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Abstract

Next-generation distributed interactive simulations have strin-
gent quality of service (QoS) requirements for throughput,
latency, and scalability, as well as requirements for a flexi-
ble communication infrastructure to reduce software lifecycle
costs. The CORBA Events Service provides a flexible model
for asynchronous communication among distributed and col-
located objects. However, the standard CORBA Events Service
specification lacks important features and QoS optimizations
required by distributed interactive simulation systems.

This paper makes five contributions to the design, imple-
mentation and performance measurement of distributed inter-
active simulation systems. First, it describes how the CORBA
Events Service can be implemented to support key QoS fea-
tures. Second, it illustrates how to extend the CORBA Events
Service so that it is better suited for distributed interactive
simulations. Third, it describes how to develop efficient event
dispatching and scheduling mechanisms that can sustain high
throughput. Fourth, it describes how to use multicast protocols
to reduce network traffic transparently and improve system
scalability. Finally, it illustrates how an Events Service frame-
work can be strategized to support configurations that facil-
itate high throughput, predictable bounded latency, or some
combination of each.

Keywords: Scalable CORBA event systems, object-
oriented communication frameworks.
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1 Introduction

Overview of distributed interactive simulations: In-
teractive simulations are useful tools for training person-
nel to operate equipment or experience situations that
are too expensive, impractical, or dangerous to execute
in the real world. The advent of high-speed LANs and
WANs has enabled the development ofdistributedinter-
active simulations, where participants are geographically
disperse. For example, military units stationed around
the globe can participate in joint training exercises, with
human-in-the-loop airplane and tank simulators. Internet
gaming is another form of distributed interactive sim-
ulation. In both examples, heterogeneous LAN-based
computer systems can be interconnected by high-speed
WANs, as depicted in Figure 1.

The QoS requirements on the software that sup-
port distributed interactive simulations are quite de-
manding. They combine aspects of distributed real-
time computing, with the need for low-latency, high-
throughput, multi-sender/multi-receiver communication
over wide-range of autonomous and interconnected net-
works. Meeting these challenges requires new software
infrastructures, such as those described in this paper.

Historically, distributed interactive simulation
systems, such as DIS [1], were based on pub-
lisher/subscriber patterns [2]. Participants in the
simulation declare the simulation data that they supply
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Figure 1: Architecture of a Distributed Interactive
Simulation Application

and consume. To exchange this data, distributed interac-
tive simulation systems require an efficient and scalable
communication infrastructure.

Typically, each participant in theseevent-drivensys-
tems consume and supply only a subset of the possible
events in the system. By nature, however, these systems
can vary dynamically,e.g., consumers and suppliers can
join and leave at arbitrary times. Likewise, the set of
events published or subscribed to can also vary during
the lifetime of the simulation.

It is not uncommon for large-scale simulations, such
as synthetic theater of war training (STOW) activities, to
be composed of hundreds or thousands of suppliers and
consumers that generate enormous quantities of events in
real-time. Thus, simulation communication infrastruc-
tures must scale up to handle large event volumes, while
simultaneously conserving network resources by mini-
mizing the number of duplicated events sent to separate
consumers. In addition, the system must avoid waste-
ful computation. For instance, it should avoid sending
events to consumers that are not interested or quickly re-
ject those events if they are received. Moreover, commu-
nication infrastructures must be flexible to cope with dif-
ferent simulation styles that require different optimiza-
tion points, such as reduced latency, improved through-
put, low network utilization, reliable or best-effort deliv-
ery, etc.

Towards a middleware-based solution: Given suffi-
cient time and effort, it is possible to achieve the specific
requirements of distributed interactive simulation appli-
cations by developing systems from scratch. In prac-
tice, however, the environment in which these systems
are developed places increasingly stringent constraints
on time and effort for software development. Moreover,
the increasing scarcity of qualified software profession-
als exacerbates the risk of companies failing to complete
mission-critical projects, unless the scope of software de-
velopment required for each project can be substantially
constrained.

For these reasons, it is necessary that distributed in-
teractive simulation systems be built largely from re-
usable middleware. Middleware is software that resides
between applications and the underlying operating sys-
tems, protocol stacks, and hardware in complex real-time
systems to enable or simplify how these components are
connected [3]. When middleware is commonly available
for acquisition or purchase, it becomes commercial-off-
the-shelf (COTS).

Employing COTS middleware shields software devel-
opers from low level, tedious, and error-prone details,
such as socket level programming [4]. Moreover, it pro-
vides a consistent set of higher level abstractions [5, 6]
for developing adaptive systems. In addition, it amor-
tizes software lifecycle costs by leveraging previous de-
sign and development expertise and reifying key design
patterns [7] in reusable frameworks and components.

COTS middleware has achieved substantial success in
certain domains, such as avionics mission computing [8]
and business applications. There is a widespread belief
in the distributed interactive simulation community, how-
ever, that the efficiency, scalability, and predictability
of COTS middleware, such as CORBA [9], is not suit-
able for next-generation large-scale simulation applica-
tions. Thus, if it can be demonstrated that the overhead
of COTS middleware implementations can be optimized
away, the resulting benefits make it a very compelling
choice for large-scale simulation systems.

