
CS 342: Object-Oriented Software Development Lab

C++: An Overview

Shawn M. Hannan
Department of Computer Science
Washington University, St. Louis

hannan@cs.wustl.edu

http://classes.cec.wustl.edu/�cs342/

CS 342: OO Software Development Lab OO Programming with C++

C++ Overview

� What is C++?

� Origination and Evolution of C++

� Why Use C++?

� How Does C++ Differ from Java?

� C++ and Java Minimal Examples

� Compiling C++

Copyright c
1997-2001 Dept. of Computer Science, Washington University 1

CS 342: OO Software Development Lab OO Programming with C++

What is C++?

C++ is a general purpose programming language designed to
make programming more enjoyable for the serious programmer.

–Bjarne Stroustrup, The C++ Programming Language, First Edition

Copyright c
1997-2001 Dept. of Computer Science, Washington University 2

CS 342: OO Software Development Lab OO Programming with C++

What is C++ (cont’d)?

� Based on C

– Supports procedural programming paradigm
– Can link with compiled C code (and libraries)
– Portable (using preprocessor)

� Adds polymorphism

– Run-time (dynamic) binding of function calls

� Adds inheritance

– Reuse interfaces
– Reuse implementations

Copyright c
1997-2001 Dept. of Computer Science, Washington University 3

CS 342: OO Software Development Lab OO Programming with C++

What is C++ (cont’d)?

� Adds generic code (template class) support

� Adds exception handling

� Supports large-scale programming

– Separate compilation
– Namespaces
– Libraries (archives)

Copyright c
1997-2001 Dept. of Computer Science, Washington University 4

CS 342: OO Software Development Lab OO Programming with C++

Origination of C++

� Designed in early 1980’s by Bjarne Stroustrup of Bell Labs

� Backward compatible with C, as much as possible

– First “compiler”, cfront, actually translated C++ to C

� Improvements over C

– Stronger typechecking
– Supports data abstraction
– Supports object-oriented programming
– Supports generic programming

Copyright c
1997-2001 Dept. of Computer Science, Washington University 5

CS 342: OO Software Development Lab OO Programming with C++

Evolution of C++

� Added namespaces, exception handling, run-time type identification
(RTTI), improved templates, etc.

� Improved compilers

� Added Standard Template Library (STL) containers and algorithms

� Standardized by ANSI, DIN, BSI, ISO (ISO/IEC 14882)

Copyright c
1997-2001 Dept. of Computer Science, Washington University 6

CS 342: OO Software Development Lab OO Programming with C++

Why Use C++?

� To maximize execution speed

� To support reuse, with separation of interface and implementation

� To support data abstraction and dynamic binding

� For portability

� For backward source compatibility with C

� For link compatibility with C, Basic, Fortran, Ada, etc.

� To maximize execution speed

Copyright c
1997-2001 Dept. of Computer Science, Washington University 7

CS 342: OO Software Development Lab OO Programming with C++

How Does C++ Differ from Java?

� C++ programs run standalone; the Java interpreter loads and runs
any class with a main () method

� Can separate C++ class interface (header) from implementation
(definitions)

� C++ allows multiple inheritance of implementations

� C++ supports generic programming with template classes

� C+ memory must be managed by programmer; it does not provide
built-in garbage collection like Java

– C++ pointer variables access memory

� C++ passes arguments by value, by default

Copyright c
1997-2001 Dept. of Computer Science, Washington University 8

CS 342: OO Software Development Lab OO Programming with C++

How Does C++ Differ from Java? (cont’d)

� C++ arrays are not first class citizens

� C++ allows operator overloading

� C++ allows global variables, but they should be avoided

� C++ has a preprocessor; Java relies on the constrained language
definition for portability

� Built-in C++ types are implementation dependent

Copyright c
1997-2001 Dept. of Computer Science, Washington University 9

CS 342: OO Software Development Lab OO Progra

A Stack Example

// File Stack.h
typedef int T;
class Stack {
public:

Stack (size_t size);
Stack (const Stack &s);
void operator= (const Stack &s);
˜Stack (void);
void push (const T &item);
void pop (T &item);
int is_empty (void) const;
int is_full (void) const;
// ...

