
UNIVERSITY OF CALIFORNIA

Irvine

An Object-Oriented Framework for Experimenting with
Alternative Process Architectures for Parallelizing

Communication Subsystems

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Information and Computer Science

by

Douglas Craig Schmidt

Committee in charge:

Professor Tatsuya Suda, Chair

Professor Richard W. Selby, Co-Chair

Professor George Polyzos

1995

c
1995

DOUGLAS CRAIG SCHMIDT

ALL RIGHTS RESERVED

The dissertation of Douglas C. Schmidt is approved,

and is acceptable in quality and form for

publication on microfilm:

Committee Chair

University of California, Irvine

1995

ii

Dedication

This dissertation is dedicated to the memory of Terry Williams (1971–1991). Terry was
my friend and weight-lifting partner, who was killed in a tragic airplane accident in

February, 1991. In the words of Marcus Antonius from Shakespeare’sJulius Caesar:

“His life was gentle, and the elements so
Mixed in him that nature might stand up

And say to all the world: this was a man.”

iii

Contents

Dedication : iii

List of Figures : v

List of Tables : vii

Acknowledgements: viii

Curriculum Vitae : x

Abstract : xvi

Chapter 1 Introduction : 1

Chapter 2 A Survey of Software Components in Communication Subsystem
Architectures : 5

2.1 Introduction : 5
2.2 Levels of Abstraction in a Communication Subsystem Architecture: : : 8
2.3 A Taxonomy of Communication Subsystem Architecture Mechanisms: 14
2.4 Survey of Existing OS Communication Subsystem Architectures: : : : 39
2.5 Summary: 60

Chapter 3 The ADAPTIVE Service eXecutive Framework : : : : : : : : : 62
3.1 Introduction : 62
3.2 Object-Oriented Frameworks: 63
3.3 The Object-Oriented Architectures of theASXFramework : : : : : : : 65
3.4 Summary: 98

Chapter 4 Communication Subsystem Performance Experiments: : : : : 99
4.1 Introduction : 99
4.2 Related Work : 100
4.3 Multi-processor Platform : 101
4.4 Functionality of the Communication Protocol Stacks: : : : : : : : : : 103
4.5 Structure of the Process Architectures: : : : : : : : : : : : : : : : : : 105
4.6 Measurement Results: 110
4.7 Summary: 126

Chapter 5 Conclusions and Future Research Problems: : : : : : : : : : : 132

iv

List of Figures

2.1 Protocol Graph for Internet and OSI Communication Models: : : : : : 9
2.2 Architectural Components in a Communication Subsystem: : : : : : : 10
2.3 Process Architecture Components and Interrelationships: : : : : : : : 18
2.4 Task-based Process Architectures: 19
2.5 Message-based Process Architectures: : : : : : : : : : : : : : : : : : 23
2.6 External and Internal Factors Influencing Process Architecture Perfor-

mance : 24
2.7 Layered and De-layered Multiplexing and Demultiplexing: : : : : : : 34
2.8 System V STREAMS Architecture: : : : : : : : : : : : : : : : : : : 41

3.1 Class Libraries vs. Frameworks: 64
3.2 Class Categories in theASXFramework: : : : : : : : : : : : : : : : : 65
3.3 Components in theStream Class Category : : : : : : : : : : : : : : 68
3.4 Alternative Methods for Invokingput andsvc Methods: : : : : : : : 74
3.5 Components in theReactor Class Category: : : : : : : : : : : : : : 76
3.6 Components in theService Configurator Class Category: : : : 78
3.7 EBNF Format for a Service Config Entry: : : : : : : : : : : : : : : : 83
3.8 State Transition Diagram for Service Configuration, Execution, and Re-

configuration: 85
3.9 IPC SAPClass Category Relationships: : : : : : : : : : : : : : : : : 91
3.10 TheSOCKSAPInheritance Hierarchy: : : : : : : : : : : : : : : : : : 93

4.1 Connectional Parallelism Process Architecture: : : : : : : : : : : : : 106
4.2 Message Parallelism Process Architecture: : : : : : : : : : : : : : : : 107
4.3 Layer Parallelism Process Architecture: : : : : : : : : : : : : : : : : 109
4.4 Connection-oriented Connectional Parallelism Throughput: : : : : : : 112
4.5 Connection-oriented Message Parallelism Throughput: : : : : : : : : 113
4.6 Connection-oriented Layer Parallelism Throughput: : : : : : : : : : : 114
4.7 Relative Speedup for Connection-oriented Connectional Parallelism: : 115
4.8 Relative Speedup for Connection-oriented Message Parallelism: : : : : 116
4.9 Relative Speedup for Connection-oriented Layer Parallelism: : : : : : 117
4.10 Comparison of Connectional Parallelism and Message Parallelism: : : 118
4.11 Connectionless Message Parallelism Throughput: : : : : : : : : : : : 119
4.12 Connectionless Layer Parallelism Throughput: : : : : : : : : : : : : : 120
4.13 Relative Speedup for Connectionless Message Parallelism: : : : : : : 121

v

4.14 Relative Speedup of Connectionless Layer Parallelism: : : : : : : : : 122
4.15 Connection-oriented Connectional Parallelism Context Switching: : : 123
4.16 Connection-oriented Message Parallelism Context Switching: : : : : : 124
4.17 Connectionless Message Parallelism Context Switching: : : : : : : : : 125
4.18 Connection-oriented Layer Parallelism Context Switching: : : : : : : 126
4.19 Connectionless Layer Parallelism Context Switching: : : : : : : : : : 127
4.20 Connection-oriented Connectional Parallelism Synchronization Overhead128
4.21 Connection-oriented Message Parallelism Synchronization Overhead: : 129
4.22 Connection-oriented Layer Parallelism Synchronization Overhead: : : 130
4.23 Connectionless Message Parallelism Synchronization Overhead: : : : 130
4.24 Connectionless Layer Parallelism Synchronization Overhead: : : : : : 131

vi

List of Tables

2.1 Communication Subsystem Taxonomy Template: : : : : : : : : : : : 15
2.2 STREAMS Profile: 40
2.3 BSD UNIX Profile: 45
2.4 x-kernel Profile: 49
2.5 Conduit Profile: 52

vii

Acknowledgements

I would like to express my gratitude to my advisor, Professor Tatsuya Suda, for his
guidance and support during my Ph.D. dissertation project. It has been very rewarding
to have him as my advisor. My gratitude also goes to my co-advisor Professor Richard
Selby, who has supported and counseled me throughout the course of my Ph.D. research.
I would also like to thank Professor George Polyzos for serving on my thesis committee.

I would especially like to thank my girlfriend Christine D. Burgeson for her sup-
port and love during the past two years. She has been a constant source of inspiration, a
wonderful dance partner, and a reluctant convert to viewing Arnold movies!

I would like to deeply thank my fellow UCI grad student friends: Dr. Adam Porter,
Clark Savage Turner, and Dr. Kent Madsen. They filled my world with the sound of
music and liberated me from the clutches of political correctness. Likewise, I would
like to thank my weight-lifting partners: Dr. David Levine, Rich Mellon, and especially
Terry Williams. They pumped up my endurance with their dedication to fitness.

I also gratefully acknowledge the contributions of Paul Stephenson of Ericsson/GE
Mobile Communication. Paul dedicated countless hours to discuss techniques for de-
veloping object-oriented distributed system frameworks.

I would like to express my sincere appreciation to Dr. Dennis and Bea Volper, Dr.
Steve Franklin, Dr. John King, and Dr. Jo Mahoney for their support and friendship
during the time I have lived in Irvine, California.

I would also like to thank my research colleagues in Germany, Dr. Burkhard Stiller
and Dr. Martina Zitterbart, for their friendship, encouragement, and earnest discussions
during crucial stages of my Ph.D. project.

Finally, I would like to express very special thanks to my parents for their love,
encouragement, endurance, and understanding during the past 14 years of my higher
education experience.

Financial support has been provided by a number of sources throughout the years:
NSF (NCR-8907909); University of California MICRO grants with Hitachi Ltd. and
Hitachi America, NEC, Nippon Steel Information and Communication Systems Inc.

viii

(ENICOM), Canon, Omron, Hughes Aircraft, and Hewlett Packard (HP); UCI Exten-
sion; Ericsson/GE Mobile Communications; and the Motorola IRIDIUM project.

ix

Curriculum Vitae

1984 B.A. in Sociology, College of William and Mary, Williams-
burg, VA

1986 M.A. in Sociology, College of William and Mary, Williams-
burg, VA

Thesis:A Statistical Analysis of University Resource Alloca-
tion Policies.

1990 M.S. in Information and Computer Science, University of
California, Irvine

1994 Ph.D. in Information and Computer Science, University of
California, Irvine
Dissertation: An Object-Oriented Framework for Experi-
menting with Alternative Process Architectures for Paral-
lelizing Communication Subsystems.

Publications

Refereed Academic Journal Publications

1. Douglas C. Schmidt and Tatsuya Suda, “An Object-Oriented Framework for Dy-
namically Configuring Extensible Distributed Communication Systems,”Special
issue on Configurable Distributed Systems in the Distributed Systems Engineering
Journal, BCS/IEE, January, 1995.

2. Douglas C. Schmidt, Donald F. Box, and Tatsuya Suda, “ADAPTIVE: A Dynam-
ically Assembled Protocol Transformation, Integration, and eValuation Environ-
ment,” Journal of Concurrency: Practice and Experience, Wiley and Sons, Ltd.,
Vol. 5, No. 4, June, 1993, pp. 269–286.

3. Douglas C. Schmidt and Tatsuya Suda, “Transport System Architecture Services
for High-Performance Communication Systems,”Journal of Selected Areas of
Communications special-issue on Protocols for Gigabit Networks, IEEE, Vol. 11,
No. 4, May, 1993, pp. 489–506.

x

Refereed Academic Conference Publications

4. “Performance Experiments on Alternative Methods for Structuring Active Ob-
jects in High-Performance Parallel Communication Systems,” 9th OOPSLA Con-
ference, poster session, ACM, Portland, Oregon, October, 1994.

5. Douglas C. Schmidt, “Reactor: An Object Behavioral Pattern for Concurrent
Event Demultiplexing and Dispatching,”Proceedings of the1st Annual Confer-
ence on the Pattern Languages of Programs, Monticello, Illinois, August, 1994.

6. Douglas C. Schmidt and Tatsuya Suda, “Experiences with an Object-Oriented Ar-
chitecture for Developing Dynamically Extensible Network Management Soft-
ware,” Proceedings of the Globecom Conference, IEEE, San Francisco, Califor-
nia, November, 1994.

7. Douglas C. Schmidt, Burkhard Stiller, Tatsuya Suda, and Martina Zitterbart, “Con-
figuring Function-based Communication Protocols for Distributed Applications,”
Proceedings of the8th International Working Conference on Upper Layer Proto-
cols, Architectures, and Applications, IFIP, Barcelona, Spain, June 1-3, 1994, pp.
1–13.

8. Douglas C. Schmidt and Tatsuya Suda, “The ADAPTIVE Service Executive: An
Object-Oriented Architecture for Configuring Concurrent Distributed Communi-
cation Systems,”Proceedings of the8th International Working Conference on Up-
per Layer Protocols, Architectures, and Applications, IFIP, Barcelona, Spain, June
1-3, 1994, pp. 1–14.

9. Douglas C. Schmidt, “ASX: An Object-Oriented Framework for Developing Dis-
tributed Applications,”Proceedings of the6th C++ Conference, USENIX, Cam-
bridge, Massachusetts, April, 1994.

10. Douglas C. Schmidt, Burkhard Stiller, Tatsuya Suda, Ahmed Tantawy, and Mar-
tina Zitterbart, “Configuration Support for Flexible Function-Based Communica-
tion Systems,”Proceedings of the18th Conference on Local Computer Networks,
IEEE, Minneapolis, Minnesota, September 20-22, 1993, pp. 369–378.

11. Douglas C. Schmidt and Tatsuya Suda, “ADAPTIVE: a Framework for Experi-
menting with High-Performance Transport System Process Architectures,”Pro-
ceedings of the2nd International Conference on Computer Communications and
Networks, ISCA, San Diego, California, June 28-30, 1993, pp. 1–8.

12. Donald F. Box, Douglas C. Schmidt, and Tatsuya Suda, “ADAPTIVE: An Object-
Oriented Framework for Flexible and Adaptive Communication Protocols,”Pro-
ceedings of the4th Conference on High Performance Networking, IFIP, Liege,
Belgium, December 14-18, 1992, pp. 367–382.

13. Douglas C. Schmidt, Donald F. Box, and Tatsuya Suda, “ADAPTIVE: A Flexible
and Adaptive Transport System Architecture to Support Lightweight Protocols

xi

for Multimedia Applications on High-Speed Networks,”Proceedings of the1st

Symposium on High Performance Distributed Computing, IEEE, Syracuse, New
York, September 9-11, 1992, pp. 174–186.

14. Richard W. Selby, Adam A. Porter, Douglas C. Schmidt, and James Berney, “Metric-
Driven Analysis and Feedback Systems for Enabling Empirically Guided Soft-
ware Development,”Proceedings of the13th Annual International Conference on
Software Engineering, IEEE, Austin, Texas, May, 1991, pp. 430–443.

15. Douglas C. Schmidt “GPERF: A Perfect Hash Function Generator,”Proceedings
of the2nd C++ Conference, USENIX, San Francisco, California, April 9-11, 1990,
pp. 87–102.

Refereed Academic Workshop Publications

16. Douglas C. Schmidt and Tatsuya Suda, “Measuring the Impact of Alternative
Parallel Process Architectures on Communication Subsystem Performance,”Pro-
ceedings of the Proceedings of the4th International Workshop on Protocols for
High-Speed Networks, IFIP, Vancouver, British Columbia, August, 1994, pp. 1–
17.

17. Douglas C. Schmidt and Tatsuya Suda, “The Service Configurator Framework:
An Extensible Architecture for Dynamically Configuring Concurrent, Multi-service
Network Daemons,”Proceedings of the2nd International Workshop on Config-
urable Distributed Systems, IEEE, Pittsburgh, PA, March 21-23, 1994, pp. 190–
201.

18. Douglas C. Schmidt, Burkhard Stiller, Tatsuya Suda, and Martina Zitterbart, “Tools
for Generating Application-Tailored Multimedia Protocols on Heterogeneous Multi-
Processor Platforms,”Proceedings of the2nd Workshop on High-Performance
Communications Subsystems, IEEE, Williamsburg, Virginia, September 1-3, 1993,
pp. 1–7.

19. Douglas C. Schmidt and Tatsuya Suda, “A Framework for Developing and Exper-
imenting with Parallel Process Architectures to Support High-Performance Trans-
port Systems,”Proceedings of the2nd Workshop on High-Performance Commu-
nications Subsystems, IEEE, Williamsburg, Virginia, September 1-3, 1993, pp.
1–8.

20. Tatsuya Suda, Douglas C. Schmidt, Donald F. Box, Duke Hong and Hung Huang,
“High Speed Networks,”Proceedings of the International Computer World Sym-
posium ’92, Kobe, Japan, November, 1992.

21. Hung K. Huang, Douglas C. Schmidt, Donald F. Box, Kazu Shimono, Girish Kot-
mire, Unmesh Rathi, and Tatsuya Suda, “ADAPTIVE: A Prototyping Environ-
ment for Transport Systems.”Proceedings of the4th International Workshop on

xii

Computer Aided Modeling, Analysis, and Design of Communication Links and
Networks (CAMAD), IEEE, Montreal, Canada, September, 1992.

22. Donald F. Box, Douglas C. Schmidt, and Tatsuya Suda, “Alternative Approaches
to ATM/Internet Interoperation,”Proceedings of the1st Workshop on the Archi-
tecture and Implementation of High-Performance Communication Subsystems,
IEEE, Tucson, Arizona, February 17-19, 1992, pp. 1–5.

23. Douglas C. Schmidt and Richard Selby “Modeling Software Interconnectivity,”
Proceedings of the22nd Symposium on the Interface: Computer Science and
Statistics, East Lansing, MI, May, 1990.

24. Richard W. Selby, Greg James, Kent Madsen, Joan Mahoney, Adam A. Porter, and
Douglas C. Schmidt “Classification Tree Analysis Using the Amadeus Measure-
ment and Empirical Analysis System,”Proceedings of the14th Annual Software
Engineering Workshop at NASA Software Engineering Laboratory, College Park,
Maryland, November, 1989, pp. 239–250.

Refereed Trade Journal Publications

25. Douglas C. Schmidt, “Transparently Parameterizing Synchronization Mechanisms
into a Concurrent Distributed Application,”C++ Report, SIGS, Vol. 6, No. 5,
July/August 1994, pp. 1–10.

26. Douglas C. Schmidt, “A Domain Analysis of Network Daemon Design Dimen-
sions,”C++ Report, SIGS, Vol. 6, No. 3, March/April, 1994, pp. 1–12.

27. Douglas C. Schmidt, “The Object-Oriented Design and Implementation of the
Reactor: A C++ Wrapper for UNIX I/O Multiplexing,”C++ Report, SIGS, Vol.
5, No. 7, September, 1993, pp. 1–14.

28. Douglas C. Schmidt, “The Reactor: An Object-Oriented Interface for Event-Driven
UNIX I/O Multiplexing,” C++ Report, SIGS, Vol. 5, No. 2, February, 1993, pp.
1–12.

29. Douglas C. Schmidt, “IPCSAP: An Object-Oriented Interface to Operating Sys-
tem Interprocess Communication Services,”C++ Report, SIGS, Vol. 4, No. 8,
November/December, 1992, pp. 1–10.

30. Douglas C. Schmidt, “Systems Programming with C++ Wrappers: Encapsulating
Interprocess Communication Services with Object-Oriented Interfaces,”C++ Re-
port, SIGS, Vol. 4, No. 7, September/October, 1992, pp 1–6.

Refereed Trade Conference Publications

xiii

31. Douglas C. Schmidt and Paul Stephenson, “Achieving Reuse Through Design
Patterns,”Proceedings of the3rd Annual C++ World Conference, SIGS, Austin,
Texas, November 14-18, 1994.

32. Douglas C. Schmidt, “The ADAPTIVE Communication Environment: Object-
Oriented Network Programming Components for Developing Distributed Appli-
cations,”Proceedings of the12th Annual Sun Users Group Conference, SUG, San
Francisco, June 16-17, 1994. This paper won the “best student paper” award at
the conference.

33. Douglas C. Schmidt, “The ADAPTIVE Communication Environment: Object-
Oriented Network Programming Components for Developing Client/Server Ap-
plications,”Proceedings of the11th Annual Sun Users Group Conference, SUG,
San Jose, December 7-9, 1993, pp. 214–225. This paper won the “best student
paper” award at the conference.

34. Douglas C. Schmidt and Paul Stephenson, “An Object-Oriented Framework for
Developing Network Server Daemons,”Proceedings of the2nd Annual C++ World
Conference, SIGS, Dallas, Texas, October 18-22, 1993, pp. 73–85.

Honors and Awards

� Invited to join the faculty at Washington University, in St. Louis, Missouri as an
assistant faculty member from August, 1994 to present.

� Selected to participate in the ACM OOPSLA ’94 Doctoral Symposium.

� Invited by Dr. Martina Zitterbart to participate in a 4-week international exchange
program at the Universität Karlsruhe Institut f¨ur Telematik in Karlsruhe, Germany,
April, 1993.

� Invited to write a column on distributed object computing for theC++ Report
magazine from July, 1994 to present.

� Invited contributor to theC++ Reportmagazine from July 1992 to present.

� Served as elected representative to the Associated Graduate Student organization
at the University of California, Irvine from May, 1991 to June, 1992.

� Served as elected graduate student representative to the Computer Science Com-
puting Resource Committee at the University of California, Irvine from August,
1988 to August, 1990.

� Invited to work with Dr. Peter G. W. Keen at the International Center for Informa-
tion Technology, Washington D.C. on a project assessing techniques for improving
software productivity in the summer of 1987.

xiv

� Awarded Teaching and Research Assistantships in Computer Science at Univer-
sity of California, Irvine during 1986-1994.

� Awarded Research Assistantship in Sociology at the College of William and Mary
during 1985-1986.

Fields of Study

Distributed systems

Parallel processing

High-performance communication subsystems and protocols

Object-oriented design and programming

xv

Abstract of the Dissertation

An Object-Oriented Framework for Experimenting with

Alternative Process Architectures for Parallelizing

Communication Subsystems

by

Douglas C. Schmidt

Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 1995

Professor Tatsuya Suda, Chair

Professor Richard Selby, Co-chair

The demand for high-performance distributed communication systems (such as

video-on-demand servers, global personal communication systems, and the underlying

communication protocol stacks) is increasing dramatically. Distributing communication

services throughout high-speed computer networks offers many potential benefits by in-

creasing performance, scalability, and functionality. In particular, performing communi-

cation services in parallel helps to improve performance by increasing processing rates

and reducing latency. To improve performance significantly, however, the speed-up ob-

tained from parallel processing must outweigh the major sources of overhead associated

with parallel processing. On multi-processor platforms based on shared memory (rather

xvi

than message passing), these sources of overhead primarily involve context switching,

synchronization, and data movement.

Many communication systems (such as the layered protocol stacks specified by

the TCP/IP and the ISO OSI reference models) decompose naturally into a series of

hierarchically-related tasks. A number of process architectures have been proposed as

the basis for parallelizing these types of communication systems in order to improve

performance. There are two fundamental types of process architectures: task-based

and message-based. Task-based process architectures are formed by binding one or

more processing elements to the layers of tasks in a communication system. In contrast,

message-based process architectures are formed by binding the processing elements to

the data messages and control messages that flow through the layers of tasks. Each type

of process architecture incurs different levels of context switching, synchronization, and

data movement overhead. This overhead is affected by factors such as the application

requirements, OS and hardware platform, and network characteristics.

This dissertation describes parallel process architecture performance experiments

conducted using the ADAPTIVE Service eXecutive (ASX) framework. The purpose of

this research is to identify architectures for structuring parallelism to reduce the overhead

incurred on shared memory multi-processing platforms. TheASXframework facilitates

the flexible configuration of high-performance distributed communication systems that

effectively utilize parallelism on shared memory multi-processor platforms. TheASX

framework controls for a number of relevant confounding factors (such as application

and protocol functionality, concurrency control schemes, and application traffic charac-

teristics). By controlling these factors, theASXframework enables precise measurement

xvii

of the performance impact of alternative process architectures for parallelizing commu-

nication protocol stacks. The dissertation describes the object-oriented architecture of

theASXframework and presents results from the process architecture performance ex-

periments.

xviii

Chapter 1

Introduction

Advances in VLSI and fiber optic technology are shifting performance bottlenecks

from the underlying networks to the communication subsystem. A communication sub-

system consists ofprotocol tasksandoperating system mechanisms. Protocol tasks in-

clude connection establishment and termination, end-to-end flow control, remote con-

text management, segmentation/reassembly, demultiplexing, error protection, session

control, and presentation conversions. Operating system mechanisms include process

management, timer-based and I/O-based event invocation, message buffering, and layer-

to-layer flow control. Together, protocol tasks and operating system mechanisms sup-

port the implementation and execution of communication protocol stacks composed of

protocol tasks [SS93].

Executing protocol stacks in parallel on multi-processor platforms is a promis-

ing technique for increasing protocol processing performance [ZST93]. Significant in-

creases in performance are possible, however, only if the speed-up obtained from paral-

lelism outweights the context switching and synchronization overhead associated with

parallel processing. A context switch is triggered when an executing process relin-

quishes its associated processing element (PE) voluntarily or involuntarily. Depending

on the underlying OS and hardware platform, a context switch may require dozens to

hundreds of instructions to flush register windows, memory caches, instruction pipelines,

1

2

and translation look-aside buffers [MB91]. Synchronization overhead arises from lock-

ing mechanisms that serialize access to shared objects (such as message buffers, message

queues, protocol connection records, and demultiplexing maps) used during protocol

processing [Mat93].