Our previous research has examined many dimen-
sions of high-performance and real-time CORBA ORB
endsystem design, including static [10] and dynamic [5]
scheduling, event processing [8], I/O subsystem [11] and
pluggable protocol [12] integration, synchronous [13]
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and asynchronous [14] ORB Core architectures, system-
atic benchmarking of multiple ORBs [15], patterns for
ORB extensibility [7] and ORB performance [16]. This
paper extends our previous work [8] on real-time exten-
sions to theCORBA Events Serviceto show how to sup-
port the QoS requirements of large-scale distributed in-
teractive simulations using IP multicast to federate mul-
tiple event channels and conserve network resources. In
addition, we describe the design of a flexible Events Ser-
vice framework that allows developers to select imple-
mentation strategies most suitable to their application do-
main.

The remainder of this paper is organized as follows:
Section 2 outlines the CORBA reference model, the
CORBA Events Service, and the TAO real-time (RT)
Events Service; Section 3 discusses the optimizations
and extensions we added to the standard CORBA Events
Service to support large-scale distributed interactive sim-
ulation applications; Section 4 compares our work with
related research; and Section 5 presents concluding re-
marks.

2 Technical Background

This section outlines the CORBA reference model, the
TAO [10] Real-time CORBA [17] ORB, the CORBA
Events Service, and the real-time (RT) Events Service
integrated with TAO.

2.1 Synopsis of CORBA

CORBA is a distributed object computing middleware
specification [9] being standardized by the Object Man-
agement Group (OMG). CORBA is designed to support
the development of flexible and reusable service com-
ponents and distributed applications by (1) separating
interfaces from (potentially remote) object implementa-
tions and (2) automating many common network pro-
gramming tasks, such as object registration, location, and
activation; request demultiplexing; framing and error-
handling; parameter marshaling and demarshaling; and
operation dispatching. Figure 2 illustrates the primary
components in the OMG Reference Model architecture.

At the heart of the OMG Reference Model is theOb-
ject Request Broker(ORB). CORBA ORBs allow clients
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Figure 2:OMG Reference Model Architecture

to invoke operations on target object implementations
without concern for where the object resides, what lan-
guage the object is written in, the OS/hardware platform,
or the type of communication protocols and networks
used to interconnect distributed objects [18]. Because
CORBA is a standard, there are now a wide range of
companies and organizations that provide interoperable
ORB implementations targeted for various domains.

2.2 Synopsis of the TAO Real-time ORB

TAO is a freely-available, open-source, standards-
compliant [9], real-time CORBA [17] ORB that provides
end-to-end quality of service guarantees to applications
by vertically (i.e., network interface$ application layer)
and horizontally (i.e., end-to-end) integrating CORBA
middleware with OS I/O subsystems, communication
protocols, and network interfaces. TAO is implemented
using the ACE framework [19], which contains a rich
set of high-performance and real-time reusable software
components. These components automate common com-
munication tasks such as connection establishment, event
demultiplexing and event handler dispatching, message
routing, dynamic configuration of services, and flexi-
ble concurrency control for network services. ACE and
TAO have been ported to many real-time OS platforms
including VxWorks, LynxOS, CHORUS/ClassiX, and
most POSIX 1003.1c implementations. In addition, ACE
and TAO run on general-purpose operating systems, such
as Windows NT and Solaris 2.x, that provide real-time
threads, though they lack certain features required for
hard real-time systems [20, 21, 22].
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2.3 Synopsis of the CORBA Events Service

Many distributed applications exchange asynchronous
requests usingevent-basedexecution models [23, 24,
25]. To support these common use-cases, the OMG
defined a CORBA Events Service component in the
CORBA Object Services (COS) layer, as shown in Fig-
ure 2. The COS specification [26] presents architectural
models and interfaces that factor out common object ser-
vices, such as persistence [27], security [28], transac-
tions [29], fault tolerance [30], and concurrency [31].

The CORBA Events Service definessupplierandcon-
sumerparticipants that are designed to alleviate some of
the restrictions with standard CORBA invocation mod-
els. As shown in Figure 3 suppliers generate events and
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PULL

PULL

Event
Channel

Consumer

Supplier

Supplier

Consumer

Consumer

Figure 3:Participants in the COS Events Service Ar-
chitecture

consumers process events received from suppliers. This
figure also illustrates theevent channel, which is a media-
tor [32] that propagates events to consumers on behalf of
suppliers. By using an event channel, events can be deliv-
ered from suppliers to consumers without requiring these
participants to know about each other explicitly. In ad-
dition, event channels can simplify application software
by implementing group communication and serving as
a replicator [33], broadcaster, or multicaster that forward
events from one or more suppliers to multiple consumers.