private:
size_t top_;
size_t size_;
T *stack_;

};

Copyright c
1997-2001 Dept. of Computer Science, Washington University

CS 342: OO Software Development Lab OO Progra

A Stack Example (cont’d)

� Manager operations

Stack::Stack (size_t size)
: top_ (0), size_ (size),

stack_ (new T[size]) {}

Stack::Stack (const Stack &s)
: top_ (s.top_), size_ (s.size_),

stack_ (new T[s.size_]) {
for (size_t i = 0 ; i < s.size_; i++)

this->stack_[i] = s.stack_[i];
}

void Stack::operator= (const Stack &s) {
if (this == &s) return;
delete [] this->stack_;
this->stack_ = new T[s.size_];
this->top_ = s.top_;
this->size_ = s.size_;
for (size_t i = 0 ; i < s.size_; i++)

this->stack_[i] = s.stack_[i];
}

Stack::˜Stack (void) {
delete [] this->stack_;

}

Copyright c
1997-2001 Dept. of Computer Science, Washington University

CS 342: OO Software Development Lab OO Progra

A Stack Example (cont’d)

� Accessor and worker operations

int Stack::is_empty (void) const {
return this->top_ == 0;

}

int Stack::is_full (void) const {
return this->top_ == this->size_;

}

void Stack::push (const T &item) {
this->stack_[this->top_++] = item;

}

void Stack::pop (T &item) {
item = this->stack_[--this->top_];

}

Copyright c
1997-2001 Dept. of Computer Science, Washington University

CS 342: OO Software Development Lab OO Progra

A Stack Example (cont’d)

� Use case

#include "Stack.h"
void foo (void) {

Stack s1 (1), s2 (100);
T item;

if (!s1.is_full ())
s1.push (473);

if (!s2.is_full ())
s2.push (2112);

if (!s2.is_empty ())
s2.pop (item);

// Access violation caught
// at compile-time!
s2.top_ = 10;

// Termination handled automatically
// via destructor.

}

Copyright c
1997-2001 Dept. of Computer Science, Washington University

CS 342: OO Software Development Lab OO Programming with C++

Benefits

1. Data hiding and data abstraction, e.g.,

Stack s1 (200);
s1.top_ = 10 // Error flagged by compiler!

2. The ability to declare multiple stack objects

Stack s1 (10), s2 (20), s3 (30);

3. Automatic initialization and termination

{
// Constructor automatically called.
Stack s1 (1000);
// ...
// Destructor automatically called

}

Copyright c
1997-2001 Dept. of Computer Science, Washington University 14

CS 342: OO Software Development Lab OO Programming with C++

Drawbacks

1. Error handling is obtrusive

� Use exception handling to solve this

2. The example is limited to a single type of stack element (int in this
case)

� We can use C++ templates to remove this limitation

3. Function call overhead

� We can use C++ inline functions to remove this overhead

Copyright c
1997-2001 Dept. of Computer Science, Washington University 15

CS 342: OO Software Development Lab OO Progra

Template Implementation in C++

� A parameterized type Stack class interface using
C++

// typedef int T;
template <class T>
class Stack {
public:

Stack (size_t size);
˜Stack (void)
void push (const T &item);
void pop (T &item);
int is_empty (void);
int is_full (void);
// ...

private:
size_t top_;
size_t size_;
T *stack_;

};

Copyright c
1997-2001 Dept. of Computer Science, Washington University

CS 342: OO Software Development Lab OO Progra

Template Implementation in C++
(cont’d)

� A parameterized type Stack class implementation
using C++

template <class T> inline
Stack<T>::Stack (size_t size)

: top_ (0), size_ (size),
stack_ (new T[size]) { }

template <class T> inline
Stack<T>::˜Stack (void) {

delete [] this->stack_;
}

template <class T> inline void
Stack<T>::push (const T &item) {

this->stack_[this->top_++] = item;
}

template <class T> inline void
Stack<T>::pop (T &item) {

item = this->stack_[--this->top_];
}

Copyright c
1997-2001 Dept. of Computer Science, Washington University

CS 342: OO Software Development Lab OO Programming with C++

Template Implementation in C++ (cont’d)