A number ofprocess architectureshave been proposed as the basis for paralleliz-

ing communication subsystems [Mat93, Zit91, GNI92, PS93, JSB90]. There are two

fundamental types of process architectures:task-basedandmessage-based. Task-based

process architectures are formed by binding one or more PEs to units of protocol func-

tionality (such as presentation layer formatting, transport layer end-to-end flow control,

and network layer fragmentation and reassembly). In this architecture, parallelism is

achieved by executing protocol tasks in separate PEs, and passing data messages and

control messages between the tasks/PEs. In contrast, message-based process architec-

tures are formed by binding the PEs to data messages and control messages received

from applications and network interfaces. In this architecture, parallelism is achieved

by simultaneously escorting multiple data messages and control messages on separate

PEs through a stack of protocol tasks.

Protocol stacks (such as the TCP/IP protocol stack and the ISO OSI 7 layer proto-

col stack) may be implemented using either task-based or message-based process ar-

chitectures. However, these two types of process architectures exhibit significantly

different performance characteristics that vary across operating system and hardware

platforms. For instance, on shared memory multi-processor platforms, task-based pro-

cess architectures exhibit high context switching and data movement overhead due to

scheduling and caching properties of the OS and hardware [WF93]. In contrast, in

a message-passing multi-processor environment, message-based process architectures

exhibit high levels of synchronization overhead due to high latency access to global

3

resources such as shared memory, synchronization objects, or connection context infor-

mation [Zit91].

Existing studies have generally selected a single task-based or message-based pro-

cess architecture and studied it in isolation. Moreover, these studies have been conducted

on different OS and hardware platforms, using different protocol stacks and implementa-

tion techniques, which makes it difficult to meaningfully compare results. In this paper,

we describe the design and implementation of an object-oriented framework that sup-

ports controlled experiments with several alternative parallel process architectures. The

framework controls for a number of relevant confounding factors (such as protocol func-

tionality, concurrency control strategies, application traffic characteristics, and network

interfaces), which enables precise measurement of the performance impact of using dif-

ferent process architectures to parallelize communication protocol stacks. This paper

reports the results of systematic, empirical comparisons of the performance of several

message-based and task-based process architectures implemented on a widely-available

shared memory multi-processor platform.

The organization of this dissertation is as follows. Chapter 2 presents a survey of

software mechanisms that comprise the architecture of communication subsystems. This

chapter also outlines the two fundamental types of process architectures and classifies

related work accordingly.

Chapter 3 describes the structure and functionality of the ADAPTIVE Service

eXecutiveASX framework. TheASX framework provides an integrated set of object-

oriented components that facilitate the development of, and experimentation with, par-

allel process architectures on multi-processor platforms.

4

Chapter 4 examines empirical results from parallel process architecture experi-

ments conducted using theASXframework. These experiments demonstrate the extent

to which different process architectures affect protocol stack performance.

Chapter 5 presents concluding remarks and outlines future research directions.

Chapter 2

A Survey of Software Components in

Communication Subsystem

Architectures

2.1 Introduction

The demand for many types of distributed applications is expanding rapidly, and

application requirements and usage patterns are undergoing significant changes. When

coupled with the increased channel speeds and services offered by high-performance

networks, these changes make it difficult for existing communication subsystems to pro-

cess application data at network channel speeds. This chapter examines communication

subsystem mechanisms that support bandwidth-intensive multimedia applications such

as medical imaging, scientific visualization, full-motion video, and tele-conferencing.

These applications possess quality-of-service requirements that are significantly differ-

ent from conventional data-oriented applications such as remote login, email, and file

transfer.

Multimedia applications involve combinations of requirements such as extremely

high throughput (full-motion video), strict real-time delivery (manufacturing control

5

6

systems), low latency (on-line transaction processing), low delay jitter (voice conversa-

tion), capabilities for multicast (collaborative work activities) and broadcast (distributed

name resolution), high-reliability (medical image transfer), temporal synchronization

(tele-conferencing), and some degree of loss tolerance (hierarchically-coded video). Ap-

plications also impose different network traffic patterns. For instance, some applica-

tions generate highly bursty traffic (variable bit-rate video), some generate continuous

traffic (constant bit-rate video), and others generate short-duration, interactive, request-

response traffic (network file systems using remote procedure calls (RPC)).

Application performance is affected by a variety of network and communication

subsystem factors. Networks provide a transmission framework for exchanging various

types of information (such as voice, video, text, and images) between gateways, bridges,

and hosts. Example networks include the Fiber Distributed Data Interface (FDDI), the

Distributed Queue Dual Bus (DQDB), the Asynchronous Transfer Mode (ATM), X.25

networks, and IEEE 802 LANs. In general, the lower-layer, link-to-link network proto-

cols are implemented in hardware.

Communication subsystems integrate higher-layer, end-to-end communication pro-

tocols such as TCP, TP4, VMTP, XTP, RPC/XDR, and ASN.1/BER together with the

operating system (OS) mechanisms provided by end systems. The tasks performed by

the communication subsystem may be classified into several levels of abstraction. The

highest level provides an application interface that mediates access to end-to-end com-

munication protocols. These protocols represent an intermediate level of abstraction that

provides presentation and transport mechanisms for various connectionless, connection-

oriented, and request-response protocols. These mechanisms are implemented via pro-

tocol tasks such as connection management, flow control, error detection, retransmis-

sion, encryption, and compression schemes. Both the application interface and the pro-

tocols operate within an OS framework that orchestrates various hardware resources

7

(e.g.,CPU(s), primary and secondary storage, and network adapters) and software com-

ponents (e.g.,virtual memory, process architectures, message managers, and protocol

graphs) to support the execution of distributed applications.

Performance bottlenecks are shifting from the underlying networks to the com-

munication subsystem. This shift is occurring due to advances in VLSI technology

and fiber optic transmission techniques that have increased network channel speeds by

several orders of magnitude. Increasing channel speeds accentuate certain sources of

communication subsystem overhead such as memory-to-memory copying and process

management operations like context switching and scheduling. This mismatch between

the performance of networks and the communication subsystem constitutes athroughput

preservation problem[MS92], where only a portion of the available network bandwidth

is actually delivered to applications on an end-to-end basis.

In general, sources of communication subsystem overhead are not decreasing as

rapidly as network channel speeds are increasing. This results from factors such as

improperly layered communication subsystem architectures [CWWS92, HP91]. It is

also exacerbated by the widespread use of operating systems that are not well-suited

to asynchronous, interrupt-driven network communication. For example, many net-

work adapters generate interrupts for every transmitted and received packet, which in-

creases the number of CPU context switches [Haa91, KC88]. Despite increasing total

MIPS, RISC-based computer architectures exhibiting high context switching overhead

that penalizes interrupt-driven network communication. This overhead results from the

cost of flushing pipelines, invalidating CPU instruction/data caches and virtual memory

translation-lookaside buffers, and managing register windows [JSB90].

8

Alleviating the throughput preservation problem and providing very high data

rates to applications requires the modification of conventional communication subsys-

tem architectures [SP90]. To help system researchers navigate through the communica-

tion subsystem design space, this chapter presents a taxonomy of six key communica-

tion subsystem mechanisms including the process architecture, virtual remapping, and

event management dimensions, as well as the message management, multiplexing and

demultiplexing, and layer-to-layer flow control dimensions. The taxonomy is used to

compare and contrast four general-purpose commercial and experimental communica-

tion subsystems (System V STREAMS [Rag93], the BSD UNIX network subsystem

[LMKQ89], the x-kernel [HP91], and the Conduit framework from the Choices operat-

ing system [Zwe90]). The intent of the chapter is to explore communication subsystem

design alternatives that support distributed applications effectively.

This chapter is organized as follows: Section 2.2 outlines the general architec-

tural components in a communication subsystem; Section 2.3 describes a taxonomy for

classifying communication subsystems according to their kernel and protocol family ar-

chitecture dimensions; Section 2.4 provides a comparison of four representative com-

munication subsystems; and Section 2.5 presents concluding remarks.

2.2 Levels of Abstraction in a Communication Subsys-

tem Architecture

Communication subsystem architectures provide a framework for implementing

end-to-end protocols that support distributed applications operating over local and wide

area networks. This framework integrates hardware resources and software components

used to implementprotocol graphs[OP92]. A protocol graph characterizes hierarchical

9

HDLC/X.21HDLC/X.21

TP4TP4

ASN.1

X.500X.500

TP0TP0

FTAMFTAMX.400X.400

IPIP

RPC/XDR

TCP

FTP

UDP

TFTP

ETHERNETETHERNET

NFS

RPC/XDR

TCP

FTP

UDP

TFTP

INTERNET MODEL ISO OSI MODEL

CLNPCLNP X.25X.25

FDDIFDDI

ASN.1

Figure 2.1: Protocol Graph for Internet and OSI Communication Models

relations between protocols in communication models such as the Internet, OSI, XNS,

and SNA. Figure 2.1 depicts protocol graphs for the Internet and OSI communication

models. Each node in a protocol graph represents a protocol such as RPC/XDR, TCP,

IP, TP4, or CLNP.

Protocol graphs are implemented via mechanisms provided by the communication

subsystem architecture. Communication subsystems may be modeled as nested virtual

machines that constitute different levels of abstraction. Each level of virtual machine

is characterized by the mechanisms it exports to the surrounding levels. The model

depicted in Figure 2.2 represents an abstraction of hardware and software mechanisms

found in conventional communication subsystems. Although certain communication

subsystems bypass or combine adjacent levels for performance reasons [CT90, Ten89],

Figure 2.2 provides a concise model of the relationships between major communication

subsystem components.

The hierarchical relationships illustrated by the protocol graph in Figure 2.1 are

generally orthogonal to the levels of abstraction depicted by the communication subsys-

tem virtual machines shown in Figure 2.2. In particular, protocol graphs in Figure 2.1 are

10

TRANSPORT SYSTEM
ARCHITECTURE

APPLICATION INTERFACE

OPEN AND CLOSE ENDPOINTS,
SEND AND RECEIVE DATA

AND CONTROL MESSAGES

HARDWARE DEVICES

CPU(S), PRIMARY AND

SECONDARY STORAGE MANAGEMENT,
NETWORK ADAPTERS

SESSION ARCHITECTURE

CONNECTION MANAGEMENT,
RELIABILITY MANAGEMENT,

END-TO-END-FLOW CONTROL,
PRESENTATION SERVICES

NETWORKS

FDDI, DQDB,
ATM, ETHERNET

APPLICATIONS

VOICE, VIDEO,
DATA, IMAGE

PROTOCOL FAMILY

ARCHITECTURE

SESSION MANAGEMENT, MESSAGE

MANAGEMENT, MULTIPLEXING,
LAYER-TO-LAYER FLOW CONTROL

KERNEL ARCHITECTURE

PROCESS ARCHITECTURE,
EVENT MANAGEMENT,

VIRTUAL MEMORY REMAPPING

Figure 2.2: Architectural Components in a Communication Subsystem

implemented via the communication subsystem mechanisms shown in Figure 2.2. The

following paragraphs summarize the key levels in the communication subsystem, which

consist of theapplication interface, session architecture, protocol family architecture,

andkernel architecture.

As shown by the shaded portions of Figure 2.2, this chapter focuses on the ker-

nel architecture (described in Section 2.3.1) and the protocol family architecture (de-

scribed in Section 2.3.2). A thorough discussion of the application interface is beyond

the scope of this chapter and topics involving the session architecture are discussed fur-

ther in [SSS+93]. These two components are briefly outlined below for completeness

and to provide a context for discussing the other levels.

2.2.1 Application Interface

Theapplication interfaceis the outermost-level of a communication subsystem.

Since protocol software often resides within the protected address space of an operating

11

system kernel, programs utilize this application interface to interact with inner-level

communication subsystem mechanisms. The application interface transfers data and

control information between user processes and the session architecture mechanisms

that perform connection management, option negotiation, data transmission control, and

error protection. BSD UNIX sockets [LMKQ89] and System V UNIX TLI [Sun92] are

widely available examples of application interfaces.

Performance measurements indicate that conventional application interfaces con-

stitute 30 to 40 percent of the overall communication subsystem overhead [HP91, ACR88].

Much of this overhead results from the memory-to-memory copying and process syn-

chronization that occurs between application programs and the inner-level communica-

tion subsystem mechanisms. The functionality and performance of several application

interfaces is evaluated in [Che87, MK91].

2.2.2 Session Architecture

The next level of the communication subsystem is thesession architecture, which

performs “end-to-end” network tasks. Session architecture mechanisms are associated

with local end-points of network communication, often referred to as protocolsessions.1

A session consists of data structures that store context information and subroutines that

implement the end-to-end protocol state machine operations.

Session architecture mechanisms help satisfy end-to-end application quality-of-

service requirements involving throughput, latency, and reliability [JBB92]. In par-

ticular, quality-of-service is affected by session architecture mechanisms that manage

connections(e.g.,opening and closing end-to-end network connections, and reporting

1The term “session” is used in this chapter in a manner not equivalent to the ISO OSI term “session

layer.”

12

and updating connection context information),reliability (e.g.,computing checksums,

detecting mis-sequenced or duplicated messages, and performing acknowledgments and

retransmissions), andend-to-end flow and congestion(e.g.,advertizing available win-

dow sizes and tracking round-trip packet delays). In addition, session architecture mech-

anisms also manage per-connectionprotocol interpreters(e.g.,controlling transitions in

a transport protocol’s state machine) andpresentation services(e.g.,encryption, com-

pression, and network byte-ordering conversions). Various session architecture issues

are examined in [PS91, DDK+90, Svo89, SSS+93].

2.2.3 Protocol Family Architecture

Theprotocol family architecture2 providesintra- andinter-protocolmechanisms

that operate within and between nodes in a protocol graph, respectively. Intra-protocol

mechanisms manage the creation and destruction of sessions that are managed by the

session architecture described above. Inter-protocol mechanisms provide message man-

agement, multiplexing and demultiplexing, and layer-to-layer flow control.

The primary difference between the session architecture and the protocol family

architecture is that session architecture mechanisms manage theend-to-endprocessing

activities for network connections, whereas protocol family architecture mechanisms

manage thelayer-to-layerprocessing activities that occur within multi-layer protocol

graphs. In some cases, these activities are entirely different (e.g.,the presentation ser-

vices provided by the session architecture such as encryption, compression, and network

2A protocol family is a collection of network protocols that share relatedcommunications syntax(e.g.,

addressing formats),semantics(e.g., interpretation of standard control messages), andoperations(e.g.,

demultiplexing schemes and checksum computation algorithms). A wide range of protocol families exist

such as SNA, TCP/IP, XNS, and OSI.

13

byte-ordering are unnecessary in the protocol family architecture). In other cases, dif-

ferent mechanisms are used to implement the same abstract task.

The latter point is exemplified by examining several mechanisms commonly used

to implement flow control.End-to-endflow control is a session architecture mechanism

that employs sliding window or rate control schemes to synchronize the amount of data

exchanged between sender(s) and receiver(s) communicating at the same protocol layer

(e.g.,between two TCP connection end-points residing on different hosts).Layer-to-

layer flow control, on the other hand, is a protocol family architecture mechanism that

regulates the amount of data exchanged between adjacent layers in a protocol graph

(e.g.,between the TCP and IP STREAM modules in System V STREAMS). In general,

end-to-end flow control requires distributed context information, whereas layer-to-layer

flow control does not.

Mechanisms in the protocol family architecture are often reusable across a wide-

range of communication protocols. In contrast, session architecture mechanisms tend

to be reusable mostly within a particular class of protocols. For instance, most commu-

nication protocols require some form of message buffering support (which is a proto-

col family architecture mechanism). However, not all communication protocols require

retransmission, flow control, or connection management support. In addition, certain

protocols may only work with specific session architecture mechanisms (such as the

standard TCP specification that requires sliding-window flow control and cumulative

acknowledgment).

14

2.2.4 Kernel Architecture

The kernel architecture3 provides mechanisms that manage hardware resources

such as CPU(s), primary and secondary storage, and various I/O devices and network

adapters. These mechanisms support concurrent execution of multiple protocol tasks on

uni- and multi-processors, virtual memory management, and event handling. It is crucial

to implement kernel architecture mechanisms efficiently since the application interface

and session and protocol family architectures ultimately operate by using these mecha-

nisms. The primary distinction between the protocol family architecture and the kernel

architecture is that kernel mechanisms are also utilized by user applications and other

OS subsystems such as the graphical user interface or file subsystems. In contrast, pro-

tocol family architecture mechanisms are concerned primarily with the communication

subsystem.

2.3 A Taxonomy of Communication Subsystem Architec-

ture Mechanisms

Table 2.1 presents a taxonomy of six key kernel architecture and protocol fam-

ily architecture mechanisms that support the layer-to-layer computing requirements of

protocol graphs end systems. The following section describes the communication sub-

system mechanisms presented in Table 2.1.

3The term “kernel architecture” is used within this chapter to identify mechanisms that form the “nu-

cleus” of the communication subsystem. However, protocol and session architecture components may

reside within an OS kernel (BSD UNIX [LMKQ89], and System V UNIX [Rag93]), in user-space (Mach

[ABG+86] and the Conduit framework [Zwe90]), in either location (thex-kernel [HP91]), or in off-board

processors (Nectar [CSSZ90] and VMP [KC88]).

15

Category Dimension Subdimension Alternatives

Process (1) Concurrency Models single-threaded, HWP, LWP, coroutines

Kernel Architecture (2) Process Architectures message-based, task-based, hybrid

Architecture VM Remapping outgoing and/or incoming

Dimensions Event (1) Search Structure array, linked list, heap

Management (2) Time Relationships relative, absolute

Message Management (1) Memory Management uniform, non-uniform performance

Protocol (2) Memory Copy Avoidance list-based, DAG-based data structure

Family Muxing and (1) Synchronization synchronous, asynchronous

Architecture Demuxing (2) Layering layered, de-layered

Dimensions (3) Searching indexing, sequential search, hashing

(4) Caching single-item, multiple-item

Layer-to-layer Flow Control per-queue, per-process

Table 2.1: Communication Subsystem Taxonomy Template

2.3.1 Kernel Architecture Dimensions

As described below, the kernel architecture provides theprocess architecture, vir-

tual memory remapping, andevent managementmechanisms utilized by the session and

protocol family architectures.

2.3.1.1 The Process Architecture Dimension

A process is a collection of resources (such as file descriptors, signal handlers, a

run-time stack, etc.) that may support the execution of instructions within an address

space. This address space may be shared with other processes. Other terms (such as

threads [TRG+87] or light-weight processes [EKB+92]) are often used to denote the

same basic concept. Our use of the term process is consistent with the definition adopted

in [Pre93, Gar90].

16

A process architecture represents a binding between various units of communica-

tion protocol processing (such as layers, functions, connections, and messages) and var-

ious structural configurations of processes. The process architecture selected for a com-

munication subsystem is one of several factors (along with protocol designs/implementations

and bus, memory, and network interface characteristics) that impact overall application

performance. In addition, the choice of process architecture also influences demulti-

plexing strategies [Fel90] and protocol programming techniques [HP91, Atk88].

Several concurrency models are outlined below. These models form the basis for

implementing the alternative process architectures that are examined in detail following

concurrency model discussion. In order to produce efficient communication subsystems,

it is important to match the selected process architecture with the appropriate concur-

rency model.

(1) Concurrency Models: Heavy-weight processes, light-weight processes, andcorou-

tinesare concurrency models used to implement process architectures. Each model ex-

hibits different performance characteristics and allows different levels of control over

process management activities such as scheduling and synchronization. The following

paragraphs describe key characteristics of each concurrency model:

� Heavy-Weight Processes: A heavy-weight process (HWP) typically resides

in a separate virtual address space managed by the OS kernel and the hardware mem-

ory management unit. Synchronizing, scheduling, and exchanging messages between

HWPs involves context switching, which is a relatively expensive operation in many

operating systems. Therefore, HWPs may not be an appropriate choice for executing

multiple interacting protocol processing activities concurrently.

17

� Light-Weight Processes: Light-weight processes (LWPs) differ from HWPs

since multiple LWPs generallysharean address space by default. This sharing reduces

the overhead of LWP creation, scheduling, synchronization, and communication for the

following reasons:

� Context switching between LWPs is less time consuming than HWPs since there

is less context information to store and retrieve

� It may not be necessary to perform a “mode switch” between kernel- and user-

mode when scheduling and executing an LWP [EKB+92]

� Communication between LWPs may use shared memory rather than message pass-

ing

Note that LWPs may be implemented in kernel-space, user-space, or some hybrid con-

figuration [ABLL92].

�Coroutines: In the coroutine model, a developer (rather than an OS scheduler)

explicitly chooses the next coroutine to run at a particular synchronization point. When

a synchronization point is reached, the coroutine suspends its activities to allow another

coroutine to execute. At some later point, the second coroutine may resume control back

to the first coroutine. Coroutines provide developers with the flexibility to schedule and

execute tasks in any desired manner. However, developers also assume responsibility

for handling all scheduling details, as well as avoiding starvation and deadlock.

Executing protocol and session mechanisms via multiple processes is often less

complicated and error-prone than synchronizing and scheduling these mechanisms man-

ually via coroutines. In addition, coroutines support only interleaved process execution,

which limits the benefits of multi-processing since only one process may run at any given

18

PE

PE

PE

PE

(1) TASK-BASED
PROCESS ARCHITECTURE

active

(2) MESSAGE-BASED
PROCESS ARCHITECTURE

PE PEPE PE

active

active

active

active

active

active

active

MESSAGE
OBJECT

PE

PROCESSING
ELEMENT

TASK
OBJECT

Figure 2.3: Process Architecture Components and Interrelationships

time. In general, it appears that LWPs are a more appropriate mechanism for implement-

ing process architectures than HWPs since minimizing context switching overhead is es-

sential for high-performance [HP91]. Even with LWPs, however, to it is still important

to perform concurrent processing efficiently to reduce the overhead from (1) preempt-

ing, rescheduling, and synchronizing executing processes and (2) serializing access to

shared resources must be minimized.

(2) Process Architecture Alternatives: Figure 2.3 illustrates the following basic el-

ements of a process architecture:

� Data messages and control messages– which are sent and received from one or

more applications and network devices

� Protocol tasks– which are the units of protocol functionality that process the con-

trol messages and data messages

19

APPLICATION INTERFACE

(2) FUNCTIONAL
PARALLELISM

NETWORK INTERFACE

TO RECEVIER

FROM RECEIVER

(1) LAYER
PARALLELISM

NETWORK INTERFACE

LAYER N

LAYER N + 1

APPLICATION INTERFACE

CONGESTION

CONTROL
DATA

REXMIT

CONNECTION

MANAGEMENT

FLOW

CONTROL

DATA

XMIT

LAYER N- 1

Figure 2.4: Task-based Process Architectures

� Processing elements(PEs) – which execute protocol tasks

There are two fundamental types of process architectures that structure these basic ele-

ments in different ways:

� Task-based process architectures– which bind one or more PEs to protocol pro-

cessing tasks (shown in Figure 2.3 (1)). In this architecture, tasks are the active

elements, whereas messages processed by the tasks are the passive elements.

� Message-based process architectures– which bind the PEs to the control messages

and the data messages received from applications and network interfaces (shown

in Figure 2.3 (2)). In this architecture, messages are the active elements, whereas

tasks that process the messages are the passive elements.

