
Object-Oriented Network

Programming

Writing CORBA Applications

Dr. Douglas C. Schmidt

schmidt@cs.wustl.edu

1

Introduction

� CORBA addresses two challenges of devel-
oping distributed systems:

1. Making distributed application development no more

di�cult than developing centralized programs

{ Easier said than done due to:

. Partial failures

. Impact of latency

. Load balancing

. Event ordering

2. Providing an infrastructure to integrate application

components into a distributed system

{ i.e., CORBA is an \enabling technology"

2

General ORB structure

CLIENT
OBJECT

IMPL

DYNAMIC

INVOCATION

INTERRFACE

IDL
STUBS

ORB
INTERFACE

IDL
SKELETON

OBJECT

ADAPTER

OBJECT

REQUEST BROKER

op(args)

� Note that an ORB is a logical set of ser-

vices, rather than just a particular process

or library

3

CORBA Interface De�nition

Language (IDL)

� OMG IDL is an object-oriented interface
de�nition language

{ Used to specify interfaces containing methods and

attributes

{ OMG IDL support interface inheritance (both sin-

gle and multiple inheritance)

� OMG IDL is designed to map onto multiple
programming languages

{ e.g., C, C++, Smalltalk, COBOL, Modula 3, DCE,

etc.

4

OMG IDL Compiler

� A OMG IDL compiler generates client stubs

and server skeletons

� Stubs and skeletons automate the following
activities (in conjunction with the ORB):

{ Client proxy factories

{ Parameter marshalling/demarshalling

{ Implementation class interface generation

{ Object registration and activation

{ Object location and binding

{ Per-object/per-process �lters

5

OMG IDL Features

� OMG IDL is a superset of a subset of C++

{ Note, it is not a complete programming language,

it only de�nes interfaces

� OMG IDL supports the following features:

* modules

* interfaces

* methods

* attributes

* inheritance

* arrays

* sequence

* struct, enum, union, typedef

* consts

* exceptions

6

OMG IDL vs. C++

� Di�erences from C++

* No data members

* No pointers

* No constructors or destructors

* No overloaded methods

* No int data type

* Contains parameter passing modes

* Unions require a tag

* String type

* Sequence type

* Di�erent exception interface

* No templates

* No control constructs

7

A Sample CORBA Application

SERVER LOGGER

NETWORK

DATABASE

SERVER

CLIENT

Logger

Object

PRINTER

Logger

Proxy

Client

App. 1: log()

2: send

request

� Distributed logging facility

8

Behavior of the Distributed

Logging Facility

� The logging server collects, formats, and

outputs logging records forwarded from ap-

plications residing throughout a network or

internetwork

� An application interacts with the server log-

ger via a CORBA interface

9

Server-side OMG IDL

Speci�cation

� De�nes the interface of the Logger

// IDL specification
interface Logger
{

// Types of logging messages
enum Log_Priority {

LOG_DEBUG, // Debugging messages
LOG_WARNING, // Warning messages
LOG_ERROR, // Errors
LOG_EMERG // A panic condition, normally broadcast

};

exception Disconnected { };

struct Log_Record {
Log_Priority type; // Type of logging record.
long host_addr; // IP address of the sender.
long time; // Time logging record generated.
long pid; // Process ID of app. generating the record.
sequence<char> msg_data; // Logging record data.

};

// Transmit a Log_Record to the logging server
void log (in Log_Record log_rec) raises (Disconnected);

attribute boolean verbose; // Use verbose formatting
};

10

OMG IDL Mapping Rules

� The CORBA speci�cation de�nes mappings
from CORBA IDL to various programming
languages

{ e.g., C++, C, Smalltalk

� Mapping OMG IDL to C++

{ Each interface is mapped to a nested C++ class

{ Each operation is mapped to a C++ method with

appropriate parameters

{ Each read/write attribute is mapped to a pair of

get/set methods

. A read-only attribute is only mapped to a single

get method

11

Creating Server-side

Implementations

� Running the Logger interface de�nition through
the IDL compiler generates a client stub and
a server skeleton

{ The client stub acts as a proxy and handles object

binding and parameter marshalling

{ The server skeleton handles object registration,

activation, and parameter demarshalling

� CORBA de�nes two techniques for gener-
ating server skeletons:

1. Inheritance-based implementations (e.g., Orbix BOAImpl)

2. Object composition-based implemenations (e.g.,

Orbix TIE)

12

Inheritance-based

Implementations

� In Orbix, inheritance-based implementations
are supported by the BOAImpl approach:

{ The drawback with this approach is that the imple-

mentation must inherit from the generated skele-

ton

class Logger_i

// Note the use of inheritance from automatically

// generated class LoggerBOAImpl

: public virtual LoggerBOAImpl

{

public:

Logger_i (bool verb): verbose_ (verb) {}

virtual void log (const Log_Record &log_rec,

CORBA::Environment &);

virtual bool verbose (void,

CORBA::Environment &);

virtual void verbose (bool enable,

CORBA::Environment &);

private:

bool verbose_;

};

13

Object Composition-based

Implementations

� In Orbix, object composition-based imple-

mentations are supported by the TIE ap-

proach:

// Note, there is no use of inheritance and

// methods need not be virtual!

class Logger_i

{

public:

// Start with verbose mode enabled.

