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Abstract

In an increasingnumberof application domains,dispatch-
ing componentsare responsiblefor deliveringupcallsto one
or more application objectswheneventsor requestsarrive
in a system. Implementingefficient, predictable, and scal-
able dispatching componentsis hard and implementingthem
for multi-threadedsystemsis evenharder. In particular, dis-
patching componentsmustbe prepared to deliver upcalls to
multipleobjects,to handlerecursiverequestsoriginatedfrom
application-providedupcalls,andoftenmustcollaboratewith
applicationsto control objectlife-cycles.

In our distributedobjectcomputing(DOC) middleware re-
search, we haveimplementedmanydispatching components
that apply commonsolutions repeatedlyto solve the chal-
lenges outlined above. Moreover, we have discovered that
the forces constraining dispatching componentsoften differ
slightly, therebyrequiringalternativesolutionstrategies.This
paperpresentstwo contributionsto thedesignandimplemen-
tation of efficient,predictable, scalable, andflexible dispatch-
ing components. First, it showshow patternscan be ap-
plied to capture key designand performancecharacteristics
of provendispatching components.Second,it presentsa set
of patternsthat describesuccessfulsolutionsappropriate for
key dispatching challengesarising in variousreal-timeDOC
middlewareandapplications.

Keywords: Frameworks;DesignPatterns;Real-Time Dis-
tributedObjectComputing

1 Intr oduction

Dispatchingcomponentsarea corefeatureof many systems
suchasdistributedobjectcomputing(DOC) middleware.For
instance,thedispatchingcomponentsin aCORBA ObjectRe-
questBroker (ORB) areresponsiblefor delivering incoming
client eventsor requeststo other (1) ORB componentsand
�
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(2) the application-level objectsthat implementapplication-
definedbehavior. In general,dispatchingcomponentsmust
handleavarietyof tasks,suchas(1) dispatchmultiplerequests
simultaneously, (2) handlingrecursivedispatchesfrom within
application-providedupcalls,(3) dispatchingthe sameupcall
to multiple objectsefficiently, and (4) addingand removing
objectsin dispatchingtableswhile upcallsarein progress.

Thispaperpresentsafamily of relatedpatternsthatwehave
usedto develop efficient, predictable,andscalabledispatch-
ing componentsin a varietyof applicationdomains,anexam-
ple of which is shown in Figure 1. Thesedomainsinclude
the TAO Real-Time CORBA [1] ORB [2], real-timeavion-
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Figure1: Multiple dispatchingcomponentsin DOC middle-
ware

ics missioncomputingwith strict periodicdead-linerequire-
ments[3], and distributed interactive simulationswith high
scalabilityrequirements[4]. In addition,variousdispatching-
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orientedframework components,suchasReactors[5], Proac-
tors [6], Observers [7], and Model-View-Controllers[8] are
implementedusingthesepatterns.

The remainderof this paperis organizedasfollows: Sec-
tion 2 describesthecontext in which dispatchingcomponents
areusedandidentifiescommonrequirementsfor several typ-
ical use-cases;Section3 presentsthe patternsusedto imple-
mentefficient, predictable,scalable,andflexible dispatching
componentsfor bothsingleandmultipletargets;andSection4
presentsconcludingremarks.

2 An Overview of DispatchingCompo-
nentsand Patterns

Thissectionsummarizesthefunctionalityandrequirementsof
two commonuse-casesthatillustratethechallengesassociated
with developingdispatchingcomponents.Thefirst exampleis
theObjectAdapter[9] componentin a standardCORBA [10]
ORB. The secondexampleis a Event Channelin a standard
CORBA EventService[11].

