Patterns and Performance of Real-time
Object Request Brokers

Douglas C. Schmidt

Associate Professor Elec. & Comp. Eng. Dept.
schmidt@uci.edu University of California, Irvine
www.ece.uci.edu/~schmidt/ (949) 824-1901

p¥alo

Sponsors
NSF, DARPA, ATD, BBN, Boeing, Cisco, Comverse, GDIS, Experian, Global MT,
Hughes, Kodak, Krones, Lockheed, Lucent, Microsoft, Mitre, Motorola, NASA, Nokia,
Nortel, OCI, Oresis, OTI, Raytheon, SAIC, Siemens SCR, Siemens MED, Siemens
ZT, Sprint, Telcordia, USENIX

High-performance, Real-time ORBs Douglas C. Schmidt
Motivation: the QoS-enabled Software Crisis

e Symptoms

— Communication hardware gets
smaller, faster, cheaper

— Communication software gets larger,
slower, more expensive

e Culprits
— Inherent and accidental complexity
e Solution Approach

— Standards-based COTS Hardware &
Software

www.arl.wustl.edu/arl/

D-O-C

UC Irvine

High-performance, Real-time ORBs Douglas C. Schmidt

Problem: the COTS Hardware & Software Crisis
e Context

— Adopting COTS hardware &
software is increasingly essential for
real-time mission-critical systems

e Problems

— Inherent and accidental complexity
— Integration woes

e Solution Approach

— Standards-based adaptive COTS
middleware

UC Irvine

High-performance, Real-time ORBs Douglas C. Schmidt

Context: Levels of Abstraction in
Internetworking and Middleware

TELNET CORBA
APPLICATIONS

FTP HTTP

TCP CORBA SERVICES

B

ETHERNET § ATM j§ FDDI WIN NT @ LINUX @ LYNXOS
FIBRE CHANNEL SOLARIS @ VXWORKS

INTERNETWORKING ARCH MIDDLEWARE ARCH
D-O-C

UC Irvine

High-performance, Real-time ORBs Douglas C. Schmidt

Problem: Lack of QoS-enabled Middleware

e Many applications require QoS

[guarantees
APPLICATIONS

COMMON F—
MIDDLEWARE | cianvee
SERVICES

DISTRIBUTION Building these applications
MIDDEEWARE manually is hard and inefficient

— e.g., avionics, telecom, WWW,
medical, high-energy physics

Existing middleware doesn’t

support QoS effectively
OPERATING

&
ReVEC S | - eg. CORBA, DCOM, DCE, Java

i HARDWARE DEVICES Solutions must be integrated
horizontally & vertically

UC Irvine

High-performance, Real-time ORBs Douglas C. Schmidt

Candidate Solution; CORBA

Goals of CORBA

INTERFACE IDL IMPLEMENTATION
REPOSITORY COMPILER REPOSITORY

e Simplify distribution
by automating

in args

operation() ((S)ﬁgf)

out args + return value

Object location &

activation
IDL
Parameter
OBJECT

INTERFACE ADAPTER marshaling

Demultiplexing
GIOP/IIOP/ESIOPS

Error handling
O STANDARD INTERFACE OSTANDARD LANGUAGE MAPPING o Provide foundation
.ORB-SPECIFIC INTERFACE OSTANDARD PROTOCOL for higher—level
services

www.cs.wustl.edu/~schmidt/corba.html

UC Irvine

programming features
e Lack of performance

e Lack of QoS specifications
optimizations

e Lack of QoS enforcement
e Lack of real-time

Limitations

AUDIO/VIDEO

www.cs.wustl.edu/~schmidt/RT-ORB.ps.gz

transparency

e Predictability

transparency
e Reliability tranparency

CORBA for QoS-enabled Systems

e Location transparency

e Performance

Caveat: Requirements/Limitations of
Requirements

High-performance, Real-time ORBs

UC Irvine

High-performance, Real-time ORBs

Overview of the Real-time CORBA Specification
END-TO-END PRIORITY
PROPAGATION Features

ol ares, . Portable priorities

operation() OBIECT

out args + return value (SERVANT) . End-to-end priority

i
SToes SKELETON) | THREAD propagation

STANDARD
POOLS .
EXPLICIT = SYNCHRONIZERS . Protocol properties

BINDING OBJECT ADAPTER
. Thread pools and
buffering
PROTOCOL

PROPERTIES . Explicit binding
0S KERNEL 0S KERNEL

6. Standard synchronizers
www.cs.wustl.edu/~schmidt/

0orc.ps.gz

Douglas C. Schmidt

NETWORK

UC Irvine

}

s8118d01d|000101ddD L 8deualul
auIAl DN

SUIAIl DN
‘looojold {

‘saiuadoldj0o0101d Lodsuen
} 1onns JepadAy

sanladoid|02010.d

‘saiadold j0o0104d qlO
saniadoid|oo010id

saladold|ooolold :
‘adA1"j0o0104d plaj0Id:idOl
V WALSASANT 940

‘aIN0JTJUOP UBSj00q dNgLUNE

‘anije”dasy uesjooq 8ingue
‘9zis Jayng AdaJ Buo| snguie

‘Aejep ou uesjooq 8INgue
9z1s”1aynqg puas Buo| snguie

{} samadoid|oo0i0id @depaul

sgyO0 awi-leay ‘aouewlouad-ybiH
sgyO0 awi-leay ‘aouewlouad-ybiH

1151710001014 <|020)0id> dduanbas Jopadfy
g IWALSASANA 990

KLond:: VEIOD LI

salnlolld ajgenod

salnjead
sanond
salneaH

SO aAieu 0] sanliond

vay0D dew ued siasn e
suwuopeld

s|joo010.d
uoledIUNWWOoD
2Inb1uoo pue 109|9S e
19/2€ <0
awn-jeal snoauabolalay

suondo
wouy abuel sanuoud ygH0D e

ulr BuuaplQO e
19X20S 401 “ba —

1SI7]020101d
uoneinbiuod

J020j0.d 110dsuel) pue

j020j04d 94O suoddng e
saladold |020101d a|geinbiuo)

.anbiuyosa) Bulgeus,
1ioddns 01 paubiseq e Louzs =

saoualajaid sarealipul
ue Jayrel Ing 13||Nq JSA|IS ON e

piwyas O selbnog
piwyas O selbnog

High-performance, Real-time ORBs High-performance, Real-time ORBs

Protocol Selection and Configuration End-to-End Priority Propagation
<+«—O0

2: PASS
OBJECT ¢
REFERENCE OBJECT

(SERVANT) (3) CLIENT'S PRIORITY

4: INVOKE OPERATION 1: CREATE OBJECT IS NOT PROPAGATED
3:SELECT oO— REFERENCE \ BY INVOCATION

PROTOCOL
: OBJECT ADAPTER

(B) CLIENT GLOBAL CORBA PRIORITY =100
PROPAGATED SERVICE SERVICE
MODEL CONTEXT CONTEXT

ORB =100 ORB =100
ENDS D) ENDSYSTEM
A B

e Protocol policies control protocol selection and LYNXOS WINNT SOLARIS

configuration PRIORITY PRIORITY PRIORITY
=100 =5 =135

— Order of protocols indicates protocol

prefe rence Current::priority(100) Current::priority(100) Current::priority(100)
to_native(100) => 100 to_native(100) =>5 to_native(100) => 135

e Both server-side and client-side policies

supported

. , Features

— Some policies control protocol selection,
others control protocol configuration

— Some policies are exported to client in object
reference e Servers can also declare priority

e Client priorities can propagate end-to-end

P o P o
UC Irvine E} C1"\-:.- UC Irvine E} 1':1--‘_:_'

High-performance, Real-time ORBs

Explicit Binding

_validate connection (out CORBA::PolicyList
inconsistent policies);

PRIORITY-BANDED
PRIVATE CONNECTIONS

Features

e Enables pre-establishment of connections

— Priority-banded connections
— Private connections
— Protocol policies

UC Irvine

High-performance, Real-time ORBs

Thread Pools

Default Thread Pool A Thread Pool B
Thread Pool

[=] [»?2] [,é >2’2] a 278
DEFAULT PRIORITY PRIORITY PRIORITY,| PRIORITY
PRIORITY, 10 35 50 20

POA A
50 35
k\
N

N
N

Y AN

S1 S2 S3
[(DEFAULT)(DEFAULT)(DEFAULT Root POA

1/0
HREADS SERVER ORB CORE

e Pre-allocate threads and thread attributes

— Stacksize
— Static threads and maximum threads
— Default priority

UC Irvine DO

High-performance, Real-time ORBs

Standard Synchronizers
Mutex

lock() OBJECT
unlock() (SERVANT)
try_lock()

—

Features

e A portable Mutex API
— e.g., lock ,unlock ,try _lock

e Necessary to ensure consistency between ORB
and application synchronizers

— e.g., priority inheritance and priority ceiling
protocols

e Locality constrained

UC Irvine DO

High-performance, Real-time ORBs

Buffering Requests

Thead Pool A Thead Pool B

B B 6

O s SERVER ORB CORE

Requests are buffered When buffers are full:
when all threads are
busy

Buffering can be
specified in terms of: e Request is dropped by
server

e A transient exception is
thrown to client

e Number of bytes

e Request can be

Number of requests . .
y g reissued later by client

UC Irvine DO

High-performance, Real-time ORBs

Douglas C. Schmidt

Additional Information on Real-time CORBA

Real-time CORBA 1.0 specification

— www.cs.wustl.edu/~schmidt/RT-ORB-std-new.pdf.gz

Many papers at my Web site

— www.cs.wustl.edu/~schmidt/corba-research-realtime.html
Upcoming OMG Real-time and Embedded CORBA Workshop

— www.omg.org/meetings/realtime/
Real-time ORBs

— HighComm — www.highcomm.com
— ORB Express — www.0is.com
— TAO — www.theaceorb.com

N O™
UC Irvine E} f:“' L

High-performance, Real-time ORBs

Douglas C. Schmidt

Our Approach: The ACE ORB (TAO)

in args

operation() OBJECT
(SERVANT)

out args + return value
-—O0

Y

TAO Overview —

e An open-source,
standards-based,

SCHEDULER

REAL-TIME 1/O REAL-TIME /O
SUBSYSTEM SUBSYSTEM
HIGH-SPEED

NETWORK INTERFACE

www.cs.wustl.edu/~schmidt/TAO.html

NETWORK

SKELETO!
REAL-TIME
ORB RUN-TIME

OBJECT

HIGH-SPEED
NETWORK INTERFACE

real-time,
high-performance
CORBA ORB
e Runson
POSIX/UNIX,
Win32, & RTOS
platforms
- e.g., VXWorks,
Chorus, LynxOS
e Leverages ACE

= i T
UC Irvine E} E1 L

High-performance, Real-time ORBs

Douglas C. Schmidt

The ADAPTIVE Communication Environment (ACE)

SELF-CONTAINED MIDDLEWARE
DISTRIBUTED JAWS ADAPTIVE APPLICATIONS

SERVICE WEB SERVER
COMPONENTS TDKEN GATEWAY I:l 3 THE ACE ORB
SERVER SERVER @(TAO) é

(!

