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To make informed choices among middleware alternatives, de-
velopers of distributed object systems should understand thgure 1: Polling Model for CORBA Asynchronous Twoway
patterns and components used to implement key feature®perations

CORBA ORBs. Recent Object Interconnection columns [1,

2, 3] have explored the features of the CORBA Messaging

specification [4]. In this article, we describe key C++ fe&allback model: In this model, when a client invokes a two-
tures, patterns, and components used to implement an OW&y asynchronous operation on an object, it passes an ob-
IDL compiler that supports the Asynchronous Method Invocgect reference to aeply handler servanais a parameter, as
tion (AMI) callback model defined in the CORBA Messaginghown in Figure 2. This object reference is not passed to the

specification. server, but instead is stored locally by the client ORB. When
The CORBA Messaging specification defines two AMI pro- : request

gramming models, thpolling model and theallbackmodel. CALLBACK Oo—» TARGET

In both models, only clients behave asynchronousky, CLIENT_ operation(callback, args) 2%/*CT

server applications do not change at all. These AMI models Fipcall
are outlined briefly below: @D R

=
Polling model: In this model, each two-way AMI opera- s 2: response R

tion returns a&oller Va|uetype [5], which is very much Figure 2: Callback Model for CORBA Asynchronous Twoway
like a C++ or Java object in that it has both data membé&pperations

and methods. Operations onPaller are just local C++

method calls and not remote CORBA operation invocatione server replies, the client ORB receives the response and
The polling model is illustrated in Figure 1. The client can useses the reply handler servant provided by the client applica-
the Poller methods to check the status of the request sdidn to dispatch the response to the appropriate callback op-
can obtain a server's reply. If the server hasn't replied yet, thation. This model requires client application developers to
client can either (1) block awaiting its arrival or (2) return tobtain and initialize a POA and to activate objects in the POA,
the calling thread immediately and check back orRbler which effectively makes the application behave as both a client
to obtain thevaluetype s when it’'s convenient. and a server.



Reply handler servants are accessed via normal object agfplications affect only how clients are written, as described
erences. Therefore, servants can be implemented in processgsby-step below.
other than the client or the server involved in the original in-

vocation. For instance, it's possible for a reply handler servg}gp 1: Define the IDL interface and generate the stubs:
LO process “fth|rorl]-part_y’_' relplllgs. The most cohmmon US€-Ca%Broughout this article, we'll use the followir@uoter 1DL
owever, Is for the original client to process the response. ;o face to illustrate how to use and implement the AMI Call-

In general, the calloack model is more efficient than tR&ck model:
polling model because the client need not invoke method calls
module Stock
on avaluetype repeatedly to poll for results. Moreover, the
AMI callback model provides the following benefits compared interface Quoter { _
to alternative CORBA invocation models: Z Tt"vo[(wayl operation to retrieve current
) SIOCK Vvalue.

. . . long get_quote (in string stock_name);
Simplified asynchronous programming model: AMI al- ¥ 9 ged ¢ 9 - )

lows operations to be invoked asynchronously usingstac p
invocation interfacgSll). Using SlI for AMI eliminates much yo
of the tedium and complexity inherent in tdgnamic invoca-

tion interface(DIl)'s deferred synchronous model. In partic- After IDL interfaces are defined, they must be passed
ular, DIl requires programmers to insert parameters explicititough an OMG IDL compiler, which generates a standard
into Request objects, whereas the Sll-generated stubs auet of C++ stubs and skeletons. For each two-way operation in
mate and optimize [6] parameter. the IDL interface, an IDL compiler can generate the SMI and

Improved quality of service:  When implemented properly,AMI stubs that applications use to invoke operations. As dis-

AMI can improve the scalability of CORBA applications. Fopussedtlnd[Sb)], tsher\:grf rema!lrl unchangg?f. Thlﬁ’ th:'vslrter:etons
instance, it minimizes the number of client threads that woﬁcgnera ed by the compiier are no aiterent for an

otherwise required to perform two-way synchronous meth SMI, sho we won't detgcr|be th((ajr_‘?f n thtlshamcle. Tlhe Stli.bs
invocations (SMI). In addition, AMI is important for real—tim<=]C)r"’ISyr]C ronous opéeralions are dilierent, however. in particu-

CORBA applications [7] because it helps to bound the amotflt th(te'y areb gtlvg?hthe ngme of tfhe correszor&dmg synchronous
of time spent in ORB operationse., only the client process-Opera 'on, U|WI aende - pre1 X prr]epen ed. Id
ing time has to be considered when sending a request. This d or exaanfel,l an IDL (;on;pl etr) tfat supports.AMIf Wo%j
coupling of client processing time from server operation exaenerate the following pair of stubs for dQuoter  interface:
cution time helps to simplify real-time scheduling analysis [8]. ;; |suai smi stub.

. . . . . CORBA::Long Stock::Quoter::get_quote
The remainder of this article is organized as follows: Sec- (const char *stock_name)

tion 2 presents an example that illustrates the CORBA AMI{ /* IDL compiler-generated SMI stub code... */ }
callback programming model in more detail; Section 3 de-/; new AMI stub (described below).
scribes the C++ features, patterns, tools, and components useadid Stock::Quoter::sendc_get_quote

in TAO’s IDL compiler to implement the CORBA AMI call- é’sgglf_'}x",\fl‘ln%irot‘;?ﬁacg drlgfreget?ce
back model; and Section 4 presents concluding remarks. const char *stock_name)

{ /* IDL compiler-generated AMI stub code... */ }

2 Programming the CORBA AMI In addition to having a slightly different name, the asyn-
chronoussendc _get _quote operation has a different sig-

Callback Model nature than the synchronogst _quote operation. In par-
ticular,sendc _get _quote has no return value and is passed

