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Abstract— End-to-end middleware predictability is essential
to support quality of service (QoS) capabilities needed by dis-
tributed real-time and embedded (DRE) applications. Real-time
CORBA is a middleware standard that allows DRE applications
to allocate, schedule, and control the QoS of CPU, memory, and
networking resources. Existing Real-time CORBA solutions are
implemented in C++, which is generally more complicated and
error-prone to program than Java. The Real-Time Specification
for Java (RTSJ) provides extensions that enable Java to be
used for developing DRE systems. Real-time CORBA does not
currently leverage key RTSJ features, such as scoped memory
and real-time threads. Thus, integration of Real-Time CORBA
and RTSJ is essential to ensure the predictability required for
Java-based DRE applications.

This paper provides the following contributions to the study
of middleware for DRE applications. First we analyze the
architecture of ZEN, our implementation of Real-time CORBA,
identifying sources for the application of RTSJ features. Second,
we describe how RTSJ features, such as scoped memory and
real-time threads, can be associated with key ORB components
to enhance the predictability of DRE applications using Real-
time CORBA and the RTSJ. Third, we perform preliminary
qualitative and quantitative analysis of predictability enhance-
ments arising from our application of RTSJ features. Our
results show that use of RTSJ features can considerably improve
the predictability of DRE applications written using Real-time
CORBA and Real-time Java.

Keywords. Distributed Real-time and Embedded Systems,
Real-time CORBA, Real-time Java.

I. INTRODUCTION

DRE systems are becoming increasingly widespread and
important. Common DRE systems include telecommunication
networks (e.g., call processing services), process automation
(e.g., hot rolling mills), and defense applications (e.g., total
ship computing environments). Real-time CORBA [1] is a
rapidly maturing standard middleware technology that allows
DRE applications to configure and control processor, com-
munication and memory resources. Experience during the
past five years [2], [3] demonstrates that Real-time CORBA
has been successfully used to develop middleware for DRE
applications, just as CORBA [4], and Java RMI [5] have been
applied in the business and desktop domains.

Although the Real-time CORBA specification was inte-
grated into the OMG standard in 1998, it has not been adopted
universally by DRE application developers. A key barrier to

adoption arises from the steep learning curve caused by the
complexity of the CORBA-C++ mapping [6], [7]. To address
this problem, the Java programming language has emerged
as an attractive alternative. Since Java has less inherent and
accidental complexity than C++, it is easier for application
programmers to master it. Java also has other desirable lan-
guage features, such as strong typing, dynamic class loading,
reflection/introspection, and native support for concurrency
and synchronization.

Conventional Java runtime systems and middleware have
historically been unsuitable for DRE applications, however,
due to

1) The under-specified scheduling semantics of Java
threads, which can lead to the most eligible thread not
always being run.

2) The ability of the Java Garbage Collector (GC) to
preempt any other Java thread, which can yield very
long preemption latencies.

3) The lack of a standard distributed computing model,
which leads to ad hoc mechanisms for communicating
between different nodes in a DRE application.

To address problems 1 and 2, the Real-time Java Experts
Group has defined the RTSJ [8], which extends Java in several
ways, including (1) new memory management models that
allow access to physical memory and can be used in lieu
of garbage collection and (2) stronger guarantees on thread
semantics than in conventional Java. To address problem 3,
we have implemented ZEN, which is an an open-source1

RTSJ-based Real-time CORBA Object Request Broker (ORB)
that combines the benefits of these two standard technologies.
ZEN is ported to both the TimeSys RTSJ reference imple-
mentation [9] (which uses a virtual machine architecture) and
jRate [10] (which uses an ahead-of-time compiler architec-
ture).

ZEN is inspired by many of the patterns, techniques, and
lessons learned in The ACE ORB (TAO) [11], which is
our other open-source implementation of Real-time CORBA
written in C++. Our prior published work on ZEN focused
on (1) the extensible component architecture [12] of its ORB
Core [13] and Object Adapter [14] layers and (2) the pre-

1The source code for ZEN can be downloaded from www.zen.uci.edu.



dictable demultiplexing strategies [15] that it uses to ensure�������
lookup time irrespective of the depth of the Object

Adapter hierarchy. This paper extends our earlier published
work by focusing on a previously unexplored dimension in
real-time middleware: the integration of RTSJ features to
support Real-time CORBA. Our results show that effective
use of RTSJ features to implement Real-time CORBA can
considerably improve the predictability of DRE applications
written using Real-time CORBA and Java.

