
Introducing Embedded Software and Systems Education and Advanced
Learning Technology in an Engineering Curriculum

Janos Sztipanovits, Gautam Biswas, Ken Frampton, Anirudda Gokhale, Larry Howard,

Gabor Karsai, T. John Koo, Xenofon Koutsoukos, and Douglas C. Schmidt
Institute for Software Integrated Systems (ISIS)

Vanderbilt University, Nashville, TN 37221, USA

Abstract

Embedded software and systems are at the intersection of electrical engineering, com-
puter engineering, and computer science, with increasing importance in mechanical en-
gineering. Despite the clear need for knowledge of systems modeling and analysis (cov-
ered in electrical and other engineering disciplines) and analysis of computational proc-
esses (covered in computer science), few academic programs have integrated the two
disciplines into a cohesive program of study. This paper describes the efforts conducted
at Vanderbilt University to establish a curriculum that addresses the needs of embedded
software and systems. Given the compartmentalized nature of traditional engineering
schools, where each discipline has an independent program of study, we have had to de-
vise innovative ways to bring together the two disciplines. The paper also describes our
current efforts in using learning technology to construct, manage, and deliver so-
phisticated computer-aided learning modules that can supplement the traditional course
structure in the individual disciplines through out-of-class and in-class use.

1. Introduction

This paper describes our efforts in building an embedded software and systems speciali-
zation in the framework of the current Engineering School curriculum at Vanderbilt Uni-
versity. Vanderbilt’s School of Engineering is typical for mid-sized engineering programs
(i.e., about 100 faculty, 1200 undergraduate and 400 graduate students), where new areas
of specialization cannot be created by simply adding new courses due to limited faculty
resources. We have therefore adopted a more pragmatic approach, where we adjust the
content of existing courses and add a minimal number of new courses as technical elec-
tives. This structure enabled us to form a new embedded software and systems concentra-
tion within existing majors in electrical engineering, computer engineering, computer sci-
ence, and mechanical engineering.

The approach we followed was strongly influenced by the following four factors:

1. Insertion of the embedded software and systems concentration in the engineering cur-

riculum at Vanderbilt has benefited by the research programs in Model-Integrated
Computing (MIC), Distributed and Real-Time Embedded (DRE) Systems, and Sys-
tems Science and Engineering at the Institute for Software Integrated Systems (ISIS)
[http://www.isis.vanderbilt.edu]. MIC is a technology that supports model-based de-
velopment of embedded systems [2][9]. The MIC approach advocates the use of

models in the design, analysis, and synthesis of embedded systems, thereby bringing
design automation to software systems that operate in a physical environment. DRE
Systems cover a wide range of research on software platforms for DRE systems, in-
cluding middleware for distributed and networked embedded systems, component-
based architectures and quality-of-service (QoS) architectures [20][21][22]. Our re-
search on Systems Science focuses on Hybrid Systems [23][24] as mathematical
models for embedded systems. These three research thrusts are integrated in different
applications including diagnostic systems [25][26], networked embedded systems
[27] and integrated tool chains for avionics, automotive and signal processing appli-
cations [28][29].

2. Many of our projects in embedded software and systems are cooperative efforts.
Among them, our collaboration with the CHESS Center at Berkeley in the NSF In-
formation Technology Research (ITR) project on the Foundations for Hybrid and
Embedded Systems has a strong educational thrust. In this project we investigate ap-
proaches to teaching new systems science foundations, which is both physical and
computational and new tool-based design technologies, such as platform-based design
[35]. We also take advantage of our participation in the US-EU cooperative program
between with the ARTIST-2 Network of Excellence and the DECOS project in EU.

3. At Vanderbilt, we are actively developing a learning technology that educators can
use to create interactive web-based learning experiences that can adapt to individual
differences between learners by altering content or flow. Our interests in adaptive
learning technologies arose from participation in the NSF-sponsored Vanderbilt-
Northwestern-Texas-Harvard/MIT (VaNTH) ERC for Bioengineering Educational
Technologies [11]. The outcome of this research is the Courseware Authoring and
Packaging Environment (CAPE) and the Learning Management System (eLMS).
CAPE is used to design how learning materials are used to create an adaptive learning
experience and eLMS is a web-based delivery platform.

4. ISIS has a strong industrial partnership program, which enables us to obtain practical
experience in the construction of complex embedded system applications. In coop-
eration with the CHESS Center, ISIS has incubated and spawned off the ESCHER
Research Institute [www.escherinstitute.org], which is an independent non-profit or-
ganization that operates a quality-controlled open-source repository of embedded sys-
tems tools and platforms. ESCHER’s industry-funded maturation program for open-
source research tools helps create reference tool chains and applications that can be
used in industry and at academic institutions as an infrastructure for teaching and re-
search.

As discussed earlier, we have built our embedded software and systems curriculum by
combining traditional courses in the Electrical Engineering (EE), Mechanical Engineer-
ing (ME), Computer Engineering (ME), and Computer Science (CS) disciplines, such as
Signals and Systems, Circuit Analysis, Dynamic Systems, Control Theory, Computer Or-
ganization, Microprocessors and Microcontrollers, Data Structures and Algorithms,
Automata and Theory of Computation, and Software Design with several new courses
that have been introduced at the undergraduate and graduate levels.

The remainder of this paper is organized as follows. Section 2 describes our new under-
graduate embedded software and systems course offerings that supplement the existing
relevant courses that we have listed above; Section 3 describes our graduate course offer-
ings on embedded software and systems; Section 4 describes our adaptive learning tech-
nologies and examines potential applications; and Section 5 presents the concluding re-
marks and discusses future work toward further enhancements to our curriculum.

2. Teaching Embedded Software and Systems to Undergraduates

The current curriculum at Vanderbilt is characteristic of many engineering schools. Rele-
vant courses and capable students are spread over various departments. The Departments
of EECS and ME are the two largest departments both in terms of students, and faculty
who share common interests in embedded systems. The traditional courses in the EE,
CompE, CS, and ME programs have the typical disciplinary focus, but this did not align
well with the needs of a strong embedded systems curriculum. When designing an ac-
ceptable solution, therefore, we had to consider the following constraints:
• Launching a completely new line of courses focused on embedded software and sys-

tems was infeasible due to resource constraints in terms of faculty time and the avail-
ability of laboratory facilities.

