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Abstract

Next generation communication systems must support di-
verse applications operating over high-performance local,
metropolitan, and wide area networks. This paper describes
a framework that contains a number of resource, language,
and tool components for generating customized protocols
to support diverse multimedia applications running in high-
performance network environments. These components help
to simplify the process of generating application-tailored
communication protocols by automating many devel opment
and configuration steps. A collaborative distance learning
application scenario is presented to motivate and demon-
strate techniques used to compose function-based protocols
that are customized for particular application requirements.
In addition, the structure of a protocol resource pool that
contains reusable protocol function building-blocks is also
examined.

1 Introduction

The communication requirements of emerging distributed
applications are becoming increasingly diverse. Therefore,
it isimportant to develop high-performance communication
subsystems that efficiently and flexibly support this diver-
sity, particularly for multimedia applications (such as scien-
tific visualization, medical imaging, and collaborative work
projects) that run on high-performance local and wide-area
networks (such as FDDI and ATM-based B-1SDN). How-
ever, traditional communication models and protocols may
be inadequate to support the requirements of the emerging
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applications. For example, excessive layering in commu-
nication models such as the OSI reference mode results in
redundant functionality and limits the potential for process-
ing protocolson parallel platforms[1].

One method for addressing the inadequacies of tradi-
tiona communication models and protocols involves cre-
ating application-tailored protocols that execute efficiently
on a variety of hardware and operating system platforms
[2]. This paper describes a suite of languages, resources,
and tool components that form an integrated framework to
facilitate the development of application-tailored protocols.
The components in this framework automate many stepsin-
volved with generating customized protocolsthat run in par-
alel on heterogeneous platforms such as message passing
transputers [3] and shared memory multi-processors[4]. In
general, the application-tailored protocols described in this
paper share two related characteristics. Firgt, they are based
on a de-layered communication model, rather than a con-
ventional layered model [1]. Second, they are composed
of reusable protocol function building-blocks (such as ac-
knowledgement, retransmission, segmentation, reassembly;,
and sequencing). These functions serve as resources that
may be flexibly combined to generate efficient, de-layered
protocols.

The specia-purpose language components presented in
this paper describe and manipulate the protocol function re-
sources in a systematic, flexible manner. The tool compo-
nents[5] usethe protocol functionresources and languagesto
automatically transform platform-independent descriptions
of protocol functionality into executable protocol machines
that are optimized for a specific target platform. The target
platforms supported by thisframework differ in terms of op-
erating system and hardware aspects such as the number of
available processing elements, interprocess communication
mechanisms, memory and busarchitectures, and the network
interfacedevices. However, many of the same resources, lan-
guages, tools, and underlying architectural principlesmay be
applied on the different platforms.

The paper is organized in the following manner. Sec-
tion 2 gives an overview of the function-based communica
tion model and defines the terminology used in this paper.
Section 3 presents a collaborative distance learning applica
tion that motivates and demonstrates the use of a function-
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Figure1: Componentsin the Function-based Communication Model

based approach for generating protocolsthat are customized
for different types of multimediatraffic. Section 4illustrates
examples of aflowgraph-based language that describes each
customized protocol used in the application scenario. Sec-
tion 5 outlines a set of resources and tools that automate
the generation of executable protocols described viathe lan-
guages presented in earlier sections. Section 6 summarizes
the paper and presents concluding remarks.

2 Oveview of the Function-based
Communication M ode

The languages described in this paper are based upon the
function-based communication model described in [1]. In
this model, conventiona coarse-grain hierarchical protocol
layers are replaced by a communication subsystem that is
decomposed into finer-grain protocol functions. Typical ex-
amples of protocol functionsinclude flow control, error con-
trol, acknowledgment, and connection establishment. Each
protocol function may be implemented viaalternative proto-
col mechanisms. For instance, the flow control function may
be implemented by either window-based and/or rate-based
mechanisms.

Protocol functionsserve as building-blocksfor variousar-
chitectural componentsthat support the function-based com-
munication model. For example, aparticular set of functions
may be combined to form aprotocol machine. Each protocol
machineiscustomized to support an application data stream.
A data stream represents a uni-directional flow of applica-
tion data between one or more communicating end-systems.
To increase the potential for parallel processing, the sender
and receiver portionsof aprotocol machine are decoupled as
much as possiblein the end-systems[6].

To support complex multimedia applications (such as col-
laborative distance learning or teleconferencing), multiple
datastreamsmay be consolidated to form asession. A session
manager coordinates the protocol machines for related data

streams within each session. For instance, a session manager
handl es session control information (such as synchronization
points for synchronized audio and video data streams) and
performs various management tasks such as adding, modify-
ing, or deleting data streams dynamically. Each data stream
in a session is implemented by a separate protocol machine
that is customized for a specific set of application require-
ments during a particul ar time period. Furthermore, a proto-
col machine may be updated at run-time to adapt to changes
in the application, local and remote operating systems, or
underlying network [7].

Figure 1 depictsthere ationships between the various com-
ponentsinthefunction-based communi cation model outlined
above. Inthisfigure, Application A maintains two sessions.
Session 1 contains two outgoing data streams and one in-
coming data stream and Session 2 contains a single outgoing
data stream. Each stream isimplemented by a different pro-
tocol machine, and all protocol machines in a session are
coordinated by a session manager. The network interface
component is responsible for demultiplexing incoming ap-
plication data onto a particular protocol machine associated
withaunique session/datastream combination. Thisstrategy
enabl esthe sel ected protocol machineto process datawithout
requiring additional demultiplexing operations. This “non-
layered” multiplexing approach [8, 9] reduces jitter, enables
theprovisionof quality-of-serviceguaranteeson aper-stream
basis, and enhances parallel execution performance by mini-
mizing synchronization overhead.