Object Adapter dispatching components: The core re-
sponsibilitiesof a CORBA Object Adapter include (1) gen-
eratingidentifiersfor objectsthat areexportedto clientsand
(2) mappingsubsequentclient requeststo theappropriateob-
ject implementations,which CORBA callsservants. Figure2
illustratesthegeneralstructureandinteractionsof a CORBA
ObjectAdapter.
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Figure2: ObjectAdapterStructureandInteractions

In addition to its core responsibilities,a CORBA Object

Adapter must handlethe following situationscorrectly, ro-
bustly, andefficiently:

e Non-existentobjects: Clientsmay invoke requestson
“stale” identifiers,i.e., on objectsthat have beendeactivated
from the Object Adapter. In this case,the Object Adapter
should not use the stale object becauseit may have been
deletedby the application. Instead,it mustpropagatean ap-
propriateexceptionbackto theclient.

e Unusual object activation/deactivation use-cases:
ObjectAdaptersareresponsiblefor activating anddeactivat-
ing objectson-demand.Moreover, server applicationobjects
can activate or deactivateother objectsin responseto client
requests.An objectcanevendeactivateitself while in its own
upcall,e.g., if therequestis a “shut yourselfdown” message.

e Multi-thr eading hazards: Implementing an Object
Adapter that works correctly and efficiently in a multi-
threadedenvironmentis hard.For instance,therearemany op-
portunitiesfor deadlock,undulyreducedconcurrency, andpri-
ority inversionthatmayarisefrom recursivecallsto anObject
Adapterwhile it is dispatchingrequests.Likewise,excessive
synchronizationoverheadmay arisefrom locking performed
on a dispatchingtable.

Event Channel dispatching components: The CORBA
Event Servicedefinesparticipantsthat provide a moreasyn-
chronousanddecoupledtype of communicationservicethat
alleviatessomerestrictions[3] with thestandardsynchronous
CORBA ORB operationinvocationmodels.As shown in Fig-
ure3 suppliers generateeventsandconsumers processevents
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Figure3: Participantsin theCOSEventServiceArchitecture

receivedfrom suppliers.This figurealsoillustratestheEvent
Channel, whichis amediator[7] thatdispatcheseventsto con-
sumerson behalfof suppliers.By usinganEventChannel,a
suppliercan deliver eventsto one or more consumerswith-
out requiringtheany of theseparticipantsto know abouteach
otherexplicitly.

To performits coreresponsibilities,aCORBA EventChan-
nel mustaddressthefollowing aspects:
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e Dynamic consumer subscriptions: A robust imple-
mentationof an Event Channelmustsupportthe additionof
new consumerswhile dispatchingis in progress. Likewise,
it mustsupportthe removal of existing consumersbeforeall
active dispatchingoperationscomplete.In multi-threadeden-
vironments,it is possiblefor multiple threads(potentiallyrun-
ningatdifferentpriorities)to iterateoverthedispatchingtable
concurrently. Someconsumersmay trigger further updates,
which alsomustbehandledproperlyandefficiently.

Näiveimplementations,suchascopying thecompletesetof
consumersbeforestartingthe iteration, may fail if onecon-
sumeris destroyed as a side-effect of the upcall on another
consumer. In multi-threadedimplementations,this problemis
exacerbatedbecauseseparatethreadsmayremoveanddestroy
consumersin thetableconcurrently.
e Variable dispatching times: Dispatchingevents re-

quiresan Event Channelto iterateover its setof consumers.
However, iteratorsmake it evenharderto provide predictable
implementationsbecausethenumberof consumersmayvary.
Sometypeof synchronizationis thereforerequiredduringthe
dispatchingprocess.

Implementationsof theObserverpattern[7] mustalsocon-
tend with problemssimilar to CORBA Event Service. The
Observer patternpropagatesupdatesemanatingfrom oneor
moresuppliersto multiple consumers,i.e., observers.An im-
plementationof this patternmust iterateover the setof con-
sumersanddisseminatethe updateto eachoneof them. As
with the Event Channel,subscriptionsmay changedynami-
cally while updatesarebeingdispatched.

Historically, a varietyof ad hocstrategieshave emergedto
addressthe dispatchingchallengesoutlined above. No one
strategy is optimal for all applicationdomainsor use-cases,
however. For instance,real-timeimplementationsmayimpose
too much overheadfor high-performance,“best-effort” sys-
tems.Likewise, implementationstailoredfor multi-threading
may imposeexcessive locking overheadfor single-threaded
reactive systems. In addition, strategies that supportrecur-
sive accesscanincur excessiveoverheadif all upcallsaredis-
patchedto separatethreadsor remoteservers. Thus,what is
requiredarestrategiesandmethodologiesthat systematically
capturetherangeof possiblesolutionsthatarisein thedesign
spaceof dispatchingcomponents.Onefamily of thesestrate-
giesis describedin thefollowing section.

