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1 Introduction

To make informed choices among middleware alternatives, de-
velopers of distributed object systems should understand the
patterns and components used to implement key features in
CORBA ORBs. Recent Object Interconnection columns [1,
2, 3] have explored the features of the CORBA Messaging
specification [4]. In this article, we describe key C++ fea-
tures, patterns, and components used to implement an OMG
IDL compiler that supports the Asynchronous Method Invoca-
tion (AMI) callback model defined in the CORBA Messaging
specification.

The CORBA Messaging specification defines two AMI pro-
gramming models, thepolling model and thecallbackmodel.
In both models, only clients behave asynchronously,i.e.,
server applications do not change at all. These AMI models
are outlined briefly below:

Polling model: In this model, each two-way AMI opera-
tion returns aPoller valuetype [5], which is very much
like a C++ or Java object in that it has both data members
and methods. Operations on aPoller are just local C++
method calls and not remote CORBA operation invocations.
The polling model is illustrated in Figure 1. The client can use
the Poller methods to check the status of the request so it
can obtain a server’s reply. If the server hasn’t replied yet, the
client can either (1) block awaiting its arrival or (2) return to
the calling thread immediately and check back on thePoller
to obtain thevaluetype s when it’s convenient.
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Figure 1: Polling Model for CORBA Asynchronous Twoway
Operations

Callback model: In this model, when a client invokes a two-
way asynchronous operation on an object, it passes an ob-
ject reference to areply handler servantas a parameter, as
shown in Figure 2. This object reference is not passed to the
server, but instead is stored locally by the client ORB. When
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Figure 2: Callback Model for CORBA Asynchronous Twoway
Operations

the server replies, the client ORB receives the response and
uses the reply handler servant provided by the client applica-
tion to dispatch the response to the appropriate callback op-
eration. This model requires client application developers to
obtain and initialize a POA and to activate objects in the POA,
which effectively makes the application behave as both a client
and a server.
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Reply handler servants are accessed via normal object ref-
erences. Therefore, servants can be implemented in processes
other than the client or the server involved in the original in-
vocation. For instance, it’s possible for a reply handler servant
to process “third-party” replies. The most common use-case,
however, is for the original client to process the response.

In general, the callback model is more efficient than the
polling model because the client need not invoke method calls
on avaluetype repeatedly to poll for results. Moreover, the
AMI callback model provides the following benefits compared
to alternative CORBA invocation models:

Simplified asynchronous programming model: AMI al-
lows operations to be invoked asynchronously using thestatic
invocation interface(SII). Using SII for AMI eliminates much
of the tedium and complexity inherent in thedynamic invoca-
tion interface(DII)’s deferred synchronous model. In partic-
ular, DII requires programmers to insert parameters explicitly
into Request objects, whereas the SII-generated stubs auto-
mate and optimize [6] parameter.

Improved quality of service: When implemented properly,
AMI can improve the scalability of CORBA applications. For
instance, it minimizes the number of client threads that would
otherwise required to perform two-way synchronous method
invocations (SMI). In addition, AMI is important for real-time
CORBA applications [7] because it helps to bound the amount
of time spent in ORB operations,i.e., only the client process-
ing time has to be considered when sending a request. This de-
coupling of client processing time from server operation exe-
cution time helps to simplify real-time scheduling analysis [8].

The remainder of this article is organized as follows: Sec-
tion 2 presents an example that illustrates the CORBA AMI
callback programming model in more detail; Section 3 de-
scribes the C++ features, patterns, tools, and components used
in TAO’s IDL compiler to implement the CORBA AMI call-
back model; and Section 4 presents concluding remarks.

2 Programming the CORBA AMI
Callback Model

In this section, we review how the AMI callback model works
from the perspective of a CORBA/C++ application developer.
The steps required to program CORBA AMI callbacks are
similar to the development of any CORBA application,i.e.,
OMG IDL interface(s) must be defined and client code must be
written to use the generated stubs. Servers require no changes
to work with AMI, however, because they are unaware of
whether a client invokes operations synchronously or asyn-
chronously [1]. Thus, the changes required to support AMI

applications affect only how clients are written, as described
step-by-step below.

Step 1: Define the IDL interface and generate the stubs:
Throughout this article, we’ll use the followingQuoter IDL
interface to illustrate how to use and implement the AMI Call-
back model:

module Stock
{

interface Quoter {
// Two-way operation to retrieve current
// stock value.
long get_quote (in string stock_name);

};

// ...
};

After IDL interfaces are defined, they must be passed
through an OMG IDL compiler, which generates a standard
set of C++ stubs and skeletons. For each two-way operation in
the IDL interface, an IDL compiler can generate the SMI and
AMI stubs that applications use to invoke operations. As dis-
cussed in [9], servers remain unchanged. Thus, the skeletons
generated by the IDL compiler are no different for AMI than
for SMI, so we won’t describe them in this article. The stubs
for asynchronous operations are different, however. In particu-
lar, they are given the name of the corresponding synchronous
operation, but with asendc prefix prepended.