The remainder of this paper is organized as follows: Sec-
tion II describes the main problems that arose while designing
ZEN using conventional Java implementations, analyzes the
critical request/response code path within ZEN to identify
sources for the application of RTSJ features, illustrates how
RTSJ features can be associated with key ORB components to
enhance predictability, and empirically analyzes how the ap-
plication of RTSJ features improved predictability; Section III
summarizes how our work on ZEN relates to other research
efforts; and Section III presents concluding remarks.

II. ENHANCING THE ZEN ORB USING THE RTSJ

The OMG Real-time CORBA specification was adopted
several years before the RTSJ was standardized. Real-time
CORBA’s Java mapping therefore does not use any RTSJ
features, such as NoHeapRealtimeThread and Scoped-
Memory. To have a predictable Java-based Real-time CORBA
ORB like ZEN, however, it is necessary to take advantage of
RTSJ features to reduce interference with the GC and ensure
predictability.

This section first identifies problems in the original design
of ZEN, which was initially based on regular (i.e., non-RTSJ)
Java. We then analyze a typical end-to-end critical code path
of a CORBA request within the original ZEN ORB, which was
based on regular Java. Based on this analysis, we describe how
we are enhancing ZEN to use RTSJ features, such as real-time
threads and scoped memory, to improve its predictability.

A. Problems in the Original Design of ZEN

In the original architecture of ZEN [13], key ORB compo-
nents that are involved in request/response processing (such
as acceptors, connectors, transports, and thread pools) were
originally allocated in the heap. This architecture suffered from
the following problem: the ORB allocates several temporary
objects during the processing of a remote request/response.
This allocation can lead to demand garbage collection, i.e.,
execution of the GC when the Java new operator cannot find
enough memory. Further, the Java Virtual Machine (JVM)
also allocates heap memory as part of its execution which
additionally entails garbage collection.

Execution of the GC can cause unbounded preemption
latency to the thread processing the request. The situation is
exacerbated if the request is critical (i.e., highest priority),
which can be catastrophic for certain types of safety- and
mission-critical DRE applications. To eliminate priority inver-
sions related to invocations of the garbage collector during a
request upcall, it is essential that:

� ZEN avoids heap allocation by exploiting the RTSJ
scoped and immortal memory

� Key ORB components be allocated either within scoped
or immortal memory that would not cause demand
garbage collection.

The aforementioned factors would minimize the interference
with the GC enhancing the predictability of the ORB and DRE
application.

Our redesign of ZEN for Real-time CORBA began by iden-
tifying the participants associated with processing a request at
both the client and server sides. For each participant identified,
we associated the component with non-heap regions and
resolved challenges arising from this association. Allocating
key ORB objects within scoped or immortal memory would
not cause garbage collection, thus minimizing the interference
with the GC and enhancing the predictability of the ORB and
DRE application.

B. Applying RTSJ Features to ZEN

a) RTSJ application goals: The goals for applying RTSJ
features to ZEN include:
� Minimizing interference with GC. Garbage collection

is generally considered to be unsuitable for DRE appli-
cations with stringent real-time requirements. Although
there have been recent advances in GC algorithms [16],
the Java GC can preempt any thread in the system,
leading to the thread incurring unacceptably long preemp-
tion latencies. A key goal of ZEN is therefore to avoid
allocating critical ORB components in heap memory to
reduce the number of GC sweeps.

� Compliance with the CORBA specification. To pre-
serve compliance with the Real-time CORBA specifi-
cation, the RTSJ features must be incorporated within
ZEN’s ORB Core and Object Adapter layers without
requiring any modifications to the Real-time CORBA
specification. Options that require the end-user to be
RTSJ-aware, such as associating scoped memory at the
POA level, are provided as non-standard ZEN-specific
options.