3 Patterns for Dispatching Compo-
nents

Certainpatterns,suchas Strategized Locking [12] or Strat-
egy [7] addresssomeof thechallengesassociatedwith devel-
opingefficient, predictable,scalable,andflexible dispatching

components.In other cases,however, the relationshipsand
collaborationsbetweendispatchingcomponentsrequiremore
specializedsolutions.Moreover, asnotedin Section2, nosin-
gle patternor strategy aloneresolvesall the forcesfacedby
developersof complex dispatchingcomponents.Therefore,
this sectionpresentspatternsthataddressesthechallengesfor
dispatchingcomponentsoutlinedin Section2.

A pattern is a recurring solution to a standardproblem
within a particularcontext [7]. Patternshelpdeveloperscom-
municatearchitecturalknowledge,helpdeveloperslearnanew
designparadigmor architecturalstyle,andhelpnew develop-
ersavoid trapsandpitfalls thathavebeenlearnedtraditionally
only throughcostlyexperience[13].

Eachpatternin thispaperresolvesaparticularsetof forces,
with varyingconsequencesonperformance,functionality, and
flexibility . In general,simpler solutionsresult in betterper-
formance,but do not resolve all the forces that more com-
plex dispatchingcomponentscanhandle. Application devel-
opersshouldnot disregardsimplerpatterns,however. Instead,
they shouldapply the patternsthat are most appropriatefor
the problemat hand,balancingthe needto supportadvanced
featureswith the performanceandflexibility requirementsof
their applications.

3.1 Dispatching to a SingleObject

This subsectionfocuseson patternsfor componentswhere
eventsor requestsaredispatchedto asingletargetobject.Sec-
tion 3.2thendescribespatternsthataresuitablefor dispatching
to multiple objects.Theinitial patternsarerelatively straight-
forwardandareintendedfor lesscomplex systems.Thelatter
patternsaremoreintricateandaddressmorecomplex require-
mentsfor efficiency, predictability, scalability, andflexibility .

3.1.1 SerializedDispatching

Context: Dispatchingcomponentsarevital in DOCmiddle-
wareandapplications.They typically containa collectionof
target objectsthat residein one or more dispatchingtables.
Thesetablesareusedto selectappropriateobjectsbasedupon
identifierscontainedan incoming requests.For example,as
outlinedin Section2, theCORBA architecture[10] definesan
ObjectAdapter[9] that(1) mapsclientrequeststo objectssup-
plied by server applicationsand(2) helpsdispatchoperations
on serverobjects.

Problem: Multi-threadedapplicationsmustserializeaccess
to their dispatchingtableto preventdatacorruption.

Forces: Serialization mechanisms,such as mutexes or
semaphores,should be used carefully to avoid excessive
locking, priority inversion, and non-determinism. High-
performanceandreal-timesystemscanmaximizeparallelism

3



by minimizingserialization.However, applicationcorrectness
cannotbe sacrificedto improve performance,e.g., a multi-
threadedapplicationsshouldbe able to addandremove ob-
jects registeredwith the dispatchingtable efficiently during
run-timewithoutcorruptingthedispatchingtable.

Solution: Serialize dispatchingof requestsby using the
Monitor Objectpattern[14] wherea singlemonitor lock se-
rializesaccessto theentiredispatchingtable,asshown in Fig-
ure 4. The monitor lock is held both while (1) searchingthe
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Figure4: SerializedDispatchingwith aMonitor Lock

tableto locatethe objectand(2) dispatchingthe appropriate
operationcall on the application-providedcode. In addition,
the samemonitor lock is usedwhen insertingandremoving
entriesfrom thetable.

Consequences: A regular monitor lock is sufficient to
achieve the level of serializationnecessaryfor this dispatch-
ing component.Serializationoverheadis minimal sinceonly
onesetof acquire/releasecalls aremadeon the lock during
anupcall. Thus,this designis appropriatewhenthereis little
or no contentionfor the dispatchingtableor whenupcallsto
applicationcodeareshort-lived.