In theory, the CORBA Events Service addresses many
needs of event-based applications. In practice, however,
the standard CORBA Events Service specification lacks
other important features, such asefficient event filter-
ing, group communication protocols, minimal data copy-
ing, andscalable dispatching strategies, that are required

by next-generation distributed interactive simulation sys-
tems, which motivates the need for the TAO RT Events
Service described next.

2.4 Synopsis of the TAO RT Events Service

To alleviate the limitations with the standard CORBA
Events Service, therefore, we have developed aReal-time
(RT) Events Serviceas part of the TAO project [10] at
Washington University. Figure 4 illustrates the key ar-
chitectural components in TAO and their relationship to
the real-time Events Service.
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Figure 4:Architecture of the TAO ORB Endsystem

TAO’s original RT Events Service [8] augmented the
CORBA Events Service model by providing source-
based and type-based filtering, event correlations, and
real-time dispatching. The RT Events Service described
in this paper is a second-generation implementation de-
signed to satisfy the QoS requirements of large-scale
systems, such as distributed interactive simulations. To
meet these new requirements, TAO’s new RT Events
Service can be configured to form afederated meshof
event channels. The event channel peers in this feder-
ation can exchange events using the standard CORBA
IIOP interoperability protocol (which is based on TCP/IP
unicast), UDP broadcast, or UDP multicast messages.
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TAO’s implementation also supports multiple dispatch-
ing, filtering, and update strategies that can be selected
during application initialization using the Service Con-
figurator [34] pattern. This choice can be scripted in a
configuration file to enable rapid prototyping, evaluation,
and adaptation during the initialization process.

In addition, TAO’s RT Events Service can be inte-
grated with TAO’s RT Scheduling Service [10, 5] to
support applications, such as avionics mission comput-
ing [8], with stringent end-to-end real-time requirements.
This Scheduling Service can analyze and assess the
schedulability of the overall system [10]. TAO’s RT
Scheduling Service is designed as a framework [5] that
can be configured to use multiple real-time scheduling
policies, such as rate monotonic (RMS) [35] and max-
imum urgency first (MUF) [36]. Once the feasibility
of the system’s schedule has been determined, TAO’s
RT Events Service and Scheduling Service collaborate
to support various strategies for priority-based event dis-
patching and preemption.

3 Overview of TAO’s Real-time Events
Service

3.1 Overcoming Limitations with the CORBA
Events Service

The standard COS Events Service Specification lacks
several important features required by large-scale dis-
tributed interactive simulations. Chief among these miss-
ing features include centralized event filtering, efficient
and predictable event dispatching, periodic event pro-
cessing, and event correlations.1 To resolve these limita-
tions, we have developed a Real-time Events Service (RT
Events Service) as part of the TAO project [10]. TAO’s
RT Events Service extends the COS Events Service spec-
ification to satisfy the quality of service (QoS) needs of
real-time applications in domains like distributed interac-
tive simulations, avionics, telecommunications, and pro-
cess control.

The following discussion summarizes the features
missing in the COS Events Service and outlines how

1Correlation allows an event channel to wait for aconjunctionof
events before sending it to consumer(s).

TAO’s Real-time Events Service supports them.

3.1.1 Support for Centralized Event Filtering

In a large-scale distributed interactive simulation, not all
consumers are interested in all events generated by all
suppliers. Although it is possible to let each applica-
tion perform its own filtering, this solution wastes net-
work and computing resources. Ideally, therefore, the
Events Service should send an event to a particular con-
sumer only if the consumer has explicitly subscribed for
it. Care must be taken, however, to ensure that the sub-
scription process used to support filtering does not itself
cause undue burden on distributed system resources.

It is possible to implement filtering using standard
COS event channels [26]. For instance, channels can be
chained to create an event filtering graph that consumers
use to receive a subset of the total events in the system.
However, filter graphs defined using standard COS event
channels increase the number of hops a message must
travel between suppliers and consumers. This increased
traversal overhead may be unacceptable for applications
with low latency requirements. Likewise, it hampers sys-
tem scalability because additional processing is required
to dispatch each event.

To alleviate these scalability problems, therefore,
TAO’s RT Events Service provides filtering and correla-
tion mechanisms that allow consumers to specify logical
ORandAND event dependencies. When the designated
conditions are met, the event channel will dispatch all
events that satisfy each consumers’ dependencies.

3.2 TAO’s RT Events Service Architecture

TAO’s RT Events Service is implemented using the Me-
diator Pattern [32]. The heart of the RT Events Ser-
vice service is the event channel, shown in Figure 5.
The features of TAO’s event channel are defined by an
Event Channel IDL interface and implemented by a
C++ class of the same name. This class also plays a me-
diator role by serving as a “location broker” so the rest
of the event channel components can find each other.

When aProxyPushConsumer receives an event
from the application it iterates over the set of
ProxyPushSupplier that represent the poten-
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tial consumers interested in that event. Sec-
tion 3.3.2 describes how that set is computed. Each
ProxyPushSupplier checks to see if the event is rel-
evant for its consumer. This check is performed by the
filter hierarchydescribed in section 3.3.1. If the event is
of interest to a consumer aDispatching Strategy
selects the thread that should dispatch the event to the
consumer. Section 3.3.6 discusses various tradeoffs to
consider when selecting the dispatching thread strategy.