LOGGING NAME TIME
SERVER SERVER SERVER _

SRR ACCEPTOR
FRAMEWORKS HANDLER HANDLER 7

—
Ci+ PROCESS/ STREAMS

URATOR

- ahii——
PROACTOII SYSV
/| WRAPPERS

OS ADAPTATION LAYER

'ROCESSES/[{ STREAM || SOCKETS/|| NAMED SELECT/ || DYNAMIC [] MEMORY [| SYSTEM
APIS | tureaps PIPES TLI PIPES 10 COMP LINKING [;{ MAPPING /| V IPC

wiapper | THREAD ‘ SERVICES S I] ’
FACADES _ ey MSG B ceacTor/ (O3 e || MALLOC

PROCESS/THREAD COMMUNICATION VIRTUAL MEMORY
SUBSYSTEM SUBSYSTEM SUBSYSTEM

GENERAL POSIX AND WIN32 SERVICES

www.cs.wustl.edu/~schmidt/ACE.html

ACE Overview —

e A concurrent
OO0 networking
framework

e Available in
C++ and Java

e Ported to
POSIX, Win32,
and RTOSs

Related work —

e x-Kernel
e SysV
STREAMS

= i T
UC Irvine E} E1 L

High-performance, Real-time ORBs

Douglas C. Schmidt

ACE and TAO Statistics

e Over 50 person-years of effort

— ACE > 200,000 LOC
— TAO > 200,000 LOC -
— TAO IDL compiler > 130,000
LOC
— TAO CORBA Object Services >
150,000 LOC

e Ported to UNIX, Win32, MVS, and
RTOS platforms

e Large user community

e Currently used by dozens of
companies

Bellcore, BBN, Boeing,
Ericsson, Hughes, Kodak,
Lockheed, Lucent,
Motorola, Nokia, Nortel,
Raytheon, SAIC, Siemens,
etc.

e Supported commercially

— ACE — www.riverace.com

- TAO —

— ~schmidt/ACE-users.html

www.theaceorb.com

= i T
UC Irvine E} E1 L

High-performance, Real-time ORBs Douglas C. Schmidt

Applying TAO to Avionics Mission Computing

e @@ Domain Challenges
F;ame @ e Deterministic & statistical

3:PUSH (EVENTS) 4@:]“(]\:‘“3 real-time deadlines

REPLICATION

EVENT . - - . -
3:PUSH(EVENTS) | SERVICE e Periodic & aperiodic processing
S — S —

2:SENSOR PROXIES DEMARSHAL DATA
& PASS TO EVENT CHANNEL

e COTS and open systems
e Reusable components

e Support platform upgrades

1: SENSORS
www.cs.wustl.edu/~schmidt/TAO-
boeing.html

|
www.cs.wustl.edu/~schmidt/JSAC-
98.ps.gz

D-O-C

UC Irvine

High-performance, Real-time ORBs Douglas C. Schmidt

Applying TAO to Distributed Interactive Simulations

Domain Challenges

e High scalability and group
communication

e High throughput and low
latency

e “Interactive” real-time
e Multi-platform
hlasdc.dmso.mil/RTISUP/hla_soft/

Words99.ps.gz hla_soft.htm

D-O-C

UC Irvine

ENDSYSTEM A
UNI
CLIENT

&
o]

CONNECT REQUEST

at
ATM
SWITCH

ADD CONNECTION

GET STATS,

SIGNALING _PROCESSOR
3
'

. ADD CONNECTION
PORT DOWN ‘/
P

EVENT |

NETWORK OPERATIONS CENTER

INTER-ORB PROTOCOL

SIGNALING _PROCESSOR

ADD CONNECTION

Element Management and Control

CONNECT REQUEST,

ENDSYSTEM A

Applying TAO to Embedded Network

systems, and small footprint

w/embedded controllers
e Low-latency and statistical real-time deadlines

e COTS infrastructure, standards-based open

e High-speed (20 Gbps) ATM switches

High-performance, Real-time ORBs

Domain Challenges

UC Irvine

High-performance, Real-time ORBs Douglas C. Schmidt
Optimization Challenges for QoS-enabled ORBs
oA, Key Challenges

operation() ((S)ENRVECANTI)

out args + return value
+«—O0

e Alleviate priority inversion
and non-determinism

Reduce demultiplexing
latencyl/jitter

Ensure protocol flexibility

Specify QoS requirements
Schedule operations

5) THREAD DISPATCHING imi i
2) CLIENT PROTOCOL 6) REQUEST DEMUXING Eliminate (d e) marshali ng

3) NETWORK LATENCY 7) OPERATION DEMUXING overhead
4) SERVER PROTOCOL 8) SERVANT DEMARSHALING

Minimize footprint

D-O-C

UC Irvine

High-performance, Real-time ORBs Douglas C. Schmidt High-performance, Real-time ORBs Douglas C. Schmidt
Problem: Optimizing Complex Software Solution 1: Patterns and Framework Components

Common Problems — (o >[' SERVICE (Cservavr) Definitions

CONFIGURATOR

e Optimizing complex software

i< hard D aeract Q e Pattern

[T ” FACTORY . .
e Small “mistakes” can be costly — A solution to a problem in

ACTIVE

_'|| a context
[}

e Pinpoint overhead via STORAGE

white-box metrics , reacror || — A “semi-complete”
— e.g., Quantify and | WrapreR racapes | application built with
VM Etro 0S KERNEL 0S KERNEL Components
MopALITIES CEvIRAL e Apply patterns and framework — -
(CT, MR, CR) BLOB STORE Components

Solution Approach (Iterative) —

e Components
www.cs.wustl.edu/~schmidt/ORB-

www.cs.wustl.edu/~schmidt/ ¢ Revalidate via white-box and — Self-contained, “pluggable”
JSAC-99.ps.gz black-box metrics

atterns.ps.gz
P ps-g ADTs

BRGRE DHOGTE

UC Irvine B’ at UC Irvine — St

High-performance, Real-time ORBs Douglas C. Schmidt
ORB Latency and Priority Inversion Experiments

Method

Vary ORBs, hold OS
constant

Solaris real-time threads
High priority client Cy
connects to servant Sy
with matching priorities

1 Clients C; ... C,, have
x same lower priority

B Clients C; ... C,
connect to servant Sy
Clients invoke two-way
CORBA callls that cube a
number on the servant
and returns result

document

rules for avoiding common design and

¥31NAIHIS

Optimization Principle Pattern

1 | Optimize for the common case

Principle Patterns
2 | Remove gratuitous waste

Solution 2: ORB Optimization
functions with efficient special-purpose ones
4 | Shift computation in time, e.g., precompute
5 | Store redundant state to speed-up

expensive operations
6 | Pass hints between layers and components

implementation problems that can degrade the

efficiency, scalability, and predictability of

complex systems
7 | Don't be tied to reference implementations/models

3 | Replace inefficient general-purpose
8 | Use efficient/predictable data structures

e Optimization principle patterns

Optimization Principle Patterns Used in TAO

High-performance, Real-time ORBs

Definition
UC Irvine

UC Irvine

High-performance, Real-time ORBs

ORB Latency and Priority Inversion Results

Douglas C. Schmidt

@
3

Synopsis of Results

|| —=CORBAplus High Priority —+— CORBAplus Low Priority

S
&

—&—MT-ORBIX High Priority —%— MT-ORBIX Low Priority

IS
S

e TAO's latency is lowest for
large # of clients

—8—miniCOOL High Priority —>miniCOOL Low Priority

N
&

—&—TAO High Priority —#~TAO Low Priority

@
8

e TAO avoids priority inversion

@
8

N
8

— I.e., high priority client
always has lowest latency

N
8

e Primary overhead stems
from concurrency and
connection architecture

=
5

Latency per Two-way Request in Milliseconds
o
R

-
8

— e.g., synchronization and
context switching

Number of Low Priority Clients

N O™
UC Irvine D f:“' L

Jitter in milliseconds

High-performance, Real-time ORBs

ORB Jitter Results

Douglas C. Schmidt

Definition

e Jitter — standard
deviation from
average latency

Synopsis of
Results

e TAO’s jitter is
lowest and most
"~ CORBAplus Low Priority COI’ISiSten'[

CORBAplus High Priority
MT-ORBIX Low Priority

MT-ORBIX H\gh.Prlorily [] CORBAp|US' J|tter
icon vigh ity is highest and
TAO High Prorty most variable

TAO Low Priority

Number of Low Priority Clients

UC Irvine

High-performance, Real-time ORBs

Problem: Improper ORB Concurrency Models

Douglas C. Schmidt

Common Problems

— »2 SERVANT | ¢ High context switching and
SKELETONS . .