For example, an IDL compiler that supports AMI would
generate the following pair of stubs for ourQuoter interface:

// Usual SMI stub.
CORBA::Long Stock::Quoter::get_quote

(const char *stock_name)
{ /* IDL compiler-generated SMI stub code... */ }

// New AMI stub (described below).
void Stock::Quoter::sendc_get_quote

// ReplyHandler object reference
(Stock::AMI_QuoterHandler_ptr,

const char *stock_name)
{ /* IDL compiler-generated AMI stub code... */ }

In addition to having a slightly different name, the asyn-
chronoussendc get quote operation has a different sig-
nature than the synchronousget quote operation. In par-
ticular,sendc get quote has no return value and is passed
an object reference to an application-defined subclass of the
following AMI QuoterHandler :

class AMI_QuoterHandler :
public Messaging::ReplyHandler
{

// Callback stub invoked by the client ORB
// to dispatch the reply.
virtual void get_quote (CORBA::Long ami_return_val)
{ /* IDL compiler-generated stub code... */ }

};
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The AMI QuoterHandler is generated automatically by
an AMI-enabled IDL compiler; it determines where the re-
ply from the server will be dispatched. Note that the
send get quote method doesn’t need a return value
because the value of the stock will be passed back
to the get quote callback operation defined by the
AMI QuoterHandler shown above. For more information
on the AMI callback mapping rules for OMG IDL to C++,
please see [2].

2. Implement the reply handler servant: Next, a client
programmer must implement the reply handler servant by sub-
classing fromAMI QuoterHandler , as shown below:

class My_Async_Stock_Handler
: public POA_Stock::AMI_QuoterHandler

{
public:

// Callback method prints stock value.
virtual void get_quote

(CORBA::Long ami_return_val) {
cout << ami_return_val << endl;

}
};

Although this implementation is “correct” it isn’t very useful
since there is no way to distinguish callbacks resulting from
AMI calls to different stocks! The following are common
strategies for addressing this problem:

� Servant-per-AMI-call strategy: Here’s a reply handler
servant implementation that keeps track of which stock name
it’s associated with and prints out this stock name and stock
value returned the server in theget quote callback:

class My_Async_Stock_Handler
: public POA_Stock::AMI_QuoterHandler

{
public:

My_Async_Stock_Handler (const char *stockname)
: stockname_ (CORBA::string_dup (stockname))

{}

// Callback servant method.
virtual void get_quote

(CORBA::Long ami_return_val) {

cout << stockname_ << " = "
<< ami_return_val << endl;

}

private:
CORBA::String_var stockname_;

};

Since theMy Async Stock Handler servant stores the
stockname that it’s requesting it can easily distinguish call-
backs resulting from multiple AMI calls by simply instantiat-
ing a different servant for each AMI call. The drawback, of
course, is if there are many simultaneous asynchronous calls
the memory footprint of the client will increase.

� Activation-per-AMI-call strategy: One way to distin-
guish separate AMI calls without requiring a separate object
per-invocation is to explicitly activate the same servant multi-
ple times in the client’s POA. As described in [10], each acti-
vation can be given a designated object id. Theget quote
callback method can then examine this object id to determine
to which invocation the reply belongs to, as follows:

using namespace PortableServer;

class My_Async_Stock_Handler
: public POA_Stock::AMI_QuoterHandler

{
public:

// Save the Current pointer
My_Async_Stock_Handler (Current_ptr current)

: current_ (Current::_duplicate (current))
{}

// Callback servant method.
virtual void get_quote

(CORBA::Long ami_return_val) {
// Get the object id used for current upcall.
ObjectId_var oid =

current_->get_object_id ();
// Convert the ObjectId to a string.
CORBA::String_var stock_name =

ObjectId_to_string (oid.in ());
cout << stock_name.in () << " = "

<< ami_return_val << endl;
}

private:
// Store the POA Current to get fast access
// to the ObjectId. Note that the Current
// can be assigned in one thread and
// used by another thread.
PortableServer::Current_var current_;

};

Before making AMI calls, we createa a POA who policies al-
low the client to explicitly activate the same servant multiple
times. Then, for each AMI call we create a special object id
that stores the stock name, as follows:

// A POA with the USER_ID and MULTIPLE_ID
// policies:
POA_var poa = ....;

// Obtain the POA Current object
CORBA::Object_var tmp =

this->resolve_initial_references ("POACurrent");
PortableServer::Current_var current =

PortableServer::Current::_duplicate (tmp.in ());

// Initialize the servant
My_Async_Stock_Handler servant (current.in ());

// Make asynchronous two-way calls using
// the AMI callback model.
for (int i = 0; i < MAX_STOCKS; i++) {

// Convert the stock name into an ObjectId.
ObjectId_var oid =

string_to_ObjectId (stocks[i]);

// Activate the Object with that ObjetId
poa->activate_object_with_id (oid.in (),

&servant);
// Get the object reference
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CORBA::Object_var tmp =
poa->id_to_reference (oid.in ());

Stock::AMI_QuoterHandler_var handler =
Stock::AMI_QuoterHandler::_narrow (tmp.in ());

// Send the request.
quoter_ref->sendc_get_quote (handler.in (),

stocks[i]);
}

Although this approach is more complex to program, it is more
scalable than the servant-per-AMI-call strategy because it uses
a single servant for all asynchronous calls. However, both
strategies require an entry-per-AMI-call in the client POA’s ac-
tive object map. One way to reduce this overhead, therefore,
is to use Servant Locators [11] that activate the client’s reply
handleron-demand, thereby minimizing memory utilization.

� Server-differentiated-reply strategy: An alternative
strategy for differentiating multiple AMI calls requires a mi-
nor modification to theQuoter IDL interface. For instance,
anout parameter can be added to theget quote operation,
as follows:

interface Quoter {
// Two-way operation to retrieve current
// stock value.
long get_quote (in string stock_name,

out string stock_name);
};

In this strategy, the server will return the stock name as a pa-
rameter to theget quote callback, as follows:

void
My_Async_Stock_Handler::get_quote

(CORBA::Long ami_return_val,
const char *stock_name) {

cout << stock_name << " = "
<< ami_return_val << endl;

}

Thus, just one servant need be used to distinguish all the AMI
callbacks and it only needs to be activated once in the client’s
POA.