• Embedded software and systems require an expanded foundation that combines the
fundamentals of physical and computational systems theories. Extending the set of
existing disciplinary foundational courses to accommodate embedded systems fun-
damentals is not possible given the need to satisfy ABET accreditation requirements,
and limits on the number of courses that can be crammed into a four-year curriculum.

• The interested student body is enrolled in several majors, including EE, CS, CompE,
and ME, so the curriculum must cross traditional disciplinary boundaries.

It was clear that we had to adopt a non-conventional solution since embedded software
and systems represent fundamentally different challenges that cannot be integrated effec-
tively into existing, well-established (and entrenched) disciplinary frameworks. This
section introduces the conceptual issues we had to address in teaching embedded systems
and then describes the undergraduate course offerings, laboratory program, and summer
research internships that we created to give our undergraduates adequate exposure to the
discipline.

2.1 New Conceptual Elements in the Undergraduate Curriculum

Engineering disciplines require the understanding of modeling formalisms, analysis
methods, and design/synthesis techniques. Teaching embedded software and systems cre-
ates substantial new challenges in all three areas. Moreover, it requires two types of
thinking:
• Abstractions are a key concept in the study of computer science and all engineering

disciplines. In computer science, students learn to create and formalize abstractions of
computational processes, and to relate layers of abstraction to each other. These ab-

stractions involve logical and conceptual formalisms, but they do not cover the theory
and analysis of physical processes and systems. In fact, “physicality” brings problems
(such as “crosscutting”) to clean abstraction hierarchies, which makes conceptualiza-
tion much harder.

• In most engineering disciplines besides computer science, a typical pedagogical ap-
proach is to teach a particular abstraction (such as discrete time linear systems) and
then build analysis and design methods that exploit the abstraction formalism. In
these engineering disciplines, however, there is a tacit understanding that physical re-
ality is more complex than the “clean abstractions” used for teaching, which are al-
ways approximations of the real world.

A successful embedded software and systems curriculum must encourage both types of
thinking, i.e., students need to be taught to use heterogeneous abstractions and even to
design new systems of abstractions by combining and integrating existing ones.

Analysis of engineering models requires precisely defined semantics for the abstractions
used in systems modeling. The level of precision and formality differs not only between
computer science and other engineering disciplines, but among engineering disciplines.
as well. A unique challenge of embedded software and system curricula is to include the
appropriate level of formal semantic foundations that satisfy the needs of systems inte-
grating physical and computational components. Teaching hybrid systems modeling and
analysis on the level suitable for undergraduates is a particularly hard problem because
students must conceptually integrate continuous-time models with discrete behaviors,
such that one cannot be understood without understanding the other. Moreover, analysis
methods for real-valued, differential-equation based models differ significantly from
automata-based and algebraic models that form the core of analysis methods for compu-
tational processes. Analysis of embedded systems therefore requires a new way of think-
ing that in some way must systematically combine disparate continuous and discrete
mathematical domains.

Design methods are highly discipline dependent. Logic circuit design in computer engi-
neering and linear circuit design in electrical engineering are well understood and highly
developed areas, with standard formalisms, semantics, and methodology. It is very com-
mon in embedded software and systems design that design flows need to be adjusted ac-
cording to the needs and requirements of specific domains. Students need to examine spe-
cific design flows as examples and understand how to change those if requirements are
changing.

2.2 Undergraduate courses

Based on the considerations described in Section 2.1, we have established an embedded
software and systems concentration for EE, CS, CompE, and ME undergraduate students.
This concentration includes courses that reflect the unique challenges of embedded soft-
ware and system engineering and brings together students from different majors. Below
we present the selection of our courses that form the backbone of the embedded systems
curriculum for undergraduates.

Microcontrollers. This course is oriented towards the engineering principles and tech-
niques of applying microcontrollers in various embedded systems. The course covers top-
ics such as principles and techniques for programming real-time embedded systems, as
well as various systems engineering topics such as fault tolerance and system integration
practices. The course introduces design techniques, covering both procedural and object-
oriented design, as well as the analysis techniques such as Rate Monotonic Analysis. The
course places strong emphasis on hands-on experience with the topic: it includes eight
structured labs (of 3 hours each) and has a significant design project. A typical design
project involves designing and developing a controller for a small, mobile robot, and im-
plementing it using a real-time operating system. Model-based techniques are introduced
on the elementary level: students learn how to model behaviors using Stateflow and use
these techniques in their projects.

Modeling and Simulation. The primary theme for this course is to introduce students to
different modeling formalisms that are relevant to embedded systems, and use simulation
tools for analyzing the behavior of these systems. This course has evolved from an older
CS course on system simulation that focused on the study of numerical techniques to en-
sure precision and accuracy in complex real-valued computations using finite arithmetic
on computer systems. The current version of the course has been revamped significantly
to understand the basics of modeling and simulation of embedded systems. This vision is
achieved by introducing students to modeling processes and simulation tools that span
computational systems (discrete and discrete-event) and physical processes (discrete-time
and continuous). Rather than focus on the mathematical theories (e.g., theory of auto-
mata, discrete-event systems, difference, and differential equations) associated with ana-
lyzing such systems, this course focuses on realistic systems, defines a task for analyzing
aspects of system behavior, and then develops computational models at the appropriate
level of abstraction so that behavior analysis is performed by simulation and interpreta-
tion of the observed behaviors. Example systems, such as computing processes, manu-
facturing systems, physical devices, and biological systems, provide students insight into
the theories of different computational paradigms.

Rather than take a traditional computer science approach to developing and coding simu-
lation algorithms manually using third-generation programming languages, students use
the Simulink and Stateflow components of Matlab to build and execute models. The dif-
ferences in the models of computation are explained through the abstraction mechanisms
that are employed in model building, and the computational form of the models that stu-
dents have to develop for the Simulink and Stateflow environments. Toward the end of
the course, students are introduced to modeling of embedded systems using hybrid auto-
mata models. Again, Simulink models introduced into Stateflow blocks provide the mod-
eling and simulation environment for students to build and analyze embedded systems
models.