In this section, we review how the AMI callback model workgn object reference to an application-defined subclass of the
from the perspective of a CORBA/C++ application develop%uowing AMI_QuoterHandler

The steps required to program CORBA AMI callbacks are

similar to the development of any CORBA applicatiom,., class AMI_QuoterHandler :

OMG IDL interface(s) must be defined and client code mustfé’"c Messaging::ReplyHandler

written to use the generated stubs. Servers require no cha g@SCallback stub invoked by the client ORB

to work with AMI, however, because they are unaware of// to Idlsp%tch the replyco ) _ |
whether a client invokes operations synchronously or asyn‘{"r}fﬁDZO'CorﬂSit@?f’goéﬁeEate(?iﬁjg‘ocg%eéﬁ“;,re}t“r”—va)
chronously [1]. Thus, the changes required to support AMI



The AMI_QuoterHandler  is generated automatically by e Activation-per-AMI-call strategy: One way to distin-

an AMl-enabled IDL compiler; it determines where the reguish separate AMI calls without requiring a separate object
ply from the server will be dispatched. Note that thger-invocation is to explicitly activate the same servant multi-
send _get _quote method doesn’t need a return valuple times in the client's POA. As described in [10], each acti-
because the value of the stock will be passed bagktion can be given a designated object id. Teé _quote

to the get _quote callback operation defined by thecallback method can then examine this object id to determine

AMI_QuoterHandler
on the AMI callback mapping rules for OMG IDL to C++
please see [2].

shown above. For more informatiorto which invocation the reply belongs to, as follows:

‘using namespace PortableServer;

class My_Async_Stock_Handler

2. Implement the reply handler servant: Next, a client

: public POA_Stock::AMI_QuoterHandler

programmer must implement the reply handler servant by Sgpﬁlic:

classing fromAMI_QuoterHandler , as shown below:

class My_Async_Stock_Handler
: public POA_Stock::AMI_QuoterHandler

{
public:
/I Callback method prints stock value.
virtual void get_quote
(CORBA::Long ami_return_val) {
cout << ami_return_val << endl;
}
h

Although this implementation is “correct” it isn’t very useful

since there is no way to distinguish callbacks resulting from

/I Save the Current pointer
My_Async_Stock_Handler (Current_ptr current)
: current_ (Current::_duplicate (current))

¢

/I Callback servant method.

virtual void get_quote

(CORBA::.Long ami_return_val) {

/I Get the object id used for current upcall.

Objectld_var oid =
current_->get_object_id ();

/I Convert the Objectld to a string.

CORBA::String_var stock_name =
Objectld_to_string (oid.in ());

cout << stock_name.in () << " ="

<< ami_return_val << endl;

AMI calls to different stocks! The following are commorprivate:

strategies for addressing this problem:

e Servant-per-AMI-call strategy: Here’s a reply handler

/I Store the POA Current to get fast access
/I to the Objectld. Note that the Current

/I can be assigned in one thread and

/I used by another thread.

servant implementation that keeps track of which stock namé&ortableServer::Current_var current_;
it's associated with and prints out this stock name and stock

value returned the server in tiget _quote callback:

Before making AMI calls, we createa a POA who policies al-

low the client to explicitly activate the same servant multiple

class My_Async_Stock_Handler
: public POA_Stock::AMI_QuoterHandler

times. Then, for each AMI call we create a special object id

{ that stores the stock name, as follows:
public:
My_Async_Stock_Handler (const char *stockname) /I A POA with the USER_ID and MULTIPLE_ID
: stockname_ (CORBA::string_dup (stockname)) /I policies:
{} POA var poa = ...;

/I Callback servant method.
virtual void get_quote
(CORBA::Long ami_return_val) {

cout << stockname_ << " ="
<< ami_return_val << endl,

}

private:
CORBA::String_var stockname_;

Since theMy_Async _Stock _Handler servant stores the
stockname _thatit's requesting it can easily distinguish call-
backs resulting from multiple AMI calls by simply instantiat-

ing a different servant for each AMI call. The drawback, of
course, is if there are many simultaneous asynchronous calls ;, .. e object reference

the memory footprint of the client will increase.

/I Obtain the POA Current object

CORBA::Object_var tmp =
this->resolve_initial_references ("POACurrent");

PortableServer::Current_var current =
PortableServer::Current::_duplicate (tmp.in ());

/I Initialize the servant
My_Async_Stock_Handler servant (current.in ());

/I Make asynchronous two-way calls using
/I the AMI callback model.
for (int i = 0; i < MAX_STOCKS; i++) {
/I Convert the stock name into an Objectld.
Objectld_var oid =
string_to_Objectld (stocksi]);

/I Activate the Object with that Objetld
poa->activate_object_with_id (oid.in (),
&servant);



CORBA::Object_var tmp = The ACTwould be initialized by the client to indicate a partic-

Stopccl’(‘?‘f;:\cﬂ‘l—%—u’gtfgrrﬁgﬁzle(?i‘\jlg’: r(lgn dler = ular AMI call and then passed to the server. The server would
Stock::AMI_QuoterHandler::_narrow (tmp.in ()); subsequently return th®CTunchanged as a parameter to the
J Send th . reply handler servant. This handler could then mapGéato
en e request. . .
quoter_ref->sendc_get_quote (handler.in (), the assoua_ted actlons_ and state necessary to complete. the re-
stocksli]); ply processing. If the size of th®«CTwas smaller than the size
} of the stock name this strategy can reduce network bandwidth
a bit.