In general, however, the use of anout parameter is ob-
trusive and incurs more network overhead in order to pass
the stock name back to the client, compared with allocating
a different servant for each AMI call. One way to reduce
this overhead is to use the Asynchronous Completion Token
(ACT) [12] pattern by adding small, fixed-sizeinout param-
eter to theget quote operation, as follows:

interface Quoter {
typedef short ACT;

// Two-way operation to retrieve current
// stock value.
long get_quote (in string stock_name,

inout ACT act);
};

TheACTwould be initialized by the client to indicate a partic-
ular AMI call and then passed to the server. The server would
subsequently return theACTunchanged as a parameter to the
reply handler servant. This handler could then map theACTto
the associated actions and state necessary to complete the re-
ply processing. If the size of theACTwas smaller than the size
of the stock name this strategy can reduce network bandwidth
a bit.

Step 3: Programming the client application: After the
IDL compiler generates the synchronous and asynchronous
stubs, programmers can develop a client that works much the
same as any other CORBA application. For example, the client
must obtain an object reference to a target object on a server
and invoke an operation. Unlike a conventional two-way SMI
call, however, when a client invokes a two-way AMI opera-
tion, it passes an object reference to a reply handler servant
as a parameter. This object reference is not sent to the server,
however. Instead, the client ORB stores it locally and uses it
to dispatch the appropriate callback operation after the server
replies to the client.

The following code, excerpted from [2], illustrates how a
C++ programmer would program the AMI callback model us-
ing the servant-per-AMI call strategy described earlier. First,
we define aget stock quote function that makes AMI
calls:

// Issue asynchronous requests.
void get_stock_quote (void)
{

// Set the max number of ORB stocks.
static const int MAX_STOCKS = 3;

// NASDAQ abbreviations for ORB vendors.
static const char *stocks[MAX_STOCKS] =
{

"IONAY" // IONA Orbix
"INPR" // Inprise VisiBroker
"IBM" // IBM Component Broker
"BEASYS" // BEA Web Logic Enterprise

};

// Reply handler servants.
My_Async_Stock_Handler *handlers[MAX_STOCKS];

// Reply handler object references.
Stock::AMI_QuoterHandler_var
handler_refs[MAX_STOCKS];

for (int i = 0; i < MAX_STOCKS; i++) {
// Initialize the servants.
handlers[i] =

new My_Asynch_Stock_Handler (stocks[i]);

// Initialize object references (note that
// _this() interacts with the client-side POA).
handler_refs[i] = handlers[i]->_this ();

}

// Make asynchronous two-way calls using
// the AMI callback model.
for (int i = 0; i < MAX_STOCKS; i++)

quoter_ref->sendc_get_quote (handler_refs[i],
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stocks[i]);

// ...
// Clean up dynamically allocated resources.

}

After making asynchronous invocations, a client typically
performs other tasks, such as checking for GUI events or
invoking additional asynchronous operations. When the
client is ready to receive replies from server(s), it enters the
ORB’s event loop1 using the standardwork pending and
perform work methods defined in the CORBAORBinter-
face, as follows:

// Event loop to receive all replies as callbacks.
while (/* ... */)

if (orb->work_pending ())
orb->perform_work ();

else
/* ... potentially do something else ... */

When a server responds, the client ORB receives the re-
sponse and then dispatches it to the appropriate method on
the reply handler servant so the client can handle the reply.
In other words, the ORB turns the response into a request
on the corresponding reply handler object reference passed
to the ORB during the client’s original invocation. Figure 3
illustrates how our client application uses the AMI Callback
model.

CALLBACKCALLBACK

QUOTE  CLIENTQUOTE  CLIENT
sendc_get_quote(replyhandler,

                   "IBM")

2: value

STOCKSTOCK

QUOTERQUOTER 44

3: dispatch

1: stock_nameget_quote(value)
replyhandler

Figure 3: AMI Callback Quoter Use-case

In the example above, the client implements the reply han-
dler servant locally. Thus, after a reply arrives from the
server, the client ORB invokes theget quote stub on the
AMI QuoterHandler callback object. This stub marshals
the arguments and invokes the virtualget quote method on
theMy Async Stock Handler reply handler servant.

Note that a reply handler also can be identified by an object
reference to a remote object. In this case, its servant will re-
ceive “third-party” replies resulting from requests invoked by
other clients.

1In addition, if asynchronous replies arrive while a client is blocked wait-
ing for a synchronous reply, the asynchronous reply can be dispatched in the
context of the waiting client thread.

3 IDL Compiler Support for CORBA
AMI Callbacks

Section 2 outlined how to program the AMI callback model
from a CORBA application developer’s perspective. This sec-
tion explains the C++ features, patterns, and components used
by TAO’s IDL compiler to generate the stubs necessary to
support the AMI callback model. TAO is an open-source2

CORBA-compliant ORB designed to address the quality of
service (QoS) requirements of high-performanceand real-time
applications [8]. Below, we present a general overview of
TAO’s IDL compiler and explain how it generates C++ code
that implements AMI callbacks.

3.1 Overview of TAO’s IDL Compiler

An IDL compiler is a critical component of an ORB. It is re-
sponsible for mapping IDL input files intostubandskeleton
classes, which serve as a “glue” between the client and ser-
vants, respectively, and the ORB. Stubs implement theProxy
pattern [13] and provide a strongly-typed, static invocation in-
terface that marshals application parameters into a common
data-level representation. Conversely, skeletons implement
the Adapterpattern [13] and demarshal the data-level repre-
sentation back into typed parameters that are meaningful to an
application. In addition, generated skeletons are responsible
for demultiplexing operation names carried in client requests
to their associated methods on servants.