The specific topics covered in our undergraduate modeling and simulation course include
introduction to systems modeling concepts, modeling formalisms and their simulators,
cellular automata, discrete event systems modeling, continuous system modeling, a bond

graph approach to modeling physical systems, stochastic systems, and hybrid (continuous
+ discrete) systems. Over the period of the semester, students work on a number of Mat-
lab-based assignments. Students also work on a class project in pairs, and apply the mod-
eling techniques learned to their particular domain of interest. In the last several years
students have worked on a variety of domains, such as modeling advanced life support
systems for NASA manned missions, supply chain systems, complex electromechanical
devices, UAV path planning systems, stock market analysis, traffic flow systems, missile
defense systems, and shipboard facility layout systems.

System Dynamics and System Dynamics Laboratory. This two-part course has been in
the ME curriculum for many years. The focus of the course is the integration of the
physical sciences of dynamics, mechanics, fluids, heat transfer and circuits, with the
mathematical tools used in conceptualizing, modeling, and analyzing system response.
Moreover, the associated laboratory (described below) reinforces these concepts. The
overall goals of the course focus on analysis of the physical processes in embedded sys-
tems, which required almost no modification to fit within the embedded software and sys-
tems program at Vanderbilt. Some introductory material has been added to benefit EE,
Comp E, and CS students and some elements have been added to better mesh with the
Foundations of Hybrid and Embedded Systems course described in Section 3.

The topical progression of the System Dynamics course begins with a review of basic
physical systems modeling techniques. This review is followed by the introduction of
Laplace transforms and their use in system response (both transient and steady-state)
analysis. Next, concepts from hybrid and embedded systems are drawn into the course,
including signal flow and block diagram system representations. Also included at this
point is modeling of combined electro-mechanical systems, such as the acoustic loud-
speaker that includes electrical circuit, electromechanical coupling, and mechanical re-
sponse. Finally, the course covers introductory topics in feedback control for system re-
sponse modification.

The laboratory associated with the System Dynamics course seeks to reinforce the in-
class concepts, as well as expose students to the experimental techniques related to sys-
tem analysis. Labs performed in this course include introduction/review of measurement
instruments and circuit building; measurement of system transient response; measure-
ment of system steady-state response; control system implementation; and programming
and behavior of simple robotic systems. In each lab students are first asked to develop
computer simulation of the systems to be studied and then to compare the predicted re-
sults with the measured results.

Real-time Systems. This is an introductory course on real-time systems design and im-
plementation. Students learn basic design and implementation issues in real-time systems
and theoretical formulations where appropriate. The course places heavy emphasis on
design and implementation of real-time systems. Topics covered can be categorized into
(1) concepts, which include hard and soft real-time systems, distributed real-time and
embedded systems, global time, priorities, priority inversions, priority inheritance, event-
triggered and time-triggered models of real-time, safety critical systems, resource man-

agement, scheduling and schedulability analysis and (2) practical issues, which includes
real-time programming primitives, real-time system software patterns, real-time operating
systems, quality-of-service (QoS) issues in communication networks, and real-time mid-
dleware, such as Real-time CORBA and Real-time Java.

2.3. Laboratory Experience for Undergraduates

One of the most successful and appreciated courses for all majors in Vanderbilt’s School
of Engineering is the senior design course. This course focuses on a “capstone” design
experience that integrates the material learned in prior years in the context of an industry-
level design project. Students form teams, work in conjunction with an industrial advisor,
and take a product through its full design and development cycle. This two-semester ac-
tivity results in an industrial quality prototype, evaluated and endorsed by an industry
mentor (typically from a local small business). Capstone design projects often involve
traditional engineering disciplines (e.g., circuit design, and mechanism construction), as
well as computing tasks (e.g., designing a small microcontroller that implements a sensor
and/or control function). These projects provide an excellent opportunity for students to
gain hands-on experience with embedded computing in a realistic, physical context.

In addition to the capstone design project for seniors, we also provide selective and in-
tense research internship opportunities to our and other institutions’ rising junior and sen-
ior students during the summer through the NSF ITR project “Foundations for Hybrid
and Embedded Software Systems” summer program called: Summer Internship Program
in Hybrid and Embedded Software Research (SIPHER) [30]. One of our major chal-
lenges in the CS and EE disciplines is to attract underrepresented (minorities and women)
talent and channel them into successful research careers. Whereas the original focus of
SIPHER was on recruiting and training underrepresented students in hybrid and embed-
ded systems, faculty at Vanderbilt have expanded this program and offer internships to a
number of additional students. All of the students undergo a ten week intense training
program in the science and technology of embedded systems developed by ISIS and UC
Berkeley researchers, and work on specific design research problems. They use software
design tools developed as part of the NSF ITR research project, including the Generic
Modeling Environment (GME) [10][31], Ptolemy [32] and Metropolis [33], to gain an
early exposure to model-based design and implementation techniques for embedded
software systems. Their work in these projects is mentored by graduate research assis-
tants and supervising Vanderbilt faculty.

The SIPHER program emphasizes the model-based approach and students have used it to
implement non-trivial embedded systems. In most of the projects the student were using a
Small Modeling Language for Embedded Systems (SMOLES) [34] that illustrates how
model-based composition, behavioral specification, and integration works. The SMOLES
language is supported by a GME-based visual modeling tool, it has a code generator, and
a small run-time system that runs on the embedded platform. The run-time system im-
plements a dataflow model of computation and it is closely coupled to the concepts of the
modeling language. The system is available in C++ and Java, the latter can be used on a
Lego RCX platform. SMOLES have been developed and updated by ISIS graduate stu-

dents as part of their training in designing Domain-Specific Modeling Languages
(DSMLs) and MIC environments.

3. Teaching Embedded Software and Systems to Graduates

Our graduate-level courses on embedded software and systems at Vanderbilt emphasize
the formal foundations and analytical tools needed to develop embedded systems, as well
as cover advanced application topics, such as engineering large-scale distributed real-
time, and embedded systems, model verification, and quality-of-service (QoS) issues.
This section describes the key courses that we include in our embedded software and sys-
tems graduate curriculum.