In terms of functionality, protocol suites (such as the Internet and ISO OSI ref-

erence models) may be implemented using either task-based or message-based process

20

architectures. However, each category of process architecture exhibits different struc-

tural and performance characteristics. The structural characteristics differ according

to (1) the granularity of the unit(s) of protocol processing (e.g., layer or function vs.

connection or message) that execute in parallel, (2) the degree of CPU scalability (i.e.,

the ability to effectively use only a fixed number of CPUs vs. a dynamically scalable

amount), (3) task invocation semantics (e.g.,synchronous vs. asynchronous execution)

and (4) the effort required to design and implement conventional and experimental pro-

tocols and services via a particular process architecture [Atk88]. In addition, different

configurations of application requirements, operating system (OS) and hardware plat-

forms, and network characteristics interact with the structural characteristics of process

architectures to yield significantly different performance results. For instance, on cer-

tain general-purpose OS platforms (such as the System V STREAMS framework on

multi-processor versions of UNIX), fine-grained task-based parallelism results in pro-

hibitively high levels of synchronization overhead [SPY+93]. Likewise, asynchronous,

rendezvous-based task invocation semantics often result in high data movement and

context switching overhead [WF93].

The remainder of this section summarizes the basic process architecture cate-

gories, classifies related work accordingly to these categories, and identifies several key

factors that influence process architecture performance.

� Task-based Process Architectures: Task-based process architectures asso-

ciate processes with clusters of one or more protocol tasks. Two common examples of

task-based process architectures areLayer ParallelismandFunctional Parallelism. The

primary difference between these two process architectures involves the granularity of

the protocol processing tasks. Protocol layers are generally more coarse-grained than

21

protocol tasks since they cluster multiple tasks together to form a composite service

(such as the end-to-end transport service provided by the ISO OSI transport layer).

� Layer Parallelism– Layer Parallelism is a relatively coarse-grained task-based

process architecture that associates a separate process with each layer (e.g., the

presentation, transport, and network layers) in a protocol stack. Certain proto-

col header and data fields in outgoing and incoming messages may be processed

in parallel as they flow through the “layer pipeline” (shown in Figure 2.4 (1)).

Intra-layer buffering, inter-layer flow control, and stage balancing are generally

necessary since processing activities in each layer may execute at different rates.

In general, strict adherence to the layer boundaries specified by conventional com-

munication models (such as the ISO OSI reference model) complicates stage bal-

ancing.

An empirical study of the performance characteristics of several software architec-

tures for implementing Layer Parallelism is presented in [WF93]. Likewise, the

XINU TCP/IP implementation [CS91] uses a variant of this approach to simplify

the design and implementation of its communication subsystem.

� Functional Parallelism– Functional Parallelism is a more fine-grained task-based

process architecture that applies one or more processes to execute protocol func-

tions (such as header composition, acknowledgement, retransmission, segmen-

tation, reassembly, and routing) in parallel. Figure 2.4 (2) illustrates a typical

Functional Parallelism design [BZ93], where protocol functions are encapsulated

within parallel finite-state machines that communicate by passing control and

data messages to each other. Functional Parallelism is often associated with “de-

layered” communication models [Haa91, Zit91, PS93] that simplify stage balanc-

ing by relaxing conventional layering boundaries in order to minimize queueing

delays and “pipeline stalls” within a protocol stack.

22

Implementing pipelined, task-based process architectures is relatively straight-

forward since they typically map onto conventional layered communication models us-

ing well-structured “producer/consumer” designs [Atk88]. Moreover, minimal concur-

rency control mechanisms are necessarywithina layer or function since multi-processing

is typically serialized at a service access point (such as the transport or application layer

interface).

�Message-based Process Architectures:Message-based process architectures

associate processes with messages, rather than with protocol layers or protocol tasks.

Two common examples of message-based process architectures areConnectional Par-

allelismandMessage Parallelism. The primary difference between these process archi-

tectures involves the point at which messages are demultiplexed onto a process. Connec-

tional Parallelism demultiplexes all messages bound for the same connection onto the

same process, whereas Message Parallelism demultiplexes messages onto any available

process.

� Connectional Parallelism– Connectional Parallelism is a relatively coarse-grained

message-based process architecture that associates a separate process with ev-

ery open connection. Figure 2.5 (1) illustrates this approach, where connections

C1; C2; C3, andC4 execute in separate processes that perform the requisite pro-

tocol functions on all messages associated with their connection. Within a con-

nection, multiple protocol processing functions are invoked serially on each mes-

sage as it flows through a protocol stack. Outgoing messages typically borrow

the thread of control from the application process and use it to shepard one or

more messages down a protocol stack [Gar90]. For incoming messages, a de-

vice driver or packet filter [MJ93] typically performs demultiplexing operations

to determine the correct process for each message. In general, Connectional Par-

allelism is well-suited for protocols that demultiplex early in their protocol stack

23

APPLICATION INTERFACE

NETWORK INTERFACE

APPLICATION INTERFACE

NETWORK INTERFACE

LAYER

N - 1

LAYER

N

LAYER

N + 1

C1 C2 C3 C4

(1) CONNECTIONAL
 PARALLELISM

(2) MESSAGE
PARALLELISM

LAYER N + 1

LAYER N

LAYER N - 1

Figure 2.5: Message-based Process Architectures

since it is difficult to maintain a strict process-per-connection association across

demultiplexing boundaries [Fel90].

Connectional Parallelism is relatively simple to implement if an OS allows multi-

ple independent system calls, device interrupts, and daemon processes to operate

in parallel [Gar90]. Moreover, if the number of CPUs is greater than or equal

to the number of active connections, Connectional Parallelism also exhibits low

communication, synchronization, and process management overhead [SPY+93]

since all connection context information is localized within a particular process

address space. This localization is beneficial since (1) pointers to messages may

be passed between protocol layers via simple procedure calls (rather than using

more complicated and costly interprocess communication mechanisms) and (2)

cache affinity properties may be preserved since messages are processed largely

within a single CPU cache. The primary limitation of Connectional Parallelism

24

PE PE PE PEPE PE PE PE

SHARED MEMORY

CONCURRENCY
DIMENSION

ITERATIVE VS.
CONCURRENT DAEMONS

CLASS OF
PROTOCOL

CONNECTION-ORIENTED VS.
CONNECTIONLESS VS.
REQUEST-RESPONSE

CONCURRENCY
DIMENSION

ITERATIVE VS.
CONCURRENT DAEMONS

NETWORK
CHARACTERISTICS

HIGH-SPEED VS. LOW-SPEED

SMALL FRAME VS.
LARGE FRAME

CONCURRENCY
DIMENSION

ITERATIVE VS.
CONCURRENT DAEMONS

APPLICATION
CHARACTERISTICS

NUMBER OF ACTIVE SESSIONS

APPLICATION SERVICE CLASS

CONCURRENCY
DIMENSION

ITERATIVE VS.
CONCURRENT DAEMONS
MESSAGE PASSING VS.

SHARED MEMORY

NUMBER OF
PROCESSING ELEMENTS

PLATFORM
ARCHITECTURE

CHARACTERISTICS

CONCURRENCY
DIMENSION

ITERATIVE VS.
CONCURRENT DAEMONS

OPERATING SYSTEM
CHARACTERISTICS

SYNCHRONIZATION AND
PROCESS MANAGEMENT

OVERHEAD

SINGLE-THREADED VS.
MULTI-THREADED KERNEL

CONCURRENCY
DIMENSION

ITERATIVE VS.
CONCURRENT DAEMONS

TRAFFIC
CHARACTERISTICS

BURSTY VS. CONTINUOUS

SHORT-DURATION VS.
LONG-DURATION

MEMORY AND BUS
BANDWIDTH

DIRECTIONALITY

Figure 2.6: External and Internal Factors Influencing Process Architecture Performance

is that it only utilizes multi-processing to improveaggregateend-system perfor-

mance since each individual connection still executes sequentially.

� Message Parallelism– Message Parallelism is a fine-grained message-based pro-

cess architecture that associates a separate process with every incoming or out-

going message. As illustrated in Figure 2.5 (2), a process receives a message

from an application or network interface and performs most or all of the pro-

tocol processing functions on that message. As with Connectional Parallelism,

outgoing messages typically borrow the thread of control from the application

that initiated the message transfer. A number of projects have discussed, simu-

lated, or utilized Message Parallelism as the basis for their process architecture

[JSB90, GNI92, HP91, Mat93, Pre93].

25

�Process Architecture Performance Factors: The performance of the process archi-

tectures described above is influenced by variousexternalandinternal factors (shown in

Figure 2.6). External factors include (1)application characteristics–e.g.,the number of

simultaneously active connections, the class of service required by applications (such as

reliable/non-reliable and real-time/non-real-time), the direction of data flow (i.e., uni-

directional vs. bi-directional), and the type of traffic generated by applications (e.g.,

bursty vs. continuous), (2)protocol characteristics– e.g., the class of protocol (such

as connectionless, connection-oriented, and request/response) used to implement appli-

cation and communication subsystem services, and (3)network characteristics– e.g.,

attributes of the underlying network environment (such as the delivery of mis-ordered

data due to multipath routing [FM92]). Internal factors, on the other hand, represent

hardware- and software-dependent communication subsystem implementation charac-

teristics such as:

� Process Management Overhead– Process architectures exhibit different context

switching and scheduling costs related to (1) the type of scheduling policies em-

ployed (e.g., preemptive vs. non-preemptive), (2) the protection domain (e.g.,

user-mode vs. kernel-mode) in which tasks within a protocol stack execute, and

(3) the number of available CPUs. In general, a context switch is triggered when

(1) one or more processes must sleep awaiting certain resources (such as memory

buffers or I/O devices) to be come available, (2) preemptive scheduling is used

and a higher priority process becomes runnable, or (3) when a currently executing

process exceeds its time slice. Depending on the underlying OS and hardware

platform, a context switch may be relatively time consuming due to the flushing

of register windows, instruction and data caches, instruction pipelines, and trans-

lation look-aside buffers [MB91].

26

� Synchronization Overhead– Implementing communication protocols that execute

correctly on multi-processor platforms requires synchronization mechanisms that

serialize access to shared objects such as messages, message queues, protocol con-

text records, and demultiplexing tables. Certain protocol and process architec-

ture combinations (such as implementing connection-oriented protocols via Mes-

sage Parallelism) may incur significant synchronization overhead from managing

locks associated with these shared objects [Mat93]. In addition to reducing over-

all throughput, synchronization bottlenecks resulting from lock contention lead to

unpredictable response times that complicate the delivery of constrained-latency

applications. Other sources of synchronization overhead involve contention for

shared hardware resources such as I/O buses and global memory [DAPP93]. In

general, hardware contention represents an upper limit on the benefits that may

accrue from multi-processing [WF93].

� Communication Overhead– Task-based process architectures generally require

some form of interprocess communication to exchange messages between proto-

col processing components executing on separate CPUs. Communication costs

are incurred by memory-to-memory copying, message manipulation operations

(such as checksum calculations and compression), and general message pass-

ing overhead resulting from synchronization and process management operations.

Common techniques for minimizing communication overhead involve (1) buffer

management schemes that minimize data copying [HMPT89] and attempt to pre-

serve cache affinity properties when exchanging messages between CPUs with

separate instruction and data caches, (2) integrated layer processing techniques

[CT90], and (3) single-copy network/host interface adapters [WBC+93].

� Load Balancing– Certain process architectures (such as Message Parallelism)

have the potential for utilizing multiple CPUs equitably, whereas others (such as

27

Connectional, Layer, and Functional Parallelism) may under- or over-utilize the

available CPUs under certain circumstances (such as bursty network and applica-

tion traffic patterns or improper stage balancing).

2.3.1.2 The Virtual Memory (VM) Remapping Dimension

Regardless of the process architecture, minimizing the amount of memory-to-

memory copying in a communication subsystem is essential to achieve high performance

[WM87]. In general, data copying costs provide an upper bound on application through-

put [CT90]. As described in Section 2.3.2.1 below, selecting an efficient message man-

agement mechanism is one method for reducing data copying overhead. A related ap-

proach described in this section uses virtual memory optimizations to avoid copying

data altogether. For example, in situations where data must be transferred from one

address space to another, the kernel architecture may remap the virtual memory pages

by marking their page table entries as being “copy-on-write.” Copy-on-write schemes

physically copy memory only if a sender or receiver changes a page’s contents.

Page remapping techniques are particularly useful for transferring large quantities

of data between separate address spaces on the same host machine. An operation that

benefits from this technique involves data transfer between user-space and kernel-space

at the application interface. Rather than physically copying data from application buffers

to kernel buffers, the OS may remap application pages into kernel-space instead.

Page remapping schemes are often difficult to implement efficiently in the context

of communication protocols, however. For example, most remapping schemes require

the alignment of data in contiguous buffers that begin on page boundaries. These align-

ment constraints are complicated by protocol operations that significantly enlarge or

shrink the size of messages. This operations include message de-encapsulation (i.e.,

28

stripping headers and trailers as messages ascend through a protocol graph), presenta-

tion layer expansion [CT90] (e.g.,uncompressing or decrypting an incoming message),

and variable-size header options (such as those proposed to handle TCP window scaling

for long-delay paths [JBB92]). Moreover, remapping may not be useful if the sender or

receiver writes on the page immediately since a separate copy must be generated any-

way [LMKQ89]. In addition, for small messages, more overhead may be incurred by

remapping and adjusting page table entries, compared with simply copying the data in

the first place.

2.3.1.3 The Event Management Dimension

Event management mechanisms provided by the kernel architecture support time-

related services for user applications and other mechanisms in a communication subsys-

tem. In general, three basic operations are exported by an event manager:

1. Registering subroutines (called “event handlers”) that will be executed at some

user-specified time in the future

2. Canceling a previously registered event handler

3. Invoking an event handler when its expiration time occurs

The data structures and algorithms that implement an event manager must be selected

carefully so that all three types of operations are performed efficiently. In addition, the

variance among different event handler invocation times should be minimized. Reduc-

ing variance is important for constrained latency applications, as well as for communi-

cation subsystems that register and execute a large number of event handlers during a

given time period.

29

At the session architecture level, protocol implementations may use an event man-

ager to perform certain time-related activities on network connections. In this case, a re-

liable connection-oriented protocol implementation registers a “retransmission-handler”

with the event manager when a protocol segment is sent. The expiration time for this

event is usually based on a time interval calculated from the round-trip packet estimate

for that connection. If the timer expires, the event manager invokes the handler to re-

transmit the segment. The retransmission event handler will be canceled if an acknowl-

edgement for the segment arrives before the timer expires.

Mechanisms for implementing event managers includedelta lists [CS91], tim-

ing wheels[VL87], and heap-based [BL88] and list-based [LMKQ89]callout queues.

These mechanisms are built atop a hardware clock mechanism. On each “clock-tick”

the event manager checks whether it is time to execute any of its registered events. If

one or more events must be run, the event manager invokes the associated event han-

dler. The different event manager mechanisms may be distinguished by the following

two dimensions:

(1) Search Structure: Several search structures are commonly used to implement dif-

ferent event management mechanisms. One approach is to sort the events by their time-

to-execute value and store them in an array. A variant on this approach (used bydelta

lists and list-basedcallout queues) replaces the array with a sorted linked list to reduce

the overhead of adding or deleting an event [CS91]. Another approach is to use a heap-

based priority queue [BL88] instead of a sorted list or array. In this case, the average-

and worst-case time complexity for inserting or deleting an entry is reduced fromO(n)

to O(lgn). In addition to improving average-case performance, heaps also reduce the

variance of event manager operations.

30

(2) Time Relationships: Another aspect of event management involves the “time re-

lationships,” (i.e., absolutevs. relative time) that are used to represent an event’s exe-

cution time. Absolute time is generally computed in terms of a value returned by the

underlying hardware clock. Heap-based search structures typically use absolute time

due to the comparison properties necessary to maintain a heap as a partially-ordered,

almost-complete binary tree. In contrast, relative-time may be computed as an offset

from a particular starting point and is often used for a sorted linked list implementation.

For example, if each item’s time is stored as adelta relative to the previous item, the

event manager need only examine the first element on every clock-tick to determine if

it should execute the next registered event handler.

2.3.2 Protocol Family Architecture Dimensions

Protocol family architecture mechanisms pertain primarily to network protocols

and distributed applications. In contrast, kernel architecture mechanisms are also uti-

lized by many other applications and OS subsystems. The protocol family architecture

provides intra-protocol and inter-protocol mechanisms that may be reused by protocols

in many protocol families. Intra-protocol mechanisms involve the creation and deletion

of sessions, whereas inter-protocol mechanisms involve message management, multi-

plexing and demultiplexing of messages, and layer-to-layer flow control. This section

examines the inter-protocol mechanisms.

2.3.2.1 The Message Management Dimension

Communication subsystems provide mechanisms for exchanging data and control

messages between communicating entities on local and remote end systems. Standard

31

message management operations include (1) storing messages in buffers as they are re-

ceived from network adapters, (2) adding and/or removing headers and trailers from

messages as they pass through a protocol graph, (3) fragmenting and reassembling mes-

sages to fit into network maximum transmission units, (4) storing messages in buffers for

transmission or retransmission, and (5) reordering messages received out-of-sequence

[JSB90]. To improve efficiency, these operations must minimize the overhead of dy-

namic memory management and also avoid unnecessary data copying, as described in

the following paragraphs:

(1) Dynamic Memory Management: Traditional data network traffic exhibits a bi-

modal distribution of sizes, ranging from large messages for bulk data transfer to small

messages for remote terminal access [CDJM91]. Therefore, message managers must be

capable of dynamically allocating, deallocating, and coalescing fixed-sized and variable-

sized blocks of memory efficiently. However, message management schemes are often

tuned for a particular range of message sizes. For instance, the BSD UNIX message

management facility divides its buffers into 112 byte and 1,024 byte blocks. This leads to

non-uniform performance behavior when incoming and outgoing messages vary in size

between small and large blocks. As discussed in [HP91], more uniform performance

is possible if message managers support a wide range of message sizes as efficiently as

they support large and/or small messages.

(2) Memory Copy Avoidance: As mentioned in Section 2.3.1.2, memory-to-memory

copying is a significant source of communication subsystem overhead. Naive mes-

sage managers that physically copy messages between each protocol layer are pro-

hibitively expensive. Therefore, more sophisticated implementations avoid or minimize

memory-to-memory copying via techniques such asbuffer-cut-through[WM89, ZS90]

and lazy-evaluation[HMPT89]. Buffer-cut-through passes messages “by reference”

32

through multiple protocol layers to reduce copying. Likewise, lazy-evaluation tech-

niques use reference counting and buffer-sharing to minimize unnecessary copying.

These schemes may be combined with the virtual memory remapping optimizations

described in Section 2.3.1.2.

Message managers use different methods to reduce data copying and facilitate

buffer sharing. For instance, BSD and System V UNIX attach multiple buffers together

to form linked-lists of message segments. Adding data to the front or rear of a buffer list

does not require any data copying since it only relinks pointers. An alternative approach

uses adirected-acyclic-graph(DAG)-based data structure [HMPT89]. A DAG allows

multiple “parents” to share all or part of a message stored in a single “child.” Therefore,

this method improves data sharingbetweenlayers in a highly-layered protocol graph.

This is important for reliable protocols (such as RPC or TCP) that maintain “logical”

copies of messages at certain protocol layers in case retransmission is necessary.

2.3.2.2 The Multiplexing and Demultiplexing Dimension

Multiplexing (muxing) and demultiplexing (demuxing) mechanisms select which

of the sessions in an adjacent protocol layer will receive an incoming or outgoing mes-

sage. A sender typically performs multiplexing, which directs outgoing messages ema-

nating from some number of higher-layer sessions onto a smaller number of lower-layer

sessions [Ten89]. Conversely, a receiver performs demultiplexing, which directs in-

coming messages up to their associated sessions. Multiplexing and demultiplexing are

orthogonal to data copying; depending on the message management scheme, messages

need not be copied as they are multiplexed and demultiplexed throughout a protocol

graph [HMPT89].

33

Since senders generally possess knowledge of their entire transfer context (such

as message destination address(es) like connection identifiers, port numbers, and/or In-

ternet IP addresses [CT90], as well as which network interfaces to use) multiplexing

may be less costly than demultiplexing. In contrast, when a network adapter receives

an incoming message it generally has no prior knowledge of the message’s validity or

eventual destination. To obtain this information, a receiver must inspect the message

header and perform demultiplexing operations that select which higher-layer protocol

session(s) should receive the message.

Multiplexing and demultiplexing may be performed several times as messages

move to and from network adapters, protocol layers, and user applications. Depending

on the process architecture selected for a communication subsystem, multiplexing and

demultiplexing activities may incur high synchronization and context switching over-

head since one or more processes may need to be awakened, scheduled, and executed.

As described below, four key multiplexing and demultiplexing dimensions include

synchronization, layering, searching, andcaching:

(1) Synchronization: Multiplexing and demultiplexing may occur either synchronously

or asynchronously, depending primarily on whether the communication subsystem uses

a task-based or message-based process architecture. For example, message-based pro-

cess architectures (such as thex-kernel) typically use synchronous multiplexing and

demultiplexing since messages do not pass between separate process address spaces.

Therefore,intra-processupcalls and subroutine calls are used to transfer messages up

and down a protocol graph rather than more expensive asynchronousinter-processcom-

munication techniques such as message queues.

34

NETWORK INTERFACE NETWORK INTERFACENETWORK INTERFACE

(2) DE-LAYERED MULTIPLEXING

 AND DEMULTIPLEXING

(1) LAYERED MULTIPLEXING

 AND DEMULTIPLEXING

NETWORK INTERFACE

P1

TPA

NPA

PROCESSES
MESSAGE

QUEUES

SUBROUTINE

CALLS

TPA TPB

PROTOCOLS AND

SESSIONS

NPA

P1 P2 P3 P4 P2

TPA

NPA

P3

TPB

NPA

P4

TPB

NPA

Figure 2.7: Layered and De-layered Multiplexing and Demultiplexing

In contrast, task-based process architectures (such as F-CSS [ZST93]) utilize asyn-

chronous multiplexing and demultiplexing. In this scheme, message queues are used to

buffer data passed between processes that implement a layered protocol graph. Since

message queues do not necessarily block the sender, it is possible to concurrently pro-

cess messages in each protocol layer, which potentially increases throughput. However,

this advantage may be offset by the additional context switching and data movement

overhead incurred to move messages between separate CPUs [Sch94b].

(2) Layering: As shown in Figure 2.7 (1), multiplexing and demultiplexing may oc-

cur multiple times as messages traverse up or down a protocol graph. Thislayeredap-

proach differs from thede-layeredapproach shown in Figure 2.7 (2). In the de-layered

approach, multiplexing and/or demultiplexing is performed only once, usually at either

the highest- or lowest-layer of a protocol graph.

35

The use of layered multiplexing and demultiplexing provides several benefits [Ten89].

First, it promotes modularity, since the interconnected layer components interoperate

only at well-defined “service access points” (SAPs). This enables mechanisms offered

at one layer to be developed independently from other layers. Second, it conserves

lower-layer resources like active virtual circuits by sharing them among higher-layer

sessions. Such sharing may be useful for high-volume, wide-area, leased-line commu-

nication links where it is expensive to reestablish a dedicated virtual circuit for each

transmitted message. Finally, layered multiplexing and demultiplexing may be useful

for coordinating related streams in multimedia applications (such as interactive tele-

conferencing) since messages synchronize at each SAP boundary.

The primary disadvantages of layered multiplexing and demultiplexing arise from

the additional processing incurred at each layer. For example, in a task-based process

architecture, multiple levels of demultiplexing may increase context switching and syn-

chronization overhead. This overhead also enlarges packet latency variance (known

as “jitter”), which is detrimental to the quality-of-service for delay- and jitter-sensitive

multimedia applications such as interactive voice or video.

