ef-

Figure 32: Latency for miniCOOL with Chorus IPC on Clagicient as Chorus IPC. However, it provided a base for com-
siX parison between miniCOOL and TAO (which uses TCP as its

transport protocol).

When the client and server are collocated, the behavior iSThe results we obtained for miniCOOL over TCP show that
more stable on both the high and low-priority cliei,, they as the number of low-priority clients increase, the latency ob-
are essentially identical since their lines in Figure 32 oveserved by the remote high- and low-priority client also in-
lap. The latencies start at2.5 msec of latency and reachesreased linearly. The maximum latency was9 msec, when
~12.5 msecs. Both high- and low-priority clients incur apghe client and the server are on the same processor board (lo-
proximately the same average latency. cal) as shown in Figure 34.

In all cases, the latency for the high-priority client is always The increase in latency for the local configuration is unusual
lower than the latency for the low-priority client. Thus, there since one would expect the ORB to perform best when client
no significant priority inversion, which is expected for a reahnd server are collocated on the same processor. However,
time system. However, there is still variance in the latengshen client and server reside in different processor boards,
observed by the high-priority client, in both, the remote arnitlistrated in Figure 35, the average latency was more stable.
local configurations. This appears to be due to the implementation of the TCP/IP

In general, miniCOOL performs more predictably on Clagrotocol stack, which may not to be optimized for local IPC.
siX than its version for Solaris. This is due to the use of TCPWhen the client and server are on separate boards, the be-
on Solaris versus Chorus IPC on ClassiX. The Solaris latefawior is similar to the remote clients using Chorus IPC. This
and jitter results were relatively erratic, as shown in the bladkeicates that at some of the bottlenecks reside in the Ethernet
box results from Solaris described in Section 5.4.1. driver.

Figure 33 shows that as the number of low-priority clients In all cases, the latency for the high-priority client is al-
increases, the jitter increases progressively manner, for renveailys lower than the latency for the low-priority clientg.,
high- and low-priority clients. In addition, Figure 33 illustratethere appears to be no significant priority inversion, which is
that the jitter incurred by miniCOOL's remote clients is fairlgxpected for a real-time system. However, there is still vari-
high. The unpredictable behavior of high- and low-prioritgnce in the latency observed by the high-priority client, in
clients is more evident when the client and the server run looth the remote and local configurations, as shown in Fig-
separate processor boards, as shown in Figure 32. Moreawer,36. The remote configurations incurred the highest vari-
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Figure 34: Latency for miniCOOL-TCP, miniCOOL-IPC, an@"ce, with the exception of TAO’s remote high-priority clients,
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TAO-TCP on ClassiX, remote configuration

whose jitter remained fairly stable. This stability stems from
TAO's Reactor -per-thread-priority concurrency architecture
described in Section 5.2.4.

TAO using TCP: Figure 34 reveals that as the number of
low-priority clients increase from 0 to 5, the latency observed
by TAO’s high-priority client grows by~0.005 msecs for the
local configuration and Figure 35 showsl.022 msecs for
the remote one. Although the remote high-priority client per-
forms as well as the local one, the difference between the
low-priority and high-priority remote clients evolves from 0
msec to 6 msec. This increase is unusual and appears to stem
from factors external to the ORBn such as the scheduling al-
gorithm and network latency. In general, TAO performs more
predictably in other platforms tested with higher bandwidth,
e.g.155 Mbps ATM networks. The local client/server test, in
contrast, perform very predictably and have little increase in
latency.

The TAO ORB produces very low jitter, less than 2 msecs,
for the low-priority requests and lower jitter (less than 1 msec)
for the high-priority requests. On this platform, the exception
is the remote low-priority client, which may be attributed to
%e starvation of the low-priority clients by the high-priority

ne, and the latency incurred by the network. The stability of
TAO's latency is clearly desirable for applications that require
predictable end-to-end performance.
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5.6 Evaluation and Recommendations orities are multiplexed over shared connections. Currently,

. neither miniCOOL, CORBAplus, nor MT-Orbix support this

The results of our benchmarks illustrate the non—determimqggeI of control, though TAO provides this model by default
performance incurred by applications running atop conven- ' '

tional ORBs. In addition, the results show that priorit§- Real-time ORB concurrency architectures should be

inversion and non-determinism are significant problems f|gxible, efficient, and predictable: Many ORBs, such as

conventional ORBs. As a result, these ORBs are not cOHNCOOL and CORBAplus, create threads on behalf of
rently suitable for applications with deterministic real-timgerver applications. This design is inflexible since it prevents
requirements. Based on our results, and our prior expéplication developers from customizing ORB performance
ence [20, 21, 19, 16] measuring the performance of COREJ& @ different concurrency architecture. Conversely, other
ORB endsystems, we suggest the following recommendati&f3B concurrency architectures are flexible, but inefficient and

to decrease non-determinism and limit priority inversion fPredictable, as shown by Section 5.4.2's explanation of the
real-time ORB endsystems. MT-Orbix performance results. Thus, a balance is needed be-

) ) ) . tween flexibility and efficiency.
1. Real-time ORBs should avoid dynamic connection es- \e recommend that real-time ORBs provide APIs that al-
tablishment:  ORBs that establish connections dynamicallyy, application developers to select concurrency architec-
suffer from high jitter. Thus, performance seen by individres that are flexible, efficienand predictable. For in-
ual clients can vary significantly from the average. Neithgfance, TAO offers a range of concurrency architectures, such
CORBAplus, miniCOOL, nor MT-Orbix provide APIs for pre-asreactor  -per-thread-priority, thread pool, and thread-per-
establishing connections; TAO provides these APIs as extgBnnection. Developers can configure TAO [25] to mini-

sions to CORBA. . mize unnecessary sharing of ORB resources by using thread-
We recommend that APIs to control the pre-establishmepfaific storage.

of connections should be defined as an OMG standard for real- i hould id reimol . h
time CORBA [65, 41]. 5. Real-time ORBs should avoid reimplementing OS mech-

anisms: Conventional ORBs incur substantial performance

2. Realtime ORBs should minimize dynamic mem- gverhead because they reimplement native OS mechanisms
ory management: Thread-safe implementations of dynamigr endpoint demultiplexing, queueing, and concurrency con-
memory allocators require user-level locking. Forinstance, f#6l. For instance, much of the priority inversion and non-
C++new operator allocates memory from a global pool sharg@terminism miniCOOL, CORBAplus, and MT-Orbix stem
by all threads in a process. Likewise, the Qdetete  opera- from the complexity of their ORB Core mechanisms for multi-
tion, which releases allocated memory, also requires user-Igyieking multiple client threads through a single connection to
locking to update the global shared pool. This lock shariagserver. These mechanism reimplement the connection man-
contributes to the overhead shown in Figure 30. In additicfyement and demultiplexing features in the OS in a manner
locking also increases non-determinism due to contention @k (1) increases overhead and (2) does not consider the pri-
queueing. ority of the threads that make the requests for twoway opera-

We recommend that real-time ORBs avoid excessive shggns.
ing of dynamic memory locks via the use of mechanisms such\e recommend that real-time ORB developers attempt to
as thread-specific storage [59], which allocates memory frgie the native OS mechanisms as much as possilgede-
separate heaps that are unique to each thread. signing the ORB Core to work in concert with the underlying
3. Real-time ORBs should avoid multiplexing requests mech.anisms rather than reimplementing them atahighgr level.
of different priorities over a shared connection: Sharing A M&jor reason that TAO performs predictably and efficiently
connections among multiple threads requires synchronizatiSiPecause the connection managementand concurrency model
Not only does this increase locking overhead, but it also irsed in its ORB Core is closely integrated with the underlying
creases opportunities for priority inversion. For instance, high> features.
priority requests can be blocked until low-priority threads ré- The design of real-time ORB endsystem architectures
lease the shared connection lock. Priority inversion can $teuld be guided by empirical performance benchmarks:
further exacerbated if multiple threads with multiple levels @ur prior research on pinpointing performance bottlenecks
thread priorities share common locks. For instance, mediamd optimizing middleware like Web servers [66, 67] and
priority threads can preempt a low-priority thread that is hol&ORBA ORBs [21, 20, 16, 19] demonstrates the efficacy of
ing a lock required by a high-priority thread, which can leameasurement-driven research methodology.
to unbounded priority inversion [13]. We recommend that the OMG adopt standard real-time