The process of translating OMG IDL into the standard C++
mapping is complex. Moreover, IDL compilers must be flex-
ible, e.g., in order to generate compiled and/or interpretive
(de)marshaling code that meets the needs of various types of
applications [6]. In addition, the ORB and the IDL compiler
must collaborate to provide optimal performance for parame-
ter marshaling and demarshaling. For example, optimizations
in the ORB may trigger changes to its IDL compiler so that
generated code exploits the new features.

TAO’s IDL compiler parses IDL files containing CORBA
interfaces and data types, and generates stubs and skeletons,
which are then integrated with application code, as shown in
Figure 4. Figure 5 illustrates the interaction between the in-
ternal components in TAO’s IDL Compiler. The front-end of
TAO’s IDL compiler parses OMG IDL input files and gen-
erates an abstract syntax tree (AST). The back-end of the
compiler “visits” the AST to generate CORBA-compliant [14]
C++ source code. We describe the front-end and back-end of
TAO’s IDL compiler in more detail below.

2The source code and documentation for TAO can be downloaded from
www.cs.wustl.edu/ �schmidt/TAO.html .
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3.1.1 TAO’s IDL Compiler Front-end Design

TAO’s IDL compiler front-end is a heavily modified exten-
sion of the freely available SunSoft IDL compiler front-end,
with many new CORBA features, portability enhancements,

and bug fixes. The following components are contained in
TAO’s IDL compiler front-end:

OMG IDL parser: The parser is generated from a
yacc [15] specification of the OMG IDL grammar. The ac-
tion for each grammar rule invokes methods on AST node
classes to build the AST. The AST is stored in main memory
and shared between the front-end and the back-end.

Abstract syntax tree generator: Different nodes of the
AST correspond to different OMG IDL features. The front-
end defines a base class calledAST Decl that maintains in-
formation common to all AST node types. Specialized AST
node classes, such asAST Interface or AST Union , in-
herit from this base class, as shown in Figure 6. In ad-

AST_Decl

    AST_
Operation

   AST_
Interface

   AST_
Constant

AST_Type

   AST_
EnumVal

  AST_
Module

   AST_
Attribute

    AST_
Argument

AST_Field

   AST_
Typedef

AST_Root

      AST_
InterfaceFwd

       AST_
ConcreteType

UTL_Scope

    AST_
Sequence

   AST_
Structure

AST_
Array

 AST_
String

AST_
Enum

    AST_
Predefined

   AST_
Exception

 AST_
Union

      AST_
UnionBranch

Figure 6: TAO’s IDL Compiler AST Class Hierarchy

dition, the front-end defines theUTL Scope class, which
maintains scoping information, such as the nesting level and
the list of components that form a fully scoped names,e.g.,
Stock::Quoter . UTL Scope is a base class for all AST
nodes representing OMG IDL features that can define scopes,
such asstruct s andinterface s.

Driver program: The driver program invokes the helper
programs and directs the parsing and AST generation process.
First, it parses command-line arguments and invokes the C++
preprocessor to import#include s for each input file. Next,
it invokes the IDL parser on the C++ preprocessor output to
generate the AST in-memory. Finally, the driver passes the
AST to the back-end code generator.
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3.1.2 TAO’s IDL Compiler Back-end Code Generator
Design

The original SunSoft IDL compiler front-end only parses
OMG IDL files and generates the corresponding abstract syn-
tax tree (AST). To create a complete OMG IDL compiler for
TAO, we developed a back-end for the OMG IDL-to-C++
mapping. TAO’s IDL compiler has been designed to be scal-
able and configurable to support various optimization tech-
niques [6]. For example, TAO’s IDL compiler back-end can
selectively generate C++ code that is optimized for (1) a GIOP
protocol interpreter [16] or (2) compiled (de)marshaling in
stubs and skeletons [6].

TAO’s IDL compiler back-end employs design patterns,
such as Abstract Factory, Strategy, and Visitor [13], that sim-
plify its design and implementation and allow it to gener-
ate stubs/skeletons that use either compiled or interpretive
(de)marshaling [6]. These patterns also make it easier to sup-
port new requirements, such as AMI stub generation as de-
scribed in Section 3.2. In addition, TAO’s IDL compiler back-
end employs thegperf perfect hash function generator [17],
which creates optimal operation demultiplexers automatically.

Below, we describe how these patterns and tools were ap-
plied to resolve the key design challenges faced when devel-
oping TAO’s IDL compiler back-end.

Enhancing IDL compiler back-end maintainability

� Context: An IDL compiler should be maintainable. For
example, it should be possible to add new features without re-
quiring extensive compiler modifications. Likewise, it should
be easy to debug the compiler,e.g., if its generated code devi-
ates from the CORBA language mapping specifications.

� Problem: The SunSoft IDL compiler front-end that
forms the basis of TAO’s IDL compiler uses ayacc -generated
parser to build an AST representation from IDL input files.
Developers can add back-ends that generate code from the
AST by using the Strategy and Abstract Factory patterns [13],
as described below. Although these two patterns simplify the
creation of multiple back-ends and allow back-end developers
to control the AST representation, they do not, by themselves,
solve the following key design challenges:

� Need to know the exact type of a node– As the back-
end traverses the AST to generate code, the exact type of
the node being visited must be known. For example, the
declaration of an input argument will change depending
on the type of the argument. Basic IDL types, such as
short andlong are passed by value. Conversely, IDL
struct s are passed by reference. The original SunSoft
IDL compiler used downcasts to determine the exact type
of an AST node. This mechanism was tedious and error-
prone, however, because it forced developers to (1) write

if/else andswitch statements to detect the type of
node being processed and then (2) use a C++ downcast
operator to obtain node-specific information needed for
code generation.

