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Abstract

In an increasingnumberof application domains,dispatd-
ing componentsre responsibldor deliveringupcallsto one
or more application objectswheneventsor requestsarrive
in a system. Implementingefficient, predictable and scal-
able dispatthing componentss hard and implementinghem
for multi-threadedsystemss evenharder. In particular, dis-
patching componentsnustbe prepated to deliver upcallsto
multiple objects,to handlerecussiverequestriginatedfrom
application-povidedupcalls,and oftenmustcollaborate with
applicationsto contmol objectlife-cycles.

In our distributed objectcomputing(DOC) middlevare re-

seach, we haveimplementednanydispatding components

that apply commonsolutionsrepeatedlyto solve the chal-
lenges outlined above.  Moreover, we have discovered that
the forces constaining dispatding componentoften differ
slightly, therebyrequiringalternativesolutionstrategies. This
paperpresentdwo contributionsto the designandimplemen-
tation of efficient, predictable scalable andflexible dispatd-
ing components. First, it showshow patternscan be ap-
plied to captuie key designand performancecharacteristics
of provendispatding components.Secondjt presentsa set
of patternsthat describesuccessfusolutionsappropriate for
key dispatding challengesarising in variousreal-timeDOC
middlewvare andapplications.

Keywords: Frameavorks; DesignPatterns;Real-Time Dis-
tributedObjectComputing

1 Intr oduction

Dispatchingcomponentsre a core featureof mary systems
suchasdistributedobjectcomputing(DOC) middleware. For

instancethedispatchingcomponentin a CORBA ObjectRe-

guestBroker (ORB) areresponsibldor delivering incoming

client eventsor requestgo other (1) ORB componentsaand
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(2) the application-leel objectsthat implementapplication-
definedbehaior. In general,dispatchingcomponentsnust
handleavarietyof tasks suchas(1) dispatchmultiplerequests
simultaneously(2) handlingrecursve dispatche$rom within
application-preidedupcalls,(3) dispatchingthe sameupcall
to multiple objectsefficiently, and (4) addingand removing
objectsin dispatchingableswhile upcallsarein progress.
This paperpresentafamily of relatedpatternghatwe have
usedto develop efficient, predictable,and scalabledispatch-
ing components$n avariety of applicationdomains anexam-
ple of which is shavn in Figure 1. Thesedomainsinclude
the TAO Real-Time CORBA [1] ORB [2], real-time avion-
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Figurel: Multiple dispatchingcomponentsn DOC middle-
ware

ics missioncomputingwith strict periodic dead-linerequire-
ments[3], and distributed interactve simulationswith high
scalabilityrequirement$4]. In addition,variousdispatching-



orientedframewvork componentssuchasReactorg5], Proac-
tors [6], Obserers[7], and Model-View-Controllers[8] are
implementedisingthesepatterns.

The remainderof this paperis organizedasfollows: Sec-
tion 2 describeghe context in which dispatchingcomponents
areusedandidentifiescommonrequirementgor severaltyp-
ical use-casesSection3 presentghe patternsusedto imple-
mentefficient, predictable scalable,andflexible dispatching
components$or bothsingleandmultiple targets;andSectior4
presentgoncludingremarks.

2 An Overview of Dispatching Compo-
nentsand Patterns

This sectionsummarizeshefunctionalityandrequirementsf

two commonuse-casethatillustratethechallengesssociated

with developingdispatchingcomponentsThefirst exampleis
the ObjectAdapter[9] componentn a standardCORBA [10]
ORB. The secondexampleis a Event Channelin a standard
COREBA EventService[11].