We recommend that real-time ORBs allow application d€EORBA benchmarking techniques and metrics. These bench-
velopers to determine whether requests with different pmiarks will simplify communication between researchers
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and developers. In addition, they will facilitate the Although this separation of concerns can simplify applica-

comparison of performance results and real-time ORiBn development, it can also yield inflexible and inefficient

behavior patterns between different ORBs and differeapplications and middleware architectures. The primary rea-

OS/hardware platforms. The real-time ORB benchmamoen is that many conventional ORBs are configugtadically

ing test suite described in this section is available atcompile-time and link-time by ORB developers, rather than

www.cs.wustl.edu/ ~schmidt/TAO.html . dynamicallyat installation-time or run-time by application
developers. Statically configured ORBs have the following

) ) ’ drawbacks [70, 50]:
6 USIng Patterns to Build TAO's Ex- Inflexibility: ~ Statically-configured ORBs tightly couple

tensible ORB Software Architecture each componentanplementationwith the configurationof
internal ORB components.e., which components work to-

The preceding sections in this paper focused largely on tether and how they work together. As a result, extending
QoS requirements for real-time ORB endsystems and dtatically-configured ORBs requires modifications to existing
scribed how TAO'’s scheduling, connection, and concurrenggurce code, which may not be accessible to application de-
architectures are structured to meet these requirements. Vhlspers.
section delves deeper into TAO’s software architecture by exEven if source code is available, extending statically-
ploring thepatternsits uses to creaidynamically configurable configured ORBs requires recompilation and relinking. More-
real-time ORB middleware. over, any currently executing ORBs and their associated ob-

A pattern represents a recurring solution to a softwgeets must be shutdown and restarted. This static reconfigu-
development problem within a particular context [48, 68jation process is not well-suited for application domains like
Patterns help to alleviate the continual re-discovery and telecom call processing that require Z4 availability.

!nventlon of software concepts and components by capt efficiency: Statically-configured ORBs can be inefficient,
ing solutions to standard software development problems [69L4 i, terms of space and time. Space inefficiency can oc-

For instance, patterns are useful for documenting the structyre i unnecessary components are always statically config-
and participants in common communication software micr8-

hi lik ) , ed into an ORB. This can increase the ORB’s memory foot-
architectures like Reactors [43], Active ijepts [51], "’."B{int, forcing applications to pay a space penalty for features
Brokers [68]. These patterns are generalizations of obj

. ) ) .et?l'y do not require. Overly large memory footprints are par-
structures that have proven useful to build flexible and effici ularly problematic for embedded systems, such as cellular

event-driven and concurrent communication software SUChp‘T’]%nes or telecom switch line cards.
ORBs. , . . . Time inefficiency can stem from restricting an ORB to use
To focus the discussion, this section illustrates how we haygica1y configured algorithms or data structures for key pro-
applied patterns to develop TAO. A novel aspect of TAO |8,qqing tasks. This can make it hard for application developers
its extensible ORB design, which can be customized dynag,stomize an ORB to handle new user-cases. For instance,
ically to meet specific application QoS requirements and ngly) time avionics systems [10] often can instantiate all their
work/endsystem characteristics. As a result, TAO can be ¥y ans off-line. These systems can benefit from an ORB that
tended and maintained more easily than conventistel- | seq perfect hashing or active demultiplexing [16] to demulti-
cally configuredORBs. plex incoming requests to servants. However, ORBs that are
configured statically to use a general-purpose, “one-size-fits-

6.1 Why We Need Dynamically Configurable all” demultiplex strategy will not perform as well for mission-
Middleware critical systems.

A key motivation for ORB middleware is to offload complex In theory, the drawbacks with static configuration described
distributed system infrastructure tasks from application devabove arénternalto ORBs and should not affect application
opers to ORB developers. ORB developers are responsd#gelopers directly. In practice, however, application devel-
for implementing reusable middleware components that hapers are inevitably affected since the quality, portability, us-
dle common tasks, such as interprocess communication, cility, and performance of the ORB middleware is reduced.
currency, transport endpoint demultiplexing, scheduling, ahlderefore, an effective way to improve ORB extensibility is to
dispatching. These components are typically compiled intalevelop ORB middleware that can dgnamically configured
run-time ORB library, linked with application objects that use Dynamic configuration enables the selective integration of
the ORB components, and executed in one or more OS pustomized implementations for key ORB strategies, such as
cesses. communication, concurrency, demultiplexing, scheduling, and
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dispatching. This allows ORB developers to concentrate 6r2 Overview of Patterns that Improve ORB

the functionality of ORB components, without committing Extensibility

themselves prematurely to a specifionfigurationof these

Components_ Moreover, dynamic Configuration enables a—@]s section uses TAO as a case Study to illustrate how pattel‘ns
plication developers and ORB developers to make these dé&P help application developers and ORB developers build,

sions very late in the design lifecyciee., at installation-time maintain, and extend communication software by reducing the
or run-time. coupling between components. Figure 38 illustrates the pat-

terns used to develop an extensible ORB architecture for TAO.
e pLLs tis beyond the scope of this section to describe each patternin
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Figure 37: Dimensions of ORB Extensibility REACTOR
Figure 37 illustrates the following key dimensions of ORB | WRAPPER FACADES
extensibility: OS KERNEL OS KERNEL
1. Extensibility to retargeting on new platforms: which ) )

requires that the ORB be implemented using modular com-
ponents that shield it from non-portable system mechanisms,

such as those for threading, communication, and event demul-

tiplexing. OS platforms like POSIX, Win32, VxWorks anéietail or to discuss all the patterns used within TAO. Instead,
MVS provide a wide variety of syste;n mech,anisms. " 7 “our goal is to focus on key patterns and show how they can
improve the extensibility, maintainability, and performance of

2. Extensibility via custom implementation strategies: real-time ORB middleware. The references contain additional
which can be tailored to specific application requirements. Rfiaterial on each pattern.

instance, ORB components can be customized to meet perirhe intent and usage of these patterns are outlined below:
odic deadlines in real-time systems [10]. Likewise, ORB com- _ o

ponents can be customized to account for particular systtR¢ Wrapper Facade pattern: which simplifies the OS

characteristics, such as the availability of asynchronous §gstem programming interface by combining multiple related
[16] or high-speed ATM networks [71]. OS system mechanisms like the socket APl or POSIX threads

into cohesive OO abstractions [48]. TAO uses this pattern to

3. Ex'tensibilit.y via dynamic gonf'iguration of custom 4\ iq tedious, non-portable, and non-typesafe programming of
strategies: which takes customization to the next level by o\ | 0S-specific system calls

dynamically linking only those strategies that are necessary

for a specific ORB “personality.” For example, different apFhe Reactor pattern: which provides flexible event demul-
plication domains, such as medical systems or telecom dglexing and event handler dispatching [43]. TAO uses this
processing, may require custom combinations of concurrergttern to notify ORB-specific handlers synchronously when
scheduling, or dispatch strategies. Configuring these strat@- events occur in the OS. The Reactor pattern drives the
gies at run-time from dynamically linked libraries (DLLs) camain event loop in TAO's ORB Core, which accepts connec-
(1) reduce the memory footprint of an ORB and (2) maketipns and receives/sends client requests/responses.

possible for application developers to extend the ORB with
requiring access or changes to the original source code.

Figure 38: Relationships Among Patterns Used in TAO

%e Acceptor-Connector pattern: which decouples GIOP
protocol handler initialization from the ORB processing tasks
Below, we describe the patterns applied to enhance the exfmrformed once initialization is complete [45]. TAO uses this
sibility of TAO along each dimension outlined above. pattern in the ORB Core on servers and clients to passively
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and actively establish GIOP connections that are independsrit freely availablE reference implementation of the Inter-
of the underlying transport mechanisms. net Inter-ORB Protocol (IIOP) written in C++. TAO evolved
from the SunSoft IIOP release, so it provides an ideal baseline

The Active Object pattern: which supports flexible con-tg evaluate the impact of patterns on the software qualities of
currency architectures by decoupling request reception freg§gg middleware.

request execution [51]. TAO uses this pattern to facilitate the
use of multiple concurrency strategies that can be configu(rse

flexibly into its ORB Core at run-time. g.l Encapsulate Low-level System Mechanisms with

the Wrapper Facade Pattern
The Thread-Specific Storage pattern: which allows mul- Context: One role of an ORB is to shield application-

tlple threads to use one Ioglcally .globa.I access POINt 10 I cific clients and servants from the details of low-level sys-
trieve thread-specific data without incurring locking overhe s programming. Thus, ORB developers, rather than appli-

for each access ['.59].' TAO Uses this patt_ern to minimize IOE‘ tion developers, are responsible for tedious, low-level tasks
contention and priority inversion for real-time applications. like demultiplexing events, sending and receiving requests

The Strategy pattern: which provides an abstraction for gefrom the network, and.spawnin_g threads to execute client re-
lecting one of several candidate algorithms and packagin@4€Sts concurrently. Figure 39 illustrates a common approach
into an object [48]. This pattern is the foundation of TAO's etSed by SunSoft IIOP, which is programmed internally us-
tensible software architecture and makes it possible to contyf} System mechanisms like sockeselect , and POSIX

ure custom ORB strategies for concurrency, communicatieads directly.

scheduling, and demultiplexing.

