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Abstract 1 Introduction

Next-generation distributed interactive simulations have strin- . o . . . S
gent quality of service (Q0S) requirements for throughlmQ,verwew of distributed interactive simulations: In-

latency, and scalability, as well as requirements for a flederactive simulations are useful tools for training person-
ble communication infrastructure to reduce software lifecychel to operate equipment or experience situations that
costs. The CORBA Events Service provides a flexible mat@ too expensive, impractical, or dangerous to execute
for asynchronous communication among distributed and cft-the real world. The advent of high-speed LANs and
located objects. However, the standard CORBA Events Seryg&Ns has enabled the developmentitributedinter-
specification lacks important features and QoS optimizatiofs, e imylations, where participants are geographically
required by distributed interactive simulation systems. disperse. For exélmple military units stationed around
This paper makes five contributions to the design, impigz o1nhe can participate in joint training exercises, with
mentation and performance measurement of distributed 'mﬁ[jman—in—the—loop airplane and tank simulators. Internet
active simulation systems. First, it describes how the COR ing is another form of distributed interactive sim-
Events Service can be implemented to support key QS 855 |n photh examples, heterogeneous LAN-based

tures. Second, it illustrates how to extend the CORBA Eve&s?nputer systems can be interconnected by high-speed
Service so that it is better suited for distributed interacti\WANS as depicted in Figure 1

simulations. Third, it describes how to develop efficient event

dispatching and scheduling mechanisms that can sustain higr;rhe QoS requirements on the software that sup-

throughput. Fourth, it describes how to use muIticastprotoccﬁgrt distributed interactive simulations are quite de-

to reduce network traffic transparently and improve syste%andmg' They combine aspects of distributed real-

scalability. Finally, it illustrates how an Events Service framdiM€ computing, with the need for low-latency, high-

work can be strategized to support configurations that facerUthu'[’ multi-sender/multi-receiver communication

itate high throughput, predictable bounded latency, or somyer Wlde-range of autonomous and |n.terconnected net-
combination of each works. Meeting these challenges requires new software

. infrastructures, such as those described in this paper.
Keywords: Scalable CORBA event systems, object- Pap

oriented communication frameworks. Historically, distributed interactive simulation
systems, such as DIS [1], were based on pub-
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Towards a middleware-based solution: Given suffi-
cient time and effort, it is possible to achieve the specific
requirements of distributed interactive simulation appli-
cations by developing systems from scratch. In prac-
tice, however, the environment in which these systems
are developed places increasingly stringent constraints
on time and effort for software development. Moreover,
the increasing scarcity of qualified software profession-
als exacerbates the risk of companies failing to complete
mission-critical projects, unless the scope of software de-
velopment required for each project can be substantially
constrained.

For these reasons, it is necessary that distributed in-
teractive simulation systems be built largely from re-
usable middleware. Middleware is software that resides
between applications and the underlying operating sys-
tems, protocol stacks, and hardware in complex real-time
systems to enable or simplify how these components are
and consume. To exchange this data, distributed intere@anected [3]. When middleware is commonly available
tive simulation systems require an efficient and scalalfté acquisition or purchase, it becomes commercial-off-
communication infrastructure. the-shelf (COTS).

Typically, each participant in thesevent-drivensys-  Employing COTS middleware shields software devel-
tems consume and supply only a subset of the possigers from low level, tedious, and error-prone details,
events in the system. By nature, however, these syst&mgh as socket level programming [4]. Moreover, it pro-
can vary dynamicallye.g, consumers and suppliers cadides a consistent set of higher level abstractions [5, 6]
join and leave at arbitrary times. Likewise, the set &r developing adaptive systems. In addition, it amor-
events published or subscribed to can also vary duriiggs software lifecycle costs by leveraging previous de-
the lifetime of the simulation. sign and development expertise and reifying key design

It is not uncommon for large-scale simulations, sud@tterns [7]in reusable frameworks and components.
as synthetic theater of war training (STOW) activities, to COTS middleware has achieved substantial success in
be composed of hundreds or thousands of suppliers gatgain domains, such as avionics mission computing [8]
consumers that generate enormous quantities of even®&niél business applications. There is a widespread belief
real-time. Thus, simulation communication infrastrudn the distributed interactive simulation community, how-
tures must scale up to handle large event volumes, wigiker, that the efficiency, scalability, and predictability
simultaneously conserving network resources by migf COTS middleware, such as CORBA [9], is not suit-
mizing the number of duplicated events sent to separatée for next-generation large-scale simulation applica-
consumers. In addition, the system must avoid wastiens. Thus, if it can be demonstrated that the overhead
ful computation. For instance, it should avoid sendirfif COTS middleware implementations can be optimized
events to consumers that are not interested or quickly@aQy, the resulting benefits make it a very compelling
ject those events if they are received. Moreover, comn@lpoice for large-scale simulation systems.
nication infrastructures must be flexible to cope with dif- Our previous research has examined many dimen-
ferent simulation styles that require different optimizaions of high-performance and real-time CORBA ORB
tion points, such as reduced latency, improved througimdsystem design, including static [10] and dynamic [5]
put, low network utilization, reliable or best-effort delivscheduling, event processing [8], I/O subsystem [11] and
ery, etc. pluggable protocol [12] integration, synchronous [13]