� Interoperability with non RTSJ Java. ZEN is designed
to use intelligent strategies for component creation and
extensibility [12] that allow configurability of real-time
features (such as the number of static/dynamic threads,
thread priorities, and buffer size) using properties and
policies. These strategies use techniques, such as reflec-
tion [17], [18] and aspects [19], to create real-time/vanilla
Java components, thereby minimizing time/space over-
head for applications that do not require real-time fea-
tures.

b) Identification of steps: Our redesign of ZEN for Real-
time CORBA began by identifying the participants associated
with processing a request at both the client and server sides.
For each participant identified, we associated the component
with non-heap regions and resolved challenges arising from
this association.



The first step needed to identify where to apply RTSJ
features required the analysis of the end-to-end critical code
path in ZEN. Figure 1 depicts the participants involved in
servicing a CORBA two-way invocation. The discussion of
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Fig. 1. Tracing an Invocation Through the ZEN CORBA ORB

the critical code path has been generalized using the Acceptor-
Connector [20] pattern and thread-per-connection concurrency
strategy.

We next describe the sequence of steps a client ORB
performs to actively create a connection when a CORBA
request is invoked by the application, i.e., result =
object.operation (arg).

c) Connection management: We first describe how ZEN
establishes a connection between a CORBA client and a server.

1. The client ORB’s connection cache
(ConnectorRegistry class in ZEN) is queried for
an existing connection to the server, obtained from the
object reference on which the operation is invoked.

2. If no previous connection exists, a separate connection
handler is created (Transport class in ZEN) T � and
the Connector connects to the server

3. This connection is added to the
ConnectorRegistry since C � is bidirectional.

The activities of the server ORB for accepting a connection
are described next:

4. An acceptor accepts the new incoming connection.
5. This connection C � is then added to the server’s con-

nection cache (AcceptorRegistry class in ZEN) as
the server may send requests to the client.

6. A new connection handler T � is created to service
requests.

7. The Transport’s event loop waits for data events from
the client.

d) Synchronous request/reply processing: The following
are the steps involved when a client invokes a synchronous
two-way request to the server.

8. The BufferManager class is queried to obtain a
buffer to marshal the parameters in the operation in-
vocation.

9. The appropriate GIOP Message Writer marshals the
request and the Transport sends the request to the server.

10. The WaitingStrategy class associated with the
transport waits for a reply from the server.

The server ORB performs the following activities to process
the request.

11. The request header on connection C � is read to deter-
mine the size of the request.

12. A buffer of the corresponding size is obtained from the
buffer manager to hold the request and the request data
is read into the buffer.

13. The request is the demultiplexed to obtain the target
POA, servant, and skeleton servicing the request. The
upcall is dispatched to the servant after demarshaling
the request.

14. The reply is marshaled using the corresponding GIOP
message writer; Transport sends reply to the client.

The client ORB performs the following activities to process
the reply from the server:

15. The Reader reads the reply from the server on the
connection.

16. Using the request ID, the Waiting Strategy identifies the
target Transport.

17. The parameters are then demarshaled and control is
returned to the client application, which processes the
reply.

e) Analyzing request processing steps: The request pro-
cessing steps described above reveal the following character-
istics:
� Repetitive. The steps involved with request/reply pro-

cessing are repetitive, i.e., carried out for every request.
Steps 11-14 at the server side for request processing and
steps 15-17 at the client side remain the same for each
request from the client/server. Similarly, steps 1-3 are
performed for every remote request sent to the server.

� Independent and memoryless. Steps required for
processing request/response from two different
client/server(s) are independent, i.e., they do not
share any context. Moreover, two requests from the same
client do not share any context.

� Ephemeral. The objects created during the execution of
these steps remain valid only for the duration of one cycle
of request/response processing. ORBs therefore usually
cache these resources to minimize resource management.

� Thread bound. Each of the steps are executed by a
request processing thread. For example, steps 11-14 at
the server side are executed by the transport and thread-
pool threads.

The aforementioned characteristics of the steps lend them-
selves to the application of RTSJ features in the following
manner:
� Associating Real-time threads. The thread-bound prop-

erty of the steps enables components e.g., acceptor-
connector and transports to be associated with real-
time threads. In particular, each of these components
is designed based on an logic part, implemented as a
Java class that implements the Runnable interface. This



part is then associated with a scoped memory region and
bound with the thread at creation time.

� Associating Scoped memory. The ephemeral property
of the steps enable internal objects created during re-
quest/response processing to be associated with scoped
memory regions.