� Note the minor changes to the code to accommodate parameterized
types

#include "Stack.h"

void foo (void)
{

Stack<int> s1(1000);
Stack<float> s2(100);

s1.push(-291);
s2.push(3.1416);

}

Copyright c
1997-2001 Dept. of Computer Science, Washington University 18

CS 342: OO Software Development Lab OO Progra

Template Implementation in C++
(cont’d)

� Another parameterized type Stack class

template <class T, size_t SIZE>
class Stack {
public:

Stack (void);
˜Stack (void)
void push (const T &item);
void pop (T &item);
// ...

private:
size_t top_;
size_t size_;
T stack_[SIZE];

};

� To use:

Stack<int, 200> s1;

Copyright c
1997-2001 Dept. of Computer Science, Washington University

CS 342: OO Software Development Lab OO Programming with C++

C++ Object-Oriented Features

� C++ provides three characteristics generally associated with object-
oriented programming:

– Data Abstraction

� Package a class abstraction so that only the public interface is
visible and the implementation details are hidden from clients

� Allow parameterization based on type
– Single and Multiple Inheritance

� A derived class inherits operations and attributes from one
or more base classes, possibly providing additional operations
and/or attributes

Copyright c
1997-2001 Dept. of Computer Science, Washington University 20

CS 342: OO Software Development Lab OO Programming with C++

C++ Object-Oriented Features (cont’d)

� Dynamic Binding

– The actual type of an object (and thereby its associated
operations) need not be fully known until run-time

– Compare with C++ template feature, which is handled at
compile-time

� C++’s object-oriented features encourage designs that

1. Explicitly distinguish general properties of related concepts from
2. Specific details of particular instantiations of these concepts

� e.g., an object-oriented graphical shapes library design using
inheritance and dynamic binding

� This approach facilitates extensibility and reusability

Copyright c
1997-2001 Dept. of Computer Science, Washington University 21

CS 342: OO Software Development Lab OO Programming with C++

Inheritance Preview

� A type can inherit or derive the characteristics of another base type.
These derived types act just like the base type, except for an explicit
list of:

1. Operations that are implemented differently, i.e., overridden
2. Additional operations and extra data members
3. Modified method access privileges

� C++ supports both single and multiple inheritance, e.g.,

class X { /* . . . */ };
class Y : public X { /* . . . */ };
class Z : public X { /* . . . */ };
class YZ : public Y, public Z { /* . . . */ };

Copyright c
1997-2001 Dept. of Computer Science, Washington University 22

CS 342: OO Software Development Lab OO Programming with C++

Dynamic Binding Preview

� Dynamic binding is a mechanism used along with inheritance to
support a form of polymorphism

� C++ uses virtual functions to implement dynamic binding:

– The actual method called at run-time depends on the class of the
object used when invoking the virtual method

� C++ allows the class definer the choice of whether to make a method
virtual or not

– This leads to time/space performance vs. flexibility tradeoffs

� Depending on the compiler, virtual methods may introduce a
small amount of overhead for each virtual function call

Copyright c
1997-2001 Dept. of Computer Science, Washington University 23

CS 342: OO Software Development Lab OO Progra

Dynamic Binding Preview (cont’d)
class X { // Base class
public:

// Non-virtual
int m (void) {cout << "X::m";}
// Virtual
virtual int vm (void) {cout << "X::vm";}

};
class Y : public X { // Derived class
public:

// Non-virtual
int m (void) {cout << "Y::m";}
// Virtual
virtual int vm (void) {cout << "Y::vm";}

};

void foo (X *x) {
x->m (); %// direct call: _m_1X (x);
x->vm (); %// indirect call: (*x->vptr[1])

}

int main (int, char *[]) {
X x; Y y;
foo (&x); // X::m, X::vm
foo (&y); // X::m, Y::vm

}

Copyright c
1997-2001 Dept. of Computer Science, Washington University

CS 342: OO Software Development Lab OO Programming with C++

Object-Oriented Implementation in C++

� Defining an abstract base class in C++

template <class T>
class Stack
{
public:

virtual void push (const T &item) = 0;
virtual void pop (T &item) = 0;
virtual int is_empty (void) const = 0;
virtual int is_full (void) const = 0;
// Template method
void top (T &item) {

this->pop (item);
this->push (item);

}
};

� By using “pure virtual methods,” we can guarantee that the compiler
won’t allow instantiation!