Figure 1: Architecture of a Distributed Interactive
Simulation Application



and asynchronous [14] ORB Core architectures, syste
atic benchmarking of muliple ORB [15], patiens  ASFLICATION [ DOMAIN ] oo
ORB extensibility [7] and ORB performance [16]. Thi\4 A A L L L) A A A

sions to theCORBA Events Servide show how to sup-
port the QoS requirements of large-scale distributed
teractive simulations using IP multicast to federate mi +
tiple event channels and conserve network resources OBJECT
addition, we describe the design of a flexible Events S SERVICES
vice framework that allows developers to select imple-
me_ntation strategies most suitable to their application do- Figure 2:OMG Reference Model Architecture
main.

The remainder of this paper is organized as follows:
Section 2 outlines the CORBA reference model, the invoke operations on target object implementations
CORBA Events Service, and the TAO real-time (RWyithout concern for where the object resides, what lan-
Events Service; Section 3 discusses the optimizatigusge the object is written in, the OS/hardware platform,
and extensions we added to the standard CORBA Evetttshe type of communication protocols and networks
Service to support large-scale distributed interactive sipsed to interconnect distributed objects [18]. Because
ulation applications; Section 4 compares our work wiffORBA is a standard, there are now a wide range of
related research; and Section 5 presents concludingo@npanies and organizations that provide interoperable
marks. ORB implementations targeted for various domains.

paper extends our previous work [8] on real-time exte[ ]

A\

2 Technical Background 2.2 Synopsis of the TAO Real-time ORB

This section outlines the CORBA reference model, tHéO is a freely-available, open-source, standards-
TAO [10] Real-time CORBA [17] ORB, the CORBACompliant [9], real-time CORBA[17] ORB that provides
Events Service, and the real-time (RT) Events Serviged-to-end quality of service guarantees to applications

integrated with TAO. by vertically (i.e., network interface— application layer)
and horizontally (i.e., end-to-end) integrating CORBA
2.1 Synopsis of CORBA middleware with OS /O subsystems, communication

protocols, and network interfaces. TAO is implemented

CORBA is a distributed object computing middlewarasing the ACE framework [19], which contains a rich
specification [9] being standardized by the Object Maset of high-performance and real-time reusable software
agement Group (OMG). CORBA is designed to suppadmponents. These components automate common com-
the development of flexible and reusable service comunication tasks such as connection establishment, event
ponents and distributed applications by (1) separatidgmultiplexing and event handler dispatching, message
interfaces from (potentially remote) object implementasuting, dynamic configuration of services, and flexi-
tions and (2) automating many common network prble concurrency control for network services. ACE and
gramming tasks, such as object registration, location, a&D have been ported to many real-time OS platforms
activation; request demultiplexing; framing and erroincluding VxWorks, LynxOS, CHORUS/ClassiX, and
handling; parameter marshaling and demarshaling; andst POSIX 1003.1c implementations. In addition, ACE
operation dispatching. Figure 2 illustrates the primaayd TAO run on general-purpose operating systems, such
components in the OMG Reference Model architecturas Windows NT and Solaris 2.x, that provide real-time

At the heart of the OMG Reference Model is tBb- threads, though they lack certain features required for
ject Request BrokdORB). CORBA ORBs allow clients hard real-time systems [20, 21, 22].
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2.3 Synopsis of the CORBA Events Service by next-generation distributed interactive simulation sys-

o o tems, which motivates the need for the TAO RT Events
Many distributed applications exchange asynchronogs,yice described next.

requests usingvent-basedexecution models [23, 24,
25]. To support these common use-cases, the OMG

defined a CORBA Events Service component in tde4 Synopsis of the TAO RT Events Service
CORBA Object Services (COS) layer, as shown in Fiq—
ure 2. The COS specification [26] presents architectuE%
models and interfaces that factor out common object s%

vices, such as persistence [27], security [28], trans lashington University. Figure 4 illustrates the key ar-

tlo_rlli [231’3252 té)leratncse [3(.)]’ anflconculr.rencyg[Sl]. chitectural components in TAO and their relationship to
© Vents service detinsspplierandeon- th? real-time Events Service.

sumerparticipants that are designed to alleviate some o
the restrictions with standard CORBA invocation moc’

alleviate the limitations with the standard CORBA
ents Service, therefore, we have developBeal-time
T) Events Servicas part of the TAO project [10] at

els. As shown in Figure 3 suppliers generate events : ‘,“s\\o REAL-TIME P"shO
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consumers process events received from suppliers. This

figure also illustrates thevent channelwhich is a media- Figure 4:Architecture of the TAO ORB Endsystem

tor [32] that propagates events to consumers on behalf of

suppliers. By using an event channel, events can be delivTAO’s original RT Events Service [8] augmented the

ered from suppliers to consumers without requiring theS®RBA Events Service model by providing source-

participants to know about each other explicitly. In adhased and type-based filtering, event correlations, and

dition, event channels can simplify application softwareal-time dispatching. The RT Events Service described

by implementing group communication and serving #sthis paper is a second-generation implementation de-