Although this approachis more complex to program, it is more ) . o

scalable than the servant-per-AMI-call strategy because it uSEP 3: Programming the client application: After the

a single servant for all asynchronous calls. However, bdt- compiler generates the synchronous and asynchronous
strategies require an entry-per-AMI-callin the client POA's aglubs, programmers can develop a client that works much the
tive object map. One way to reduce this overhead, therefi@ne as any other CORBA application. For example, the client
is to use Servant Locators [11] that activate the client's refijf'St obtain an object reference to a target object on a server

handleron-demangthereby minimizing memory utilization. and invoke an operation. Unlike a conventional two-way SMI
call, however, when a client invokes a two-way AMI opera-

e Server-differentiated-reply strategy: An alternative tjon, it passes an object reference to a reply handler servant
strategy for differentiating multiple AMI calls requires a migs a parameter. This object reference is not sent to the server,
nor modification to th&uoter IDL interface. For instance, however. Instead, the client ORB stores it locally and uses it
anout parameter can be added to thet _quote operation, to dispatch the appropriate callback operation after the server

as follows: replies to the client.

interface Quoter { The following code, excerpted from [2], illustrates how a
/I Two-way operation to retrieve current C++ programmer would program the AMI callback model us-
/I stock value. ing the servant-per-AMI call strategy described earlier. First,

long get_quote (in string stock_name, : :
out string Stock name): we define aget _stock _quote function that makes AMI

18 calls:

. . Issue asynchronous requests.
In this strategy, the server will return the stock name as a pgg get_stock_quote (void)
rameter to thget _quote callback, as follows:

/I Set the max number of ORB stocks.

void static const int MAX_STOCKS = 3;
My_Async_Stock_Handler::get_quote .
y- ((%/OR’_BA"Lo_ng ami regtuﬁlq%/al /I NASDAQ abbreviations for ORB vendors.
const char *stock_name) { ’ static const char *stocks[MAX_STOCKS] =
cout << stock name << " = "
[ . "IONAY" // IONA Orbix
<< | << | : g
} ami_return_va end "INPR" /I Inprise VisiBroker
"IBM" /I IBM Component Broker

' o "BEASYS" // BEA Web Logic Enterprise
Thus, just one servant need be used to distinguish all the AM},

callbacks and it only needs to be activated once in the client $ Reply handler servants.
POA. My_Async_Stock_Handler *handlers[MAX_STOCKS];
In general, however, the use of ant parameter is ob- .
. . . // Reply handler object references.
trusive and incurs more network overhead in order to pass;ock::AMI_QuoterHandler var
the stock name back to the client, compared with allocatinghandler_refsf]MAX_STOCKS];
a different servant for each AMI call. One way to reduce (inti=0 i < MAX_STOCKS: i+) {
this overhead is to use the Asynchronous Completion Token j Initialize the servants. '
(ACT) [12] pattern by adding small, fixed-simeout param- haf{]]félersl\[/il] :AS nch._Stock_Handler (stocks(i)
. W iD;
eter to theget _quote operation, as follows: y_Asynen - - '
/I Initialize object references (note that

interface Quoter { /I _this() interacts with the client-side POA).
typedef short ACT; handler_refs[i] = handlers][i]->_this ();
}
/I Two-way operation to retrieve current
/I stock value. /I Make asynchronous two-way calls using
long get_quote (in string stock_name, /I the AMI callback model.
inout ACT act); for (int i = 0; i < MAX_STOCKS; i++)
k quoter_ref->sendc_get_quote (handler_refs]i],



stocks[i]); 3 IDL Compiler Support for CORBA
" . AMI Callbacks

/I Clean up dynamically allocated resources.

}
Section 2 outlined how to program the AMI callback model

from a CORBA application developer’s perspective. This sec-
After making asynchronous inVOCE\tiOﬂS, a client typiCﬁ'Won exp|ains the C++ features, patterns, and components used
performs other tasks, such as checking for GUI eventsigr TAO’s IDL compiler to generate the stubs necessary to
invoking additional asynchronous operations. When thgpport the AMI callback model. TAO is an open-sodrce
client is ready to receive replies from server(s), it enters tb@RBA-compIiant ORB designed to address the quality of
ORB's event loop using the standardiork _pending and service (QoS) requirements of high-performance and real-time
perform _work methods defined in the CORBBRBinter- applications [8]. Below, we present a general overview of
face, as follows: TAO's IDL compiler and explain how it generates C++ code

that implements AMI callbacks.

/I Event loop to receive all replies as callbacks.

while (/* ... */)
if (orb->work_pendi : ) ;
T onetamonand O 3.1 Overview of TAO’s IDL Compiler
else
I* ... potentially do something else ... */ An IDL compiler is a critical component of an ORB. It is re-

sponsible for mapping IDL input files intstuband skeleton

When a server responds, the client ORB receives the §i&Sses, which serve as a “glue” between the client and ser-
sponse and then dispatches it to the appropriate method’®tS: respectively, and the ORB. Stubs implemenfifuxy
the reply handler servant so the client can handle the repttem [13] and provide a strongly-typed, static invocation in-
In other words, the ORB turns the response into a requ@face that marshals .appllcatlon parameters into a common
on the corresponding reply handler object reference pasg@@-level representation. Conversely, skeletons implement
to the ORB during the client's original invocation. Figure §1€Adapterpattern [13] and demarshal the data-level repre-
illustrates how our client application uses the AMI Callbacg€ntation back into typed parameters that are meaningful to an

model. application. In addition, generated skeletons are responsible
for demultiplexing operation names carried in client requests
CALLBACK gende get quote(replyhandler, STOCK to their associated methods on servants.
QUOTE CLIENT "[BM") _ QUOTER The process of translating OMG IDL into the standard C++

ham?eret quote(value) 1: stock_name ) mapping is complex. Moreover, IDL compilers must be flex-
BD 3 dispaich C—> BDD ible, e.g, in order to generate compiled and/or interpretive
' 2'value: (de)marshaling code that meets the needs of various types of
. ; ) applications [6]. In addition, the ORB and the IDL compiler
Figure 3: AMI Callback Quoter Use-case must collaborate to provide optimal performance for parame-