Copyright c
1997-2001 Dept. of Computer Science, Washington University 25

CS 342: OO Software Development Lab OO Progra

Object-Oriented Implementation in C++
(cont’d)

� Use interface inheritance to create a specialized
(i.e., bounded) version of a stack:

#include "Stack.h"
#include "Array.h"

template <class T>
class B_Stack : public Stack<T>
{
public:

B_Stack (size_t size = 100);
virtual void push (const T &item);
virtual void pop (T &item);
virtual int is_empty (void) const;
virtual int is_full (void) const;
// ...

private:
Array<T> stack_; // user-defined
size_t top_; // built-in

};

Copyright c
1997-2001 Dept. of Computer Science, Washington University

CS 342: OO Software Development Lab OO Progra

Object-Oriented Implementation in C++
(cont’d)

� class B Stack implementation

template <class T>
B_Stack<T>::B_Stack (size_t size)

: top_ (0), stack_ (size) {
}

template <class T> void
B_Stack<T>::push (const T &item) {

this->stack_.set (this->top_++, item);
}

template <class T> void
B_Stack<T>::pop (T &item) {

this->stack_.get (--this->top_, item);
}

template <class T> int
B_Stack<T>::is_full (void) const {

return this->top_ >= this->stack_.size ();
}

Copyright c
1997-2001 Dept. of Computer Science, Washington University

CS 342: OO Software Development Lab OO Progra

Object-Oriented Implementation in C++
(cont’d)

� Likewise, interface inheritance can create a
totally different “unbounded” implementation:

// Forward declaration.
template <class T> class Node;
template <class T>
class UB_Stack : public Stack<T>
{
public:

UB_Stack (size_t hint = 100);
˜UB_Stack (void);
virtual void push (const T &new_item);
virtual void pop (T &top_item);
virtual int is_empty (void) const {

return this->head_ == 0;
}
virtual int is_full (void) const { return 0; }
// ...

private:
// Head of linked list of Node<T>’s.
Node<T> *head_;

};

Copyright c
1997-2001 Dept. of Computer Science, Washington University

CS 342: OO Software Development Lab OO Programming with C++

Object-Oriented Implementation in C++ (cont’d)

� class Node implementation

template <class T>
class Node {
friend template <class T> class UB_Stack;
public:

Node (T i, Node<T> *n = 0)
: item_ (i), next_ (n) {}

private:
T item_;
Node<T> *next_;

};

Copyright c
1997-2001 Dept. of Computer Science, Washington University 29

CS 342: OO Software Development Lab OO Progra

Object-Oriented Implementation in C++
(cont’d)

� Class UB Stack implementation:

template <class T>
UB_Stack<T>::UB_Stack (size_t hint): head_ (0) {}

template <class T> void
UB_Stack<T>::push (const T &item) {

Node<T> *t = new Node<T> (item, this->head_);
assert (t != 0);
this->head_ = t;

}

template <class T> void
UB_Stack<T>::pop (T &top_item) {

top_item = this->head_->item_;
Node<T> *t = this->head_;
this->head_ = this->head_->next_;
delete t;

}

template <class T>
UB_Stack<T>::˜UB_Stack (void) {

// delete all Nodes...
for (T t; this->head_ != 0; this->pop (t))

continue;
}

Copyright c
1997-2001 Dept. of Computer Science, Washington University

CS 342: OO Software Development Lab OO Programming with C++

Function and Operator Overloading
Two or more functions or operators may be given the same name
provided the type signatures are unique.

double square (double);
Complex square (const Complex &);
void move (int);
void move (int, int);

A function’s return type is not considered when distinguishing between
overloaded instances

� e.g., the following declarations are ambiguous:

double operator/ (const Complex &, const Complex &);
complex operator/ (const Complex &, const Complex &);