% 4 dispateh synchronization overhead

upcall()

»S OBJECT

ADAPTER

E SERVANT DEMUXER

e Thread-level and
packet-level priority
inversions

e Lack of application control
over concurrency model

www.cs.wustl.edu/~schmidt/
CACM-arch.ps.gz
I/0 SUBSYSTEM

N O™
UC Irvine D f:“' L

High-performance, Real-time ORBs Douglas C. Schmidt

Problem: ORB Shared Connection Models

APPLICATION Common Problems

1: invoke_twoway()

S S Sa S d
5: dispatch_return()

ORB CORE

e Request-level

priority inversions
SERVANTS

SAVIIHL aamoddod

3: read()|

— Sharing multiple

BORROWED THREAD

0. 000 SERVER

ORB CORE priorities on a
2: select() 4: release()|

= single connection
— ONE TCP

—! S
IVEIUSCHavg covEcTon (IR o Complex connection

COMMUNICATION LINK | multiplexing

e Synchronization

www.cs.wustl.edu/~schmidt/ overhead

RTAS-98.ps.gz

N O™
UC Irvine D f:“' L

High-performance, Real-time ORBs

Douglas C. Schmidt

Problem: High Locking Overhead

dclient
W server

User Level Lock Operations per Request

miniCOOL

ORBs

CORBAplus MT ORBIX
Tested

Common Problems

e Locking overhead affects

latency and jitter

significantly

e Memory management
commonly involves locking

www.cs.wustl.edu/~schmidt/

RTAS-98.ps.gz

UC Irvine

D-C-C

High-performance, Real-time ORBs Douglas C. Schmidt

Solution: TAO’s ORB Endsystem Architecture

[CLIENTS j [SERVANTSJ Solution Approach —

STUBS SKELETONS

RT OBJECT
ADAPTER

RT ORB CORE

Principle Patterns —
PLUGGABLE PROTOCOLS e Pass hints, precompute,
— optimize common case,
remove gratuitous waste,
IS‘EBIS/%TEM store state, don't be tied to
reference implementations &

HIGH-SPEED NETWORK [§
INTERFACES gl models

(e.g., APIC, VME)

e Integrate scheduler into ORB
endsystem

e Co-schedule threads

e Leader/followers thread pool

mE=RZzcx)

<" O ACREN

(PmrcomrEan

UC Irvine

High-performance, Real-time ORBs

Douglas C. Schmidt

Thread Pool Comparison Results

.

1/0 SUBSYSTEM
Worker Thread Pool

SERVANTS

: dispatch upcall()

I/0 SUBSYSTEM

Leader/Follower
Thread Pool

Performance Improvement

UC Irvine

High-performance, Real-time ORBs Douglas C. Schmidt
Problem: Reducing Demultiplexing Latency

Design Challenges

SERVANT o Minimize demuxing layers
LAYER

OPERATION1
OPERATIONK

6: DISPATCH
OPERATION

e Provide O(1) operation
RIS D demuxing through all layers

SKELETON

4: DEMUX TO
SERVANT

e Remain CORBA-compliant

3:DEMUX TO .
OBJECT orB wWww.cs.wustl.edu/~schmidt/
ADAPTER LAYER

POA.ps.gz

2:DEMUX TO

VO HaNDLE 0S 1/0 SUBSYSTEM os
1: DEMUX THRU NETWORK ADAPTERS, LAYER

PROTOCOL STACK

UC Irvine

High-performance, Real-time ORBs Douglas C. Schmidt
Solution: TAO’s Request Demultiplexing Optimizations

(D) DE-LAYERED ACTIVE DEMUXING

(A) LAYERED DEMUXING, (B) LAYERED DEMUXING,
LINEAR SEARCH DYNAMIC HASHING

(C) LAYERED DEMUXING,

eool PERFECT HASHING

W Transient
M@ Persistent

OPERATION]

search(operation) hash(operation)

W) (B) ... L) % =
SKEL 1) \ SKEL 2 SKEL N

mmm?\% Q mmmzs»zq Nw oo mmmw<>z._. mc@ mmmwSyz._. Q mmm_ngq Nu .-.mm.g»z._. me@
C_X LA LK A
search(object key) hash(object key) index(object key/operation)

SERVANT1::0PERATION]

SERVANT1::0PERATION2
special-purpose &
predictable data
structures, ignore ref

e Precompute, pass
hints, use

SERVANT1::0PERATION100

|SERVANT500::0PERAT[0N100 |

Principle Patterns

| SERVANTS500::0PERATION] |

OBJECT ADAPTER OBJECT ADAPTER OBJECT ADAPTER

Demuxing Perfect hashing

e www.cs.wustl.edu/~schmidt/ e www.cs.wustl.edu/~schmidt/
{ieee_tc-97,CO0TS-99}.ps.gz gperf.ps.gz

POA Demultiplexing Results
POA Depth

efficient & predictable
for both transient and
persistent object

references.

n <t MmN O
(sn)Aouare

High-performance, Real-time ORBs
Synopsis of Results
e Active demux is

UC Irvine

N O™
UC Irvine E ‘_”._. L

High-performance, Real-time ORBs Douglas C. Schmidt

Operation Demultiplexing Results

@ Perfect Hashing MV\JOUM_M of Results —
OBinary Search

B Dynamic Hashing o Perfect IWMI_SO

Dlinear Search — Highly predictable
— Low-latency

e Others strategies
slower

special-purpose &
predictable data
structures

e Precompute, pass
hints, use

Principle Patterns

Latency (us)

[Principle Patterns —

No. of Objects

Synopsis of Results

e Precompute, use
predictable data
20 structures, remove

30 X
No. of Methods gratuitous waste

O Active Demux
ODynamic Demux
W Linear Demux

o o [
D o Xe}
a —

(sn) Aouare

Servant Demultiplexing Results

most efficient &
predictable

High-performance, Real-time ORBs

e Linear demux is
e Active demux is

UC Irvine

UC Irvine

() (32) - ()
(sorvares) (vt) e Srmvivry)

*————>

PERFECT
HASHING
ACTIVE
DEMUXING

TAO Request Demultiplexing Summary

0
[aa]
@
(@]
)
£
i
©
9]
@
5}
5]
c
5]
E
£
@
>
<
2
I

POA; | (POA, ...@
(roor Poa)

o———>

ACTIVE
DEMUXING

Absolute Time (us)

servant dependent
operation dependent

Demultiplexing Stage
1. Request parsing

2. POA demux

5. Parameter demarshaling | operation dependent

3. Servant demux

4. Operation demux
6. User upcall

7. Results marshaling

UC Irvine

High-performance, Real-time ORBs

Real-time ORB/OS Performance Experiments

.”‘o]@”’l] :”’n] Method
Co ¢ .. C

e Vary OS, hold ORBs
‘! Requests

oy P T
@5 @ 7 oo
[P] Priority

Sy S S, Single-processor Intel
Client

Douglas C. Schmidt

¥31NAIHIS

Pentium Il 450 Mhz, 256
Mbytes of RAM

Client and servant run on
the same machine

Client C; connects to
servant S; with priority P;
— ¢rangesfrom1...50
Clients invoke two-way
CORBA callls that cube a
number on the servant and
returns result

1/0 SUBSYSTEM

Pentium 11
www.cs.wustl.edu/~schmidt/RT-OS.ps.gz

UC Irvine B’ at

High-performance, Real-time ORBs

Douglas C. Schmidt

Real-time ORB/OS Performance Results

[
Iy
S
S}

- Linux
~Lynx0s.
4 et

-+ Solaris
- VxWorks

N
I
o
S)

=)
=3
<3

Two-way Request Latency, usec

@
S
1S}

IS
S
S}

N
o
S}

0 1 2 5 1015 20 25 30 35 40 45 50
Low Priority Clients

usec

Two-way Request Latency,

- Linux
~Lynx0S
~<NT

-+ Solaris
~ VxWorks

-

0 1 2 5 101520 25 30 35 40 45 50
Low Priority Clients

High-priority Client Latency Low-priority Clients Latency

UC Irvine

High-performance, Real-time ORBs

Real-time ORB/OS Jitter Results
N N

Douglas C. Schmidt

ELynx0S
mNT
VxWorks
=Linux

m Solaris

Two-way Jitter, usec
Two-way Jitter, usec

500

o
o
~
o
- o
A =1
® o
=
B

Low Priority Clients

_
High-priority Client Jitter ~ Low-priority Clients Jitter

UC Irvine

High-performance, Real-time ORBs

Better Solution: TAO’s
Pluggable Protocols Framework

IN ARGS

o——»
CLIENT operation (args) OBJECT (SERVANT)
4———O
OBJECT ADAPTER

OTHER
ORB MESSAGING COMPONENT (0]3=)
CORE

REAL-TIME || MULTICAST || EMBEDDED
GIOPLITE ORB MESSAGE SERVICES
IoP 0P 0P
FACTORY
POLICY
ESIOP -
CONTROL
RELIABLE, ORB TRANSPORT CCONCURRENCY
BYTE-STREAM ADAPTER FACTORY MODEL
ATM MEMORY
MANAGEMENT

ORB TRANSPORT ADAPTER COMPONENT

auIAl DN

7 @ivod

sgyO0 awi-leay ‘aouewlouad-ybiH

O 60

PLUGGABLE PROTOCOLS FRAMEWORK

ADAPTIVE Communication Environment (ACE)

REAL -TIME | /O SUBSYSTEM
COMMUNICATION INFRASTRUCTURE — NETWORKWTERFACE'

Features Principle Patterns

able| 001

sioyaul
ag Aew 1uid100) abessaw 4OI19 —

pue s[gIXajjul SgHO saxew syl —
sjoo010.d

Bunsixa 01 sjuswwwod Aoeba] —
S|0d0]0.1d 1JOdSU‘e.l_|_ pue

Buibessa gHO pPoapoo-pieH :wajqoid

e Pluggable ORB e Replace
messaging and general-purpose
transport protocols functions

(protocols) with

special-purpose

ones

pYoXo

.S|02010.d B|qebbn|d,
1oddns j10u op sgHO Auey e

e Highly efficient and
predictable behavior

S0Q Aressadau syoe| 4oL —
76°9 JUSIYNS 10U 318 dOII/dOID

piwyas O selbnog

UC Irvine

High-performance, Real-time ORBs

One Solution: Hacking GIOP

e GIOP requests include fields that aren’t needed
in homogeneous embedded applications

auIAl DN

HAAVT MHOMLIN
HAAVT LHOdSNVHL
14OdSNVEL §HO
LNINOdWOD
ONIDVSSAN §4HO

— e.g., GIOP magic #, GIOP version, byte order,
request principal, etc.