The repetitive, independence, and memoryless properties of
the steps further shape how an ORB implementor can associate
scoped memory. The repetitive and memoryless properties
enable the request/response processing steps to be carried out
within a scoped memory region2, process the request, and send
the response to the client. The memory region is then exited3

enabling all the objects created to be freed, thus minimizing
the number of GC sweeps. This cycle is repeated for the
next request. The independence property validates the above
mechanism, allowing objects created during request processing
to be freed before processing a subsequent request.

Unlike heap/immortal memory, creation of scoped memory
regions requires the size of the memory region to be specified
at creation time. However, the footprint required to process
request/response is dynamic, i.e., varies based on:
� Request size. The request size at the server depends on

the size of the request sent by the client.
� Options associated. The footprint required during re-

quest processing depends on the options enabled.
� Type of Request. The request size directly depends

on the type of GIOP request e.g., a LOCATE REQUEST

message would be of a different size when compared to
a normal request.

The most appropriate memory size would therefore have to be
chosen during initialization time. One solution to this problem
is to create the one huge chunk of memory. However, this
solution is non scalable. Further, some JVMs may not be
able to allocate a huge chunk of scoped memory region.
To address this problem, in ZEN we use Nested Scopes i.e.
inner scopes, for every request/response demultiplexing phase,
which is explained in Section II-C.

C. Applying Scoped Memory within ZEN

To enhance predictability, we apply RTSJ features e.g.,
scoped memory to ORB components along the critical re-
quest/response processing path. Moreover, to minimize the
effect of pre-allocating memory regions, we use nested scope
memory regions for each demultiplexing phase. Below, we
explain the three broad phases of request processing, at the
server ORB and describe how we associate scoped memory
with each of the three phases. Similar condition exist at the
client ORB.

1. I/O layer
� Steps. This phase of demultiplexing corresponds to the

steps 4-7 described in Section II-B.

2Using the enter() method the memory region can be made the current
allocation context.

3Exiting a memory region is implicit, done after the completion of the run
method.

� Participants. The participants for this phase include
acceptors, connectors, and transports.

� RTSJ application. Each of these components are thread-
bound components and are designed based on the inner
class paradigm. This class derives from the Runnable
interface and corresponds to the logic run by the thread.
Instead of creating the entire component in scoped mem-
ory, we create the inner logic class in a scoped memory
region, m ����� . This logic class is associated with the
thread at creation time. During ORB execution, multiple
clients may connect to it, creating transports for every
active client. Each of the transports will have a dedicated
m ����� region. We collectively refer to these regions as a
space.

2. ORB Core layer
� Steps. This phase of demultiplexing corresponds to the

Steps 11-12 in Section II-B.
� Participants. GIOP Message parsers, Buffer Allocators

and CDR Streams.
� RTSJ application. On receipt of new data events from

the socket, the Transport reads the message header
from the stream. Based on the size of the header, a
RequestMessage4 is created. After reading the re-
quest from the stream, the appropriate message parser is
associated based on the type of the request. The message
parser and the RequestMessage buffer are created in a
nested memory region, m ���	� . The ORB space is a nested
memory region. Based on RTSJ memory rules, references
from the ORB to the I/O space are valid, i.e., every m �
�	�
scope may hold references to the corresponding m �����
region.

3. POA layer
� Steps. This phase of demultiplexing corresponds to the

steps 13-14 in Section II-B.
� Participants. Upcall objects5, and thread-pools
� RTSJ application. The message parser parses the request

to find the target POA and servant. An Upcall object is
created to hold all information necessary to perform the
upcall on the skeleton. A worker thread in the thread-
pool then performs the upcall. A CDROutputStream
is created, to hold the response, which is then sent to
the client. The Upcall objects and the output buffers
are created in a nested scoped memory region m � �

 .
The POA space is the innermost memory region. Again,
references from POA to ORB or I/O space are valid.

