
Configuring Function-based Communication
Protocols for Multimedia Applications

Douglas C. Schmidt Burkhard Stiller
Tatsuya Suda Martina Zitterbart

Info. and Comp. Sci. Dept. Institute of Telematics
University of California, Irvine University of Karlsruhe

Irvine, California, USA1 Karlsruhe, Germany

This paper appeared in the proceedings of the 8th IFIP
International Working Conference on Upper Layer Protocols,
Architectures, and Applications in Barcelona, Spain, June
1994.

Abstract

Next generation communication systems must support di-
verse applications operating over high-performance local,
metropolitan, and wide area networks. This paper describes
a framework that contains a number of resource, language,
and tool components for generating customized protocols
to support diverse multimedia applications running in high-
performance network environments. These components help
to simplify the process of generating application-tailored
communication protocols by automating many development
and configuration steps. A collaborative distance learning
application scenario is presented to motivate and demon-
strate techniques used to compose function-based protocols
that are customized for particular application requirements.
In addition, the structure of a protocol resource pool that
contains reusable protocol function building-blocks is also
examined.

1 Introduction

The communication requirements of emerging distributed
applications are becoming increasingly diverse. Therefore,
it is important to develop high-performance communication
subsystems that efficiently and flexibly support this diver-
sity, particularly for multimedia applications (such as scien-
tific visualization, medical imaging, and collaborative work
projects) that run on high-performance local and wide-area
networks (such as FDDI and ATM-based B-ISDN). How-
ever, traditional communication models and protocols may
be inadequate to support the requirements of the emerging

1Portions of the University of California, Irvine material is based upon
work supported by the National Science Foundation under Grant No. NCR-
8907909. This research is also supported in part by grants from the Uni-
versity of California MICRO program, Nippon Steel Information and Com-
munication Systems Inc. (ENICOM), Hitachi Ltd., Hitachi America, and
Tokyo Electric Power Company.

applications. For example, excessive layering in commu-
nication models such as the OSI reference model results in
redundant functionality and limits the potential for process-
ing protocols on parallel platforms [1].

One method for addressing the inadequacies of tradi-
tional communication models and protocols involves cre-
ating application-tailored protocols that execute efficiently
on a variety of hardware and operating system platforms
[2]. This paper describes a suite of languages, resources,
and tool components that form an integrated framework to
facilitate the development of application-tailored protocols.
The components in this framework automate many steps in-
volved with generating customized protocols that run in par-
allel on heterogeneous platforms such as message passing
transputers [3] and shared memory multi-processors [4]. In
general, the application-tailored protocols described in this
paper share two related characteristics. First, they are based
on a de-layered communication model, rather than a con-
ventional layered model [1]. Second, they are composed
of reusable protocol function building-blocks (such as ac-
knowledgement, retransmission, segmentation, reassembly,
and sequencing). These functions serve as resources that
may be flexibly combined to generate efficient, de-layered
protocols.

The special-purpose language components presented in
this paper describe and manipulate the protocol function re-
sources in a systematic, flexible manner. The tool compo-
nents [5] use the protocol function resources and languages to
automatically transform platform-independent descriptions
of protocol functionality into executable protocol machines
that are optimized for a specific target platform. The target
platforms supported by this framework differ in terms of op-
erating system and hardware aspects such as the number of
available processing elements, interprocess communication
mechanisms, memory and bus architectures, and the network
interface devices. However, many of the same resources, lan-
guages, tools, and underlying architectural principles may be
applied on the different platforms.

The paper is organized in the following manner. Sec-
tion 2 gives an overview of the function-based communica-
tion model and defines the terminology used in this paper.
Section 3 presents a collaborative distance learning applica-
tion that motivates and demonstrates the use of a function-

1

SE
SS

IO
N

 3

SE
SS

IO
N

 2

SE
SS

IO
N

 1

NETWORK

SESSION
MANAGER

PROTOCOL
MACHINE

DATA
STREAM

CONTROL
STREAM

APPLICATION B

MULTIPLEX/DEMULTIPLEX

APPLICATION A

Figure 1: Components in the Function-based Communication Model

based approach for generating protocols that are customized
for different types of multimedia traffic. Section 4 illustrates
examples of a flowgraph-based language that describes each
customized protocol used in the application scenario. Sec-
tion 5 outlines a set of resources and tools that automate
the generation of executable protocols described via the lan-
guages presented in earlier sections. Section 6 summarizes
the paper and presents concluding remarks.

2 Overview of the Function-based
Communication Model

The languages described in this paper are based upon the
function-based communication model described in [1]. In
this model, conventional coarse-grain hierarchical protocol
layers are replaced by a communication subsystem that is
decomposed into finer-grain protocol functions. Typical ex-
amples of protocol functions include flow control, error con-
trol, acknowledgment, and connection establishment. Each
protocol function may be implemented via alternative proto-
col mechanisms. For instance, the flow control function may
be implemented by either window-based and/or rate-based
mechanisms.

Protocol functions serve as building-blocks for various ar-
chitectural components that support the function-based com-
munication model. For example, a particular set of functions
may be combined to form a protocol machine. Each protocol
machine is customized to support an application data stream.
A data stream represents a uni-directional flow of applica-
tion data between one or more communicating end-systems.
To increase the potential for parallel processing, the sender
and receiver portions of a protocol machine are decoupled as
much as possible in the end-systems [6].

To support complex multimedia applications (such as col-
laborative distance learning or teleconferencing), multiple
data streams may be consolidated to form a session. A session
manager coordinates the protocol machines for related data

streams within each session. For instance, a session manager
handles session control information (such as synchronization
points for synchronized audio and video data streams) and
performs various management tasks such as adding, modify-
ing, or deleting data streams dynamically. Each data stream
in a session is implemented by a separate protocol machine
that is customized for a specific set of application require-
ments during a particular time period. Furthermore, a proto-
col machine may be updated at run-time to adapt to changes
in the application, local and remote operating systems, or
underlying network [7].

Figure 1 depicts the relationships between the various com-
ponents in the function-based communication model outlined
above. In this figure, Application A maintains two sessions.
Session 1 contains two outgoing data streams and one in-
coming data stream and Session 2 contains a single outgoing
data stream. Each stream is implemented by a different pro-
tocol machine, and all protocol machines in a session are
coordinated by a session manager. The network interface
component is responsible for demultiplexing incoming ap-
plication data onto a particular protocol machine associated
with a unique session/data stream combination. This strategy
enables the selected protocol machine to process data without
requiring additional demultiplexing operations. This “non-
layered” multiplexing approach [8, 9] reduces jitter, enables
the provisionof quality-of-serviceguarantees on a per-stream
basis, and enhances parallel execution performance by mini-
mizing synchronization overhead.

In general, the motivations for utilizing a function-based
approach are to enhance service flexibility and to improve
communication subsystem performance in order to better
satisfy application requirements. Applications may precisely
specify their quantitative and qualitative requirements via a
flexible service interface described in [1]. This interface
enables the communication subsystem to select or gener-
ate customized protocol machines that use protocol func-
tions as their basic building-blocks. These protocol ma-
chines are specially-tailored to contain the minimal set of

2

NETWORK

TEXT
STREAM

TEXT/
VIDEO/
AUDIO

STREAMS

RELIABLE
MESSAGE

REMOTE
PERSISTENT

STORAGE

PARTICIPANT

PARTICIPANT

PARTICIPANT PARTICIPANT

TRANSCRIBER

SPEAKER

Figure 2: Topology of the Collaborative Distance Learning Application

functions required to perform a particular service. In addi-
tion, protocol functions form a convenient level of abstrac-
tion that is amenable to parallel execution on various multi-
processor platforms. Performance measurements indicate
that this function-based communication model is a promising
approach for developing high-performance transport systems
[3].

