C++ Support for Abstract Data Types

Douglas C. Schmidt

Professor Department of EECS
d.schmidt@vanderbilt.edu Vanderbilt University
www.cs.wustl.edu/~schmidt/ (615) 343-8197

D-CC

ADTs in C++ Douglas C. Schmidt
Topics

e Describing Objects Using ADTs
e Built-in vs. User-defined ADTs

o C++ Support

Vanderbilt University

ADTs in C++ Douglas C. Schmidt

Describing Objects Using ADTs

An ADT is a collection of data and associated operations for
manipulating that data

ADTs support abstraction, encapsulation, and information hiding
They provide equal attention to data and operations
Common examples of ADTSs:

— Built-in types: boolean, integer, real, array
— User-defined types: stack, queue, tree, list

Vanderbilt University

ADTs in C++ Douglas C. Schmidt

Built-in ADTs

e boolean

— Values: true and false
— Operations:. and, or, not, nand , etc.

e integer

— Values: Whole numbers between MIN and MAX values
— Operations: add, subtract, multiply, divide , etc.

e arrays

— Values. Homogeneous elements, i.e., array of X. . .
— Operations: initialize, store, retrieve, copy

T aed
Vanderbilt University E} E L

ADTs in C++ Douglas C. Schmidt ADTs in C++ Douglas C. Schmidt

User-defined ADTs C++ Support for ADTs

e stack

] C++ Classes
— Values: Stack elements, i.e., stack of X. . .

— Operations: create, destroy/dispose, push, pop ,is _empty, Automatic Initialization and Termination

is _full , etc. Friends

ueue . e
*d Assignment and Initialization

— Values: Queue elements, i.e., queue of X. . .
— Operations: create, destroy/dispose, enqueue, dequeue,

is _empty, is _full , etc. Parameterized Types
e tree search structure

Overloading

Iterators

— Values: Tree elements, i.e., tree of X
— Operations:. insert, delete, find, size, traverse (in-
order, post-order, pre-order, level-order) , etc.

Miscellaneous Issues

Vanderbilt University Vanderbilt University

ADTs in C++ Douglas C. Schmidt ADTs in C++ Douglas C. Schmidt
C++ Classes C++ Classes (contd)

e Classes are containers for state variables and provide operations, A struct

. : _ , is interpreted as a class with all data objects and methods
i.e., methods, for manipulating the state variables

declared in the public section

e Aclass is separated into three access control sections: By default, all class members are private and all struct members are

class Classic_Example { public

public: A class definition does not allocate storage for any objects
/I Data and methods accessible to any user of the class))
protected: Data members and member functions (i.e., methods)
/| Data and methods accessible to class methods,
/I derived classes, and friends only
private:
/| Data and methods accessible to class
/I methods and friends only

h

BRGHC

Vanderbilt University B M at Vanderbilt University

ADTs in C++ Douglas C. Schmidt
C++ Class Components (contd)

e The this pointer

— Used in the source code to refer to a pointer to the object on which
the method is called

e Friends

— Non-class functions granted privileges to access internal class
information, typically for efficiency reasons

Vanderbilt University

ADTs in C++ Douglas C. Schmidt
Class Data Members

e Data members may be objects of built-in types, as well as user-
defined types, e.g., class Bounded_Stack

#include "Vector.h"
template <class T>
class Bounded_Stack {
public:
Bounded_Stack (int len) : stack_ (len), top_ (0) {}
n. ..
private:
Vector<T> stack_;
int top_;
h

Vanderbilt University

ADTs in C++ Douglas C. Schmidt
Class Data Members (cont'd)

Important Question: ‘How do we initialize class data members that
are objects of user-defined types whose constructors require
arguments?’

Answer: use the base/member initialization section

— That’s the part of the constructor after the ’:’, following the
constructor’s parameter list (up to the first '{")

Note, it is a good habit to always use the base/member initialization
section

Base/member initialization section only applies to constructors

[T
- %

D)

L
¥

Vanderbilt University

ADTs in C++ Douglas C. Schmidt
Base/Member Initialization Section

e Five mandatory cases for classes:

. Initializing base classes (whose constructors require arguments)

. Initializing user-defined class data members (whose constructors
require arguments)

. Initializing reference variables

. Initializing const s

. Initializing virtual base class(es), in most derived class (when they
don’'t have default constructor(s))

e One optional case:

1. Initializing built-in data members

BRGHC

Vanderbilt University | = -

ADTs in C++
Base/Member Initialization Section (cont'd)
class Vector { public: Vector (size_t len); /* . . . * };
class String { public: String (const char *str); /
class Stack : private Vector // Base class
{
public:
Stack (size_t len, const char *name)
: Vector (len), name_ (name),
max_size_ (len), top_ (0) {}

Douglas C. Schmidt

In. ..

private:
String name_; // user-defined
const int max_size_; // const
size t top_; // built-in type
n. ..

h

[T
- %

D)

Vanderbilt University —

ADTs in C++

Douglas C. Schmidt

Base/Member Initialization Section (cont'd)

References (and const s) must be initialized

class Vector_lIterator {
public:

Vector_lterator (const Vector &v): vr_ (v), i_ (0) {}
.

private:

h

Vector &vr_; /I reference
size t i_;

Vanderbilt University

ADTs in C++ Douglas C. Schmidt

Friends

e Aclass may grant access to its private data and methods by including
friend declarations in the class definition, e.g.,

class Vector {
friend Vector &product (const Vector &,
const Matrix &);
private:
int size_;
n. ..
h

e Function product can access Vector ’s private parts:

Vector &product (const Vector &v, const Matrix &m) {
int vector_size = v.size_;
In. ..

BRGHC

Vanderbilt University | = -

ADTs in C++

String &);

String &s) {

Friends (cont'd)

selected methods in a particular class, ordinary

stand-alone functions
friend ostream &operator<< (ostream &,

— e.g., ostream and istream functions:

char *str ;
0S << S.Sfr ;

e A class may confer friendship on entire classes,
e Friends allow for controlled violation of information-

#include <iostream.h>
ostream &operator<< (ostream &os,

class String {

return os;

Vanderbilt University

ADTs in C++ Douglas C. Schmidt

Friends (contd)

e Using friends weakens information hiding

— In particular, it leads to tightly-coupled implementations that are
overly reliant on certain naming and implementation details

e For this reason, friends are known as the ‘goto of access protection
mechanisms!’

e Note, C++ inline (accessor) functions reduce the need for friends . . .

Vanderbilt University

ADTs in C++ Douglas C. Schmidt
Assignment and Initialization

e Some ADTs must control all copy operations invoked upon objects

e This is necessary to avoid dynamic memory aliasing problems
caused by “shallow” copying

e A String class is a good example of the need for controlling all copy
operations . . .

Vanderbilt University

ADTs in C++ Douglas C. Schmidt
Assignment and Initialization (cont'd)

class String {
public:
String (const char *t)
clen_ t= =07?0: strlen (1) {
if (this->len_ == 0)
throw range_error ();
this->str_ = strcpy (new char [len_ + 1], t);
}
“String (void) { delete [] this->str_; }
n. ..
private:
size t len_;
char *str_;

h

Vanderbilt University

ADTs in C++ Douglas C. Schmidt
Assignment and Initialization (cont'd)

void foo (void) {
String s1 ("hello™);
String s2 ("world");

sl = s2; // leads to aliasing

sl[2] = X

assert (s2[2] == X); /I will be true!
n. ..

/I double deletion in destructor calls!

Vanderbilt University

ADTs in C++ Douglas C. Schmidt
Assignment and Initialization (cont'd)

world

e Note that both sl.s and s2.s point to the dynamically allocated
buffer storing world (this is known as aliasing)

T aed
Vanderbilt University E} E L

ADTs in C++ Douglas C. Schmidt
Assignment and Initialization (cont’d)

e In C++, copy operations include assignment, initialization, parameter
passing and function return, e.g.,

#include "Vector.h"
Vector<int> bar (Vector<int>);

void foo (void) {
Vector<int> v1 (100);

Vector<int> v2 = v1; // Initialize new v2 from vl
/I Same net effect as Vector v2 (v1);

vl = v2; // Vector assign v2 to vl

v2 = bar (vl1); } // Pass and return Vectors

e Note, parameter passing and function return of objects by value is
handled using the initialization semantics of the copy constructor

T aed
Vanderbilt University E} E L

ADTs in C++ Douglas C. Schmidt
Assignment and Initialization (cont'd)

e Assignment is different than initialization because the left hand object
already exists for assignment

e Therefore, C++ provides two different operators, one for initialization
(the copy constructor, which also handles parameter passing and
return of objects from functions) . . .

template <class T>
Vector<T>::Vector (const Vector &v)
. size_ (v.size_), max_ (v.max_), buf_ (new T[v.max_])
{
for (size_t i = 0; i < this->size_; i++)
this->buf_[i] = v.buf_[i];

el He
Vanderbilt University E} -

L
'I.’