ter marshaling and demarshaling. For example, optimizations
in the ORB may trigger changes to its IDL compiler so that
In the example above, the client implements the reply h4tenerated code exploits the new features.
dler servant locally. Thus, after a reply arrives from the TAO’s IDL compiler parses IDL files containing CORBA
server, the client ORB invokes tlget _quote stub on the interfaces and data types, and generates stubs and skeletons,
AMI_QuoterHandler  callback object. This stub marshalgvhich are then integrated with application code, as shown in
the arguments and invokes the virtgat _quote method on Figure 4. Figure 5 illustrates the interaction between the in-
theMy_Async _Stock _Handler reply handler servant. ternal components in TAO's IDL Compiler. The front-end of
Note that a reply handler also can be identified by an objd&C's IDL compiler parses OMG IDL input files and gen-
reference to a remote object. In this case, its servant will f§ates an abstract syntax tree (AST). The back-end of the

ceive “third-party” replies resulting from requests invoked yPmMPpiler “visits” the AST to generate CORBA-compliant [14]
other clients. ++ source code. We describe the front-end and back-end of

TAQ's IDL compiler in more detail below.

Lin addition, if asynchronous replies arrive while a client is blocked wait-
ing for a synchronous reply, the asynchronous reply can be dispatched in théThe source code and documentation for TAO can be downloaded from
context of the waiting client thread. www.cs.wustl.edu/ ~schmidt/TAO.html




and bug fixes. The following components are contained in

IDLFiE <@ .
Quoter.idl TAQO's IDL compiler front-end:
¢ IDL
v ’ v cowpILER ¥ v ' OMG IDL parser: The parser is generated from a
SE‘;[‘éEA'I‘):RmJ s 1 e yacc [15] specification of the OMG IDL grammar. The ac-
QuoterS.h || QuoterS.i || QuoterSepp| tion for each grammar rule invokes methods on AST node
e SERVER] l classes to build the AST. The AST is stored in main memory
SOURCE| CUENT| - el SERVER] SOURCE and shared between the front-end and the back-end.
| CoDE || SOURCE] e el | SOURCE S‘ég‘;g? CODE [~
Crt =L oone | | cope |——, ~ C++
COMPILER e COMPILER  Apstract syntax tree generator: Different nodes of the
CLIENT - RUN-TIME SERVER AST correspond to different OMG IDL features: The front-
PROGRAM LI PROGRAM end defines a base class call®8T_Decl that maintains in-

Figure 4: C++ Files Created by TAO's IDL Compiler

Generated
Code

sendc_get _quote
(AM _Quot er Handl er_ptr,
cost cher *);

Figure 5: Interactions Between Internal Components in TAGsch asstruct

IDL Compiler

3.1.1 TAO'’s IDL Compiler Front-end Design

formation common to all AST node types. Specialized AST
node classes, such AST.Interface or AST_Union , in-

herit from this base class, as shown in Figure 6. In ad-
DL ineface Qoter { AST_Decl UTL_Scope
Definition long get_quote _
(instring stock rene);
¥ T
TAO | DL Gonpi | er ‘ ALT ‘ ‘ ‘ ‘
L AST_ AST_
SILReld Qonst ant Cperation AALIRE Modul e LRt
DRI VER z% 1% %
AST_ AST_ P=a [ AST_ AST_
EnumVal || Typedef | [interfacerud [*""*'¢™P | |nterface Enum
- be_operation ST ‘ ‘ ‘ ‘ ‘
[ Atribute AST_ AST_ AST_ AST AST_
8 :beJJrinhtive‘ ‘ - be_ar gurrent ‘ = Predefined | Srimg || Aray ||Sequence||Sructure
§ L Argumaﬁt
|
L Uni ongsr;nch AST_ AST_
Exception| | Union
clas_s Qoter {
ic . , . .
mf',i,tuaj QA : Long Figure 6: TAO's IDL Compiler AST Class Hierarchy
L
visitor_interface() | | | | @ttt
virtuid vad

dition, the front-end defines theTL_Scope class, which
maintains scoping information, such as the nesting level and
the list of components that form a fully scoped nanesg,
Stock::Quoter . UTL_Scope is a base class for all AST
nodes representing OMG IDL features that can define scopes,
s andinterface  s.

Driver program: The driver program invokes the helper
programs and directs the parsing and AST generation process.
First, it parses command-line arguments and invokes the C++
preprocessor to impo#tinclude s for each input file. Next,

TAO's IDL compiler front-end is a heavily modified extenit invokes the IDL parser on the C++ preprocessor output to
sion of the freely available SunSoft IDL compiler front-endjenerate the AST in-memory. Finally, the driver passes the
with many new CORBA features, portability enhancemenST to the back-end code generator.



3.1.2 TAO’s IDL Compiler Back-end Code Generator
Design

The original SunSoft IDL compiler front-end only parses
OMG IDL files and generates the corresponding abstract syn-
tax tree (AST). To create a complete OMG IDL compiler for ®
TAO, we developed a back-end for the OMG IDL-to-C++
mapping. TAO’s IDL compiler has been designed to be scal-
able and configurable to support various optimization tech-
nigues [6]. For example, TAO'’s IDL compiler back-end can
selectively generate C++ code that is optimized for (1) a GIOP
protocol interpreter [16] or (2) compiled (de)marshaling in
stubs and skeletons [6].

TAO’s IDL compiler back-end employs design patterns,
such as Abstract Factory, Strategy, and Visitor [13], that sim-
plify its design and implementation and allow it to gener-
ate stubs/skeletons that use either compiled or interpretive
(de)marshaling [6]. These patterns also make it easier to sup-
port new requirements, such as AMI stub generation as de-
scribed in Section 3.2. In addition, TAO'’s IDL compiler back-
end employs thgperf perfect hash function generator [17],
which creates optimal operation demultiplexers automatically.e

Below, we describe how these patterns and tools were ap-
plied to resolve the key design challenges faced when devel-
oping TAO's IDL compiler back-end.