In general, the motivations for utilizing a function-based
approach are to enhance service flexibility and to improve
communication subsystem performance in order to better
satisfy application requirements. Applicationsmay precisaly
specify their quantitative and qualitative requirements via a
flexible service interface described in [1]. This interface
enables the communication subsystem to select or gener-
ate customized protocol machines that use protocol func-
tions as their basic building-blocks. These protocol ma
chines are specially-tailored to contain the minimal set of



PARTICIPANT

PARTICIPANT

TRANSCRIBER

TEXT/
VIDEO/
AUDIO
STREAMS

- — = —>
RELIABLE
MESSAGE

PARTICIPANT

J

Figure 2: Topology of the Collaborative Distance Learning Application

functions required to perform a particular service. In addi-
tion, protocol functions form a convenient level of abstrac-
tion that is amenable to paralel execution on various multi-
processor platforms. Performance measurements indicate
that thi sfunction-based communication model isapromising
approach for devel oping high-performancetransport systems
(3].

3 CollaborativeDistancelL ear ning Sce-
nario

This section describes the functionality of the key architec-
tural components in a “collaborative distance learning” ap-
plication. This application is used throughout the remainder
of the paper to motivate and demonstrate the languages, re-
sources, and tool s provided by aframework that supportsthe
function-based communication model. In this application
scenario, a designated speaker gives an interactive presenta-
tionto participants, who aredistributed throughout anetwork
(illustrated in Figure 2). The audio and video images of the
speaker are distributed uni-directionally to all participantsin
real-time. Each participant watches and listensto the speaker
viacomputer end-systems that possess audio, video, and tex-
tual display capahilities, as well astext input capability from
a keyboard. Although participants do not have voice or
video transmission devices, they may compose and submit
guestions viatheir keyboard. These questions are delivered
interactively to the speaker using a textual format. Ques
tions arriving from participants are queued and the speaker
is notified. When the speaker selects a question to answer,
the question is displayed in a small window on the console
of each participant. In addition, one or more of the partici-

pants may transcribe thelectureinteractively, storing the text
in aremote persistent storage device (such as a network file
server) for subsequent retrieval.

This scenario makes several assumptions about the net-
work environment where the application runs. For exam-
ple, it isassumed that an unreliable multicast serviceis pro-
vided by the underlying network (such as FDDI or FDDI-
I1). This service supports the audio and video data streams,
which are multicast by the speaker’s end-system to all par-
ticipants. From the perspective of the application and the
protocol machines, the network multicasting service is ac-
cessible by simply supplying a multicast group address with
atransmitted message. Under other circumstances, however,
multicasting may require additional support from the trans-
port system. For instance, multicast is not performed by the
underlying network in certain environments (such as awide-
area B-ISDN network). In this case, the protocol machines
that implement audio and video transmissions must provide
multicast functionality explicitly. In addition, the example
assumes that the underlying network is capable of providing
certain quality-of-service guarantees for the bandwidth and
error rates necessary to support the audio and video streams
effectively.

Figure 3 depictsa*“snapshot” of the collaborative distance
learning application in operation. This figure illustrates the
protocol machines in the end-systems of the speaker and one
participant (the end-systems of other participants are config-
ured similarly). The speaker possesses a multimedia-capable
end-system equipped with acamera, amicrophone, adisplay
console, and a keyboard. Each data stream in the commu-
nication subsystem of an end-system is implemented via a
separate protocol machine. The protocol machines are co-
ordinated by a session manager that synchronizes the audio
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Figure 3: Dynamic Snapshot of the Communication Subsystem

and video streams. In addition, the speaker’ ssession contains
a connectionless, reliable message protocol machine for re-
ceiving questions from individual participants. Conversely,
thetext, video, and audio protocol machines on the speaker’s
end-system maintain connections to all participants. Con-
nections are used in the network and/or the transport system
of the end-systems to ensure that the necessary quality-of-
service levels are provided.

The information presented by the speaker is captured and
transmitted in real-time to participant end-systems, where
the video and text information is simultaneously displayed
on a console and the audio is played over a loudspeaker.
The participant end-systems also maintain separate protocol
meachines for receiving audio, video, and text. In addition,
the participantsmay ask questionsthat are sent to the speaker
viaareliable message protocol machine. The text stream on
the speaker’s end-system multicasts these questions to all
participantsfor the duration of the spesker’s answer.

Each protocol machine is implemented in a de-layered
manner corresponding to the principlesof thefunction-based
communication model. De-layering involves combining the
functionality of the network layer and the transport layer
within each protocol machine. The primary motivations for
adopting a de-layered approach are to diminate redundant
and/or extraneous functionality in the protocol machines, as
well as to increase the opportunity for processing the proto-
col machines concurrently on paralel platforms. The char-
acteristics of each protocol machine mentioned above are
discussed further in the following section.

4 Application-Tailored Protocol Ma-
chines

This section illustrates and examines the protocol machines
for the audio and video used in the collaborative distance
learning application (the text and reliable message streams
are omitted to save space). These data streams exchange dif-
ferent typesof informationusing the network and end-system
environment described in the scenario from Section 3. Each
streamisimplemented viaaseparate protocol machinethat is
customized for the quantitative and qualitative requirements
of thedatait transmitsor receives. Quantitativerequirements
involve criteria that may be evaluated in terms of measures
such as “bits per-second throughput” or “the number of bit
errors tolerated per-PDU.” Qualitative requirements specify
the services related to session management, stream manage-
ment, and data unit management [1], and may be described
interms of nomina attributes such as “inter-stream synchro-
nization,” and “in-sequence and/or unduplicated delivery of
data”

Thefollowing subsecti ons present the quantitative[ 10, 11,
12] and qualitative [1] requirements for severd of the data
streams in the example scenario. In addition, the protocol
functions and mechanisms used by the audio and video pro-
tocol machines are a so described (the text and reliable mes-
sage protocol machines are omitted due to space limitations).
The figures depict the sending and receiving protocols ma-
chines separately since each protocol machine implements a
uni-directional data stream. In addition to transmitting data,
however, auni-directional sender must a so be capable of re-
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Figure 4: Symbolsin the Flowgraph-based Protocol Machine Configuration Language

ceiving control information (such as acknowledgements for
connection establishment and termination regquests) that is
fed back from the peer protocol machine(s).