The Abstract Factory pattern: which provides a single [ — ‘ : : ]
factory that builds related objects. TAO uses this pattern to s e k0, bind0} - gehmentior0
consolidate its dozens of Strategy objects into a manageable v ‘

| pthr;ead_mntex_*

number of abstract factories that can be reconfigarethasse  posix & Fthe BSD  ppcket Other OS

into clients and servers conveniently and consistently. TAO S:zgizs Pthreads Sockets (. o~ System Calls
components use these factories to access related strategies

without explicitly specifying their subclass name [48]. Figure 39: SunSoft IIOP Operating System Interaction

The Service Configurator pattern: which permits dynamic

run-time configuration of abstract factories and strategies inRipblem: Developing an ORB is hard. It is even harder if
ORB [50]. TAO uses this pattern to dynamically interchangj@velopers must wrestle with low-level system mechanisms
abstract factory implementations in order to customize ORitten in languages like C, which often yield the following
personalities at run-time. problems:

Itis important to note that the patterns described in this sec® ORB developers must havg Intimate knoyvledge of
tion are not limited to ORBs or communication middlewar& 2" OS platforms: Implementing an O.RB using system-
They have been applied in many other communication ap l\_/el C APIs forces develop_erls o deal W'th non-portablle, te-
cation domains, including telecom call processing and swit ous, and error-prone O.S |d|psyncra5|es, such as using un-
ing, avionics flight control systems, multimedia teleconferen:)é,{\f’eerOI tizgzekg?:(:rees rt]g t'%i?:;fgléraalr;‘:’ggsrt ggdgg g;s;}ngﬂofér
ing, and distributed interactive simulations. example, Win32 lacks POSIX threads and has subtly different

semantics for sockets asélect
6.3 How to Use Patterns to Resolve ORB De- , | creased maintenance effort: One way to build an

sign Challenges ORB is to handle portability variations via explicit conditional
compilation directives in ORB source code. Using condi-

In the following discussion, we outline the forces thatunderltll%nal compilation to address platform-specific variatits

g}g rkee;.(tjifnséggégzuf/cgﬁs?ggigﬁﬁgwﬁ;ﬁ e‘;ﬂgﬁ:g rez;i%ﬁe'boints of usdncreases the complexity of the source code,
‘ P shown in Section 6.5. Itis hard to maintain and extend such

these fqrces and explain how these patterns are used in T% Bs since platform-specific details are scattered throughout
In addition, we show how the absence of these patterns in an. . rce code files

ORB leaves these forces unresolveq. To illustrate this Igt efiseeftp://ftp.omg.org/publinterop/ " for the SunSoft IIOP
point concretely, we compare TAO with SunSoft IIOP, whicfvurce code.
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¢ Inconsistent programming paradigms: System mech- its additional type safety and layer of abstraction. For instance,
anisms are accessed through C-style function calls, whinlining is used to avoid the overhead of calling short meth-
cause an “impedance mismatch” with the OO programmings. Likewise, static methods are used to avoid the overhead
style supported by C++, the language used to implement TA®passing a C+this  pointer to each invocation.

How can we avoid accessing low-level system mechanismé\though the ACE wrapper facades solve a common devel-
when implementing an ORB? opment problem, they are just the first step towards developing

. ) __an extensible and maintainable ORB. The remaining patterns
Solution — the Wrapper Facade pattern: An effective yoqcribed in this section build on the encapsulation provided

way to avoid accessing system mechanisms directly is t0 Ys&o ACE wrapper facades to address more challenging ORB
the Wrapper Facade patternThis pattern is a variant of thedesign iSSUES.

Facade pattern [48]. The intent of the Facade pattern is to sim-

plify the interface for a subsystem. The intent of the Wrapper ) . )

Facade pattern is more specific: it provides typesafe, mofl3-2 Demultiplexing ORB Core Events using the Reac-
lar, and portable class interfaces that encapsulate lower-level, ~ tOr Pattern

stand-alone system mechanisms, such as sOS®;t , Conext:  An ORB Core is responsible for demultiplexing
and POSIX threads. In general, the Wrapper Facade patigifleyents from multiple clients and dispatching their asso-
should be applied when existing system-level APIs are NQi5ed event handlers. For instance, a server-side ORB Core
portable and non-typesafe. listens for new client connections and reads/writes GIOP re-
Using the Wrapper Facade patternin TAO: TAO accesses quests/responses from/to connected clients. To ensure re-
all system mechanisms via the wrapper facades providedsppnsiveness to multiple clients, an ORB Core uses OS
ACE [24]. ACE is an OO framework that implements corevent demultiplexing mechanisms to wait floONNECTION,
concurrency and distribution patterns for communication soREAD, andwRITE events to occur omultiplesocket handles.
ware. It provides reusable C++ wrapper facades and frarfi@mmon event demultiplexing mechanisms incladiect

work components that are targeted to developers of higMaitForMultipleObjects , /O completion ports, and
performance, real-time applications and services across a Witeads.

range of OS platforms, including Win32, most versions of Figure 41 illustrates a typical event demultiplexing se-
UNIX, and real-time operating systems like VxWorks, Chaiuence for SunSoft IIOP. Inl], the server enters its event
rus, and LynxOS.

Figure 40 illustrates how the ACE C++ wrapper facades APPLICATION SERVANT
improve TAO’s robustness and portability by encapsulating |- RUN EVENT LOOP
; ; inati : 7: UPCALL
and enhancing native OS concurrency, communication, mem-
ory management, event demultiplexing, and dynamic linking
mechanisms with typesafe OO interfaces. The OO encapsu- OBJECT D
2|: GET REQUEST ADAPTER |

TAO's ORB Core

spawn() 011)9“8, | dlopen() :
1 close(), . K
ACE acquire() recv(), send() handle_events() d15ymO0 3:BLOCK FOR CONNECTION 6: INCOMING
WRAPPER A Y A Y MESSAGE
FACADES THREAD SOCKETS/ SELECT/ DYNAMIC ST
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Figure 41: SunSoft IIOP Event Loop

Figure 40: TAO’s Wrapper Facade Encapsulation

lation provided by ACE alleviates the need for TAO to accekmp by ) calling get _request on the Object Adapter.

the weakly-typed system APIs directly. Therefore, C++ corihe get _request method then3) calls the static method

pilers can detect type system violations at compile-time rathdock _for _connection on the server _endpoint

than at run-time. This method manages all aspects of server-side connection
The ACE wrapper facades use C++ features to elimina@nagement, ranging from connection establishment to GIOP

performance penalties that would otherwise be incurred frgmotocol handling. The ORB remains blockedl ¢n select
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until the occurrence of I/O event, such as a connectibising the Reactor pattern in TAO: TAO uses the Re-
event or a request event. When a request event occartpr pattern to drive the main event loop within its ORB
block _for _connection demultiplexes that request to &ore, as shown in Figure 42. A TAO servet) (initi-
specificserver _endpoint and &) dispatches the event to
that endpoint. The GIOP Engine in the ORB Core th@yré-
trieves data from the socket and passes it to the Object Adapter,

which demultiplexes it, demarshals it, arg) flispatches the ( APPLICATION SERVANT \

appropriate method upcall to the user-supplied servant. e O ENTIEEE ——
- . J

Problem: One way to develop an ORB Core is to hard- N

code it to use one event demultiplexing mechanism, such as OBJECT @

select . Relying on just one mechanismis undesirable, how- ADAPTER 4:DISPATCH )

ever, since no single scheme is efficient on all platforms or N

for all application requirements. For instance, asynchronous

I/O completion ports are very efficient on Windows NT [66],

whereas synchronous threads are the most efficient demulti- Connection

plexing mechanism on Solaris [67]. Handler

Another way to develop an ORB Core is to tightly couple its Reactor s Connection
. . . Handler