Model-Integrated Computing (MIC). This course is the core, graduate-level course on the
fundamentals of MIC. The course teaches the principles and techniques of MIC, with
significant emphasis on the design, formal specification and implementation of DSMLs,
model transformations, model-based code generators and building end-to-end applica-
tions. A core concept in the course is that different embedded systems categories require
a unique set of abstractions that are determined by the properties designers want to
achieve. DSMLs are thus not only used in the design process, they are also the objectives
of design. Students learn about modeling in various disciplines, as well as practice meta-
modeling that provides the formal specification for to DSMLs. Another core principle
discussed in the course is platform-based design [35]. Using examples, students study
design flows, understand the nature of mapping between models in a design flow, and
learn the techniques for formally specifying model transformations [36]. A third concept
in the MIC course is model-based system integration. Students learn about modeling key
design aspects of embedded systems, such as functional behavior, hardware architecture,
fault behavior and others, and understand how to use these interdependent modeling as-
pects in generating various artifacts such configuration tables, schedule tables, and code.

The MIC course also covers the theoretical foundations of DSML construction and the
technology that enables building domain-specific modeling environments. This course
heavily relies on the use of the open-source GME [10] that was developed at ISIS over
the last decade, and has evolved significantly through its use in a number of research pro-
jects [37]. Students work on class projects that include the full definition of a DSML, and
build software generator tools for creating artifacts (e.g., executable code or simulations)
from the domain-specific models.

While MIC is applicable to domains beyond embedded systems, this domain is a key area
in which the model-based paradigm has made a significant impact on software research
and practice. Hence, many student projects in the MIC course are related to embedded
systems. A typical student research project results in a visual modeling environment that
provides a tool for building embedded system applications for a specific category (e.g.,
reactive controllers specified using StateChart-like notations), as well as in additional
software tools for verification (using a model checker, such as SMV), or code generators.

Foundations of Hybrid and Embedded Systems. The design of embedded systems re-
quires the use of heterogeneous models of computation to address specification, analysis,
synthesis, and validation problems. The objective of this course is to introduce various
formal models of computation and study their use in embedded system applications. At
the graduate and advanced undergraduate levels, this class provides students with the
foundations required for studying embedded systems, control systems, and robotics.

This class starts with an overview of hybrid and embedded systems, emphasizing the ne-
cessities for and the rewards of precise mathematical representations. The first part of the
course presents several models of computation, including finite state machines and state-
charts. Subsequent topics include timed discrete event systems, discrete event simulation,
continuous time-driven systems, and numerical integration methods. Finally, dataflow
process networks are presented, focusing on scheduling of synchronous dataflow. Stu-
dents are exposed to numerous applications that demonstrate the value of these models.

The second part of this class focuses on hybrid systems as heterogeneous models of com-
putation. Hybrid systems are viewed as models that combine continuous and discrete
processes, time-driven and event-driven dynamics, dataflow and control flow, or differ-
ential equations and finite state machines for describing the interaction between embed-
ded software systems and the physical world. After introducing the hybrid automata
model, the course studies hybrid system simulation using many practical examples, such
as robot control systems, flight control systems, etc. Formal verification of hybrid sys-
tems is also investigated and solutions based on discrete abstractions are presented. As-
signments include modeling, simulation, and analysis problems and class projects involve
modeling a reasonably complex embedded system application using model-based tools,
such as Matlab/Simulink/Stateflow and Ptolemy II.

QoS-enabled Component Middleware. This course focuses on QoS issues in large-scale
DRE systems built using component technology. Much of the complexity and cost of de-
veloping and validating DRE systems can be alleviated by the application of the ad-
vanced modeling and QoS-enabled component middleware concepts, platforms, tools,
and techniques covered in this course, which reside between the applications and the un-
derlying hardware and network infrastructure and provide reusable services that can be
generated, composed, configured, and deployed to create mission- and safety-critical
DRE systems rapidly and robustly.

The theoretical foundations of this course cover the following advanced concepts for
component-based DRE systems that possess deterministic and statistical QoS require-
ments: (1) global time synchronization services in distributed systems, (2) priority pres-
ervation, e.g., priority inheritance/ceiling protocols, (3) computational models for DRE
system concurrency and distribution, e.g., event and time-triggered systems, (4) valida-
tion techniques for mission- and safety-critical DRE systems, (5) distributed and dynamic
resource management strategies, and (6) scheduling strategies and schedulability analy-
sis, e.g., maximum urgency first (MUF) and least laxity first (LLF).

The experimentation aspects of the QoS-enabled Component Middleware course cover
the following advanced topics: (1) programming language, operating system, communi-
cation network, and QoS-enabled component middleware capabilities, (2) architectural
and design patterns of DRE software, and (3) model-driven specification, analysis, and
synthesis of DRE systems. Students use the open-source TAO [20] and CIAO [21] QoS-
enabled component middleware developed at ISIS as the basis for class projects. TAO is
a Real-time CORBA object request broker that allows clients to invoke operations on dis-
tributed objects without concern for object location, programming language, OS plat-
form, communication protocols and interconnects, and hardware. CIAO is a real-time
CORBA Component Model (CCM) implementation built on top of TAO.

Model-Driven Middleware. Rapid advances in hardware, networking and software tech-
nology are fostering widespread deployment of complex distributed real-time and embed-
ded (DRE) applications in several different domains, such as avionics, telecommunica-
tions, telemedicine, industrial process control, healthcare, military combat systems and
enterprise. A challenge requirement for these new and planned applications involves sup-
porting a diverse set of quality of service (QoS) properties, such as predictable la-
tency/jitter, throughput guarantees, scalability, 24x7 availability, dependability, and secu-
rity that must be satisfied simultaneously in real-time. Although these applications are
increasingly based on commercial off-the-shelf (COTS) hardware and software elements,
the complexity of lifecycle management is a growing challenge for the application devel-
opers. For example, substantial time and effort are spent integrating these elements into
DRE applications. Integration challenges stem largely from a lack of higher-level ab-
stractions for composing complex DRE applications.

The Model-Driven Middleware (MDM) course deals with the challenges faced by DRE
application developers and delves into the solutions used to address these challenges. In
particular, it focuses on MDM, which is an emerging paradigm to address these chal-
lenges by integrating the strengths of model-based engineering of systems, such as Model
Integrated Computing (MIC) and Model-Driven Architecture (MDA), and component-
based middleware technologies, such as the Real-time CORBA Component Model, J2EE,
Microsoft .Net, and Web Services. Student projects in this course use the open-source
CoSMIC [22] MDM toolsuite developed at ISIS. CoSMIC provides a collection of
GME-based domain-specific modeling languages and their associated analysis/synthesis
tools that support various phases of component-based DRE system development, assem-
bly, configuration, and deployment.