4. Application layer
The application layer typically corresponds to the re-
gion where servant IDL skeletons are created. In the
current design of ZEN, this application layer is heap
allocated. Thus in our architecture, a NoHeapReal-
timeThread cannot be used for request processing.
The use of NoHeapRealtimeThread requires the

4This class encapsulates a buffer to hold the request.
5Upcall objects are per request objects that hold context necessary to

perform upcall and send response.



application developer to be RTSJ aware and also entails
modifications to the Java mapping of Real-time CORBA
specification which in conflict with our goals. The use
of a NoHeapRealtimeThread, however, is critical
to enhancing the predictability of a Real-time CORBA
ORB. In ZEN, we plan to provide policies at the POA
level that would determine the type of real-time thread to
used for request processing. Thus an RTSJ aware server
application can allocate servants in a memory region other
than the heap and set the type of upcall processing thread
to NHRT to enhance predictability.

ZEN’s architecture does not violate any of the RTSJ reference
rules as (1) any of the ORB layers may hold references to
the application layer and (2) a real-time thread can always
allocate from Heap memory (enter it) without violating the
single-parent rule. Moreover, our application is compliant with
the CORBA specification.

Figure 2 (A) illustrates the nesting of scopes within the ZEN
ORB Core. The I/O space is the outermost memory region
while the POA layer is the innermost. Memory regions are
entered from outer � inner, while references are maintained
from inner � outer. On completion of a request, the memory
regions are exited from innermost to outermost. All the objects
thus created for request processing are finalized, thereby
minimizing interference with the GC. Figure 2(B) depicts the
parenthood tree of the memory regions in ZEN.
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Fig. 2. Scope Nesting in ZEN ORB

D. Empirically Evaluating the Application of RTSJ in ZEN

To measure the predictability improvements accrued by
using RTSJ features, we first associated scoped memory and
real-time threads within the innermost scope i.e., POA layer,
allocating both I/O and ORB scopes in heap memory. The
motivation for this application was to obtain a baseline for
improvement in predictability when applying RTSJ features
in just one layer. In this regard, applying RTSJ features
in either the ORB or the I/O scopes alone would violate
RTSJ memory reference rules making our application the only
possible option.

Although ZEN supports a variety of options, we make the
following assumptions for this analysis:

1) Portable interceptors are not considered in request pro-
cessing.

2) The sequence of steps analyzed is for a remote client
request, not a collocated request.

3) Servants are normal CORBA servants that inherit from
org.omg.PortableServer.Servant, i.e., we do
not consider DII and DSI.

4) ZEN’s buffer manager was disabled to prevent caching
of I/O buffers

5) No proprietary policies are used in the ORB and
6) The scoped memory used was of type LTMemory,

which is a RTSJ memory region with linear allocation
time with respect to object size.6

These assumptions are representative of ways in which DRE
applications commonly apply ORB middleware. All the exper-
iments in this section were performed on an Intel Pentium III
864 Mhz processor with 256 MB of main memory. For these
experiments, ZEN version 0.8 was compiled using the GNU
gcj compiler version 3.2.1 and executed using jRate 0.3a on
Linux 2.4.7-timesys-3.1.214 kernel. For each experiment, a
sample size of 50,000 data points was used for result analysis.

The term predictability has different connotations in differ-
ent disciplines. For example, in real-time scheduling theory,
a predictable system means that each task always meets its
deadline. For these experiments, we define predictability as
the measure of standard deviation of the data points.

1) Demultiplexing Predictability:
a) Test overview: The following are the demultiplexing

stages present in the POA layer:

1) POA demultiplexing – using the addressing information
in the object key, locate the target POA in the POA
hierarchy;

2) Servant demultiplexing – from the object id part of the
object key, locate the servant within the POA; and

3) Operation demultiplexing – finally using the operation
name, dispatch the upcall on the skeleton.

The predictability of the ORB depends directly on the pre-
dictability of the aforementioned demultiplexing stages. As
discussed in [14], ZEN uses active demultiplexing along with
perfect hashing to ensure

����� �
lookup time for all cases.

In this experiment, we focus on the POA demultiplexing
stage and analyze the predictability improvements accrued by
associating scoped memory with ZEN’s Object Adapter.

b) Test settings: To measure the variation in POA
demultiplexing time with the depth of the POA hierarchy, the
experiment increased the nesting of transient POAs from 1 to
150 in increments of 25. For each case the time to reach the
leaf POA was measured.

c) Analysis of results: We now analyze the results of
benchmarks that measure the average latency, the dispersion

6This bound does not include the time taken by an object’s constructor or
a class’s static initializers.



and worst case behavior for the various POA demultiplexing
test cases.
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Fig. 3. POA Demultiplexing Predictability Analysis

� Average measures. Figure 3 shows that average latency
for both heap and scoped memory does not increase with
an increase in the POA hierarchy. However, the average
measures for the scoped ( � 10 � secs) are more than that
of heap memory ( � 7 � secs) by � 3 � secs. Although,
this represents a increase in the POA location overhead
by a factor of � 1.4, predictability improves considerably.