event demultiplexing code with the code that performs GIOP 2: select() = Connection

protocol processing. For instance, the event demultiplexing : Handler

logic of SunSoft IIOP is not a self-contained component. In-  {} 3: handle_input() /)

stead, it is closely intertwined with subsequent processing qfigyre 42: Using the Reactor Pattern in TAO’s Event Loop
client request events by the Object Adapter and IDL skele-

tons. In this case, the demultiplexing code cannot be reused as
a blackbox component by similar communication middleware
applications, such as HTTP servers [66] or video-on-demagiéls an event loop in the ORB Core®eactor , where
applications. Moreover, if new ORB strategies for threading @r(2) remains blocked orselect until an 1/0 event oc-
Object Adapter request scheduling algorithms are introducedss. When a GIOP request event occurs, Reactor
substantial portions of the ORB Core must be re-written.  demultiplexes the request to the appropriate event handler,
How then can an ORB implementation decouple itself fromwhich is the GIOPConnection _Handler that is associ-
a specific event demultiplexing mechanism and decoupleated with each connected socket. Reactor (3) then calls
demultiplexing code from its handling code? Connection _Handler::handle dnput , which @) dis-
patches the request to TAO's Object Adapter. The Object
Solution — the Reactor pattern: An effective way to re- Adapter demultiplexes the request to the appropriate upcall
duce coupling and increase the extensibility of an ORB Catfethod on the servant ang) dispatches the upcall.
is to apply theReactor pattern43]. This pattern supports
synchronous demultiplexing and dispatching of multgdlent  The Reactor pattern enhances the extensibility of TAO
handlers which are triggered by events that can arrive conclsy decoupling the event handling portions of its ORB
rently from multiple sources. The Reactor pattern simplifi€ore from the underlying OS event demultiplexing mech-
event-driven applications by integrating the demultiplexing @ahisms. For example, thé/aitForMultipleObjects
events and the dispatching of their corresponding event havent demultiplexing system call can be used on Win-
dlers. In general, the Reactor pattern should be applied wiglevs NT, whereasselect can be used on UNIX plat-
applications or components like an ORB Core must hanfi@ms. Moreover, the Reactor pattern simplifies the con-
events from multiple clients concurrently, without becominfiguration of new event handlers. For instance, adding a
tightly coupled to a single low-level mechanism likglect . new Secure _Connection _Handler that performs en-
Itis important to note that applying the Wrapper Facade patyption/decryption of all network traffic does not affect the
tern is not sufficient to resolve the event demultiplexing proReactor’s implementation. Finally, unlike the event demul-
lems outlined above. A wrapper facade $®lect may im- tiplexing code in SunSoft IIOP, which is tightly coupled to
prove ORB Core portability somewhat. However, this patteome use-case, the ACE implementation of the Reactor pattern
does not resolve the need to completely decouple the low-I§68l] used by TAO has been applied in many other OO event-
event demultiplexing logic from the higher-level client requedtiven applications ranging from HTTP servers [66] to real-
processing logic in an ORB Core. time avionics infrastructure [10].
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6.3.3 Managing Connections in an ORB Using Acceptor- list of server _endpoint objects to generate the read/write
Connector Pattern bitmasks required by the3) select event demultiplexing

mechanism. This list maintains passive transport endpoints

C.o'n.text: Connection managemgnt is another key reSPfat @) accept connections and)(receive requests from
sibility of an ORB Core. For instance, an ORB Cor lients connected to the server

that implements the 1IOP protocol must establish TCP con-

nections and initialize the protocol handlers for each Il ﬁThe pr'oblem W'th this design is thf’ﬂ it tightly c'ouple.s @)
X . ; e ORB’s connection management implementation with the
server _endpoint . By localizing connection managemen

S o o socket network programming API and (2) the TCP/IP con-
logic in the ORB Core, application-specific servants can focus . : . .

. : . nection establishment protocol with the GIOP communication
solely on processing client requests, rather than dealing wit]

low-level network programming tasks. protocol, yielding the following drawbacks:

An ORB Core is notimited to running over lIOP and TCP 1. Too inflexible: If an ORB’s connection management

transports, howe\{er. Eor instance, while TCP can transfRfta structures and algorithms are too closely intertwined, sub-
GIOP requests reliably, its flow control and congestion conte@hntial effort is required to modify the ORB Core. For in-
algorithms can preclude its use as a real-time protocol [28fance, tightly coupling the ORB to use the socket API makes
Likewise, it may be more efficient to use a shared memqgyhard to change the underlying transport mechanismy, to
transport mechanism when clients and servants are collocg{€slshared memory rather than sockets. Thus, it can be hard to
on the same endsystem. Ideally, an ORB Core should be figgrt such a tightly coupled ORB Core to new networks, such
ible enough to support multiple transport mechanisms. a5 ATM or Fibrechannel, or different network programming

Problem: The CORBA architecture explicitly decouples (14\P!s, such as TLI or Win32 Named Pipes.
the connection management tasks performed by an ORB Corg L
. Too inefficient:

. L Many internal ORB strategies can
from (2) the request processing performed by appllcathrr;é optimized by allowing both ORB developers and applica-
specific servants. A common way to implement an ORB's

t%%n developers to select appropriate implementations late in

ternal connection management activities, however, is to u 2 software development cvele.q. after svstematic perfor-
low-level network APIs like sockets. Likewise, the ORB’ b ycleg. y P

connection establishment protocol is often tightly couplt%)%ae':ﬁggogl23&;%::;;2'“;’;?“1;32%2éoglli(e(;::?;eantfge%rg
with the communication protocol. ’ ' y

. . . store transport endpoints in thread-specific storage [59]. Sim-
Figure 43 illustrates the connection management structlfre .
. . . ilarly, the concurrency strategy for a CORBA server might
of SunSoft IIOP. The client-side of SunSoft IIOP imple-~" " . - g
require that each connection run in its own thread to elimi-
nate per-request locking overhead. However, it is hard to ac-
commodate efficient new strategies if connection management
mechanisms are hard-coded and tightly bound with other in-

ternal ORB strategies.

1: lookup()

client : RN
endpoint

endpoint
5: read()/write() server How then can an ORB Core’s connection management com-

client endpoint ponents support multiple transports and allow connection-
endpoint 3: select() related behaviors to be (re)configured flexibly late in the de-

velopment cycle?

listener

client -
endpoint

endpoint

Solution — the Acceptor-Connector pattern: An effective

way to increase the flexibility of ORB Core connection man-
agement and initialization is to apply teceptor-Connector
pattern[45]. This pattern decouples connection initialization
from the processing performed once a connection endpoint is

ments a hard-coded connection caching strategy that usddtiglized. TheAcceptor ~component in the pattern is re-
linked-list of client _endpoint  objects. As shown in Fig- sponsible fopassivenitialization, i.e., the server-side of the

ure 43, this list is traversed to find an unused endpoint wh&MRB Core. Conversely, th€onnector component in the
ever (1) client _endpoint::lookup is called. If no un- Pattern is responsible factiveinitialization, i.e., the client-

usedclient _endpoint to the server is in the cache, side of the ORB Core. In general, the Acceptor-Connector pat-
new connection) is initiated; otherwise an existing conlern should be applied when client/server middleware must al-
’ Qw flexible configuration of network programming APIs and

nection is reused. Likewise, the server-side uses a Iinll e b - - S
must maintain proper separation of initialization roles.

4: accept()

Figure 43: Connection Management in SunSoft IOP
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Using the Acceptor-Connector patternin TAO: TAO uses tive, thread-per-connection, thread-per-priority, etc., described
the Acceptor-Connector pattern in conjunction with the Redn-Section 6.3.4. Once &onnection _Handler is acti-

tor pattern to handle connection establishment for GIOP/lI@&ted &) within the ORB Core, it performs the requisite GIOP
communication. Within TAO’s client-side ORB Core, @rotocol processing5) on a connection and ultimately dis-
Connector initiates connections to servers in response patches §) the request to the appropriate servant via TAO's
an operation invocation or explicit binding to a remote obje@bject Adapter.