De-layered multiplexing and demultiplexing generally decreases jitter since there

is less contention for communication subsystem resources at a single lower-layer SAP

from multiple higher-layer data streams [Ten89]. However, the amount of context in-

formation stored within every intermediate protocol layer increases since sessions are

not shared [Fel90]. In addition, de-layering expands the degree of demultiplexing at

the lowest layer. This violates protocol layering characteristics found in conventional

communication models (such as the ISO OSI reference model) since the lowest layer

is now responsible for demultiplexing on addresses (such as connection identifiers or

port numbers) that are actually associated with protocols several layers above in a pro-

tocol graph. Packet filters [MJ93] are a technique used to address this issue. Packet

36

filters allow applications and higher-level protocols to “program” a network interface so

that particular types of incoming PDUs are demultiplexed directly to them, rather than

passing through a series of intervening protocol layers first.

Note that the use of de-layered multiplexing and demultiplexing interacts with the

choice of process architecture. For example, Connectional Parallelism is enhanced by

protocols that demultiplex early in their protocol stack since it is difficult to maintain a

strict process-per-connection association across demultiplexing boundaries [Fel90].

(3) Searching: Some type of search algorithm is required to implement multiplexing

and demultiplexing schemes. Several common search algorithms includedirect index-

ing, sequential search, andhashing. Each algorithm uses anexternal identifiersearch

key (such as a network address, port number, or type-of-service field) to locate aninter-

nal identifier(such as a pointer to a protocol control block or a network interface) that

specifies the appropriate session context record.

Transport protocols such as TP4 and VMTP pre-computeconnection identifiers

during connection establishment to simplify subsequent demultiplexing operations. If

these identifiers have a small range of values, a demultiplexing operation may simply

index directly into an array-based search structure to locate the associated session con-

text record. Alternatively, a sequential search may be used if a protocol does not support

connection identifiers, or if the range of identifier values is large and sparse. For exam-

ple, BSD UNIX demultiplexes TCP and UDP associations by performing a sequential

search on external identifiers represented by a<source addr, source port, destination

port> tuple. Although sequential search is simple to implement, it does not scale up

well if the communication subsystem has hundreds or thousands of external identifiers

representing active connections. In this case, a more efficient search algorithm (such as

bucket-chained hashing) may be required.

37

(4) Caching: Several additional optimizations may be used to augment the search

algorithms discussed above. These optimizations include (1) single- or multiple-item

caches and (2) list reorganization heuristics that move recently accessed control blocks

to the front of the search list or hash bucket-chain. A single-item cache is relatively effi-

cient if the arrival and departure of application data exhibit “message-train” behavior. A

message-train is a sequence of back-to-back messages that are all destined for the same

higher-level session. However, single-item caching is insufficient if application traf-

fic behavior is less uniform [MD91]. When calculating how well a particular caching

scheme affects the cost of demultiplexing it is important to consider (1) themiss ra-

tio, which represents how many times the desired external identifier isnot in the cache

and (2) the number of list entries that must be examined when a cache miss occurs. In

general, the longer the search list, the higher the cost of a cache miss.

The choice of search algorithm and caching optimization impacts overall com-

munication subsystem and protocol performance significantly. When combined with

caching, hashing produces a measurable improvement for searching large lists of con-

trol blocks that correspond to active network connections [HP91].

2.3.2.3 The Layer-to-Layer Flow Control Dimension

Layer-to-layer flow control regulates the rate of speed and amount of data that is

processed at various levels in a communication subsystem. For example, flow control is

performed at the application interface by suspending user processes that attempt to send

and/or receive more data than end-to-end session buffers are capable of handling. Like-

wise, within the protocol family architecture level, layer-to-layer flow control prevents

higher-layer protocol components from flooding lower-layers with more messages than

they are equipped to process and/or buffer.

38

Layer-to-layer flow control has a significant impact on protocol performance. For

instance, empirical studies [CWWS92] demonstrate the importance of matching buffer

sizes and flow control strategies at each layer in the protocol family architecture. In-

efficiencies may result if buffer sizes are not matched appropriately in adjacent layers,

thereby causing excessive segmentation/reassembly and additional transmission delays.

Two general mechanisms for controlling the layer-to-layer flow of messages in-

clude theper-queueflow control andper-processflow control schemes outlined below:

� Per-Queue Flow Control: Flow control may be implemented by enforcing

a limit on the number of messages or total number of bytes that are queued between

sessions in adjacent protocol layers. For example, a task-based process architecture

may limit the size of the message queues that store information passed between adjacent

sessions and/or user processes. This approach has the advantage that it enables control

of resource utilization at a fairly fine-grain level (such as per-connection).

� Per-Process Flow Control: Flow control may also be performed in a more

coarse-grained manner at the per-process level. This approach is typically used by

message-based process architectures. For example, in thex-kernel, an incoming mes-

sage is discarded at a network interface if a light-weight process is not available to shep-

ard an incoming message up through a protocol graph. The advantage of this approach is

that it reduces queueing complexity at higher-layers. However, it may unfairly penalize

connections that are not responsible for causing message congestion on an end system.

39

2.4 Survey of Existing OS Communication Subsystem Ar-

chitectures

A number of framework have emerged to simplify the development and config-

uration of communication subsystems by inter-connecting session and protocol family

architecture components. In general, these frameworks encourage the development of

standard communication-related components (such as message managers, timer-based

event dispatchers, and connection demultiplexors [HMPT89], and various protocol func-

tions [SSS+93]) by decoupling protocol processing functionality from the surrounding

framework infrastructure. This section surveys the communication subsystem architec-

tures for the System V UNIX, BSD UNIX,x-kernel, and Choices operating systems.

Unless otherwise noted, the systems described include System V Release 4, BSD 4.3

Tahoe,x-kernel 3.2, and Choices 6.16.91. Section 2.4.1 gives a brief summary of each

system. Section 2.4.2 compares and contrasts each system using the taxonomy dimen-

sions listed in Table 2.1.

2.4.1 System Overviews

This section outlines the primary software components and process architectures

for each surveyed communication subsystem in order to highlight the design decisions

made by actual systems. In addition, a communication subsystemprofilecorresponding

to the taxonomy depicted in Table 2.1 is presented along with each overview (note that

ND stands for “not defined”).

2.4.1.1 System V STREAMS

40

Process Architecture(1) coroutines, (2) task-based (process-per-module)

VM Remapping none

Event Management (1) absolute, (2) heap

Message Buffering (1) uniform, (2) list-based

Muxing/Demuxing (1) asynchronous, (2) layered, (3) ND, (4) ND

Flow Control per-queue

Table 2.2: STREAMS Profile

The System V STREAMS architecture emphasizes modular components that pos-

sess uniform interfaces. It was initially developed to support the flexible composition

of terminal drivers in UNIX [Rit84]. It was later extended to support network protocols

and local IPC viamultiplexor driversand STREAMpipes, respectively [Rag93]. The

Table 2.2 illustrates the communication subsystem profile for System V STREAMS.

In the discussion below, the uppercase term “STREAMS” refers to the overall Sys-

tem V communication subsystem mechanism, whereas the term “Stream” refers to a

full-duplex protocol processing and data transfer path between a user application and a

device driver.

As shown in Figure 2.8, the main components in the System V STREAMS ar-

chitecture include STREAMheads, STREAM modules, STREAM multiplexors, and

STREAM drivers. A STREAM head segments the user data into discrete messages.

These messages are passed “downstream” from the STREAM head though zero or more

STREAM modules and multiplexors to the STREAM driver, where they are transmitted

by a network adapter to the appropriate network. Likewise, the driver also receives in-

coming messages from the network. These messages are passed “upstream” through the

modules to the STREAM head, where a user process may retrieve them. STREAM mod-

ules and multiplexors may be inserted and/or removed dynamically between the head

41

WRITE
QUEUE

READ
QUEUE

STREAM
DRIVER

WRITE
QUEUE

READ
QUEUE

APPLICATION

STREAM
MODULE

USER

KERNEL

U
P

S
T

R
E

A
M

STREAM
MULTIPLEXOR

APPLICATION

WRITE
QUEUE

READ
QUEUE

STREAM
HEADS

STREAM
MODULE

D
O

W
N

S
T

R
E

A
M

NETWORK

INTERFACES

WRITE
QUEUE

READ
QUEUE

WRITE
QUEUE

READ
QUEUE

WRITE

QUEUE

READ

QUEUE

MESSAGES

WRITE
QUEUE

READ
QUEUE

WRITE
QUEUE

READ
QUEUE

WRITE
QUEUE

READ
QUEUE

Figure 2.8: System V STREAMS Architecture

and the driver. Each module or multiplexor implements protocol processing mechanisms

like encryption, compression, reliable message delivery, and routing. The following par-

agraphs describe each STREAMS component:

� STREAM Heads: STREAM heads are situated on “top” of a Stream, directly “be-

low” the user process (as shown in Figure 2.8). STREAM heads provide a queueing

point for exchanging data and control information between an application (running as a

user process) and a Stream (running in the kernel). Each STREAM component is linked

together with its adjacent components via a pair of queues: one for reading and the other

for writing. These queues hold lists of messages sorted by up to 256 different priority

levels. Since the System V application interface does not use virtual memory remapping

techniques, the STREAM head also performs memory-to-memory copying to transfer

data between a user process and the kernel.

42

�STREAM Modules: Each STREAM module performs its protocol processing oper-

ations on the data it receives before forwarding the data to the next module. In this way,

STREAM modules are analogous to “filter” programs in a UNIX shell pipeline. Unlike

a UNIX pipeline, however, data is passed as discrete messages between modules, rather

than as a byte-stream. Applications may “push” and/or “pop” STREAM modules on or

off a Stream dynamically in “last-in, first-out” (LIFO) order. Each read and write queue

in a module contains pointers to subroutines that (1) implement the module’s protocol

processing operations and (2) regulate layer-to-layer message flow between modules.

Two subroutines associated with each queue are calledput andservice . The

put subroutine typically performs synchronous message processing when invoked by

an adjacent queue (e.g.,when a user process sends a message downstream or a message

arrives on a network interface). It performs protocol processing operations that must be

invoked immediately (such as handling high-priority TCP “urgent data” messages).

Theservice subroutine, on the other hand, is used for protocol operations that

either do not execute in a short, fixed amount of time (e.g., performing a three-way

handshake to establish an end-to-end network connection) or that will block indefinitely

(e.g.,due to layer-to-layer flow control). Theservice subroutines in adjacent modules

generally interact in a coroutine-like manner. For example, when a queue’sservice

subroutine is run, it performs protocol processing operations on all the messages waiting

in the queue. When theservice subroutine completes, the messages it processed will

have been passed to the appropriate adjacent STREAM module in the Stream. Next,

theservice routine for any STREAM modules that now have new messages in their

queue(s) is scheduled to run.

�STREAM Multiplexors: STREAM multiplexors may be linked between a STREAM

head and a STREAM driver, similar to STREAM modules. Unlike a STREAM module,

43

however, a multiplexor driver is linked withmultipleStreams residing directly “above”

or “below” it. Multiplexors are used to implement network protocols such as TCP and

IP that receive data from multiple sources (e.g.,different user processes) and send data

to multiple sources (e.g.,different network interfaces).

� STREAM Drivers: STREAM drivers are connected at the “bottom” of a Stream.

They typically manage hardware devices, performing activities such as handling net-

work adapter interrupts and converting incoming packets into messages suitable for up-

stream modules and multiplexors.

�Messages: Data is passed between STREAMS components in discrete chunks via an

abstraction called amessage. Messages consist of acontrol block and one or moredata

blocks. The control block typically contains bookkeeping information such as destina-

tion addresses and length fields). The data blocks generally contain the actual message

contents,i.e., its “payload.”

To minimize memory-to-memory copying costs, pointers to message blocks are

passed upstream and downstream. A message is represented as a<message control

block, data control block, variable length data buffer> tuple. This tuple minimizes

memory-to-memory copying costs by sharing a common<data buffer> among several

<message control block, data control block> portions.

The traditional System V STREAMS communication subsystem supports a vari-

ant of the task-based process architecture known as “process-per-module” that associates

a “logical” process with a STREAM module’sservice subroutine. This process-per-

module approach is implemented by scheduling and executing theservice subrou-

tines associated with the read and write queues in a STREAM module. Originally, the

service procedures were run only at certain times (such as just before returning from

44

a system call and just before a user process was put to sleep). Unfortunately, this de-

sign made it difficult to support applications with isochronous or constrained latency

requirements since STREAM modules were not scheduled to run with any precise real-

time guarantees. In addition, these subroutines execute outside the context of any kernel

or user process, thereby avoiding the standard UNIX kernel process scheduling mech-

anism. This design represents an effort to (1) minimize the kernel state information re-

quired for process management and (2) reduce context switching overhead when moving

messages between module queues.

Many STREAMS implementations [EKB+92, Gar90, Pre93, SPY+93] utilize shared

memory, symmetric multi-processing capabilities within a multi-threaded kernel ad-

dress space. These implementations supports various levels of STREAMS concurrency.

These concurrency levels range from relatively fine-grain parallelism (such asqueue-

level with one light-weight process (LWP) for the STREAM module read queue and

one LWP for the STREAM module write queue andqueue-pair-levelwith one LWP

shared by a STREAM module queue pair) to more coarse-grained approaches (such

asmodule-levelwith one LWP shared across all instances of a STREAM module and

module-class-levelwith one LWP shared across a particular class of STREAM mod-

ules).

2.4.1.2 BSD UNIX Network Subsystem

BSD UNIX provides a communication subsystem framework that supports mul-

tiple protocol families such as the Internet, XNS, and OSI protocols [LMKQ89]. BSD

provides a general-purpose application interface calledsockets. Sockets are bi-directional

communication channels that transfer data between unrelated processes on local and re-

mote hosts. Table 2.3 illustrates the communication subsystem profile for BSD UNIX.

45

Process Architecture(1) single-threaded, (2) hybrid message-based

VM Remapping incoming

Event Management (1) relative, (2) linked list

Message Buffering (1) non-uniform, (2) list-based

Muxing/Demuxing (1) hybrid, (2) layered, (3) sequential, (4) single-item

Flow Control ND

Table 2.3: BSD UNIX Profile

The concept of acommunication domainis central to BSD’s multiple protocol

family design. A domain specifies both a protocol family and an address family. Each

protocol family implements a set of protocols corresponding to standard socket types in

the domain. For example,SOCKSTREAMprovides reliable byte-stream communication

andSOCKDGRAMprovides unreliable datagram communication. An address family

defines an address format (e.g., the address size in bytes, number and type of fields,

and order of fields) and a set of kernel-resident subroutines that interpret the address

format (e.g., to determine which subnet an IP message is intended for). The standard

BSD release supports address families for the Internet domain, XEROX NS domain,

OSI domain, and UNIX domain (which only exchanges information between sockets in

processes on a local host).

There are three main layers in the BSD communication subsystem design: the

socket layer, protocol layer, andnetwork interface layer. Data are exchanged between

these layers in discrete chunks calledmbufs. Socket layer mechanisms are similar to

System V STREAM heads. One difference is that a STREAM head supports up to 256

levels of message priority, whereas sockets only provide 2 levels (“in-band” and “out-

of-band”). The protocol layer coordinates algorithms and data structures that implement

46

the various BSD protocol families. The network interface layer provides a software ve-

neer for accessing the underlying network adapter hardware. The following paragraphs

describe the major BSD protocol layer components in detail:

� The Socket Layer: A socket is atypedobject that represents a bi-directional end-

point of communication. Sockets provide a queueing point for data that is transmitted

and received between user applications running as user processes and the protocol layers

running in the OS kernel. Open sockets are identified viasocket descriptors. These

descriptors index into a kernel table containing socket-related information such as send

and receive buffer queues, the socket type, and pointers to the associated protocol layer.

When a socket is created, a new table slot is initialized based on the specified “socket

type” (e.g.,SOCKSTREAMor SOCKDGRAM). Socket descriptors share the same name

space as UNIX file descriptors. This allows many UNIX applications to communicate

transparently using different kinds of devices such as remote network connections, files,

terminals, printers, and tape drives.

� The Protocol Layer: BSD’s protocol layer contains multiple components organized

using a dispatch table format. Unlike STREAMS, the BSD network architecture does

not allow arbitrary configuration of protocol components at run-time. Instead, protocol

families are created by associating certain components with one another when a kernel

image is statically linked.

In the Internet protocol family, the TCP component is linked above the IP compo-

nent. Each protocol component stores session context information incontrol blocksthat

represent open end-to-end network sessions. Internet domain control blocks include the

inpcb (which stores the source and destination host addresses and port numbers) and

the tcpcb (which stores the TCP state machine variables such as sequence numbers,

retransmission timer values, and statistics for network management). Eachinpcb also

47

contains links to siblinginpcbs (which store information on other active network ses-

sions in the protocol layer), back-pointers to the socket data structure associated with the

protocol session, and other relevant information such as routing-table entries or network

interface addresses.

� The Network Interface Layer: Messages arriving on network interfaces are han-

dled by a software interrupt-based mechanism, as opposed to dedicating a separate ker-

nel “process” to perform network I/O. Interrupts are used for two primary reasons: (1)

they reduce the context switching overhead that would result from using separate pro-

cesses and (2) the BSD kernel is not multi-threaded. There are two levels of interrupts:

SPLNET and SPLIMP. SPLNET has higher priority and is generated when a network

adapter signals that a message has arrived on an interface. However, since hardware

interrupts cannot be masked for very long without causing other OS devices to timeout

and fail, a lower priority software interrupt level named SPLIMP actually invokes the

higher-layer protocol processing.

For example, when an SPLNET hardware interrupt occurs, the incoming message

is placed in the appropriate network interface protocol queue (e.g.,the queue associated

with the IP protocol). Next, an SPLIMP software interrupt is posted, informing the

kernel that higher-layer protocols should be run when the interrupt priority level falls

below SPLIMP. When the SPLIMP interrupt handler is run, the message is removed

from the queue and processed to completion by higher-layer protocols. If a message

is not discarded by a protocol (e.g.,due to a checksum error) it typically ends up in a

socket receive queue, where a user process may retrieve it.

� Mbufs: BSD UNIX uses the mbuf data structure to manage messages as they flow

between levels in the network subsystem. An mbuf’s representation and its associated

48

operations are similar to the System V STREAMS message abstraction. Mbuf opera-

tions include subroutines for allocating and freeing mbufs and lists of mbufs, as well as

for adding and deleting data to an mbuf list. These subroutines are designed to mini-

mize memory-to-memory coping. Mbufs store lists of incoming messages and outgoing

protocol segments, as well as other dynamically allocated objects like the socket data

structure. There are two primary types of mbufs:small mbufs, which contain 128 bytes

(112 bytes of which are used to hold actual data), andcluster mbufs, which use 1 kbyte

pages to minimize fragmentation and reduce copying costs via reference counting.

BSD uses a single-threaded, hybrid message-based process architecture residing

entirely in the kernel. User processes enter the kernel when they invoke a socket-related

system call. Due to flow control, multiple user processes that are sending data to “lower”

protocol layers residing in the kernel may be blocked simultaneously at the socket layer.

Blocked processes are suspended from sending messages down to the network interface

layer until flow control conditions abate. In contrast, since the BSD kernel is single-

threaded, only one thread of control executes to process incoming messages up through

the higher protocol layers.

2.4.1.3 x-kernel

Thex-kernel is a modular, extensible communication subsystem kernel architec-

ture designed to support prototyping and experimentation with alternative protocol and

session architectures [HP91]. It was developed to demonstrate that layering and mod-

ularity are not inherently detrimental to network protocol performance [HP91]. The

x-kernel supports protocol graphs that implement a wide range of standard and exper-

imental protocol families, including TCP/IP, Sun RPC, Sprite RCP, VMTP, NFS, and

49

Process Architecture(1) LWP, (2) message-based

VM Remapping incoming/outgoing

Event Management (1) relative, (2) linked list

Message Buffering (1) uniform, (2) DAG-based

Muxing/Demuxing (1) synchronous, (2) layered, (3) hashing, (4) single-item

Flow Control per-process

Table 2.4:x-kernel Profile

Psync [PBS89]. Unlike BSD UNIX, whose protocol family architecture is character-

ized by a static, relatively monolithic protocol graph, thex-kernel supports dynamic,

highly-layered protocol graphs. Table 2.4 illustrates the communication subsystem pro-

file for thex-kernel.

Thex-kernel’s protocol family architecture provides highly uniform interfaces to

its mechanisms, which manage three communication abstractions that comprise proto-

col graphs [HP91]:protocol objects, session objects, andmessage objects. These ab-

stractions are supported by other reusable software components that include amessage

manager(an abstract data type that encapsulates messages exchanged between session

and protocol objects), amap manager(used for demultiplexing incoming messages be-

tween adjacent protocols and sessions), and anevent manager(based upontiming wheels

[VL87] and used for timer-driven activities like TCP’s adaptive retransmission algo-

rithm). In addition, thex-kernel provides a standard library ofmicro-protocols. These

are reusable, modular software components that implement mechanisms common to

many protocols (such as include sliding window transmission and adaptive retransmis-

sion schemes, request-response RPC mechanisms, and a “blast” protocol that uses se-

lective retransmission to reduce channel utilization [OP92]). The following paragraphs

describe thex-kernel’s primary software components:

50

� Protocol Objects: Protocol objects are software abstractions that represent network

protocols in thex-kernel. Protocol objects belong to one of two “realms,” either the

asynchronousrealm (e.g., TCP, IP, UDP) or thesynchronousrealm (e.g., RPC). The

x-kernel implements a protocol graph by combining one or more protocol objects. A

protocol object contains a standard set of subroutines that provide uniform interfaces

for two major services: (1) creating and destroying session objects (which maintain

a network connection’s context information) and (2) demultiplexing message objects

up to the appropriate higher-layer session objects. Thex-kernel uses its map manager

abstraction to implement efficient demultiplexing. The map manager associates external

identifiers (e.g.,TCP port numbers or IP addresses) with internal data structures (e.g.,

session control blocks). It is implemented as a chained-hashing scheme with a single-

item cache.

� Session Objects: A session object maintains context information associated with a

local end-point of a connection. For example, a session object stores the context infor-

mation for an active TCP state machine. Protocol objects create and destroy session ob-

jects dynamically. When an application opens multiple connections, one or more session

objects will be created within the appropriate protocol objects in a protocol graph. The

x-kernel supports operations on session objects that involve “layer-to-layer” activities

such as exchanging messages between higher-level and lower-level sessions. However,

thex-kernel’s protocol family architecture framework does not provide standard mech-

anisms for “end-to-end” session architecture activities such as connection management,

error detection, or end-to-end flow control. A related project, Avoca, builds upon the

basicx-kernel facilities to provide these end-to-end session services [OP92].

� Message Objects: Message objects encapsulate control and user data information

that flows “upwards” or “downwards” through a graph of session and protocol objects.

51

In order to decrease memory-to-memory copying and to implement message operations

efficiently, message objects are implemented using a “directed-acyclic-graph” (DAG)-

based data structure. This DAG-based scheme uses “lazy-evaluation” to avoid unnec-

essary data copying when passing messages between protocol layers [HMPT89]. It also

stores message headers in a separate “header stack” and uses pointer arithmetic on this

stack to reduce the cost of prepending or stripping message headers.

Thex-kernel employs a “process-per-message” message-based process architec-

ture that resides in either the OS kernel or in user-space. The kernel implementation

maintains a pool of light-weight processes (LWPs). When a message arrives at a net-

work interface, a separate LWP is dispatched from the pool to shepard the message

upwards through the graph of protocol and session objects. In general, only one context

switch is required to shepard a message through the protocol graph, regardless of the

number of intervening protocol layers. Thex-kernel also supports other context switch

optimizations that (1) allow user processes to transform into kernel processes via sys-

tem calls when sending message and (2) allow kernel processes to transform into user

processes via upcalls when receiving messages [Cla85].