3 Collaborative Distance Learning Sce-
nario

This section describes the functionality of the key architec-
tural components in a “collaborative distance learning” ap-
plication. This application is used throughout the remainder
of the paper to motivate and demonstrate the languages, re-
sources, and tools provided by a framework that supports the
function-based communication model. In this application
scenario, a designated speaker gives an interactive presenta-
tion to participants,who are distributed throughouta network
(illustrated in Figure 2). The audio and video images of the
speaker are distributed uni-directionally to all participants in
real-time. Each participant watches and listens to the speaker
via computer end-systems that possess audio, video, and tex-
tual display capabilities, as well as text input capability from
a keyboard. Although participants do not have voice or
video transmission devices, they may compose and submit
questions via their keyboard. These questions are delivered
interactively to the speaker using a textual format. Ques-
tions arriving from participants are queued and the speaker
is notified. When the speaker selects a question to answer,
the question is displayed in a small window on the console
of each participant. In addition, one or more of the partici-

pants may transcribe the lecture interactively, storing the text
in a remote persistent storage device (such as a network file
server) for subsequent retrieval.

This scenario makes several assumptions about the net-
work environment where the application runs. For exam-
ple, it is assumed that an unreliable multicast service is pro-
vided by the underlying network (such as FDDI or FDDI-
II). This service supports the audio and video data streams,
which are multicast by the speaker’s end-system to all par-
ticipants. From the perspective of the application and the
protocol machines, the network multicasting service is ac-
cessible by simply supplying a multicast group address with
a transmitted message. Under other circumstances, however,
multicasting may require additional support from the trans-
port system. For instance, multicast is not performed by the
underlying network in certain environments (such as a wide-
area B-ISDN network). In this case, the protocol machines
that implement audio and video transmissions must provide
multicast functionality explicitly. In addition, the example
assumes that the underlying network is capable of providing
certain quality-of-service guarantees for the bandwidth and
error rates necessary to support the audio and video streams
effectively.

Figure 3 depicts a “snapshot” of the collaborative distance
learning application in operation. This figure illustrates the
protocol machines in the end-systems of the speaker and one
participant (the end-systems of other participants are config-
ured similarly). The speaker possesses a multimedia-capable
end-system equipped with a camera, a microphone, a display
console, and a keyboard. Each data stream in the commu-
nication subsystem of an end-system is implemented via a
separate protocol machine. The protocol machines are co-
ordinated by a session manager that synchronizes the audio

3

SESSION

TEXT
RECV

AUDIO
RECV

VIDEO
RECV

SESSION

RMSG
RECV

TEXT
SEND

AUDIO
SEND VIDEO

SEND

Question:
what is

e = mc2?

TEXT
STREAM

TEXT/
VIDEO/
AUDIO

STREAMS

RELIABLE
MESSAGE

SESSION
MANAGER

PROTOCOL
MACHINE

NETWORK

P
A

R
T

IC
IP

A
N

T

S
P

E
A

K
E

R

RMSG
SEND

Figure 3: Dynamic Snapshot of the Communication Subsystem

and video streams. In addition, the speaker’s session contains
a connectionless, reliable message protocol machine for re-
ceiving questions from individual participants. Conversely,
the text, video, and audio protocol machines on the speaker’s
end-system maintain connections to all participants. Con-
nections are used in the network and/or the transport system
of the end-systems to ensure that the necessary quality-of-
service levels are provided.

The information presented by the speaker is captured and
transmitted in real-time to participant end-systems, where
the video and text information is simultaneously displayed
on a console and the audio is played over a loudspeaker.
The participant end-systems also maintain separate protocol
machines for receiving audio, video, and text. In addition,
the participants may ask questions that are sent to the speaker
via a reliable message protocol machine. The text stream on
the speaker’s end-system multicasts these questions to all
participants for the duration of the speaker’s answer.

Each protocol machine is implemented in a de-layered
manner corresponding to the principles of the function-based
communication model. De-layering involves combining the
functionality of the network layer and the transport layer
within each protocol machine. The primary motivations for
adopting a de-layered approach are to eliminate redundant
and/or extraneous functionality in the protocol machines, as
well as to increase the opportunity for processing the proto-
col machines concurrently on parallel platforms. The char-
acteristics of each protocol machine mentioned above are
discussed further in the following section.

4 Application-Tailored Protocol Ma-
chines

This section illustrates and examines the protocol machines
for the audio and video used in the collaborative distance
learning application (the text and reliable message streams
are omitted to save space). These data streams exchange dif-
ferent types of informationusing the network and end-system
environment described in the scenario from Section 3. Each
stream is implemented via a separate protocol machine that is
customized for the quantitative and qualitative requirements
of the data it transmits or receives. Quantitative requirements
involve criteria that may be evaluated in terms of measures
such as “bits per-second throughput” or “the number of bit
errors tolerated per-PDU.” Qualitative requirements specify
the services related to session management, stream manage-
ment, and data unit management [1], and may be described
in terms of nominal attributes such as “inter-stream synchro-
nization,” and “in-sequence and/or unduplicated delivery of
data.”

The following subsections present the quantitative [10, 11,
12] and qualitative [1] requirements for several of the data
streams in the example scenario. In addition, the protocol
functions and mechanisms used by the audio and video pro-
tocol machines are also described (the text and reliable mes-
sage protocol machines are omitted due to space limitations).
The figures depict the sending and receiving protocols ma-
chines separately since each protocol machine implements a
uni-directional data stream. In addition to transmitting data,
however, a uni-directional sender must also be capable of re-

4

ANCHOR
ANCHOR

NODE

PROTOCOL
PROTOCOL

NODE

TIMER
TIMER
NODE

SINK
SINK
NODE

CONTROL
NODE

BARRIER

SELECTOR

SYMBOL DEFINITION EXAMPLE
INDICATE THE ENTRY AND EXIT POINTS INTO AND OUT OF A
PROTOCOL MACHINE. LOCATED AT THE SERVICE ACCESS POINTS
WITHIN AND AROUND THE COMMUNICATION SUBSYSTEM.

REPRESENT PROTOCOL FUNCTIONS THAT ACCESS AND/OR MODIFY
APPLICATION DATA AND CONTROL INFORMATION THAT FLOWS
THROUGH A PROTOCOL MACHINE.

REPRESENT CERTAIN TIMER-DRIVEN PROTOCOL FUNCTIONS THAT ARE
INVOKED ASYNCHRONOUSLY WITH RESPECT TO THE REGULAR FLOW
OF CONTROL IN A PROTOCOL MACHINE.

REPRESENT PROTOCOL FUNCTIONS THAT DO NOT PROPAGATE DATA
OR CONTROL UNITS OUTSIDE A PROTOCOL MACHINE (SINK NODES
ARE CHARACTERIZED BY THE ABSENCE OF OUTGOING EDGES).

REPRESENT SPECIAL "PSEUDO-FUNCTIONS" THAT DETERMINE THE
ACTION(S) TO PERFORM NEXT, RATHER THAN PERFORM ACTUAL
PROTOCOL FUNCTION PROCESSING.

DICTATES THAT ALL INCOMING CONTROL FROM PREDECESSOR
NODES MUST SYNCHRONIZE BEFORE FURTHER PROCESSING OCCURS.
TYPICALLY USED IN CONJUNCTION WITH CONTROL NODES.

A NODE WITH MORE THAN ONE OUTGOING EDGE MAY INDICATE A
DECISION POINT IN THE PROTOCOL MACHINE´S FLOW CONTROL. A
SELECTOR DICTATES THAT ONLY ONE SUCCESSOR MAY BE FOLLOWED.