Advanced Real-time Systems. The course serves as a graduate-level course on real-time
systems that must react to the dynamic environments under timing constraints. The
course focuses on the analysis and design of real-time systems. The course covers topics
on system modeling, using the tagged signal models and timed models of computation
[15], specifications and scheduling techniques for real-time tasks [16], simulation and
verification of real-time systems, software architecture and language for constructing
real-time systems [17,18,19]. Special attention is paid to computational and simulation
tools for real-time systems. Applications ranging from robotics, embedded control sys-

tems, drive-by-wire systems, space missions, telecommunication systems, industrial
automation, logistics systems, and middleware software systems are covered.

Topics in Embedded Software and Systems. The objective of this course is to review and
discuss new advancements in model-based design of embedded systems and software.
The selection of topics reflects a Model-Integrated Computing perspective, i.e., there is a
strong emphasis on DSMLs and embedded software and systems platforms, which can
offer effective support for model-based system and software generation. The course uses
a seminar format where students review and discuss papers assigned for each class by the
instructor. The class preparation includes the following steps: (1) reading the papers as-
signed, (2) preparing answers to control questions and submitting them electronically be-
fore the class ,and (3) preparing material for introducing the discussion (twice during the
semester). There are three main topics discussed in the class based on the critical review
of current literature: (1) formal specification and composition of DSMLs, (2) design ap-
proaches for embedded systems, and (3) new platforms for embedded systems.

4. Using Embedded Software Tools to Teach Embedded Systems

As embedded software and systems engineering becomes more heavily dependent on
tools, the challenges grow for incorporating this technology into the curriculum effec-
tively. Preparing configurable software frameworks for teaching materials (often called
“scaffolding”) can help reduce the incidental demands placed on instructors and students
alike when applying new and evolving technologies in learning activities. For students,
“just-in-time learning” capabilities embedded into tools (and tool infrastructures) can fa-
cilitate initial learning and re-learning of features and capabilities. For instructors and
technologists, the ease with which such scaffolding can be constructed, and the ease with
which engineering tools can be applied within learning experiences, will be critical.

In this section, we describe roles for adaptive learning technologies in facilitating broader
and deeper roles for design tools in embedded software and systems education. We use
our experiences developing and applying an adaptive learning technology called CAPE,
which itself is based on the MIC paradigm and implemented using the GME tools men-
tioned in Section 3, as a lens for examining the opportunities. We begin by describing
adaptive learning technologies and proceed by presenting and discussing a set of relevant
application examples.

4.1 Adaptive Learning Technologies

A learning process is adaptive if what is known about a particular learner, a priori or
through embedded formative assessment, can alter the process itself. Technologies that
support adaptive learning experiences have their roots in over 30 years of research on in-
telligent tutoring systems (ITS) [1][2][3]. These technologies, whose evolution continues
to the present (see [4]), seek to emulate human tutors instructing a single pupil on a
particular knowledge domain. A canonical ITS employs explicit representations of
learner knowledge and the knowledge of an expert in the domain. Questioning or inter-
locution is used to build and revise a model of a particular learner’s knowledge and the
system is concerned with incrementally aligning this knowledge with that of the expert

concerned with incrementally aligning this knowledge with that of the expert through the
engagement of particular learning content and activities. Extensions of ITS techniques to
web-based learning technologies can be seen in work on adaptive hypermedia [5].
Technologies for so-called “e-learning,” widely employed on university campuses in the
form of course management systems such as Blackboard and WebCT, are also beginning
to offer limited capabilities for adaptive learning experiences. This support currently of-
fers relatively weak knowledge representation and reasoning capabilities, however, with a
primary focus on instructor-directed conditional sequences.

Our interests in adaptive learning technologies arose from participation in the NSF-spon-
sored Vanderbilt-Northwestern-Texas-Harvard/MIT (VaNTH) ERC for Bioengineering
Educational Technologies [11]. This multidisciplinary center involves learning scien-
tists, experts in assessment and evaluation, learning technologists, and bioengineering
educators (among others) who are collaboratively pursuing improvements to pedagogy
and applications of learning technology in training future generations of bioengineers. In
creating the Courseware Authoring and Packaging Environment (CAPE), we were moti-
vated to exploit the vast middle-ground between ITS capabilities and those found with
“e-learning” technologies, while at the same time making it easier for educators to create
powerful web-based adaptive learning experiences. We created the experimental Learn-
ing Management System (eLMS) to support communities of educators in creating such
learning experiences and their use by communities of learners as a complement to class-
room-based instruction. Figure 1 illustrates the connection between CAPE and eLMS.

4.2 CAPE: A Visual Authoring Language

CAPE learning designs focus on a number of interrelated issues, with the central con-
cerns focusing on how the learning process unfolds: e.g., what learning materials are in-
volved, how formative assessments are employed, and what roles adaptation will play.
Associated with these kinds of concerns are statements of learning objectives and how
these are associated with elements of domain knowledge. Metadata, or descriptive data,
are employed to describe the learning process to many potential stakeholders and to dif-
ferent agents along the path to delivery to learners.

CAPE is not a content authoring environment: it is used to design how learning materials
are used in the learning process. Web-deliverable learning materials (HTML pages, im-
ages, movies, etc.) are authored using conventional tools for these content types. Some
of the resources employed in a learning design may be involved in adaptation schemes:
dynamic resources. CAPE makes adaptation services available that enable the replace-
ment of isolated placeholders in content such as HTML pages at delivery time or the dy-
namic generation of entire content elements. CAPE provides an integral assessment au-
thoring capability, reflecting the heavy involvement of formative assessments in adapta-
tion schemes and the needs for assessments themselves to sometimes be adaptive. CAPE
supports the embedding of interactive content into a learning design, and it provides the
ability to organize the interoperation of such content.