The protocol machinesappearing in figuresthroughout this
section are portrayed via the flowgraph-based configuration
language summarized in Figure 4 and described in detail in
[2]. This language concisely describes the protocol func-
tion building-blocks in each protocol machine and depicts
their interrelationships. The flowgraph language also indi-
cates opportunitiesfor exploiting parallelism between proto-
col functions within a protocol machine. Related examples
of function-based techniquesfor decomposing and paralleliz-
ing existing protocols such as TCP are described in [13, 2].
Other related work addresses i ssues such as architecturesthat
support function-based protocol decomposition [14, 15] and
graph- and shape-based protocol configuration techniques
[16, 17]. To increase clarity, the protocol mechanisms that
implement each function are omittedin thefigures. However,
these mechanisms are discussed in the text.

4.1 Audio Protocol Machines

Anaudio stream isused to transmit i sochronousvoi ce traf-
fic from the speaker to the participants. Itisimplemented via
separate sender and receiver protocol machines containing
protocol functions that support the quantitative and qualita-
tive requirements of audio traffic. The quantitative require-
ments for an audio stream depend on the level of quality
requested by the application. For example, if regular tele-
phone quality audio is desired then 64 kBit/s is sufficient.
However, if CD-quality audio is desired, each audio stream
may require approximately 1.4 MBit/s of bandwidth (certain
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Figure5: Protocol Machine for Audio or Video Sender

compression techniques enabl e the reception of high-quality
audio using a 64 kBit/s channel). Bit error rates of 10~*
or PDU error rates of 10~/ are tolerable if no compression
techniques are used; these error rates become more stringent
if compression is applied. In addition, the inter-PDU jitter
in an audio stream should not exceed 10 ms. The quditative
requirementsfor an audio stream include multicast transmis-
sion, with in-sequence dedlivery of data at the receiver, syn-
chronization with the associated video stream, and a small,
fixed-sized maximum data unit.

Figure 5 illustrates a protocol machine that implements
the sender portion of an audio stream. The protocol machine
is connection-oriented to expedite the detection and removal
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Figure 6: Protocol Machine for Audio or Video Receiver

of duplicates and out-of-sequence data units. The CONNEC-
TION ESTABLISHMENT AND TERMINATION function handles
connection management issues (such as the retransmission
of a connection request if no acknowledgement is received
after a certain period of time). The routing identifier for
each protocol machine is selected when a connection isfirst
established. Theresfter, the entire network/host/connection
address of participants need not be included with subsequent
data transmissions.

TheRETRANSMIT and CHECKSUM cal culation functionsare
used in the connection control and connection dynamics por-
tions of the protocol machine to implement reliable end-
to-end connection establishment and termination semantics.
Dueto theisochronous, losstol erant propertiesof audio data,
however, the data transfer portion of the protocol machine
provides neither retransmission nor checksumming of au-
dio protocol data units (PDUs). However, a checksum of
the PDU header is calculated to prevent the accidental ac-
ceptance of corrupted PDUs at the receiver(s). In addition,
certain network properties may be used to further refine the
protocol machine during connection establishment. For ex-
ample, segmentation must be performed if the maximum
transmission unit (MTU) size of the network is smaller than
the maximum size of the application’s audio service data
units (SDU). On the other hand, if the MTU is larger than
the maximum SDU (and assuming that the route is fixed),
the SEGMENT function may be eliminated from the protocol
machine entirely at connection establishment time [2].

Each SDU is assigned a unique sequence number. More-
over, if segmentation is necessary, each segment isal so num-
bered to enable reassembly at the receiver. The contents of
the data unit header are completed by storing the sequence
number and data request PDU template (which containsin-
formation such as the PDU-type, the route, and the destina
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Figure 7: Protocol Machine for Text Sender

tion connection identifier which are assumed to be fixed for
each PDU after connection establishment) together with the
associated stream synchronizationinformation. The STREAM
SYNCHRONIZATION function cal culates thisinformation (such
as playout times, maximum retrieval times, or inter-channel
synchronization points [18]) to synchronize the separate au-
dio and video data streams. This synchronization informa-
tion is inserted into each PDU header and extracted by the
receiver. This example assumes that audio transmission is
either uncompressed or a constant bit rate compression tech-
niqueis used. Therefore, SDUs are aways fixed-size and
the synchronization information may be added directly into
SDU headers. Finadly, completed data units or connection
requests are transmitted via the seNp SDU function to the
network interface.

The receiver-side of the audio protocol machine is shown
in Figure 6. Once the appropriate connection record is lo-
cated, the receiver invokes either the connection control re-
ception functions or the data reception functions. I1n the con-
nection control case, the receiver performs the CHECKSUM,
the LIFETIME CONTROL, and DUPLICATE CONTROL functions
(potentidly in paraléel) onincoming PDUs. These functions
are necessary to ensure the reliability of connection estab-
lishment and termination. On the other hand, the data path
of thereceiver’sprotocol machineis streamlined sinceit rep-
resents the critical processing path. For example, incoming
PDUs need not be acknowledged, nor are checksum cal cu-
lations performed on the data portion of the PDU. The SE-
QUENCE CHECK function is performed since out-of-sequence
data may require queueing. In particular, only in-sequence
SDUsare passed tothe JTTER CONTROL function, which then
consultsthe receiver’s STREAM SYNCHRONIZATION function.
This function examines the appropriate fields in the PDU
header and passes thisinformation to the session manager in
thereceiver’s session. The session manager ensures that the
audio stream is synchronized with the corresponding video



stream. PDUs are discarded if their useful playing time has
expired. For example, if out-of-date SDUs arrive at the re-
ceiver, either the JTTER cONTROL function will not deliver
them to the application or adefault SDU containing “white-
noise”’ will beinsertedintotheflow of SDUs. Either approach
may result in a small, but acceptable, level of distortionin
the audio stream.