ADTs in C++ Douglas C. Schmidt
Assignment and Initialization (cont'd)

and one for assignment (the assignment operator), e.g.,
template <class T>

Vector<T> &Vector<T>::operator= (const Vector<T> &v) {
if (this = &v) {
if (this->max_ < v.size) {
delete [] this->buf_;
this->buf_ = new TJ[v.size_];
this->max_ = v.size_;
}

this->size_ = v.size_;

for (size_t i = 0; i < this->size_; i++)

this->buf [|] v.buf_[i;

}

return *this; // Allows vl =

Vanderbilt University

ADTs in C++ Douglas C. Schmidt
Assignment and Initialization (cont'd)

e Constructors and operator= must be class members and neither
are inherited

— Rationale
x If a class had a constructor and an operator= , but a class
derived from it did not what would happen to the derived class
members which are not part of the base class?!
— Therefore
x If a constructor or operator= is not defined for the derived
class, the compiler-generated one will use the base class
constructors and operator= s for each base class (whether
user-defined or compiler-defined)
x In addition, a memberwise copy (e.g., using operator=) is used
for each of the derived class members

Vanderbilt University

ADTs in C++ Douglas C. Schmidt
Assignment and Initialization (cont'd)

e Bottom-line: define constructors and operator= for almost every
non-trivial class . . .

— Also, define destructors and copy constructors for most classes as
well . . .

e Note, you can also define compound assignment operators, such as
operator +=, which need have nothing to do with operator =

Vanderbilt University

ADTs in C++ Douglas C. Schmidt
Restricting Assignment and Initialization

e Assignment, initialization, and parameter passing of objects by value
may be prohibited by using access control specifiers:

template <class T> class Vector {
public:
Vector<T> (void); // Default constructor
private:
Vector<T> &operator= (const Vector<T> &);
Vector<T> (const Vector<T> &);
h
void foo (Vector<int>); // pass-by-value prototype
Vector<int> vi1;
Vector<int> v2 = vl; // Error
v2 = v1; /I Error
foo (v1); /I Error

[T
- %

D)

Vanderbilt University —

ADTs in C++ Douglas C. Schmidt
Restricting Assignment and Initialization (cont'd)

e A similar idiom can be used to prevent static or auto declaration of an
object, i.e., only allows dynamic objects!

class Foo { public: void dispose (void);
private: "Foo (void); // Destructor is private . . .
h

Foo f; // error

Now the only way to declare a Foo object is off the heap, using
operator new, Foo *f = new Foo;

— Note, the delete operator is no longer accessible
delete f; // error!

Therefore, a dispose function must be provided to delete the object,
f->dispose ();

BRGHC

Vanderbilt University | = -

ADTs in C++ Douglas C. Schmidt
Restricting Assignment and Initialization (cont'd)

e |f you declare a class constructor protected then only objects derived
from the class can be created

— Note, you can also use pure virtual functions to achieve a similar
effect, though it forces the use of virtual tables . . .

class Foo { protected: Foo (void); };

class Bar : private Foo { public Bar (void); };
Foo f; /I lllegal

Bar b; // OK

e Note, if Foo's constructor is declared in the private section then
we can not declare objects of class Bar either (unless class Bar is
declared as a friend of Foo)

BRGHC

Vanderbilt University = -

ADTs in C++ Douglas C. Schmidt
Overloading

C++ allows overloading of all function names and nearly all operators
that handle user-defined types, including:

the assignment operator =

the function call operator ()

the array subscript operator []

the pointer operator ->()

the sequence (comma) operator ,
the ternary operator ?

the auto-increment operator ++

You may not overload:

— the scope resolution operator ::
— the member selection (dot) operator .