Within TAO’s server-side ORB Core, akcceptor creates a

GIOP Connection Handler to service each new client6.3.4 Simplifying ORB Concurrency using the Active

connection. Acceptor s and Connection _Handler s Object Pattern
both derive from arEvent _Handler , which enable them
to be dispatched automatically byReactor . Context: Once the Object Adapter has dispatched a client

TAO’s Acceptors andConnectors can be configured request to the appropriate servant, the servant executes the re-
with any transport mechanisms, such as sockets or TLI, papest. Execution may occur in the same thread of control as
vided by the ACE wrapper facades. In addition, TAO%e Connection Handler that received it. Conversely,
Acceptor and Connector can be imbued with customexecution may occur in a different thread, concurrent with
strategies to select an appropriate concurrency mechanisnothgr request executions.
described in Section 6.3.4. The CORBA specification does not directly address the is-

Figure 44 illustrates the use of Acceptor-Connector stragse of concurrency within an ORB or a servant. Instead, it
gies in TAO’s ORB Core. When a clientl) invokes a defines an interface on the POA for an application to specify
that all requests be handled by a single thread or be handled
using the ORB'’s internal multi-threading policy. In particu-

1: ti : " . . .
i) ORB CORE L2 lar, the POA specification does not allow applications to spec-
: ify concurrency models, such as thread-per-request or thread
Connection Connection pools, which makes it inflexible for certain types of applica-
Handler Handler i
tions [52].
GIoP o.N 4: CREATE & To meet application QoS requirements, it is important
Handler ACTIVATE ) .
to develop ORBs that manage concurrent processing effi-

Concurrency

Cached Strategy ciently [4_2]. Concurrency_ aIIow_s Iong_—running operations to
Connect execute simultaneously without impeding the progress of other

Strate; . . . . . .S .
Strategy Acceptﬁi operations. Likewise, preemptive multi-threading is crucial to

2: connect() "3: minimize the dispatch latency of real-time systems [10].
Strategy Concurrency is often implemented via the multi-threading
e Reactor —’2 capabilities available on OS platforms. For instance, SunSoft
IIOP supports the two concurrency architectures shown in Fig-
ure 45: a single-threaded Reactive architecture and a thread-
per-connection architecture.
Figure 44: Using the Acceptor-Connector Pattern in TAO's SunSoft IIOP’s reactive concurrency architecture uses
Connection Management select within a single thread to dispatch each arriv-
ing request to an individuaserver _endpoint object,
remote operation, it makes eonnect call through the which subsequently reads the request from the appropri-
Strategy _Connector . The Strategy _Connector ate OS kernel queue. Inl) a request arrives and is
(2) consults itsconnection strategyo obtain a connection.queued by the OS. Themselect fires, @) notifying the
In this example the client uses a “caching connection strassociatedserver _endpoint of a waiting request. The
egy” that recycles connections to the server and only createsver _endpoint finally (3) reads the request from the
new connections when all existing connections are busy. Thigue and processes it.
caching strategy minimizes connection setup time, thereby rein contrast, SunSoft IIOP’s thread-per-connection architec-
ducing end-to-end request latency. ture executes eackerver _endpoint in its own thread
In the server-side ORB Core, thBeactor notifies of control, servicing all requests arriving on that connection
TAO'’s Strategy _Acceptor to (3) accept newly con- within its thread. After a connection is establishedlect
nected clients and createonnection _Handlers . The waits for events on the connection’s descriptor. WhBrré-
Strategy _Acceptor delegates the choice of concurrenayuests are received by the OS, the thread perforsetegt
mechanism to one of TAO'soncurrencystrategiese.g, reac- (2) reads one from the queue and) (hands it off to a
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When ORBs are developed using low-level threading APIs,
however, they are hard to extend with new concurrency strate-
gies without affecting other ORB components. For exam-

ple, adding a thread-per-request architecture to SunSoft I1IOP
2B |2’N0"FY would require extensive changes in order to (1) store the re-

v guest in a thread-specific storage (TSS) variable during proto-
server server
endpoint endpoint P

col processing, (2) pass the key to the TSS variable through
> - 2 and (3) access the request stored in TSS before dispatching the
Z-READ

select() > select() =

the scheduling and demarshaling steps in the Object Adapter,
operation on the servant. Therefore, there is no easy way to

modify SunSoft IOP’s concurrency architecture without dras-

3: READ
tically changing its internal structure.
1: ARRIVAL 1: ARRIVAL How then can an ORB support a simple, extensible, and
portable concurrency mechanism?
\ ) Y, Solution — the Active Object pattern: An effective way to

Figure 45: SunSoft IIOP Concurrency Architectures  increase the portability, correctness, and extensibility of ORB
concurrency strategies is to apply tAetive Object pattern

[51]. This pattern provides a higher-level concurrency archi-

server _endpoint  for processing. tecture that decouples (1) the thread that initially receives and

Problem: In many ORBs, the concurrency architecture Rfocesses a client request from (2) the thread that ultimately

programmed directly using the OS platform’s multi-threadirfecutes this request and/or subsequent requests.

API, such as the POSIX threads API [72]. However, there are/Vhile Wrapper Facadegprovide the basis for portability,
several drawbacks to this approach: they are simply a thin syntactic veneer over the low-level sys-

) ) tem APIs. Moreover, a facade’s semantic behavior may still

* Non-portable: Threading APIs are highly platform-qr across platforms. Therefore, the Active Object pattern de-

specific. Even industry standards, such as POSIX threads i€ g higher-level concurrency abstraction that shields TAO
not available on many widely-used OS platforms, includifgyy, the complexity of low-level thread facades. By raising
Win32, VxWorks, and pSoS. Not only is there no direct sypsg |eyel of abstraction for ORB developers, the Active Object

tactic mapping between APIs, but there is no clear mapp{\gtern makes it easier to define more portable, flexible, and
of semantic functionality either. For instance, POSIX threaggsy to program ORB concurrency strategies.

supports deferred thread cancellation, whereas Win32 threadg general, the Active Object pattern should be used when
do not. Moreover, although Win32 has a thread terminatign 5npjication can be simplified by centralizing the point
API, the Win32 documentation strongly recommena$us- \ynere concurrency decisions are made. This pattern gives de-
ing it since it does not release all thread resources on elljoners the flexibility to insert decision points between each
Moreover, even POSIX pthread implementations are nQggyests initial reception and its ultimate execution. For in-
portable since many UNIX vendors support different drafts @fance. developers could decide whether or not to spawn a

the pthreads specification. thread-per-connection or a thread-per-request.

s Hard 1o program cprrectly: . Prpgramming a multi- Using the Active Object pattern in TAO: TAO uses
threaded ORB is hard since application and ORB develop, 8 Active Object pattern to transparently allow a GIOP
must ensure that access to shared data is serialized proper, JAnection Handler to execute requests eithezac-

the ORB and servants. In addition, the techniques require '\t/%Iy by borrowing the Reactor’s thread of controlamtively

robustly terminate _servants executing concurrent}y in_ multi ? running in its own thread of control. The sequence of steps
threads are complicated, non-portable, and non-intuitive. is shown in Figure 46.

e Non-extensible: The choice of an ORB concurrency The processing shown in Figure 46 is triggered whBra(
strategy depends largely on external factors like applicati@eactor notifies theConnection Handler that an 1/0O
requirements and network/endsystem characteristics. Foreivent is pending. Based on the currently configured strat-
stance, reactive single-threading [43] is an appropriate strategy, e.g, reactive single-threading, thread-per-connection, or
for short duration, compute-bound requests on a uni-procestoead pool, the handleB) determines if it should be active
If these external factors change, however, an ORB’s des@npassive and acts accordingly. This flexibility is achieved
should be extensible enough to handle alternative concurrebgyinheriting TAO’s ORB Core connection handling classes
strategies, such as thread pool or thread-per-priority. from an ACE class calledrask. To process a request
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Solution — the Thread-Specific Storage pattern: An ef-
fective way to minimize the amount of locking required to
2a: Task::activate() serialize access to resources shared within an ORB is to use
@ Concurrency the Thread-Specific Storagmattern [59]. This pattern allows
Connectio Strategy multiple threads in an ORB to use one logically global access
Handler 22 ACTIVE OR PASSIVE? point to retrieve thread-specific datgthoutincurring locking
_»2 overhead for each access.

\ Using the Thread-Specific Storage Pattern in TAO: TAO
U 1:handle_input) | pootor uses the Thread-Specific Storage pattern to minimize lock

2 contention and priority inversion for real-time applications.
—»

3: SERVICE REQUEST Internally, each thread in the TAO uses thread-specific stor-

L ) age to store its ORB Core and Object Adapter components,

Figure 46: Using the Active Object Pattern to Structure TAOEY Reactor , Acceptor , Connector , andPOA When .