A simpleprotocolcancontrolthelife-cycleof objectsregis-
teredwith thedispatchingcomponent.For instance,anobject
cannotbedestroyedwhile it is still registeredin thedispatch-
ing table. Sincethe table’s monitor lock is usedboth for dis-
patchingandmodifying thetable,otherthreadscannotdelete
anobjectthatis in themidstof beingdispatched.

Note,however, that this patternmaybeinadequatefor sys-
temswith stringentreal-timerequirements.In particular, the
monitor lock is heldduringtheexecutionof applicationcode,
which makesit hardfor thedispatchingcomponentto predict
how long it will take to releasethe monitor lock. Likewise,
this patterndoesnot work well whenthereis significantcon-
tentionfor thedispatchingtable.For instance,if two requests
arrive simultaneouslyfor different target objectsin the same
dispatchingtable, only one of them can be dispatchedat a
time.

3.1.2 SerializedDispatchingwith a RecursiveMutex

Context: Assumethe dispatchingcomponentoutlined in
Section3.1.1 is being implementedin multi-threadedappli-
cations.

Problem: Monitor locksarenot recursiveonmany OSplat-
forms. Whenusingnon-recursive locks,attemptsto queryor
modify the dispatchtable while holding the lock will cause
deadlock.Thusapplicationcodecannotqueryor modify the
dispatchtablesinceit is calledwhile thelock is held.

Forces: A monitor lock cannotbereleasedbeforedispatch-
ing the applicationupcall becauseanotherthreadcould re-
moveanddestroy theobjectwhile it is still beingdispatched.

Solution: Serializedispatchingof requestsby usinga recur-
sive monitor lock [15]. A recursive lock allows the calling
threadto re-acquirethelock if thatthreadalreadyownsit. The
structureof this solutionis identicalto theoneshown in Fig-
ure4, exceptthata recursive monitor lock is usedin lieu of a
non-recursivelock.

Consequences: As before,the monitor lock serializescon-
current accessto avoid corruption of the dispatchingtable.
Unlike the SerializedDispatchingpatternoutlined in Sec-
tion 3.1.1, however, applicationupcallscan modify the dis-
patchingtableor dispatchnew upcalls.

Unfortunately, this solution doesnot resolve the concur-
rency and predictability problemssince the monitor is held
through the upcall. In particular, it is (1) still hard for the
dispatchingcomponentto predicthow long the monitor lock
mustbe handleand(2) the componentdoesnot allow multi-
ple requeststo be dispatchedsimultaneously. Moreover, re-
cursive monitor locks are usually more expensive than their
non-recursivecounterparts[16].

3.1.3 Dispatching with a Readers/Writer Lock

Context: In complex DOC middleware and applications,
eventsand requestsoften occur simultaneously. Unlessap-
plicationupcallsaresharingresourcesthatmustbeserialized,
theseoperationsshouldbe dispatchedand executedconcur-
rently. Even if hardwaresupportis not availablefor parallel
execution,it may be possibleto executeeventsandrequests
concurrentlyby overlappingCPU-intensive operationswith
I/O-intensiveoperations.

Problem: SerializedDispatchingpatternsareinefficient for
implementingconcurrentdispatchingupcallssincethey donot
distinguishbetweenreadandwrite operations,andthusseri-
alizeall operationson thedispatchingtable.
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Forces: Although dispatchingtablemodificationstypically
requireexclusiveaccess,dispatchingoperationsdonotmodify
the table. However, the dispatchingcomponentmustensure
that the table is not modifiedwhile a threadis performinga
lookupoperationon it.

Solution: Useareaders/writerlock to serializeaccessto the
dispatchingtable. Thecritical path,i.e., looking up thetarget
objectand invoking an operationon it, doesnot modify the
table. Therefore,a read lock will suffice for this path. Op-
erationsthat modify the dispatchingtable,suchasaddingor
removing objectsfrom it, requireexclusive access,however.
Therefore,awrite lock is requiredfor theseoperations.Fig-
ure 5 illustratesthe structureof this solution,wheremultiple
readerthreadscandispatchoperationsconcurrently, whereas
writer threadsareserialized.
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Figure5: Dispatchingwith aReaders/WriterLock

Consequences: Readers/writerlocksallow multiple readers
to accessa sharedresourcesimultaneously, while only allow-
ingonewriter to accessthesharedresourceatatime. Thus,the
solutiondescribedabove allows multiple concurrentdispatch
calls.