Enhancing IDL compiler back-end maintainability

e Context: An IDL compiler should be maintainable. For
example, it should be possible to add new features without re-
quiring extensive compiler modifications. Likewise, it should
be easy to debug the compilerg, if its generated code devi-
ates from the CORBA language mapping specifications.

e Problem: The SunSoft IDL compiler front-end that
forms the basis of TAO’s IDL compiler useyacc -generated
parser to build an AST representation from IDL input files.
Developers can add back-ends that generate code from the
AST by using the Strategy and Abstract Factory patterns [13],
as described below. Although these two patterns simplify the
creation of multiple back-ends and allow back-end developers
to control the AST representation, they do not, by themselves,
solve the following key design challenges:

e Need to know the exact type of a nodds the back-
end traverses the AST to generate code, the exact type of
the node being visited must be known. For example, the
declaration of an input argument will change depending

on the type of the argument. Basic IDL types, such ase Solution:
andlong are passed by value. Conversely, IDbe applied correctly to nodes in a heterogeneous object struc-
, such as an abstract syntax tree. This pattern is commonly

short
struct s are passed by reference. The original SunStfte

iffelse andswitch statements to detect the type of
node being processed and then (2) use a C++ downcast
operator to obtain node-specific information needed for
code generation.

Dependency of the mapping on the contexthe same
types of AST nodes can have different mappings depend-
ing on theircontext i.e., their location in the AST and
what portion of the code is being generated. For exam-
ple, the mapping of an object reference as the type of an
structure field iST _var , whereas the mapping as an input
argument isT_ptr . Not all types follow the same rules.
For example, both a field and an input argument of type
short are mapped aSORBA::Short . Moreover, the
same input argument is used to generate the stub method
declaration, the skeleton declaration, and multiple times
to generate the definitions of the stub and the skeleton, in
each case with slightly different variations used. In gen-
eral, the type of the AST node and the context where the
node is used affects the C++ code emitted by TAO’s IDL
compiler.

Poor scalability of virtual methods A potential solution

to the problem outlined in the previous paragraph would
be to use virtual methods to represent each context. Each
node type could then override the virtual methods to gen-
erate the appropriate code. Unfortunately, virtual meth-
ods do not scale effectively as the number of different
contexts increases.

For instance, the SunSoft IDL compiler uses the same
node to represent an operation argument multiple times,
e.g, in the stub declaration, in the stub definition, before
marshaling the request, during the request marshaling,
and while demarshaling the reply. Likewise, this same
node is used multiple times for similar purposes in the
skeleton. The mapping also depends on whether the ar-
gument node representsian, inout ,out , orreturn
parameter.

Each time a different variation is required, the number of
virtual methods can increase. Although clever tricks can
be used to minimize the number of virtual methods, the
result is still overly complex. Moreover, an IDL compiler
can be a non-trivial software applicatiang, TAO’s IDL
compiler contains over 120,000 lines of code. Thus, if the
code generation logic for a particular context is spread
across the compiler source it may be hard to maintain.

The Visitor pattern [13] allows operations to

IDL compiler used downcasts to determine the exact typsed in languages that do not support “double dispatching,”
of an AST node. This mechanism was tedious and erroe., the polymorphic operations cannot depend on message ar-
prone, however, because it forced developers to (1) wrigements, only on the object receiving the message. We used



the Visitor pattern in the TAO IDL compiler’s back-end to remarshaling techniques are concentrated in the generation of
solve the following problems outlined above: the stubs and skeletoriss., the generation of the header files

e Thetype of an AST node is determined easily because r@snalns unmodified.

the visitor has a different callback operation for each tyjg&hancing IDL compiler back-end flexibility

and (2) it receives the most derived type as an argument.

Other solutions, such as Interpreter [13], would requiree Context: An IDL compiler should be flexibleg.qg,

the tedious downcasts described earlier. capable of being adapted to generate code with different

« Different contexts are represented by different visitor&Pace/performance tradeoffs or even different language map-
Thus, it is easy to add more contexts as needed. The dailgs, such as Java or C.
back method of each visitor can be used to treat each typg proplem: End-users can select whether TAO's IDL
differently depending on its context. For example, TAOgompiler generates interpretive or compiled (de)marshaling
IDL compiler uses an operation argument more than &gde on a per-file or per-operation basis [6]. This selection af-
times when generating the code for stubs and skeleto@gts the generation of the stubs and skeleton methods, part of
Given the sheer number of contexts where a single Agke AST Operation mapping, and requires the generation
node can be used, therefore, it would be inflexible to UsecDR stream insertion and extraction operatoss, it adds
a single object to keep track of the current context.  new phases to the code generation process. Most of the code
e The code for each context can be found easily becaus@iigenerate the stub and skeletdeclarationsremains un-
is isolated in a single visitor class. The code for a tygéanged, however. Although it is possible to generate a com-
in that context is also easily found by using the callbaghetely different syntax tree for each case, this approach could
method. Checking a type across all contexts is slighthause significant duplication of code because each change is
harder, but the names of the callback methods are unidgelatively small.