For real-time applications that require periodic event
processing, the Events Service can contain an optional
Timer Module . Section 3.3.14 outlines several strate-
gies for generating timer events. Each strategy possesses
different predictability and performance characteristics
and different resource requirements.

3.3 Design and Implementation Challenges

Section 3.2 outlined the core components of the CORBA
Events Service that are defined by IDL interfaces. Below,
we describe how we have systematically applied key the
design patterns, such as Builder, Command, Composite,
and Strategy from the GoF book [32], Strategized Lock-

ing [37], and Service Configurator [34], to tackle the de-
sign and implementation challenges posed by TAO’s RT
Events Service. Because these patterns are applicable to
related systems, we document how we applied and com-
posed these patterns in our design to achieve our perfor-
mance and scalability goals.

3.3.1 Implementing an Extensible and Efficient Fil-
tering Framework

Context: TAO’s real-time Events Service provides
several filtering primitives,e.g., a consumer can only
accept events of a given type, or from some particular
source [8]. Not all applications require all filtering mech-
anisms provided by the RT Events Service, however. For
example, many distributed interactive simulations do not
require correlation and some Events Service applications
do not require filtering either. Moreover, consumers of-
ten compose several filtering criteria into their subscrip-
tion list, e.g., they request to receiveany event from a
given list or a single notification whenall the events in a
list are received.

Problem: The event channel should support the addi-
tion of new filtering primitives flexibly and efficiently.
For instance, an event channel should allow new filtering
primitives,e.g., receiving a single notification when a set
of events are received in a particular order or accepting
any event whose type matches a designated bitmask.

Solution ! use the Composite pattern [32]: This
pattern allows clients to treat individual objects and com-
positions of objects uniformly. Usually, the composition
forms a tree structure; which in our case is a filter compo-
sition tree. New filtering primitives can be implemented
as leaves in the composition tree. The primitives can cre-
ate complex filter hierarchies using disjunction and con-
junction composites, thereby providing applications with
substantial expressive power.

To control the creation of the concrete filters we use
the Builder Pattern [32], which separates the construc-
tion of a complex object from its representation. In our
case, we build the filter hierarchy from the subscription
IDL structures, though we are implementing the com-
plete Trader Constraint Language [38] filtering language.
It is interesting to note that this change will not affect the
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overall architecture of the system, however, because the
Builder pattern isolate us from the concrete form that the
subscription takes.

Because filters are built on a per-consumer basis, no
lookup operations are required to find (1) a consumer’s
correlation queues or (2) the list of event types to which
a consumer subscribes. At run-time, an event channel’s
filtering engine simply traverses the tree of filters start-
ing from the top.Disjunctionnodes in the filter pass the
event to the children until one of them accepts it, whereas
conjunctionnodes pass it down untilall of them accept
the event.

3.3.2 Improving Scalability with the Number of
Consumers

Context: In many applications only a small frac-
tion of the consumers are interested in a particu-
lar event. If the implementation was to query each
ProxyPushSupplier to check if an event is interest-
ing it will scale very poorly with the number of events.

Problem: Reduce the time required to dispatch an
event by reducing the set of consumers tested.

Solution ! pre-compute the set of consumers for
eachProxyPushConsumer object: we can use the
publications declared by the Supplier to find what con-
sumers could be interested in the events generated by
that supplier, we use theFilter hierarchy in each
ProxyPushSupplier to estimate if the correspond-
ing consumer is willing to receive at least one of the
events published by the supplier. If the consumer is not
interested in any of the events we can leave it out of the
set and improve the overall performance of the system.

3.3.3 Reducing Memory Footprint

Context: Not all applications have a small fraction of
the consumers interested in the events generated by each
supplier. Most of the suppliers may actually generate
events that are interesting to most consumers. In such
a case it is actually counter productive to use the opti-
mization described above, and it is more efficient to use a
single global collection of consumers, reducing the mem-
ory footprint and reducing the time required to update the
collection of consumers.

Problem: Give the application developer control over
the algorithm used to build the consumer sets.

Solution ! use the Strategy Pattern [32] where a
family of algorithms is represented by classes sharing a
common ancestor, the clients use the ancestor class and
thus can select different algorithms without requiring any
changes. In our case we use this pattern to encapsulate
the exact algorithm used to control the number of collec-
tions are how are they updated. Notice that the variations
mentioned so far are in no way exhaustive, for example,
we can keep separate collections of consumer for each
event type. The framework implemented in TAO’s RT
Events Service has been designed to support that use case
too.

3.3.4 Supporting Re-entrant Calls while Dispatch-
ing Events

Context: To dispatch an event to multiple consumers,
an event channel must iterate over its collection of
ProxyPushSupplier objects. In some concurrency
models, such as the single-threaded or reactive dispatch-
ing strategies described in Section 3.3.6, the same thread
that iterates over a collection executes the upcall to con-
sumers. Consumers are then allowed to push new events,
add or remove consumers and suppliers, and in general,
call back into the event channel and its internal compo-
nents.