Object Adapter dispatching components: The core re-
sponsibilitiesof a CORBA Object Adapterinclude (1) gen-
eratingidentifiersfor objectsthat are exportedto clientsand
(2) mappingsubsequentlient requestdo the appropriateob-
jectimplementationswhich CORBA calls servants Figure2
illustratesthe generalstructureandinteractionsof a CORBA
ObjectAdapter
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Figure2: ObjectAdapterStructureandinteractions

In addition to its core responsibilities,a CORBA Object

Adapter must handlethe following situationscorrectly ro-
bustly, andefficiently:

e Non-existentobjects: Clientsmay invoke requestson
“stale” identifiers,i.e., on objectsthat have beendeactvated
from the Object Adapter In this case,the Object Adapter
should not use the stale object becauseit may have been
deletedby the application. Instead,it mustpropagatean ap-
propriateexceptionbackto theclient.

e Unusual object activation/deactivation use-cases:
Object Adaptersare responsibldor activating and deactvat-
ing objectson-demand.Moreover, sener applicationobjects
can activate or deactvate other objectsin responsdo client
requestsAn objectcanevendeactvateitself while in its own
upcall,e.g., if therequesis a“shutyourselfdown” message.

e Multi-thr eading hazards: Implementing an Object
Adapter that works correctly and efficiently in a multi-
threadedervironmentis hard. For instancetherearemary op-
portunitiesfor deadlockundulyreducedconcurreng, andpri-
ority inversionthatmay arisefrom recursve callsto anObject
Adapterwhile it is dispatchingrequests Lik ewise, excessie
synchronizatioroverheadmay arisefrom locking performed
onadispatchingable.

Event Channel dispatching components: The CORBA
Event Servicedefinesparticipantsthat provide a more asyn-
chronousand decoupledtype of communicationservicethat
alleviatessomerestrictiong3] with the standardsynchronous
CORBA ORB operationinvocationmodels.As showvn in Fig-
ure 3 supplies generateventsand consumes processvents
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Figure3: Participantsin the COSEventServiceArchitecture

received from suppliers.This figure alsoillustratesthe Event
Channe]whichis amediatof7] thatdispatchesventsto con-
sumerson behalfof suppliers.By usingan EventChannela
suppliercan deliver eventsto one or more consumerswith-
out requiringthe any of theseparticipantgo know abouteach
otherexplicitly.

To performits coreresponsibilitiesa CORBA EventChan-
nel mustaddresshefollowing aspects:



e Dynamic consumer subscriptions: A robust imple- components.In other caseshowever, the relationshipsand
mentationof an Event Channelmustsupportthe additionof collaborationdbetweendispatchingcomponentsequiremore
new consumersvhile dispatchingis in progress. Likewise, specializedolutions.Moreover, asnotedin Section2, no sin-

it mustsupportthe removal of existing consumerseforeall
active dispatchingoperationsomplete.ln multi-threadecen-
vironmentsijt is possiblefor multiple threadgpotentiallyrun-
ning atdifferentpriorities)to iterateoverthe dispatchingable
concurrently Someconsumersnay trigger further updates,
which alsomustbe handledproperlyandefficiently.

Naive implementationssuchascopying the completesetof
consumerseforestartingthe iteration, may fail if one con-
sumeris destryed as a side-efect of the upcall on another
consumerin multi-threadedmplementationsthis problemis
exacerbatedecausaseparatehreadanayremove anddestry
consumersn thetableconcurrently

e Variable dispatching times: Dispatchingevents re-
guiresan Event Channelto iterateover its setof consumers.
However, iteratorsmake it evenharderto provide predictable
implementationdecausehe numberof consumersnay vary.
Sometype of synchronizations thereforerequiredduringthe
dispatchingprocess.

Implementation®f the Obsener pattern[7] mustalsocon-
tend with problemssimilar to CORBA Event Service. The
Obsener patternpropagatesipdatesemanatingfrom one or
moresuppliersto multiple consumersi.e., obseners. An im-
plementatiorof this patternmustiterateover the setof con-
sumersand disseminatehe updateto eachone of them. As
with the Event Channel,subscriptionamay changedynami-
cally while updatesarebeingdispatched.

Historically, a variety of ad hoc strat@ieshave emegedto
addresshe dispatchingchallengesoutlined abose. No one

gle patternor stratgy aloneresohesall the forcesfacedby
developersof complex dispatchingcomponents. Therefore,
this sectionpresentpatternsthataddressethe challengegor
dispatchingcomponentsutlinedin Section?2.