2.4.1.4 The Conduit Framework

The Conduit framework provides the protocol family architecture, session archi-

tecture, and application interface for the Choices operating system [CRJ87]. Choices

was developed to investigate the suitability of object-oriented techniques for designing

and implementing OS kernel and networking mechanisms.4 For example, the design of

ZOOT (the Choices TCP/IP implementation) uses object-oriented language constructs

4Choices and the Conduit framework are written using C++. All the other surveyed systems are written

in C.

52

Process Architecture(1) LWP, (2) hybrid (process-per-buffer)

VM Remapping none

Event Management ND

Message Buffering (1) uniform, (2) list-based

Muxing/Demuxing (1) ND, (2) layered, (3) ND, (4) ND

Flow Control ND

Table 2.5: Conduit Profile

and design methods such as inheritance, dynamic binding, and delegation [ZJ91] to im-

plement the TCP state machine in a highly modular fashion. Together, Choices and the

Conduit framework provide a general-purpose communication subsystem. Table 2.5 il-

lustrates the communication subsystem profile for the Choices Conduit framework. In

the discussion below, the term “Conduit framework” refers to the overall communica-

tion subsystem, whereas a “Conduit ” corresponds to an abstract data type used to

construct and coordinate various network protocols.

The three major components in the Conduit framework are:Conduits , Conduit

Messages , andConduit Addresses . A Conduit is a bi-directional communica-

tion abstraction, similar to a System V STREAM module. It exports operations that al-

low Conduits (1) to link together and (2) to exchange messages with adjacently linked

Conduits . Conduit Messages are typed objects exchanged between adjacent

Conduits in a protocol graph.Conduit Addresses are utilized byConduits

to determine where to deliverConduit Messages . All three components are de-

scribed in the following paragraphs:

� The Conduit Base Class and Subclasses:A Conduit provides the basis for im-

plementing many types of network protocols including connectionless (e.g.,Ethernet,

53

IP, ICMP, and UDP), connection-oriented (e.g.,TCP and TP4), and request-response

(e.g.,RPC and NFS) protocols. It is represented as a C++ base class that provides two

types of operations that are inherited and/or redefined by derived subclasses. One type

of operation composes protocol graphs by connecting and disconnectingConduits

instances. The other type of operation inserts messages into the “top” and/or “bottom”

of aConduit . EachConduit has two ends for processing data and control messages:

the top end corresponds to messages flowingdownfrom an application; the bottom end

corresponds to messages flowingup from a network interface.

The Conduit framework uses C++ mechanisms such as inheritance and dynamic

binding to express the commonality between theConduit base class and its vari-

ous subclasses. These subclasses representspecializationsof abstract network pro-

tocol classes that provideVirtual Circuit and Datagramservices. For instance, the

Virtual Circuit Conduit andDatagram Conduit are standard Conduit frame-

work subclasses. Both subclasses export the “connect, disconnect, and message inser-

tion” mechanisms inherited from theConduit base class. In addition, they also extend

the base class interface by supplying operations that implement their particular mecha-

nisms. AVirtual Circuit Conduit provides an interface for managing end-to-

end “sliding window” flow control. It also specifies other properities associated with

virtual circuit protocols such as reliable, in-order, unduplicated data delivery. These

two subclasses are themselves used as base classes for further specializations such as

theTCP Conduit andEthernet Conduit subclasses, respectively.

� Conduit Messages: All messages that flow betweenConduits have a particular

type. This type indicates the contents of a message (e.g., its header and data format)

54

and specifies the operations that may be performed on the message. Messages are de-

rived from a C++ base class that provides the foundation for subsequent inherited sub-

classes. Different message subclasses are associated with the differentConduit sub-

classes that represent different network protocols. For example, theIP Message and

TCP Message subclasses correspond to theIP Conduits andTCP Conduits , re-

spectively.Conduit Message subclasses may also encapsulate other messages. For

instance, an IP message may contain a TCP, UDP, or ICMP message in its data portion.

� Conduit Addresses: Conduit Addresses indicate where to deliverConduit

Messages . The three main types ofConduit Addresses areexplicit, implicit, and

embedded. Explicit addresses identify entities that have a “well-known” format (such

as IP addresses). Implicit addresses, on the other hand, are “keys” that identify partic-

ular session control blocks associated with active network connections. For example, a

socket descriptor in BSD UNIX is an implicit address that references a session control

block. Finally, an embedded address is an explicit address that forms part of a mes-

sage header. For example, the fixed-length, 14 byte Ethernet headers are represented as

embedded addresses since passing a separate explicit address object is neither time nor

space efficient.

The Conduit framework is implemented in user-space and the relationship of pro-

cesses toConduits andConduit Messages is a hybrid between message-based

and task-based process architectures. Messages are escorted through the Conduit frame-

work protocol graph via “walker-processes,” which are similar to thex-kernel “process-

per-message” mechanism. Depending on certain conditions, a walker process escorts

outgoing messages most of the way up or down a protocol graph. However, when a

message crosses an address space boundary or must be stored in a buffer due to flow

control, it remains there until it is moved to an adjacentConduit . This movement

55

may result from either (1) a daemon process residing in theConduit that buffered the

message or (2) another process that knows how to retrieve the message from the flow

control buffer. In general, the number of processes required to escort a message through

the chain ofConduits corresponds to the number of flow control buffers between the

application and network interface layer.

2.4.2 Communication Subsystem Comparisons

This section compares and contrasts the four surveyed communication subsys-

tems using the taxonomy dimensions and alternatives presented in Table 2.1. Sec-

tion 2.4.2.1 focuses on the kernel architecture dimensions described in Section 2.3.1

and Section 2.4.2.2 focuses on the protocol family architecture dimensions described in

Section 2.3.2.

2.4.2.1 Comparison of Kernel Architecture Dimensions

� The Process Architecture Dimension: The surveyed communication subsystems

exhibit a range of process architectures. The conventional System V STREAMS im-

plementation uses a variant of the task-based process architecture known as a “process-

per-module” approach. However, as described in Section 2.4.1.1, the standard System

V STREAMS approach does not associate a heavy-weight OS process per module in

an effort to reduce context switching overhead and minimize kernel state information

required for process management.

56

The x-kernel and BSD UNIX utilize variants of a message-based process archi-

tecture. Thex-kernel supports highly-layered protocol graphs that use a “process-per-

message” approach that is tuned to avoid excessive context switching and IPC over-

head. BSD UNIX uses a message-based approach that behaves differently depending

on whether messages are flowing “up” or “down” through a protocol graph. For exam-

ple, BSD allows multiple processes into the kernel for outgoing messages, but permits

only one process to handle incoming messages.

The Conduit framework uses a “process-per-buffer” approach, which is a hybrid

between “process-per-message” and “process-per-module.” EachConduit containing

a flow control buffer may be associated with a separate light-weight process.

� The Virtual Memory Remapping Dimension: Recent versions ofx-kernel provide

virtual memory remapping [HMPT89] for transferring messages between application

process and the kernel. The Conduit framework, System V STREAMS and BSD UNIX,

on the other hand, do not generally provide this support.

� The Event Management Dimension: BSD UNIX stores pointers to subroutines

in a linked-list callout queue. These preregistered subroutines are called when a timer

expires. System V, on the other hand, maintains aheap-based callout table, rather than a

sorted list or array. The heap-based implementation outperforms the linked-list approach

under heavy loads [BL88]. Thex-kernel usestiming wheels[VL87] instead of callout

lists or heaps.

57

2.4.2.2 Comparison of Protocol Family Architecture Dimensions

Compared with the other surveyed communication subsystems, thex-kernel is

generally more comprehensive in supplying the interfaces and mechanisms for its pro-

tocol family architecture components. For example, it provides uniform interfaces for

operations that manage the protocol, session, and message objects comprising its highly-

layered protocol graphs. In addition, it also specifies mechanisms for event management

and multiplexing and demultiplexing activities. System V STREAMS specifies inter-

faces for the primary STREAM components, along with certain operations involving

layer-to-layer flow control. BSD UNIX and the Conduit framework, on the other hand,

do not systematically specify the session, demultiplexing, and flow control mechanisms

in their protocol family architecture.

� The Message Management Dimension: Both System V STREAMS messages and

BSD mbufs use a linear-list-based approach. In contrast, thex-kernel uses a DAG-based

approach that separates messages into “header stacks” and “data graphs.” Thex-kernel

uses this more complex DAG-based message manager to handle certain requirements of

highly-layered protocol graphs (such as minimizing the amount of memory-to-memory

copying between protocol layers).

� The Multiplexing and Demultiplexing Dimension: The four surveyed communi-

cation subsystems possess a wide range of multiplexing and demultiplexing strategies.

The x-kernel provides the most systematic support for these operations. It provides a

map managerthat uses a hash table mechanism with a single-item cache. The other

communication subsystems provide less systematic and non-uniform mechanisms.

In particular, System V STREAMS and the Conduit framework do not define a

standard multiplexing and demultiplexing interface. Moreover, for outgoing messages,

58

the Conduit framework involves an extra multiplexing operation compared to thex-

kernel scheme. In thex-kernel, a single operation transfers outgoing messages from a

higher-layer session object down to lower-layer session object. AConduit , on the

other hand, requires two operations to send a message: (1) it locates the appropriate

session connection descriptor associated with the lower-levelConduit and (2) then

passes the message down to that associatedConduit .

The BSD UNIX multiplexing and demultiplexing mechanisms differ depending

on which protocol component and protocol family are involved. For instance, its IP

implementation uses the 8-bit IP message type-of-service field to index into an array

containing 256 entries that correspond to higher-layer protocol control structures. On

the other hand, its TCP implementation uses sequential search with a one-item cache to

demultiplex incoming messages to the appropriate connection session. As described in

Section 2.3.2.2, this implementation is inefficient when application data arrival patterns

do not form message-trains [MD91].

� The Layer-to-Layer Flow Control Dimension: With the exception of System V

STREAMS, the surveyed communication subsystems do not provide uniform layer-

to-layer flow control mechanisms. Each STREAM module contains high- and low-

watermarks that manage flow control between adjacent modules. Downstream flow

control operates from the “bottom up.” If all STREAM modules on a Stream cooperate,

it is possible to control the amount and the rate of messages by exerting “back-pressure”

up a stack of STREAM modules to a user process. For example, if the network becomes

too congested to accept new messages (or if messages are being sent by a process faster

than they are transmitted), STREAM driver queues fill up first. If messages continue

flowing from upstream modules, the first module above the driver that has aservice

59

subroutine will fill up next. This back-pressure potentially propagates all the way up to

the STREAM head, which then blocks the user process.

In BSD UNIX, flow control occurs at several locations in the protocol family ar-

chitecture. The socket level flow control mechanism uses the high- and low-watermarks

stored in the socket data structure. If a process tries tosend more data than is allowed

by a socket’s highwater mark, the BSD kernel puts the process to sleep. Unlike System

V, however, BSD UNIX has no standard mechanism for applying back-pressure between

protocol components such as TCP and IP. At the network interface layer, queues are used

to buffer messages between the network adapters and the lowest-level protocol (e.g.,IP,

IDP, or CLNP). The queues have a maximum length that serves as a simple form of flow

control. Subsequent incoming messages are dropped if these queues become full.

Thex-kernel and the Conduit framework provide less systematic flow control sup-

port. Thex-kernel uses a coarse-grained, per-process flow control by discarding incom-

ing messages if there are no light-weight processes available to shepard them up the

protocol graph. The Conduit framework does not provide a standard mechanism to

manage flow control between modules in a given stack ofConduits . EachConduit

passes a message up or down to its neighbor. If the neighbor is unable to accept the mes-

sage, the operation either blocks or returns an error code (in which case the caller may

either discard the message or retain it for subsequent retransmission). This approach

allows eachConduit to determine whether it is a “message-discarding” entity or a

“patiently-blocking” entity.

60

2.5 Summary

This chapter examines the major levels of software mechanisms in the commu-

nication subsystem architecture. A taxonomy of six communication subsystem mecha-

nisms is presented and used to compare different design alternatives found in four exist-

ing commercial and experimental operating systems. Based upon our experience with

communication subsystems, combined with our survey of research literature and exist-

ing systems, we view the following as important open research issues pertinent to the

development of communication subsystem architectures:

� Which communication subsystem levels (e.g., application interface, session ar-

chitecture, protocol family architecture, kernel architecture) incur the most com-

munication performance overhead?

� Which choices from among the taxonomy dimensions and alternatives improve

the overall communication performance? For example, which process architec-

tures result in the highest performance? Likewise, what combinations of applica-

tion requirements and network characteristics are most suitable for different com-

munication subsystem profiles?

� How will the performance bottlenecks shift as the boundary between hardware

and software changes? For instance, the high cost of message management oper-

ations such as fragmentation and reassembly may be greatly reduced if they are

performed in hardware, as proposed for ATM.

� Which communication subsystem profiles are best suited for multimedia applica-

tions running in high-performance network environments? Moreover, what are

the appropriate design strategies and implementation techniques required to pro-

vide integratedsupport for multimedia applications that run on general-purpose

workstation operating systems?

61

This chapter attempts to clarify the essential issues and relationships that arise when de-

veloping high-performance communication subsystem architectures. Subsequent chap-

ters discuss performance experiments conducted using an object-oriented framework

called the ADAPTIVE Service eXecutive (ASX). TheASXframework supports experi-

mentation with different process architectures for parallelizing high-performance com-

munication subsystem.

Chapter 3

The ADAPTIVE Service eXecutive

Framework

3.1 Introduction

Developing extensible, robust, and efficient distributed communication systems is

a complex task. To help alleviate this complexity, we have developed the ADAPTIVE

Service eXecutive (ASX) framework.ASX is an object-oriented framework composed

of automated tools and reusable components that simplify the development, configu-

ration, and reconfiguration, and testing protocol stacks within communication subsys-

tems. TheASX framework has also been used to develop distributed applications in a

heterogeneous environment [SS94b, SS94a]. These applications may be configured to

contain multiple network services that execute concurrently in one or more processes or

threads. Furthermore, the services in these applications may be updated and extended

without modifying, recompiling, relinking, or restarting the applications at run-time.

This chapter describes the object-oriented architecture of theASXframework.

62

63

3.2 Object-Oriented Frameworks

Object-oriented frameworks help to alleviate the complexity associated with de-

veloping, configuring, and reconfiguring distributed application services. A framework

is an integrated collection of software components that collaborate to produce a reusable

architecture for a family of related applications [JF88]. Object-oriented frameworks are

becoming increasingly popular as a means to simplify and automate the development

and configuration of complex applications in domains such as graphical user interfaces

[LC87, WGM88], databases [BO92], operating system kernels [CRJ87], and communi-

cation subsystems [Zwe90, SS94c].

The components in a framework typically includeclasses(such as message man-

agers and timer-based event managers, and connection maps [HP91]),class hierarchies

(such as an inheritance lattice of mechanisms for local and remote interprocess com-

munication [Sch92]),class categories(such as a family of concurrency mechanisms

[SS94c]), andobjects(such as an event demultiplexer [Sch95]).

As shown in Figure 3.1, frameworks are distinguished from conventional class

libraries in the following ways:

� The components constituting a framework are integrated together to address a par-

ticular problem domain [Sch94a]. In contrast, class library components are often

developed to be domain independent. Domain-independent components include

class libraries containing mathematical functions and abstract data type compo-

nents (such as classes for complex numbers, arrays, bitsets, etc.).

� Complete communication systems may be formed by inheriting from and/or cus-

tomizing existing framework components, rather than invoking methods on ob-

jects provided in a class library. Inheritance enables the features of a framework

64

APPLICATION
SPECIFIC

LOGIC

USER
INTERFACE

CLASS
LIBRARIES

NETWORKING

MATH ADTS

DATA
BASE

APPLICATION
SPECIFIC

LOGIC

MATH

OBJECT-ORIENTED
FRAMEWORK

ADTS

INVOKES

CALL
BACKS

NETWORKING

USER
INTERFACE

DATABASE

INVOKES

Figure 3.1: Class Libraries vs. Frameworks

class to be shared automatically by its descendant classes. It also allows the frame-

work to be extended transparently without affecting the original code. Develop-

ers often interact with an application framework by inheriting basic functionality

from its existing scaffolding and overriding certain virtual methods to perform

application-specific processing.

� At run-time, the framework is usually responsible for managing the event-loop(s)

that provide the default flow of control within an application. The framework

determines which set of framework-specific and application-specific methods to

invoke in response to external events (such as messages arriving on communica-

tion ports).

65

Stream

Service
Configurator

Reactor

APP-SPECIFIC
SERVICES

Concurrency
global

IPC_SAP

Figure 3.2: Class Categories in theASXFramework

� By integrating application-specific and application-independent components, frame-

works enable larger-scale reuse of software, compared to reusing individual classes

and stand-alone functions.

3.3 The Object-Oriented Architectures of theASXFrame-

work

After prototyping a number of alternative designs, we identified and implemented

the class categories illustrated in Figure 3.2. A class category is a collection of compo-

nents that collaborate to provide a set of related services. A distributed communication

system (such as a protocol stack) may be configured by combining components in each

of the following class categories via C++ language features such as inheritance, object

composition, and template instantiation:

� Stream class category – Components in this category are responsible for co-

ordinating the installation-time and run-time configuration ofStreams, which are

66

collections of hierarchically-related protocol tasks that are composed to form com-

munication protocol stacks [SS95a].

� The Reactor class category – These components are responsible fordemulti-

plexingtemporal events generated by a timer-driven callout queue, I/O events re-

ceived on communication ports, and signal-based events [Sch95, Sch93b, Sch93a].

TheReactor alsodispatchesthe appropriate pre-registered handler(s) to process

these events.

� TheService Configurator class category – These components are respon-

sible fordynamically linkingor dynamically unlinkingservices into or out of the

address space of an application at run-time [SS94d, SS94a].

� TheConcurrency class category – These components are responsible forspawn-

ing, executing, synchronizing, andgracefully terminatingservices at run-time via

one or more threads of control within one or more processes [Sch94b].

� TheIPC SAPclass category – These components encapsulate standard OS local

and remote IPC mechanisms (such as sockets and TLI) within a type-safe and

portable object-oriented interface [Sch92].

Lines connecting the class categories in Figure 3.2 indicate dependency relationships.

For example, components that implement the application-specific services in a particular

distributed application depend on theStream components, which in turn depend on the

Service Configurator components. Since components in theConcurrency

class category are used throughout the application-specific and application-independent

portions of theASXframework they are marked with theglobal adornment.

TheASXframework helps control for several confounding factors such as proto-

col functionality, concurrency control strategies, application traffic characteristics, and

network interfaces. This enables precise measurement of the performance impact from

67

using different process architectures to parallelize protocol stacks in a multi-processor

platform. In the experiments described in Chapter 4, theASXframework is used to hold

protocol functionality constant, while allowing the process architecture to be systemat-

ically altered in a controlled manner.

TheASXframework incorporates concepts from several existing communication

frameworks such as System V STREAMS [Rit84], thex-kernel [HP91], and the Conduit

[Zwe90]. These frameworks contain tools that support the flexible configuration of com-

munication subsystems. These tools support the interconnection of building-block pro-

tocol components (such as message managers, timer-based event dispatchers, and con-

nection demultiplexers [HP91] and other reusable protocol mechanisms [SSS+93]) to

form protocol stacks. In addition to supplying building-block protocol components, the

ASX framework also extends the features provided by existing communication frame-

works. In particular,ASXprovides components that decouple protocol-specific func-

tionality from the following structural and behavioral characteristics of a communication

subsystem:

� The type of locking mechanisms used to synchronize access to shared objects

� The use of message-based and task-based process architectures

� The use of kernel-level vs. user-level execution agents

TheseASXframework components simplify development of and experimentation with

protocol stacks that are functionally equivalent, but possess significantly different pro-

cess architectures.

The remainder of this section describes the main components in each of theASX

framework’s class categories. Throughout the dissertation, components in theASX

framework are illustrated with Booch notation [Boo93]. Solid clouds indicate objects;

68

NETWORK INTERFACE

OR PSEUDO-DEVICES

STREAM
Tail

Multiplexor

APPLICATION

STREAM
Head

APPLICATION

U
P

ST
R

E
A

MD
O

W
N

ST
R

E
A

M

MESSAGE

OBJECT

WRITE
QUEUE
OBJECT

READ
QUEUE
OBJECT

MODULE

OBJECT

open()=0
close()=0
put()=0
svc()=0

Figure 3.3: Components in theStream Class Category

nesting indicates composition relationships between objects; and undirected edges indi-

cate a link exists between two objects. Dashed clouds indicate classes; directed edges

indicate inheritance relationships between classes; and an undirected edge with a small

circle at one end indicates either a composition or a uses relation between two classes.

Solid rectangles indicate class categories, which combine a number of related classes

into a common name space.

3.3.1 TheStream Class Category

Components in theStream class category are responsible for coordinating the

installation-time and/or run-time configuration of one or more Streams. A Stream is an

object that applications communicate with at run-time to configure and execute protocol

69

stacks in theASX framework. As illustrated in Figure 3.3, a Stream contains a series

of interconnectedModule objects.Module objects are used to decompose a protocol

stack into a functionally distinct levels. Each level implements a cluster of related pro-

tocol tasks (such as an end-to-end transport service or a presentation layer formatting

service).

Any level that requires multiplexing and/or demultiplexing of messages between

one or more related Streams may be developed using aMultiplexor object. A

Multiplexor is a container object that provides mechanisms that route messages be-

tweenModules in a collection of related Streams. BothModule andMultiplexor

objects may be flexibly configured into a Stream by developers at installation-time, as

well as by applications at run-time.

Every Module contains a pair ofQueue objects that partition a level into the

read-side and write-side functionality required to implement a particular protocol task.

A Queue provides an abstract domain class that may be specialized to target a specific

domain (such as the domain of communication protocol stacks or the domain of net-

work management applications [SS94b]). EachQueue contains aMessage List ,

which is a reusableASXframework component that queues a sequence of data messages

and control messages for subsequent processing. Protocol tasks in adjacentModules

communicate by exchanging typed messages via a uniform message passing interface

defined by theQueue class.

TheASXframework employs a variety of design techniques (such as object-oriented

design patterns [Sch95, GHJV94] and hierarchical software decomposition [BO92]) and

C++ language features (such as inheritance, dynamic binding, and parameterized types

[Bja91]). These design techniques and language features enable developers to flexibly

configure protocol-specific functionality into a Stream without modifying the reusable

70

protocol-independent framework components. For example, incorporating a new level

of protocol functionality into a Stream at installation-time or at run-time involves the

following steps:

1. Inheriting from theQueue class interface and selectively overriding several meth-

ods (described below) in the newQueue subclass to implement protocol-specific

functionality

2. Allocating a newModule that contains two instances (one for the read-side and

one for the write-side) of the protocol-specificQueue subclass

3. Inserting theModule into a Stream object at the appropriate level (e.g.,the trans-

port layer, network layer, data-link layer, etc.)

To avoid reinventing terminology, many component names in theStream class

category correspond to similar componentry available in the System V STREAMS frame-

work [Rit84]. However, the techniques used to support extensibility and concurrency in

the two frameworks differ significantly. As describe above, incorporating new protocol-

specific functionality to anASXStream is performed by inheriting interfaces and im-

plementations from existingASX framework components. Using inheritance to add

protocol-specific functionality provides greater type-safety compared with the pointer-

to-function techniques used in System V STREAMS. In addition, theASX Stream

classes also redesign and reimplement the co-routine-based, “weightless”1 service pro-

cessing mechanisms used in System V STREAMS. TheseASX changes enable more

effective use of multiple PEs on a shared memory multi-processing platform by reduc-

ing the opportunities for deadlock and simplifying flow control betweenQueues in a

Stream. The remainder of this section discusses the primary components of theASX

1A weightless process executes on a run-time stack that is also used by other processes. This compli-

cates programming and increases the potential for deadlock since a weightless process may not suspend

execution to wait for resources to become available or for events to occur [SPY+93].