ININOdNOD d3Ldvav

dOll

dOI-INLY dOI-3NA

sgyO0 awi-leay ‘aouewlouad-ybiH

e These fields can be omitted without any changes
to the standard CORBA programming model

e TAO'’s -ORBgioplite option save 15 bytes
per-request, yielding these calls-per-second:

3174019 dOI9

d3IAIEd

Marshaling-enabled Marshaling-disabled
min max avg min max avg

GIOP 2,878 | 2,937 | 2,906 || 2,912 | 2,976 | 2,949

GIOPlite | 2,883 | 2,978 | 2,943 || 2,911 | 3,003 | 2,967

SNOILYHNOIINOD T020.10dd

1V

dols3

31avI3d

IdV ONINAVHOO0Hd Yad0O AdVANVLS

N
G v
a3oN3NO3S

e The result is a measurable improvement in
throughput/latency

JEVA]

uoneljussald e
al1n10911yaJy Aljigeladolalu] |090101d YaHOD

108[q0
N1V dOL “6a —

300

< salneo4

ldols 1.5.8 _
Sjewlo] abessa|N e

— However, it's so small (2%) that hacking GIOP
is of minimal gain except for low-bandwidth
links

z6°sd*s|020101d-8|qeB6N|dAPILYIS~/NP3 1SN’ SI MMM

dol doll “be —
1lodsuel] e

Buissaippe

suondwnsse
HGO 1.6.3 _

pYoXo

Ipiwyas O selbnog

UC Irvine

High-performance, Real-time ORBs Douglas C. Schmidt
Embedded System Benchmark Configuration

CLIENT I OBJECT (SERVANT) I

'
obj->op (paran_qs)

IDL ACTIVE
OBJECT
MARSHAL MaP

OBJECT ADAPTER
PARAMS 1A cory !

ORB MESSAGING ORB MESSAGING
ORB TRANSPORT ORB TRANSPORT

DATA COPY P
VME
DRIVER —

] VME BUS

OVME/GIOPIite avg.
B VME/GIOP avg
O Ethernet/GIOPlite avg.

are required to support

VME

e No application changes

OUTGOING
ONINOODNI

§

Synopsis of Results
e VME protocol is

VxWorks running on 200 Mhz PowerPC over 320 Mbps VME & 10
Mbps Ethernet

Ethernet & VME Two-way Latency

much faster than

long seq <long>
short seq <long>
long seq <octet>
short seq <octet>
Ethernet

High-performance, Real-time ORBs

UC Irvine

Data Type

i ™
UC Irvine E} 1I:1""-'..-

High-performance, Real-time ORBs Douglas C. Schmidt

Pinpointing ORB Overhead with VMEtro Timeprobes

CLIENT I OBJECT (SERVANT) l

512 1024 2048

256

ONINODNI
ONIOOLNO

OBJECT ADAPTER o

RECV
_.
ORB MESSAGING d 5 ORB MESSAGING A
L ona riavsron
OS KERNEL OS KERNEL
VME DRIVER

OUTGOING INCOMING

64

Sequence length (bytes)

32

O ORB client post-write [JORB server overhead
12

OVME + OS overhead O ORB client pre-write

Synopsis of Results

e Timeprobes use VMEtro monitor, e Timeprobe overhead is
which measures end-to-end time minimal, i.e., 1 usec

i ™
UC Irvine E} 1I:1""-'..-

— e.g., ~110 usecs per end-to-end operation

e ORB overhead is relatively constant and low
e Bottleneck is VME driver and OS, not ORB

ORB & VME One-way Overhead Results

High-performance, Real-time ORBs

UC Irvine

High-performance, Real-time ORBs

Workstation Benchmark Configuration

CLIENT I OBJECT (SERVANT) I
)

obj->op (paréms) E
MARSHAL DEMARSHAL IDL ACTIVE
PARAMS OBJECT
PARAMS E 4 (skeLeTon wap

SENIDMESSAGE DISPATCH I(OBJECT ADAPTER

MESSAGE |

BUFFER
ORB MESSAGING My anacement pemux ' ORB MESSAGING
ORB TRANSPORT E E E ORB TRANSPORT

REAL-TIME | /O REAL-TIME | /O
INTERFACE \ INTERFACE
DRIVER -EE DRIVER

l

Debian Linux running on 400 Mhz workstation over Local IPC

Douglas C. Schmidt

OUTGOING
DONINODNI

NETWORK
LINK

UC Irvine

(%) awanoidwy souewWIOLAY
S S
o o

= d =3
=] =]
i 3

Data Type

Blackbox Two-way Latency Results

High-performance, Real-time ORBs

CJ1I0P/GIOPlite
Il UIOP/GIOPIlite
are required to support

e No application changes
multiple protocols

== Performance Increase

E31I0P
3JUIOP

Synopsis of Results
efficient than TCP/IP

e Local IPC more
over loopback

UC Irvine

High-performance, Real-time ORBs

Client Whitebox Latency Results

Douglas C. Schmidt

Direction
Outgoing

Client Activities Absolute Time (uS)

. Initialization 6.30
. Get object reference 15.6
. Parameter marshal 0.74 (param. dependent)
. ORB messaging send 7.78
. ORB transport send 1.02
/0 8.70 (op. dependent)
. ORB transport recv 50.7
. ORB messaging recv 9.25
. Parameter demarshal op. dependent

Xeon platform is quad-CPU 400 Mhz with 1 Gigabytes RAM

UC Irvine

High-performance, Real-time ORBs

Douglas C. Schmidt

Server Whitebox Latency Results on Xeon/NT

Direction

Server Activities

Absolute Time (uS)

Incoming

170

7.0 (op. dependent)

. ORB transport recv

24.8

ORB messaging recv

4.5

. Parsing object key

4.6

POA demux

1.39

. Servant demux

4.6

. Operation demux

4.52

. User upcall

3.84 (op. dependent)

Outgoing

©| 00| N of 0| A w| N

. ORB messaging send

4.56

10. ORB transport send

93.6

UC Irvine

High-performance, Real-time ORBs High-performance, Real-time ORBs

One-Way Delayed Buffering Strategy ORB & Transport Overhead Results

CLIENT \ OBJECT (SERVANT)
a $

obj->op (params)

DEMARSHAL E

PARAMS IDL ACTIVE
sITDuLBs E * SKELETON ot
MARSHAL |
PARAMS DATA COPY DATA COPY | OBJECT ADAPTER
|
!
ORB MESSAGING BUFFERED
ElE]E] / core

OS KERNEL OS KERNEL
\

aver |EIEE AvE
DRIVER - EEE DRIVER

VME BUS

OUTGOING

HONINODNI
Total Time (usecs)

1IOP 110P w/GIOPlite UloP UIOP w/GIOPlite
Copy params to new buffer Transport Protocol

Requests buffered in the Transport Adaptor [30S and /0 MORB @ Transport M Messaging|
Synopsis of Results

Flush at byte count or timeout

Send as one ORB message but multiple e ORB overhead is relatively constant and low

requests — e.g., ~49 pusecs per two-way operation

Server demultiplexes individual requests e Bottleneck is OS and I/O operation

5 5
UC Irvine E}'C1""..- UC Irvine E}'C1""..-

High-performance, Real-time ORBs High-performance, Real-time ORBs

Shared Buffer Strategy Data Copies in the Pluggable Protocols

CLIENT OBJECT (SERVANT) l
CLIENT \ OBJECT (SERVANT) obj->0p (Pamms))

IDL

STUBS

{
obj->0p (params; [E IDL ACTIVE
1>op (p) DEMARSHAL OBJECT
v SKELETO! ar
DL PARAMS * IDL /O*CT'VCE MARSHAL
BIECT OBJECT ADAPTER
SKELETON PARAMS
STUBS | \MARSHAL E VAP DATACOPY
DATA COPY

|
PARAMS | DATA COPY | OBJECT ADAPTER '
— ~
ona oo

OS KERNEL

OUTGOING
ONINOODNI

ElElE] / core

OS KERNEL OS KERNEL
\

EEE DRIVER VME BUS

VME BUS

OUTGOING
ONIWODNI

VME

e Marshal parameters, data copy to CDR stream
e Request free buffer e Request free buffer « VME send, data copy from CDR stream to VME
e Add to Send queue e Add to Revc queue buffers

e Return to Free pool e Return to Free pool » DMA, data copy over VME Bus

e VME read, data copy to CDR stream

e Demarshal parameters, data copy to method
parameters

P o
r " r i T
UC Irvine UC Irvine E} C LLE

High-performance, Real-time ORBs Douglas C. Schmidt High-performance, Real-time ORBs Douglas C. Schmidt

Problem: Overly Large Memory Footprint Solution: Minimum CORBA

e Problem Component CORBA | Minimum | Percentage
INTERFACE IDL IMPLEMENTATION o CORBA Reduction
REPOSITORY COMPILER REPOSITORY — ORB footprlnt is too Son T oK e E

Serationo | omECT || big for some ORB Core 347Kk 330K 4.8

operation()

out args + return value (SERvANT) embedded apps Dynamic Any 131k 0
+«—O0

CDR Interpreter 69k 69k 0
e Unnecessary Features

@ ! IDL Compiler 10k 11k 0
INTERFACE A?)lj:::;k — DS', Dll, & Dynamic Pluggable Protocols 15k 15k 0
Any Default Resources 8k 8k 0