a replicator [33], broadcaster, or multicaster that forwagigned to satisfy the QoS requirements of large-scale

events from one or more suppliers to multiple consumeggstems, such as distributed interactive simulations. To
In theory, the CORBA Events Service addresses manget these new requirements, TAO’s new RT Events

needs of event-based applications. In practice, howe&egyvice can be configured to formfederated meskf

the standard CORBA Events Service specification lacgkgent channels. The event channel peers in this feder-

other important features, such afficient event filter- ation can exchange events using the standard CORBA

ing, group communication protocqlminimal data copy- [IOP interoperability protocol (which is based on TCP/IP

ing, andscalable dispatching strategigthat are required unicast), UDP broadcast, or UDP multicast messages.
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TAQO’s implementation also supports multiple dispatcAAO’s Real-time Events Service supports them.
ing, filtering, and update strategies that can be selected
d_uring application initializ_ation gsing the Serv_ice C9r§.1.1 Support for Centralized Event Filtering
figurator [34] pattern. This choice can be scripted in a
configuration file to enable rapid prototyping, evaluatiom a large-scale distributed interactive simulation, not all
and adaptation during the initialization process. consumers are interested in all events generated by all
In addition, TAO’s RT Events Service can be intesuppliers. Although it is possible to let each applica-
grated with TAO’s RT Scheduling Service [10, 5] tdion perform its own filtering, this solution wastes net-
support applications, such as avionics mission compwierk and computing resources. ldeally, therefore, the
ing [8], with stringent end-to-end real-time requirement&vents Service should send an event to a particular con-
This Scheduling Service can analyze and assess gbmer only if the consumer has explicitly subscribed for
schedulability of the overall system [10]. TAO’s RTt. Care must be taken, however, to ensure that the sub-
Scheduling Service is designed as a framework [5] tigtription process used to support filtering does not itself
can be configured to use multiple real-time schedulisguse undue burden on distributed system resources.
policies, such as rate monotonic (RMS) [35] and max-|t is possible to implement filtering using standard
imum urgency first (MUF) [36]. Once the feasibilityCOS event channels [26]. For instance, channels can be
of the system’s schedule has been determined, TACY&ined to create an event filtering graph that consumers
RT Events Service and Scheduling Service collaboraise to receive a subset of the total events in the system.
to support various strategies for priority-based event digsewever, filter graphs defined using standard COS event
patching and preemption. channels increase the number of hops a message must
travel between suppliers and consumers. This increased
) , ) traversal overhead may be unacceptable for applications
3 Overview of TAO’s Real-time Events vt jow latency requirements. Likewise, it hampers sys-
Service tem scalability because additional processing is required
to dispatch each event.
3.1 Overcoming Limitations with the CORBA  To alleviate these scalability problems, therefore,
Events Service TAO’s RT Events Service provides filtering and correla-

] o tion mechanisms that allow consumers to specify logical
The standard COS Events Service Specification Ia%ﬁandANDevent dependencies. When the designated

several important features required by large-scale digqjitions are met, the event channel will dispatch all

_trlbuted mtergctlve S|mulat|o'ns. Chief among these,m'%?/'ents that satisfy each consumers’ dependencies.
ing features include centralized event filtering, efficient

and predictable event dispatching, periodic event pro- _ _
cessing, and event correlatiohdo resolve these limita-3-2 TAO’s RT Events Service Architecture
tions, we have developed a Real-time Events Service (JF\T , L .

. ; AO’s RT E I ted the Me-
Events Service) as part of the TAO project [10]. TAO’ o' vents Service is implemented using the Me

diator Patt 32]. The heart of the RT Events Ser-
RT Events Service extends the COS Events Service spé%—or attern [32] A

e , . . ViCe service is the event channel, shown in Figure 5.
ification to satisfy the quality of service (Qo0S) needs L?}n g

) L . . . ) e features of TAO’s event channel are defined by an
real-time applications in domains like distributed mtera&—Vent Channel IDL interface and implemented by a

tive simulations, avionics, telecommunications, and pra;, . ..1c< of the same name. This class also plays a me-
cess control. : : W mnti .
diator role by serving as a “location broker” so the rest

The following discussion summarizes the fe""tur‘(:‘j?the event channel components can find each other.

missing in the COS Events Service and outlines hOWWhen aProxyPushConsumer  receives an event

ICorrelation allows an event channel to wait faz@njunctionof from  the applic_ation it iterates over the set of
events before sending it to consumer(s). ProxyPushSupplier that represent the poten-




ing [37], and Service Configurator [34], to tackle the de-

signh and implementation challenges posed by TAO’s RT

Events Service. Because these patterns are applicable to
Bﬁgh (ever related systems, we document how we applied and com-

posed these patterns in our design to achieve our perfor-

EVENT - - mance and scalability goals.
CHANNEL Dispatching Y9
Module
Consumer Admip__ 3.3.1 Implementing an Extensible and Efficient Fil-
I: F"teﬁr tering Framework
Event _ _ Context: TAO's real-time Events Service provides
Flow Supplier Admin Priority several filtering primitives,e.g, a consumer can only