COPYING SDUS INTO BUFFERS.
DEMULTIPLEXING SDUS TO
APPROPRIATE PROTOCOL MACHINE

SEGMENTATION/REASSEMBLY,
LIFETIME CONTROL, ROUTING,
FLOW CONTROL, CHECKSUMMING

RETRANSMISSION AND
ACKNOWLEDGEMENT, JITTER
CONTROL

OPTION HANDLING,
ERROR HANDLING FOR
UNRELIABLE PROTOCOLS

HEADER COMPLETION,
HEADER VALIDITY CHECKING

HEADER COMPLETION
HEADER VALIDITY CHECKING

CHOICE BETWEEN CONNECTION
CONTROL, URGENT DATA, AND
REGULAR DATA PROCESSING

Figure 4: Symbols in the Flowgraph-based Protocol Machine Configuration Language

ceiving control information (such as acknowledgements for
connection establishment and termination requests) that is
fed back from the peer protocol machine(s).

The protocol machines appearing in figures throughout this
section are portrayed via the flowgraph-based configuration
language summarized in Figure 4 and described in detail in
[2]. This language concisely describes the protocol func-
tion building-blocks in each protocol machine and depicts
their interrelationships. The flowgraph language also indi-
cates opportunities for exploiting parallelism between proto-
col functions within a protocol machine. Related examples
of function-based techniques for decomposing and paralleliz-
ing existing protocols such as TCP are described in [13, 2].
Other related work addresses issues such as architectures that
support function-based protocol decomposition [14, 15] and
graph- and shape-based protocol configuration techniques
[16, 17]. To increase clarity, the protocol mechanisms that
implement each functionare omitted in the figures. However,
these mechanisms are discussed in the text.

4.1 Audio Protocol Machines

An audio stream is used to transmit isochronous voice traf-
fic from the speaker to the participants. It is implemented via
separate sender and receiver protocol machines containing
protocol functions that support the quantitative and qualita-
tive requirements of audio traffic. The quantitative require-
ments for an audio stream depend on the level of quality
requested by the application. For example, if regular tele-
phone quality audio is desired then 64 kBit/s is sufficient.
However, if CD-quality audio is desired, each audio stream
may require approximately 1.4 MBit/s of bandwidth (certain

RETRANSMIT

ROUND

TRIP TIME

CONNECTION

DYNAMICS

SEND

SDU

ROUTING
CONNECTION

EST./TERM.

CONNECTION

CONTROL

SEND

CHECKSUM

COMPLETE
HEADER

SEQUENCING
COMPOSE

DATA. REQ.

DATA

TRANSFER

COMPLETE
HEADER

ANCHOR
ANCHOR

NODE
PROTOCOL

NODE TIMERTIMER
NODE SINK

SINK
NODE

CONTROL
NODE BARRIER

SELECTOR

RECEIVE

SDU

FROM

CONNECTION

CONTROL

RECEIVE

STREAM

SYNC.SEGMENT

Figure 5: Protocol Machine for Audio or Video Sender

compression techniques enable the reception of high-quality
audio using a 64 kBit/s channel). Bit error rates of 10�4

or PDU error rates of 10�7 are tolerable if no compression
techniques are used; these error rates become more stringent
if compression is applied. In addition, the inter-PDU jitter
in an audio stream should not exceed 10 ms. The qualitative
requirements for an audio stream include multicast transmis-
sion, with in-sequence delivery of data at the receiver, syn-
chronization with the associated video stream, and a small,
fixed-sized maximum data unit.

Figure 5 illustrates a protocol machine that implements
the sender portion of an audio stream. The protocol machine
is connection-oriented to expedite the detection and removal

5

SEND

SDU

DATA

RECEPTION

STREAM

SYNC.

LIFETIME

CONTROL
CHECKSUM

DUPLICATE

CONTROL

CONNECTION

CONTROL

RECEIVE

LOCATE

CONNECTION

VALIDATE
HEADER

CONNECTION

EST./TERM.

RECEIVE

SDU

SEQUENCE

CHECK

JITTER

CONTROL

TO

CONNECTION

DYNAMICS

ANCHOR
ANCHOR

NODE
PROTOCOL

NODE TIMERTIMER
NODE SINK

SINK
NODE

CONTROL
NODE BARRIER

SELECTOR

Figure 6: Protocol Machine for Audio or Video Receiver

of duplicates and out-of-sequence data units. The CONNEC-
TION ESTABLISHMENT AND TERMINATION function handles
connection management issues (such as the retransmission
of a connection request if no acknowledgement is received
after a certain period of time). The routing identifier for
each protocol machine is selected when a connection is first
established. Thereafter, the entire network/host/connection
address of participants need not be included with subsequent
data transmissions.

The RETRANSMIT and CHECKSUM calculation functions are
used in the connection control and connection dynamics por-
tions of the protocol machine to implement reliable end-
to-end connection establishment and termination semantics.
Due to the isochronous, loss tolerant properties of audio data,
however, the data transfer portion of the protocol machine
provides neither retransmission nor checksumming of au-
dio protocol data units (PDUs). However, a checksum of
the PDU header is calculated to prevent the accidental ac-
ceptance of corrupted PDUs at the receiver(s). In addition,
certain network properties may be used to further refine the
protocol machine during connection establishment. For ex-
ample, segmentation must be performed if the maximum
transmission unit (MTU) size of the network is smaller than
the maximum size of the application’s audio service data
units (SDU). On the other hand, if the MTU is larger than
the maximum SDU (and assuming that the route is fixed),
the SEGMENT function may be eliminated from the protocol
machine entirely at connection establishment time [2].

Each SDU is assigned a unique sequence number. More-
over, if segmentation is necessary, each segment is also num-
bered to enable reassembly at the receiver. The contents of
the data unit header are completed by storing the sequence
number and data request PDU template (which contains in-
formation such as the PDU-type, the route, and the destina-

SEGMENT

SEND

CONGESTION

CONTROL

ROUND-TRIP

TIME

CONNECTION

DYNAMICS

TO/FROM

 RECEIVE

PERSIST

SEND

SDU

CONNECTION

EST./TERM.

SEQUENCING
COMPOSE

DATA. REQ.

CHECKSUM

RETRANSMIT

KEEP

ALIVE

DATA

TRANSFER

CONNECTION

CONTROL

SEND

RECEIVE

SDU

COMPLETE
HEADER

COMPLETE
HEADER

MULTICAST

ROUTING
CONNECTION

EST./TERM.
SET

OPTIONS

ANCHOR
ANCHOR

NODE
PROTOCOL

NODE TIMERTIMER
NODE SINK

SINK
NODE

CONTROL
NODE BARRIER

SELECTOR

Figure 7: Protocol Machine for Text Sender

tion connection identifier which are assumed to be fixed for
each PDU after connection establishment) together with the
associated stream synchronization information. The STREAM

SYNCHRONIZATION function calculates this information (such
as playout times, maximum retrieval times, or inter-channel
synchronization points [18]) to synchronize the separate au-
dio and video data streams. This synchronization informa-
tion is inserted into each PDU header and extracted by the
receiver. This example assumes that audio transmission is
either uncompressed or a constant bit rate compression tech-
nique is used. Therefore, SDUs are always fixed-size and
the synchronization information may be added directly into
SDU headers. Finally, completed data units or connection
requests are transmitted via the SEND SDU function to the
network interface.