Copyright c
1997-2001 Dept. of Computer Science, Washington University 31

CS 342: OO Software Development Lab OO Programming with C++

C++ Classes

� The class is the basic data abstraction unit in C++

� The class mechanism facilitates the creation of user-defined Abstract
Data Types (ADTs)

– A class declarator defines a type comprised of data members, as
well as method operators

� Data members may be either built-in or user-defined
– Classes are “cookie cutters” used to define objects

� a.k.a. instances

Copyright c
1997-2001 Dept. of Computer Science, Washington University 32

CS 342: OO Software Development Lab OO Programming with C++

C++ Classes (cont’d)

� For efficiency and C compatibility reasons, C++ has two type systems

1. One for built-in types, e.g., int , float , char , double , etc.
2. One for user-defined types, e.g., class es, struct s, union s,

enums, etc.

� Note that constructors, overloading, inheritance, and dynamic
binding only apply to user-defined types

– This minimizes surprises, but is rather cumbersome to document
and explain . . .

Copyright c
1997-2001 Dept. of Computer Science, Washington University 33

CS 342: OO Software Development Lab OO Programming with C++

C++ Classes (cont’d)

� General characteristics of C++ classes:

– Any number of class objects may be defined

� i.e., objects, which have identity, state, and behavior
– Class objects may be dynamically allocated and deallocated
– Passing class objects, pointers to class objects, and references to

class objects as parameters to functions are legal
– Vectors of class objects may be defined

� A class serves the same purpose as a Java class , and a similar
purpose to a C struct

Copyright c
1997-2001 Dept. of Computer Science, Washington University 34

CS 342: OO Software Development Lab OO Progra

Class Vector Example

� There are several significant limitations with built-
in C and C++ arrays, e.g.,

– The size must be a compile-time constant,
e.g.,
void foo (int i) {

int a[100], b[100]; // OK
int c[i]; // Error!

}

– Array size cannot vary at run-time
– Legal array bounds run from 0 to size - 1
– No range checking performed at run-time, e.g.,

int a[10], i;
for (i = 0; i <= 10; i++)

a[i] = 0;

– Cannot perform full array assignments, e.g.,
a = b; // Error!

Copyright c
1997-2001 Dept. of Computer Science, Washington University

CS 342: OO Software Development Lab OO Progra

Class Vector Interface

// File Vector.h
#ifndef VECTOR_H
#define VECTOR_H

typedef int T;
class Vector {
public:

Vector (size_t len = 100);
˜Vector (void);
size_t size (void) const;

bool set (size_t i, const T &item);
bool get (size_t i, T &item) const;

private:
size_t size_;
T *buf_;
bool in_range (size_t i) const;

};
#endif /* VECTOR_H */

Copyright c
1997-2001 Dept. of Computer Science, Washington University

CS 342: OO Software Development Lab OO Progra

Class Vector Implementation
// File Vector.cpp.
#include ‘‘Vector.h’’

bool Vector::in_range (size_t i) const
{

return i < this->size ();
}

bool Vector::set (size_t i, const T &item) {
if (this->in_range (i)) {

this->buf_[i] = item;
return true;

}
else return false;

}

bool Vector::get (size_t i, T &item) const {
if (this->in_range (i)) {

item = this->buf_[i];
return true;

}
else return false;

}

Copyright c
1997-2001 Dept. of Computer Science, Washington University

CS 342: OO Software Development Lab OO Progra

Class Vector (Attempted) Usage

// File test.cpp
#include ‘‘Vector.h’’
void foo (size_t size) {

// Call constructor
Vector user_vec (size);
// Error, no dynamic range
int c_vec[size];

c_vec[0] = 0;
user_vec.set (0, 0);

for (size_t i = 1;
i < user_vec.size ();
i++) {

int t;
user_vec.get (i - 1, t);
user_vec.set (i, t + 1);
c_vec[i] = c_vec[i - 1] + 1;

}

Copyright c
1997-2001 Dept. of Computer Science, Washington University

CS 342: OO Software Development Lab OO Programming with C++

Class Vector (Attempted) Usage (cont’d)