4.2 Video Protocol Machines

The video stream periodicaly transmits visual samples of
the speaker to participants throughout the network. As with
audio, the quantitative requirements for video depend on the
selected compression techniques. For example, the band-
width requirements of an uncompressed video stream are ap-
proximately 150 MBit/s. If variable compression techniques
are used, however, thisamount may be reduced to approxi-
mately 32 MBit/s. Reliability requirements also depend on
the compression technique. Bit error rates of < 10~2 and
PDU error rates of < 10~2 must be provided by the underly-
ing network, otherwise the necessary image quality may not
be assured. However, the amount of tolerable SDU |oss may
be higher for video, depending on the technique selected for
encoding video control information (such as the color table)
and pictureimageinformation. If thesetwo typesof informa-
tion are transmitted in different PDUS, the loss rate must be
smaller than 10~° for the control unitsand smaller than 10~3
for data units. On the other hand, transmitting the informa-
tion as combined PDUs resultsin an acceptable loss of 10~°.
In addition, up to a certain threshold, duplication of PDUs
does not adversely affect the video quality. The delay jitter
requirements have a maximum of 10 ms. The qudlitativere-
quirements for video are also similar to audio. For example,
video requires in-sequence delivery of isochronous samples
that are synchronized with the associated audio stream.

The sender and receiver protocol machines that represent
the protocol machine for transmitting constant bit rate com-
pressed video stream are practically identica to the ones
shown for theaudio stream in Figures5 and 6. Although the
guantitative bandwidth requirements of video transmission
are substantially larger than audio, these quantitative differ-
ences do not directly affect the existence or absence of the
selected protocol functions. Instead, they primarily affect the
mechanisms used to implement the functions. The similarity
between the audio and video protocol machines enables the
direct reuse of many protocol mechanisms, particularly those
involving connection control and connection dynamics.

In this example, the only protocol mechanisms imple-
mented differently in the receiver for the video stream ver-
sus the audio stream are the mechanisms for the SEQUENCE
CHECK and JTTER CONTROL functions. In particular, if no
SDU isavailableto deliver to theapplication (e.g., if the sub-
sequent SDU did not arrive in time or was discarded due to
buffer overflow or corruption), the previously received video
SDU may be passed to the application again. Although this
strategy may reduce the quality of the video dightly, it is
an acceptable loss recovery strategy as long as the picture
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Figure 8: Protocol Machine for Text Receiver

remains comprehensible. In genera, although both the video
and audio protocol machines discard out-of-date SDUs, the
video machine may resubmit an earlier SDU to the appli-
cation, whereas the audio protocol machine submits either
nothing or white-noise.

4.3 Text Protocol Machines

The text stream serves two purposes in the multimedia
application scenario. Firdt, it isused to forward participant
guestions received by the speaker to the other participants.
Second, it implements the text stream used by participants
who store and retrieve transcriptions of the speaker’s pre-
sentation in the remote persistent storage repository. Most
guantitativerequirements of thetext stream are less demand-
ing than those for voice and video. For example, a single
page of text requires approximately 20 kBit of data. De-
pending on the specific delay requirements, the bandwidth
necessary to transmit data viathe text stream may vary. For
example, transmitting 20 kbit of data while maintaining a
1 sec maximum delay requires a bandwidth of 20 kBit/s. If
the same amount of data is transmitted within 0.1 sec the
bandwidth requirements increase to 200 kBit/s. The cur-
rent application has minimal delay requirementsand no jitter
control isrequired. On the other hand, thereliability require-
ments are quite stringent and the text stream must provide
completely reliable service (i.e., zero bit or PDU errors).
The qualitative requirements of the text stream necessitate
in-sequence, non-duplicated delivery, areliable multicasting
facility, and potentially segmented delivery. Many existing
protocols (such as TCP and TP4) provide efficient transmis-
sion of reliable, in-sequence, non-duplicated text. However,
these conventiona protocols do not define a standard multi-



casting service. Therefore, an application-tailored protocol
machine for multi casting textual dataispresented here. Note
that there is no need to synchronize the text stream with the
other data streams.

Asillustrated in Figure 7, the connection-oriented proto-
col machine for the text sender contains three distinct com-
ponents: connection control send, connection dynamics, and
data transfer. The connection control send component is
essentially identical to the ones used for the audio/video
senders since it requires the same functiondity. The con-
gestion control and connection maintenance functions (such
as the round-trip time estimates and the keep aive and per-
sist timers) in the connection dynamics component are also
similar to the audio/video protocol machines. The primary
differenceisthat the text stream must handle retransmission
of multicast data to participant end-systems. Note that por-
tions of the connection dynamics component are shared by
both the sender and receiver protocol machines. The data
transfer component is enhanced to handle multiple options
(such as extending the size of the flow control window) and
therefore contains additional functions to check PDU flags
and window credits.

Thereceiver part of thetext stream protocol shownin Fig-
ure 8 involves two parts, only one of which is selected at
run-time. The appropriate selection depends on the type of
PDU that isreceived, as well as the state of the protocol ma
chine associated with the located connection record. When a
PDU isreceived, multipletests (such aswiINDOW, SEQUENCE,
and ACK CHECK) are performed, along with the CHECKSUM
calculation and the FLAG TEST (which determines whether a
connection control PDU or a data PDU has arrived). These
tests may be performed concurrently, depending on the level
of parallelism available on an end-system. If no errors are
encountered and a data PDU has arrived, the data reception
portion of the receiver resequences the incoming text seg-
ments and passes them up to the application. If aconnection
establishment or termination PDU is received, the connec-
tion control functions are performed. Depending on the er-
ror reporting mechanism, the EXCEPTION HANDLING function
may either do nothing (e.g., if the sender uses atimer-based
retransmission mechanism) or it may inform the sender to
retransmit some or or al dataif errors are detected (e.g., if a
sel ective repeat mechanism is used).

4.4 Reliable M essage Protocol Machines

A reliable message stream isused to transmit questionsfrom
participantsto the speaker. Since there may be many partic-
ipants, a dedicated connection is not established in advance
between each participant and the speaker, nor are direct con-
necti ons maintai ned between the participants. Thisapproach
reducestheamount of context information that must be stored
at the end-systems of the speaker and the participants [19],
which enhances the scalability of the collaborative distance
learning application.