Concurrency Strategies a thread accesses any of these components, they are retrieved
y 9 by using akey as an index into the thread’s internal thread-

specific state, as shown in Figure 47. Thus, no additional lock-
concurrently, therefore, the handler simpBa) invokes the Nd iS required to access ORB state.

Task::activate method. This method spawns a new,
thread and invokes a standard hook method. Whether ad
or passive, the handler ultimatel§)(processes the request. | THREAD A THREAD B
1: ACE_OS::thr_getspecific(key) >

6.3.5 Reducing Lock Contention and Priority Inversions | __

with the Thread-Specific Storage Pattern THREAD-SPECIFIC

OBJECT TABLES

Context: The Active Object pattern allows applications ar INDEXED BY KEY

components in the ORB to operate using a variety of cong |
rency strategies, rather than one enforced by the ORB its
The primary drawback to concurrency, however, is the ne m m
to serializeaccess to shared resources. In an ORB, comn
shared resources include the dynamic memory heap, an of _ _
reference created by tiRORBA::ORBinit ORB initializa- ORB THREAD-
tion factory, the Active Object Map in a POA [73], and th SPECIFIC STATE
Acceptor , Connector , and Reactor components de-
scribed earlier.

A common way to achieve serialization is to use mutualFigure 47: Using the Thread-Specific Storage Pattern TAO
exclusion locks on each resource shared by multiple threads.
However, acquiring and releasing these locks can be expen-

sive. Often, locking overhead negates the performance bege-g Support Interchangeable ORB Behaviors with the
fits of concurrency. Strategy Pattern

Problem: In theory, multi-threading an ORB can improvesontext: The alternative concurrency architectures de-
performance by executing multiple instruction streams simdkyiped in 6.3.4 are just one of the many strategies that an
taneously. In addition, multi-threading can simplify intefaxtensible ORB may need to support. In general, extensi-
nal ORB design by allowing each thread to execute s\la ORBs must support multiple request demultiplexing and
chronously rather than reactively or asynchronously. In pragheduling strategies in their Object Adapters. Likewise, they
tice, multi-threaded ORBs often perform no better, or evehyst support multiple connection establishment, request trans-

worse, than single-threaded ORBs due to (1) the cost of acatélf; and concurrent request processing strategies in their ORB
ing/releasing locks and (2) priority inversions that arise whetyres.

high- and low-priority threads contend for the same locks [44].

In addition, multi-threaded ORBs are hard to program dueR&oblem:  One way to develop an ORB is to provide only
complex concurrency control protocols required to avoid rag@tic, non-extensible strategies, which are typically config-
conditions and deadlocks. ured in the following ways:

[ T T T T 11 LT T T T T T 1
2: get_state(key)
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e Preprocessor macros: Some strategies are determinec (B) ACTIVE DEMUXING STRATEGY
by the value of preprocessor macros. For example, sin
threading is not available on all OS platforms, conditiong

compilation is often used to select a feasible concurrency ¢ Ehnomicn)
chitecture. swer. 1| | s 2] °**| swer

e Command-line options: Other strategies are controlled [ seavasr 1] [servant 2] ees [servave » |
by the presence or absence of flags on the command-line. |
instance, command-line options can be used to enable varic
ORB concurrency strategies for platforms that support mult.
threading [42].

(A) PERFECT HASHING
DEMUXING
STRATEGY

OPERATION1
OPERATION2
OPERATIONK

- X
¢ ¢
E B
3 3
B E
& g
- -
g g
2

I >
g

ERVANTN::0PERATIONK

SERVANT1::OPERATION2
SERVANTN::0PERATION]

index(object key)

hash(object key) OBJECT
ORB CORE ADAPTER

: ' . : Thread- Reactive Threaded
While these two configuration approaches are widely use | specific | | S2ched Concurrency| | Concurrency

they are inflexible. For instance, preprocessor macros o gt““:‘“‘ Strategy Strategy Strategy
support compile-time strategy selection, whereas commal it A
line options convey a limited amount of information to a Strategy Strategy
ORB. Moreover, these hard-coded configuration strategies 4 Connector Acceptor
completely divorced from any code they might affect. Thug
ORB components that want to use these options must (1) kn
of their existence, (2) understand their range of values, and (3)

provide an appropriate implementation for each value. Such Figure 48: Strategies in TAO
restrictions make it hard to develop highly extensible ORBs
composed from transparently configurable strategies.

How then does an ORB (1) permit replacement of subsetsfso%7
component strategies in a manner orthogonal and transparent
to other ORB components and (2) encapsulate the state @d@itext: There are many potential strategy variants sup-
behavior of each strategy so that changes to one compopeifed by TAO. Table 1 shows a simple example of the strate-
do not permeate throughout an ORB haphazardly? gies used to create two configurations of TAO. Configuration 1

] ) is an avionics application with deterministic real-time require-
Solution — the Strategy pattern:  An effective way t0 SUP- ments [10]. Configuration 2 is an electronic medical imaging
port multiple transparently “pluggable” ORB strategies is 'é’pplication [11] with high throughput requirements. In gen-
apply theStrategy patterf48]. This pattern factors out simi-g(5|  the forces that must be resolved to compose all ORB
larity among algorithmic glte_rnative; and explicitly associatgﬁategies correctly are the need to (1) ensure the configura-
the name of a strategy with its algorithm and state. Moreovgg, of semantically compatible strategies and (2) simplify the
the Strategy pattern removes lexical dependencies on Straﬁ%}‘lagement of a large number of individual strategies.
implementations since applications access specialized behav-
iors only through common base class interfaces. In genePdpblem: An undesirable side-effect of using the Strategy
the Strategy pattern should be used when an application’s B@itern extensively in complex software like ORBs is that ex-
havior can be configured via multiple strategies that can tg@sibility becomes hard to manage for the following reasons:
interchanged seamlessly.

Consolidate ORB Strategies Using the Abstract
Factory Pattern

e Complicated maintenance and configuration: ORB
source code can become littered with hard-coded references

Using the Strategy Pattern in TAO: TAO uses a variety of ; . . .

: . . 0 strategy types, which complicates maintenance and config-

strategies to factor out behaviors that are typically hard-coded.. e . e .
uration. For example, within a particular application domain,

in conventional ORBs. Several of these strategies are i"létsfch as real-time avionics or medical imaging. many indepen-
trated in Figure 48. For instance, TAO supports multiple r ging. y P

: ) . . € Hent strategies must act in harmony. ldentifying these strate-

guest demultiplexing strategies.¢, perfecthashing vs. active . """ . : :
. . : = gies individually by name, however, requires tedious replace-

demultiplexing [16]) and scheduling strategiés.( FIFO vs. o L .

- . : o . ment of selected strategies in one domain with a potentially
rate monotonic vs. maximal urgency first [46]) in its Objec}. C o .

. : ifferent set of strategies in another domain.

Adapter, as well as connection management strategigs (
process-wide cached connections vs. thread-specific cachedSemantic incompatibilities: It is not always possible
connections) and handler concurrency strategieg, (Reac- for certain ORB strategies to interact compatibly. For instance,
tive vs. variations of Active Objects) in its ORB Core. the FIFO strategy for scheduling requests shown in Table 1
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Strategy Configuration
Application Concurrency | Scheduling] Demultiplexing | Protocol
1. Avionics Thread-per-priority Rate-based Perfect hashing VME backplane
2. Medical Imaging|| Thread-per-connection FIFO Active demultiplexing| TCP/IP

Table 1: Example Applications and their ORB Strategy Configurations

may not work with the thread-per-priority concurrency archi- Toreat- | | Coneurreney |5 | Thread-

tecture. The problem stems from semantic incompatibilities o Sy per-

between scheduling requests in their order of arrival,FIFO

gueueing vs. dispatching requests based on their relative pi vedical o OoRB g -
ities, i.e., preemptive priority-based thread dispatching. Mor (]joncel:et:ei o Abstract erteer | —| Concrete
over, some strategies are only useful when certain precoll factory| |Dispatching \ Factory / Hashing Factory
tions are met. For instance, the perfect hashing demultiplexmng

strategy is generally feasible only for systems that statically o e

configure all servants off-line [20]. X
Active Rate-based
Demuxing Dispatching

How can a highly-configurable ORB reduce the complexi-
ties required in managing its myriad of strategies, as well as
enforce semantic consistency when combining discrete strate-
gies?