enough that a simple tool likgrep can locate them au-  goytion:  The Strategy pattern [13] provides an abstrac-
tomatically. tion for selecting one of several candidate algorithms and
¢ Changing the behavior of the IDL compiler only requirgsackaging these algorithms within an OO interface. We used
substituting the visitors involved. As we describe latethis pattern to allow different code generation algorithms to be
using the Abstract Factory pattern to create the visitasnfigured as visitors. By using the Strategy pattern, for in-
further simplifies these substitutions. stance, the only visitors that must be replaced to switch from
- . . compiled to interpreted code generation are those responsible
The Visitor pattern was appropriate because the actions REr . . .
. O generating stub and skeleton implementations. The gener-
formed on a particular AST node depend on both the conte%ct :
. . ation of IDL structures and sequences, stub declarations, and
where the actions occandthe type of the particular node. As : .
. ; i ) skeleton declarations remains unchanged.
we will see below, this solution also allows us to modify the
generated code by simply changing some of the visitors. Ensuring semantic consistency of complex, related strate-
To implement the Visitor pattern in TAO’s IDL compilergies

back-end, we added methods to our back-end AST nodes so
they could be traversed by visitor objects. A single visitor ¢ Context: Users can select different (de)marshaling
represents a particular context in the code generaé@, techniques via command-line options. As described above,

whether to generate argument declarations or to marshalt DL compiler uses the Strategy pattern to select different
arguments to generate a request. The visitor can consult\i¥gtors that generate this code.

type of the node and generate proper code depending on its . o
c);pntext and type 9 prop P g e Problem: Many strategies and visitors must be replaced

Each visitor usually delegates part of its work to other vi /hen changlr_lg the sty_lg of code generated by_ the complle_r. If
itors. For example, the compiler generates the method dels < strategies and visitors are not changed In a semantically
rations for a skeleton class using one visitor, which delega Qosistent manner, the generated code will not work correctly

to another visitor to generate the argument declarations. T?’PQ possibly will not even be valid input for for a C++ com-

decoupling between (1) the different contexts in the code g@ er.

eration and (2) the types being processed allows us to cus Solution: The Abstract Factory pattern [13] provides a
tomize a particular task without affecting other portions of tlsingle component that creates related objects. We applied ab-
IDL compiler. For example, TAO'’s IDL compiler supportstract factories in the TAO IDL compiler’s back-end to localize
both compiled and interpretive marshaling. By using the Vi#lie construction of the appropriate visitors, as shown in Fig-
itor pattern, however, most of the differences between thase 7. Controlling the creation of visitors using the Abstract
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matches the operation name passed with the incoming client
request in constant time.

Solution: To generate constant time operation demulti-
plexers, the TAO IDL compiler’'s back-end usggerf [17],
which is a freely available perfect hash function generator dis-
tributed with the TAO release. Thgperf tool automati-
cally generates a perfect hash function from a user-supplied
list of keyword strings. The generated function can determine
whether an arbitrary string is a member of these keywords in
constant time. Figure 9 illustrates the interaction between the
TAO IDL compiler andgperf . TAO’s IDL compiler invokes

TAOIDL | PARENT
PROCESS

INTERFACE
OPERATIONS

SKELETON
(e(0))) )

SERVER

SKELETON

PERFECT

Factory pattern allows CORBA application programmers to
make a wholesale selection of alternative stubs and skeletons
implementations. Moreover, this pattern makes it straightfor-

CHILD
PROCESS

GPERF

HASH
FUNCTIONS

ward to disable certain features, such as the generation of infigyre 9: Integrating TAO’s IDL Compiler and GPERF

sertion and extraction operators to and fr&A®RBA::Any

objects, the generation of implementation templates where
user inserts new code, and the generation of AMI stub cod
reduce the footprint of applications that do not use AMI fe

tures.

e %/ for operation names in IDL interfaces.

a~’. . L
Figure 10 plots operation demultiplexing latency as a func-
tion of the number of operations. This figure indicates that

E%rf as a co-process to generate an optimized lookup strat-

Optimizing operation demultiplexing in skeletons

e Context: Once an ORB'’s Object Adapter identifies the
correct servant for an incoming CORBA request [18], the nex
step is for the generated skeleton to demultiplex the request 1
the correct operation within the servant. Figure 8 illustrates

operation demultiplexing.

operation2()
operation3()

: SERVANT

Figure 8: Operation Demultiplexing in Skeletons
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Figure 10: Operation Demultiplexing Latency with Alterna-

tive Search Techniques

e Problem: For ORBs like TAO that target real-time em-

bedded systems, operation demultiplexing must be efficighe perfect hash functions generateddperf

40

50

behave pre-

scalable, and predictable [18]. This requires the skeleton gdittably and efficiently, outperforming alternatives such as dy-
erated by TAO’s IDL compiler to locate the C++ method thatamic hashing, linear search, and binary search.



3.2 Overview of IDL Compiler C++ Code Gen- design would either require (1) multiple new visitors with spe-
eration cial mapping rules for each node type or (2) more state to be

maintained in each node to indicate how it should be used. In

Now that we've outlined the components and patterns dy case, the complexity of the IDL compiler implementation

for AMI callbacks? _
2. Two-pass file-based strategy: One way to reduce

some complexity of the one-pass strategy is to modify the
IDL compiler to run in two passes. The first pass transforms
An IDL compiler that supports the CORBA AMI callbackhe original IDL file into an implied-IDL temporary file. The
model is responsible for mapping OMG interfaces to so-callgégcond pass then reads this temporary file and generates C++
“implied-IDL” interfaces [2]. Each implied-IDL interface con-stubs and skeletons. Unfortunately this solution is not practi-
sists of thesendc _ operation for each two-way operatiorﬁ:a| in many environments. For instance, in platforms that do

and the reply handler interface corresponding to each interf6é support namespaces the code for the AMI reply handlers
found in the original IDL file. For instance, the implied-IDLMust be inserted into the same scope where the stub classes are