The quantitative requirements of the reliable message ser-
vice are similar to the text version. For instance, no PDU
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Figure 9: Protocol Machine for Reliable Message Sender
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or bit errors are permitted since reliable service is required.
The throughput requirements vary depending on the amount
of datato transmit and the maximum acceptable delay. The
qualitativerequirements of the applicationare somewhat |ess
stringent than the text stream, however. For example, mul-
tiple questions from a single participant may be delivered
out-of-sequence (since the speaker is free to answer ques-
tionsin any order). As with the text stream example, no
synchronization is required with other streams in the sce-
nario.

The protocol machines describing the sender and receiver
portion of the reliable message service are depicted in Fig-
ure 9 and Figure 10, respectively. When a question is sub-
mitted to the protocol machine by a participant, the ASSIGN
IDENTIFIER function grants an identifier to the message that
is unique for the local end-system. This identifier is used
to trigger acknowledgements and retransmissions with the
receiver. Segmentation is required at the sender if the SDU
size of a participant’s question is larger than the underlying
network’s MTU. If segmentation is required, the SEQUENC-
ING function is responsible for numbering the segments that
are created. This information is combined with the result
of the route calculation to form a data request header. The
checksum of the resulting PDU is computed and the PDU is
sent (note that the CHECKSUM and SEND SDU functions may
be combined if the network i nterface computes the checksum
asit iscopying the PDU onto the network).

In the receiver’s protocol machine, every incoming SDU
is de-encapsul ated and the resulting PDU is checked (poten-
tially in parallel) for the following three conditions:
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CHECKSUM

1. Duplicate messages are detected and discarded via the
DUPLICATE CONTROL function

2. The Ack cHEcCK function handles incoming acknow!-
edgements that correspond to unacknowledged mes-
sages

3. The checksum of every PDU is aso caculated since
the message protocol machine must protect against bit
errors

Theresults of these three functionsare evaluated in the vALI-
DATE HEADER rendezvous node to determine whether to pro-
ceed with the acknowledgement or the reassembly of seg-
ments. Depending on the condition of theincoming PDU (as
well as the underlying protocol mechanisms), the PDU will
either be discarded, the ACKNOWLEDGEMENT function will
request the retransmission of certain segments, or a positive
ack will be transmitted to the sender.

Unlike the connection-oriented text stream, explicit con-
nection dynamics are not used in the reliable message proto-
col machine sinceit providesaconnectionless service. How-
ever, to maintain reliability and to prevent duplicated PDUs
from confusing thereceiver’ s protocol machine, an error con-
trol mechanism isemployed to recover fromlost or damaged
messages or segments.  Error control is implemented via
a RETRANSMIT function that uses either a selective-repeat
mechanism or atimer-based mechanism. If there are no er-
rors, the received message will be reassembled and passed to
the application viathe sSeND SDU function.

45 ComparingtheProtocol Machines

Itisinstructiveto comparethesimilaritiesand differencesbe-
tween the protocol machinesfor thefour types of application
requirements described above. For instance, a major dif-
ference between the sender portions of the audio/video/text
protocol machines and thereliable message protocol machine
isthe absence of the explicit connection control in the mes-
sage sender portion. Likewise, the audio and video protocol
machine include mechanisms to control jitter, whereas the
text and reliable message machines do not.

However, many of the protocol functionsused in each pro-
tocol machine are also quite similar. Often, they are smply
interconnected in a different manner and/or select different
protocol mechanisms. For example, al the protocol ma
chines use similar routing and checksum functionsto ensure
reliabledelivery for therelevant portionsof their PDUs (note
that audio and video do not checksum the data portions of
their PDUs). A comparison of the receiver portions of the
protocol machines illustrates that certain functions may be
used both for the connection control path and/or for the data
reception path. In particular, functions that provide reliable
delivery for the connection dynamics (such as retransmission
and checksumming) may be added or removed from the data
path as necessary.

5 Resource, Language, and Tool Sup-
port

This section outlines a set of resources, languages, and
toolsthat are used to automate the generation of executable
protocol machines. In addition to simplifying the process
of generating protocols by automating certain devel opment
steps, these tools also facilitate the mapping of platform-
independent protocol machines onto severa types of multi-
processor end-system architectures.

5.1 Classesof Tools

Figure 1l illustratesthe several classes of toolsused to trans-
form high-level descriptions of qualitative and quantitative
application service requirements into lower-level protocol
machines that may be directly executed on a particular tar-
get platform. These tool components access and manipu-
late the descriptors in a protocol resource pool to transform
platform-independent configurations of protocol functiona-
ity into executable protocol machine instantiations that may
be optimized for a specific target platform.

Three classes of tools, configuration, synthesis, and map-
ping, areinvolvedin configuring, instantiating, and executing
application-tail ored protocol machines, respectively. Config-
uration tools derive the platform-independent protocol ma-
chine configuration from the requirements specifications via
a process of selection and ordering. Synthesis tools trans-
form these platform-independent protocol machine config-
urations into executable protocol machine instantiation by
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Figure 11: Resources and Tools used during Protocol Generation and Execution

composing and interconnecting protocol mechanism object-
code and related data. Mapping tools transfer the instanti-
ations into the run-time system of the target platform. The
mapping process involveslocal end-system resource alloca-
tion, placement, and |oading of particular clustersof protocol
mechanisms in the instantiation onto one or more processing
elements. In general, the synthesis and mapping tools per-
form the platform-dependent transformations, whereas the
configuration tools are intended to be platform-independent.
The structure and functionality of these tools is described
further in [5].

5.2 TheProtocol Resource Pool

Each protocol machine presented in Section 4is composed
from a set of protocol resources. These protocol resources
are stored in a protocol resource pool. This resource pool
is an information repository that maintains a semantically-
attributed collection of protocol resource descriptors. These
descriptors may be inserted and manipulated via a protocol
resource descriptor language [2]. This section outlines the
contents of the protocol resource pool.