Figure 49: Factories used in TAO

This parsimony is particularly essential for embedded real-
e systems that require small memory footprints and pre-

ctable CPU processing overhead [74]. Likewise, many ap-

%i_cations can benefit from the ability to extend ORBsam-

grates all strategies used to configure an ORB. Concrete §ﬁBl-ly’ I.e., by allowing their strategies to be configured at run-

classes then aggregate semantically compatible applicatltbrﬂg‘

specific or domain-specific strategies, which can be replad&dblem: Although the Strategy and Abstract Factory pat-
en massean semantically meaningful ways. In general, thierns simplify the customization of ORBs for specific appli-
Abstract Factory pattern should be used when an applicata@tion requirements and system characteristics, these patterns
must consolidate the configuration of many strategies, eaem cause the following problems for extensible ORBs:

having multiple alternatives that must vary together.

Solution — the Abstract Factory pattern: An effective .
way to consolidate multiple ORB strategies into semanticaﬂ

¢ High resource utilization: Widespread use of the Strat-
Using the Abstract Factory pattern in TAO:  All of TAO's  €dY pattern can substantially'increasg the number of strategies
ORB strategies are consolidated into two abstract factories #fftfigured into an ORB, which can increase the system re-
are implemented as Singletons [48]. One factory encapsul&@4rces required to run an ORB.

client-specific strategies, the other factory encapsulates serveg- Unavoidable system downtime: If strategies are con-
specific strategies, as shown in Figure 49. These abstract fgfired statically at compile-time or static link-time using ab-
tories encapsulate request demultiplexing, scheduling, and digact factories, it is hard to enhance existing strategies or add
patch strategies in the server, as well as concurrency strategig$ strategies without (1) changing the existing source code
in both client and server. By using the Abstract Factory pagr the consumer of the strategy or the abstract factory, (2) re-
tern, TAO can configure different ORB personalities conveompiling and relinking an ORB, and (3) restarting running
niently and consistently. ORBs and their application servants.

Although it does not use the Strategy pattern explicitly,
SunSoft IIOP does permit applications to vary certain ORB
strategies at run-time. However, the different strategies must
Context: The cost of many computing resources, such ke configured statically into SunSoft IIOP at compile-time.
memory and CPUs, continue to drop. However, ORBs muMbreover, as the number of alternatives increases, so does the
still avoid excessive consumption of finite system resourcasount of code required to implement them. For instance,

6.3.8 Dynamically Configure ORBs with the Service
Configurator Pattern
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Figure 50 illustrates SunSoft IIOP’s approach to varying tleé ORB strategies are decoupled frawhen implementa-
concurrency strategy. tions of these strategies are configured into an ORB. For in-
stance, ORB strategies can be linked into an ORB from DLLs
at compile-time, installation-time, or even during run-time.
Moreover, this pattern can reduce the memory footprint of

Vs

OBJECT ADAPTER

DEMUXING if/ ;dgie“;zad) an ORB by allowing applicat?on developers and/or.system ad-
CODE | else ministrators to dynamically link only those strategies that are
N // single-threaded necessary for a specific ORB personality.
a D In general, the Service Configurator pattern should be used

when (1) an application wants to configure its constituent com-
ponents dynamically and (2) conventional techniques, such as

CONCURRENCY command-line options, are insufficient due to the number of
CODE if (do_thread) S . - ..
// take lock... possibilities or the inability to anticipate the range of values.
CONNECTION ) ] . ] _
MANAGEMENT i o hres) Using the Se.rwce anﬁgurator pattelrn in TAO._ TAQ
CODE /] release uses the Service Configurator pattern in conjunction with the
L ) tock. .. Strategy and Abstract Factory patterns to dynamically install

the strategies it requires without (1) recompiling or statically
relinking existing code or (2) terminating and restarting an ex-

isting ORB and its application servants. This design allows

Each area of code that might be affected by the cho E . . .
of concurrency strategy is trusted to act independently%? behavior of TAO to be tailored for specific platforms and

other areas. This proliferation of decision points adverséa. plication requirements without requiring access to, or mod-

increases the complexity of the code, complicating futdre ation of, ORB source code.

enhancement and maintenance. Moreover, the selection dff @ddition, the Service Configurator pattern allows appli-

the data type specifying the strategy complicates integratf&ﬁli'ons to customize the personality of TAO at run-time. For

of new concurrency architectures because the tysel() instance, during TAO's ORB initialization phase, it uses the

would have to change, as well as the programmatic structf¢amic linking mechanisms provided by the OS, and encap-
if (do _thread) then ... else ... _that decodes sulated by the ACE wrapper facades, to link in the appropriate

the strategy specifier into actions. concrgte factory for a particular use-case. Fig.ure 51 shows two

In general, static configuration is only feasible for a smaﬁ’,‘cmr'es, tuned for d|fferent'applllcat|on domains supported by
fixed number of strategies. However, using this techniqueTt'%O: avionics and medical imaging.
configure complex middleware like ORBs complicates main-

Figure 50: SunSoft IIOP Hard-coded Strategy Usage

tenance, increases system resource utilization, and leads t Medical
avoidable system downtime to add or change existing com| TAO | Rate-based Imaging | - o
nents PROCESS | Dispatching Concrete
) . . “ Factory
How then does an ORB implementation reduce the “over Perfect
large, overly-static” side-effect of pervasive use of the Stratg Thllffad-per Hashing et FIFO
) ate ctive
and Abstract Factory patterns? Concurrency Demuxing Dispatching
Solution — the Service Configurator pattern: An ef- Avionics
fective way to enhance the dynamism of an ORB is Concrete ghread;}’ef
. . . _ Facto onnection
apply the Ser\{lqe Conflgurgtor patterr50]. ThIS pat Iy ey
tern uses explicit dynamic linking [70] mechanisms to ob

tain, utilize, and/or remove the run-time address bind-

ings of custom Strategy and Abstract Factory objects intd-igure 51: Using the Service Configurator Pattern in TAO

an ORB at installation-time and/or run-time.  Widely

available explicit dynamic linking mechanisms include the In particular configuration shown in Figure 51, the avionics

dlopen/disym/diclose functions in SVR4 UNIX [75] concrete factory has been installed in the process. Applica-

and thelLoadLibrary/GetProcAddress functions in tions using this ORB personality will be configured with a par-

the WIN32 subsystem of Windows NT [76]. The ACE wrapticular set of ORB concurrency, demultiplexing, and dispatch-

per facades portably encapsulate these OS APIs. ing strategies. The medical imaging concrete factory resides
By using the Service Configurator pattern, thehavior in a DLL outside of the existing ORB process. To configure a
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different ORB personality, this factory could be installed dy-1. The number of methods required to implement key ORB

namically during the ORB server’s initialization phase. tasks (such as connection management, request transfer,
socket and request demultiplexing, marshaling, and dis-
. tching).
6.4 Summary of Design Challenges and Pat- patching) _
terns That Resolve Them 2. The total non-comment lines of code (LOC) for these
methods.

Table 2 summarizes the mapping between ORB design chag: The average McCabe Cyclometric Complexity metric
lenges and the patterns we applied to resolve these chaIIengesv(G) [77] of the methods. The(G) metric uses graph
in TAO. This table focuses on the forces resolved by individual - theory to correlate code complexity with the number of

possible basic paths that can be taken through a code

| Forces Resolving Pattern(s) | module. In C++, a module is defined as a method.
Abstracting low-level system calls Wrapper Facade
ORB event demultiplexing Reactor The use of patterns in TAO significantly reduced the amount
ORB connection management | Acceptor, Connector of ad hoccode and the complexity of certain operations. For
Efficient concurrency models | Active Object instance, the total lines of code in the client-si@ennection
Pluggab_'e_ftr""_t‘?g'el_s _ Strategy Managemenoperations were reduced by a factor of 5. More-
Group similar initializations | Abstract Factory over, the complexity for this component was substantially re-
Dynamic run-time configuration | Service Configurator

duced by a factor of 16. These reductions in LOC and com-
Table 2: Summary of Forces and their Resolving Pattern®!€xity stem from the following factors:

e These ORB tasks were the focus of our initial work when

patterns. However, TAO also benefits from the collaborations developing TAO.

amongmultiple patterns (shown in Figure 38). For example, ® Many of the details of connection management and
the Acceptor and Connector patterns utilize the Reactor pat- Socket demultiplexing were subsumed by patterns and
tern to notify them when connection events occur at the OS componentsin the ACE framework, in particular, the Ac-

level. ceptor, Connector, and Reactor.