A patternis a recurring solution to a standardproblem
within a particularcontet [7]. Patternshelp developerscom-
municatearchitecturaknowledge helpdeveloperdearnanew
designparadigmor architecturabtyle,andhelp new develop-
ersavoid trapsandpitfalls thathave beenlearnedraditionally
only throughcostly experiencg13].

Eachpatternin this paperresohesa particularsetof forces,
with varyingconsequenceasn performancefunctionality, and
flexibility. In general,simpler solutionsresultin betterper
formance,but do not resolhe all the forcesthat more com-
plex dispatchingcomponentsanhandle. Application devel-
opersshouldnot disregardsimplerpatternshowever. Instead,
they shouldapply the patternsthat are most appropriatefor
the problemat hand,balancingthe needto supportadvanced
featureswith the performanceandflexibility requirement®of
their applications.

3.1 Dispatchingto a Single Object

This subsectionfocuseson patternsfor componentsvhere
eventsor requestaredispatchedo asingletargetobject.Sec-
tion 3.2thendescribepatternghataresuitablefor dispatching
to multiple objects.Theinitial patternsarerelatively straight-
forwardandareintendedfor lesscomplex systemsThelatter
patternsaaremoreintricateandaddressnorecomplex require-

stratgy is optimal for all applicationdomainsor use-cases, mentsfor efficiency, predictability scalability andflexibility .

however. For instancereal-timeimplementationsnayimpose
too much overheadfor high-performance;best-efort” sys-
tems. Lik ewise,implementationgailoredfor multi-threading

may imposeexcessie locking overheadfor single-threaded context:

reactve systems. In addition, stratejies that supportrecur
sive accessanincur excessve overheadf all upcallsaredis-
patchedto separateghreadsor remoteseners. Thus,whatis
requiredare strat@ies and methodologieshat systematically
capturethe rangeof possiblesolutionsthatarisein the design
spaceof dispatchingcomponentsOnefamily of thesestrate-
giesis describedn thefollowing section.

3 Patterns for Dispatching Compo-
nents
Certain patterns,suchas Strateyized Locking [12] or Strat-

egy [7] addressomeof the challengesssociatedvith devel-
oping efficient, predictable scalable andflexible dispatching

3.1.1 SerializedDispatching

Dispatchingcomponentgrevital in DOC middle-

wareandapplications.They typically containa collection of

target objectsthat residein one or more dispatchingtables.
Thesetablesareusedto selectappropriateobjectsbasedipon

identifierscontainedan incoming requests.For example,as
outlinedin Section2, the CORBA architecturd10] definesan

ObjectAdapter[9] that(1) mapsclientrequests$o objectssup-

plied by sener applicationsand(2) helpsdispatchoperations
onsenerobjects.

Problem: Multi-threadedapplicationanustserializeaccess
to their dispatchingableto preventdatacorruption.

Forces: Serialization mechanisms, such as mutexes or
semaphoresshould be used carefully to avoid excessve
locking, priority inversion, and non-determinism. High-
performanceandreal-timesystemsanmaximizeparallelism



by minimizing serialization.However, applicationcorrectness 3.1.2 Serialized Dispatchingwith a Recursive Mutex

cannotbe sacrificedto improve performanceg.g., a multi-
threadedapplicationsshouldbe able to add and remove ob-
jects registeredwith the dispatchingtable efficiently during
run-timewithout corruptingthe dispatchingable.

Solution: Serialize dispatchingof requestsby using the
Monitor Object pattern[14] wherea single monitor lock se-
rializesaccesgo theentiredispatchingable,asshovn in Fig-
ure 4. The monitor lock is held both while (1) searchinghe

> UPCALL
THREAD

DISPATCHING TABLE
LI T TTT]

@ MONITOR LOCK

> N > WAITING
THREADS

Figure4: SerializedDispatchingwith a Monitor Lock

tableto locatethe objectand (2) dispatchingthe appropriate
operationcall on the application-preided code. In addition,
the samemonitor lock is usedwheninsertingand remaoving
entriesfrom thetable.

Consequences: A regular monitor lock is sufiicient to
achieve the level of serializationnecessaryor this dispatch-
ing component.Serializationoverheads minimal sinceonly
one setof acquire/releasealls are madeon the lock during
anupcall. Thus,this designis appropriatevhenthereis little
or no contentionfor the dispatchingtable or whenupcallsto
applicationcodeareshort-lived.