� Dependency of the mapping on the context– The same
types of AST nodes can have different mappings depend-
ing on theircontext, i.e., their location in the AST and
what portion of the code is being generated. For exam-
ple, the mapping of an object reference as the type of an
structure field isT var , whereas the mapping as an input
argument isT ptr . Not all types follow the same rules.
For example, both a field and an input argument of type
short are mapped asCORBA::Short . Moreover, the
same input argument is used to generate the stub method
declaration, the skeleton declaration, and multiple times
to generate the definitions of the stub and the skeleton, in
each case with slightly different variations used. In gen-
eral, the type of the AST node and the context where the
node is used affects the C++ code emitted by TAO’s IDL
compiler.

� Poor scalability of virtual methods– A potential solution
to the problem outlined in the previous paragraph would
be to use virtual methods to represent each context. Each
node type could then override the virtual methods to gen-
erate the appropriate code. Unfortunately, virtual meth-
ods do not scale effectively as the number of different
contexts increases.

For instance, the SunSoft IDL compiler uses the same
node to represent an operation argument multiple times,
e.g., in the stub declaration, in the stub definition, before
marshaling the request, during the request marshaling,
and while demarshaling the reply. Likewise, this same
node is used multiple times for similar purposes in the
skeleton. The mapping also depends on whether the ar-
gument node represents anin , inout , out , or return
parameter.

Each time a different variation is required, the number of
virtual methods can increase. Although clever tricks can
be used to minimize the number of virtual methods, the
result is still overly complex. Moreover, an IDL compiler
can be a non-trivial software application,e.g., TAO’s IDL
compiler contains over 120,000 lines of code. Thus, if the
code generation logic for a particular context is spread
across the compiler source it may be hard to maintain.

� Solution: The Visitor pattern [13] allows operations to
be applied correctly to nodes in a heterogeneous object struc-
ture, such as an abstract syntax tree. This pattern is commonly
used in languages that do not support “double dispatching,”
i.e., the polymorphic operations cannot depend on message ar-
guments, only on the object receiving the message. We used
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the Visitor pattern in the TAO IDL compiler’s back-end to re-
solve the following problems outlined above:

� The type of an AST node is determined easily because (1)
the visitor has a different callback operation for each type
and (2) it receives the most derived type as an argument.
Other solutions, such as Interpreter [13], would require
the tedious downcasts described earlier.

� Different contexts are represented by different visitors.
Thus, it is easy to add more contexts as needed. The call-
back method of each visitor can be used to treat each type
differently depending on its context. For example, TAO’s
IDL compiler uses an operation argument more than 10
times when generating the code for stubs and skeletons.
Given the sheer number of contexts where a single AST
node can be used, therefore, it would be inflexible to use
a single object to keep track of the current context.

� The code for each context can be found easily because it
is isolated in a single visitor class. The code for a type
in that context is also easily found by using the callback
method. Checking a type across all contexts is slightly
harder, but the names of the callback methods are unique
enough that a simple tool likegrep can locate them au-
tomatically.

� Changing the behavior of the IDL compiler only requires
substituting the visitors involved. As we describe later,
using the Abstract Factory pattern to create the visitors
further simplifies these substitutions.

The Visitor pattern was appropriate because the actions per-
formed on a particular AST node depend on both the context
where the actions occurandthe type of the particular node. As
we will see below, this solution also allows us to modify the
generated code by simply changing some of the visitors.

To implement the Visitor pattern in TAO’s IDL compiler
back-end, we added methods to our back-end AST nodes so
they could be traversed by visitor objects. A single visitor
represents a particular context in the code generation,e.g.,
whether to generate argument declarations or to marshal the
arguments to generate a request. The visitor can consult the
type of the node and generate proper code depending on its
context and type.

Each visitor usually delegates part of its work to other vis-
itors. For example, the compiler generates the method decla-
rations for a skeleton class using one visitor, which delegates
to another visitor to generate the argument declarations. This
decoupling between (1) the different contexts in the code gen-
eration and (2) the types being processed allows us to cus-
tomize a particular task without affecting other portions of the
IDL compiler. For example, TAO’s IDL compiler supports
both compiled and interpretive marshaling. By using the Vis-
itor pattern, however, most of the differences between those

marshaling techniques are concentrated in the generation of
the stubs and skeletons,i.e., the generation of the header files
remains unmodified.

Enhancing IDL compiler back-end flexibility

� Context: An IDL compiler should be flexible,e.g.,
capable of being adapted to generate code with different
space/performance tradeoffs or even different language map-
pings, such as Java or C.

� Problem: End-users can select whether TAO’s IDL
compiler generates interpretive or compiled (de)marshaling
code on a per-file or per-operation basis [6]. This selection af-
fects the generation of the stubs and skeleton methods, part of
the AST Operation mapping, and requires the generation
of CDR stream insertion and extraction operators,i.e., it adds
new phases to the code generation process. Most of the code
to generate the stub and skeletondeclarationsremains un-
changed, however. Although it is possible to generate a com-
pletely different syntax tree for each case, this approach could
cause significant duplication of code because each change is
relatively small.

� Solution: The Strategy pattern [13] provides an abstrac-
tion for selecting one of several candidate algorithms and
packaging these algorithms within an OO interface. We used
this pattern to allow different code generation algorithms to be
configured as visitors. By using the Strategy pattern, for in-
stance, the only visitors that must be replaced to switch from
compiled to interpreted code generation are those responsible
for generating stub and skeleton implementations. The gener-
ation of IDL structures and sequences, stub declarations, and
skeleton declarations remains unchanged.

Ensuring semantic consistency of complex, related strate-
gies

� Context: Users can select different (de)marshaling
techniques via command-line options. As described above,
the IDL compiler uses the Strategy pattern to select different
Visitors that generate this code.