@ s accept events of a given _type, or from some particular

@ source [8]. Not all applications require all filtering mech-
ol anisms provided by the RT Events Service, however. For

push|(event) example, many distributed interactive simulations do not
require correlation and some Events Service applications
@ do not require filtering either. Moreover, consumers of-
ten compose several filtering criteria into their subscrip-
tion list, e.g, they request to receivany event from a

Figure 5:RT Events Service Architecture given list or a single notification wheail the events in a
list are received.

tial consumers interested in that event. Seproblem: The event channel should support the addi-
tion 3.3.2 describes how that set is computed. Eagbh of new filtering primitives flexibly and efficiently.
ProxyPushSupplier  checks to see if the eventis relgor instance, an event channel should allow new filtering
evant for its consumer. This check is performed by theimitives, e.g, receiving a single notification when a set
filter hierarchydescribed in section 3.3.1. If the event |§f events are received in a particular order or accepting

of interest to a consumerispatching Strategy any event whose type matches a designated bitmask.
selects the thread that should dispatch the event to the

consumer. Section 3.3.6 discusses various tradeoff$@ution — use the Composite pattern [32]: This
consider when selecting the dispatching thread strategp@ttern allows clients to treat individual objects and com-
For real-time applications that require periodic eveR@sitions of objects uniformly. Usually, the composition
processing, the Events Service can contain an optiof@ims atree structure; which in our case is a filter compo-
Timer Module . Section 3.3.14 outlines several stratéition tree. New filtering primitives can be implemented
gies for generating timer events. Each strategy posse@sel§aves in the composition tree. The primitives can cre-
different predictability and performance characteristiéée complex filter hierarchies using disjunction and con-

and different resource requirements. junction composites, thereby providing applications with
substantial expressive power.

To control the creation of the concrete filters we use
the Builder Pattern [32], which separates the construc-
Section 3.2 outlined the core components of the CORBAN of a complex object from its representation. In our
Events Service that are defined by IDL interfaces. Belavgse, we build the filter hierarchy from the subscription
we describe how we have systematically applied key i structures, though we are implementing the com-
design patterns, such as Builder, Command, Compogitiete Trader Constraint Language [38] filtering language.
and Strategy from the GoF book [32], Strategized Lock-is interesting to note that this change will not affect the

3.3 Design and Implementation Challenges
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overall architecture of the system, however, because Freblem: Give the application developer control over
Builder pattern isolate us from the concrete form that thee algorithm used to build the consumer sets.

subscription takes. .
P . : . Solution — use the Strategy Pattern [32] where a
Because filters are built on a per-consumer basis, NQ . . . .
) ) . family of algorithms is represented by classes sharing a
lookup operations are required to find (1) a consumer’s

) . ~common ancestor, the clients use the ancestor class and
correlation queues or (2) the list of event types to whlgch . . . .
us can select different algorithms without requiring any

a consumer subscribes. At run-time, an event channel’s .
. . : . anges. In our case we use this pattern to encapsulate
filtering engine simply traverses the tree of filters start- .

) L . . , e exact algorithm used to control the number of collec-
ing from the top.Disjunctionnodes in the filter pass th

; : ' ions are how are they updated. Notice that the variations
event to the children until one of them accepts it, whereas y up

) ) ) . mentioned so far are in no way exhaustive, for example,
conjunctionnodes pass it down untill of them accept ;
the event we can keep separate collections of consumer for each

eventtype The framework implemented in TAO's RT

Events Service has been designed to support that use case
3.3.2 Improving Scalability with the Number of too.

Consumers
Context: In many applications only a small frac3-3-4 Supporting Re-entrant Calls while Dispatch-
tion of the consumers are interested in a particu- ing Events

lar event. If the implementation was to query eac@ontext'

i s " To dispatch an event to multiple consumers,
ProxyPushSupplier o check if an event is INterest-), event channel must iterate over its collection of

ing it will scale very poorly with the number of events. ProxyPushSupplier objects. In some concurrency

Problem: Reduce the time required to dispatch 4dRodels, such as the single-threaded or reactive dispatch-
event by reducing the set of consumers tested. ing strategies described in Section 3.3.6, the same thread

that iterates over a collection executes the upcall to con-
Solution — pre-compute the set of consumers for sumers. Consumers are then allowed to push new events,
eachProxyPushConsumer object: we can use the add or remove consumers and suppliers, and in general,

publications declared by the Supplier to find what coga|| back into the event channel and its internal compo-
sumers could be interested in the events generatednByits.

that supplier, we use theilter hierarchy in each
ProxyPushSupplier  to estimate if the correspond-PrObIem: The event channel should support re-entrant

ing consumer is willing to receive at least one of tHed!ls during event dispatching, regardless of concur-
events published by the supplier. If the consumer is f8NCY Model. However, many iterator implementations
interested in any of the events we can leave it out of tiCOMe invalidated when their data structure is modi-

set and improve the overall performance of the systenﬁed [39], thus thepf0XyPUSh_SU_IprliEE_r set _cann_ot
be changed when a thread is iterating over it. Simply

locking the collection is inappropriate because the ap-
plication will either dead-lock if the upcall changes the

Context: Not all applications have a small fraction ofollection or will invalidate iterators if we use recursive
the consumers interested in the events generated by é@gks: Another inappropriate alternative is to copy the
supplier. Most of the suppliers may actually generddoxyPushSupplier  collection before starting the
events that are interesting to most consumers. In sifgation. Although this works with small collections,
a case it is actually counter productive to use the Orjﬁperforms poorly for large-scale distributed interactive
mization described above, and it is more efficient to us§ignulation applications.

single global collection of consumers, reducing the me&§g| tion —s apply lazy evaluation to delay certain

ory footprint and reducing the time required to update th8erations: TAO’s event channel keeps track of how
collection of consumers.