A simpleprotocolcancontrolthelife-cycle of objectsregis-
teredwith the dispatchingcomponentFor instancean object
cannotbe destroyedwhile it is still registeredin the dispatch-
ing table. Sincethe table’s monitor lock is usedboth for dis-
patchingandmodifying the table,otherthreadscannotdelete
anobjectthatis in the midstof beingdispatched.

Note, however, thatthis patternmay be inadequatdor sys-
temswith stringentreal-timerequirements.In particulay the
monitorlock is held duringthe executionof applicationcode,
which makesit hardfor the dispatchingcomponento predict
how long it will take to releasethe monitor lock. Likewise,
this patterndoesnot work well whenthereis significantcon-
tentionfor the dispatchingable. For instancejf two requests
arrive simultaneouslyfor differenttarget objectsin the same
dispatchingtable, only one of them can be dispatchedat a
time.

Context: Assumethe dispatchingcomponentoutlined in
Section3.1.1is beingimplementedin multi-threadedappli-
cations.

Problem: Monitor locksarenotrecursive on mary OSplat-

forms. Whenusingnon-recursie locks, attemptso queryor

modify the dispatchtable while holding the lock will cause
deadlock. Thusapplicationcodecannotquery or modify the

dispatchtablesinceit is calledwhile thelock is held.

Forces: A monitorlock cannotbe releasedeforedispatch-
ing the applicationupcall becauseanotherthreadcould re-
move anddestry theobjectwhile it is still beingdispatched.

Solution:  Serializedispatchingof request®y usingarecur
sive monitor lock [15]. A recursve lock allows the calling
threadto re-acquirghelock if thatthreadalreadyownsit. The
structureof this solutionis identicalto the oneshown in Fig-
ure4, exceptthatarecursve monitorlock is usedin lieu of a
non-recursielock.

Consequences: As before,the monitorlock serializescon-
currentaccessto avoid corruption of the dispatchingtable.
Unlike the Serialized Dispatching patternoutlined in Sec-
tion 3.1.1, however, applicationupcalls can modify the dis-
patchingtableor dispatchnew upcalls.

Unfortunately this solution doesnot resole the concur
reng/ and predictability problemssince the monitor is held
throughthe upcall. In particular it is (1) still hard for the
dispatchingcomponento predicthow long the monitor lock
mustbe handleand (2) the componentoesnot allow multi-
ple requestgo be dispatchedsimultaneously Moreover, re-
cursive monitor locks are usually more expensve than their
non-recursie counterpart$16].

3.1.3 Dispatchingwith a Readers/Writer Lock

Context: In complex DOC middlewvare and applications,
eventsand requestsoften occur simultaneously Unlessap-
plicationupcallsaresharingresourceshatmustbe serialized,
theseoperationsshould be dispatchedand executedconcur
rently. Evenif hardware supportis not availablefor parallel
execution,it may be possibleto executeeventsandrequests
concurrentlyby overlapping CPU-intensie operationswith
I/O-intensive operations.

Problem: SerializedDispatchingpatternsareinefficient for
implementingconcurrendispatchingupcallssincethey donot
distinguishbetweerreadandwrite operationsandthusseri-
alizeall operation®onthedispatchingable.



Forces: Although dispatchingtable modificationstypically
requireexclusive accessglispatchingpperationglio notmodify
the table. However, the dispatchingcomponenimustensure
that the tableis not modified while a threadis performinga
lookupoperatioronit.

Solution: Useareaders/writetock to serializeaccesgo the
dispatchingable. The critical path,i.e., looking up the target
objectandinvoking an operationon it, doesnot modify the
table. Therefore,ar ead lock will sufiice for this path. Op-
erationsthat modify the dispatchingtable, suchasaddingor
removing objectsfrom it, requireexclusive accesshowever.
Thereforeawr i t e lock is requiredfor theseoperationsFig-
ure 5 illustratesthe structureof this solution,wheremultiple
readerthreadscandispatchoperationsconcurrently whereas
writer threadsareserialized.
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Figure5: Dispatchingwith a Readers/Writekock

Consequences: Readers/writelocksallow multiple readers
to access sharedresourcesimultaneouslywhile only allow-
ing onewriterto accesshesharedesourceatatime. Thus,the
solutiondescribedabove allows multiple concurrendispatch
calls.