3.2.1 Generate Implied-IDL

for our Quoter IDL example is shown below: generated. Such an approach would require generating a com-
_ plete implied-IDL file, and then taking the generated code and
ﬂé&”uﬁgeg}ﬁi inserting some portions of it in different scopes of the gener-
ated code. This design is hard to implement and increases the
interface Quoter { time the IDL compiler requires to generate code.
/I Original two-way operation.
long get_quote (in string stock_name); 3. Two-pass memory-based strategy: One way to avoid
/I implied asynchronous operation. the s!ow processing timg of a two-pass fiIe-ba}sed IDL com-
void sendc_get_quote piler is to make an additional pass over the ABImemory
(in AMI_QuoterHandler handler, before generating C++ code. During this second pass, addi-
in string stock_name); . . . .
¥ tional nodes can be inserted into the existing AST to represent

the implicit-IDL constructs that support AMI. The second pass
can be implemented using new visitors that iterate over the tree

/I Implied type-specific callback ReplyHandler. and add the new entities.
interface  AMI_QuoterHandler :
Messaging::ReplyHandler {

...

goi‘éa”g?‘:kugct’; f(ierf"Bl’c-m ami return val) Implementing the two-pass memory-based strategy in
getd g ami -val; TAO: TAO’s IDL compiler uses the third strategy outlined
.. above to generate C++ code corresponding to implied-IDL.
. b We selected a two-pass memory-based strategy because it (1)

ran faster than the two-pass file-based strategy, (2) involved
) ) o fewer intrusive changes to TAO’s existing SMI IDL compiler
Alternative strategies for generating implied-IDL: There design, and (3) provided a more scalable framework for the
are several strategies for modifying an existing SMI IDL COMyslling model (which requires implied-IDL constructs), as
piler to generate the mapping code for implied-IDL AMI ingye|| a5 for future OMG IDL extensions, such as the CORBA
terfaces: Components Model [19].

1. One-pass memory-based strategy:An IDL com- To implement two-pass memory-based |mpI|ed-IDL AST
piler's existing SMI code generation logic can be modific@eneration, we enhanced TAO's existing SMI IDL compiler to
to produce AMI stubs at the same time as it produces #i@€ several interface and operation strategies and a new AMI
SMI stubs. This solution leverages existing IDL compiler fedmplied-IDL “preprocessing visitor.” This preprocessor visitor
tures. However, it requires the modification of existing AS® executed immediately after the AST created by the front-
nodes to represent multiple IDL constructs. For example, #@d of the IDL compiler is passed to the back-end. For every
node that represents arterface would also represent theimp|ied-|DL construct one of the fO”OWing three techniques is
ReplyHandler  for thatinterface . Likewise, the node then used by the preprocessing visitor to generate the implied-
representing an operation must also representstrelc - IDL code.

method and the callback operation on the reply handler. Such 2 Insert This technique inserts new nodes into the

3To save space, we do not discuss AMI exception handling [4] in this al‘.ﬁ‘ST_' Each node .CorreSpondS_ to a pgrticullar type of AMI
cle. implied-IDL. For instance, this technique is used for all

10



ReplyHandler s because they need normal stubs and ske%2.3 Generate Reply Handler Classes

tons. . . . .
For each interface in the IDL file, the IDL compiler gener-

2. Strategize: This technique applies strategies on exisites an interface-specific reply handler that inherits from the
ing nodes to trigger additional code generation, rather than$tandardMessaging::ReplyHandler base class. The
serting new nodes into the AST. For example, semdc _ client ORB can use this subclass to dispatch server replies
operation cannot be inserted in the AST because that wolicepplication-defined reply handler servants. For example,
also generate a corresponding operation in the skeleton Higiclient stub header file generated by TAO's IDL compiler
thesendc _ operation must be visible only on the client. Ugfor theQuoter interface contains the following reply handler
ing the Strategy pattern solves this problem cleanly withdiieleton, with the methods shown:
requiring major changes to the IDL compiler’s design. namespace Stock

{
3. Insert and strategize: This technique is a combination class Ab'\l(“_(’\?/luoterHanqlsr whand

of the two previous ones. Some nodes representing the impliegl = PYP'¢ Vessading--replynandier
IDL code are inserted into the tree. Other code is generategublic:
using strategies that modify the behavior of some visitors. For // Reply handler reply-stub.

. . static void get_quote_reply_stub
example, the reply handler operations are inserted, but also ~ (input_CDR Treply_buffer,
strategized to generateply-stubswhich are described below. AMI_QuoterHandler_ptr reply_handler);

/I Callback stub invoked by Client ORB

. /I to dispatch the reply.
3.2.2 Generate Stubs for Asynchronous Invocations virtual Vgid get_quotg Y

. ) ) ) (CORBA::Long ami_return_val);
For each two-way operation defined in an IDL interface, an};

IDL compiler generates the correspondisgndc - method b

used by client applications to invoke AMI operations. The firshe get _quote _reply _stub and get _quote methods
argument of &endc _ operation is an object reference to thgre stubs generated automatically by TAO's IDL compiler, as
reply handler, followed by then andinout arguments de- gescribed below.

fined in the signature of the original two-way IDL operatio
The return type for theendc _ operation isvoid because

the stub returns immediately without waiting synchronousty .. . .
y gsy ation. For two-way SMI calls, this stub is always blocked

forl:]h(()ausrzr:/ji;;cr) rzplyllication for examole. the IDL com ilerin the activation record waiting for the server’s reply. AMI
enerates theendcpp ot ué)te Stub %e’thod in the le;ntdispatching is more complex, however, because the stub that
gource file. as outlin_egd bé(lqow invoked the operation goes out of scope after the request is

sent and control returns to the client application. Thus, for
two-way AMI calls, the stub does not block waiting for the

rheply-stubs: SMI dispatching is straightforward because
marshaling is performed by the stub that invoked the op-

/I Stub for asynchronous invocations.