The receiver-side of the audio protocol machine is shown
in Figure 6. Once the appropriate connection record is lo-
cated, the receiver invokes either the connection control re-
ception functions or the data reception functions. In the con-
nection control case, the receiver performs the CHECKSUM,
the LIFETIME CONTROL, and DUPLICATE CONTROL functions
(potentially in parallel) on incoming PDUs. These functions
are necessary to ensure the reliability of connection estab-
lishment and termination. On the other hand, the data path
of the receiver’s protocol machine is streamlined since it rep-
resents the critical processing path. For example, incoming
PDUs need not be acknowledged, nor are checksum calcu-
lations performed on the data portion of the PDU. The SE-
QUENCE CHECK function is performed since out-of-sequence
data may require queueing. In particular, only in-sequence
SDUs are passed to the JITTER CONTROL function, which then
consults the receiver’s STREAM SYNCHRONIZATION function.
This function examines the appropriate fields in the PDU
header and passes this information to the session manager in
the receiver’s session. The session manager ensures that the
audio stream is synchronized with the corresponding video

6

stream. PDUs are discarded if their useful playing time has
expired. For example, if out-of-date SDUs arrive at the re-
ceiver, either the JITTER CONTROL function will not deliver
them to the application or a default SDU containing “white-
noise” will be inserted into the flow of SDUs. Either approach
may result in a small, but acceptable, level of distortion in
the audio stream.

4.2 Video Protocol Machines

The video stream periodically transmits visual samples of
the speaker to participants throughout the network. As with
audio, the quantitative requirements for video depend on the
selected compression techniques. For example, the band-
width requirements of an uncompressed video stream are ap-
proximately 150 MBit/s. If variable compression techniques
are used, however, this amount may be reduced to approxi-
mately 32 MBit/s. Reliability requirements also depend on
the compression technique. Bit error rates of � 10�2 and
PDU error rates of� 10�3 must be provided by the underly-
ing network, otherwise the necessary image quality may not
be assured. However, the amount of tolerable SDU loss may
be higher for video, depending on the technique selected for
encoding video control information (such as the color table)
and picture image information. If these two types of informa-
tion are transmitted in different PDUs, the loss rate must be
smaller than 10�9 for the control units and smaller than 10�3

for data units. On the other hand, transmitting the informa-
tion as combined PDUs results in an acceptable loss of 10�5.
In addition, up to a certain threshold, duplication of PDUs
does not adversely affect the video quality. The delay jitter
requirements have a maximum of 10 ms. The qualitative re-
quirements for video are also similar to audio. For example,
video requires in-sequence delivery of isochronous samples
that are synchronized with the associated audio stream.

The sender and receiver protocol machines that represent
the protocol machine for transmitting constant bit rate com-
pressed video stream are practically identical to the ones
shown for the audio stream in Figures 5 and 6. Although the
quantitative bandwidth requirements of video transmission
are substantially larger than audio, these quantitative differ-
ences do not directly affect the existence or absence of the
selected protocol functions. Instead, they primarily affect the
mechanisms used to implement the functions. The similarity
between the audio and video protocol machines enables the
direct reuse of many protocol mechanisms, particularly those
involving connection control and connection dynamics.

In this example, the only protocol mechanisms imple-
mented differently in the receiver for the video stream ver-
sus the audio stream are the mechanisms for the SEQUENCE

CHECK and JITTER CONTROL functions. In particular, if no
SDU is available to deliver to the application (e.g., if the sub-
sequent SDU did not arrive in time or was discarded due to
buffer overflow or corruption), the previously received video
SDU may be passed to the application again. Although this
strategy may reduce the quality of the video slightly, it is
an acceptable loss recovery strategy as long as the picture

OPTION

HANDLING

SEND

SDU

CHECKSUM

RESEQUENC-
ING

RECEIVE

CONNECTION

CONTROL

RECEIVE

LOCATE

CONNECTION

RECEIVE

SDU

DATA

RECEPTION

EXCEPTION

HANDLING

CONNECTION

EST./TERM.

WINDOW

CHECK

ACK

CHECK

PATH

SEQUENCE

CHECK

FLAG

TEST

TO/FROM

CONNECTION

DYNAMICS

VALIDATE
HEADER

ANCHOR
ANCHOR

NODE

PROTOCOL
PROTOCOL

NODE

TIMERTIMER
NODE

SINK
SINK
NODE

CONTROL
NODE

BARRIER

SELECTOR

Figure 8: Protocol Machine for Text Receiver

remains comprehensible. In general, although both the video
and audio protocol machines discard out-of-date SDUs, the
video machine may resubmit an earlier SDU to the appli-
cation, whereas the audio protocol machine submits either
nothing or white-noise.

4.3 Text Protocol Machines

The text stream serves two purposes in the multimedia
application scenario. First, it is used to forward participant
questions received by the speaker to the other participants.
Second, it implements the text stream used by participants
who store and retrieve transcriptions of the speaker’s pre-
sentation in the remote persistent storage repository. Most
quantitative requirements of the text stream are less demand-
ing than those for voice and video. For example, a single
page of text requires approximately 20 kBit of data. De-
pending on the specific delay requirements, the bandwidth
necessary to transmit data via the text stream may vary. For
example, transmitting 20 kbit of data while maintaining a
1 sec maximum delay requires a bandwidth of 20 kBit/s. If
the same amount of data is transmitted within 0.1 sec the
bandwidth requirements increase to 200 kBit/s. The cur-
rent application has minimal delay requirements and no jitter
control is required. On the other hand, the reliability require-
ments are quite stringent and the text stream must provide
completely reliable service (i.e., zero bit or PDU errors).
The qualitative requirements of the text stream necessitate
in-sequence, non-duplicated delivery, a reliable multicasting
facility, and potentially segmented delivery. Many existing
protocols (such as TCP and TP4) provide efficient transmis-
sion of reliable, in-sequence, non-duplicated text. However,
these conventional protocols do not define a standard multi-

7

casting service. Therefore, an application-tailored protocol
machine for multicasting textual data is presented here. Note
that there is no need to synchronize the text stream with the
other data streams.

As illustrated in Figure 7, the connection-oriented proto-
col machine for the text sender contains three distinct com-
ponents: connection control send, connection dynamics, and
data transfer. The connection control send component is
essentially identical to the ones used for the audio/video
senders since it requires the same functionality. The con-
gestion control and connection maintenance functions (such
as the round-trip time estimates and the keep alive and per-
sist timers) in the connection dynamics component are also
similar to the audio/video protocol machines. The primary
difference is that the text stream must handle retransmission
of multicast data to participant end-systems. Note that por-
tions of the connection dynamics component are shared by
both the sender and receiver protocol machines. The data
transfer component is enhanced to handle multiple options
(such as extending the size of the flow control window) and
therefore contains additional functions to check PDU flags
and window credits.

The receiver part of the text stream protocol shown in Fig-
ure 8 involves two parts, only one of which is selected at
run-time. The appropriate selection depends on the type of
PDU that is received, as well as the state of the protocol ma-
chine associated with the located connection record. When a
PDU is received, multiple tests (such as WINDOW, SEQUENCE,
and ACK CHECK) are performed, along with the CHECKSUM

calculation and the FLAG TEST (which determines whether a
connection control PDU or a data PDU has arrived). These
tests may be performed concurrently, depending on the level
of parallelism available on an end-system. If no errors are
encountered and a data PDU has arrived, the data reception
portion of the receiver resequences the incoming text seg-
ments and passes them up to the application. If a connection
establishment or termination PDU is received, the connec-
tion control functions are performed. Depending on the er-
ror reporting mechanism, the EXCEPTION HANDLING function
may either do nothing (e.g., if the sender uses a timer-based
retransmission mechanism) or it may inform the sender to
retransmit some or or all data if errors are detected (e.g., if a
selective repeat mechanism is used).