SomeDOC middlewvare executesthe upcall in a separate
threadin the sameprocessor on a remoteobject. Othermid-
dlewareexecuteshe upcallin the samethreadafter releasing
ther ead lock. Thus,this readers/writetocking pattern[15]
canbeappliedto suchsystemswithout ary risk of deadlocks.
However, this solutionis not applicableto systemsthat ex-
ecutean upcall while holding the r ead lock. In that case,
changingthe table from within an upcall would require up-
gradingthereaders/writetock fromar ead locktoawri t e
lock. Unfortunately standardeaders/writefock implementa-
tions, suchas Solaris/UIthreadq17], do not supportupgrad-
ablelocks. Evenwhenthis supportexists, lock upgradeswill
notsucceedf multiple threadgequiresimultaneousipgrades.

Notethatapplicationsisingreaders/writetocksbecomee-
sponsiblefor providing appropriateserializationof their data
structuressincethey cannotrely on the dispatchingcompo-
nentitself to serializeupcalls. As with recursve locks, the

serializationoverheadof readers/writetocks may be higher
comparedto regular locks [16] whenlittle or no contention
occursonthedispatchingable.

Implementorsf this patternmustanalyzetheir dispatching
componentarefullyto identify operationghatrequireonly a
r ead lock versughosethatrequireawr i t e lock. For exam-
ple,the CORBA ObjectAdaptersupportsactivationof objects
within upcalls. Thus,whena dispatchlookupis initiated, the
ObjectAdaptercannotbe certainwhethertheupcallwill mod-
ify thedispatchingable. Notethatacquiringawri t e lock a
priori is self-defeatingsinceit mayimpedeconcurrentaccess
to thetableunnecessarily

Finally, this solution does not resohe the predictability
problem. In particular unboundedriority inversionmay oc-
cur when high-priority writer threadsare suspendeavaiting
for low-priority readerthreadsto completedispatchingup-
calls.

3.1.4 ReferenceCounting During Dispatch

Context: As before, a multi-threadedsystemis using the
dispatchingcomponent. However, assumethe systemhas
stringentQoS requirementghat demandpredictableand ef-
ficientbehaior from the dispatchingcomponent.

Problem: To be predictable the systemmusteliminateall
unboundedpriority inversions. In addition, systemeffiency
shouldbe maximizedby reducingboundedpriority inversions.

Forces: During anupcall, anapplicationcaninvoke opera-
tions that modify the dispatchingtable. In addition, the dis-
patchingcomponenmustbe efficient andscalable maximiz-
ing concurreng whenever possible.

Solution: Referencecountthe entriesof the dispatchinga-
ble during dispatchby using a single lock to serialize (1)
changedo the referenceccountand (2) modificationsto the
table. As shawn in Figure6, the lock is acquiredduring the
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Figure6: Dispatchingwith a Reference&CountedTableEntries

upcall,the appropriateentryis located,its referencecountin-
creasedand the lock is releasedbefore performingthe ap-



plication upcall. Oncethe upcall completesithe lock is re-
acquiredthereferencecountontheentryis decrementedand
thelock is released.

As long asthereferencecounton the entry remainsgreater
thanzero,theentryis notremovedandthe correspondingb-
jectis notdestryed. Concurreng hazardsareavoided,there-
fore, becausehe referencecountis alwaysgreaterthanzero
while a threadis processingnupcallfor thatentry. If anob-
jectis “logically” removedfrom the dispatchingable,its en-
try is not“physically” removedimmediatelysinceoutstanding
upcallsmaystill bepending.Insteadthethreadthatbringsthe
referencecountto zerois responsiblefor deletingthis “par-
tially” removedentryfrom thetable.