� Dispersion measures. The dispersion of scoped memory
is smaller than that of heap memory for all cases. More-
over, the measures are better by a factor of � 4, indicating
that our association scoped memory has considerably
improved predictability for this stage of demultiplexing.

� Worst case measures. The 99% bound shows that using
scoped memory 99% of the values are less than � 12

� secs for all cases while those for heap are � 30 � secs,a
factor of 2 improvement. Maximum measures show that
scoped memory considerably improves the predictability
for all cases by bounding the worst case values. The
worst case measures for scoped memory are tighter across
the POA hierarchy. Moreover, the maximum latency
for scoped memory is nearly constant across the POA
hierarchy, while the latency of heap incurred measurable
variability.

From the analysis above, it is evident that the use of scoped
memory enhances demultiplexing predictability by bounding
dispersion and maximum measures. Moreover, the use of
scoped memory does not significantly degrade the average
demultiplexing latency.

2) Scoped Memory Overhead:
a) Test overview: The application of scoped memory at

ZEN’s Object Adapter layer involves the following additional
steps:

1) The request processing thread needs to make the scoped
memory region its current allocation context by explic-
itly entering it (using enter() method defined on the
region), incrementing the reference count of the region.

2) After processing the request, the thread exits the region,
which changes the allocation context to the enclosing
memory region or the primordial scope (heap), in turn
decrementing reference count of the region.

3) If the reference count is zero, then all the objects
allocated within the region are to be finalized.

The steps described above must be executed for every client
request. Thus, the overhead and predictability involved in the
steps directly affect the predictability of the ORB. In ZEN,
the size of the scoped memory region is pre-allocated at
initialization time. However, as explained earlier, the foot-print
at the server varies depending on the message size, options
associated and the type of request. In this experiment, we
analyzed the behavior of the enter and exit methods as the
request sizes increase.

b) Test settings: The scoped memory region size was
fixed at 512KB. A client then issued requests starting at 1K in
increments of 25KB up to a maximum request size of 100K.
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Fig. 4. Enter and Exit Time Analysis

c) Analysis of results: We now analyze the results of
benchmarks that measure the average latency, the dispersion,
and the worst case behavior of the memory region’s enter()
method and its exit time.
� Average measures. Figure 4 shows that the average

additional overhead incurred by the enter() method
is � 8 � secs and is constant across all request message
sizes. However, the latency of the memory region’s
exit time increase gradually with the request size. For
example, the average exit time for a 1K message is �

4 � secs and increases to � 12 � secs for a 100K message.
This behavior occurs because finalizes for every allocated
object in the scoped memory region are called before
exiting the region, in which case the size of messages
increase the finalization time.

� Dispersion measures. The dispersion latencies for the
enter() method show a trend similar to the average
– constant ( � 1-1.5) across all message sizes. However,
the dispersion for the exit time increases with the request
size. For example, dispersion for 1K message is 0.7 and



increases to 1.9 for 100K. This behavior is induced by
the finalization required.

� Worst case measures. The 99% bound for both the enter
and exit latencies follows a trend similar to the respective
average cases. Moreover, the values are closer to the
average measures. However, the worst case measures for
exit values are higher than those of the enter method and
increase with message sizes.

The analysis above reveals that the average overhead in-
curred due to the enter() method is � 8 � secs and is constant
across all request sizes. However, the behavior of the exit
method varies with the request size, i.e., the larger the request
size, the greater the exit latency and worse the dispersion.