� Problem: Many strategies and visitors must be replaced
when changing the style of code generated by the compiler. If
these strategies and visitors are not changed in a semantically
consistent manner, the generated code will not work correctly
and possibly will not even be valid input for for a C++ com-
piler.

� Solution: The Abstract Factory pattern [13] provides a
single component that creates related objects. We applied ab-
stract factories in the TAO IDL compiler’s back-end to localize
the construction of the appropriate visitors, as shown in Fig-
ure 7. Controlling the creation of visitors using the Abstract
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Visitor Factory
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visit_operation ()  = 0
...

creates

creates

Figure 7: Creating Visitors in TAO’s IDL Compiler Using Ab-
stract Factories

Factory pattern allows CORBA application programmers to
make a wholesale selection of alternative stubs and skeletons
implementations. Moreover, this pattern makes it straightfor-
ward to disable certain features, such as the generation of in-
sertion and extraction operators to and fromCORBA::Any
objects, the generation of implementation templates where the
user inserts new code, and the generation of AMI stub code to
reduce the footprint of applications that do not use AMI fea-
tures.

Optimizing operation demultiplexing in skeletons

� Context: Once an ORB’s Object Adapter identifies the
correct servant for an incoming CORBA request [18], the next
step is for the generated skeleton to demultiplex the request to
the correct operation within the servant. Figure 8 illustrates
operation demultiplexing.
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Figure 8: Operation Demultiplexing in Skeletons

� Problem: For ORBs like TAO that target real-time em-
bedded systems, operation demultiplexing must be efficient,
scalable, and predictable [18]. This requires the skeleton gen-
erated by TAO’s IDL compiler to locate the C++ method that

matches the operation name passed with the incoming client
request in constant time.

Solution: To generate constant time operation demulti-
plexers, the TAO IDL compiler’s back-end usesgperf [17],
which is a freely available perfect hash function generator dis-
tributed with the TAO release. Thegperf tool automati-
cally generates a perfect hash function from a user-supplied
list of keyword strings. The generated function can determine
whether an arbitrary string is a member of these keywords in
constant time. Figure 9 illustrates the interaction between the
TAO IDL compiler andgperf . TAO’s IDL compiler invokes

SERVER

SKELETON

PERFECT

HASH

FUNCTIONS

SKELETON

CODE

GPERF
CHILD

PROCESS

PARENT

PROCESS
TAO IDL

INTERFACE

OPERATIONS

Figure 9: Integrating TAO’s IDL Compiler and GPERF

gperf as a co-process to generate an optimized lookup strat-
egy for operation names in IDL interfaces.

Figure 10 plots operation demultiplexing latency as a func-
tion of the number of operations. This figure indicates that
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Figure 10: Operation Demultiplexing Latency with Alterna-
tive Search Techniques

the perfect hash functions generated bygperf behave pre-
dictably and efficiently, outperforming alternatives such as dy-
namic hashing, linear search, and binary search.
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3.2 Overview of IDL Compiler C++ Code Gen-
eration

Now that we’ve outlined the components and patterns in
TAO’s IDL compiler, we’ll explain how it generates C++ code
for AMI callbacks.3

3.2.1 Generate Implied-IDL

An IDL compiler that supports the CORBA AMI callback
model is responsible for mapping OMG interfaces to so-called
“implied-IDL” interfaces [2]. Each implied-IDL interface con-
sists of thesendc operation for each two-way operation
and the reply handler interface corresponding to each interface
found in the original IDL file. For instance, the implied-IDL
for ourQuoter IDL example is shown below:

// Implied-IDL
module Stock
{

interface Quoter {
// Original two-way operation.
long get_quote (in string stock_name);

// Implied asynchronous operation.
void sendc_get_quote

(in AMI_QuoterHandler handler,
in string stock_name);

};

// ...

// Implied type-specific callback ReplyHandler.
interface AMI_QuoterHandler :

Messaging::ReplyHandler {
// Callback for reply.
void get_quote (in long ami_return_val);

// ...
};

};

Alternative strategies for generating implied-IDL: There
are several strategies for modifying an existing SMI IDL com-
piler to generate the mapping code for implied-IDL AMI in-
terfaces:

1. One-pass memory-based strategy:An IDL com-
piler’s existing SMI code generation logic can be modified
to produce AMI stubs at the same time as it produces the
SMI stubs. This solution leverages existing IDL compiler fea-
tures. However, it requires the modification of existing AST
nodes to represent multiple IDL constructs. For example, the
node that represents aninterface would also represent the
ReplyHandler for that interface . Likewise, the node
representing an operation must also represent thesendc
method and the callback operation on the reply handler. Such a

3To save space, we do not discuss AMI exception handling [4] in this arti-
cle.

design would either require (1) multiple new visitors with spe-
cial mapping rules for each node type or (2) more state to be
maintained in each node to indicate how it should be used. In
any case, the complexity of the IDL compiler implementation
increases, which makes it harder to maintain.

2. Two-pass file-based strategy: One way to reduce
some complexity of the one-pass strategy is to modify the
IDL compiler to run in two passes. The first pass transforms
the original IDL file into an implied-IDL temporary file. The
second pass then reads this temporary file and generates C++
stubs and skeletons. Unfortunately this solution is not practi-
cal in many environments. For instance, in platforms that do
not support namespaces the code for the AMI reply handlers
must be inserted into the same scope where the stub classes are
generated. Such an approach would require generating a com-
plete implied-IDL file, and then taking the generated code and
inserting some portions of it in different scopes of the gener-
ated code. This design is hard to implement and increases the
time the IDL compiler requires to generate code.