In programminglanguagessuchas C and C++, that lack
built-in garbagecollection,the dispatchingablemustcollab-
oratewith the applicationto controlthe objects’life-cycle. In
this case pbjectsareusuallyreferenceounted. For example,
thereferencecountis usuallyincrementedvhenthe objectis
registeredwith the dispatchingtable and decrementedvhen
the objectis removedfrom thedispatchingable.

Consequences: Thispatternsupportanultiple simultaneous
upcallssincethe lock is not held during the upcall. For the
samereason,this model also supportsrecursve calls. An
importantbenefitof this patternis thatthelevel of priority in-
versiondoesnotdependon the durationof theupcall. In fact,
priority inversioncanbe calculatedasa function of the time
neededto searchthe dispatchingtable. In our previous re-
search18], we have shavn thatvery low andboundedsearch
times can be achiered using techniquedik e active demulti-
plexing and perfecthashing. Implementationghat usethese
techniguesin conjunctionwith the serializationpatternde-
scribedherecanachiese predictabledispatchingvith bounded
priority inversions.

A disadwantageof this pattern,however, is thatit acquires
andreleaseshelock twice perupcall. In practice this usually
doesnot exceedthe costof a singlerecursve monitorlock or
a singlereaders/writemonitorlock [16]. This solutiondoes,
however, warrantextra carein the following specialcircum-
stances:

¢ Accessingd'lo gically deleted” objects— A new request
arrivesfor anobjectthathasbeenlogically, but notphys-
ically removed from the dispatchingtable. Additional
statecanbe usedto recordthat this objecthasbeenre-
movedandshouldthereforereceize no new requests.

e Activating“partially remowed” objects— An implemen-
tationmusthandlethe casewhereanobjecthasbeenpar
tially removed (as describedabove) and a client appli-
cationrequestsa new objectto beinsertedfor the same

INote that this referencecountis differentfrom the perentry reference
countdescribedabore.

identifier asthe partially removed object. Typically, the
new insertionmustblock until upcallson the old object
completeandthe old objectis physicallyremovedfrom
thedispatchingable.

Tablel summarieshedifferentpatterndor dispatchingo a
singleobjectandcomparegheir relative strengthsandweak-
nesses.

Pattern Timeslock | Nested | Priority Appropriate
acquired upcalls | Inversion when
Serialized | 1 No Unbounded| Little or
no contention
dispatching Short-lved
upcalls
Recursie 1 Yes Unbounded| Sameasabore
mutex
Readerg 1 Limited | Unbounded| Concurrent
Writer lock upcalls
Reference | 2 Yes Bounded Predictable
counting behaior
Tablel: Summaryof Dispatchingto SingleObject

3.2 Dispatchingto Multiple Objects

This sectionfocuseson patternsfor dispatchingcomponents
whereeventsor requestsare deliveredto multiple target ob-
jects. Sendingthe sameeventto multiple target objectsadds
anotherlevel of compleity to dispatchingcomponenimple-
mentationsFor instanceanimplementatiormay needto iter-
ateover the collectionof potentialtargetsandinvoke upcalls
on asubsebf theobjectsin thedispatchingable.

In mary use-casesnodificationgo thecollectioninvalidate
ary iteratorsfor thatcollection[19], evenfor single-threaded
configurationsIn generalanimplementationmustensurehat
no modificationsareperformedwhile athreadis iteratingover
thedispatchingable.Moreover, for real-timesystemssimple
serializationcomponentssuchas corventionalmutexes,can
resultin unboundedbriority inversionif higherpriority threads
wait for lower priority threadgo finish iterating.

Interestingly the mostsophisticategbatternfor dispatching
to asingletargetobject(whichwaspresentedh Section3.1.4)
is notsuitablefor dispatchingo multiple targets.In particular
its lock would have to be acquiredfor the entireiterationand
upcall cycle, therebyworseningpriority inversionproblems.
If thelock wasreleasedit could leadto aninconsistenview
of thedispatchingable.Below, we presenf successie series
of patternghataddressheseproblems.



3.2.1 Copy-then-Dispatch

Context: An eventor requesmustbedispatchedo multiple
objectsconcurrently

Problem: The challengeis how to optimize throughput
while minimizing contentionandserializationoverhead.