D

Vanderbilt University at

ADTs in C++ Douglas C. Schmidt

Overloading (contd)

e Ambiguous cases are rejected by the compiler, e.g.,

int foo (int);

int foo (int, int = 10);

foo (100); // ERROR, ambiguous call!
foo (100, 101); // OK!

e A function’s return type is not considered when distinguishing
between overloaded instances

— e.g., the following declarations are ambiguous to the C++ compiler:
int divide (double, double);
double divide (double, double);

Vanderbilt University

ADTs in C++ Douglas C. Schmidt
Overloading (contd)

e const and non-const functions are different functions, so const-
ness may be used to distinguish return values, e.g.,

char &operator[] (unsigned int);
const char &operator[] (unsigned int) const;

Vanderbilt University

ADTs in C++ Douglas C. Schmidt
Overloading (contd)
e Function name overloading and operator overloading relieves the

programmer from the lexical complexity of specifying unique function
identifier names. e.g.,

class String {
/I various constructors, destructors,
/I and methods omitted
friend String operator+ (const String&, const char *);
friend String operator+ (const String&,const String&);
friend String operator+ (const char *, const String&);
friend ostream &operator<< (ostream &, const String &);

Vanderbilt University

ADTs in C++ Douglas C. Schmidt
Overloading (contd)

String str_vec[101];

String curly (“curly™);

String comma (", ");

str_vec[13] = "larry";

String foo = str_vec[13] + " , "+ curly”

String bar = foo + comma + "and moe";

[* bar.String::String (

operator+ (operator+ (foo, comma), "and moe")); */

void baz (void) {
cout << bar << "\n";
/I prints larry, curly, and moe

}

Vanderbilt University

ADTs in C++ Douglas C. Schmidt

Overloading (contd)

e Overloading becomes a hindrance to the readability of a program
when it serves to remove information

— This is especially true of overloading operators!
* e.g., overloading operators += and -= to mean push and pop
from a Stack ADT

e For another example of why to avoid operator overloading, consider
the following expression:

Matrix a, b, c, d;

n. ..

a=b+c*d; /] * + and = are overloaded

/I remember, standard precedence rules apply . . .

D

Vanderbilt University B’

ADTs in C++ Douglas C. Schmidt
Overloading (contd)

e This code will be compiled into something like the following:

Matrix t1 = c.operator* (d);
Matrix t2 b.operator+ (t1);
a.operator= (t2);

destroy t1;

destroy t2;

e This may involve many constructor/destructor calls and extra memory
copying . . .

Vanderbilt University

ADTs in C++ Douglas C. Schmidt
Overloading (contd)
e S0, do not use operator overloading unless necessary!

e Instead, many operations may be written using functions with explicit
arguments, e.g.,

Matrix b, c, d;
Matrix a (c);
a.mult (d);
a.add (b);

or define and use the short-hand operator x= instead,
= b + ¢ * d; canbe represented by:

Matrix a (c);
a*=d, a += b;

Vanderbilt University

ADTs in C++ Douglas C. Schmidt
Parameterized Types

e Parameterized types serve to describe general container class data
structures that have identical implementations, regardless of the
elements they are composed of

e The C++ parameterized type scheme allows “lazy instantiation”

— lLe., the compiler need not generate definitions for template
methods that are not used (or non-template methods)

e ANSI/ISO C++ allows a programmer to explicitly instantiate
parameterized types, e.g., template class Vector<int>;

Vanderbilt University

ADTs in C++ Douglas C. Schmidt

o C++ templateE %{%/m?tg rtl)zeelgs:er(y Qo) ra%]ett Plze functions. The

compiler generates all the necessary code!

template <class T> inline void

swap (T &x, T &y) {
Tt=x,xXx=yVy,y =

}

int main (int, char *]) {
int a =10, b =
double d = 10.0, e = 20.0;
char ¢ = 'a’, s = b

swap (a, b); swap (d, e); swap (c, s);
return O;

}

Vanderbilt University

ADTs in C++ Douglas C. Schmidt
Parameterized Types (cont'd)

C++ standard library provides standard containers, algorithms
iterators and functors. The library is generic in the sense that they
are heavily parameterized.

— Containers - e.x, vectors, list, map, queue etc.

— Algorithm - e.x, copy, sort, find, count etc.

— lterators - e.x, Input, Output, Forward, BiDirectional, Random
Access and Trivial

— Function Objects or Functors - e.x, plus, minus, multiplies etc.

They were called STL in earlier versions of C++

Vanderbilt University

ADTs in C++ Douglas C. Schmidt
Template Metaprograms

e Make the compiler act as an interpreter.
e Made possible by C++ template features.

e These programs need not be executed. They generate their output
at compile time.

template<int N> class Power2 {
public:
enum { value = 2 * Power2<N-1>:value }
h
class Power2<1> {
public:
enum { value = 2 };

h

[T
- %

D)

Vanderbilt University —

ADTs in C++ Douglas C. Schmidt
Template Metaprograms (cont'd)

Very powerful when combined with normal C++ code.
A hybrid approach would result in faster code.