SomeDOC middleware executesthe upcall in a separate
threadin thesameprocessor on a remoteobject. Othermid-
dlewareexecutestheupcall in thesamethreadafter releasing
theread lock. Thus,this readers/writerlocking pattern[15]
canbeappliedto suchsystemswithout any risk of deadlocks.
However, this solution is not applicableto systemsthat ex-
ecutean upcall while holding the read lock. In that case,
changingthe table from within an upcall would requireup-
gradingthereaders/writerlock from aread lock to awrite
lock. Unfortunately, standardreaders/writerlock implementa-
tions,suchasSolaris/UIthreads[17], do not supportupgrad-
ablelocks. Evenwhenthis supportexists, lock upgradeswill
notsucceedif multiple threadsrequiresimultaneousupgrades.

Notethatapplicationsusingreaders/writerlocksbecomere-
sponsiblefor providing appropriateserializationof their data
structuressincethey cannotrely on the dispatchingcompo-
nent itself to serializeupcalls. As with recursive locks, the

serializationoverheadof readers/writerlocks may be higher
comparedto regular locks [16] when little or no contention
occurson thedispatchingtable.

Implementorsof thispatternmustanalyzetheirdispatching
componentcarefullyto identify operationsthatrequireonly a
read lock versusthosethatrequireawrite lock. For exam-
ple, theCORBA ObjectAdaptersupportsactivationof objects
within upcalls.Thus,whena dispatchlookup is initiated,the
ObjectAdaptercannotbecertainwhethertheupcallwill mod-
ify thedispatchingtable.Notethatacquiringawrite lock a
priori is self-defeatingsinceit mayimpedeconcurrentaccess
to thetableunnecessarily.

Finally, this solution does not resolve the predictability
problem. In particular, unboundedpriority inversionmayoc-
cur whenhigh-priority writer threadsaresuspendedwaiting
for low-priority readerthreadsto completedispatchingup-
calls.

3.1.4 ReferenceCounting During Dispatch

Context: As before, a multi-threadedsystemis using the
dispatchingcomponent. However, assumethe systemhas
stringentQoS requirementsthat demandpredictableand ef-
ficient behavior from thedispatchingcomponent.

Problem: To be predictable,the systemmusteliminateall
unboundedpriority inversions. In addition, systemeffiency
shouldbemaximizedby reducingboundedpriority inversions.

Forces: During an upcall,an applicationcaninvoke opera-
tions that modify the dispatchingtable. In addition, the dis-
patchingcomponentmustbeefficient andscalable,maximiz-
ing concurrency wheneverpossible.

Solution: Referencecounttheentriesof thedispatchingta-
ble during dispatchby using a single lock to serialize (1)
changesto the referencedcountand(2) modificationsto the
table. As shown in Figure6, the lock is acquiredduring the
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Figure6: Dispatchingwith aReferenceCountedTableEntries

upcall,theappropriateentry is located,its referencecountin-
creased,and the lock is releasedbeforeperformingthe ap-
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plication upcall. Oncethe upcall completes,the lock is re-
acquired,thereferencecounton theentryis decremented,and
thelock is released.

As long asthereferencecounton theentryremainsgreater
thanzero,theentry is not removedandthecorrespondingob-
ject is not destroyed.Concurrency hazardsareavoided,there-
fore, becausethe referencecountis alwaysgreaterthanzero
while a threadis processinganupcall for thatentry. If anob-
ject is “logically” removedfrom thedispatchingtable,its en-
try is not“physically” removedimmediatelysinceoutstanding
upcallsmaystill bepending.Instead,thethreadthatbringsthe
referencecount to zero is responsiblefor deletingthis “par-
tially” removedentryfrom thetable.