Problem: The event channel should support re-entrant
calls during event dispatching, regardless of concur-
rency model. However, many iterator implementations
become invalidated when their data structure is modi-
fied [39], thus theProxyPushSupplier set cannot
be changed when a thread is iterating over it. Simply
locking the collection is inappropriate because the ap-
plication will either dead-lock if the upcall changes the
collection or will invalidate iterators if we use recursive
locks. Another inappropriate alternative is to copy the
ProxyPushSupplier collection before starting the
iteration. Although this works with small collections,
it performs poorly for large-scale distributed interactive
simulation applications.

Solution ! apply lazy evaluation to delay certain
operations: TAO’s event channel keeps track of how
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many threads are iterating over each collection of
ProxyPushSupplier objects. Before performing
changes that would invalidate other iterators, it checks
to ensure there are no concurrent iterations in progress.
If there are, the operation is stored as a Command ob-
ject [32]. When there are no threads iterating on the col-
lection, all delayed command operations are executed se-
quentially.

To avoid starving a delayed operation indefinitely, we
limit the number of iterations that can be started after a
pending modification occurs. After the limit is reached,
all new threads must wait on a lock until the operation
completes.

3.3.5 Reducing Synchronization Overhead

Context: Excessive synchronization overhead can be a
significant bottleneck when it occurs in the critical path
of a concurrent system.

Problem: Although the lazy evaluation solution de-
scribed above is functionally correct, it increases syn-
chronization overhead along the critical path of the event
filtering and dispatching algorithms. In particular, appli-
cations may choose to decouple (1) threads that iterate
over theProxyPushSupplier collections from (2)
threads that perform consumer upcalls. This decoupling
(1) yields more predictable behavior in hard real-time
systems, (2) allows the application to re-order the events
based to perform dynamic scheduling, and (3) isolates
event suppliers from the execution time of consumer up-
calls.2

Solution ! use the Strategy Pattern [32] TAO’s
event channel uses the this pattern to strategize the dis-
patching algorithm and minimize overhead in applica-
tions that do not require complex concurrency and re-
entrancy support. For complex use-cases, TAO’s event
channel uses a special lock object that updates the state
in the collection to indicate that a thread is performing
an iteration. When this lock is released, any delayed op-
erations are executed. An alternative strategy provides

2Although this design may increase context switching overhead,
many applications can tolerate this if developers already use separate
threads to perform upcalls.

a more efficient lock that simply acquires and releases a
mutex.

3.3.6 Selecting the Thread to Dispatch an Event

Context: Once the event channel has determined that
a particular event should be dispatched to a consumer
it must decide which thread will perform the dispatch-
ing. As shown in Figure 6, there are several alternatives.
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Priority
Timers
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Module

1 : enqueue (consumer,
 event)

2 : dequeue (consumer,
event)
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event)

2 : dequeue (consumer,
event)

1 : consumer->push(
event)

1 : enqueue (consumer,
 event)
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event)

Figure 6:Dispatching Strategies Supported in TAO’s
Event Channel

Using the same thread that received the event is effi-
cient,e.g., it reduces context switching, synchronization,
and data copying overhead [16], but potentially exposes
the event channel to misbehaving consumers. Moreover,
to avoid priority inversions in real-time systems, events
must be dispatched by a thread at the appropriate prior-
ity. In turn, highly-scalable systems may want to use a
pool of threads to dispatch the events, thereby taking ad-
vantage of advanced hardware and overlapping I/O and
computation.

Problem: An event channel must provide a flexible
infrastructure to determine which thread dispatches an
event to a particular consumer.

Solution ! use the Strategy Pattern [32]: to en-
capsulate the algorithm used to choose the dispatching
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thread. The selected dispatching strategy is responsi-
ble for performing any data copies that may be neces-
sary to pass the event to a separate thread. The current
implementation of TAO’s event channel exploits several
optimizations, such as reference counting, in the TAO
ORB to reduce those data copies. In applications with
stringent real-time requirements, the dispatching strat-
egy collaborates with TAO’s Scheduling Service [10] to
determine the appropriate queue (and thread) to process
the event. When the same thread is used for recep-
tion and dispatching, the strategy collaborates with the
ProxyPushSupplier to minimize locking overhead,
as described in Section 3.3.5.

3.3.7 Configuring Event Channel Strategies Consis-
tently

Context: To adapt to various use-cases, TAO’s event
channel provides myriad strategies that can be config-
ured by application developers. Often, the choice of
one strategy affects other strategies. For example, if the
event channel’s dispatching strategy always uses a sep-
arate thread to process the event there is no risk of hav-
ing re-entrant calls from the consumers modifying the
ProxyPushSupplier sets. Thus, a simpler strategy
to manipulate those collections can be used.