// Error, private and protected data inaccessible
size = user_vec.size_ - 1;
user_vec.buf_[size] = 100;

// Run-time error, index out of range
if (user_vec.set (user_vec.size (), 1000) == false)

cout << ‘‘range error’’ << endl;

// Index out of range not detected at runtime!
c_vec[size] = 1000;

// Destructor called when user_vec leaves scope
}

Copyright c
1997-2001 Dept. of Computer Science, Washington University 39

CS 342: OO Software Development Lab OO Programming with C++

C++ Objects

� A C++ object is an instance of a class (or any other C++ type for
that matter . . .)

� An object can be instantiated or disposed either implicitly or explicitly,
depending on its life-time

� The life-time of a C++ object is either static, automatic, or dynamic

– C++ refers to this as the storage class of an object

Copyright c
1997-2001 Dept. of Computer Science, Washington University 40

CS 342: OO Software Development Lab OO Programming with C++

C++ Objects (cont’d)

� Life-time or storage class:

1. Static
– i.e., it lives throughout life-time of process
– static can be used for local, global, or class-specific objects

(note, their scope is different)
2. Automatic

– i.e., it lives only during function invocation, on the run-time stack
3. Dynamic

– i.e., it lives between corresponding calls to operators new and
delete

– Dynamic objects often have life-times that extend beyond the
existence of the functions that create them

Copyright c
1997-2001 Dept. of Computer Science, Washington University 41

CS 342: OO Software Development Lab OO Programming with C++

C++ Objects (cont’d)

Uninitialized

Global Data

Initialized

Global Data

Text

Stack

Heap

Automatic

Variables

Dynamic

Variables

Static

Variables

High

Addresses

Low

Addresses

Read-Only

Code and

Data

� Typical layout of memory objects in the process address space

Copyright c
1997-2001 Dept. of Computer Science, Washington University 42

CS 342: OO Software Development Lab OO Programming with C++

C++ Objects (cont’d)

� Most C++ implementations do not support automatic garbage
collection of dynamically allocated objects

– In garbage collection schemes, the run-time system is responsible
for detecting and deallocating unused dynamic memory

– Note, it is very difficult to implement garbage collection correctly in
C++ due to pointers and unions

� Therefore, programmers must explicitly deallocate objects when they
want them to go away

– C++ constructors and destructors are useful for automating certain
types of memory management . . .

Copyright c
1997-2001 Dept. of Computer Science, Washington University 43

CS 342: OO Software Development Lab OO Programming with C++

C++ Comments

� C++ allows two commenting styles:

1. The traditional C bracketed comments, which may extend over any
number of lines, e.g., /* This is a multi-line C++ comment */

2. The “continue until end-of-line” comment style, e.g., // This is a
single-line C++ or Java comment

� C-style comments do not nest. However, C++ and C styles nest, so
it is possible to comment out code containing other comments, e.g.,

/* assert (i < size) // check index range */
// if (i != 0 /* check for zero divide */ && 10 / i)

Copyright c
1997-2001 Dept. of Computer Science, Washington University 44

CS 342: OO Software Development Lab OO Programming with C++

Const Type Qualifier

� C++ data objects and methods are qualifiable with the keyword
const , making them act as read-only objects

– e.g., placing them in the text segment
– const only applies to objects, not to types

� Examples

– const int max_age = 100;
– const char question = ’y’;

Copyright c
1997-2001 Dept. of Computer Science, Washington University 45

CS 342: OO Software Development Lab OO Programming with C++

Const Type Qualifier (cont’d)

� User-defined const data objects:

– A const qualifier can also be applied to an object of a user-defined
type, e.g.,
const String string_constant (‘‘Hi, I’m read-only!’’);
const Complex complex_zero (0.0, 0.0);
string_constant = "This will not work!"; // ERROR
complex_zero += Complex (1.0); // ERROR
%complex_zero == Complex (0.0); // OK

� Ensuring const correctness is an important aspect of designing C++
interfaces, e.g.,

1. It ensures that const objects may be passed as parameters
2. It ensures that data members are not accidentally corrupted