In programminglanguages,suchasC andC++, that lack
built-in garbagecollection,thedispatchingtablemustcollab-
oratewith theapplicationto control theobjects’life-cycle. In
thiscase,objectsareusuallyreferencecounted1. For example,
thereferencecountis usuallyincrementedwhentheobjectis
registeredwith the dispatchingtable anddecrementedwhen
theobjectis removedfrom thedispatchingtable.

Consequences: Thispatternsupportsmultiplesimultaneous
upcallssincethe lock is not held during the upcall. For the
samereason,this model also supportsrecursive calls . An
importantbenefitof this patternis thatthelevel of priority in-
versiondoesnot dependon thedurationof theupcall. In fact,
priority inversioncanbe calculatedasa function of the time
neededto searchthe dispatchingtable. In our previous re-
search[18], wehaveshown thatvery low andboundedsearch
times can be achieved using techniqueslike active demulti-
plexing andperfecthashing. Implementationsthat usethese
techniquesin conjunctionwith the serializationpatternde-
scribedherecanachievepredictabledispatchingwith bounded
priority inversions.

A disadvantageof this pattern,however, is that it acquires
andreleasesthelock twiceperupcall. In practice,this usually
doesnot exceedthecostof a singlerecursivemonitor lock or
a singlereaders/writermonitor lock [16]. This solutiondoes,
however, warrantextra carein the following specialcircum-
stances:

e Accessing“lo gically deleted” objects– A new request
arrivesfor anobjectthathasbeenlogically, but notphys-
ically removed from the dispatchingtable. Additional
statecanbe usedto recordthat this objecthasbeenre-
movedandshouldthereforereceivenonew requests.

e Activating“partially removed” objects– An implemen-
tationmusthandlethecasewhereanobjecthasbeenpar-
tially removed (as describedabove) and a client appli-
cationrequestsa new objectto be insertedfor the same

1Note that this referencecount is different from the per-entry reference
countdescribedabove.

identifier asthe partially removedobject. Typically, the
new insertionmustblock until upcallson the old object
completeandthe old objectis physicallyremovedfrom
thedispatchingtable.

Table1 summariesthedifferentpatternsfor dispatchingto a
singleobjectandcomparestheir relative strengthsandweak-
nesses.

Pattern Timeslock Nested Priority Appropriate
acquired upcalls Inversion when

Serialized 1 No Unbounded Little or
nocontention

dispatching Short-lived
upcalls

Recursive 1 Yes Unbounded Sameasabove
mutex
Readers/ 1 Limited Unbounded Concurrent
Writer lock upcalls
Reference 2 Yes Bounded Predictable
counting behavior

Table1: Summaryof Dispatchingto SingleObject

3.2 Dispatching to Multiple Objects

This sectionfocuseson patternsfor dispatchingcomponents
whereeventsor requestsaredeliveredto multiple target ob-
jects. Sendingthe sameevent to multiple targetobjectsadds
anotherlevel of complexity to dispatchingcomponentimple-
mentations.For instance,animplementationmayneedto iter-
ateover the collectionof potentialtargetsandinvoke upcalls
on a subsetof theobjectsin thedispatchingtable.

In many use-cases,modificationsto thecollectioninvalidate
any iteratorsfor thatcollection[19], evenfor single-threaded
configurations.In general,animplementationmustensurethat
nomodificationsareperformedwhile athreadis iteratingover
thedispatchingtable.Moreover, for real-timesystems,simple
serializationcomponents,suchasconventionalmutexes,can
resultin unboundedpriority inversionif higherpriority threads
wait for lowerpriority threadsto finish iterating.

Interestingly, themostsophisticatedpatternfor dispatching
to asingletargetobject(whichwaspresentedin Section3.1.4)
is notsuitablefor dispatchingto multipletargets.In particular,
its lock would have to beacquiredfor theentireiterationand
upcall cycle, therebyworseningpriority inversionproblems.
If the lock wasreleased,it could leadto an inconsistentview
of thedispatchingtable.Below, wepresentasuccessiveseries
of patternsthataddresstheseproblems.
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3.2.1 Copy-then-Dispatch

Context: An eventor requestmustbedispatchedto multiple
objectsconcurrently.