— Interface Repository Total 862k 640k 258

C) STANDARD INTERFACE DSTANDARD LANGUAGE MAPPING — Advanced POA

@ orB-serciric wrerrace () stavarp rrotocor features Applying Minimum CORBA subsetting to TAO reduces memory

www.cs.wustl.edu/~schmidt/ — CORBA/COM footprint by ~25% (on SPARC with EGCS) and increases ORB
COQOTS-99.ps.gz interworking determinism

D-O-C

UC Irvine " UC Irvine

High-performance, Real-time ORBs Douglas C. Schmidt High-performance, Real-time ORBs Douglas C. Schmidt

Problem: Providing QoS to CORBA Operations Solution: TAO’s Real-time Static Scheduling Service
. struct RT _Info { 3:roruLate (SRORESEINE
d DeSIQn Cha"enges Timewnﬁtcase_exec_time_; RL_INFO SCHEDULER

D Period period_; REPOSITORY
TIME brs
_ i i Criticality criticality_;
C C Spequmg/enforc'ng QOS Importance importance_; \ / @
v The requirements 5 \ . e epcsTORY
E‘.‘,’{EE‘;'S;}ST COMPUTATION TIME — Focus on Operations upon Objects 1: CONSTRUCT CALL -\ 4: assess
< . . CHAINS OF RT_OPERATIONS DEPENDS UPON = SCHEDULABILITY
* Rather than on communication channels or !
i i 2: IDENTIFY THREADS LXECUTES AFTER 5: ASSIGN OS THREAD

threads/synchronization : PRIORITIES AND
— Support static and dynamic scheduling | R R R DISPATCH QUEUE

N
PERIODIC SCHEDULING/DISPATCHING

RT
Operation

" N " 6: SUPPLY ORDERING
Operation | [Operation | | Operation | = RUN-TIME
PRIORITIES SUBPRIORITIES

e Solution Approach (OBJECT ADAPTER) rooms | SCHEDULER

struct RT_Info Priority/
. s { ORERCORE Subpriority

;i‘gzr;:ggff—em—ﬁm"-; — Servants publish resource (e.g., CPU) Table Per
Criticality crificality_; requirements and (periodic) deadlines Mode

}.Iml’m“““ importance_; — Most clients are also servants
b

1/0 SUBSYSTEM

www.cs.wustl.edu/~schmidt/TAO.ps.gz

D-O-C

UC Irvine " UC Irvine

High-performance, Real-time ORBs Douglas C. Schmidt

TAO’s RT Event Service Architecture

8 push (event) Event Channel Features —
5‘ Consumer Proxies |

e Integrated with RT

J
Dispatching Module SChedUler
e Stream-based
y Pririty Queue architecture

é é‘é é é — Enhance pluggability
_ e Source and type-based
Run-Time Scheduler fiItering
 pen o, o ! e Event correlations
3. push (event, consuner) ? - COI’UUI’ICIIOI’IS (A+B+C)
| Subscription & Filtering | - DiSjunCtionS (A‘B|C)

2 push (evert) ﬁ)
@ L[swpierpoxes | | www.cs.wustl.edu/~schmidt/
¥ push (evert) JSAC-98.ps.gz

6: dequeue (event, consuner)

5 enqueue (event, consuner)

| Event Correlation |

N O™
UC Irvine E} f:“' L

High-performance, Real-time ORBs Douglas C. Schmidt
Visualizing Periods for Avionics Operations

UC Irvine

High-performance, Real-time ORBs Douglas C. Schmidt

Example: Applying TAO to Real-time Avionics

e Synopsis

High Level — Typical _Interact/ons
1/0 Facade 0 Facade) (110 Facade) Apstraction x /O arrives
* Proxies demarshal
1

data
+ Facades process data

Sensor Sensor — Advantages:
IFliEE Proxy x Efficient control flow

/’ * Clean layered
architecture

1: 1/0O via interrupt: .
:];L — Disadvantages:
Aircraft = Low Level x Coupled layers
Sensors =] Abstraction * Inflexible scheduling

2: Demarshaled datg

N O™
UC Irvine E} f:“' L

High-performance, Real-time ORBs Douglas C. Schmidt
Forces/Domain Characteristics

e |/O driven

— Periodic processing requirements
e Complex dependencies

— e.g., I/0 Facades depend on multiple sensor proxies
e Real-time constraints

— Deterministic and statistical deadlines
— Static scheduling (e.g., rate monotonic)

e Single-Processor (VxWorks)

— Single address space
— No distribution requirements (yet)

N O™
UC Irvine E} f:“' L

High-performance, Real-time ORBs Douglas C. Schmidt

Candidate Solution: COS Event Service

e Features

— Decoupled
ho pushQ ~ consumers and
= push0 suppliers
— Transparent group
communication
4:110 SN — Asynchronous

communication
_ — Abstraction for
www.cs.wustl.edu/~schmidt/report- distribution
doc.html — Abstraction for
concurrency

UC Irvine

High-performance, Real-time ORBs Douglas C. Schmidt

Applying the COS Event Service to Real-time Avionics

e TAO is currently used at Boeing for avionics mission computing
— Initial flight dates are mid-summer 1998

e Extensive benchmarks demonstrate it is possible to meet stringent
performance goals with real-time CORBA

- e.g., for Boeing, target latency for CORBA oneway operations is
150 psecs for 100 Mhz PowerPC running over MVME 177 boards

e Technology transfer to commercial vendors via OMG RT SIG and
DARPA Quorom program & OCI

UC Irvine

High-performance, Real-time ORBs Douglas C. Schmidt
Overview of Avionics Mission Computing

Consumers e Typical Interactions

b)y Pl

— Proxies demarshal
3: push (démarshaled data) data

% — Proxies push to
channel

— EC pushes to facades

— Facades process data

Suppliers
Sensor Sensor Sensor Sensor
Proxy Proxy Proxy Proxy ° Advantag es.
» Y < 2

/0 \‘|/lia inlerrupts/ — Anonymous
consumers/suppliers

— Group communication

— Asynchronous pushes

2: push (demarshaled data)

UC Irvine) 5 70

High-performance, Real-time ORBs Douglas C. Schmidt

Issues Not Addressed by COS Event Service

e No support for complex event dependencies

— Consumer-specified event filtering
— Event correlations (e.g., waiting for events A and B before
pushing)

e No support for real-time scheduling policies

— Priority-based dispatching (e.g., which consumer is dispatched
first)

— Priority-based preemption policies and mechanisms

— Interval timeouts for periodic processing

— Deadline timeouts for “failed” event dependencies

DR

UC Irvine - at

High-performance, Real-time ORBs Douglas C. Schmidt
TAQO'’s Event Service Architecture

push (event) ¥

‘ e Features

Consqmer .
Proxies — Stream-based architecture
Di hi ili
* Enhance pluggability
EVENT

EveNT — — Subscriptionf/filtering
Correlation * Source and type-based
Subscription filtering

& Filtering

Supplier — Event correlations
* Conjunctions (A+B+C)
i/pusf(ever:)\ « Disjunctions (A|B|C)

D

UC Irvine

High-performance, Real-time ORBs Douglas C. Schmidt
Collaborations in the RT Event Channel

EVENT e Well-defined event

EVENT
CONNECT PUSH CHANNEL STRUCTURE structure
CONSUMER Source ID

Object Ref Consumer Event Type

Sroios Timestamg — CORBA Anys are

RT_Info T Dai inefficient

Correlation Module
Specs

comecrrust @ Augmented COS
[SUPPLTER H .
Correlation interfaces:

Subscripti Publish Types
2 Fﬁg'r?ngn — Extra QoS structure

Timeout Registratiol P_riority Supp‘lier to connect suppllers
Timers| Proxies Object Ref and consumers

Subscription Info

www.cs.wustl.edu/~schmidt/events_tutorial.html

UC Irvine

High-performance, Real-time ORBs Douglas C. Schmidt
Real-Time Event Dispatching with TAO’s Event Service

Event Channel o Features
% Consumer Proxies | .
X — Run-time scheduler

Dispatching Module . .
“ « Determines event priority
— 2-level priority queues

l Priority Queues .
o 2 2 3 s * Prgemptlon groups
SEEEEE * Priority queues

Run-Time Scheduler - DISpatCher
4: push (event, consuner) + * Encapsulates)
concurrency policy

6: dequeue (event, consuner)

5: enqueue (event,

| Event Correlation |

3: push (event, consuner) f

| Subscription & Filtering |

2 push (event) ?

’| Supplier Proxies |
1 push (event)

[

. I CHL
UC Irvine — et

High-performance, Real-time ORBs Douglas C. Schmidt
Real-time Event Channel Dispatching Experiments

N N N
(A) FIFO Dispatching (B) RTU Dispatching (C) Threaded Dispatching

4: DISPATCH 4: DISPATCH
T 4: DISPATCH REQUEST REQUEST

REQUEST Dispatcher Dispatcher

*2 Dispatcher 42»i4i4i4i

/

[\
\ l 3: DEQUEUE 3: DEQUEUE l l
REQUEST UEST
3:DEQUEUE | LR’ I;EQ v
12

REQUEST 3 a4 o 1 2 3 a
NEIGE RS
2:ENQUEUE 2:ENQUEUE 2: ENQUEUE

REQUEST *
Run-Time

Scheduler
1: INcOMING
REQUEST

1: INCOMING
REQUEST

www.cs.vflu\stl.edu/~schmidt/60\psla.ps.gz

UC Irvine

High-performance, Real-time ORBs Douglas C. Schmidt High-performance, Real-time ORBs Douglas C. Schmidt

Multi-Threaded Dispatching Single-Threaded Dispatching

i b 7 —— —n
[HER .

o -
W WHHE O JETHE VEHTE IFEE TR TEEH TEEEE DR [JUEE 1R
=] b i] . Tt =i

fre - -
W DRIE DRI R DM ADTH (ITE AT RS WA e
[F i
P

FER |

- N ™
UC Irvine UC Irvine E} i

g

High-performance, Real-time ORBs Douglas C. Schmidt High-performance, Real-time ORBs Douglas C. Schmidt