Problem: Selecting a suitable combination of strate-
gies can impose an undue burden on the developer and
yield inefficient or semantically incompatible strategy
configurations. Ideally, developer should be able to se-
lect from a set of configurations whose strategies have
been pre-approved to achieve certain goals, such as mini-
mizing latency, avoiding priority inversion, or improving
system scalability.

Solution ! use the Abstract Factory Pattern [32]:
to control the creation of all the objects in the event chan-
nel. In this pattern a single interface creates families of
related on dependent objects. We use it to provide a sin-
gle point to select all the event channel strategies, and
avoid incompatible choices. Concrete implementations
of this Abstract Factory ensure that strategies and com-
ponents are semantically compatible and collaborate cor-
rectly.

3.3.8 Supporting Rapid Testing and Run-time
Changes in the Configuration

Context: Some applications may be used in multi-
ple environments, with different event channel strategies
configured for each environment. During application
development and testing, it may be necessary to eval-
uate multiple configurations to ensure that the applica-
tion works in all of them or to identify the most effi-
cient/scalable configurations.

Problem: If the event channel is statically configured,
it is hard evaluate various combinations without time
consuming recompiling/relinking.

Solution! use the Service Configurator Pattern [34]:
This pattern allows applications to dynamically or stati-
cally configure service implementations. We use ACE’s
implementation of this pattern to dynamically load Ab-
stract Factorys that create various event channel configu-
rations. Our implementation includes a default Abstract
Factory that uses the scripting features of the ACE Ser-
vice Configurator framework. By using this default, de-
velopers or end-user can modify event channel configu-
ration at initialization time by simply changing entries in
a configuration file.

3.3.9 Exploiting Locality in Supplier-Consumer
pairs

Context: Because it is based on CORBA, TAO’s event
channels can be accessed transparently across distribu-
tion boundaries. Many applications want to be shielded
from distribution aspects, while simultaneously achiev-
ing the optimal performance.

Problem: There are use-cases where distribution trans-
parency may not yield the mosteffectiveconfiguration.
For example, Figure 7 illustrates a scenario where most
or all consumers for common events may reside in the
same process, host, or network with the supplier. Thus,
sending an event to a remote event channel, only to have
it sent right back to the same process, is a waste of
network resources and unnecessarily increases latency.
Likewise, there may be multiple remote consumers ex-
pecting the same event. Ideally, bandwidth should be
conserved in this case by sending a single message across
the network to all those remote consumers.
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Solution ! federate event channels: Figure 8 illus-
trates the use of event channelgatewaysto federate event
channels. Each gateway is a CORBA object that con-
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Figure 8:A Federated Event Channel Configuration

nects to the local event channel as suppliers and connects
to the remote event channel as a consumer. To reduce
network traffic, the gateway must subscribe to events that
are of interest to at least one local consumer. Suppliers
and consumers connect directly to their local event chan-
nel, this results in reduced average latency for all the con-
sumers in the system, because consumers and suppliers
exhibit locality of reference,i.e. most consumers for any
one event are in the same domain than the supplier that
generated the event. Moreover, if multiple remote con-
sumers are interested in the same event only one mes-
sage is sent to the remote gateway, thereby minimizing

network utilization.
A straightforward and portable way to implement a

gateway is to use IIOP to receive a single event from a
remote event channel and propagate it, through the local
event channel, to multiple consumers. This design con-
serves network resources and increases latency only for
an uncommon case,i.e., where local consumers receive
events directly through the local event channel.

3.3.10 Updating the Gateway Subscriptions and
Publications

Context: In a dynamic environment, subscriptions
change constantly.

Problem: To use network resources efficiently, the
event channel gateways described in Section 3.3.9 must
avoid subscribing to all events in a remote events chan-
nel. Otherwise, the locality of reference benefits of event
channel federation are lost.

Solution ! use the Observer Pattern [32]: In this
pattern, whenever one object changes state, all its depen-
dents are notified. In our case, we propagate the changes
in the subscription and publication lists to any and all the
interested parties. The implementation ofobservables,
i.e., event channels, can be strategized. Thus, if appli-
cations knowa priori that there will be no observers at
run-time, they can configure the event channel to disable
this feature, thereby eliminating the overhead required to
update the (empty) observer list.

3.3.11 Further Improving Network Utilization

Context: In distributed interactive simulations it is
common that an event will be dispatched to multiple
hosts in the same network.

Problem: Network bandwidth is often a scarce re-
source for large-scale simulations, particularly when they
are run over WANs. Thus, as the number of nodes in-
crease, sending the same event multiple times across a
network is not scalable.

Solution ! use a multicast or broadcast protocol:
TAO’s event channel can be configured to use UDP to
multicast events. As with the gateways describe in Sec-
tion 3.3.10, a special consumer can subscribe to all the
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events generated by local suppliers, as shown in Figure 9.
This consumer uses multicast to send events to selected

Host A

Network

From Mcast

To mcast

Figure 9: Using Multicast in Federated Event Chan-
nels

channels in the network. On each receiver, a designated
supplier re-publishes all events that are of interest for lo-
cal consumers. This supplier receives remote multicast
traffic, converts it into an event, and forwards the event to
its local consumers via an event channel. For both con-
sumers and suppliers, the Observer interface described
in Section 3.3.10 is used to modify the subscriptions and
publications of multicast gateways dynamically.