4.4 Reliable Message Protocol Machines

A reliable message stream is used to transmit questions from
participants to the speaker. Since there may be many partic-
ipants, a dedicated connection is not established in advance
between each participant and the speaker, nor are direct con-
nections maintained between the participants. This approach
reduces the amount of context information that must be stored
at the end-systems of the speaker and the participants [19],
which enhances the scalability of the collaborative distance
learning application.

The quantitative requirements of the reliable message ser-
vice are similar to the text version. For instance, no PDU

RETRANSMIT

SEND

SDU

ROUTING

SEQUENCING
COMPOSE

DATA. REQ.

DATA

TRANSFER

FROM

RECEIVER

RECEIVE

SDU

CHECKSUM

COMPLETE
HEADER

SEGMENT

ASSIGN

IDENTIFIER

ROUTING

RELIABILITY

DYNAMICS

ANCHOR
ANCHOR

NODE
PROTOCOL

NODE TIMERTIMER
NODE SINK

SINK
NODE

CONTROL
NODE BARRIER

SELECTOR

Figure 9: Protocol Machine for Reliable Message Sender

or bit errors are permitted since reliable service is required.
The throughput requirements vary depending on the amount
of data to transmit and the maximum acceptable delay. The
qualitative requirements of the application are somewhat less
stringent than the text stream, however. For example, mul-
tiple questions from a single participant may be delivered
out-of-sequence (since the speaker is free to answer ques-
tions in any order). As with the text stream example, no
synchronization is required with other streams in the sce-
nario.

The protocol machines describing the sender and receiver
portion of the reliable message service are depicted in Fig-
ure 9 and Figure 10, respectively. When a question is sub-
mitted to the protocol machine by a participant, the ASSIGN

IDENTIFIER function grants an identifier to the message that
is unique for the local end-system. This identifier is used
to trigger acknowledgements and retransmissions with the
receiver. Segmentation is required at the sender if the SDU
size of a participant’s question is larger than the underlying
network’s MTU. If segmentation is required, the SEQUENC-
ING function is responsible for numbering the segments that
are created. This information is combined with the result
of the route calculation to form a data request header. The
checksum of the resulting PDU is computed and the PDU is
sent (note that the CHECKSUM and SEND SDU functions may
be combined if the network interface computes the checksum
as it is copying the PDU onto the network).

In the receiver’s protocol machine, every incoming SDU
is de-encapsulated and the resulting PDU is checked (poten-
tially in parallel) for the following three conditions:

8

DUPLICATE

CONTROL

ACK

CHECK

SEND

SDU

DATA

RECEPTION

CHECKSUM

TO

SENDER

RECEIVE

SDU

REASSEMBLY

VALIDATE
HEADER

ACKNOW-
LEDGEMENT

RELIABILITY

DYNAMICS

ANCHOR
ANCHOR

NODE
PROTOCOL

NODE TIMERTIMER
NODE SINK

SINK
NODE

CONTROL
NODE BARRIER

SELECTOR

Figure 10: Protocol Machine for Reliable Message Receiver

1. Duplicate messages are detected and discarded via the
DUPLICATE CONTROL function

2. The ACK CHECK function handles incoming acknowl-
edgements that correspond to unacknowledged mes-
sages

3. The checksum of every PDU is also calculated since
the message protocol machine must protect against bit
errors

The results of these three functions are evaluated in the VALI-
DATE HEADER rendezvous node to determine whether to pro-
ceed with the acknowledgement or the reassembly of seg-
ments. Depending on the condition of the incoming PDU (as
well as the underlying protocol mechanisms), the PDU will
either be discarded, the ACKNOWLEDGEMENT function will
request the retransmission of certain segments, or a positive
ack will be transmitted to the sender.

Unlike the connection-oriented text stream, explicit con-
nection dynamics are not used in the reliable message proto-
col machine since it provides a connectionless service. How-
ever, to maintain reliability and to prevent duplicated PDUs
from confusing the receiver’s protocol machine, an error con-
trol mechanism is employed to recover from lost or damaged
messages or segments. Error control is implemented via
a RETRANSMIT function that uses either a selective-repeat
mechanism or a timer-based mechanism. If there are no er-
rors, the received message will be reassembled and passed to
the application via the SEND SDU function.

4.5 Comparing the Protocol Machines

It is instructive to compare the similarities and differences be-
tween the protocol machines for the four types of application
requirements described above. For instance, a major dif-
ference between the sender portions of the audio/video/text
protocol machines and the reliable message protocol machine
is the absence of the explicit connection control in the mes-
sage sender portion. Likewise, the audio and video protocol
machine include mechanisms to control jitter, whereas the
text and reliable message machines do not.

However, many of the protocol functions used in each pro-
tocol machine are also quite similar. Often, they are simply
interconnected in a different manner and/or select different
protocol mechanisms. For example, all the protocol ma-
chines use similar routing and checksum functions to ensure
reliable delivery for the relevant portions of their PDUs (note
that audio and video do not checksum the data portions of
their PDUs). A comparison of the receiver portions of the
protocol machines illustrates that certain functions may be
used both for the connection control path and/or for the data
reception path. In particular, functions that provide reliable
delivery for the connection dynamics (such as retransmission
and checksumming) may be added or removed from the data
path as necessary.

5 Resource, Language, and Tool Sup-
port

This section outlines a set of resources, languages, and
tools that are used to automate the generation of executable
protocol machines. In addition to simplifying the process
of generating protocols by automating certain development
steps, these tools also facilitate the mapping of platform-
independent protocol machines onto several types of multi-
processor end-system architectures.

5.1 Classes of Tools

Figure 11 illustrates the several classes of tools used to trans-
form high-level descriptions of qualitative and quantitative
application service requirements into lower-level protocol
machines that may be directly executed on a particular tar-
get platform. These tool components access and manipu-
late the descriptors in a protocol resource pool to transform
platform-independent configurations of protocol functional-
ity into executable protocol machine instantiations that may
be optimized for a specific target platform.

Three classes of tools, configuration, synthesis, and map-
ping, are involved in configuring, instantiating,and executing
application-tailoredprotocol machines, respectively. Config-
uration tools derive the platform-independent protocol ma-
chine configuration from the requirements specifications via
a process of selection and ordering. Synthesis tools trans-
form these platform-independent protocol machine config-
urations into executable protocol machine instantiation by

9

PROTOCOL
 RESOURCE

POOL
(PLATFORM A)

PROTOCOL
 RESOURCE

POOL
(PLATFORM B)

SYNTHESIS
TOOLS

PROTOCOL
MACHINE

INSTANTIATION
(PLATFORM B)

PROTOCOL
MACHINE

INSTANTIATION
(PLATFORM A)

MAPPING
TOOLS

INSTANTIATION

INTERFACE

PROTOCOL
MACHINE

INSTANTIATION

PROTOCOL
MACHINE

CONFIGURATION

PROTOCOL
TASK

DESCRIPTORS

PE
PROCESSING

ELEMENT

PROTOCOL
MACHINE

CONFIGURATION
(PLATFORM

INDEPENDENT)

APPLICATIONS

CONFIGURATION
TOOLS

MESSAGE
PASSING

PLATFORM

SHARED
MEMORY

PLATFORM

SERVICE
 SPECIFICATION SESSION

HEADER

STREAM
HEADER

STREAM
SPECIFICATION

SERVICE
INTERFACE

PROTOCOL
DEVELOPERS

PE

PE PE

PEPE

PE PE PE PE

SHARED MEMORY

COMMUNICATION
LINKS

Figure 11: Resources and Tools used during Protocol Generation and Execution

composing and interconnecting protocol mechanism object-
code and related data. Mapping tools transfer the instanti-
ations into the run-time system of the target platform. The
mapping process involves local end-system resource alloca-
tion, placement, and loadingof particular clusters of protocol
mechanisms in the instantiation onto one or more processing
elements. In general, the synthesis and mapping tools per-
form the platform-dependent transformations, whereas the
configuration tools are intended to be platform-independent.
The structure and functionality of these tools is described
further in [5].