Dimensions of ORB Extensibility Applying Patterns to Develop Extensible ORBs

CONFIGURATOR

profile (cuenT)ij SERVICE (“servant) @ Factories produce Strategies

profiley e Strategies implement

> ABSTRACT D . ..
profiles D FACTORY interchangeable policies
ACTIVE .
profiley - Concurrency strategies use
l Reactor and Active Object
CONNECTOR STORAGE

Acceptor-Connector
decouple transport from
1. Extensible to retargeting on new platforms [wrarree pacanes | GIOP operations

OS KERNEL OS KERNEL
2. Extensible via custom implementation strategies CE— CE—

0 POSIX, WIN32, RTOSs, MVS REACTOR

Service Configurator permits

) dynamic configuration
3. Extensible via dynamic configuration of custom strategies www.cs.wustl.edu/~schmidt/ORB-

patterns.ps.gz

N ™ e
UC Irvine E} i UC Irvine E}

High-performance, Real-time ORBs Douglas C. Schmidt High-performance, Real-time ORBs Douglas C. Schmidt
Addressing ORB Portability and Typesafety Challenges Enhancing Portability and Typesafety with the Wrapper
Facade Pattern

e Problem

client e Intent

— Building an ORB using low-level system APIs is hard
— Encapsulates low-level

{1: method K0 system calls within type-safe,

Wrapper | 2: function_k()
— Low-level APIs are tedious to program Facade —— Functions ;Zl(‘)e%igsand portable class

— Low-level APIs are error-prone s 1Y function_1()
— Low-level APIs are non-portable method_m() fanction nQ) e Forces Resolved

e Forces

e Solution www.cs.wustl.edu/~schmidt/ — Avoid tedious, error-prone,

wrapper-facade.ps.gz and non-portable system APIs
— Apply the Wrapper Facade pattern to encapsulate low-level OS _ Create cohesive abstractions

programming details — Don’t compromise
performance

E}' E1E UC Irvine E}' E1E

UC Irvine

High-performance, Real-time ORBs Douglas C. Schmidt High-performance, Real-time ORBs Douglas C. Schmidt

Using the Wrapper Facade Pattern in TAO Addressing ORB Demuxing/Dispatching Challenges

TAO's ORB Core Problem

spawn open(), opent . .
SunSoft TIOP's ORB Core " 0, im0 — ORBs must process many different types of events simultaneously

close(), !
ACE acquire() reev(, send) handle_events(dIsymO

pthread_create() socket(), bind()) gettimeofday(), WRAPPER h ¥
[g | lect(), et S THREAD SOCKETS/ SELECT/ DYNAMIC
thi tex_* Y select(), etc. FACADES
| Pibresd mutex.® - reev(, send) ! 'WRAPPERS TLI 10 comp LINKING FO rces

Socket GENERAL

R ooy, G, Macros Other O8 rosi & [TV o Multi-threading may not be available

NS Pthreads Sockets System Calls WIN32 THREAD SUBSYSTEM

WinSock SUBSYSTEM SUBSYSTEM

SERVICES Multi-threading may be inefficient

SunSoft [IOP TAO Multi-threading may be inconvenient

Tightly coupling general event processing with ORB-specific logic
is inflexible

e TAO’s wrapper facades are based on the ACE framework
e Solution

e The Wrapper Facade pattern substantially increased portability and

reduced the amount of ad hoc code — Use the Reactor pattern to decouple generic event processing

from ORB-specific processing

E}I E1E UC Irvine E}' E1E

UC Irvine

High-performance, Real-time ORBs

Douglas C. Schmidt

Enhancing Demuxing with the Reactor Pattern

Initiation Dispatcher
handle_events() O ——-----—»
register_handler(h)

select (handles);

foreach h in handles loop
table[h].handle_event(type)

end loop

remove_handler(h) |handlers

\ 1

T]

*

notifies

\
Synchronous Event

Demultiplexer

~ | Event Handler

handle_event(type)
get_handle()

Concrete
Event

Handler

select()

www.cs.wustl.edu/~schmidt/

e Intent

— Decouples
synchronous event
demuxing/dispatching
from event handling

e Forces Resolved

— Demuxing events
efficiently within one
thread

High-performance, Real-time ORBs

Douglas C. Schmidt

Using the Reactor Pattern in TAO

~

S~

APPLICATION

1:RUN EVENT LOOP

\
‘ SERVANT ,

7: UPCALL

P

APPLICATION
1: RUN EVENT LOOP

SERVANT ’

5:UPCALL

%: GET REQUEST

OBJECT
ADAPTER

5: DISPATCH

OBJECT
ADAPTER

ACTIVE OBJECT MAP
4: DISPAATCH

3:BLOCK FOR CONNECTION

4: select()

server
\ endpoints

Reactor.ps.gz

— Extending applications

3

6: INCOMING
MESSAGE

=/

Connection
Handler

Reactor

Connection

2: select()

oo
\

Ha

Connection
Handler

3: handle_input()

2

SunSoft IIOP

without changing
demux infrastructure

UC Irvine

e The Reactor pattern and ACE Reactor

are widely used

UC Irvine

D-C-C

High-performance, Real-time ORBs Douglas C. Schmidt

Addressing ORB Endpoint Initialization Challenges

e Problem

— The communication protocol used between ORBs is often
orthogonal to its connection establishment and service handler
initialization protocols

e Forces

— Low-level connection APIs are error-prone and non-portable
— Separating initialization from processing increases software reuse

e Solution

— Use the Acceptor-Connector pattern to decouple passive/active
connection establishment and GIOP connection handler
initialization from the subsequent ORB interoperability protocol
(e.g., lIOP)

High-performance, Real-time ORBs

Douglas C. Schmidt

D-C-C

UC Irvine

Enhancing Endpoint Initialization with the
Acceptor-Connector Pattern

/

Connection
Handler

peer_stream_

CREATE &

Strategy
Acceptor

peer_acceptor_

open()

ACTIVATE

handle_input()

Event

Dispatcher

ot

-

i

/

Connection
Handler

peer_stream_

open()

CREATE &

Strategy
Connector

connect(sh, addr)

ACTIVATE

complete()

Event

Dispatcher

ADLE ASYNC
CONNECTION COMPLETION

-

/

Acceptor Structure

e Intent

Connector Structure

— Decouple connection establishment and service handler
initialization from subsequent service processing

UC Irvine

D-C-C

High-performanc

e, Real-time ORBs

Douglas C. Schmidt

Using the Acceptor-Connector Pattern in TAO

1: lookup()

client
endpoint

client
endpoint

client
endpoint

e

server
endpoint

listener
endpoint

4: accept()

1: operation(),

6: DISPATCH(

ORB CORE
e e
andler

4: CREATE &
ACTIVATE

Concurrency
Cached Strategy

Connect
Strategy

High-performance, Real-time ORBs

Douglas C. Schmidt

Addressing ORB Concurrency Challenges

e Problem

— Multi-threaded ORBs are needed since Reactive ORBs are often
inefficient, non-scalable, and non-robust

e Forces

— Multi-threading can be very hard to program
— No single multi-threading model is always optimal

SunSoft IOP
e Forces Resolved

— (1) Improve portability and reuse and (2) avoid common mistakes

N ™
UC Irvine E} i

e Solution

— Use the Active Object pattern to allow multiple concurrent server
operations using an OO programming style

N ™
UC Irvine E} i

High-performance, Real-time ORBs Douglas C. Schmidt

Enhancing ORB Concurrency with
the Active Object Pattern

High-performance, Real-time ORBs Douglas C. Schmidt

Using the Active Object Pattern in TAO

(a 3
ORB CORE ORB CORE

Proxy

Future m1()

¢

N

loop {
m = act_queue.dequeue()
if (m.guard()) m.call()

¢

1: enqueue(new M1)

Future m2()
Future m3()

VISIBLE
TO
CLIENTS

HDEN
FROM
CLIENTS

Scheduler

7
3 / dispatch()

Activation
Queue

dispatch()
enqueue()

Servant

ml() 1

e
2: enqueue(M1)
n 4/1

enqueue()
dequeue()

Request

Method |_,

M2

m2() pa—

m3() 4: ml()

guard()

call()

o M3

Intent

e Decouple thread of
request execution from
thread of request
reception

Forces Resolved

e Allow blocking
operations

www.cs.wustl.edu/~schmidt/ Act-Obj.ps.gz e Permit flexible

concurrency strategies

UC Irvine

\

select()
2:NOTIFY

server
endpoint
o B

1: ARRIVAL

select() —>
2:NOTIFY

v
server server
endpoint endpoint

IRYARRS
e

THREAD-PER
CONNECTION

DISPATCHER
}i 2: read()

LEADER

server endpoint

FOLLOWERS
35 Sa8ad
3: release()
Reactor
1: select()

.

SunSoft IOP

TAO

e TAO supports several variants of Active Objects (e.g.,
Thread-per-Connection, Thread-per-Request, Thread Pool, etc.)