Forces: Modificationsto the dispatchingtiablearecommon
duringthe dispatchloop. The dispatchingabledoesnot pro-

vide robust iterators[19] or the iteratorsare not thread-safe.

Thereareno stringentreal-timerequirements.

Solution: Make acopy of theentiredispatchingablebefore
initiating theiteration,asshowvn in Figure7. Although some
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In this case,otherpatterns suchasthe Thread-SpecifiStor
age[14] thateliminatedocking overheadcanbeusedto mini-
mizethesecoststherebymakingthe Copy-then-Dispatcipat-
ternapplicablefor systemghathave smalldispatchingables.

3.2.2 Copy-On-Demand

Context: As in Section3.2.1,an event or requestmustbe
dispatchedo multiple objectsconcurrently

Problem: Making copiesof the dispatchingtableis expen-
sive andnon-scalable.

Forces: Changesothedispatchingableareinfrequent.The
dispatchingabledoesnot provide robustiterators[19] or the
iteratorsarenotthread-safeln addition,thereareno stringent
real-timerequirements.

Solution: Copy thetableon-demandasshown in Figure8.
Whenstartinganiteration,a counterflag is incrementedo in-
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Figure7: Copy-then-Dispatch

serializatiormechanisnmustbeusedduringthe copy, its cost
is relatively low sinceit is outsidethe critical path. As an
optimization thedispatchingcomponentanacquirethelock,
copy only thetargetobjectsthatareinterestedn theevent,and
thenreleasehelock. At this point, thedispatchingcomponent
iteratesover the smallerset of interestedtarget objectsand
dispatchesipcalls.

To apply this pattern, applicationsmust collaboratewith
the dispatchingcomponentto control object life-cycle. For
example, an object cannotbe destrged simply becauseit
was removed successfullyfrom the dispatchingtable. Other
threadsmay still be dispatchingeventson an older copy of
thedispatchingable,andthusstill have areferenceo the ob-
ject. Therefore objectsin the dispatchingablecopy mustbe
marked*“in use”until all dispatchingoopsusingit complete.

Consequences: This patternallows multiple eventsor re-
queststo be dispatchecconcurrently In addition, it permits
recursve operationdrom within applicationupcallsthat can
modify the dispatchingiable, eitherby insertingor removing
objects.

However, making copiesof the dispatchingtable doesnot
scalewell, when (1) the table is large, (2) memoryalloca-
tion is expensve,or (3) objectlife-cyclemanagemeris costly.
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Figure8: Copy-On-Demand

dicatethat a threadis usingthe table. If a threadwishesto
modify thetableit mustatomically(1) make acopy of thedis-
patchingtable,(2) make the modificationon the copy, and(3)
replacethe referenceto the old tablewith a referenceto the
new one. Whenthe lastthreadusingthe original dispatching
table finishesits iteration, the table mustbe deallocated.In
programmindanguageshatlack garbagecollection,asimple
referencecountcanbe usedto accomplishthis memoryallo-
cationstratayy.

Consequences: Sincethe solution doesnot copy the dis-
patchingtablewheninitiating thedispatchHoop, the Copy-On-
DemandpatternmprovesthedispatcHateny whencompared
to Copy-then-Dispatchpattern describedin Section 3.2.1.
Notethatlocksarenotheldwhile executingtheupcalls.Thus,
an applicationupcall caninvoke recursve operationswvithout
risking deadlock.

Onedownsidewith this patternis thatit acquiresthe lock
atleasttwice. Thefirst acquisitionoccurswhenthetablestate
is updatedto indicate the start of an iteration. The second



acquisitionindicateghe endof thesameiteration. Thus,when
thereis little or no contention,this solutionis slightly more
expensve thansimply holding a lock over the entiredispatch
loop.

Moreover, whenthreadsontendo initiate a dispatchitera-
tion, somepriority inversionmayoccur Sincethelock is held
for a shortandfixed periodof time, however, the priority in-
versionis boundedIn contrastwhenathreadmakeschanges
to thedispatchingable,the amountof time for whichit holds
thelock depend®n the sizeof the table,which mayresultin
longer priority inversions. Thus, this patternmay be unsuit-
ablefor systemswith stringentreal-timerequirements.