5.2 The Protocol Resource Pool

Each protocol machine presented in Section 4 is composed
from a set of protocol resources. These protocol resources
are stored in a protocol resource pool. This resource pool
is an information repository that maintains a semantically-
attributed collection of protocol resource descriptors. These
descriptors may be inserted and manipulated via a protocol
resource descriptor language [2]. This section outlines the
contents of the protocol resource pool.

There are several types of descriptors in the protocol re-
source pool (summarized in Figure 12). A protocol function

descriptor represents tasks such as segmentation, reassembly,
retransmission, connection establishment and termination,
and flow control. Other descriptors include control func-
tions, anchor functions, and pre-defined protocol machine
configurations and protocol machine instantiations. Con-
trol functions are used for synchronizing protocol functions,
as well as to determine which successor function to select
at a multi-path decision point in a protocol machine flow-
graph (cf. Figure 4). Anchor functions perform tasks at the
boundaries of the transport system such as copying PDUs
into system buffers and demultiplexing PDUs to the appro-
priate protocol machines. Protocol machine configurations
are composite entities that contain a set of protocol resource
descriptors, their predecessor and successor relations, and
any synchronization information necessary to coordinate the
protocol functions. A configuration is not directly executable
since it only describes the necessary characteristics of a pro-
tocol machine. A protocol machine instantiation, on the
other hand, is an executable representation of a protocol
machine configuration. Instantiations contain protocol re-
sources (such as object code and data) that may be optimized
to run efficiently on a particular target platform.

The relationship between the different types of descriptors

10

PROTOCOL

RESOURCE

DESCRIPTORS

PROTOCOL MACHINE

CONFIGURATION DESCRIPTORS

PROTOCOL MACHINE

INSTANTIATION DESCRIPTORS

PROTOCOL FUNCTION DESCRIPTORS

CONTROL FUNCTION DESCRIPTORS

ANCHOR FUNCTION DESCRIPTORS

EXAMPLES

SEGMENTATION,
REASSEMBLY, CHECKSUM,

DUPLICATE CONTROL

SDU COPYING,
DEMULTIPLEXING

VALIDITY CHECKING,
HEADER COMPLETION

AUDIO STREAM, VIDEO

STREAM, TEXT STREAM,
RELIABLE MESSAGE STREAM

AUDIO STREAM, VIDEO

STREAM, TEXT STREAM,
RELIABLE MESSAGE STREAM

Figure 12: Types of Protocol Resource Descriptors

are illustrated in Figure 12. The protocol, anchor, and control
functions are located in the resource pool to facilitate various
types of reuse and to simplify automated generation. The
protocol machine configurations and instantiations are stored
in the resource pool to reduce application start-up overhead
at run-time since some or all of the time-consuming con-
figuration and synthesis phases are omitted. This section
provides several examples that indicate the type of attributes
stored in the protocol resource pool and examine how various
configuration and synthesis tools use the resources.

Figures 13 and 14 present an excerpt of the descriptors
residing in the protocol resource pool on the speaker’s end-
system. Each descriptor may be defined independently and
the ordering of the descriptors in the pool is insignificant.
Certain attributes must be included with each descriptor.
These mandatory attributes include the descriptor type, the
descriptor name, the mechanism name(s) (multiple mecha-
nisms may be included for each descriptor), the mechanism
input and output parameter lists, and the associated object-
code that implements each mechanism. Other attributes (such
as predecessors and successors dependencies and other se-
mantic constraints [2]) are optional and are included with a
descriptor only if necessary.

Descriptors may be accessed and manipulated either man-
ually (by protocol machine developers) or by automated con-
figuration and synthesis tools. In essence, the collection
of protocol resource descriptors shown in Figures 13 and 14
represent the “instructions” appearing in the flowgraph-based
representation of the protocol machines depicted by the fig-
ures in Section 4. A short explanation of each resource
descriptor in Figures 13 and 14 is given in the following
subsection.

5.3 Example Protocol Resource Descriptors

As shown in Figures 13 and 14, each resource descrip-
tor may contain one or more mechanisms. Various con-
figuration and synthesis tools access and manipulate these
mechanisms via their abstract interfaces, which include the
name of each mechanism, its input and output parame-
ters, as well as semantic information that characterizes the
mechanism behavior and any constraints on mechanism use.
In all these examples, the Message parameter refers to
a composite data structure that is capable of efficient op-
erations (such as encapsulation/de-encapsulation, segmen-
tation/reassembly) on application and network SDUs and
PDUs [20].

The first five descriptors shown in Figure 13 are used on
the sender-side of a protocol machine. The protocol func-
tion Segment logically splits an input SDU Message into
smaller pieces that fit within the MTU size of the underly-
ing network. It produces a composite Message that con-
tains the segments corresponding to the original SDU (the
PDU header is not entirely filled in at this stage, however).
The Compose Data Request function fills in certain de-
fault information into the header or header(s) of its input
Message. The Sequencing function determines the se-
quence number used to uniquely identify the segment within
a connection. The Routing function calculates the neces-
sary information (such as the route identifier) that must be
inserted into the header to reach the correct destination(s).
After all this information is filled in, the PDU is suitable
for transfer across the network. The Retransmit func-
tion ensures reliable delivery via a positive acknowledgment
mechanism.

The next two functions shown in Figure 13 are used in
both the sender and receiver protocol machines. The func-
tion Connection Establishment Termination
performs connection set-up and tear-down. This function

11

(function "Segment"
(mechanism "Segment"

(input (Message sdu), (MTU_Type mtu_size))
(output (Message sdu))
(code "f_segment.o")
(successors "Sequencing")))

(function "Compose_Data_Request"
(mechanism "Compose_Data_Request"

(input (Message sdu))
(output (Message pdu))
(code "f_compose_data_request.o")))

(function "Sequencing"
(mechanism "Sequencing"

(input (Message sdu))
(output (Sequence_Number sn))
(code "f_sequencing.o")
(predecessors "Segment")))

(function "Routing"
(mechanism "Transport_System_Routing"

(input (Message sdu))
(output (Routing_Result rr))
(code "f_ts_routing.o")
(predecessors "Receive_SDU")))

(timer "Retransmit"
(mechanism "Timerbased_and_Cumulative_Retransmit"

(input (Cumulative_Ack_List cal))
(output (Message sdu))
(predecessors "Connection_Establishment_Termination")
(successors "Send_SDU")
(code "f_timerbased_cumulative_retransmit.o")))

(function "Connection_Establishment_Termination"
(mechanism "Explicit_Connection"

(input (Message sdu)) (output (PDU_Header pdu))
(code "f_explicit_connection.o))

(mechanism "Implicit_Connection"
(input (Message sdu)) (output (PDU_Header pdu))
(code "f_implicit_connection.o")))

(function "Checksum"
(mechanism "Checksum_Calculation"

(input (Message pdu)) (output (PDU_Checksum cs))
(code "f_checksum_calculation.o"))

(mechanism "Checksum_Validation"
(input (PDU_Checksum cs),

(Message pdu)) (output (Boolean cbr))
(code "f_checksum_validation.o")))

(function "Duplicate_Control"
(mechanism "Duplicate_Control"

(input (Message pdu))
(output (Duplicate_Result dr))
(code "f_duplicate_control.o")))

(function "Reassemble"
(mechanism "Reassemble"

(input (Message sdu))
(output (Message sdu))
(code "f_reassemble.o")))

Figure 13: Protocol Function Descriptors in the Protocol
Resource Pool

descriptor contains two mechanisms, one used for explicit
connections (such as a 2- or 3-way handshake) and one
used for implicit connections (such as timer-based set-up and
tear-down). The Checksum function also contains several
mechanisms that may perform either checksum calculations
or validations on a PDU.