Moreover, patterns often must collaborate to alleviate draw-

backs that arise from applying them in isolation. For instance,Other areas did not yield as much improvement. In par-

the reason the Abstract Factory pattern is used in TAO iSt|[%ular, GIOP Invocationtasks actually increased in size and

avoid the complexity caused by its extensive use of the St&é'”ta'”?d a consisten{(7). There were two reasons for this
egy pattern. Although the Strategy pattern simplifies the effifrease:

required to customize an ORB for specifig appliggtion rgquirel_ The primary pattern applied in these cases was the Wrap-
ments and network/endsystem characteristics, it is tedious and per Facade, which replaced the low-level system calls

error-prone to manage a large number of strategy interactions \ith ACE wrappers but did not factor out common strate-

manually. gies; and
. o 2. SunSoft IIOP did not trap all the error conditions, which
6.5 Evaluating the Contribution of Patterns to TAO addressed much more completely. Therefore, the
ORB Middleware additional code in TAO is necessary to provide a more
robust ORB.

Section 6.3 described the key patterns used in TAO and qual-

itatively evaluated how these patterns helped to alleviate limi-The most compelling evidence that the systematic applica-
tations with the design of SunSoft IIOP. The discussion belaion of patterns can positively contribute to the maintainability
goes one step further and quantitatively evaluates the benefitsomplex software is shown in Figure 52. This figure illus-

of applying patterns to ORB middleware. trates the distribution of(G) over the percentage of affected
methods in TAO. As shown in the figure, most of TAO’s code
6.51 Where's the Proof? is structured in a straightforward manner, with almost 70% of

the methodsb(G) falling into the range of 1-5.
Implementing TAO using patterns yielded significant quantifi- In contrast, while SunSoft IIOP has a substantial percent-
able improvements in software reusability and maintainabilipge (55%) of its methods in that range, many of the remaining
The results are summarized in Table 3. This table companmssthods (29%) have(G) greater than 10. The reason for the
the following metrics for TAO and SunSoft IIOP: difference is that SunSoft IIOP uses a monolithic coding style

50



TAO SunSoft IIOP
ORB Task # Methods| Total LOC | Avg.v(@) | # Methods| Total LOC | Avg.v(G)
Connection Management (Server) 2 43 7 3 190 14
Connection Management (client) 3 11 1 1 64 16
GIOP Message Send (client/Server) 1 46 12 1 43 12
GIOP Message Read (client/Server) 1 67 19 1 56 18
GIOP Invocation (client) 2 205 26 2 188 27
GIOP Message Processing (client/Servel) 3 41 2 1 151 24
Object Adapter Message Dispatch (Servgr) 2 79 6 1 61 10

Table 3: Code Statistics: TAO vs. SunSoft IOP

remain that way. Sometimes solving complex problems in-

70.0 volves writing complex code; at such times, localizing com-
SunSoft lOP plexity is a reasonable recourse.
60.0 | B 0 1
g 00T il 6.5.2 What are the Benefits?
_5;5 400 | 8 In general, the use of patterns in TAO provided the following
3 benefits:
% 30.0 - q
§ Increased extensibility: Patterns like Abstract Factory,
20.0 1 7 Strategy, and Service Configurator simplify the configure of
TAO for a particular application domain by allowing extensi-
1007 l bility to be “designed into” the ORB. In contrast, middleware
that lacks these patterns is significantly harder to extend. This

0.0 —
1-5 6-10 >10 article illustrated how patterns were applied to make the TAO

MVG Range .
¢ ORB more extensible.

Enhanced design clarity: By applying patterns to TAO, not
Figure 52: Distribution of(G) Over ORB Methods only did we develop a more flexible ORB, we also devised a
richer vocabulary for expressing ORB middleware designs. In
) particular, patterns capture and articulate the design rationale
with long methods. For example, the average length of mef§r complex object-structures in an ORB. Moreover, patterns
ods withv(G) over 10 is over 80 LOC. This yields overlyelp to demystify and motivate the structure of an ORB by
complex code that is hard to debug and understand. describing its architecture in terms of design forces that re-
In TAO, most of the monolithic SunSoft IOP methods Wer€ur in many types of software systems. The expressive power
decomposed into smaller methods when integrating the Rsftpatterns enabled us to concisely convey the design of com-
terns. The majority (86%) of TAO's methods hav) under plex software systems like TAO. As we continue to learn about
10. Of that number, nearly 70% have &) between 1 and 5. ORBs and the patterns of which they are composed, we expect
The relatively few (14%) methods in TAO WIEIT(G) greatel’ our pat'[ern Vocabu|ary to grow and evolve.
than 10 are largely unchanged from the original SunSoft OPThys, the patterns presented in this article help to improve

TypeCode interpreter. _ the maintainability of ORB middleware by reducing software
The use of monolithic methods not only increases the effgmplexity, as shown in Figure 52.

of maintaining TAQO, it also degrades its performance due to

reduced processor cache hits [18]. Therefore, we plan to kxcreased portability and reuse: TAO is built atop the
periment with the application of other patterns, suciCam- ACE framework, which provides implementations of many
mand and Template Method48], to simplify and optimize key communication software patterns [9]. Using ACE sim-
these monolithic methods into smaller, more cohesive mettiified the porting of TAO to numerous OS platforms since
ods. There are a few methods wittGG) greater than 10 which most of the porting effort was absorbed by the ACE frame-
are not part of the TypeCode interpreter, and they will likelyork maintainers. In addition, since the ACE framework is
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rich with configurable high-performance, real-time networklescribed in this paper addresses this need with policies and
oriented components, we were able to achieve considerabkrhanisms that span network adapters, operating systems,
code reuse by leveraging the framework. This is indicated bymmunication protocols, and ORB middleware.
the consistent decrease in lines of code (LOC) in Table 3.  We believe the future of real-time ORBs is very promis-
ing. Real-time system development strategies will migrate to-
6.53 What are the Liabilities? wards those used for “mainstream” systems to achieve lower
development cost and faster time to market. We have ob-
The use of patterns can also incur some liabilities. We summarved real-time embedded software development projects that
rize these liabilities below and discuss how we minimize themave lagged in terms of design and development methodolo-
in TAO. gies (and languages) loiecadesThese projects are extremely

Abstraction penalty:  Man ttern indirection to in costly to evolve and maintain. Moreover, they are so special-
straction penatty- any patterns use ection 10 IN47 64 that they cannot be adapted to meet new market opportu-
crease component decoupling. For instance, the Reactor

t-
. L ies.

tern uses virtual methods to separate the appllcatlon-spemhﬁ;he flexibility and adaptability offered by CORBA make

Event Handler logic from the general-purpose event dq—

: X . X . Co o T Tt very attractive for use in real-time systems. If the real-
multiplexing and dispatching logic. The extra indirection i fme challenges can be overcome, and the progress reported
troduced by using these pattern implementations can poﬁ '

Yhis paper indicates that they can, then the use of Real-time

i
tially decrease performance. To alleviate these liabilities, WSRBA is compelling. Moreover, the solutions to these chal-
carefully applied C++ programming language features (s EEges will sufficientl); complex ,yet general, that it will be

as inline functions and templates) and other optimization i . : ; . .
(such as eliminating demarshaling overhead [18] and de”ﬁﬁ'n worth re-applying them to other projects in domains with

) . S ingent QoS requirements.
tiplexing overhead [16]) to minimize performance overhea “The C++ source code for TAO and ACE is freely available at

As a result, TAO is substantially faster than the original har\%ww cs.wustl.edu/ - schmidt/TAO.html This re-
coded SunSoft [1OP [18]. lease also contains the real-time ORB benchmarking test suite
Additional external dependencies: Whereas SunSoft IOP described in Section 5.3.

only depends on system-level interfaces and libraries, TAO

depends on the ACE framework. Since ACE encapsulateAak led 1
wide range of low-level OS mechanisms, the effort requir cknowledgments

to port it to a new platform could potentially be higher th ke gratefully acknowledge Expersoft, IONA, and Sun for

porting SunSoft IIOP, which only uses a subset of the OS’S

. roviding us with their ORB software for the benchmarking
APIs. However, since ACE has been ported to many platforﬁé%tbed. We would also like to thank Frank Buschmann for

already, the effort to port to new platforms is relatively loniis extensive comments on this paner. Finally. we are deepl
Most sources of platform variation have been isolated to a few Paper. Y Py

: appreciative of the efforts Chris Gill, Andy Gokhale, Irfan
modules in ACE. Pyarali, Carlos O’Ryan, and Nanbor Wang put into develop-
ing and optimizing TAO's real-time ORB Core and Scheduling
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