UC Irvine

E}. T4

o

L)

High-performance, Real-time ORBs Douglas C. Schmidt
Reducing Lock Contention and Priority Inversions with

the Thread-Specific Storage Pattern

e Problem

— Itis important to minimize the amount of locking required to
serialize access to resources shared by an ORB

e Forces

— Locks increase performance overhead
— Locks increase potential for priority inversion
— Different concurrency schemes vyield different locking costs

e Solution

— Use the Thread-Specific Storage pattern to maximize
threading-model flexibility and minimize lock contention and
priority inversion

N O™
UC Irvine E} f:“' L

High-performance, Real-time ORBs Douglas C. Schmidt
Minimizing ORB Locking with
the Thread-Specific Storage Pattern

THREAD A

THREAD-SPECIFIC thr ?ads to use one
OBJECT TABLES /Oglca”y g/oba/
INDEXED BY KEY .
access pOInt to
2: get_state(key) retrieve ORB
Reactor Reactor {l h re ad -S p ec / fl (o
Acceptor ORB THREAD- Acceptor data without
@uiiicuiegd SPECIFIC STATE Connector incurring /OCking
overhead for each
e Forces Resolved access

— Minimizes overhead and priority inversion

N O™
UC Irvine E} f:“' L

5 1: ACE_OS::thr_getspecific(key) o Allows mUItlp/e
—

High-performance, Real-time ORBs Douglas C. Schmidt

Using Thread-Specific Storage in TAO
SERVER ORB CORE

CLIENT APPLICATION

CLIENT ORB CORE

CONNECTOR CONNECTOR CONNECTOR

2010 5 1 2010 5 1 2010 5 1
HZHZHZHZ HZHZHZHZ HZHZHZHZ

~=0MmZz2z200
MHAEZZ0A0
wHANEZZ200
TOoOH~REAO>

I/O SUBSYSTEM I/O SUBSYSTEM

COMMUNICATION LINK

www.cs.wustl.edu/~schmidt/TSS-pattern.ps.gz

N O™
UC Irvine E} f:“' L

High-performance, Real-time ORBs Douglas C. Schmidt

Addressing ORB Flexibility Challenges

e Problem

— Real-world ORBs must be flexible to satisfy the requirements of
many different types of end-users and applications

e Forces

— Ad hoc schemes for ORB flexibility are too static and
non-extensible
— Flexibility often has many (related) dimensions

e Solution

— Use the Strategy pattern to support multiple transparently
“pluggable” ORB strategies

N O™
UC Irvine E} f:“' L

High-performance, Real-time ORBs Douglas C. Schmidt

Enhancing ORB Flexibility with the Strategy Pattern

High-performance, Real-time ORBs

Using the Strategy Pattern in TAO

Douglas C. Schmidt

STRATEGY

Strategy
algorithm_interface()

Context
context_interface()

DEMUXING
STRATEGY

[] I nte nt / (T P (B) ACTIVE DEMUXING STRATEGY \

— Factor out similarity Ve
among algorithmic
alternatives

hash(operation)
we][o
SKEL 2 SKEL N

[1] [smar 2] e [

OBJECT ADAPTER

SERVANTI::0PERATIONT
ERVANTI::OPERATION2

ISERVANTN::OPERATIONT

ISERVANTN::OPERATIONK|

if (do_thread)
DEMUXING // thread...

else
comy // single-threaded

hash(object key)
ORB CORE

e Forces Resolved

Concrete
Strategy C

Concrete
Strategy A

algorithm_interface()

— Orthogonally replace
behavioral subsets
transparently

. . CONNECTION

— ASSOClatlng State MANAGEMENT

with an algorithm CODE

algorithm_interface()

CONCURRENCY Thread- Reactive || Threaded
Specific Connect Concurrency| |Concurrency
CODE if (do_thread) Connect Strategy Strategy
—

// take lock... Strategy

Strategy
Connector

Strategy

Concrete
Strategy B

Strategy
if (do_thread) Acceptor
// release

algorithm_interface()

SunSoft IIOP

UC Irvine UC Irvine

High-performance, Real-time ORBs Douglas C. Schmidt

Addressing ORB Configurability Challenges

High-performance, Real-time ORBs

Centralizing ORB Configurability with
the Abstract Factory Pattern
e Intent

Douglas C. Schmidt

e Problem
Abstract Sy

Product A

L—

— Aggressive use of Strategy pattern creates a configuration Product_Al

nightmare] \
\
/ \

Product_A2

— Integrate all
strategies used to

e Forces

— Managing many individually configured strategies is hard
— It's hard to ensure that groups of semantically compatible
strategies are configured

e Solution

— Use the Abstract Factory pattern to consolidate multiple ORB
strategies into semantically compatible configurations

D-C-C

UC Irvine

Concrete
Factory_1

make_product_A()

make_product_B()
\
\

\
\

Product_B1

Abstract
Factory

make_product_A()
make_product B()

Concrete
Factory 2

make_product_A()
make_product_B()

Abstract
Product B A/

Product_B2

configure an ORB
e Forces Resolved

— Consolidates
customization of
many strategies

— Ensures
semantically-
compatible
strategies

UC Irvine

D.E+..

High-performance, Real-time ORBs

Douglas C. Schmidt

Using the Abstract Factory Pattern in TAO

Thread- |

per-
Connection

Strategy

Concurrency <—_| Thread-

per-
Priority

ORB

Medical
Imaging
Concrete
Factory

FIFO

Dispatching \\

Server
Abstract
Factory

Perfect

—{ Concrete

/ Hashing

Dispatching
Strategy

Demuxing
Strategy

Active
Demuxing

e

Avionics

Factory

Rate-based
Dispatching

UC Irvine

D)

High-performance, Real-time ORBs Douglas C. Schmidt

Addressing ORB Dynamic Configurability Challenges

e Problem

— Prematurely committing ourselves to a particular ORB
configuration is inflexible and inefficient

e Forces

— Certain ORB configuration decisions can’'t be made efficiently

until run-time
— Forcing users to pay for components they don't use is undesirable

e Solution

— Use the Service Configurator pattern to assemble the desired
ORB components dynamically

D

UC Irvine

High-performance, Real-time ORBs

Douglas C. Schmidt

Enhancing Dynamic ORB Extensibility
with the Service Configurator Pattern

Service
Repository

Intent

e Decouples ORB strategies

from time when they are

configured

Forces Resolved

Concurrency
Service

Demuxing
Service

Dispatching
Service

www.cs.wustl.edu/~schmidt/
Svc-Conf.ps.gz

e Reduce resource utilization

e Support dynamic

(re)configuration

UC Irvine

High-performance, Real-time ORBs Douglas C. Schmidt

Using the Service Configurator Pattern in TAO

Medical
Imaging
Concrete
Factory

TAO Priority-based
PROCESS Dispatching

Perfect
Thread-per Hashing

Rate
Concurrency /

] Avionics
Service S Concrete
Repository Factory

FIFO
Dispatching

Active
Demuxing

Thread-per
Connection
Concurrency

sve.conf dynamic ORB Service Object *
FILE avionics_orb:make orb() "-ORBport 2001"

D

UC Irvine B’

High-performance, Real-time ORBs Douglas C. Schmidt High-performance, Real-time ORBs Douglas C. Schmidt
Quantifying the Benefits of Patterns Lessons Learned Developing QoS-enabled ORBs

e Statistics Avoid dynamic connection management (s

I e — Patterns greatly Minimize dynamic memory management &
] reduce code and data copying
complexity
x e.g., Most TAO
components have

v(G) < 10 Avoid complex concurrency models

— TAO components are .
substantially smaller Integrate ORB with OS and 1/O0

I l than SunSoft I1OP subsystem and avoid reimplementing
610 10 * e.g., connection OS mechanisms

e renee management Guide ORB design by empirical
Macabe Complexity Metric Scores for reduced by a factor benchmarks and patterns
TAO and SunSoft IlOP of 5

D - (M0

- UC Irvine = -

Avoid multiplexing connections for
different priority threads

% Methods in Range

UC Irvine

High-performance, Real-time ORBs Douglas C. Schmidt
Concluding Remarks

Researchers and developers of distributed, real-time applications
confront many common challenges

PROPERTY
OBJECT
(SERVANT)

GIOP/RIOP
0S KERNEL
0S 1/0 SUBSYSTEM

NETWORK ADAPTERS,

— e.g., service initialization and distribution, error handling, flow control,
scheduling, event demultiplexing, concurrency control, persistence, fault
tolerance

Successful researchers and developers apply patterns,
frameworks, and components to resolve these challenges

LIFECYCLE

SCHEDULING [LOGG]NGJ
A/V STREAMING
CONCURRENCY
INTERFACE

ACE
COMPONENTS

ORB QoS

IDL
COMPILER

Careful application of patterns can yield efficient, predictable,
scalable, and flexible middleware

— I.e., middleware performance is largely an “implementation detail”

Current Status of TAO

Next-generation ORBs will be highly QoS-enabled, though many
research challenges remain

EVENT/
NOTIFICATION

:

SHDIAYAS VEI0D

OS KERNEL
0S 1/0 SUBSYSTEM

High-performance, Real-time ORBs

NETWORK ADAPTERS,

UC Irvine

BRGHC

UC Irvine B M at

High-performance, Real-time ORBs Douglas C. Schmidt

Synopsis of TAO’s Pattern-Oriented ORB Design

a .

operation() OBJECT
out args + refurn value (SERVANT)
— ¥

‘ CLIENT l

\
COMPILER OBJECT \ —
CLIENT I 7 . (SERVANT) DL g
/,) ‘ ‘ - -
INTERFACE
/ <
¥
DL ORB
DI ORB PORTABLE GIOP/1IOP
STUBS NTERE e OBJECT J CORE
ADAPTER

|
ORB CORE (A)LAYERED DEMUNING, (C)DE-LAYERED ACTIVE

PERFECT HASHING DEMUXING
e¢"Connel, Connection)
5: requestfl\ Hand) “piong) Handler
RESPONSE

»
\4: CREATE &

\ ACTIVATE DL mL Y ,,.(DL
SKEL 1) (SKEL 2 SKEL K

(B) LAYERED DEMUXING,
DYNAMIC HASHING

OPERATIONT

OPERATION2
:

OPERATIONM

=
3
kS
°
S
2
2
S
=
SERVANT1::0PERATION]

SERVANT1::0PERATION2
SERVANT1::0PERATIONM

SERVANTN::OPERATION]
H
H
ISERVANTN::OPERATIONM

Strategy

hash(object key) index(object key/operation)
\Connecto

OBJECT ADAPTER OBJECT ADAPTER

CLIENT ——

>/

UC Irvine

High-performance, Real-time ORBs

Summary of TAO Research Project
Completed work Ongoing work

Douglas C. Schmidt

e First POA and first deployed
real-time CORBA scheduling
service

e Dynamic/hybrid scheduling

e Distributed QoS, ATM 1/O
Subsystem, & open signaling

PI able protocols framework .
ugg P W e Implement CORBA Real-time,

Minimized ORB Core priority Messaging, and Fault Tolerance
inversion and non-determinism specs