3.3.12 Exploiting Hardware- and Kernel-level Fil-
tering

Context: If different types of events can be partitioned
onto different multicast groups, consumer hosts need
only receive a subset of the multicast traffic. In large-
scale distributed interactive simulations it may be neces-
sary to disseminate events over multiple multicast groups
to avoid unnecessary interrupts and processing by net-
work interfaces and OS kernels when receiving multicast
packets containing unwanted information.

Problem: The event channel must select the multicast
group used for each type of event in a globally consis-
tent way, but the mapping between events and multicast
groups may be different in each application. Applica-
tions use different mechanisms to achieve that goal. For
instance, some use pre-established mappings between
their event types and the multicast groups, whereas oth-
ers use a centralized service to maintain the mapping.

Moreover, applications that need highly scalable fault
tolerance may choose to distribute the mapping service
across the network. An event channel must be able to sat-
isfy all those scenarios, without imposing any one strat-
egy.

Solution! use a user-supplier callback object: Ap-
plication developers can implement anaddress server,
which is a CORBA object that event channel gateways
query to re-direct events to the appropriate multicast
group. On the receiving side, the gateways consult this
service to decide which multicast groups to subscribe to,
based upon the current set of subscriptions in the local
event channel. Advanced operating systems and network
adapters can use this information to process only the rel-
evant multicast traffic.

To avoid single points of failure and improve scalabil-
ity, application developers can replicate address servers
across the network. If developers use a static mapping
between events and multicast groups, there is no need
to communicate state between address services. Con-
versely, if the mapping changes dynamically, applica-
tions must implement mechanisms to propagate these
changes to all the address servers. One solution is to use
the Events Service to propagate this information.

3.3.13 Breaking Event Cycles in Event Channel
Federations

Context: In a complex distributed interactive simula-
tion, the same event could be important for both local
and remote consumers. For instance, a local supplier can
generatetank position events; if both a local and remote
consumer are interested in the event the gateways could
continuously send the event between two federated event
channels.

Problem: Consumers for a particular event can be
present in multiple channels in the federation. In this
case, gateways will propagate events between the peers
of the federation indefinitely due tocyclesin the event
flow graph. One approach would be to add addressing in-
formation to each event and enhance the routing logic in
each event channel. However, this design would compli-
cate the gateway architecture for simpler use-cases and
requires additional communication among the peers.
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Solution! use atime to livefield: This field is decre-
mented each time an event passes through a gateway. If
the TTL field becomes zero the event deallocated and not
forwarded. Usually event channel federations are fully
connected,i.e., all event channels have a gateway to each
of their peers. Thus, setting the TTL field to 1 eliminates
all cycles because no event traverses more than one gate-
way link. In more complex distributed configurations,
however, the TTL can be set to a higher number, though
events may loop before being discarded. To further im-
prove performance, the TAO event channel code has been
optimized to reduce data copying, only the event header
requires a copy to change the TTL field, the payload, that
usually contains most of the data, is not touched.

3.3.14 Providing Predictable and Efficient Periodic
Events

Context: Real-time applications require an event chan-
nel to generate events at particular times in the future.
For instance, applications can use these events to detect
missed dead-lines in non-critical processing or to support
hardware that requires watchdog timers to identify faulty
equipment. In addition, some applications require peri-
odic events to initiate periodic tasks and to detect that the
periodic tasks complete before their dead time.

Hard real-time applications may assign different pri-
orities to their timer events. To avoid priority inversions,
therefore, events should be generated and dispatched by
thread at the appropriate priorities. Soft real-time appli-
cations or best-effort applications often impose no such
strict requirements on timer priorities and thus are better
served by simpler strategies that conserve memory and
CPU resources. Other applications require no timers at
all and obviously single-threaded applications cannot use
this technique to generate the periodic events.

Problem: Implement predictable periodic events for
hard real-time applications without undue overhead for
applications with lower predictability requirements.

Solution ! use the Strategy Pattern [32] to dy-
namically select the mechanisms used to gener-
ate timeout events. In TAO’s event channel, the
ConsumerFilterBuilder creates special filter ob-
jects that adapt the timer module used to generate time-

outs with consumers that expect the IDL structures used
to represent events.

4 Related Work

Conventional approaches to quality of service (QoS) en-
forcement have typically adopted existing solutions from
the domain of real-time scheduling [35], fair queuing in
network routers [40], or OS support for continuous me-
dia applications [41]. In addition, there have been efforts
to implement new concurrency mechanisms for real-time
processing, such as the real-time threads of Mach [42]
and real-time CPU scheduling priorities of Solaris [21].