3. Two-pass memory-based strategy: One way to avoid
the slow processing time of a two-pass file-based IDL com-
piler is to make an additional pass over the ASTin-memory
before generating C++ code. During this second pass, addi-
tional nodes can be inserted into the existing AST to represent
the implicit-IDL constructs that support AMI. The second pass
can be implemented using new visitors that iterate over the tree
and add the new entities.

Implementing the two-pass memory-based strategy in
TAO: TAO’s IDL compiler uses the third strategy outlined
above to generate C++ code corresponding to implied-IDL.
We selected a two-pass memory-based strategy because it (1)
ran faster than the two-pass file-based strategy, (2) involved
fewer intrusive changes to TAO’s existing SMI IDL compiler
design, and (3) provided a more scalable framework for the
polling model (which requires implied-IDL constructs), as
well as for future OMG IDL extensions, such as the CORBA
Components Model [19].

To implement two-pass memory-based implied-IDL AST
generation, we enhanced TAO’s existing SMI IDL compiler to
use several interface and operation strategies and a new AMI
implied-IDL “preprocessing visitor.” This preprocessor visitor
is executed immediately after the AST created by the front-
end of the IDL compiler is passed to the back-end. For every
implied-IDL construct one of the following three techniques is
then used by the preprocessing visitor to generate the implied-
IDL code.

1. Insert: This technique inserts new nodes into the
AST. Each node corresponds to a particular type of AMI
implied-IDL. For instance, this technique is used for all
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ReplyHandler s because they need normal stubs and skele-
tons.

2. Strategize: This technique applies strategies on exist-
ing nodes to trigger additional code generation, rather than in-
serting new nodes into the AST. For example, thesendc
operation cannot be inserted in the AST because that would
also generate a corresponding operation in the skeleton and
thesendc operation must be visible only on the client. Us-
ing the Strategy pattern solves this problem cleanly without
requiring major changes to the IDL compiler’s design.

3. Insert and strategize: This technique is a combination
of the two previous ones. Some nodes representing the implied
IDL code are inserted into the tree. Other code is generated
using strategies that modify the behavior of some visitors. For
example, the reply handler operations are inserted, but also
strategized to generatereply-stubs, which are described below.

3.2.2 Generate Stubs for Asynchronous Invocations

For each two-way operation defined in an IDL interface, an
IDL compiler generates the correspondingsendc method
used by client applications to invoke AMI operations. The first
argument of asendc operation is an object reference to the
reply handler, followed by thein and inout arguments de-
fined in the signature of the original two-way IDL operation.
The return type for thesendc operation isvoid because
the stub returns immediately without waiting synchronously
for the server to reply.

In ourQuoter application, for example, the IDL compiler
generates thesendc get quote stub method in the client
source file, as outlined below:

// Stub for asynchronous invocations.
void Stock::Quoter::sendc_get_quote

// ReplyHandler object reference
(Stock::AMI_QuoterHandler_ptr reply_handler,
const char *stock_name)

{
// Step 1. Marshal arguments.
request_buffer << stock_name;

// Step 2. Setup connection, store ReplyHandler
// and stub to handle reply-stubs in the ORB.
Asynch_Invocation invocation

(reply_handler
&Stock::AMI_QuoterHandler::get_quote_reply_stub,
request_buffer);

// Step 3. Send request to server and return.
invocation.invoke ();

// Note: No demarshaling necessary.
}

We will examine each of these steps in more detail in a subse-
quent article.

3.2.3 Generate Reply Handler Classes

For each interface in the IDL file, the IDL compiler gener-
ates an interface-specific reply handler that inherits from the
standardMessaging::ReplyHandler base class. The
client ORB can use this subclass to dispatch server replies
to application-defined reply handler servants. For example,
the client stub header file generated by TAO’s IDL compiler
for theQuoter interface contains the following reply handler
skeleton, with the methods shown:

namespace Stock
{

class AMI_QuoterHandler
: public Messaging::ReplyHandler

{
public:

// Reply handler reply-stub.
static void get_quote_reply_stub

(Input_CDR reply_buffer,
AMI_QuoterHandler_ptr reply_handler);

// Callback stub invoked by Client ORB
// to dispatch the reply.
virtual void get_quote

(CORBA::Long ami_return_val);
};

};

The get quote reply stub and get quote methods
are stubs generated automatically by TAO’s IDL compiler, as
described below.

Reply-stubs: SMI dispatching is straightforward because
demarshaling is performed by the stub that invoked the op-
eration. For two-way SMI calls, this stub is always blocked
in the activation record waiting for the server’s reply. AMI
dispatching is more complex, however, because the stub that
invoked the operation goes out of scope after the request is
sent and control returns to the client application. Thus, for
two-way AMI calls, the stub does not block waiting for the
server’s reply.4

As shown in Figure 11, when an AMI reply arrives, the
client ORB must demultiplex to the reply handler servant (e.g.,
My Async Stock Handler ) defined by the client applica-
tion developer, demarshal the arguments, and dispatch the ap-
propriate callback method (e.g., get quote ). To simplify
the demultiplexing and dispatching of asynchronous replies,
TAO’s IDL compiler generates a concrete static method for
each two-way AMI operation. These methods, which we call
reply-stubs, perform the following steps: (1) declare the pa-
rameters corresponding to signature of the operation, (2) de-
marshal the reply, (3) invoke the callback method on the reply
handler provided by the client, and (4) clean up any dynami-
cally allocated memory used to process the reply. In contrast,

4This also makes it hard for the ORB to react onLOCATION FORWARD

GIOP messages. The current version of the CORBA Messaging specification
does not mention how to solve this issue, though future versions hopefully
will.
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Figure 11: Client ORB Interactions for an Asynchronous
Twoway Operation

SMI stubs are much simpler; they simply demarshal the reply
into the parameters provided by the caller and return control
to the client application.