Reduced latency via demuxing
optimizations

e Tech. transfer via DARPA
Quorum program and

Co-submitters on OMG’s www theaceorb.com
real-time CORBA spec — Integration with Flick IDL

compiler, QuO, TMO, etc.
DCC

UC Irvine

High-performance, Real-time ORBs Douglas C. Schmidt

Summary: Real-time Optimizations in TAO

in args
operation()

out args + return value
+—O

PRESENTATION
OBJECT R LAYER

(SERVANT)

DATA COPYING
— & MEMORY
[[T ALLOCATION

[E—

<—T— pEMUXING, &

[DISPATCHING

CONCURRENCY
- MODELS

TRANSPORT
PROTOCOLS

OS KERNEL

0S 1/0 SUBSYSTEM
NETWORK INTERFACES

OS KERNEL

0S 1/0 SUBSYSTEM

NETWORK INTERFACES

NETWORK

D-C-C

UC Irvine

High-performance, Real-time ORBs Douglas C. Schmidt

Next Steps: New TAO Features and Optimizations
END-TO-END

PRIORITY
PROPAGATION

Forthcoming Features

e CORBA Component
Model (CCM)

Real-time and Minimum
CORBA

CORBA Messaging
Fault-Tolerant CORBA

SYNCHRONIZERS
EXPLICIT

BINDING

PLUGGABLE
PROTOCOLS &
PROPERTIES

0S 1/0 SUBSYSTEM

Notification Service

Www.cs_.wustl.edu/
~schmidt/TAO-status.html

NETWORK

UC Irvine

High-performance, Real-time ORBs
Next Steps: Integrating QoS-Enabled

CORBA Component Model with TAO
oty o ow] Features

operation ()
-O—| COMPONENT —O

out args + return vx;.i IMPLEMENTATION ° Se'ect 0pt|ma| .
? 7 communication reflectively

QoS DL IDL
ORB ruN-1IvE e Re-factor component QoS

. eaveror i) gspects into their containers

C PORTABLE OBJECT ADAPTER

Douglas C. Schmidt

(" SINHAT
“ALRINOES)
SADIAYES VEOD

B

o REAL-TIME ORB CORE e Dynamically load/unload
O & XPORT - component

PROTOCOLS A A
0S KERNEL |mplementat|ons
REAL-TIME 1/0
SUBSYSTEM
HIGH-SPEED
NETWORK INTERFACE,

OS KERNEL
REAL-TIME 1/0
SUBSYSTEM
HIGH-SPEED
NETWORK INTERFACE,

UC Irvine

High-performance, Real-time ORBs Douglas C. Schmidt

Next Steps: Integrating TAO with ATM 1/O Subsystem
Features

ORB CORE

REACTOR) { REACTOR) (REACTOR) (REACTOR
(20 HZ) (10 HZ) 5 HZ) (1 HZ)
— —

e \ertical integration of QoS
through ORB, OS, and ATM
network

S e Real-time 1/0 enhancements
SOCKET to Solaris kernel

QUEUES

APIC ATM DRIVER AAE
QUE

| 7{0)
SUBSYSTEM

< wO0ONO0AEN

e Provides rate-based QoS
end-to-end

e Leverages APIC features for
cell pacing and zero-copy
buffering

nxEHTO®

UC Irvine

High-performance, Real-time ORBs
Next Steps: Strategized Scheduling Framework

sruct RT_Info
{

Douglas C. Schmidt

OFF-LINE

High-performance, Real-time ORBs Douglas C. Schmidt

Next Steps: Open ATM Signaling & Control

NETWORK SWITCH CONTROLLER

NETWORK OPERATIONS

we_exec_time_; (SCHEDULER'S

period_;

INPUT

3. ASSIGN STAT/C PRIORITYAND STATIC SUBPRIORITY

CENTER - ENDSYSTEM

SERVICE TAO
SIGNALING
PROCESSOR
criticality_; MANAGER /RESOURE
MANAGER_

meoramo_e > ; N INTERFACE) % 4. MAP STATIC PRIORITY, DYNAMIC SUBPRIORITY, AND ENDSYSTEM A

lependencies ;

. RT_NFO STATIC SUBPRIORITYINTO DISPATCHING PRIORITY TAO @R
REPOSITORY AND DISPATCHING SUBPRIORITY

1. SPECIFY RT_OPERATION 2. POPULATE SCHEDULING 5. ASSESS SCHEDULABILITY A
STRATEGY HIGH - BANDWI '\ J LATENCY
6. ASSIGN DISPATCHING QUEUE CONFIGURATION VIDEO/AUDIO CIATA. _ [contrOL

TR0 @

MANAGE

CONNECTREQUEST

| SWITCH STATUS STATS
CHANGE} - - ONFIG

EVENT: PORT_DOWN

CHARACTERISTICS AND RT_INFO
DEPENDENCIES REPOSITORY

8. CONFIGURE QUEUES BASED
ON DISPATCHING QUEUE
CONFIGURATION

10. DYNAMIC QUEUES ASSIGN
DYNAMIC PORTIONS OF
DISPATCHING SUBPRIORITY
(AND POSSIBLY

DISPATCHING PRIORITY)

ORB CORE

ORB ENDsYSTEM

(SCHEDULER'S
OUTPUT
INTERFACE)

e

RT_INFO
REPOSITORY

ON-LINE

7. SUPPLY DISPATCHING QUEUE
CONFIGURATION TO THE ORB

9. SUPPLY STATIC PORTIONS OF
DISPATCHING PRIORITY AND
DISPATCHING SUBPRIORITY
TO THE ORB

www.cs.wustl.edu/~schmidt/dynamic.ps.gz

UC Irvine

DO

HIGH -PERFORMANCE . ! MULTICAST
HIGH - BANDWIDTH NETWORK ELEMENT SPC[— HIGH -BANDWIDTH
BULK DATA ' VIDEO/AUDIO

HIGH -PERFORMANCE NETWORK ELEMENT

TAO QoS
ENDSYSTEM B PORT MANAGER ENDSYSTEM C
CONTROLLER

USER
KERNEL ACTIVE NETWORK
RESOURCE CONTROLLE]
WEIGHTED - P FLOW
FAIR z CLASSIFICATION
veune /] £ RouTER
Q = AIND ROUTING

|
/ ATM PORT INTERCONNECT CONTROLLER (APIC) I
NATIVE ATM BYPASSES THROUGHAPIC

D-O-C

UC Irvine

auIAIl DN

saiuadoud
pue sabessaw aouewlopad ybiy 106 0y
[0JJU0D 10} YEHOD S9SN e I3jsuel] Blep Ioj S}19Y00S e

Annaixe|4 Aousioyq
zB sd AeipIuyds~/npa pSNM: SO MMM

WV3dl1s
VIAGIWILINIA

Joidepy
weais

(eomos) | m 0uIs)
wodps B jonuoD jonuod W wod-pug

ade o] 93 lRIu|
elep Mo
1ep Mol4 weans weens ©eep Mol

sSgHO awi-feay ‘@auewlopad-ybiH

Douglas C. Schmidt

High-performance, Real-time ORBs

Web URLSs for Additional Information

e These slides: ~schmidt/TAO4.ps.gz

e More information on CORBA: ~schmidt/corba.html

e More info on ACE: ~schmidt/ACE.html

e More info on TAO: ~schmidt/TAO.html

e TAO Event Channel: ~schmidt/JSAC-98.ps.gz

_protocols.ps.gz

e TAO dynamic scheduling: ~schmidt/dynamic.ps.gz
e ORB Endsystem Architecture: ~schmidt/RIO.ps.gz

e TAO static scheduling: ~schmidt/TAO.ps.gz
e Pluggable protocols: ~schmidt/pluggable

UC Irvine

auIAIl DN

uoneinbiyuoo
pue uonelbajul
aziseydw3 e

yred so® woul yred
Jeuonouny ajdnodaq e

sawayl Aoy
/sladed/wo02 uqQq sSWalISAS-1SIp MMM

LSOH YIAYAS JSHOMLIN ANITHIIM/SSHTHIIM LSOH INAITD

SUTOVNVIC SUTIVNVI
2OUNOSTH 2UN0STA
ST000104d 29 ST000104d %

WALSAS ONILVIIdO WHLSAS ONILVIAdO

TAVAITAAIN 104INOD \ | [$40LDATI0 TAVATTAAIAN
AANLOMALSVAANI HIQIHANYS snavis V FANLONALSVHANT
AV TAAN SISINVHOAW SOO AV TAAN

NOLLOERILSIA

NOLLOERLLSIA

SADIAYES oee SEDIANAS
NOIWINOD HIAV'T A Arod v AEE%EV
SHADVNVIN SOO

HALLIVAV SO0

o—
@ (INVANAES) anfeA uanjaa + s3ie jno
S@BO O:eﬁ«..omc

sSae ur =

(OvL/ond
“6'a) arema|ppIN aAndepy :sdo1s 1XeN

sSgHO awi-feay ‘@auewlopad-ybiH

Douglas C. Schmidt

Next Steps: Distributed Interactive Simulations

High-performance, Real-time ORBs

MIB

TAO

SPC
HARDWARE

—>
S —

AGENT ARCHITECTURE

|

UC Irvine

High-performance, Real-time ORBs Douglas C. Schmidt

Web URLs for Additional Information (cont'd)

e Network monitoring, visualization, & control: ~schmidt/NMVC.html
e Performance Measurements:

— Demuxing latency: ~schmidt/COOTS-99.ps.gz
— Sll throughput: ~schmidt/SIGCOMM-96.ps.gz
— DIl throughput: ~schmidt/GLOBECOM-96.ps.gz
— ORB latency & scalability: ~schmidtiieee _tc-97.ps.gz
— |IOP optimizations: ~schmidt/JSAC-99.ps.gz
— Concurrency and connection models: ~schmidt/RT-perf.ps.gz
— RTOS/ORB benchmarks:
~schmidt/RT-OS.ps.gz
~schmidt/words-99.ps.gz

UC Irvine