3) Round-trip Delay:
a) Test overview: This experiment analyzes the effect

of scoped memory on round-trip delay. Since we associate
scoped memory at ZEN’s Object Adapter layer, the only factor
affecting round-trip delay is the request execution time. These
experiments measure the effect of using scoped memory in the
critical end-to-end request path.

b) Test settings: The IDL_Cubit test was run to
measure the request execution time at the server and round-
trip delay at the client. The thread pool size was set to 2 and
the buffer size to 500. Size of the scoped memory region was
set to 512 KB. The number of simultaneous client connections
was increased from 1 to 200 in increments of 50.

c) Analysis of results: We now analyze the results of
benchmarks that measure the average latency, the dispersion
and worst case behavior of round-trip latency.
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Fig. 5. Round-trip Latency Analysis

� Average Measures. Figure 5 shows that the use of
scoped memory increases the average round-trip delay.
This increase is due to the increase request execution
time at the server side. As the number of clients increase,
however, latency for heap memory also increases. At
200 clients the round-trip time for heap memory exceeds
scoped memory by � 20 � secs. This behavior occurs
due to the increased GC activity for heap memory with
an increase in the number of clients.

� Dispersion measures. The dispersion measures for both
heap and scope memory increases with the number of
clients. However, measures for scope memory vary little
with an increase in the number of clients, indicating better
predictability. On the average, predictability improves as
much as 50%.

� Worst case measures. The experiment reveal that use
of scoped memory significantly bounds worst case mea-
sures. Though the average request execution latency is
greater for scoped memory, its 99% and worst case
latencies are smaller.

The empirical results described above indicates that the
use of RTSJ scoped memory enhances predictability without
unduly degrading performance. Moreover, the worst case mea-
sures are tighter and significantly better compared to that of
heap memory.

III. RELATED WORK

In recent years, a considerable amount of research has fo-
cused on enhancing the predictability of real-time middleware
for DRE applications. RTSJ middleware is an emerging field
of study. Researchers are focusing at RTSJ implementations,
benchmarking efforts, and program compositional techniques.
In this section, we summarize key efforts related to our work
on ZEN.

The TimeSys corporation has developed the official RTSJ
Reference Implementation (RI) [9], which is a fully compliant
implementation of Java that implements all the mandatory
features in the RTSJ. TimeSys has also released the commer-
cial version, JTime, which is an integrated real-time JVM for
embedded systems. In addition to supporting a real-time JVM,
JTime also provides an ahead-of-time compilation model that
can enhance RTSJ performance considerably.

The jRate [10], [21] project is an open-source RTSJ-
based real-time Java implementation developed at Washington
University, St. Louis. jRate extends the open-source GNU
Compiler for Java (GCJ) run-time system [22] to provide an
ahead-of-time compiled platform for RTSJ.

The Real-Time Java for Embedded Systems (RTJES) pro-
gram [23] is working to mature and demonstrate real-time
Java technology. A key objective of the RTJES program is
to assess important real-time capabilities of real-time Java
technology via a comprehensive benchmarking effort. This
effort is examining the applicability of real-time Java within
the context of real-time embedded system requirements de-
rived from Boeing’s Bold Stroke avionics mission computing
architecture [24].

The researchers at the Washington University, St Louis are
investigating automatic mechanisms [25] that enable existing
Java programs to become storage-aware RTSJ programs. Their
work centers on validating RTSJ storage rules using program
traces and introducing storage mechanisms automatically and
reversibly into Java code. Their other endeavors include build-
ing small foot-print feature rich Real-time Event Channel [26]
using AspectJ [27], where Event Channel features are added
via aspects.



IV. CONCLUDING REMARKS

Distributed Real-time and Embedded (DRE) systems are
growing in number and importance as software is increasingly
used to automate and integrate information systems with
physical systems. Over 99% of all microprocessors are now
used for DRE systems [28]. Ensuring end-to-end middleware
predictability is essential to support the QoS capabilities
needed by DRE applications. Therefore integration of RTSJ
and Real-time CORBA is essential to ensure predictability
required for DRE applications.

This paper described our R&D activities associated with
an previously unexplored dimension in real-time middleware:
the integration of RTSJ features to support Real-time CORBA.
We showed how scoped memory and real-time threads can
be associated within a real-time ORB Core without violating
RTSJ rules, yet still remaining compatible with the CORBA
specification. The empirical results presented in Section II-
D demonstrate that significant predictability improvements
can be achieved by applying RTSJ features in ZEN. All of
our optimizations and enhancements are compliant with the
CORBA specification and are transparent to DRE application
developers.
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