Template metaprograms can be written for specific algorithms and
embedded in code.

Generates useful code for specific input sizes during compile times.

Basically, it is an extremely early binding mechanism as opposed to
traditional late binding used with C++.

Can torture your compiler, and not many compilers can handle this.

Vanderbilt University

ADTs in C++ Douglas C. Schmidt

Template Metaprograms (cont'd)
e A simple do while loop

template<int >

class loop {

private: enum { go = (I-1) = 0 };

public: static inline void f() {
/I Whatever needs to go here
loop<go ? (I-1) : 0>:f(); }

h

class loop<0> {

public:

static inline void f()

{}
J3

loop<N>::f();

Vanderbilt University

ADTs in C++ Douglas C. Schmidt
Iterators

e lterators allow applications to loop through elements of some ADT
without depending upon knowledge of its implementation details

e There are a number of different techniques for implementing iterators
— Each has advantages and disadvantages
e Other design issues:

— ‘Providing a copy of each data item vs. providing a reference to
each data item‘?

— ‘How to handle concurrency and insertion/deletion while iterator(s)
are running'

Vanderbilt University

ADTs in C++ Douglas C. Schmidt
Iterators (cont'd)

e |terators are central to generic programming

1. Pass a pointer to a function
— Notvery OO . . .
— Clumsy way to handle shared data . . .

2. Use in-class iterators (a.k.a. passive or internal iterators)
— Requires modification of class interface
— Generally not reentrant . . .

3. Use out-of-class iterators (a.k.a. active or external iterator)
— Handles multiple simultaneously active iterators
— May require special access to original class internals . . .
— le.,use friend s

Vanderbilt University

ADTs in C++ Douglas C. Schmidt
Iterators (cont'd)

e Three primary methods of designing iterators

1. Pass a pointer to a function
— Notvery OO . . .
— Clumsy way to handle shared data . . .

2. Use in-class iterators (a.k.a. passive or internal iterators)
— Requires modification of class interface
— Generally not reentrant . . .

3. Use out-of-class iterators (a.k.a. active or external iterator)
— Handles multiple simultaneously active iterators
— May require special access to original class internals . . .
— le., use friend s

Vanderbilt University

ADTs in C++ Douglas C. Schmidt

Pointer to Function Iterator Example

#include <stream.h>
template <class T>
class Vector {
public:

[* Same as before */

int apply (void (*ptf) (T &)) {

for (int i = 0; i < this->size (); i++)
(*pth) (this->buf(i]);

}
h

template <class T> void f (T &i) { cout << i << endl; }

Vector<int> v (100);
/1

v.apply (f);

Vanderbilt University

ADTs in C++ Douglas C. Schmidt
In-class Iterator Example
#include <stream.h>
template <class T>
class Vector {
public:
/I Same as before
void reset (void) {this->i_ = 0;}
int advance (void) {return this->i_++ < this->size ();}
T value (void) {return this->buf[this->i_ - 1];}
private:
size t i_;
h
Vector<int> v (100);
n. ..
for (v.reset (); v.advance () != 0;)
cout << "value = " << w.value () << "\n";

DR

¥

Vanderbilt University

ADTs in C++ Douglas C. Schmidt

Out-of-class Iterator Example
#include <stream.h>
#include "Vector.h"
template <class T> class Vector_lterator {
public:
Vector_Iterator(const Vector<T> &v) : vr_(v), i_(0) {}
int advance() {return this->i_++ < this->vr_.size();}
T value() {return this->vr_[this->i_ - 1];}
private:
Vector<T> &vr_;
size t i_;
h
Vector<int> v (100);
Vector_lterator<int> iter (v);
while (iter.advance () != 0)

cout << "value = " << iter.value () << "\n";

Vanderbilt University

ADTs in C++ Douglas C. Schmidt
Out-of-class Iterator Example (contd)

e Note, this particular scheme does not require that Vector_lterator be
declared as a friend of class Vector

— However, for efficiency reasons this is often necessary in more
complex ADTs

Vanderbilt University

ADTs in C++ Douglas C. Schmidt
Miscellaneous ADT Issues in C++

const methods
New (ANSI) casts
References

static methods

static data members

Vanderbilt University

ADTs in C++ Douglas C. Schmidt

Const Methods

e When a user-defined class object is declared as const, its methods
cannot be called unless they are declared to be const methods

— J.e., a const method must not modify its member data directly, or
indirectly by calling non-const methods