Copyright c
1997-2001 Dept. of Computer Science, Washington University 46

CS 342: OO Software Development Lab OO Programming with C++

Const Type Qualifier (cont’d)

� const methods of a user-defined object are read-only, e.g.,
class String {
public:

size_t size (void) const { return this->len_; }
void set (size_t index, char new_char);

private:
char *array_;
size_t len_;

};

const String string_constant (‘‘Read-only’’);
cout << string_constant.size (); // Fine

� Can’t call a non-const function with a const object
string_constant.set (1, ’c’); // Error

Copyright c
1997-2001 Dept. of Computer Science, Washington University 47

CS 342: OO Software Development Lab OO Programming with C++

Stream I/O

� C++ extends standard C library I/O with stream and iostream classes

� Several goals

1. Type-Security
– Reduce type errors for I/O on built-in and user-defined types

2. Extensibility (both above and below)
– Allow user-defined types to interoperate syntactically with

existing printing facilities
– Contrast with printf/scanf -family
– Transparently add new underlying I/O devices to the iostream

model
– i.e., share higher-level formatting operations

Copyright c
1997-2001 Dept. of Computer Science, Washington University 48

CS 342: OO Software Development Lab OO Programming with C++

Boolean Type

� C++ has a bool built-in type

– The bool values are called true and false
– Converting numeric or pointer type to bool takes 0 to false and

anything else to true
– bool promotes to int , taking false to 0 and true to 1
– All operators that conceptually return truth values return bool

� e.g., the operands of
&& || !

Copyright c
1997-2001 Dept. of Computer Science, Washington University 49

CS 342: OO Software Development Lab OO Programming with C++

Type Cast Syntax

� C++ introduces a new type cast syntax in addition to Classic C style
casts. This function-call syntax resembles the type conversion syntax
in Ada and Java, e.g.,

// function prototype from math.h library
double log10 (double param);

/* C style type cast notation */
if ((int) log10 ((double) 7734) != 0);

// C++ function-style cast notation
if (int (log10 (double (7734))) != 7734);

� This “function call” is performed at compile time

Copyright c
1997-2001 Dept. of Computer Science, Washington University 50

CS 342: OO Software Development Lab OO Programming with C++

Default Parameters

� C++ allows default argument values in function definitions

– If trailing arguments are omitted in the actual function call these
values are used by default, e.g.,
void assign_grade (const char *name,

const char *grade = ‘‘A’’);

assign_grade (‘‘Bjarne Stroustrup’’, ‘‘C++’’);
// Bjarne needs to work harder on his tasks

assign_grade (‘‘Jean Ichbiah’’);
// Jean gets an A for Ada!

� Default arguments are useful in situations when one must change a
class without affecting existing source code

– e.g., add new params at end of argument list (with default values)

Copyright c
1997-2001 Dept. of Computer Science, Washington University 51

CS 342: OO Software Development Lab OO Programming with C++

Default Parameters (cont’d)

� Default parameter passing semantics are similar to those in
languages like Java:

– e.g., only trailing arguments may have defaults
// Incorrect
int x (int a = 10, char b, double c = 10.1);

– Note, there is no support for named parameter passing

� However, it is not possible to omit arguments in the middle of a call,
e.g.,
int foo (int = 10, double = 2.03, char = ’c’);

foo (100, , ’d’); /* ERROR!!! */
foo (1000); /* OK, calls foo (1000, 2.03, ’c’);

� There are several arcane rules that permit successive redeclarations
of a function, each time adding new default arguments

Copyright c
1997-2001 Dept. of Computer Science, Washington University 52

CS 342: OO Software Development Lab OO Programming with C++

Declaration Statements

� C++ allows variable declarations to occur anywhere statements occur
within a block

– The motivations for this feature are:
1. To localize temporary and index variables
2. Ensure proper initialization

– This feature helps prevent problems like:
int i, j;
/* many lines of code . . . */
// Oops, forgot to initialize!
while (i < j) /* . . . */;

– Instead, you can use the following
for (int i = x, j = y ; i < j;)

/* . . . */;

Copyright c
1997-2001 Dept. of Computer Science, Washington University 53