Figure 1: CAPE and eLMS Functional Connections

CAPE provides support for instructional design patterns. Such patterns are represented
by CAPE as abstract models that can be reused by refinement. At a high-level, these pat-
terns can capture structural invariants of recurring (and preferred) pedagogical strategies.
At lower-levels they can be used to represent idioms or techniques that a single author or
group of authors find useful. CAPE allows authors to fashion wizards—stepwise auto-
mation agents—that can assist in instancing these patterns. CAPE wizards are built in-
side CAPE using the same language features that support adaptive delivery, including
programming extensions in Python [12], a dynamic object-oriented language. These ca-
pabilities are being extended to later design processes, including assignment-time and
delivery-time adaptation.

Other forms of assistance provided to authors by CAPE include observation-based auto-
mation, context-specific help resources, and “just-in-time” learning facilities. The ac-
tions of CAPE authors are continually monitored by an event-based agent programmed to
offer particular task-completing steps. Context-specific on-line help associates web-
based reference materials with particular models, elements, and aspects. CAPE provides
access to adaptive tutorial resources authored with CAPE and delivered via eLMS. These
“just-in-time” learning capabilities will be discussed in Section 4.4.

4.3 eLMS: A Delivery Platform and Repository

eLMS is a repository-based web services platform that supports the delivery of learning
experiences authored with CAPE to learners and the sharing of CAPE learning designs
and their constituent materials among communities of authors. As a repository platform,
eLMS features are strongly specialized to CAPE and enable authors to share design pat-
terns, wizards, design elements, content elements, and content resources. As a delivery

platform, eLMS provides administrative services to instructors to form classes, to estab-
lish rosters, and to make assignments to individuals, groups, or an entire class. Learners
manage their courseware assignments, which can be suspended, resumed, and reviewed
as often as they like without abandoning any ongoing activities.

The heart of the eLMS delivery platform is a model-based delivery engine that enacts
CAPE learning designs with individual learners. These deliveries are extensively instru-
mented. Every interaction between the learner and the delivery engine is time-stamped
and entered into a delivery record. The result is a detailed account of what each learner
experienced. The collection of these records can be mined for particular information us-
ing data mining services of the eLMS Instructor interface. Delivery records serve not just
to evaluate learner performance, they also serve to inform improvements to the learning
designs themselves.

CAPE and eLMS are intended to be used in the context of “blended learning” where
learning experiences performed outside class are used to augment classroom-based in-
struction. eLMS capabilities that are specific to blended learning include support for in-
terventions. When a learner encounters difficulties that are beyond the diagnostic reach
of a learning design, the learner can be directed to a human diagnostician, be it the in-
structor or a teaching assistant. Based on the results of this face-to-face diagnosis and
remediation, state can be set in the learner’s delivery record that will determine how they
continue with the learning experience. Such a facility can be used to support a kind of
triage for learners who need assistance most, and can also focus attention on opportuni-
ties to further improve learning experiences for future learners.

Figure 2: Integration with a Campus-wide Course Management System

To make its easier to use CAPE-authored learning experience, we are actively pursuing
the integration of eLMS with popular course management systems. These platforms are
the primary “faces” of on-line learning resources at universities, and it makes sense to us

eLMS

Block

System
Administrators

Instructors

Students
Delivery
services

Class Services

Courseware
services

Blackboard Learning System

Building

eLMS

for instructors and students to access eLMS through these platforms. Our first offering—
a “building block” integration with the Blackboard Learning System (Figure 2)—is ex-
pected to be available by the time this is in press. In the future, we see the possibility that
eLMS can devolve into strictly a delivery service.

4.4. Embedding Instructional Capabilities into Existing Tools

“Just-in-Time” (JIT) learning, mentioned in the description of CAPE in Section 4.2, can
ease the cognitive burden of using complex technologies, such as tool-based design of
embedded software. For initial learning, JIT learning activities can present tasks in a
situated context using learning strategies like anchored inquiry [13]. Especially when a
tool is not used routinely, it is natural for users to forget precisely how things are done,
requiring re-learning. Sometimes integrated help resources are sufficient to scaffold this
learning, although the reference style of such resources often fails to sufficiently contex-
tualize the information provided. Task or problem-based tutorials provide the opportu-
nity to put information into context. Adaptive tutorials allow this information to be spe-
cialized to particular classes of learners.

The JIT learning capability created for CAPE is integrated directly into the GME and
provides tutorials authored with CAPE and delivered via eLMS. The GME extension
interoperates with eLMS (via web services) to obtain lists of available resources on de-
mand. The resulting capability has been generalized to provide on-line tutorials to any
GME-based modeling environment and for GME itself (Figure 3).

eLMS
repository

eLMS

Integration

services

Delivery

services

Launching Tutorials

Tutorial manager

Paradigm independent GME plug-in
to retrieve paradigm specific tutorials

GME
Tutorial

Manager

(Plug-in)

GME
Project

COM XMLRPC

Figure 3: Tutorial Manager in GME

We are currently investigating techniques for making the selection of JIT learning op-
portunities more sensitive to the context of the modeling task. For example, GME meta-
models organize a domain specific modeling language (DSML) into kinds of models con-
stituted by kinds of elements and associations. Models can be further organized into as-
pects that subset these elements, focusing the modeler’s attention on particular concerns.
When the modeler expresses interest in JIT learning activities, the current model and as-
pect can provide cues for recommending particular resources.

4.5 Embedding Existing Tools into Learning Experiences

Adaptive learning technologies can be used to teach learners how to use another technol-
ogy, or they can be used to teach a concept where another technology plays a role in ex-
emplification. This is particularly important issue in teaching embedded software and
systems, where the use of complex tools is integral and inseparable part of the learning
experience. There are also situations where an adaptive learning technology can play a
scaffolding role. Here we examine a couple of examples of these kinds of “embedding”
and how CAPE and eLMS can be used to support them.

In creating tutorial resources for CAPE, it was often necessary to construct web pages
showing CAPE screenshots and describing procedures involved in completing some task.
There are commercial tools for making narrated or annotated animations from screen-
shot sequences, such as ViewletBuilder from Qarbon (http://www.qarbon.com) and Cam-
tasia Studio from TechSmith (http://www.techsmith.com). The result is basically a movie
showing someone else performing some sequence of actions with a tool. As an alterna-
tive, we explored using automation services of the GME to open and manipulate tutorial
projects. Our initial aim was to use GME itself as a visualization tool.