3.3.3 Reducing Memory Footprint

7



many threads are iterating over each collection afmore efficient lock that simply acquires and releases a

ProxyPushSupplier objects. Before performingmutex.

changes that would invalidate other iterators, it checks

to ensure there are no concurrent iterations in progress. g Selecting the Thread to Dispatch an Event

If there are, the operation is stored as a Command ob-

ject [32]. When there are no threads iterating on the c@lontext: Once the event channel has determined that

lection, all delayed command operations are executed&gdarticular event should be dispatched to a consumer

quentially. it must decide which thread will perform the dispatch-
To avoid Starving a de|ayed Operation indefinite|y’ W@g As shown in Figure 6, there are several alternatives.

limit the number of iterations that can be started after a

pending modification occurs. After the limit is reached, Briority J Thiead ——
. . . eactiv
all new threads must wait on a lock until the operation Queue Pool
Completes 3 : consumer->push( 3 : consumer->push(
) event) event)
2 : dequeue (consumer, || 2 : dequeue (consumer,
event) event)
. ) ) 1 : consumer->push(
3.3.5 Reducing Synchronization Overhead === ae B ast even)
Context: Excessive synchronization overhead can be ¢ 1:enq%ue (%nsu%n 1:enqueEconsumer
significant bottleneck when it occurs in the critical path event) event
of a concurrent system. '
. . Dispatching
Problem: Although the lazy evaluation solution de- Module EVENT
scribed above is functionally correct, it increases syn- : CHANNEL
. o Consumer Admin
chronization overhead along the critical path of the even
ilteri i i i i i- Priorit
f|Ite_r|ng and dispatching algorithms. In particular, appll Supplier Admin Timeri
cations may choose to decouple (1) threads that iterat

over theProxyPushSupplier collections from (2)

threads that perform consumer upcalls. This decoupliﬁ%ure 6: Dispatching Strategies Supported in TAO’s

(1) yields more predictable behavior in hard real-tim€,ent channel

systems, (2) allows the application to re-order the events

based to perform dynamic scheduling, and (3) isolalgsing the same thread that received the event is effi-

event suppliers from the execution time of consumer uglent, e.qg, it reduces context switching, synchronization,

calls? and data copying overhead [16], but potentially exposes
the event channel to misbehaving consumers. Moreover,

Solution — use the Strategy Pattern [32] TAO'S {5 avoid priority inversions in real-time systems, events

event channel uses the this pattern to strategize the gigst pe dispatched by a thread at the appropriate prior-

patching algorithm and minimize overhead in applic&s,. In turn, highly-scalable systems may want to use a

tions that do not require complex concurrency and Ki§aol of threads to dispatch the events, thereby taking ad-

entrancy support. For complex use-cases, TAO'S eVgghtage of advanced hardware and overlapping /O and
channel uses a special lock object that updates the stgi@putation.

in the collection to indicate that a thread is performing _ .
an iteration. When this lock is released, any delayed dyoblem: An event channel must provide a flexible

erations are executed. An alternative strategy providaastructure to determine which thread dispatches an
event to a particular consumer.

2Although this design may increase context switching overhead, . )
many applications can tolerate this if developers already use separ@éUtion — use th(_a Strategy Pattern [32]: t(_) en-
threads to perform upcalls. capsulate the algorithm used to choose the dispatching




thread. The selected dispatching strategy is respo®s8.8 Supporting Rapid Testing and Run-time
ble for performing any data copies that may be neces- Changes in the Configuration
sary to pass the event to a separate thread. The current

implementation of TAO's event channel exploits sever pntext. Somte ap_[frl]u?;flons tmay :)ehusedl mt n;ult_l-
optimizations, such as reference counting, in the T, environments, with ditierent event channet strategies

ORB to reduce those data copies. In applications Wgﬂnfigured for each environment. During application

stringent real-time requirements, the dispatching str ?_velopm_e nt and _testln_g, it may be necessary to e_val-
egy collaborates with TAO’s Scheduling Service [10] tléate muIt|pI_e configurations to ensure that the appl|_ca—
determine the appropriate queue (and thread) to procté%'% works in all of the”? or to identify the most effi-

the event. When the same thread is used for recglg_nt/scalable configurations.

tion and dispatching, the strategy collaborates with ttRroblem: If the event channel is statically configured,
ProxyPushSupplier  to minimize locking overhead, it is hard evaluate various combinations without time

as described in Section 3.3.5. consuming recompiling/relinking.