There are several types of descriptorsin the protocol re-
source pool (summarized in Figure 12). A protocol function
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descriptor representstasks such as segmentation, reassembly,
retransmission, connection establishment and termination,
and flow control. Other descriptors include control func-
tions, anchor functions, and pre-defined protocol machine
configurations and protocol machine instantiations. Con-
trol functionsare used for synchronizing protocol functions,
as well as to determine which successor function to select
at a multi-path decision point in a protocol machine flow-
graph (cf. Figure4). Anchor functions perform tasks at the
boundaries of the transport system such as copying PDUs
into system buffers and demultiplexing PDUs to the appro-
priate protocol machines. Protocol machine configurations
are composite entities that contain a set of protocol resource
descriptors, their predecessor and successor relations, and
any synchronization information necessary to coordinate the
protocol functions. A configurationisnot directly executable
sinceit only describes the necessary characteristics of a pro-
tocol machine. A protocol machine instantiation, on the
other hand, is an executable representation of a protocol
machine configuration. Instantiations contain protocol re-
sources (such as object code and data) that may be optimized
to run efficiently on a particul ar target platform.

The relationship between the different types of descriptors
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Figure 12: Types of Protocol Resource Descriptors

areillustratedin Figure12. The protocol, anchor, and control
functionsare located in the resource pool to facilitate various
types of reuse and to simplify automated generation. The
protocol machine configurationsand instantiationsare stored
in the resource pool to reduce application start-up overhead
a run-time since some or al of the time-consuming con-
figuration and synthesis phases are omitted. This section
provides several examples that indicate the type of attributes
storedin the protocol resource pool and examine how various
configuration and synthesis tool s use the resources.

Figures 13 and 14 present an excerpt of the descriptors
residing in the protocol resource pool on the spesker’s end-
system. Each descriptor may be defined independently and
the ordering of the descriptorsin the pool is insignificant.
Certain attributes must be included with each descriptor.
These mandatory attributes include the descriptor type, the
descriptor name, the mechanism name(s) (multiple mecha
nisms may be included for each descriptor), the mechanism
input and output parameter lists, and the associated object-
codethat implementseach mechanism. Other attributes(such
as predecessors and successors dependencies and other se-
mantic constraints [2]) are optiona and are included with a
descriptor only if necessary.

Descriptorsmay be accessed and manipul ated either man-
ually (by protocol machine devel opers) or by automated con-
figuration and synthesis tools. In essence, the collection
of protocol resource descriptors shown in Figures 13 and 14
represent the“instructions’ appearing in theflowgraph-based
representation of the protocol machines depicted by the fig-
ures in Section 4. A short explanation of each resource
descriptor in Figures 13 and 14 is given in the following
subsection.
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5.3 ExampleProtocol Resource Descriptors

As shown in Figures 13 and 14, each resource descrip-
tor may contain one or more mechanisms. Various con-
figuration and synthesis tools access and manipulate these
mechanisms via their abstract interfaces, which include the
name of each mechanism, its input and output parame-
ters, as well as semantic information that characterizes the
mechanism behavior and any constrai nts on mechanism use.
In all these examples, the Message parameter refers to
a composite data structure that is capable of efficient op-
erations (such as encapsulation/de-encapsulation, segmen-
tation/reassembly) on application and network SDUs and
PDUs[20].

The first five descriptors shown in Figure 13 are used on
the sender-side of a protocol machine. The protocol func-
tion Segrrent logicaly splitsan input SDU Message into
smaller pieces that fit within the MTU size of the underly-
ing network. It produces a composite Message that con-
tains the segments corresponding to the original SDU (the
PDU header is not entirely filled in at this stage, however).
The Conpose_Dat a_Request functionfillsin certain de-
fault information into the header or header(s) of its input
Message. The Sequenci ng function determines the se-
guence number used to uniquely identify the segment within
aconnection. The Rout i ng function calculates the neces-
sary information (such as the route identifier) that must be
inserted into the header to reach the correct destination(s).
After al this information is filled in, the PDU is suitable
for transfer across the network. The Ret ransmi t func-
tion ensures reliable delivery viaa positive acknowl edgment
mechanism.

The next two functions shown in Figure 13 are used in
both the sender and receiver protocol machines. The func-
tion Connecti on_Est abl i shnent _Terni nati on
performs connection set-up and tear-down. This function



(function "Segment"
(mechani sm " Segrent " .
i nput (Message sdu), (MU _Type ntu_size))
out put (Message sdu)
code "f_segnent.o") .
successors "Sequencing")))

(function "Conpose_Dat a_Request”
(mechani sm " Conpose_Dat a_Request "
i nput (Message sdu)
out put (Message pdu))
code "f_conpose_data_request.o0")))

(function_ "Sequencing”
(mechani sm " Sequenci ng"
i nput (Message sdu))
out put (Sequence_Number
code "f_sequencing.o0")
predecessors "Segnent")))

sn))

(function "Routing" )
(mechani sm "Transport _System Routi ng"
i nput (Message sdu))
output (Routing_Result rr))
code "f_ts_routing.o")
predecessors "Receive_SDU')))
(timer "Retransmt" . )
(mechani sm " Ti ner based_and_Cunul ative_Retransmt"
input (Cunul ative_Ack_List cal))
out put (Message sdu))’ ; ) .
predecessors "Connection_Establ i shnent _Termi nation")
successors "Send_SDU') . ]
code "f_timerbased_cunul ative_retransmt.o")))

(function "Connection_Establishment_Term nation”
(mechani sm "Explicit_Connection”
EI nput $Massage' sdu)) (output (PDU Header pdu))
code "f_explicit_connection.o))
(mechani sm "I nplicit_Connection”
EI nput $ Message sdu)) (output (PDU Header

Bssage. t pdu))
code _inplicit_connection.o")))

(function_ "Checksunt .
(mechani sm " Checksum Cal cul ati on"
EI nput $Massage pdu)? (out put (PDU_Checksum cs))
code "f_checksum cal cul ation.o"))
(nmechani sm " Checksum Val i dati on"