71

Stream class category: theStream class, theModule class, theQueue class, and

theMultiplexor class.

3.3.1.1 The STREAM Class

TheSTREAMclass defines the application interface to a Stream. ASTREAMob-

ject provides a bi-directionalget /put -style interface that allows applications to access

a protocol stack containing a series of interconnectedModules . Applications send

and receive data and control messages through the stack ofModules that comprise a

STREAMobject. In addition, theSTREAMclass implements apush /pop -style interface

that enables applications to configure a Stream at run-time by inserting and removing

protocol-specificModule class objects.

3.3.1.2 The Module Class

TheModule class defines a distinct level of protocol functionality in a protocol

stack. A Stream is formed incrementally by connecting eachModule object in the

Stream with two adjacentModule objects (one “upstream” and one “downstream”).

EachModule contains a pair of objects that inherit from theQueue class described

in Section 3.3.1.3 below. AModule uses its twoQueue subclass objects to imple-

ment its bi-directional, protocol-specific functionality. AModule communicates with

its neighboringModule objects by passing typed messages. Message passing overhead

is minimized by passing a pointer to a message between twoModules , rather than by

copying the data.

72

The Stream Head andStream Tail Module objects shown in Figure 3.3

are installed automatically when a Stream is first opened. These twoModules inter-

pret pre-definedASXframework control messages and data messages that pass through

a Stream at run-time. In addition, theStream Head Module provides a synchronous

message queueing interface between an application and a Stream. The read-side of a

Stream Tail Module transforms incoming messages from a network interface (or

from a pseudo-interface such as a loop-back device) into a canonical internal Stream

message format. These messages are subsequently processed by higher-level compo-

nents in a Stream and subsequently delivered to an application. The write-side of a

Stream Tail Module transforms outgoing messages from their internal Stream for-

mat into the appropriate network message format and passes the message to a network

interface.

3.3.1.3 The Queue Abstract Class

The Queue abstract class2 defines an interface that subclasses inherit and se-

lectively override to provide the read-side and write-side protocol functionality in a

Module . TheQueue class is an abstract class since its interface defines the four pure

virtual methods (open , close , put , andsvc) described below. By definingQueue as

an abstract class, the protocol-independent components (such as message objects, mes-

sage lists, and message demultiplexing mechanisms) provided by theStream class cat-

egory are decoupled from the protocol-specific subclasses (such as those implementing

the data-link, IP, TCP, UDP, and XDR protocols) that inherit and use these components.

2An abstract class in C++ provides an interface that contains at least onepure virtual method[Bja90].

A pure virtual method provides only an interface declaration, without supplying any accompanying def-

inition for the method. Subclasses of an abstract class must provide definitions for all its pure virtual

methods before any objects of the subclass may be instantiated.

73

This decoupling enhances component reuse and simplifies protocol stack development

and configuration.

The open andclose methods in theQueue class may be specialized via in-

heritance to perform activities that are necessary to initialize and terminate a protocol-

specific object, respectively. These activities allocate and deallocate resources such as

connection control blocks, I/O descriptors, and synchronization locks. When aModule

is inserted or removed from a Stream, theASX framework automatically invokes the

open or close method of theModule ’s write-side and read-sideQueue subclass

objects.

The put method in aQueue is invoked by aQueue in an adjacentModule

passing it a message. Theput method runssynchronouslywith respect to its caller by

borrowing the thread of control from theQueue that invoked itsput method. This

thread of control typically originates either upstream from an application, downstream

from process(es) that handle network interface device interrupts, or internal to a Stream

from an event dispatching mechanism (such as a timer-driven callout queue [BL88] used

to trigger retransmissions in a connection-oriented transport protocol).

Thesvc method in aQueue may be specialized to perform protocol-specific pro-

cessingasynchronouslywith respect to otherQueues in its Stream. Asvc method

is not directly invoked from an adjacentQueue. Instead, it is invoked by a sepa-

rate process associated with theQueue. This process provides a separate thread of

control that executes theQueue’s svc method. This method runs an event loop that

waits continuously for messages to be inserted into theQueue’s Message List . A

Message List is a standard component in aQueue. Protocol-specific code may

reuse theMessage List to queue data messages and control messages for subse-

quent protocol processing. When messages are inserted into aMessage List , the

74

Module
A

PROCESS
OR THREAD

WRITE
QUEUE
OBJECT

READ
QUEUE
OBJECT

MODULE
OBJECT

Module
B

Module
C

Module
A

Module
B

Module
C

2: svc()

1: put()

4: svc()

3: put()

active

active

active

active

2: put()

1: put()

activeactive

(1) (2)

Figure 3.4: Alternative Methods for Invokingput andsvc Methods

svc method dequeues the messages and performs the protocol-specific processing tasks

defined by theQueue subclass.

Within the implementation of aput or svc method, a message may be forwarded

to an adjacentQueue in a Stream via theQueue::put next method. Put next

calls theput method of the nextQueue residing in an adjacentModule . This invo-

cation ofput may borrow the thread of control from its caller and process the message

immediately (i.e., the synchronous processing approach illustrated in Figure 3.4 (1)).

Conversely, theput method may enqueue the message and defer processing to itssvc

method, which executes in a separate thread of control (i.e.,the asynchronous processing

approach illustrated in Figure 3.4 (2)).

In general, message-based process architectures perform their protocol-specific

processingsynchronouslywithin theput methods of theirQueues . For instance, in the

ASX-based implementation of the Message Parallelism process architecture, a message

75

arriving at a network interface is associated with a separate thread of control. This thread

of control is obtained from a pool of pre-initialized processes (which are labeled as the

active objects in Figure 3.4 (1)). The incoming message is escorted through a series of

interconnectedQueues in a Stream. A synchronous upcall [Cla85] to theput method

in an adjacentQueue is performed to pass a message to each higher level in a protocol

stack.

Task-based process architectures perform their processingasynchronouslyin the

svc methods of theirQueues , which execute in separate threads of control. For in-

stance, each protocol layer in theASX-based Layer Parallelism process architecture is

implemented in a separateModule object, which is associated with a separate process.

Messages arriving from a network interface are passed betweenQueues running in

the separate processes (which are labeled as the active objects in Figure 3.4 (2)). Each

Queue in a Stream asynchronously executes its protocol-specific tasks within itssvc

method. Chapter 4 illustrates the performance impact of using synchronous vs. asyn-

chronous processing to parallelize communication protocol stacks on a shared memory

multi-processor platform.

3.3.1.4 The Multiplexor Class

A Multiplexor routes messages between different Streams that implement lay-

ered protocol stacks. Although layered multiplexing and demultiplexing is generally dis-

paraged for high-performance communication subsystems [Fel90], most conventional

communication models (such as the Internet model or the ISO/OSI reference model) re-

quire some form of multiplexing. Thus, theASXframework provides mechanisms that

support it.

76

: Reactor

: Event
Handler

: Descriptor
Table

REGISTERED
OBJECTS

F
R

A
M

E
W

O
R

K
L

E
V

E
L

K
E

R
N

E
L

L
E

V
E

L
A

P
P

L
IC

A
T

IO
N

L
E

V
E

L

SELECT() OR POLL () INTERFACE

: Event
Handler

:Timer
Queue

 open()
 register_handler()
 remove_handler()
 schedule_timer()
 cancel_timer()
 handle_events()

Reactor

Event
Handler

Ahandle_input()
handle_output()
handle_exception()
handle_signal()
handle_timeout()
handle_close()
get_handle()

Derived
Class

handle_input()
handle_output()
get_handle()

EVENT HANDLER
HIERARCHY: Event

Handler

: Signal
Handlers

Figure 3.5: Components in theReactor Class Category

A Multiplexor is implemented via a C++ template class calledMap Manager .

TheMap Manager class is parameterized by an external identifier type (which serves

as the search key into a map) and an internal identifier type (which contains the infor-

mation associated with each search key). Protocol-specificMultiplexors may be

formed by instantiating particular external and internal identifier type parameters into

theMap Manager template class. This instantiation produces specialized objects that

perform efficient intra-Stream message routing. Common external identifiers used in

protocol stacks include network addresses, port numbers, or type-of-service fields. Like-

wise, common internal identifiers include pointers toModules or pointers to protocol

connection records.

3.3.2 TheReactor Class Category

77

Components in theReactor class category [Sch95, Sch93b, Sch93a] are respon-

sible for demultiplexing I/O-based events received on communication ports, time-based

events generated by a timer-driven callout queue, or signal-based events. When these

events occur at run-time, theReactor dispatches the appropriate pre-registered han-

dler(s) to process the events. TheReactor encapsulates and enhances the functionality

of OS event demultiplexing mechanisms (such as the UNIXselect andpoll sys-

tem calls or the Windows NTWaitForMultipleObjects system call). These OS

mechanisms detect the occurrence of different types of input and output events on one

or more I/O descriptors simultaneously.

TheReactor contains the methods illustrated in Figure 3.5. These methods pro-

vide a uniform interface to manage objects that implement various types of application-

specific handlers. Certain methods register, dispatch, and remove I/O descriptor-based

and signal-based handler objects from theReactor . Other methods schedule, cancel,

and dispatch timer-based handler objects. As shown in Figure 3.5, these handler ob-

jects all derive from theEvent Handler abstract base class. This class specifies an

interface for event registration and service handler dispatching.

TheReactor uses the virtual methods defined in theEvent Handler inter-

face to demultiplex I/O descriptor-based, timer-based, and signal-based events. When

these events occur at run-time, theReactor dispatches the appropriate pre-registered

handler(s) to process the events. I/O descriptor-based events are dispatched via the

handle input , handle output , andhandle exception methods; timer-based

events are dispatched via thehandle timeout method; and Signal-based events are

dispatched via thehandle signal method. Subclasses ofEvent Handler may

augment the base class interface by defining additional methods and data members. In

addition, virtual methods in theEvent Handler interface may be selectively overrid-

den to implement application-specific functionality. Once the pure virtual methods in

78

1

1

1

1

Service
Config

 svc_conf_file
 open()
 process_directives()
 load_service()
 unload_service()
 resume_service()
 suspend_service()
 run_event_loop()
 daemonize()

REACTOR

n
Event

Handler

Service
Repository

1

n

Service
Object

(2) The Service_Repository
Class

(3) The Service_Config
Class

open()
insert()
find()
remove ()
resume()
suspend()

Service
Repository

open()
reset()
getnext()
advance()

Service
Repository

Iterator

F

1

n

1

1

 open()
 register_handler()
 remove_handler()
 schedule_timer()
 cancel_timer()
 handle_events()

1

Service
Object

A

suspend()
resume()

(1) Service_Object
Inheritance Hierarchy

Queue
open()=0
close()=0
put()=0
service()=0

Event
Handler

handle_input()
handle_output()
handle_exception()
handle_signal()
handle_timeout ()
handle_close()
get_handle()
A

Shared
Object

init()=0
fini ()=0
info()=0

A

Service
Object

QUEUE

QUEUE

A

Figure 3.6: Components in theService Configurator Class Category

theEvent Handler base class have been supplied by a subclass, an application may

define an instance of the resulting composite service handler object.

When an application instantiates and registers a composite I/O descriptor-based

service handler object, theReactor extracts the underlying I/O descriptor from the

object. This descriptor is stored in a table along with I/O descriptors from other reg-

istered objects. Subsequently, when the application invokes its main event loop, these

descriptors are passed as arguments to the underlying OS event demultiplexing system

call (e.g.,select , poll , or WaitForMultipleObjects). As events associated

with a registered handler object occur at run-time, theReactor automatically detects

these events and dispatches the appropriate method(s) of the service handler object as-

sociated with the event. This handler object then becomes responsible for performing its

application-specific functionality before returning control to the mainReactor event-

loop.

79

3.3.3 TheService Configurator Class Category

Components in theService Configurator class category are responsible

for dynamically linking or unlinking protocol tasks into or out of the address space

of a communication subsystem at run-time. Dynamic linking enables the configura-

tion and reconfiguration of protocol-specific serviceswithout requiring the modifica-

tion, recompilation, relinking, or restarting of an executing system. TheService

Configurator components discussed below include the theService Object in-

heritance hierarchy (Figure 3.6 (1)), theService Repository class (Figure 3.6 (2)),

and theService Config class (Figure 3.6 (3)). This discussion focuses on using the

Service Configurator class category in the context of configuring application-

tailored protocol stacks [SSS+93]. However, these components are also useful in other

domains such as network management [SS94b] and configurable distributed systems

[SS94a].

3.3.3.1 The ServiceObject Inheritance Hierarchy

TheService Object class is the focal point of a multi-level hierarchy of types

related by inheritance. The interfaces provided by the abstract classes in this type hi-

erarchy may be selectively implemented by application-specific subclasses to access

Service Configurator features. These features provide transparent dynamic

linking, service handler registration, event demultiplexing, service dispatching, and ser-

vice run-time control (such as suspending and resuming a service temporarily). By de-

coupling the application-specific portions of a handler from the underlyingService

Configurator mechanisms, the effort necessary to insert and remove services from

an application at run-time is reduced significantly.

80

TheService Object inheritance hierarchy consists of theEvent Handler

andShared Object abstract base classes, as well as theService Object abstract

derived class. TheEvent Handler class was described above in theReactor Sec-

tion 3.3.2. The behavior of the other classes in theService Configurator class

category is outlined below:

�The SharedObject Abstract Base Class: This abstract base class specifies an inter-

face for dynamically linking and unlinking objects into and out of the address space of an

application. This abstract base class exports three pure virtual methods:init , fini ,

andinfo . These methods impose a compiler-enforced contract between the reusable,

service-independent components provided by theService Configurator and

application-specific objects that utilize these components. The use of pure virtual meth-

ods enables theService Configurator to ensure that a service handler implemen-

tation honors its obligation to provide certain configuration-related information. This

information is subsequently used by theService Configurator to automatically

link, initialize, identify, and unlink a service at run-time.

The init method serves as the entry-point to an object during run-time initial-

ization. This method performs application-specific initialization when an object derived

from Shared Object is dynamically linked. Theinfo method returns a humanly-

readable string that concisely reports service addressing information and documents ser-

vice functionality. Clients may query an application to retrieve this information and use

it to contact a particular service running in the application. Thefini method is called

automatically by theService Configurator class category when an object is un-

linked and removed from an application at run-time. This method typically performs

termination operations that release dynamically allocated resources (such as memory or

synchronization locks).

81

TheShared Object class is defined independently from theEvent Handler

class to clearly separate their two orthogonal sets of concerns. For example, certain ap-

plications (such as a compiler or text editor) might benefit from dynamic linking, though

they might not require I/O descriptor-based, timer-based, signal-based event demulti-

plexing. Conversely, other applications (such as anftp server) require event demulti-

plexing, but might not require dynamic linking.

� The ServiceObject Abstract Derived Class: Support for dynamic linking, event

demultiplexing, and service dispatching is necessary to automate the dynamic configura-

tion and reconfiguration of application-specific services in a distributed system. There-

fore, theService Configurator class category provides theService Object

class, which combines the interfaces inherited from both theEvent Handler and

theShared Object abstract base classes. During development, application-specific

subclasses ofService Object may implement thesuspend andresume virtual

methods in this class. Thesuspend andresume methods are invoked automatically

by theService Configurator class category in response to certain external events

(such as those triggered by receipt of the UNIX SIGHUP signal). An application devel-

oper may define these methods to perform actions necessary to suspend a service object

without unlinking it completely, as well as to resume a previously suspended service

object. In addition, application-specific subclasses must implement the four pure virtual

methods (init , fini , info , andget handle) that are inherited (but not defined)

by theService Object subclass.

Note that theQueue class in theStream class category (described in Section 3.3.1)

is derived from theService Object inheritance hierarchy (illustrated in Figure 3.6 (1)).

This enables hierarchically-related, application-specificQueues (which are grouped

82

together to form theModules comprising an application Stream) to be linked and un-

linked into and out of an application at run-time.

3.3.3.2 The ServiceRepository Class

TheASXframework supports the configuration of applications that contain one or

more Streams, each of which may have one or more interconnected application-specific

Modules . Therefore, to simplify run-time administration, it may be necessary to indi-

vidually and/or collectively control and coordinate theService Objects that com-

prise an application’s currently active Streams. TheService Repository is an

object manager that theASXframework uses to coordinate local/remote queries and up-

dates regarding the services offered by Streams in an application. A search structure

within the object manager binds service names (represented as a string) with instances

of compositeService Objects (represented as C++ object code). A service name

uniquely identifies an instance of aService Object stored in the repository.

EachService Repository entry contains a pointer to theService Object

portion of an application-specific subclass (shown in Figure 3.6 (2)). This enables the

Service Configurator classes to automatically load, enable, suspend, resume, or

unloadService Objects from a Stream dynamically. The repository also maintains

a handle to the shared object file for each dynamically linkedService Object . This

handle is used to unlink and unload aService Object from a running application

when its service is no longer required. An iterator class is also supplied along with the

Service Repository . This class may be used to visit everyService Object

in the repository without compromising data encapsulation.

83

<svc-config-entries> ::= svc-config-entries
svc-config-entry | NULL

<svc-config-entry> ::= <dynamic> | <static> | <suspend>
| <resume> | <remove> | <stream> | <remote>

<dynamic> ::= DYNAMIC <svc-location> [<parameters-opt>]
<static> ::= STATIC <svc-name> [<parameters-opt>]
<suspend> ::= SUSPEND <svc-name>
<resume> ::= RESUME <svc-name>
<remove> ::= REMOVE <svc-name>
<stream> ::= STREAM <stream_ops> ’{’ <module-list> ’}’
<stream_ops> ::= <dynamic> | <static>
<remote> ::= STRING ’{’ <svc-config-entry> ’}’
<module-list> ::= <module-list> <module> | NULL
<module> ::= <dynamic> | <static> | <suspend>

| <resume> | <remove>
<svc-location> ::= <svc-name> <type> <svc-initializer>

<status>
<type> ::= SVC_OBJECT ’*’ | MODULE ’*’ STREAM ’*’ | NULL
<svc-initializer> ::= <object-name> | <function-name>
<object-name> ::= PATHNAME ’:’ IDENT
<function-name> ::= PATHNAME ’:’ IDENT ’(’ ’)’
<status> ::= ACTIVE | INACTIVE | NULL
<parameters-opt> ::= STRING | NULL

Figure 3.7: EBNF Format for a Service Config Entry

3.3.3.3 The ServiceConfig Class

As illustrated in Figure 3.6 (3), theService Config class integrates several

otherASXframework components (such as theReactor , theService Repository ,

theService Object inheritance hierarchy). Applications use theService Config

class to automate the static and/or dynamic configuration of hierarchically-related net-

work services to form one or more Streams. A configuration file (known assvc.conf)

is used to guide the configuration and reconfiguration activities of aService Config

object. This configuration file is specified using a scripting language, whose syntactical

structure is shown using extended-Backus/Naur Format (EBNF) in Figure 3.7.

The svc.conf file may be used to configure one or more Streams into an ap-

plication. Each entry in the file begins with a directive (such asdynamic , remove ,

84

suspend , or resume) that specifies which configuration activity to perform. Each en-

try also contains attributes that indicate the location of the shared object file for each dy-

namically linked service, as well as any parameters required to initialize a service when

it is linked at run-time. By consolidating service attributes and initialization parame-

ters into a single configuration file, the installation and administration of the services

in an application is simplified. In addition, thesvc.conf file helps to decouple the

structure of an application from the behavior of its services. This decoupling separates

the service-independent configuration and reconfiguration of mechanisms provided by

the framework from the application-specific attributes and parameters specified in the

svc.conf file.

Figure 3.8 illustrates a state transition diagram depicting theService Config

andReactor methods that are invoked in response to events occurring during ser-

vice configuration, execution, and reconfiguration. For example, when theconfig-

ure andreconfigure events occur, theprocess directives method of the

Service Config class is called to parse thesvc.conf file associated with the ap-

plication. The contents of asvc.conf file dictate the content of Streams that are

configured into an application. This file is first parsed when a new instance of a daemon

is initially configured. The file is parsed again whenever a daemon reconfiguration is

triggered upon receipt of a pre-designated external event (such as the UNIX SIGHUP

signal).

3.3.4 TheConcurrency Class Category

Components in theConcurrency class category are responsible for spawning,

executing, synchronizing, and gracefully terminating services via one or more threads of

control at run-time. These threads of control execute protocol tasks and pass messages

85

INITIALIZED

CONFIGURE/
Service_Config::process_directives()

NETWORK EVENT/
Reactor::dispatch()

RECONFIGURE/
Service_Config::process_directives()

SHUTDOWN/
Service_Config::close()

START EVENT LOOP/
Service_Config::run_event_loop()

CALL HANDLER/
Event_Handler::handle_input()

IDLE

PERFORM
CALLBACK

AWAITING
EVENTS

Figure 3.8: State Transition Diagram for Service Configuration, Execution, and Recon-
figuration

betweenModules in a protocol stack. The following section outlines the classes in the

Concurrency class category.

3.3.4.1 The Synch Classes

Components in theStream class category described in Section 3.3.1 contain min-

imal internal locking mechanisms. By default, synchronization mechanisms from the

Synch classes are only used to protect theASX framework components that would

not function correctly in a preemptive, multi-threaded parallel processing environment.

This design strategy avoids over-constraining the granularity of a process architecture’s

concurrency control policies.

TheSynch classes provide type-safe C++ interfaces for two basic types of syn-

chronization mechanisms:Mutex andCondition objects [Bir89]. AMutex object

is used to ensure the integrity of a shared resource that may be accessed concurrently by

multiple processes. ACondition object allows one or more cooperating processes

86

to suspend their execution until a condition expression involving shared data attains a

particular state.

A Mutex object serializes the execution of multiple processes by defining a crit-

ical section where only one thread of control may execute its code at a time. To enter

a critical section, a process invokes theMutex::acquire method. When a process

leaves its critical section, it invokes theMutex::release method. These two meth-

ods are implemented via adaptive spin-locks that ensure mutual exclusion by using an

atomic hardware instruction. An adaptive spin-lock polls a designated memory location

using the atomic hardware instruction until one of the following conditions occur:

� The value at this location is changed by the process that currently owns the lock.

This signifies that the lock has been released and may now be acquired by the

spinning process.

� The process that is holding the lock goes to sleep. At this point, the spinning

process also puts itself to sleep to avoid unnecessary polling [EKB+92].

On a multi-processor, the overhead incurred by a spin-lock is relatively minor. Hardware-

based polling does not cause contention on the system bus since it only affects the local

PE caches of processes that are spinning on aMutex object.

A Condition object provides a different type of synchronization mechanism.

Unlike the adaptive spin-lockMutex objects, aCondition object enables a process

to suspend itself indefinitely (via theCondition::wait method) until a condition

expression involving shared data attains a particular state. When another cooperat-

ing process indicates that the state of the shared data has changed (by invoking the

Condition::signal method), the associatedCondition object wakes up a pro-

cess that is suspended on thatCondition object. The newly awakened process then

87

re-evaluate its condition expression and potentially resumes processing if the shared data

has attained an appropriate state.

Condition object synchronization is not implemented using spin-locks. Spin-

locks consume excessive resources if a process must wait an indefinite amount of time

for a particular condition to become signaled. Therefore,Condition objects are im-

plemented via sleep-locks that trigger a context switch to allow another process to ex-

ecute. Chapter 4 illustrates the consequences of context switching and synchronization

on process architecture performance.