Solution — use the Service Configurator Pattern [34]:
3.3.7 Configuring Event Channel Strategies Consis-This pattern allows applications to dynamically or stati-
tently cally configure service implementations. We use ACE’s

_ implementation of this pattern to dynamically load Ab-
Context: To adapt to various use-cases, TAO's evegfract Factorys that create various event channel configu-

channel provides myriad strategies that can be configtions. Our implementation includes a default Abstract
ured by application developers. Often, the choice phctory that uses the scripting features of the ACE Ser-
one strategy affects other strategies. For example, if {i§€& Configurator framework. By using this default, de-

event channel's dispatching strategy always uses a Sgflopers or end-user can modify event channel configu-

arate thread to process the event there is no risk of hayion at initialization time by simply changing entries in
ing re-entrant calls from the consumers modifying theconfiguration file.

ProxyPushSupplier sets. Thus, a simpler strategy

to manipulate those collections can be used. . L .
P 3.3.9 Exploiting Locality in Supplier-Consumer

Problem: Selecting a suitable combination of strate- pairs

gies can impose an undue burden on the developer @afhtext: Because it is based on CORBA, TAO's event
yield inefficient or semantically incompatible strategyhannels can be accessed transparently across distribu-
configurations. Ideally, developer should be able to $®&n boundaries. Many applications want to be shielded

lect from a set of configurations whose strategies haygm distribution aspects, while simultaneously achiev-
been pre-approved to achieve certain goals, such as mjiftj-the optimal performance.

mizing latency, avoiding priority inversion, or improvingID o
system scalability. roblem: There are use-cases where distribution trans-

parency may not yield the mosffectiveconfiguration.
Solution — use the Abstract Factory Pattern [32]: For example, Figure 7 illustrates a scenario wherg most
to control the creation of all the objects in the event chaf- &ll consumers for common events may reside in the
nel. In this pattern a single interface creates families $iM€ Process, host, or network with the supplier. Thus,
related on dependent objects. We use it to provide a SiRDding an event to a remote event channel, only to have
gle point to select all the event channel strategies, dh@ent right back to the same process, is a waste of
avoid incompatible choices. Concrete implementatioR§MWOrk resources and unnecessarily increases latency.
of this Abstract Factory ensure that strategies and cdrKeWise, there may be multiple remote consumers ex-

ponents are semantically compatible and collaborate d¥€ting the same event. Ideally, bandwidth should be
rectly. conserved in this case by sending a single message across

the network to all those remote consumers.
9



Host A Host B network utilization.
Consumers Consumers(” ) A straightforward and portable way to implement a
J O gateway is to use IIOP to receive a single event from a
T ¢ . remote event channel and propagate it, through the local
ol ] event channel, to multiple consumers. This design con-
| — serves network resources and increases latency only for
oL an uncommon caseég., where local consumers receive
ORB [ — events directly through the local event channel.
Q Q ]
y HA . -
: —) 3.3.10 Updating the Gateway Subscriptions and
Suppliers Suppliers Publications
Figure 7:A Centralized Configuration of the TAO RT Context: In a dynamic environment, subscriptions

Events Service

change constantly.

Problem: To use network resources efficiently, the

Solution — federate event channels: Figure 8 illus- €vent channel gateways described in Section 3.3.9 must
trates the use of event changeltewaydo federate event@void subscribing to all events in a remote events chan-
channels. Each gateway is a CORBA object that cdifl- Otherwise, the locality of reference benefits of event

channel federation are lost.

Host A Host B golution — use the Observer Pattern [32]: In this
d GConsumers GConsumers pattern, whenever one object changes state, all its depen-
\ / \ \ \ dents are notified. In our case, we propagate the changes
T [ ] o [ ] in the subscription and publication lists to any and all the
& [ | & [ ] interested parties. The implementationalfservables
o|L__] S — i.e, event channels, can be strategized. Thus, if appli-
L% % L% % cations knowa priori that there will be no observers at
Ea (PB\ e run-time, they can configure the event channel to disable
] | his feature, thereby eliminating the overhead required to
O @\ﬂ} <> O L | Mhisteature, y 9 a
Suppliers Gateway Gateway suppliers| update the (empty) observer list.

3.3.11 Further Improving Network Utilization
Figure 8:A Federated Event Channel Configuration P g

Context: In distributed interactive simulations it is
nects to the local event channel as suppliers and conneeidmon that an event will be dispatched to multiple
to the remote event channel as a consumer. To redhests in the same network.
network traffic, the gateway must subscribe to events tla%

: blem: Network bandwidth is often a scarce re-
are of interest to at least one local consumer. Suppliers

. : source for large-scale simulations, particularly when the
and consumers connect directly to their local event chan- 9 P y y

. . are run over WANs. Thus, as the number of nodes in-
nel, this results in reduced average latency for all the con-

: (rease, sending the same event multiple times across a
sumers in the system, because consumers and suppliefs

o , : network is not scalable.
exhibit locality of reference,e. most consumers for any
one event are in the same domain than the supplier tBatution — use a multicast or broadcast protocol:

generated the event. Moreover, if multiple remote cohAQ’s event channel can be configured to use UDP to
sumers are interested in the same event only one nmasiticast events. As with the gateways describe in Sec-

sage is sent to the remote gateway, thereby minimizitign 3.3.10, a special consumer can subscribe to all the

10



events generated by local suppliers, as shown in Figurd/®@reover, applications that need highly scalable fault
This consumer uses multicast to send events to seledt#erance may choose to distribute the mapping service
across the network. An event channel must be able to sat-
Host A isfy all those scenarios, without imposing any one strat-

<) s Tomeast egy.