When sending a request, thesendc stub for an AMI
call passes the client ORB a pointer to the reply-stub method
and a pointer to the reply handler servant. When the re-
ply arrives from the server, the client ORB passes the reply
buffer and the reply handler servant to this reply-stub. For
instance, when TAO’s IDL compiler parses theget quote
operation of theQuoter interface, it generates the follow
get quote reply stub method in the client stub source
file:

// Reply handler reply-stub.
void
Stock::AMI_QuoterHandler::get_quote_reply_stub

(Input_CDR reply_buffer,
AMI_QuoterHandler_ptr reply_handler)

{
// Step 1. Result arguments.
CORBA::Long ami_return_val;

// Step 2. Demarshal results from <reply_buffer>
// using CDR extraction operators.
reply_buffer >> ami_return_val;

// Step 3. Call reply handler callback method via
// its reply-stub.
reply_handler->get_quote (ami_return_val);

// Step 4. Perform any needed cleanup activities.
}

This reply-stub performs the four steps outlined earlier.

Stubs for reply handler servant callback operations:
These stubs are invoked by the reply-stubs on behalf of the
client ORB. They makesynchronousinvocations on the reply
handler servant to dispatch the reply to the appropriate call-
back operation (e.g., get quote ). The first argument in the

callback operation is the result of the asynchronous operation,
followed by all theout andinout arguments defined by the
two-way operation in the original IDL interface.

The reply handler servants follow the same rules required to
implement any CORBA objects. For instance, users must ac-
tivate their reply handler servants within a POA and the ORB
must invoke operations transparently on object references to
remote or local reply handlers. Thus, an IDL compiler must
generate all the code for implied-IDL that is required for any
other IDL interface.

For theQuoter interface, the TAO IDL compiler gener-
ates theget quote callback method shown in the first code
fragment in Section 3.2.3.

3.2.4 Generate Reply Handler Servant Skeletons

An OMG IDL compiler that supports CORBA’s AMI callback
model must also generate skeletons for reply handler inter-
faces. These reply handler skeletons contain methods whose
signatures define the result arguments,i.e., the return value,
followed by theout and inout arguments of the original
two-way operation.

As with regular IDL, each two-way operation in an implied-
IDL interface generates a static reply handler servant skeleton
method. This method performs the following steps: (1) allo-
cates memory for the arguments, (2) demarshals the request
into those arguments, and (3) dispatches the operation through
the POA. In general, skeletons for reply handlers are simpler
than skeletons for general IDL interfaces because they have no
return values or output arguments. Moreover, they only have
in arguments, which are derived from the return value and any
inout andout arguments defined in the original operation.

TAO applies the same collocation optimizations [20] for
AMI reply handlers as it applies for conventional SMI stubs
and skeletons. These optimizations are particularly important
for AMI because reply handlers are most commonly collo-
cated with the client ORB. In this case, no extra marshaling
and/or demarshaling steps are needed to process the reply. To
support remote reply handlers, however, an ORB must be able
to generate requests while processing a reply. Thus, it must be
reentrant and allow new requests to be dispatched by the ORB
Core.

For theQuoter interface,ReplyHandler servant code
genreated by TAO’s IDL compiler in the client-side header file
is defined as follows:

namespace POA_Stock
{

class AMI_QuoterHandler
: public POA_Messaging::ReplyHandler

{
public:

// Pure virtual callback method (must be
// overridden by client developer).
virtual void get_quote
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(CORBA::Long ami_return_val) = 0;

// Servant skeleton.
static void get_quote_skel

(Input_CDR cdr, void *reply_handler);
};

}

The implementation of the generatedget quote skel ser-
vant skeleton extracts the AMI return value andout /inout
parameters from theInput CDRbuffer and dispatches the
upcall on the appropriate servant callback method. For exam-
ple, the following code is generated by TAO’s IDL compiler
for theQuoter interface:

void
POA_Stock::AMI_QuoterHandler::get_quote_skel
(Input_CDR cdr,
void *reply_handler)
{

// Step 1: Demarshal the AMI ‘‘return value.’’
CORBA::Long ami_return_val;
cdr >> ami_return_val;

// Step 2: Downcast to the reply handler servant.
POA_Stock::AMI_QuoterHandler *skeleton =
static_cast <POA_Stock::AMI_QuoterHandler *>

(reply_handler);

// Step 3: Dispatch callback method on this servant.
skeleton->get_quote (ami_return_val);

}

This skeleton performs the three steps outlined earlier.

4 Concluding Remarks

The Asynchronous Method Invocation (AMI) callback model
is an important feature that has been integrated into CORBA
via the OMG Messaging specification [4]. A key aspect
of AMI callbacks is that operations can be invoked asyn-
chronously using thestatic invocation interface(SII). This fea-
ture avoids much of the complexity inherent in thedynamic
invocation interface(DII)’s deferred synchronous model.

In this article, we explain how an IDL compiler can be struc-
tured to support the CORBA AMI callback model. We also
show how C++ languages features, such as inheritance and
dynamic binding, can be guided by familiar design patterns,
such as Visitor, Abstract Factor, and Strategy, to provide a very
flexible and robust IDL compiler architecture that can adapt to
changes not foreseen in the original design. These patterns
allowed us to concentrate on implementing the new CORBA
AMI callback features, rather than wrestling with internal IDL
compiler design issues.

In a subsequent article, we will discuss the various compo-
nents an ORB should support in its run-time architecture to im-
plement the AMI callback functionality. We’ll also show per-
formance results that demonstrate the benefits of using AMI
versus the SMI and DII deferred synchronous models.
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