The final two functions appear in the receiver-side of a
protocol machine. TheDuplicate Control functionde-
tects and potentially discards replicated SDUs that arrive on
the incoming data and control streams. The Reassemble
function coalesces the individual pieces produced by the
sender’s Segment function to form the original PDU.

Figure 14 presents two more descriptor types: anchor
function descriptors and rendezvous descriptors. The anchor
function descriptors indicate the entry point(s) into and/or
the exit point(s) out of protocol machine. For example, the
Upper Interface Sender anchor function receives a

(anchor "Upper_Interface_Sender"
(mechanism "Receive_SDU_Sender"
(input (Message sdu))
(output (Message sdu))
(code "f_recv_sdu_sender.o"))

(mechanism "Application_Interface"
(input (Message sdu))
(output (Message sdu))
(code "f_application_interface.o")))

(anchor "Upper_Interface_Receiver"
(mechanism "Send_SDU_Receiver"
(input (Message sdu))
(output (Message sdu))
(code "f_send_sdu_receiver.o"))

(mechanism "Application_Interface"
(input (Message sdu))
(output (Message sdu))
(code "f_application_interface.o")))

(anchor "Lower_Interface_Sender"
(mechanism "Send_SDU_Sender"
(input (Message sdu))
(output (Message sdu))
(code "f_send_sdu_sender.o"))

(mechanism "Network_Layer_Interface"
(input (Message sdu))
(output (Message sdu))
(code "f_network_interface.o")))

(rendezvous "Validitiy"
(mechanism "Audio_Validate"

(input (Checksum_Result,
Lifetime_Result, Duplicate_Result))

(output (Boolean br))
(code "f_audio_validate.o")

(mechanism "Video_Validate"
(input (Checksum_Result,

Lifetime_Result, Duplicate_Result))
(output (Boolean br))
(code "f_audio_validate.o")

(mechanism "Text_Validate"
(input (Ack_Check_Result, Window_Check_Result,

Path_Result, Checksum_Result))
(output (Connection_State_Info,

Exception_Handling_Info,
Data_Reference, Option_Handling_Info,
Round_Trip_Time, Congestion_Control_Info))

(code "f_text_validate.o")
(mechanism "Generic"

(input (paramter_list)) (output (list_of_lists)))

Figure 14: Anchor and Control Function Descriptors in the
Protocol Resource Pool

message from the application at the sender’s end-system and
logically and/or physically copies it into the internal memory
space of the transport system. The rendezvous descriptor
is a special-purpose control function that synchronizes con-
current processing within a protocol machine. A set of cus-
tomized Validate Header mechanism are defined in the
protocol resource pool for existing protocol machine con-
figurations. In order to configure new protocol machines
automatically, a Generic mechanism is included. This
mechanism is a “code template” that is parameterized by a
list of input types and a list of output types. This template is
used by the synthesis tools to automatically derive a suitable
control mechanism.

Figure 15 depicts two other types of descriptors located in
the protocol resource pool. These descriptors are compos-
ite types that contain portions of the protocol, control, and
anchor function descriptors. For instance, a configuration
descriptor characterizes the platform-independent configura-
tion of a particular protocol machine and indicates whether it
belongs to a specific application service class. The “code” for
a composite configuration is stored as an internal intermedi-
ate representation in the protocol resource pool. Likewise, a
protocol machine instantiation descriptor contains platform-

12

(configuration "Video_Stream"
(class "real_time_unreliable")
(code "video_stream.conf"))

(configuration "Text_Stream"
(class "non_real_time_reliable")
(code "text_stream.conf"))

(instantiation "Audio_Stream"
(class "real_time_unreliable")
(code "audio_stream.exe"))

(instantiation "Reliable_Message"
(class "non_real_time_reliable")
(code "reliable_message.exe"))

Figure 15: Protocol Machine Configuration and Instantiation
Descriptors in the Protocol Resource Pool

dependent object-code and data that enables it to be executed
on a particular target platform. In particular, the contents
of an instantiation descriptor contain object-code attributes
stored in the protocol, control, and anchor function descrip-
tors.

5.4 Text-based Descriptions of Protocol Ma-
chines

This subsection illustrates several examples of a text-based
language that utilizes various protocol resource descriptors
to describe application-tailored protocol machine configura-
tions. These configurations may either be produced manually
or automatically (via protocol machine configuration tools
[21]). In either case, the text-based protocol machine con-
figuration is processed automatically by synthesis tools that
transform it into a protocol machine instantiation. The text-
based language illustrated in Figure 16 corresponds directly
to the flowgraph-based language for the audio sender and the
reliable message receiver shown in Figure 5. A configuration
described via the text-based language consists of a collection
of clauses that contain information (such as the successor and
predecessor nodes) that are necessary to configure the proto-
col machine. The rendezvous and timer nodes are included
to provide guidance for the instantiation process.

The anchor nodes in Figure 16 are represented by the
Upper Interface Receiver clause, as well as the
Lower Interface Receiver clause. Their predeces-
sor and successor nodes are NULL, respectively, since
they occur at the boundaries of the communication sub-
system. Different mechanisms for the rendezvous node
Complete Header fill in the data and connection control
packet header formation. Taken as a whole, these protocol
mechanisms define the complete protocol machine for the
audio sender.

Figure17 illustrates the text-based protocol machine con-
figuration for the reliable message receiver shown in Fig-
ure 10. The anchor nodes for this protocol machine are also
represented by theUpper Interface Receiver clause
and the Lower Interface Receiver clause. The ren-
dezvous node Validate Header evaluates the results
from its predecessor functions and selects the appropriate suc-
cessor (either the Acknowledgement or Reassemble

(anchor "Upper_Interface_Sender"
(mechanism "Receive_SDU_Sender"
(predecessors NULL)
(successors "Segment", "Synchronization")))

(anchor "Lower_Interface_Sender"
(mechanism "Send_SDU_Sender"
(predecessors "Complete_Header", "Checksum"")
(successors NULL)))

(rendezvous "Complete_Header"
(mechanism "Complete_Header_Audio_Data"
(predecessors barrier
("Compose_Data_Request", "Sequencing",
"Synchronization"))

(successors "Send_SDU")))

(rendezvous "Complete_Header"
(mechanism "Complete_Header_Audio_Connection"
(predecessors barrier

("Connection_Establishment_Termination",
"Routing"))

(successors ("Checksum"))))

(function "Segment"
(mechanism "Segment"
(predecessors "Receive_SDU")
(successors "Sequencing", "Compose_Data_Request")))

(function "Compose_Data_Request"
(mechanism "Compose_Data_Request"
(predecessors "Compose_Data_Request")
(successors "Complete_Header)))

(function "Sequencing"
(mechanism "Sequencing"
(predecessors "Segment")
(successors "Complete_Header)))

(function "Synchronization")
(mechanism "Stream_Synchronization"
(predecessors "Receive_SDU")
(successors "Complete_Header")))

(function "Connection_Establishment_Termination"
(mechanism "Explicit_Connection"
(predecessors "Receive_SDU")
(successsors "Complete_Header")))

(function "Routing"
(mechanism "Transport_System_Routing"
(predecessors "Receive_SDU")
(successors "Complete_Header")))

(function "Checksum"
(mechanism "Checksum_Calculation"
(predecessors "Complete_Header")
(successors "Send_SDU")))

(timer "Retransmit"
(mechanism "Timerbased_and_Cumulative_Retransmit"
(predecessors "Connection_Establishment_Termination")
(successors "Send_SDU")))

Figure 16: Text-based Configurationof the Protocol Machine
for Sending Audio

function). The protocol machine configuration may be sub-
mitted as input to the synthesis tools and/or stored in the
protocol resource pool for subsequent instantiation.