The automation capabilities of the GME are based on Microsoft’s Component Object
Model (COM) (http://www.microsoft.com/com/default.mspx) component technology.
Programmatic interfaces are provided for manipulating the modeling representation.
Other COM interfaces allow manipulating the model editor; for example, a particular
model can be opened in the editor and objects selected. These interfaces can be accessed
and scripted using any Microsoft-supported scripting language, such as the Javascript
language natively supported by the Internet Explorer web browser.

A Javascript application programming interface (API) was built to provide higher-level
support for employing these manipulations from a CAPE-based learning experience.
This approach is very useful for showing learners around in a tutorial GME project, yet
teaching a learner how to use a technology typically involves asking them to perform ac-
tions and then confirming that these actions were correctly performed. Our interests ex-
panded to using GME as an interactive embedded learning component by detecting user
actions as differences from a known initial state of a tutorial project. Communication
with the user is achieved using GME’s capabilities to dynamically create and remove
model annotations. With these visualization, interaction, and annotation capabilities in

place, we can lead GME users through sequences of steps comprising some task, ask
them to complete actions, evaluate the actions that they actually perform, and remediate
as necessary. These capabilities greatly reduce the need to construct tutorial content
pages filled with screen shots and assessment-based interactions.

Our work with bioengineering educators in the VaNTH ERC has presented many oppor-
tunities to embed learning technologies and other technologies within CAPE designs to
teach learners concepts. We have been motivated to support technologies that these edu-
cators already know in order to reduce their “learning curve” in applying CAPE. One
such technology is MATLAB from MathWorks. This technology offers impressive visu-
alization, computation, and interaction capabilities. It also provides an automation inter-
face, like the GME, that enables it to be manipulated from web-based learning experi-
ences. An added advantage of MATLAB is that it is based on a scripting language.

Similar to example above, we have implemented support for manipulating MATLAB
from a CAPE-based learning design using another Javascript API. But here the instruc-
tions to MATLAB can be communicated in its scripting language M. In addition to
statically defined M-code, CAPE’s facilities for dynamic content can be used to synthe-
size M-code at delivery time, which provides a very wide range of possibilities. CAPE-
authored assessments can be used for interacting with the learner (say, to gather input pa-
rameters or terms), or MATLAB GUIDE user interfaces can be constructed that journal
user actions and report these back to eLMS using web services to become part of the
learner’s delivery record. Also, as in the case of the GME embedding example above,
CAPE’s native features for adaptive instruction can be used for diagnosis and remedia-
tion in further scaffolding MATLAB based exercises.

4.6 Current Status

We believe strongly that the technology described above can be applied to teaching em-
bedded system design. We have recently started building modules for course materials
for teaching the theory and practice of embedded systems, and we are in the process of
investigating how they can be integrated into CAPE-based learning experiences. The
CAPE and eLMS tools are currently in use at a number of institutions and are available as
non-commercial implementations by agreement with the VaNTH ERC [http://www.isis.
vanderbilt.edu/projects/VaNTH/index.htm]. They are based exclusively on open-source
technologies.

5. Concluding Remarks

The teaching of embedded software and systems in an engineering curriculum is a chal-
lenging problem because it requires the integration of two distinct disciplines and tradi-
tions: systems science and computer science. At Vanderbilt University we are introducing
and revising courses in our curriculum that emphasize integration across these disciplines
and we are offering a range of undergraduate and graduate level courses that focus on
embedded software and systems. The undergraduate classroom experience is augmented
by a senior capstone design lab course that enables the practical application of theory,

tools, and techniques learned in previous courses. We have also developed a suite of em-
bedded model-based software tools and QoS-enabled component middleware platforms
that are used throughout our undergraduate and graduate courses to provide students with
hands-on access to cutting-edge technologies. Most recently, we are developing tools
that support model-based construction and delivery of sophisticated education content
that assists students and practioners master the complexity of developing embedded soft-
ware and systems.

The introduction of these courses, tools, and platforms has been underway for several
years, but we can already observe significant positive changes in our students. For in-
stance, student feedback on the senior design project has been extremely positive, i.e.,
students appreciated the integrative nature of projects where computing was interlinked
with traditional engineering. We therefore believe that the reengineering of our curricu-
lum will provide better education for engineers who will design and build tomorrow’s
complex embedded software and systems. Our early observations show that this direction
is not only viable, but it is essential for the future.

References

[1] J. Lave and E. Wenger “Situated Learning: Legitimate Peripheral Participation”,
Cambridge, UK: Cambridge University Press, 1990.
[2] G. Karsai, J. Sztipanovits, A. Ledeczi, T. Bapty, “Model-Integrated Development of
Embedded Software,” Proceedings of the IEEE, Vol. 91, No.1., pp. 145-164, January,
2003.
[3] T. Murray, “Authoring Intelligent Tutoring Systems: An Analysis of the State of the
Art”, International Journal of Artificial Intelligence in Education (1999), Vol. 10, pp. 98-
129.
[4] A.C. Graesser, S. Lu, G.T. Jackson, H. Mitchell, M. Ventura, A. Olney, and M.M.
Louwerse, “AutoTutor: A Tutor with Dialogue in Natural Language,” Behavioral Re-
search Methods, Instruments, and Computers, 36, 180-193, 2004.
[5] P. Brusilovsky, “Adaptive Educational Systems on the World-Wide-Web: A Review
of Available Technologies,” Proceedings of Workshop "WWW-Based Tutoring" at 4th
International Conference on Intelligent Tutoring Systems (ITS'98), San Antonio, TX,
August 16-19, 1998.
[6] “IMS Simple Sequencing Specification”, Version 1.0, Instructional Management Sys-
tems (IMS) http://www.imsglobal.org/simplesequencing/index.cfm.
[7] L. Howard, “Adaptive Learning Technologies for Biomedical Education.” IEEE En-
gineering in Medicine and Biology Magazine 22: 58-65, 2003.
[8] L. Howard, “CAPE: A Visual Language for Courseware Authoring,” Second Work-
shop on Domain-Specific Visual Languages, Seattle, WA, November 4, 2002.
[9] J. Sztipanovits and G. Karsai, “Model-Integrated Computing,” IEEE Computer, April
1997, pp. 110-112.
[10] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason, G. Nordstrom,
J. Sprinkle, P. Volgyesi, “The Generic Modeling Environment,” Workshop on Intelligent
Signal Processing, Budapest, Hungary, May 17, 2001.