Logger_i (bool verb = true): verbose_ (verb) {}

void log (const Log_Record &log_rec,

CORBA::Environment &);

bool verbose (void,

CORBA::Environment &);

void verbose (bool enable,

CORBA::Environment &);

private:

bool verbose_;

};

14

Object Composition-based

Implementations (cont'd)

� Orbix provides a set of macros that tie the

Logger interface together with the Logger i

implementation

DEF_TIE (Logger, Logger_i);

Logger_i *log = new Logger_i;

Logger *logger = new TIE (Logger, Logger_i) (log);

� This scheme works by placing a pointer to

the implementation object within the TIE

class and then delegating method calls to

the implementation object

15

Writing the Server-side Method

De�nitions

� Using either the BOAImpl or the TIE ap-

proach, a developer then writes C++ de�-

nitions for the methods in class Logger i:

void Logger_i::log (const Log_Record &log_rec,

CORBA::Environment &)

{

// Formatting and outputting the contents

// of log_rec omitted...

}

bool Logger_i::verbose (void,

CORBA::Environment &);

{

return this->verbose_;

}

void Logger_i::verbose (bool enabled,

CORBA::Environment &);

{

this->verbose_ = enabled;

}

16

Writing Main Server Program

� The main program for the logging server

looks like:

// Shared activation

int

main (void)

{

// BOAImpl instance.

Logger_i logger ();

try {

// Will block forever waiting for incoming

// invocations and dispatching method callbacks

CORBA::Orbix.impl_is_ready ("Logger");

} catch (...) {

cerr << "server failed\n";

return 1;

}

cout << "server terminating\n";

return 0;

}

17

Exception Handling

� The preceeding example illustrated how CORBA
uses C++ exception handling to propagate
errors.

{ However, many C++ compilers don't support ex-

ceptions yet

{ Therefore, CORBA implementations provide an

alternative mechanism for handling errors

// Shared activation
int main (void) {

// Start with verbose mode enabled
Logger_i logger (true);

TRY {
// Will block forever waiting for incoming
// invocations and dispatching method callbacks
CORBA::Orbix.impl_is_ready ("logger", IT_X);

} CATCHANY {
cerr << "server failed due to " << IT_X << endl;

} ENDTRY;
cout << "server terminating\n";
return 0;

}

18

Object Activation

� If the service isn't running when a client in-

vokes a method on an object it manages,

the ORB will automatically start the service

� Services must be registered with the ORB,
e.g.,

% putit Logger /usr/svcs/Logger/logger.exe

� Service(s) may be installed on any machine

� Clients may bind to a service by using a

location broker or by explicitly naming the

server

19

Generated Client-side Stubs

� The OMG IDL compiler automatically gen-

erates a client-side stub used to de�ne \proxy

objects," e.g.,

typedef Logger *LoggerRef; // Generated by Orbix

class Logger

// Base class for all IDL interfaces...

: public virtual CORBA::Object

{

public:

static Logger *_bind (/* Many binding formats */);

virtual void log (const Log_Record &log_rec,

CORBA::Environment &);

virtual void verbose (bool enabled,

CORBA::Environment &);

virtual bool verbose (void,

CORBA::Environment &);

};

20

Binding a Client to a Target

Object

� Steps for binding a client to a target object

1. A CORBA client (requestor) obtains an \object

reference" from a server

{ May use a name service or locator service

2. This object reference serves as a local proxy for

the remote target object

{ Object references may be passed as parameters

to other remote objects

3. The client may then invoke methods on its proxy

21

Client-side Example

� A client programmer writes the following:

int

main (void)

{

LoggerRef logger;

Log_Record log_rec;

logger = Logger::_bind (); // Bind to any logger.

// Initialize the log_record

log_rec.type = Logger::LOG_DEBUG;

log_rec.time = ::time (0);

log_rec.host_addr = // ...

// ...

try {

logger->verbose (false); // Disable verbose logging.

logger->log (log_rec); // Xmit logging record.

}

catch (Logger::Disconnected) {

cerr << "logger disconnected" << endl;

}

catch (...) { /* ... */ }

return 0;

}

22

Summary

� CORBA helps to reduce the complexity of
developing distributed applications

{ However, there are many hard issues remaining: : :

� Other OMG documents (e.g., COSS) spec-
ify higher level

{ e.g., transactions, events, naming, security, etc.

23