void Stock::Quoter::sendc_get_quote server’'s reply‘.
//StReE_l}"A'"’\;Tlndlef to?ﬁcgdflefrefet?cre v handler As shown in Figure 11, when an AMI reply arrives, the
(Stod 'éhar:(gtléocf_n:mef —PIr reply_handier, client ORB must demultiplex to the reply handler servang(
My_Async _Stock _Handler ) defined by the client applica-
/i Step 1. Marshal arguments. tion developer, demarshal the arguments, and dispatch the ap-
request_buffer << stock_name; . . .
propriate callback methode(g, get _quote ). To simplify
Z St%p f-bStetuE Czlnnecti?n, tstgre Rfﬁlylgggler the demultiplexing and dispatching of asynchronous replies,
Asynch.Invocation invocaton TAO's IDL compiler generates a concrete static method for
(reply_handler each two-way AMI operation. These methods, which we call
fg;{‘fg‘{:ﬁt"f'fgrQ)POterHa”d'e“:get—q“me—'ep'y—swb' reply-stuts, perform the following steps: (1) declare the pa-
- ' rameters corresponding to signature of the operation, (2) de-
1 Ster:_ 3-_Ser|1(d request to server and retum. marshal the reply, (3) invoke the callback method on the reply
invocation.invoke  (); handler provided by the client, and (4) clean up any dynami-
/I Note: No demarshaling necessary. cally allocated memory used to process the reply. In contrast,

}

4This also makes it hard for the ORB to react IGDCATION_FORWARD

. . . - GIOP messages. The current version of the CORBA Messaging specification
We will examine each of these steps in more detail in a SuUbggss not mention how to solve this issue, though future versions hopefully

guent article. will.
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v 1:sendc_method (.-f \Rep v Hanpier |
|;—sﬁ| 7:forward 4

callback operation is the result of the asynchronous operation,
followed by all theout andinout arguments defined by the

<— 7:upcall

| ‘REPLY HANDLER PTR| two-way operation in the original IDL interface.
: RepLY-Stu The reply handler servants follow the same rules required to
H _ T6'd hal implement any CORBA objects. For instance, users must ac-
3marshal arguments |'REPLY DISI.DAir:I-?éa tivate .their reply hapdler servants within a PQA and the ORB
—————— must invoke operations transparently on object references to
‘4:send request 45:receive reply remote or local reply handlers. Thus, an IDL compiler must
CALLBACK y TARGET generate QII the code for implied-IDL that is required for any
CLIENT <«—0 OBJECT other IDL interface.

For theQuoter interface, the TAO IDL compiler gener-
ates theget _quote callback method shown in the first code
fragment in Section 3.2.3.

@O

operation(callback, args
iy T O
G

Figure 11: Client ORB Interactions for an Asynchronows2.4 Generate Reply Handler Servant Skeletons

Twoway Operation )
An OMG IDL compiler that supports CORBA's AMI callback
model must also generate skeletons for reply handler inter-
SMI stubs are much simpler; they simply demarshal the refidges. These reply handler skeletons contain methods whose
into the parameters provided by the caller and return contgignatures define the result arguments, the return value,
to the client application. followed by theout andinout arguments of the original
When sending a request, tisendc _ stub for an AMI two-way operation.
call passes the client ORB a pointer to the reply-stub methodhs with regular IDL, each two-way operation in an implied-
and a pointer to the reply handler servant. When the IBL interface generates a static reply handler servant skeleton
ply arrives from the server, the client ORB passes the rephgthod. This method performs the following steps: (1) allo-
buffer and the reply handler servant to this reply-stub. Feates memory for the arguments, (2) demarshals the request
instance, when TAO's IDL compiler parses thet _quote  into those arguments, and (3) dispatches the operation through

operation of theQuoter interface, it generates the followthe POA. In general, skeletons for reply handlers are simpler
get _quote _reply _stub method in the client stub sourcéhan skeletons for general IDL interfaces because they have no

I

file: return values or output arguments. Moreover, they only have

in arguments, which are derived from the return value and any
u .'jep'y handler reply-stub. inout andout arguments defined in the original operation.
Vol

Stock::AMI_QuoterHandler::get_quote._reply_stub TAO applies the same collocation optimizations [20] for

}

This reply-stub performs the four steps outlined earlier.

Stubs for reply handler servant callback operations:
These stubs are invoked by the reply-stubs on behalf of the
client ORB. They maksynchronousnvocations on the reply
handler servant to dispatch the reply to the appropriate call-
back operationd.g, get _quote ). The first argument in the

(Input_CDR reply_buffer,
AMI_QuoterHandler_ptr reply_handler)

/I Step 1. Result arguments.
CORBA::Long ami_return_val;

/I Step 2. Demarshal results from <reply_buffer>
/I using CDR extraction operators.
reply_buffer >> ami_return_val;

/I Step 3. Call reply handler callback method via
/I its reply-stub.
reply_handler->get_quote (ami_return_val);

/I Step 4. Perform any needed cleanup activities.

AMI reply handlers as it applies for conventional SMI stubs
and skeletons. These optimizations are particularly important
for AMI because reply handlers are most commonly collo-
cated with the client ORB. In this case, no extra marshaling
and/or demarshaling steps are needed to process the reply. To
support remote reply handlers, however, an ORB must be able
to generate requests while processing a reply. Thus, it must be
reentrant and allow new requests to be dispatched by the ORB
Core.

For theQuoter interface,ReplyHandler servant code
genreated by TAO's IDL compiler in the client-side header file
is defined as follows:

namespace POA_Stock
{

class AMI_QuoterHandler
. public POA_Messaging::ReplyHandler

public:

/I Pure virtual callback method (must be
/I overridden by client developer).

virtual void get_quote

12
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In a subsequent article, we will discuss the various compo-
nents an ORB should supportinits run-time architecture to im-
plement the AMI callback functionality. We'll also show per-
formance results that demonstrate the benefits of using AMI
versus the SMI and DIl deferred synchronous models.
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