(i nR/gt (PDU_Checksum cs),
(Message pdu)) (output (Boolean cbr))
(code "f_checksumval idation.o")))

(function "Duplicate_Control"
(mechani sm "Duplicate_Control"

i nput (Message pdu))
goupput ( Bupl ?catpe_aesult dr)g
code "f_duplicate_control.o0")))
(function "Reassenbl e"
(mechani sm " Reassenbl e"
i nput (Message sdu);
out put (Message sdu )
code "f_reassenble.0")))

Figure 13: Protocol Function Descriptors in the Protocol
Resource Pool

descriptor contains two mechanisms, one used for explicit
connections (such as a 2- or 3-way handshake) and one
used for implicit connections (such as timer-based set-up and
tear-down). The Checksumfunction aso contains severa
mechanisms that may perform either checksum calculations
or validationson a PDU.

The final two functions appear in the receiver-side of a
protocol machine. TheDupl i cat e_Cont r ol functionde-
tects and potentially discards replicated SDUs that arrive on
the incoming data and control streams. The Reassenbl e
function coaesces the individua pieces produced by the
sender’s Segnent function to form the original PDU.

Figure 14 presents two more descriptor types. anchor
function descriptors and rendezvous descriptors. The anchor
function descriptors indicate the entry point(s) into and/or
the exit point(s) out of protocol machine. For example, the
Upper I nt er f ace_Sender anchor function receives a
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(anchor "Upper_I nterface_Sender"
(mechani sm "Recei ve_SDU_Sender "
i nput (Message sdu)
out put (Message sdu))
code "f_recv_sdu_sender.0"))
(mechani sm " Appli cation_I nterface”
i nput (Message sdu)
out put (Message sdu))
code "f_application_interface.o")))
(anchor "Upper_I nterface_Recei ver"
(mechani sm "Send_SDU_Recei ver"
i nput (Message sﬁ);
out put (Message sdu)) .
code "f_send_sdu_receiver.o0"))
(mechani sm " Appli cafi on_| nterface"
i nput (Message sdu)g
out put (Message sdu))
code "f_application_interface.o")))

(anchor "Lower_I nterface_Sender"

(mechani sm "Send_SDU_Sender "

i nput (Message s@)g

out put (Message sdu))

code "f_send_sdu_sender.0"))
(mechani sm " Networ k_Layer _I nterface"

i nput (Message sdu)

out put (Message sdu))

code "f_network_interface.o")))

(rendezvous "Validitiy"
(mechani sm " Audi o_Val i dat e"
(input (Checksum Result,
Lifeti me_Result,
Eout put (Bool ean br))
code "f_audio_val i date. o")
(mechani sm "Vi deo_Val i dat e"
(input (Checksum Result,
Lifeti me_Result,
out put (Bool ean br))
code "f_audi o_val i date.o")
(mechani sm "Text Val i date"” .
(input (Ack_Check Result, Wndow Check_Result,
Path_Resul't, Checksum Result))
(output (Connection_State_Info,
Excepti on_Handl i ng_I nf o, )
Dat a_Ref erence, Qption_Handling_Info,
Round_Tri p_Ti me, Congestion_Control _Info))
(code "f_text_validate.o")
(mechani sm "Generic"
(input (paranter_list)) (output

Dupl i cate_Result))

Duplicate_Result))

(list_of _lists)))

Figure 14: Anchor and Control Function Descriptors in the
Protocol Resource Pool

message from the application at the sender’s end-system and
logically and/or physically copiesit into theinternal memory
space of the transport system. The rendezvous descriptor
is a specia-purpose control function that synchronizes con-
current processing within a protocol machine. A set of cus-
tomized Val i dat e_Header mechanism are defined in the
protocol resource pool for existing protocol machine con-
figurations. In order to configure new protocol machines
automatically, a Generi ¢ mechanism is included. This
mechanism is a “code template” that is parameterized by a
list of input types and alist of output types. Thistemplateis
used by the synthesistool sto automatically derive a suitable
control mechanism.

Figure 15 depicts two other types of descriptorslocated in
the protocol resource pool. These descriptors are compos-
ite types that contain portions of the protocol, control, and
anchor function descriptors. For instance, a configuration
descriptor characterizes the platform-independent configura
tion of aparticular protocol machine and indicateswhether it
belongsto aspecific application service class. The* code’ for
a composite configuration is stored as an internal intermedi-
ate representation in the protocol resource pool. Likewise, a
protocol machine instantiation descriptor contains platform-



(confi gur at ion "Video_Streant
class "real _time unrellable)
code "video_stream conf"))

(configur at ion "Text_Streant
class "non_real tlmerellable)
code "text_streamconf"))

(instantiation "Audio_Streant
class "real _tine unrelrable)
code "audi o_stream exe"))

(instantiation "Reliable_Mssage"

class "non_real _time_reliable")
code "reliabl e_nmessage. exe"))

Figure 15: Protocol Machine Configuration and | nstantiation
Descriptorsin the Protocol Resource Pool

dependent obj ect-code and data that enablesit to be executed
on a particular target platform. In particular, the contents
of an instantiation descriptor contain object-code attributes
stored in the protocol, control, and anchor function descrip-
tors.

54 Text-based Descriptions of Protocol Ma-
chines

This subsection illustrates several examples of a text-based
language that utilizes various protocol resource descriptors
to describe application-tailored protocol machine configura-
tions. These configurationsmay either be produced manually
or automatically (via protocol machine configuration tools
[21]). In either case, the text-based protocol machine con-
figuration is processed automatically by synthesis tools that
transform it into a protocol machine instantiation. The text-
based language illustrated in Figure 16 corresponds directly
to the flowgraph-based |anguage for the audio sender and the
reliablemessage receiver showninFigure5. A configuration
described viathetext-based language consists of acollection
of clausesthat contain information (such asthe successor and
predecessor nodes) that are necessary to configure the proto-
col machine. The rendezvous and timer nodes are included
to provide guidance for the instantiation process.