Vanderbilt University

ADTs in C++ Douglas C. Schmidt

Const Methods (contd)
e This allows read-only user-defined objects to function correctly, e.g.,

class Point {
public:
Point (int x, int y): x_ (X), y_ () {}
int dist (void) const {
return :sqrt (this->x_ * this->x_ + this->y_ *
this->y_); }
void move (int dx, int dy) { this->x_ += dx;
this->y_ += dy; }
private:
int x_, y_;
h
const Point p (10, 20); in
p.move (3, 5); // ERROR

p.dist (); // OK

e
Vanderbilt University E} g L

ADTs in C++ Douglas C. Schmidt

New (ANSI) casts

e static_cast performs a standard, nonpolymorphic cast
— unsigned int invalid = static_cast<unsigned int> (-1);
e const_cast removes const-ness

void Foo:func (void) const

{
/I Call a non-const member function from a
/I const member function. Often dangerous!!!!
const_cast<Foo *> (this)->func2 ();

}

Vanderbilt University

ADTs in C++ Douglas C. Schmidt

New (ANSI) casts, (contd)

e reinterpret_cast converts types, possibly in an implementation-
dependent manner

— long random = reinterpret_cast<long> (&func);
e dynamic_cast casts at run-time, using RTTI

void func (Base *bp) {
Derived *dp = dynamic_cast<Derived *> (bp);
if (dp)
/Il bp is a pointer to a Derived object

Vanderbilt University

ADTs in C++ Douglas C. Schmidt
References

e Parameters, return values, and variables can all be defined as
“references”

— This is primarily done for efficiency

e Call-by-reference can be used to avoid the run-time impact of passing
large arguments by value

Vanderbilt University

ADTs in C++ Douglas C. Schmidt
References (cont'd)

e References are implemented similarly to const pointers. Conceptually,
the differences between references and pointers are:

— Pointers are first class objects, references are not
*x e.g., you can have an array of pointers, but you can’t have an
array of references
— References must refer to an actual object, but pointers can refer to
lots of other things that aren’t objects, e.g.,
x Pointers can refer to the special value 0 in C++ (often referred to
as NULL)
x Also, pointers can legitimately refer to a location one past the
end of an array

e In general, use of references is safer, less ambiguous, and much
more restricted than pointers (this is both good and bad, of course)

Vanderbilt University

ADTs in C++ Douglas C. Schmidt
Static Data Members

e A static data member has exactly one instantiation for the entire class
(as opposed to one for each object in the class), e.g.,

class Foo {
public:
int a_;
private:
/I Must be defined exactly once outside header!
/I (usually in corresponding .C file)
static int s_;
h

Foo X, vy, z;

Vanderbilt University

ADTs in C++ Douglas C. Schmidt
Static Data Members (cont'd)

e Note:

— There are three distinct addresses for Foo::a , i.e., &.a_, &y.a_, &z.

— There is only one Foo::s , however . . .
e Also note:

&Foo0::s_ == (int *);
&Foo::a_ (int Foo::*); /I pointer to data member

Vanderbilt University

ADTs in C++ Douglas C. Schmidt

Static Methods

e A static method may be called on an object of a class, or on the class
itself without supplying an object (unlike non-static methods . . .)

e Note, there is no this pointer in a static method

Vanderbilt University

ADTs in C++ Douglas C. Schmidt

Static Methods (cont'd)
e j.e., a static method cannot access non-static class data and
functions

class Foo {
public:
static int get s1 (void) {
this->a_ = 10; /* ERROR! */; return Foo::s_;
}
int get s2 (void) {
this->a_ = 10; /* OK */; return Foo::s_;
1
private:
int a_;
static int s_;

J3

Vanderbilt University

ADTs in C++ Douglas C. Schmidt

Static Methods (cont'd)

e Most of the following calls are legal:

Foo f;

int i1, i2, i3, i4;

il = Foo::get sl ();

i f.get_s2 ();

i f.get_sl1 ();
Foo::get_s2 (); /I error

rON
o

Note:
&Foo:get_s1 == int (*)();

/I pointer to method
&Foo::get s2 == int (Foo::*)();

el He
Vanderbilt University E} E

ADTs in C++ Douglas C. Schmidt
Summary

e A major contribution of C++ is its support for defining abstract data
types (ADTs), e.g.,

— Classes
— Parameterized types

e For many systems, successfully utilizing C++'s ADT support is more
important than using the OO features of the language, e.g.,

— Inheritance
— Dynamic binding

Vanderbilt University