However, QoS research at the network and OS layers
has not necessarily addressed key requirements and us-
age characteristics of distributed object computing mid-
dleware [10]. For instance, research on QoS for network
infrastructure has focused largely on policies for allo-
cating bandwidth on a per-connection basis [43]. Like-
wise, research on real-time operating systems has fo-
cused largely on avoiding priority inversions and non-
determinism in synchronization and scheduling mech-
anisms [44]. In contrast, the programming model for
developers of OO middleware focuses on invoking re-
mote operations on distributed objects. Determining how
to map the results from the network and OS layers to
OO middleware is the main focus of the TAO research
project.

There are several commercial CORBA-compliant
Events Service implementations available from multiple
vendors, such as IONA and Inprise. IONA also produces
OrbixTalk, which is a messaging service based on IP
multicast. Because the CORBA Events Service specifi-
cation does not address issues critical for real-time appli-
cations, the QoS behavior of these implementations are
not acceptable solutions for many application domains.

The OMG has issued an specification for a new Noti-
fication Service [45]. This Notification Service is a su-
perset of the COS Events Service that adds interfaces
for event filtering, configurable event delivery seman-
tics (e.g., at least once, or at most once), security, event
channel federations, and event delivery QoS. However,
the Notification Specification does not address the im-
plementation issues related to the Notification Service.
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We believe that the patterns and techniques used in the
implementation of TAO’s RT Events Service can be used
to improve the performance and predictability of Notifi-
cation Service implementations. Based on that idea we
have recently begun the implementation of a Notifica-
tion Service for TAO, were we will research the feasibil-
ity of building reusable components for the Notification
Service, CORBA Events Service and TAO’s RT Events
Service.

Although there has been research on formalisms for
real-time objects [46], there is relatively little published
research on the design and performance of real-time OO
systems. Our approach is based on the OMG CORBA
distributed object computing standard. In this paper, we
focus on the design and performance of various strategies
for implementing QoS in real-time ORBs [10].

The QuO project at BBN [6] has defined a model
for communicating changes in QoS parameters between
applications, middleware, and the underlying endsys-
tems and network. We have integrated QuO and TAO’s
RT Events Service to demonstrate dynamic QoS sup-
port [47]. Other research on the CORBA Events Ser-
vice [25, 24] describe techniques for optimizing events
service performance for filtering and message delivery.
As with QuO, the focus of this work is not on assuring
CPU availability for events with hard real-time deadlines.

Rajkumar,et al., describe a real-time publisher/sub-
scriber prototype developed at CMU SEI [23]. Their
Publisher/Subscriber model is functionally similar to the
COS Events Service, though it uses real-time threads
to prevent priority inversion within the communication
framework. An interesting aspect of the CMU model
is the separation of priorities for subscription and event
transfer so that these activities can be handled by differ-
ent threads with different priorities. However, the model
does not utilize any QoS specifications from publishers
(suppliers) or subscribers (consumers). As a result, the
message delivery mechanism does not assign thread pri-
orities according to the priorities of publishers or sub-
scribers. In contrast, the TAO Events Service utilizes
QoS parameters from suppliers and consumers to guar-
antee the event delivery semantics determined by a real-
time scheduling service.

The OMG recently adopted the Messaging specifi-
cation [48], which gives application developers control

over several QoS parameters, such as one-way reliabil-
ity and timeouts, and introduces type-safe asynchronous
method invocation (AMI) models [14]. The CORBA
AMI specification solves many problems with the orig-
inal CORBA invocation model, but it does not address
anonymous or single-point-to-multiple-point communi-
cation. The Messaging specification can complement im-
plementations of the CORBA Events Service, for exam-
ple, it defines several levels of reliability foroneway
calls, this feature could be used in Events Service imple-
mentations to improve decoupling of the clients, with-
out risking lost messages. We are rapidly adding to TAO
the features defined by the Messaging specification, thus
they will complement TAO’s RT Events Service imple-
mentation.

5 Concluding Remarks

Many distributed interactive simulation applications re-
quire support for asynchronous, event-based commu-
nication. The COS Events Service provides a flexi-
ble OO model where event channels dispatch events
to consumers on behalf of suppliers. TAO’S real-time
(RT) Events Service described in this paper augments
this model with event channels that support (1) source
and type-based filtering, (2) event correlations, (3) event
channel federations, (4) hardware and kernel-level filter-
ing based on IP multicast, and (5) large numbers of sup-
pliers and consumers.

The implementation of TAO’s Real-time Events
Service described in this paper is written in C++ and
provided as a TAO [10] service. TAO’s RT Events Ser-
vice is currently used as part of the HLA RTI-NG. This
is the next-generation Run Time Infrastructure (RTI) im-
plementation for the Defense Modeling and Simulation
Organization’s (DMSO) High Level Architecture (HLA).
The source code and documentation for TAO and its
RT Events Service implementation are freely available
at www.cs.wustl.edu/ schmidt/TAO.html .
Additional information about the HLA is avail-
able at hla.dmso.mil . The RTI-NG is
available at hlasdc.dmso.mil/RTISUP/
hla soft/hla soft.htm .
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