Problem: The challenge is how to optimize throughput
while minimizing contentionandserializationoverhead.

Forces: Modificationsto thedispatchingtablearecommon
duringthedispatchloop. Thedispatchingtabledoesnot pro-
vide robust iterators[19] or the iteratorsarenot thread-safe.
Thereareno stringentreal-timerequirements.

Solution: Makeacopy of theentiredispatchingtablebefore
initiating the iteration,asshown in Figure7. Althoughsome
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Figure7: Copy-then-Dispatch

serializationmechanismmustbeusedduringthecopy, its cost
is relatively low since it is outsidethe critical path. As an
optimization,thedispatchingcomponentcanacquirethelock,
copy only thetargetobjectsthatareinterestedin theevent,and
thenreleasethelock. At thispoint,thedispatchingcomponent
iteratesover the smallerset of interestedtarget objectsand
dispatchesupcalls.

To apply this pattern,applicationsmust collaboratewith
the dispatchingcomponentto control object life-cycle. For
example, an object cannotbe destroyed simply becauseit
wasremoved successfullyfrom the dispatchingtable. Other
threadsmay still be dispatchingeventson an older copy of
thedispatchingtable,andthusstill havea referenceto theob-
ject. Therefore,objectsin thedispatchingtablecopy mustbe
marked“in use”until all dispatchingloopsusingit complete.

Consequences: This patternallows multiple eventsor re-
queststo be dispatchedconcurrently. In addition, it permits
recursive operationsfrom within applicationupcallsthat can
modify thedispatchingtable,eitherby insertingor removing
objects.

However, makingcopiesof the dispatchingtabledoesnot
scalewell, when (1) the table is large, (2) memoryalloca-
tion isexpensive,or (3)objectlife-cyclemanagementis costly.

In this case,otherpatterns,suchasthe Thread-SpecificStor-
age[14] thateliminateslockingoverhead,canbeusedto mini-
mizethesecosts,therebymakingtheCopy-then-Dispatchpat-
ternapplicablefor systemsthathavesmalldispatchingtables.

3.2.2 Copy-On-Demand

Context: As in Section3.2.1,an event or requestmustbe
dispatchedto multipleobjectsconcurrently.

Problem: Making copiesof the dispatchingtableis expen-
sive andnon-scalable.

Forces: Changesto thedispatchingtableareinfrequent.The
dispatchingtabledoesnot provide robust iterators[19] or the
iteratorsarenot thread-safe.In addition,therearenostringent
real-timerequirements.

Solution: Copy thetableon-demand,asshown in Figure8.
Whenstartinganiteration,acounterflag is incrementedto in-
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Figure8: Copy-On-Demand

dicatethat a threadis using the table. If a threadwishesto
modify thetableit mustatomically(1) makeacopy of thedis-
patchingtable,(2) make themodificationon thecopy, and(3)
replacethe referenceto the old tablewith a referenceto the
new one. Whenthe last threadusingtheoriginal dispatching
table finishesits iteration, the tablemust be deallocated.In
programminglanguagesthatlackgarbagecollection,asimple
referencecountcanbeusedto accomplishthis memoryallo-
cationstrategy.

Consequences: Since the solution doesnot copy the dis-
patchingtablewheninitiating thedispatchloop,theCopy-On-
Demandpatternimprovesthedispatchlatency whencompared
to Copy-then-Dispatchpattern describedin Section 3.2.1.
Notethatlocksarenotheldwhile executingtheupcalls.Thus,
anapplicationupcall caninvoke recursive operationswithout
risking deadlock.

Onedownsidewith this patternis that it acquiresthe lock
at leasttwice. Thefirst acquisitionoccurswhenthetablestate
is updatedto indicate the start of an iteration. The second

7



acquisitionindicatestheendof thesameiteration.Thus,when
thereis little or no contention,this solution is slightly more
expensive thansimply holdinga lock over theentiredispatch
loop.

Moreover, whenthreadscontendto initiateadispatchitera-
tion, somepriority inversionmayoccur. Sincethelock is held
for a shortandfixedperiodof time, however, the priority in-
versionis bounded.In contrast,whena threadmakeschanges
to thedispatchingtable,theamountof time for which it holds
the lock dependson thesizeof thetable,which mayresultin
longerpriority inversions.Thus, this patternmay be unsuit-
ablefor systemswith stringentreal-timerequirements.