Solution — use a user-supplier callback object: Ap-
2 plication developers can implement address server
Network which is a CORBA object that event channel gateways
e query to re-direct events to the appropriate multicast
group. On the receiving side, the gateways consult this
— service to decide which multicast groups to subscribe to
N Mo !
') OE} From M cast based upon the current set of subscriptions in the local
B event channel. Advanced operating systems and network
Figure 9: Using Multicast in Federated Event Chan- adapters can use this information to process only the rel-
nels evant multicast traffic.

To avoid single points of failure and improve scalabil-
channels in the network. On each receiver, a designatgdapplication developers can replicate address servers
supplier re-publishes all events that are of interest for leross the network. If developers use a static mapping
cal consumers. This supplier receives remote multichstween events and multicast groups, there is no need
traffic, converts it into an event, and forwards the eventtto communicate state between address services. Con-
its local consumers via an event channel. For both caersely, if the mapping changes dynamically, applica-
sumers and suppliers, the Observer interface describeds must implement mechanisms to propagate these
in Section 3.3.10 is used to modify the subscriptions ackanges to all the address servers. One solution is to use
publications of multicast gateways dynamically. the Events Service to propagate this information.

s

3.3.12 E)_(ploiting Hardware- and Kernel-level Fil- 3313 Breaking Event Cycles in Event Channel
tering Federations

Context: If different types of events can be partitioneghonext:  1n a complex distributed interactive simula-

onto different multicast groups, consumer hosts neggh the same event could be important for both local
only receive a subset of the multicast traffic. In largeng remote consumers. For instance, a local supplier can
scale distributed interactive simulations it may be NeCe¥nerataank position eventsf both a local and remote
sary to disseminate events over multiple multicast groynshsumer are interested in the event the gateways could

to avoid unnecessary interrupts and processing by N&fatinuously send the event between two federated event
work interfaces and OS kernels when receiving multicast,nnels.

packets containing unwanted information.

Problem: The event channel must select the multicalg{Oblem: Consumers for a particular event can be

group used for each type of event in a globally consiresent |tn multlple'z"channelst in thetfege:atlon. tr:n this
tent way, but the mapping between events and multicgﬁﬁ ' gfa dewa?/s W dp;fjpf?ag even SI gvv;en N tp eers
groups may be different in each application. Applic Of the federation indefinitely due tyclesin the even

tions use different mechanisms to achieve that goal. o graph. One approach would be to add addressing in-

instance, some use pre-established mappings betv\}‘grmatlon to each event and enhance the routing logic in

e . . )
%ﬁgr:}] event channel. However, this design would compli-

their event types and the multicast groups, whereas o o th ‘ hitecture for Simpl q
ers use a centralized service to maintain the mappiﬁ§ € the gateway archilecture Tor Simpler Use-cases an

réquires additional communication among the peers.
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Solution — use atime to livefield: This field is decre- outs with consumers that expect the IDL structures used
mented each time an event passes through a gatewago tEpresent events.
the TTL field becomes zero the event deallocated and not
forwarded. Usually event channel federations are fully
connectedi.e., all event channels have a gateway to eadh Related Work
of their peers. Thus, setting the TTL field to 1 eliminates
all cycles because no event traverses more than one gatgwentional approaches to quality of service (QoS) en-
way link. In more complex distributed configurationfprcement have typically adopted existing solutions from
however, the TTL can be set to a higher number, thougiie domain of real-time scheduling [35], fair queuing in
events may loop before being discarded. To further imetwork routers [40], or OS support for continuous me-
prove performance, the TAO event channel code has bé&napplications [41]. In addition, there have been efforts
optimized to reduce data copying, only the event headeimplement new concurrency mechanisms for real-time
requires a copy to change the TTL field, the payload, thabcessing, such as the real-time threads of Mach [42]
usually contains most of the data, is not touched. and real-time CPU scheduling priorities of Solaris [21].
However, QoS research at the network and OS layers
3.3.14 Providing Predictable and Efficient Periodic Nas not necessarily addressed key requirements and us-
Events age characteristics of distributed object computing mid-
dleware [10]. For instance, research on QoS for network
Context: Real-time applications require an event chafhfrastructure has focused largely on policies for allo-
nel to generate events at particular times in the futuggting bandwidth on a per-connection basis [43]. Like-
For instance, applications can use these events to defgsgé, research on real-time operating systems has fo-
missed dead-lines in non-critical processing or to suppelised largely on avoiding priority inversions and non-
hardware that requires watchdog timers to identify faul¢terminism in synchronization and scheduling mech-
equipment. In addition, some applications require pesinisms [44]. In contrast, the programming model for
odic events to initiate periodic tasks and to detect that Hj@/ek)pers of OO middleware focuses on invoking re-
periodic tasks complete before their dead time. mote operations on distributed objects. Determining how
Hard real-time applications may assign different ptio map the results from the network and OS layers to
orities to their timer events. To avoid priority inversion$ 0O middleware is the main focus of the TAO research
therefore, events should be generated and dispatcheggyect.
thread at the appropriate priorities. Soft real-time appli-There are several commercial CORBA-compliant
cations or best-effort applications often impose no sughents Service implementations available from multiple
strict requirements on timer priorities and thus are bet{@fhdors, such as IONA and Inprise. IONA also produces
served by simpler strategies that conserve memory &\ixTalk, which is a messaging service based on IP
CPU resources. Other applications require no timersh@flticast. Because the CORBA Events Service specifi-
all and obviously single-threaded applications cannot uggion does not address issues critical for real-time appli-
this technique to generate the periodic events. cations, the QoS behavior of these implementations are