The ASX framework enables the concurrency control strategies used by differ-

ent process architectures to be selected by instrumenting protocol tasks with various

combinations ofMutex andCondition synchronization objects. When used in con-

junction with C++ language features such as parameterized types, these synchronization

objects help to decouple protocol processing functionality from the concurrency control

strategy used by a particular process architecture [Sch94d]. An illustration of howASX

framework synchronization objects are transparently parameterized into communication

protocol code is presented in the following example.

In the process architecture experiments described in Chapter 4, theMap Manager

class is used to demultiplex incoming network messages to the appropriateModule . As

discussed in Section 3.3.1.4,Map Manager is a template class that is parameterized by

an external identifier (EXT ID), an internal identifier (INT ID), and a mutual exclusion

mechanism (MUTEX), as follows:

template <class EXT_ID, class INT_ID, class MUTEX>
class Map_Manager
{
public:

// Associate EXT_ID with INT_ID
bool bind (EXT_ID, INT_ID *);
// Break an association
bool unbind (EXT_ID);

88

// Locate INT_ID corresponding to EXT_ID
bool find (EXT_ID, INT_ID &);
// ...

private:
// Parameterized synchronization object
MUTEX lock;
// Perform the lookup
bool locate_entry (EXT_ID, INT_ID &);

};

Thefind method of theMap Manager template class is implemented using the tech-

nique illustrated in the code below (thebind andunbind methods are implemented

in a similar manner):

template <class EXT_ID, class INT_ID, class MUTEX>
bool Map_Manager<EXT_ID, INT_ID, MUTEX>

::find (EXT_ID ext_id, INT_ID &int_id)
{

// Acquire lock in mon constructor
Mutex_Block<MUTEX> mon (this->lock);

if (this->locate_entry (ext_id, int_id))
return true;

else
return false;

// Release lock in mon destructor
}

The code shown above uses the constructor of theMutex Block class to acquire the

Map Manager lock when an object of the class is created. Likewise, when thefind

method returns, the destructor for theMonitor object releases theMutex lock. Note

that theMutex lock is released automatically, regardless of which arm in theif/else

statement returns from thefind method. Moreover, the lock is released even if an

exception is raised within the body of thefind method.

The experiments described in Chapter 4 implement connection demultiplexing

operations in the connection-oriented protocol stacks via theMap Manager template

class. In the experiments, theMap Manager class is instantiated with aMUTEXpa-

rameter whose type is determined by the process architecture being configured. For

89

instance, theMap Manager used in the Message Parallelism implementation of the

transport layer in the protocol stack described in Section 4.5.1 is instantiated with the

following EXT ID , INT ID , andMUTEXtype parameters:

typedef Map_Manager <TCP_Addr, TCB, Mutex> ADDR_MAP;

This particular instantiation ofMap Manager locates the transport control block (TCB)

internal identifier associated with the address of an incomingTCPmessage (TCP Addr)

external identifier. Instantiating theMap Manager class with theMutex class ensures

that itsfind method executes as a critical section. This prevents race conditions from

occurring with other threads of control that are inspecting or inserting entries into the

Map Manager in parallel.

In contrast, the Layer Parallelism implementation of the transport layer in the pro-

tocol stack described in Section 4.5.2 uses a different type of concurrency control. In this

case, serialization is performed at the transport layer using the synchronization mech-

anisms provided by theMessage List defined in theQueue class. Therefore, the

Map Manager used for the Layer Parallelism implementation of the protocol stack is

instantiated with a differentSynch class, as follows:

typedef Map_Manager <TCP_Addr, TCB, Null_Mutex> ADDR_MAP;

The implementation of theacquire andrelease methods in theNull Mutex class

are “no-op” inline functions that are removed completely by the compiler optimizer.

In general, templates generate efficient object code that exacts no additional run-time

overhead for the increased flexibility.

The definition of theMap Manager address map may be conditionally compiled

using template class arguments corresponding to the type of process architecture that is

required,i.e.:

90

typedef
// Select a message-based process architecture
#if defined (MSG_BASED_PA)
Map_Manager <TCP_Addr, TCB, Mutex>
// Select a task-based process architecture
#elif defined (TASK_BASED_PA)
Map_Manager <TCP_Addr, TCB, Null_Mutex>
#endif
ADDR_MAP;

As shown below, this allows the majority of the protocol code to remain unaffected,

regardless of the choice of process architecture, as follows:

ADDR_MAP addr_map;
TCP_Addr tcp_addr;
TCP tcb;

// ...

if (addr_map.find (tcp_addr, tcb))
// Perform connection-oriented processing

3.3.4.2 The ThreadManager Class

TheThread Manager class contains a set of mechanisms that manipulate multi-

ple threads of control atomically. Typically, these threads of control collaborate to imple-

ment collective actions (such as rendering different portions of a large image in parallel).

TheThread Manager class also shields applications from non-portable incompatibil-

ities between different flavors of multi-threading mechanisms (such as POSIX threads,

MACH cthreads, Solaris threads, and Windows NT threads).

The Thread Manager class provides methods (such assuspend all and

resume all) that suspend and resume a set of collaborating threads of control atom-

ically. This feature is useful for protocol stacks that execute multiple tasks or process

multiple messages in parallel. For example, a Stream implemented using the Layer Par-

allelism process architecture is composed ofModules that execute in separate threads

91

IPC_SAP

A

SOCK_SAP TLI_SAP FIFO_SAPSPIPE_SAP

SOCKET

API

TRANSPORT

LAYER

INTERFACE API

STREAM PIPE

API

NAMED PIPE

API

Figure 3.9:IPC SAPClass Category Relationships

of control. It is crucial that allModules in the Stream are completely interconnected

before allowing messages to be passed betweenQueues in the Stream. The mech-

anisms in theThread Manager class allow these initialization activities to execute

atomically.

3.3.5 TheIPC SAPClass Category

ACE provides a forest of class categories rooted at theIPC SAP(“InterProcess

Communication Service Access Point”) base class.IPC SAP encapsulates the stan-

dard I/O descriptor-based operating system local and remote IPC mechanisms that offer

connection-oriented and connectionless protocols. As shown in Figure 3.9, this forest

of class categories includesSOCKSAP(which encapsulates the socket API),TLI SAP

(which encapsulates the TLI API),SPIPE SAP(which encapsulates the UNIX System

V release 4 STREAM pipe API), andFIFO SAP(which encapsulates the UNIX named

pipe API).

92

Each class category is organized as an inheritance hierarchy. Every subclass pro-

vides a well-defined interface to a subset of local or remote communication mechanisms.

Together, the subclasses within a hierarchy comprise the overall functionality of a partic-

ular communication abstraction (such as the Internet-domain or UNIX-domain protocol

families). The use of classes (as opposed to stand-alone functions) helps to simplify

network programming in the following manner:

� Reduce potential for programmer error– For example, theAddr class hierarchy

shown in Figure 3.9 supports several diverse network addressing formats via a

type-secure C++ interface, rather than using the awkward and error-prone C-based

struct sockaddr data structures directly.

� Combining several operations to form a single operation– For example, the con-

structor in theSOCKListener class performs the various socket system calls

(such assocket , bind , andlisten) required to create a passive-mode server

endpoint.

� Parameterizing IPC mechanisms into applications– Classes form the basis for

parameterizing an application by the type of IPC mechanism it requires. This

helps to improve portability as discussed in Section 3.3.5.2.

� Enhance code sharing– Inheritance-based hierarchical decomposition increases

the amount of common code that is shared amongst the various IPC mechanisms

(such as the C++ interface to the lower-level UNIX operating system device con-

trol system calls likefcntl andioctl).

The following sections discuss each of the class categories inIPC SAP.

3.3.5.1 SOCKSAP

93

 SOCK_SAP
Connect

A

 SOCK_SAP
Dgram

 SOCK
SAP

Listener

 LSOCK
SAP

Listener

 SOCK
SAP

 SOCK
SAP

CODgram
 SOCK

SAP
Stream

 SOCK_SAP
Dgram
Brdcast

 LSOCK
SAP

A

A

 LSOCK
SAP

Dgram

 LSOCK
SAP

CODgram

 LSOCK
SAP

Stream

 Addr

 INET Addr

 UNIX Addr
IPC
SAP

A

global

global

global

Figure 3.10: TheSOCKSAPInheritance Hierarchy

TheSOCKSAP[Sch92] C++ class category provides applications with an object-

oriented interface to the Internet-domain and UNIX-domain protocol families [Ste90].

Applications may access the functionality of the underlying Internet-domain or UNIX-

domain socket types by inheriting or instantiating the appropriateSOCKSAPsubclasses

shown in Figure 3.10. TheSOCK*subclasses encapsulate Internet-domain functional-

ity and theLSOCK*subclasses encapsulate UNIX-domain functionality. As shown in

Figure 3.10, the subclasses may be further decomposed into (1) the*Dgram compo-

nents (which provide unreliable, connectionless, message-oriented functionality) vs. the

*Stream components (which provide reliable, connection-oriented, bytestream func-

tionality) and (2) the*Listener components (which provide connection establish-

ment functionality typically used by servers) vs. the*Stream components (which

provide bi-directional bytestream data transfer functionality used by both clients and

servers).

94

Using C++ wrappers to encapsulate the socket interface helps to (1) detect many

application type system violations at compile-time, (2) facilitate a platform-independent

transport-level interface that improves application portability, and (3) greatly reduce

the amount of application code and development effort expended upon lower-level net-

work programming details. To illustrate the latter point, the following example program

implements a simple client application that uses theSOCKDgram Brdcast class to

broadcast a message to all servers listening on a designated port number in a LAN sub-

net::

int
main (int argc, char *argv[])
{

SOCK_Dgram_Brdcast b_sap (sap_any);
char *msg;
unsigned short b_port;

msg = argc > 1 ? argv[1] : "hello world\n";
b_port = argc > 2 ? atoi (argv[2]) : 12345;

if (b_sap.send (msg, strlen (msg), b_port) == -1)
perror ("can’t send broadcast"), exit (1);

exit (0);
}

It is instructive to compare this concise example with the dozens of lines of C source

code required to implement broadcasting using the socket interface directly.

3.3.5.2 TLI SAP

TheTLI SAPclass category provides a C++ interface to the System V Transport

Layer Interface (TLI). TheTLI SAP inheritance hierarchy for TLI is almost identical

to theSOCKSAP C++ wrapper for sockets. The primary difference is that TLI and

TLI SAPdo not define an interface to the UNIX-domain protocol family. By combining

C++ features (such as default parameter values and templates) together with thetirdwr

95

(the read/write compatibility STREAMS module), it becomes relatively straight-

forward to develop applications that may be parameterized at compile-time to operate

correctly over either a socket-based or TLI-based transport interface.

The following code illustrates how C++ templates may be applied to parameterize

the IPC mechanisms used by an application. In the code below, a subclass derived from

Event Handler is parameterized by a particular type of transport interface and its

corresponding protocol address class:

/* Logging_IO header file */
template <class XPORT_SAP, class ADDR>
class Logging_IO : public Event_Handler
{
public:

Logging_IO (void);
virtual ~Logging_IO (void);

virtual int handle_close (int);
virtual int handle_input (int);
virtual int get_fd (void) const {

return this->xport_sap.get_fd ();
}

protected:
XPORT_SAP xport_sap;

};

Depending on certain properties of the underlying OS platform (such as whether it is

BSD-based SunOS 4.x or System V-based SunOS 5.x), the logging application may

instantiate theClient IO class to use eitherSOCKSAPorTLI SAP, as shown below:

/* Logging application */
class Logging_IO : public
#if defined (MT_SAFE_SOCKETS)
Logging_IO<SOCK_Stream, INET_Addr>
#else
Logging_IO<TLI_Stream, INET_Addr>
#endif /* MT_SAFE_SOCKETS */
{

/* ... */
};

96

The increased flexibility offered by this template-based approach is extremely use-

ful when developing an application that must run portability across multiple OS plat-

forms. In particular, the ability to parameterize applications according to transport in-

terface is necessary across variants of SunOS platforms since the socket implementation

in SunOS 5.2 is not thread-safe and the TLI implementation in SunOS 4.x contains a

number of serious defects.

TLI SAPalso shields applications from many peculiarities of the TLI interface.

For example, the subtle application-level code required to properly handle the non-

intuitive, error-prone behavior oft listen andt accept in a concurrent server with

aqlen >1 [Rag93] is encapsulated within theaccept method in theTLI Listener

class. This method accepts incoming connection requests from clients. Through the use

of C++ default parameter values, the standard method for calling theaccept method

is syntactically equivalent for bothTLI SAP-based andSOCKSAP-based applications.

3.3.5.3 SPIPESAP

The SPIPE SAPclass category provides a C++ wrapper interface for mounted

STREAM pipes andconnld [PR90]. SunOS 5.x provides thefattach system call

that mounts a pipe descriptor at a designated location in the UNIX file system. A server

application is created by pushing theconnld STREAM module onto the mounted end

of the pipe. When a client application running on the same host machine as the server

subsequently opens the filename associated with the mounted pipe, the client and server

each receive an I/O descriptor that identifies a unique, non-multiplexed, bi-directional

channel of communication.

TheSPIPE SAP inheritance hierarchy mirrors the one used forSOCKSAPand

TLI SAP. It offers functionality that is similar to theSOCKSAP LSOCK*classes (which

97

themselves encapsulate UNIX-domain sockets). However,SPIPE SAP is more flexi-

ble than theLSOCK* interface since it enables STREAM modules to be “pushed” and

“popped” to and fromSPIPE SAPendpoints, respectively.SPIPE SAPalso supports

bi-directional delivery of byte-stream and prioritized message-oriented data between

processes and/or threads executing within the same host machine [Ste92].

3.3.5.4 FIFO SAP

The FIFO SAP class category encapsulates the UNIX named pipe mechanism

(also called FIFOs). Unlike STREAM pipes, named pipes offer only a uni-directional

data channel from one or more senders to a single receiver. Moreover, messages from

different senders are all placed into the same communication channel. Therefore, some

type of demultiplexing identifier must be included explicitly in each message to en-

able the receiver to determine which sender transmitted the message. The STREAMS-

based implementation of named pipes in System V release 4 provides both message-

oriented and bytestream-oriented data delivery semantics. In contrast, SunOS 4.x only

provides bytestream-oriented named pipes. Therefore, unless fixed length messages are

always used, each message sent via a named pipe in SunOS 4.x must be distinguished

by some form of byte count or special termination symbol that allows a receiver to ex-

tract messages from the communication channel bytestream. To alleviate this limitation,

the SunOS 4.xFIFO SAP implementation contains logic that emulates the message-

oriented semantics available in System V release 4.

98

3.4 Summary

Despite an increase in the availability of operating system and hardware platforms

that support networking and parallel processing [EKB+92, Gar90, SPY+93, TRG+87,

Cus93], developing distributed and parallel communication systems remains a complex

and challenging task. The ADAPTIVE Service eXecutive (ASX) provides an extensible

object-oriented framework that simplifies the development of distributed applications

on multi-processor platforms. TheASXframework employs a variety of advanced OS

mechanisms (such as multi-threading and explicit dynamic linking), object-oriented de-

sign techniques (such as encapsulation, hierarchical classification, and deferred compo-

sition) and C++ language features (such as parameterized types, inheritance, and dy-

namic binding) to enhance software quality factors (such as robustness, ease of use,

portability, reusability, and extensibility) without degrading application performance.

In general, the object-oriented techniques and C++ features enhance the software qual-

ity factors, whereas the advanced OS mechanisms improve application functionality and

performance.

TheASXframework components described in this chapter are freely available via

anonymous ftp fromics.uci.edu in the filegnu/C++ wrappers.tar.Z . This

distribution contains complete source code, documentation, and example test drivers for

the C++ components developed as part of the ADAPTIVE project [SBS93, BSS93] at the

University of California, Irvine. Components in theASXframework have been ported to

both UNIX and Windows NT and have been used in a number of commercial products

including the AT&T Q.port ATM signaling software product, the Ericsson EOS family

of PBX monitoring applications, and the network management portion of the Motorola

Iridium mobile communications system.

Chapter 4

Communication Subsystem

Performance Experiments

4.1 Introduction

This chapter presents performance results obtained by measuring the data recep-

tion portion of protocol stacks implemented using several process architectures devel-

oped using theASX framework [SS95b]. Two different types of protocol stacks were

implemented:connection-orientedandconnectionless. Three different variants of task-

based and message-based process architectures were used to parallelize the protocol

stacks:Layer Parallelism(which is a task-based process architecture), as well asMessage-

ParallelismandConnectional Parallelism(which are message-based process architec-

tures). This chapter outlines related work on the performance of parallel process archi-

tectures. It also describes the multi-processor platform and the measurement tools used

in the experiments, as well as the communication protocol stacks and process architec-

tures developed usingASX framework components. Finally, the performance results

from the experiments are presented and analyzed.

99

100

4.2 Related Work

A number of studies have investigated the performance characteristics of task-

based process architectures that ran on either message passing or shared memory plat-

forms. [WF93] measured the performance of several implementations of the transport

and session layers in the ISO OSI reference model using an ADA-like rendezvous-

style of Layer Parallelism in a nonuniform access shared memory multi-processor plat-

form. [LKAS93] measured the performance of Functional Parallelism for presentation

layer and transport layer functionality on a shared memory multi-processor platform.

[BZ93] measured the performance of a de-layered, function-oriented transport system

[ZST93] using Functional Parallelism on a message passing transputer multi-processor

platform. An earlier study [Zit91] measured the performance of the ISO OSI transport

layer and network layer, also on a transputer platform. Likewise, [GKWW89] used a

multi-processor transputer platform to parallelize several data-link layer protocols.

Other studies have investigated the performance characteristics of message-based

process architectures. All these studies utilized shared memory platforms. [HP91] mea-

sured the performance of the TCP, UDP, and IP protocols using Message Parallelism on

a uniprocessor platform running thex-kernel. [Mat93] measured the impact of synchro-

nization on Message Parallelism implementations of TCP and UDP transport protocols

built within a multi-processor version of thex-kernel. Likewise, [NYKT94] examined

performance issues in parallelizing TCP-based and UDP-based protocol stacks using a

different multi-processor version of thex-kernel. [Pre93] measured the performance of

the Nonet transport protocol on a multi-processor version of Plan 9 STREAMS devel-

oped using Message Parallelism. [GNI92] measured the performance of the ISO OSI

101

protocol stack, focusing primarily on the presentation and transport layers using Mes-

sage Parallelism. [SPY+93] measured the performance of the TCP/IP protocol stack

using Connectional Parallelism in a multi-processor version of System V STREAMS.

The research presented in this paper extends existing work by measuring the per-

formance of several representative task-based and message-based process architectures

in a controlled environment. Furthermore, our experiments report the impact of both

context switching and synchronization overhead on communication subsystem perfor-

mance. In addition to measuring data link, network, and transport layer performance,

our experiments also measure presentation layer performance. The presentation layer

is widely considered to be a major bottleneck in high-performance communication sub-

systems [CT90].

4.3 Multi-processor Platform

All experiments were conducted on an otherwise idle Sun SPARCcenter 2000

shared memory symmetric multi-processor. This SPARCcenter platform contained 640

Mbytes of RAM and 20 superscalar SPARC 40 MHz processing elements (PEs), each

rated at approximately 135 MIPs. The operating system used for the experiments was

release 5.3 of SunOS. SunOS 5.3 provides a multi-threaded kernel that allows multi-

ple system calls and device interrupts to execute in parallel on the SPARCcenter plat-

form [EKB+92]. All the process architectures in the experiments execute protocol tasks

using separate SunOS unbound threads. These unbound threads are multiplexed over

1;2;3; . . . 20 SunOS lightweight processes (LWPs) within an OS process. The SunOS

scheduler maps each LWP directly onto a separate kernel thread. Since kernel threads

102

are the units of PE scheduling and execution in SunOS, multiple LWPs run protocol

tasks in parallel on the SPARCcenter 20 PEs.

The memory bandwidth of the SPARCcenter is approximately 750 Mbits/sec. In

addition to memory bandwidth, communication subsystem throughput is significantly

affected by the context switching and synchronization overhead of the multi-processor

platform. Scheduling and synchronizing a SunOS LWP requires a kernel-level context

switch. This context switch flushes register windows and updates instruction and data

caches, instruction pipelines, and translation lookaside buffers [MB91]. These activities

take approximately 50�secs to perform between LWPs running in the same process.

During this time, the PE incurring the context switch does not execute any protocol

tasks.

ASX Mutex andCondition objects were both used in the experiments.Mutex

objects were implemented using SunOS adaptive spin-locks andCondition objects

were implemented using SunOS sleep-locks [EKB+92]. Synchronization methods in-

voked onCondition objects were approximately two orders of magnitude more ex-

pensive compared with methods onMutex objects. For instance, measurements indi-

cated that approximately 4�secs were required to acquire or release aMutex object

when no other PEs contended for the lock. In contrast, when all 20 PEs contended for a

Mutex object, the time required to perform the locking methods increased to approxi-

mately 55�secs.

Approximately 300�secs were required to synchronize LWPs usingCondition

objects when no other PEs contended for the lock. Conversely, when all 20 PEs con-

tended for aCondition object, the time required to perform the locking methods

increased to approximately 520�secs. The two orders of magnitude difference in per-

formance betweenMutex andCondition objects was caused by the more complex

103

algorithms used to implementCondition object methods. In addition, performing

the wait method on aCondition object incurred a context switch, which further

increased the synchronization overhead. In contrast, performing anacquire method

on aMutex object implemented with an adaptive spin-lock rarely triggered a context

switch.

4.4 Functionality of the Communication Protocol Stacks

Two types of protocol stacks were investigated in the experiments. One was based

on the connectionless UDP transport protocol; the other was based on the connection-

oriented TCP transport protocol. Both protocol stacks contained data-link, network,

transport, and presentation layers. The presentation layer was included in the experi-

ments since it represents a major bottleneck in high-performance communication sub-

systems [CT90, GNI92].

Both the connectionless and connection-oriented protocol stacks were developed

by specializing reusable components in theASXframework via inheritance and parame-

terized types. As discussed in Section 3.3.4.1, inheritance and parameterized types were

used to hold protocol stack functionality constant, while the process architecture was

systematically varied. Each layer in a protocol stack was implemented as aModule ,

whose read-side and write-side inherit interfaces and implementations from theQueue

abstract class described in Section 3.3.1. The synchronization and demultiplexing mech-

anisms required to implement different process architectures were parameterized using

C++ template class arguments. As illustrated in Section 3.3.4.1, these templates were

instantiated based upon the type of process architecture being tested.

104

The data-link layer in each protocol stack was implemented by theDLP Module .

This Module transformed network packets received from a network interface into the

canonical message format used internally by the interconnectedQueue components in a

Stream. Preliminary tests conducted with the widely-availablettcp benchmarking tool

indicated that the SPARCcenter multi-processor platform processed messages through a

protocol stack much faster than our 10 Mbps Ethernet network interface was capable of

handling. Therefore, the network interface in our process architecture experiments was

simulated with a single-copy pseudo-device driver operating in loop-back mode. This

approach is consistent with those used in [Mat93, GNI92, NYKT94].

The network and transport layers of the protocol stacks were based on the IP,

UDP, and TCP implementations in the BSD 4.3 Reno release [LMKQ89]. The 4.3 Reno

TCP implementation contains the TCP header prediction enhancements, as well as the

TCP slow start algorithm and congestion avoidance features [Jac88]. The UDP and

TCP transport protocols were configured into theASXframework via theUDPandTCP

Modules . Network layer processing was performed by theIP Module . ThisModule

handled routing and segmentation/reassembly of Internet Protocol (IP) packets.