6 Concluding Remarks

This paper examines a protocol machine configuration lan-
guage and a protocol resource descriptor language that sup-
port a function-based approach for generating application-
tailored protocol machines based upon a high-level descrip-
tion of protocol functionality. These protocol machines effi-
ciently support a diverse collection of data streams required
by multimedia applications such as the collaborative distance
learning example presented in Section 3. In this example
scenario, each different multimedia data stream is associated
with an application-tailored protocol machine. The building-

13

(anchor "Upper_Interface_Receiver"
(mechanism "Send_SDU_Receiver"

(predecessors "Reassemble")
(successors NULL)))

(anchor "Lower_Interface_Receiver"
(mechanism "Receive_SDU_Receiver"

(predecessors NULL)
(successors "Duplicate_Control", "Ack_Check",

"Checksum_Calculation")))

(rendezvous "Validate_Header"
(mechanism "Reliable_Msg_Validate"

(predecessors barrier
("Duplicate_Control", "Ack_Check",
"Checksum_Calculation"))

(successors selector ("Reassemble",
"Acknowledgement"))))

(function "Checksum_Calculation"
(mechanism "Checksumming"

(predecessors "Receive_SDU")
(successors "Validate_Header")))

(function "Duplicate_Control"
(mechanism "Duplicate_Control"

(predecessors "Receive_SDU")
(successors "Validate_Header")))

(function "Acknowledge_Check"
(mechanism "Acknowledge_Check"

(predecessors "Receive_SDU")
(successors "Validate_Header")))

(function "Reassemble"
(mechanism "Reassemble"

(predecessors "Validate_Header")
(successors "Acknowledgement", "Send_SDU")))

(function "Acknowledgement"
(mechanism "Negative_Selective_Ack"

(predecessors "Validate_Header", "Reassemble")
(successors "Retransmit")))

Figure 17: A Text-based Protocol Machine Configuration for
the Reliable Message Receiver

block components for these configurations reside in a proto-
col resource pool, which contains a set of mechanisms used
to generate a customized protocol machine. These machines
are currently defined manually and are used as a basis for
various synthesis and mapping tools. In addition, we are
working on a set of configuration tools that will automate the
process of producing the protocol machine configurations
from high-level specifications of application qualitative and
quantitative communication requirements [21].

The technique of using flowgraphs as a language for spec-
ifying function-based protocol machines is described in this
paper using notions and definitions from the function-based
communication model presented in [1]. In addition, the same
approach is also applicable to the system described in [4].

References
[1] M. Zitterbart, B. Stiller, and A. Tantawy, “A Model for High-

Performance Communication Subsystems,” IEEE Journal on
Selected Areas in Communication, vol. 11, pp. 507–519, May
1993.

[2] D. C. Schmidt, B. Stiller, T. Suda, A. Tantawy, and M. Zit-
terbart, “Language Support for Flexible, Application-Tailored
Protocol Configuration,” in Proceedings of the 18th Confer-
ence on Local Computer Networks, (Minneapolis, Minnesota),
pp. 369–378, Sept. 1993.

[3] M. Zitterbart, “High-Speed Transport Components,” IEEE
Network Magazine, pp. 54–63, January 1991.

[4] D. C. Schmidt, D. F. Box, and T. Suda, “ADAPTIVE: A Dy-
namically Assembled Protocol Transformation, Integration,

and eValuation Environment,” Journalof Concurrency: Prac-
tice and Experience, vol. 5, pp. 269–286, June 1993.

[5] D. C. Schmidt, B. Stiller, T. Suda, and M. Zitterbart, “Tools
for Generating Application-Tailored Multimedia Protocols on
Heterogeneous Multi-Processor Platforms,” in Proceedingsof
the Second Workshop on the Architecture and Implementation
of High Performance Communication Subsystems, (Williams-
burg, Virgina), IEEE, September 1993.

[6] T. Braun and M. Zitterbart, “Parallel Transport System De-
sign,” in Proceedings of the 4th IFIP Conference on High
Performance Networking, (Belgium), IFIP, 1993.

[7] D. F. Box, D. C. Schmidt, and T. Suda, “ADAPTIVE: An
Object-Oriented Framework for Flexible and Adaptive Com-
munication Protocols,” in Proceedings of the 4th IFIP Con-
ference on High Performance Networking, (Liege, Belgium),
pp. 367–382, IFIP, 1993.

[8] D. L. Tennenhouse, “Layered Multiplexing ConsideredHarm-
ful,” in Proceedings of the 1st International Workshop on
High-Speed Networks, May 1989.

[9] D. C. Feldmeier, “Multiplexing Issues in Communications
System Design,” in Proceedings of the Symposium on Commu-
nications Architectures and Protocols (SIGCOMM), (Philadel-
phia, PA), pp. 209–219, ACM, Sept. 1990.

[10] D. Hehmann, M. Salmony, and H. Stuettgen, “Transport ser-
vices for multimedia applications on broadband networks,”
Computer Communications, Special Issue on Multi-Media
Communications, vol. 13, May 1990.

[11] W. P. Lidinsky, “Data Communication Needs,” IEEE Network
Magazine, pp. 28–33, March 1990.

[12] M. Anagnostuo, M. Theologou, K. Vlakos, D. Tournis, and
E. Protonotarios, “Quality of service requirements in ATM-
based B-ISDNs,” Computer Communications, vol. 14, May
1991.

[13] O. Koufopavlou, A. N. Tantawy, and M. Zitterbart, “Analysis
of TCP/IP for High Performance Parallel Implementations,” in
17th Conference on Local Computer Networks, (Minneapolis,
Minnesota), Sept. 1992.

[14] Z. Haas, “A Protocol Structure for High-Speed Communi-
cation Over Broadband ISDN,” IEEE Network Magazine,
pp. 64–70, January 1991.

[15] T. F. L. Porta and M. Schwartz, “Design, Verification, and
Analysis of a High Speed Protocol Parallel Implementation
Architecture,” in Proceedings of the First IEEE Workshop
on the Architecture and Implementation of High Performance
Communication Subsystems, Feb. 1992.

[16] S. W. O’Malley and L. L. Peterson, “A Dynamic Network Ar-
chitecture,” ACM Transactions on Computer Systems, vol. 10,
pp. 110–143, May 1992.

[17] M. B. Abbott and L. L. Peterson, “A Language-Based Ap-
proach to Protocol Implementation,” in Proceedings of the
Symposium on Communications Architectures and Protocols
(SIGCOMM), (Baltimore Maryland), ACM, 1992.

[18] R. Steinmetz, “SynchronizationProperties in Multimedia Sys-
tems,” Journal on Selected Areas in Communications, vol. 8,
Apr. 1990.

[19] D. R. Cheriton, “VMTP: Versatile Message Transaction Pro-
tocol Specification,” Network Information Center RFC 1045,
pp. 1–123, Feb. 1988.

[20] N. C. Hutchinson, S. Mishra, L. L. Peterson, and V. T. Thomas,
“Tools for Implementing Network Protocols,” Software Prac-
tice and Experience, vol. 19, pp. 895–916, September 1989.

[21] B. Stiller, “PROCOM: A Manager for an Efficient Transport
System,” in Proceedings of the First IEEE Workshop on the
Architecture and Implementation of High Performance Com-
munication Subsystems, Feb. 1992.

14