3.2.3 Asynchronous-ChangeCommands

Context: An applicationwith stringentQoS requirements
whereeventsor requestsmustbe dispatchedto multiple ob-
jectsconcurrently.

Problem: Modificationsto thedispatchingtablemustbese-
rialized. However, theamountof time locksareheldmustbe
boundedto minimizepriority inversions.

Forces: Upcalls are executedin the samethreadthat dis-
patchestheevent.Theapplicationcanaddandremoveobjects
from thedispatchingtabledynamically.

Solution: Postponechangesto the dispatchingtable while
threadsaredispatchingupcalls.Beforeiteratingover thedis-
patchingtable, the dispatchingthreadatomically increments
a counterthat indicatesthe numberof threadsiteratingover
the dispatchingtablecurrently. Whenan iterationcompletes
it decrementsthecounteratomically. If a changeis requested
while thedispatchingtableis “busy,” therequestis converted
into aCommandObject[7], asshown in Figure9, andqueued
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Figure9: Asynchronous-ChangeCommands

to beexecutedwhenthedispatchingtablebecomes“idle,” i.e.,
whennomoredispatchingthreadsareiteratingover thetable.

Consequences: Queueinga changeto the dispatchingta-
ble requiresa boundedamountof time, thuspreventingun-
boundedpriority inversions.For similar reasons,this solution

doesnot deadlockwhen upcallsrequestmodificationssince
they aresimply queued.

Thereis, however, a moresubtlepriority inversionin this
Asynchronous-ChangeCommandpatternimplementation.A
high-prioritythreadcanrequestamodification,but themodifi-
cationwill notoccuruntil thepotentiallylowerpriority threads
have finisheddispatchingevents. In many systemsthis is an
acceptabletradeoff sincepriority inversionsmustbe avoided
in thecritical path,i.e., thedispatchingpath.

In addition, it is hard to ascertainwhenrequestedmodifi-
cationsactuallyoccurbecausethey executeasynchronously.
Likewise,it is hardto reporterrorswhenexecutingchangere-
questsbecausethethreadrequestingthechangedoesnot wait
for operationsto complete.

Table 2 summariesthe different patternsfor dispatching
to multiple objectsandcomparestheir relative strengthsand
weaknesses.

Pattern Timeslock Nested Priority Appropriate
acquired upcalls Inversion when

Copy-then 2 Yes Unbounded Smalldispatch
Dispatch table
Copy-on 2 Yes Unbounded Raretable
Demand modifications
Asynchronous- 2 Yes Bounded Predictable
Changes behavior

Table2: Summaryof Dispatchingto SingleObject

4 Concluding Remarks

This paperdescribespatternsfor developingandselectingap-
propriatesolutionsto commonproblemsencounteredwhen
developing efficient, scalable,predictable,and flexible dis-
patchingcomponents. Our long-term goal is to develop a
handbookof patternsfor developingreal-timeDOC middle-
ware. Though we have not completedthat goal, we have
patternsarequite useful to help middlewareresearchersand
developersreusesuccessfulstrategies and practices. More-
over, they helpdeveloperscommunicateandreasonmoreef-
fectively aboutwhat they do andwhy they useparticularde-
signsand implementations. In addition, patternsare a step
towardsan“engineeringhandbook”for DOCmiddleware.

The patterns documentedin this paper has been ap-
plied to the TAO real-time ORB [2]. TAO has been
used for a wide range of real-time applications, includ-
ing avionics mission computingsystemsat Boeing [3, 20,
21], the SAIC Run Time Infrastructure(RTI) implementa-
tion [4] for the DefenseModeling and Simulation Organi-
zation’s (DMSO) High Level Architecture(HLA) [22], and
high-energy testbeamacquisitionsystemsat SLAC [23] and
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CERN[24]. Thesourcecodeanddocumentationfor theTAO
ORB and its Event Serviceare freely available from URL
www.cs.wustl.edu/ j schmidt/TAO.html.
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