3.2.3 Asynchronous-ChangeCommands

Context:
whereeventsor requestanustbe dispatchedo multiple ob-
jectsconcurrently

Problem: Modificationsto thedispatchingablemustbese-
rialized. However, the amountof time locks areheld mustbe
boundedo minimize priority inversions.

Forces: Upcalls are executedin the samethreadthat dis-
patchegheevent. Theapplicationcanaddandremove objects
from thedispatchingabledynamically

Solution: Postponechangedgo the dispatchingtable while
threadsaredispatchingupcalls. Beforeiteratingover the dis-
patchingtable, the dispatchingthreadatomically increments
a counterthat indicatesthe numberof threadsiterating over
the dispatchingtable currently Whenan iterationcompletes
it decrementshe counteratomically If achanges requested
while the dispatchingableis “busy’ therequesis corverted
into aCommandObject[7], asshavnin Figure9, andqueued

2 )
MODIFICATION Ow’
THREAD OL%
—> O g S
Sk
UPCALL O
THREADS [T T T T T T[T
S e
_ Y,

Figure9: Asynchronous-Changéommands

to be executedvhenthedispatchingablebecomesidle,” i.e.,
whenno moredispatchinghreadsareiteratingover thetable.

Consequences: Queueinga changeto the dispatchingta-
ble requiresa boundedamountof time, thus preventing un-
boundedpriority inversions.For similar reasonsthis solution

doesnot deadlockwhen upcallsrequestmodificationssince
they aresimply queued.

Thereis, however, a more subtle priority inversionin this
Asynchronous-Changéommandpatternimplementation.A
high-priority threadcanrequest modification but the modifi-
cationwill notoccuruntil thepotentiallylower priority threads
have finisheddispatchingevents. In mary systemghisis an
acceptabldradeof sincepriority inversionsmustbe avoided
in thecritical path,i.e., thedispatchingpath.

In addition, it is hardto ascertairwhenrequestednodifi-
cationsactually occur becauseahey executeasynchronously
Lik ewise, it is hardto reporterrorswhenexecutingchangere-
guestdecausehethreadrequestinghe changedoesnot wait
for operationgo complete.

Table 2 summariesthe different patternsfor dispatching

An applicationwith stringentQoS requirements to multiple objectsand comparegheir relative strengthsand

weaknesses.

Pattern Timeslock | Nested | Priority Appropriate
acquired upcalls | Inversion when

Copy-then 2 Yes Unbounded| Smalldispatch

Dispatch table

Copy-on 2 Yes Unbounded| Raretable

Demand modifications

Asynchronous-| 2 Yes Bounded Predictable

Changes behaior

Table2: Summaryof Dispatchingto SingleObject

4 Concluding Remarks

This paperdescribegatternsor developingandselectingap-
propriate solutionsto commonproblemsencounteredvhen
developing efficient, scalable,predictable,and flexible dis-
patchingcomponents. Our long-term goal is to develop a
handbookof patternsfor developingreal-timeDOC middle-
ware. Thoughwe have not completedthat goal, we have
patternsare quite usefulto help middlevareresearchergand
developersreusesuccessfubtratgies and practices. More-
over, they help developerscommunicateandreasonmore ef-
fectively aboutwhatthey do andwhy they useparticularde-
signs and implementations. In addition, patternsare a step
towardsan“engineeringhandbookfor DOC middleware.
The patterns documentedin this paper has been ap-
plied to the TAO real-time ORB [2]. TAO has been
used for a wide range of real-time applications, includ-
ing avionics mission computing systemsat Boeing [3, 20,
21], the SAIC Run Time Infrastructure(RTI) implementa-
tion [4] for the DefenseModeling and Simulation Organi-
zation’s (DMSO) High Level Architecture(HLA) [22], and
high-enegy testbeamacquisitionsystemsat SLAC [23] and



CERN]J24]. Thesourcecodeanddocumentatioffior the TAO
ORB and its Event Serviceare freely available from URL

WWW. CS. wust |

. edu/ ~schm dt/ TAO. ht i .
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