[11] D.S. Cordray, G.M. Pion, A. Harris, and P. Norris, “The Value of the VaNTH Engi-
neering Research Center,” IEEE Engineering in Medicine and Biology Magazine 22: 47-
54, 2003.
[12] G. van Rossum and F.L. Drake (eds), Python Reference Manual, PythonLabs, Vir-
ginia, USA, 2001. Available at http://www.python.org
[13] Cognition & Technology Group at Vanderbilt, “Anchored Instruction and Situated
Cognition Revisited,” Educational Technology, 33(3), 52-70, March 1993.
[14] R.J. Roselli, L. Howard, B. Cinnamon, S.P. Brophy, P. Norris, M. Rothney, and D.
Eggers, “Integration of an Interactive Free Body Diagram Assistant with a Courseware
Authoring Package and an Experimental Learning Management System.” Proceedings of
the American Society for Engineering Education (CD-ROM DEStech Publications) Ses-
sion 2793: 10 pages, 2003.
[15] E. A. Lee and A. Sangiovanni-Vincentelli, "A Framework for Comparing Models of
Computation," IEEE Trans. CAD, Vol. 17, No. 12, December 1998.
[16] G.C. Butazzo, “Hard Real-Time Computing Systems,” Kluwer Academic Pub-
lishers, 1997.
[17] H. Kopetz, “The Time Triggered Architecture,” Proceedings of the IEEE, Vol. 91,
No. 1, January 2003.
[18] T.A. Henzinger, B. Horowitz, and C.M. Kirsch, “Giotto: A Time-Triggered Lan-
guage For Embedded Programming,” Proceedings of the IEEE, Vol. 91, No. 1, January
2003.
[19] B. Horowitz, J. Liebman, C. Ma, T. J. Koo, A. Sangiovanni-Vincentelli, S. Sastry,
“Platform-Based Embedded Software Design and System Integration for Autonomous
Vehicles,” Proceedings of the IEEE, Vol. 91, No. 1, January 2003.
[20] D.C. Schmidt, D.L. Levine, and S. Mungee, “The Design and Performance of
RealTime Object Request Brokers,” Computer Communications, vol. 21, no. 4, pp.
294–324, Apr. 1998.
[21] N. Wang, D.C. Schmidt, A. Gokhale, C. Rodrigues, B. Natarajan, J.P. Loyall, R.E.
Schantz, and C.D. Gill, “QoS-enabled Middleware,” in Middleware for Communications,
edited by Qusay Mahmoud, Wiley and Sons, New York, 2003.
[22] A. Gokhale, K. Balasubramanian, J. Balasubramanian, A. Krishna, G.T. Edwards, G.
Deng, E. Turkay, J. Parsons, and D.C. Schmidt, “Model Driven Middleware: A New
Paradigm for Deploying and Provisioning Distributed Real-time and Embedded Applica-
tions,” Elsevier Journal of Science of Computer Programming: Special Issue on Model
Driven Architecture, Edited by Mehmet Aksit, 2005 (to appear).
[23] P.J. Antsakis. Ed., Special Issues on Hybrid Systems: Theory and Applications. Pro-
ceedings of IEEE, 88(7), 2000.
[24] X. Koutsoukos and P. Antsaklis, “Safety and Reachability of Piecewise Linear Hy-
brid Dynamical Systems Based on Discrete Abstractions,” Journal of Discrete Event Dy-
namic Systems: Theory and Applications, Vol. 13, Is. 3, pp. 203-243, 2003.
[25] P.J. Mosterman and G. Biswas, “Diagnosis of Continuous Valued Systems in Tran-
sient Operating Regions,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 29,
pp. 554-565, 1999.

[26] P. Narasimhan and G. Biswas, “An Approach to Model-Based Diagnosis of Hybrid
Systems,'' Hybrid Systems: Computation and Control, Fifth Intl. Workshop, Stanford,
CA, Lecture Notes in Computer Science, vol. LNCS 2289, C.J. Tomlin and M.R. Green-
street, eds., Springer Verlag, Berlin, pp. 308-322, March 2002.
[27] M. Maroti, B.Kusy, G.Simon, and A. Ledeczi, “The Flooding Time Synchronization
Protocol”, ACM Second International Conference on Embedded Networked Sensor Sys-
tems (SenSys’04), pp. 39-49, Baltimore, MD, November 3, 2004.
[28] G. Karsai, S. Neema, B. Abbott, and D. Sharp, “A Modeling Language and Its Sup-
porting Tools for Avionics Systems,” Proceedings of the 21st Digital Avionics Systems
Conference, 2002, Pages:6A3-1 - 6A3-13.
[29] G. Karsai, A. Lang, and S. Neema, “Design Patterns for Open Tool Integration,” Vol
4. No1, DOI: 10.1007/s10270-004-0073-y, Journal of Software and System Modeling,
2004.
[30] http://fountain.isis.vanderbilt.edu/fountain/Teaching/
[31] http://www.isis.vanderbilt.edu/Projects/gme/
[32] http://ptolemy.eecs.berkeley.edu/ptolemyII/
[33] http://www-cad.eecs.berkeley.edu/Respep/Research/asves/index.html
[34] T. Szemethy, G. Karsai, “Platform Modeling and Model Transformations for Analy-
sis,” Journal of Universal Computer Science, Vol 10. No. 10., pp 1383-1406, 2004.
[35] A. Sangiovanni-Vincentelli and G. Martin, A Vision for Embedded Systems: Plat-
form-Based Design and Software Methodology, IEEE Design and Test of Computers,
Volume 18, Number 6, November-December, 2001, pp. 23-33.
[36] G. Karsai, A. Agrawal, and F. Shi, “On the Use of Graph Transformations for the
Formal Specification of Model Interpreters,” Journal of Universal Computer Science,
Volume 9, Issue 11, pp. 1296-1321, November, 2003.
[37] http://www.isis.vanderbilt.edu/projects.asp