The anchor nodes in Figure 16 are represented by the
Upper I nterface_Recei ver clause, as well as the
Lower _I nt erface_Recei ver clause. Their predeces-
sor and successor nodes are NULL, respectively, since
they occur at the boundaries of the communication sub-
system. Different mechanisms for the rendezvous node
Conpl et e_Header fill in the dataand connection control
packet header formation. Taken as a whole, these protocol
mechanisms define the complete protocol machine for the
audio sender.

Figurel? illustrates the text-based protocol machine con-
figuration for the reliable message receiver shown in Fig-
ure 10. The anchor nodes for this protocol machine are also
represented by theUpper _I nt er f ace_Recei ver clause
and the Lower _I nt er f ace_Recei ver clause. The ren-
dezvous node Val i dat e_Header evauates the results
fromitspredecessor functionsand sel ectstheappropriatesuc-
cessor (either the Acknowl edgenent or Reassenbl e
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(anchor Upper I nterface_Sender"
(mechani sm "Recei ve_SDU_Sender "
Epredecessors NULT) ) )
successors "Segnent", "Synchronization")))
(anchor "Lower _Interface Sender
(mechani sm "Send_SDU_Sender "
Epredecessors TConpl et e_Header", "Checksuni'")
successors NULL))
(rendezvous "Conpl ete_Header "
(mechani sm " Conpl et e_Header _Audi o_Dat a"
(predecessors barrier
( Conpose Dat a Request
5\/nchron| zation"))
(successors "Send_SDU')))

(rendezvous "Conpl ete_Header "
(mechani sm " Conpl et e_Header _Audi o_Connecti on"
(predecessors barrier
(" Connectl on_Est abl i shment _Ter m nati on"

"))

"Rout i
(successors ("Checksunt'))))

" Sequenci ng",

(function "Segnent"
(mechani sm "Segnent "
E predecessors "Recei ve_SDU')
successors "Sequencing", "Conpose_Data_Request")))

(function "Conpose_Data_Request”
(nmechani sm " Conpose_Dat a_Request "
E predecessors "Conpose_Dat a_Request")
successors "Conpl et e_Header)))

(function "Sequenci ng”
(nmechani sm "Sequenci ng"
Epredecessors 'Segnent ")
successors "Conplete_Header)))

(function 5\/nchron| zation")
(nmechani sm " Stream &/nchronr zation"
(predecessors "Recei ve_SDU")
successors "Conpl et e_Header")))

(function "Connection _Establishnent_Ternination”
(nmechani sm " Expl | ci t_Connection"
Epredecessors 'Recei ve_SDU")
successsors "Conpl ete_Header")))

(function Routl ng"
(nmechani sm " Transport _Syst em Routing"
"Recei ve_SDU")

"Conpl et e_Header")))

(function "Checksunt
(nmechani sm Checksum Cal cul ation"
"Conpl et e_Header")
"Send_SDU")Y))

(tiner "Retransm' t"
(nmechani sm "Ti mer based_and_Cunul ati ve_Retransnit"
(predecessors "Connect i on_Est abl i shment _Ter mi nati on")
successors "Send_SDU'))) ™

predecessors
successors

predecessors
successors

Figure16: Text-based Configuration of the Protocol Machine
for Sending Audio

function). The protocol machine configuration may be sub-
mitted as input to the synthesis tools and/or stored in the
protocol resource pool for subsequent instantiation.

6 Concluding Remarks

This paper examines a protocol machine configuration lan-
guage and a protocol resource descriptor language that sup-
port a function-based approach for generating application-
tailored protocol machines based upon a high-level descrip-
tion of protocol functionality. These protocol machines effi-
ciently support a diverse collection of data streams required
by multimediaapplicationssuch as the collaborative distance
learning example presented in Section 3. In this example
scenario, each different multimedia data stream is associated
with an application-tailored protocol machine. The building-



(anchor "Upper_Interface_Receiver"
(mechani sm "Send_SDU_Recei ver "
Epredecessors TReassenbl e")
successors NULL)))

(anchor "Lower_Interface Receiver"
(nmechani sm "Recei ve_SDU_Recei ver"
Epr edecessors NULL)
successors "Duplicate_Control", "Ack_Check",
" Checksum Cal cul ation")))

(rendezvous "Validate_Header"
(mechani sm "Rel i abl e_Msg_Val i dat e"
(predecessors barrier
("Duplicate_Control", "Ack_Check",
" Checksum Cal cul ati on"))
(successors selector ("Reassenble",
" Acknow edgenent"))))

(function "Checksum Cal cul ati on”
(mechani sm " Checksumi ng"
Epredecessors "Recei ve_SDU")
successors "Validate_Header")))

(function "Duplicate_Control"
(mechani sm "Duplicate_Control"
E predecessors "Receive_SDU')
successors "Validate_Header")))
(function "Acknow edge_Check"
(mechani sm " Acknow edge_Check”
E predecessors "Recelve_SDU')
successors "Validate_Header")))
(function "Reassenbl e"
(mechani sm " Reassenbl e"
Epredecessors "Val i dat e_Header "

)
successors "Acknow edgenent”, "Send_SDU')))

(function "Acknow edgenent”
(nmechani sm "Negative_Sel ective_Ack"

Epredecessors "Val Tdat e_Header ",
successors "Retransmit™)))

"Reassenbl e")
Figure17: A Text-based Protocol Machine Configurationfor
the Reliable Message Receiver

block components for these configurationsreside in a proto-
col resource pool, which contains a set of mechanisms used
to generate a customized protocol machine. These machines
are currently defined manually and are used as a basis for
various synthesis and mapping tools. In addition, we are
working on aset of configuration toolsthat will automate the
process of producing the protocol machine configurations
from high-level specifications of application qualitative and
guantitative communication requirements [21].

The technique of using flowgraphs as alanguage for spec-
ifying function-based protocol machines is described in this
paper using notions and definitions from the function-based
communication model presentedin [1]. Inaddition, the same
approach is also applicableto the system described in [4].
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