Problem: Implement predictable periodic events forpot acceptable solutions for many application domains.

hard real-time applications without undue overhead for | "€ OMG has issued an specification for a new Noti-
applications with lower predictability requirements. fication Service [45]. This Notlflgatlon Service is a su-
perset of the COS Events Service that adds interfaces

Solution — use the Strategy Pattern [32] to dy- for event filtering, configurable event delivery seman-
namically select the mechanisms used to gen#ecs (e.g, at least once, or at most once), security, event
ate timeout events. In TAO’s event channel, thehannel federations, and event delivery QoS. However,
ConsumerFilterBuilder creates special filter ob-the Notification Specification does not address the im-
jects that adapt the timer module used to generate tipkementation issues related to the Notification Service.
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We believe that the patterns and techniques used in dher several QoS parameters, such as one-way reliabil-
implementation of TAO’s RT Events Service can be uség and timeouts, and introduces type-safe asynchronous
to improve the performance and predictability of Notifimethod invocation (AMI) models [14]. The CORBA
cation Service implementations. Based on that idea W#ll specification solves many problems with the orig-
have recently begun the implementation of a Notificaral CORBA invocation model, but it does not address
tion Service for TAO, were we will research the feasibibnonymous or single-point-to-multiple-point communi-
ity of building reusable components for the Notificatiooation. The Messaging specification can complement im-
Service, CORBA Events Service and TAO’s RT Evenpdementations of the CORBA Events Service, for exam-
Service. ple, it defines several levels of reliability faneway
Although there has been research on formalisms fills, this feature could be used in Events Service imple-
real-time objects [46], there is relatively little publishethentations to improve decoupling of the clients, with-
research on the design and performance of real-time O@ risking lost messages. We are rapidly adding to TAO
systems. Our approach is based on the OMG CORB features defined by the Messaging specification, thus
distributed object computing standard. In this paper, Wy will complement TAO’s RT Events Service imple-
focus on the design and performance of various strategigntation.
for implementing QoS in real-time ORBs [10].
The QuO project at BBN [6] has defined a model
for communicating changes in QoS parameters between .
applications, middleware, and the underlying endsg— ConCIUdmg Remarks
tems and network. We have integrated QuO and TAQO'’s
RT Events Service to demonstrate dynamic QoS siyany distributed interactive simulation applications re-
port [47]. Other research on the CORBA Events Seuire support for asynchronous, event-based commu-
vice [25, 24] describe techniques for optimizing eventéication. The COS Events Service provides a flexi-
service performance for filtering and message delivepje OO model where event channels dispatch events
As with QuO, the focus of this work is not on assurintp consumers on behalf of suppliers. TAO'’S real-time
CPU availability for events with hard real-time deadline§RT) Events Service described in this paper augments
Rajkumar,et al, describe a real-time publisher/subthis model with event channels that support (1) source
scriber prototype developed at CMU SEI [23]. Thefnd type-based filtering, (2) event correlations, (3) event
Publisher/Subscriber model is functionally similar to theghannel federations, (4) hardware and kernel-level filter-
COS Events Service, though it uses real-time threddig based on IP multicast, and (5) large numbers of sup-
to prevent priority inversion within the communicatiofliers and consumers.
framework. An interesting aspect of the CMU model The implementation of TAO’s Real-time Events
is the separation of priorities for subscription and eveBervice described in this paper is written in C++ and
transfer so that these activities can be handled by diffgrovided as a TAO [10] service. TAO’s RT Events Ser-
ent threads with different priorities. However, the modeice is currently used as part of the HLA RTI-NG. This
does not utilize any QoS specifications from publisheisthe next-generation Run Time Infrastructure (RTI) im-
(suppliers) or subscribers (consumers). As a result, giementation for the Defense Modeling and Simulation
message delivery mechanism does not assign thread Qrganization’s (DMSO) High Level Architecture (HLA).
orities according to the priorities of publishers or sulfhe source code and documentation for TAO and its
scribers. In contrast, the TAO Events Service utiliz&T Events Service implementation are freely available
QoS parameters from suppliers and consumers to guar- www.cs.wustl.edu/ schmidt/TAO.html
antee the event delivery semantics determined by a re@lditional information about the HLA is avail-
time scheduling service. able at hla.dmso.mil . The RTI-NG is
The OMG recently adopted the Messaging specifivailable at  hlasdc.dmso.mil/RTISUP/
cation [48], which gives application developers contrbla _soft’/hla  _soft.htm
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