Presentation layer functionality was implemented in theXDR Module using mar-

shaling routines produced by the ONC eXternal Data Representation (XDR) stub gen-

erator (rpcgen) [Sun87]. The ONC XDR stub generator translates type specifications

into marshaling routines. These marshaling routines encode/decode implicitly-typed

messages before/after exchanging them among hosts that may possess heterogeneous

processor byte-orders. The ONC presentation layer conversion mechanisms consist of

a type specification language (XDR) and a set of library routines that implement the

appropriate encoding and decoding rules for built-in integral types (e.g.,char, short, int,

and long), as well as real types (e.g.,float and double). These library routines may be

105

combined to produce marshaling routines for arbitrarily complex user-defined compos-

ite types (such as record/structures, unions, arrays, and pointers). Messages exchanged

via XDR are implicitly-typed, which improves marshaling performance at the expense

of run-time flexibility.

TheXDRroutines generated for the connectionless and connection-oriented pro-

tocol stacks converted incoming and outgoing messages into and from variable-sized

arrays of structures containing a set of integral and real values. TheXDRprocessing in-

volved byte-order conversions, as well as dynamic memory allocation and deallocation.

4.5 Structure of the Process Architectures

The remainder of this section outlines the structure of the message-based and

task-based process architectures used to parallelize the connectionless and connection-

oriented protocol stacks described above.

4.5.1 Structure of the Message-based Process Architectures

4.5.1.1 Connectional Parallelism

The protocol stack depicted in Figure 4.1 illustrates anASX-based implementation

of the Connectional Parallelism (CP) process architecture outlined in Section 2.3.1.1.

Each process performs the data-link, network, transport, and presentation layer tasks

sequentially for a single connection. Protocol tasks are divided into four interconnected

Modules , corresponding to the data-link, network, transport, and presentation layers.

106

APPLICATION APPLICATION

Modules

C1 C2

CP_DLP::svc (void)
{ /* incoming */ }

CP_DLP::svc (void)
{ /* outgoing */ }

STREAM
Heads

STREAM
Tail

Modules

NETWORK DEVICES
OR PSEUDO-DEVICES

CP_TCP::put
(Message_Block *mb)
{ /* outgoing */ }

CP_IP::put
(Message_Block *mb)
{ /* outgoing */ }

CP_XDR::put
(Message_Block *mb)
{ /* outgoing */ }

CP_XDR::put
(Message_Block *mb)
{ /* incoming */ }

CP_TCP::put
(Message_Block *mb)
{ /* incoming */ }

CP_IP::put
(Message_Block *mb)
{ /* incoming */ }

PROCESS
OR THREAD

WRITE
QUEUE

READ
QUEUE

MODULE

Figure 4.1: Connectional Parallelism Process Architecture

Data-link processing is performed in theCP DLP Module . The Connectional Paral-

lelism implementation of thisModule performs “eager demultiplexing” via a packet

filter at the data-link layer. Thus, theCP DLP Module uses its read-sidesvc method

to demultiplex incoming messages onto the appropriate transport layer connection. In

contrast, theCP IP , CP TCP, andCP XDR Modules perform their processing syn-

chronously in their respectiveput methods. To eliminate extraneous data movement

overhead, theQueue::put next method passes a pointer to a message between pro-

tocol layers.

4.5.1.2 Message Parallelism

Figure 4.2 depicts the Message Parallelism (MP) process architecture used for the

TCP-based connection-oriented protocol stack. When an incoming message arrives, it

is handled by theMPDLP::svc method. This method manages a pool of pre-spawned

107

NETWORK DEVICES
OR PSEUDO-DEVICES

STREAM
Heads

STREAM
Tail

APPLICATION APPLICATION

Modules

C1 C2

MP_TCP::put
(Message_Block *mb)
{ /* outgoing */ }

MP_IP::put
(Message_Block *mb)
{ /* outgoing */ }

MP_XDR::put
(Message_Block *mb)
{ /* outgoing */ }

MP_XDR::put
(Message_Block *mb)
{ /* incoming */ }

MP_TCP::put
(Message_Block *mb)
{ /* incoming */ }

MP_IP::put
(Message_Block *mb)
{ /* incoming */ }

MP_DLP::svc (void)
{ /* incoming */ }MP_DLP::svc (void)

{ /* outgoing */ }

Modules
PROCESS

OR THREAD

WRITE
QUEUE

READ
QUEUE

MODULE

Figure 4.2: Message Parallelism Process Architecture

SunOS unbound threads. Each message is associated with an unbound thread that es-

corts the message synchronously through a series of interconnectedQueues that form

a protocol stack. Each layer of the protocol stack performs the protocol tasks defined

by its Queue. When these tasks are complete, an upcall [Cla85] may be used to pass

the message to the next adjacent layer in the protocol stack. The upcall is performed by

invoking theput method in the adjacent layer’sQueue. Thisput method borrows the

thread of control from its caller and executes the protocol tasks associated with its layer.

The Message Parallelism process architecture for the connectionless protocol stack

is similar to the one used to implement the connection-oriented protocol stack. The pri-

mary difference between the two protocol stacks is that the connectionless stack per-

forms UDP transport functionality, which is less complex than TCP. For example, UDP

108

does not generate acknowledgements, keep track of round-trip time estimates, or man-

age congestion windows. In addition, the connectionlessMPUDP::put method han-

dles each message concurrently and independently, without explicitly preserving inter-

message ordering. In contrast, the connection-orientedMPTCP::put method utilizes

severalMutex synchronization objects. As separate messages from the same connec-

tion ascend the protocol stack in parallel, theseMutex objects serialize access to per-

connection control blocks. Serialization is required to protect shared resources (such as

message queues, protocol connection records, TCP segment reassembly, and demulti-

plexing tables) against race conditions.

Both Connectional Parallelism and Message Parallelism optimize message man-

agement by using SunOS thread-specific storage [EKB+92] to buffer messages as they

flow through a protocol stack. This optimization leverages off the cache affinity prop-

erties of the SunOS shared memory multi-processor. In addition, it minimizes the cost

of synchronization operations used to manage the global dynamic memory heap.

4.5.2 Structure of the Task-based Process Architecture

4.5.2.1 Layer Parallelism

Figure 4.3 illustrates theASXframework components that implement a Layer Par-

allelism (LP) process architecture for the TCP-based connection-oriented protocol stack.

The connectionless UDP-based protocol stack for Layer Parallelism was designed in a

similar manner. The primary difference between them was that the read-side and write-

sideQueues in the connectionless transport layerModule (LP UDP) implement the

simpler UDP functionality.

109

STREAM
Heads

STREAM
Tail

APPLICATION

M
odules

NETWORK DEVICES
OR PSEUDO-DEVICES

APPLICATION

M
od

ul
es

PROCESS
OR THREAD

WRITE
QUEUE
OBJECT

READ
QUEUE
OBJECT

MODULE
OBJECT

MESSAGE
OBJECT

LP_DLP::svc (void)
{ /* outgoing */ }

LP_TCP::svc (void)
{ /* outgoing */ }

LP_IP::svc (void)
{ /* outgoing */ }

LP_XDR::svc (void)
{ /* outgoing */ }

LP_DLP::svc (void)
{ /* incoming */ }

LP_TCP::svc (void)
{ /* incoming */ }

LP_IP::svc (void)
{ /* incoming */ }

LP_XDR::svc (void)
{ /* incoming */ }

Figure 4.3: Layer Parallelism Process Architecture

Protocol-specific processing at each protocol layer shown in Figure 4.3 is per-

formed in theQueue::svc method. Eachsvc method is executed in a separate

process associated with theModule that implements the corresponding protocol layer

(e.g., LP XDR, LP TCP, LP IP , andLP DLP). These processes cooperate in a pro-

ducer/consumer manner, operating in parallel on message header and data fields cor-

responding to their particular protocol layer. Everysvc method performs its protocol

layer tasks before passing a message to an adjacentModule running in a separate pro-

cess.

All processes share a common address space, which eliminates the need to copy

messages that are passed between adjacentModules . However, even if pointers to mes-

sages are passed between processes, per-PE data caches may be invalidated by hardware

cache consistency protocols. Cache invalidation degrades performance by increasing

the level of contention on the SPARCcenter system bus. Moreover, since messages are

110

passed between PEs, the memory management optimization techniques (described in

Section 4.5.1) that used the thread-specific storage are not applicable.

A strict implementation of Layer Parallelism would limit parallel processing to

only include the number of protocol layers that could run on separate PEs. On a plat-

form with 2 to 4 PEs this is not a serious problem since the protocol stacks used in

the experiments only had 4 layers. On the 20 PE SPARCcenter platform, however,

this approach would have greatly constrained the ability of Layer Parallelism to utilize

the available processing resources. To alleviate this constraint, the connection-oriented

Layer Parallelism process architecture was implemented to handle a cluster of connec-

tions (i.e.,5 connections per 4 layer protocol stack, with one PE per-layer). Likewise, the

connectionless Layer Parallelism process architecture was partitioned across 5 network

interfaces to utilize the available parallelism.

4.6 Measurement Results

This section presents results obtained by measuring the data reception portion of

the protocol stacks developed using the process architectures described in Section 4.5.

Three types of measurements were obtained for each combination of process architecture

and protocol stack:average throughput, context switching overhead, andsynchroniza-

tion overhead. Average throughput measured the impact of parallelism on protocol stack

performance. Context switching and synchronization measurements were obtained to

help explain the variation in the average throughput measurements.

Average throughput was measured by holding the protocol functionality, applica-

tion traffic, and network interfaces constant, while systematically varying the process

architecture in order to determine the impact on performance. Each benchmarking run

111

measured the amount of time required to process 20,000 4 kbyte messages. In addition,

10,000 4 kbyte messages were transmitted through the protocol stacks at the start of each

run to ensure that all the PE caches were fully initialized (the time required to process

these initial 10,000 messages was not used to calculate the throughput performance).

Each test was run using 1;2;3; . . . 20 PEs, with each test replicated a dozen times and

the results averaged. The purpose of replicating the tests was to insure that the amount

of interference from internal OS process management tasks did not perturb the results.

Various statistics were collected using an extended version of the widely available

ttcp protocol benchmarking tool [USN84]. Thettcp tool measures the amount of

OS processing resources, user-time, and system-time required to transfer data between

a transmitter process and a receiver process. The flow of data is uni-directional, with the

transmitter flooding the receiver with a user-specified number of data buffers. Various

sender and receiver parameters (such as the number of data buffers transmitted and the

size of data buffers and protocol windows) may be selected at run-time.

The version ofttcp used in our experiments was modified to useASX-based

connection-oriented and connectionless protocol stacks. These protocol stacks were

configured in accordance with the process architectures described in Section 4.5. The

ttcp tool was also enhanced to allow a user-specified number of connections to be ac-

tive simultaneously. This extension enabled us to measure the impact of multiple con-

nections on the performance of the connection-oriented protocol stacks using message-

based and task-based process architectures.

112

● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

❍
❍

❍

❍
❍

❍
❍ ❍

❍
❍

❍
❍

❍
❍

❍ ❍
❍

❍
❍ ❍

1 2 3 4 5 6 7 8 9 1011121314151617181920
0

50

100

150

200

250

300

350

400

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bi

ts
/s

ec
)

Number of Processing Elements

● With Presentation Layer

❍ Without Presentation Layer

Figure 4.4: Connection-oriented Connectional Parallelism Throughput

4.6.1 Throughput Measurements

Figures 4.4, 4.5, and 4.6 depict the average throughput for the message-based

process architectures (Connectional Parallelism and Message Parallelism) and the task-

based process architecture (Layer Parallelism) used to implement the connection-oriented

protocol stacks. Each test run for these connection-oriented process architectures used

20 connections. These figures report the average throughput (in Mbits/sec), measured

both with and without presentation layer processing. The figures illustrate how through-

put is affected as the number of PEs increase from 1 to 20. Figures 4.7, 4.8, and 4.9

indicate the relative speedup that resulted from successively adding another PE to each

process architecture. Relative speedup is computed by dividing the average aggregated

throughput forn PEs (shown in Figures 4.4, 4.5, and 4.6, where 1� n � 20) by the

average throughput for 1 PE.

113

●
●

●
●

●
● ●

●
● ●

●
● ● ●

● ● ● ● ● ●

❍

❍

❍

❍

❍

❍
❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍

1 2 3 4 5 6 7 8 9 1011121314151617181920
0

20

40

60

80

100

120

140

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bi

ts
/s

ec
)

Number of Processing Elements

● With Presentation Layer

❍ Without Presentation Layer

Figure 4.5: Connection-oriented Message Parallelism Throughput

The results from Figures 4.4, 4.5, 4.7, and 4.8 indicate that increasing the num-

ber of PEs generally improves the average throughput in the message-based process

architectures. Connection-oriented Connectional Parallelism exhibited the highest per-

formance, both in terms of average throughput and in terms of relative speedup. As

shown in Figure 4.4, the average throughput of Connectional parallelism with presen-

tation layer processing peaks at approximately 100 Mbits/sec. The average throughput

without presentation layer processing peaks at just under 370 Mbits/sec. These results

indicate that the presentation layer represents a significant portion of the overall pro-

tocol stack overhead. As shown in Figure 4.7, the relative speedup of Connectional

Parallelism without presentation layer processing increases steadily from 1 to 20 PEs.

The relative speedup with presentation layer processing is similar up to 12 PEs, at which

point it begins to level off. This speedup curve flattens due to the additional overhead

from data movement and synchronization performed in the presentation layer.

114

●

●

●

●

●
● ● ● ● ●

● ● ●
●

● ● ●
● ● ●

❍

❍
❍

❍
❍

❍ ❍ ❍ ❍ ❍ ❍
❍

❍
❍

❍
❍

❍
❍

❍
❍

1 2 3 4 5 6 7 8 9 1011121314151617181920
0

5

10

15

20

25

30

35

40

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bi

ts
/s

ec
)

Number of Processing Elements

● With Presentation Layer

❍ Without Presentation Layer

Figure 4.6: Connection-oriented Layer Parallelism Throughput

As shown in Figure 4.5, the average throughput achieved by connection-oriented

Message Parallelism without presentation layer processing peaks at 130 Mbits/sec. When

presentation layer processing is performed, the average throughput is 1.5 to 3 times

lower, peaking at approximately 90 Mbits/sec. Note, however, that the relative speedup

without presentation layer processing (shown in Figure 4.8) flattens out after 8 CPUs.

This speedup curve flattens out when presentation layer processing is omitted due to

increased contention for shared synchronization objects at the transport layer. This syn-

chronization overhead is discussed further in Section 4.6.3. In contrast, the relative

speedup of connection-oriented Message Parallelism with presentation layer processing

grows steadily from 1 to 20 PEs. This behavior suggests that connection-oriented Mes-

sage Parallelism benefits more from parallelism when the protocol stack contains presen-

tation layer processing. This finding is consistent with those reported in [NYKT94], and

115

●
●

●
●

●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ●

❍
❍

❍
❍

❍
❍

❍ ❍
❍

❍
❍

❍
❍

❍
❍ ❍

❍
❍

❍ ❍

1 2 3 4 5 6 7 8 9 1011121314151617181920
0

2

4

6

8

10

12

14

16

R
el

at
iv

e
S

pe
ed

up

Number of Processing Elements

● With Presentation Layer

❍ Without Presentation Layer

Figure 4.7: Relative Speedup for Connection-oriented Connectional Parallelism

is related to the minimal synchronization requirements of the presentation layer (com-

pared with the higher relative amounts of synchronization in the connection-oriented

transport layer).

In contrast to Connectional Parallelism and Message Parallelism, the performance

of the connection-oriented Layer Parallelism (shown in Figures 4.6 and 4.9) did not scale

up as the number of PEs increased. The average throughput with presentation layer pro-

cessing (shown in Figure 4.6) peaks at approximately 36 Mbits/sec. This amount is

much less than half the throughput achieved by Connectional Parallelism and Message

Parallelism. The throughput exhibited by Layer Parallelism peaks at 40 Mbits/sec when

presentation layer processing is omitted. This is over 3 times lower than Message Par-

allelism and approximately 9 times lower than Connectional Parallelism. As shown in

Figure 4.9, the relative speedup both with and without presentation layer processing in-

creases until after 10 and 7 PEs, respectively. After peaking, average throughput levels

off and gradually begins to decrease. This decrease in Layer Parallelism performance

116

●

●

●

●

●
● ●

●

● ●
● ●

● ●
●

● ● ● ● ●

❍

❍ ❍

❍

❍

❍ ❍
❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍

1 2 3 4 5 6 7 8 9 1011121314151617181920
0

1

2

3

4

5

6

7

8

9

10

R
el

at
iv

e
S

pe
ed

up

Number of Processing Elements

● With Presentation Layer

❍ Without Presentation Layer

Figure 4.8: Relative Speedup for Connection-oriented Message Parallelism

occurs from the high levels of context switching (discussed in Section 4.6.2), as well

as the high levels ofCondition object synchronization overhead (discussed in Sec-

tion 4.6.3).

A limitation with Connectional Parallelism is that each individual connection ex-

ecutes sequentially. Therefore, Connectional Parallelism becomes most effective as the

number of connections approaches the number of PEs. In contrast, Message Parallelism

utilizes multiple PEs more effectively when the number of connections is much less than

the number of PEs. Figure 4.10 illustrates this point by graphing average throughput as

a function of the number of connections. This test held the number of PEs constant at

20, while increasing the number of connections from 1 to 20. Connectional Parallelism

consistently out-performs Message Parallelism as the number of connections becomes

greater than 10.

117

●

●

●

●

●

● ● ● ●
●

● ● ●
●

● ● ●
●

● ●

❍

❍
❍

❍ ❍
❍

❍

❍
❍ ❍ ❍

❍ ❍ ❍
❍

❍ ❍ ❍ ❍
❍

1 2 3 4 5 6 7 8 9 1011121314151617181920
0

0.5

1

1.5

2

2.5

3

3.5

4

R
el

at
iv

e
S

pe
ed

up

Number of Processing Elements

● With Presentation Layer

❍ Without Presentation Layer

Figure 4.9: Relative Speedup for Connection-oriented Layer Parallelism

Figures 4.11 and 4.12 depict the average throughput for the message-based and

task-based process architectures used to implement the connectionless protocol stacks

(note that Connectional Parallelism is not applicable for a connectionless protocol stack).

These figures report the throughput measured both with and without presentation layer

processing. Figures 4.13 and 4.14 indicate the speedup of each process architecture,

relative to its single PE case, for the data points reported in Figures 4.11 and 4.12.

The connectionless message-based process architecture (Figure 4.11) significantly

outperforms the task-based process architecture (Figure 4.12). This behavior is consis-

tent with the results from the connection-oriented tests shown in Figure 4.4 through

Figure 4.9. With presentation layer processing, the throughput and relative speedup of

connectionless Message Parallelism is slightly higher than the connection-oriented ver-

sion shown in Figures 4.5 and 4.8. However, without presentation layer processing, the

throughput and relative speedup of connectionless Message Parallelism are substantially

higher (500 Mbits/sec vs. 130 Mbits/sec). In addition, note that the relative speedup of

118

● ● ● ●
● ● ●

● ●
●

● ● ●
●

● ● ● ● ● ●

❍

❍

❍

❍

❍

❍

❍

❍

❍ ❍
❍

❍
❍

❍ ❍ ❍ ❍ ❍ ❍ ❍

1 2 3 4 5 6 7 8 9 1011121314151617181920
0

10

20

30

40

50

60

70

80

90

100

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bi

ts
/s

ec
)

Number of Connections

● Connection-oriented Message Parallelism

❍ Connection-oriented Connectional Parallelism

Figure 4.10: Comparison of Connectional Parallelism and Message Parallelism

connectionless Message Parallelism without presentation layer processing exceeds that

attained with presentation layer processing (shown in Figure 4.13). This behavior is the

reverse of the connection-oriented Message Parallelism results (shown in Figure 4.8).

The difference in performance is due to the fact that connectionless Message Parallelism

incurs much lower levels of synchronization overhead (synchronization is discussed fur-

ther in Section 4.6.3).

The throughput of the connectionless Layer Parallelism (shown in Figure 4.12)

suffered from the same problems as the connection-oriented version (shown in Fig-

ure 4.6). As shown in Figure 4.9, the relative speedup increases only up to 6 PEs, re-

gardless of whether presentation layer processing was performed or not. At this point,

the performance levels off and begins to decrease. This behavior is accounted for by the

high levels of Layer Parallelism context switching discussed in the following section.

119

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

❍

❍

❍

❍

❍

❍
❍

❍ ❍

❍

❍
❍ ❍

❍ ❍ ❍ ❍ ❍ ❍ ❍

1 2 3 4 5 6 7 8 9 1011121314151617181920
0

50

100

150

200

250

300

350

400

450

500

A
ve

ra
ge

 T
hr

ou
gh

pu
t

(M
bi

ts
/s

ec
)

Number of Processing Elements

● With Presentation Layer

❍ Without Presentation Layer

Figure 4.11: Connectionless Message Parallelism Throughput

4.6.2 Context Switching Measurements

Measurements of context switching overhead were obtained by modifying the

ttcp benchmarking tool to use the SunOS 5.3/proc process file system. The/proc

file system provides access to the executing image of each process in the system. It

reports the number of voluntary and involuntary context switches incurred by SunOS

LWPs within a process. Figures 4.15 through 4.19 illustrate the number of voluntary

and involuntary context switches incurred by transmitting the 20,000 4 kbyte messages

through the process architectures and protocol stacks measured in this study.

A voluntary context switch is triggered when a protocol task puts itself to sleep

awaiting certain resources (such as I/O devices or synchronization locks) to become

available. For example, a protocol task may attempt to acquire a resource that is not

available immediately (such as obtaining a message from an empty list of messages in a

Queue). In this case, the protocol task puts itself to sleep by invoking thewait method

120

●

●

●

● ● ●
● ●

● ● ●
● ● ● ●

● ●
● ● ●

❍

❍ ❍
❍

❍ ❍
❍ ❍ ❍

❍ ❍ ❍
❍ ❍

❍
❍

❍
❍ ❍ ❍

1 2 3 4 5 6 7 8 9 1011121314151617181920
0

5

10

15

20

25

30

35

40

45

50

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bi

ts
/s

ec
)

Number of Processing Elements

● With Presentation Layer

❍ Without Presentation Layer

Figure 4.12: Connectionless Layer Parallelism Throughput

of anASX Condition object. This method causes the SunOS kernel to preempt the

current thread of control and perform a context switch to another thread of control that

is capable of executing protocol tasks immediately. For each combination of process

architecture and protocol stack, voluntary context switching increases fairly steadily as

the number of PEs increase from 1 through 20 (shown in Figures 4.15 through 4.19).

An involuntary context switch occurs when the SunOS kernel preempts a running

unbound thread in order to schedule another thread of control to execute other protocol

tasks. The SunOS scheduler preempts an active thread of control every 10 milliseconds

when the time-slice alloted to its LWP expires. Note that the rate of growth for involun-

tary context switching shown in Figures 4.15 through 4.19 remains fairly consistent as

the number of PEs increase. Therefore, it appears that most of the variance in average

throughput performance is accounted for by voluntary context switching, rather than by

involuntary context switching.

121

●

●

●

●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ●

❍

❍

❍

❍

❍

❍
❍

❍ ❍

❍

❍
❍ ❍

❍ ❍ ❍ ❍ ❍ ❍ ❍

1 2 3 4 5 6 7 8 9 1011121314151617181920
0

2

4

6

8

10

12

R
el

at
iv

e
S

pe
ed

up

Number of Processing Elements

● With Presentation Layer

❍ Without Presentation Layer

Figure 4.13: Relative Speedup for Connectionless Message Parallelism

The task-based process architectures (shown in Figures 4.18 and 4.19) exhib-

ited approximately 4 to 5 times higher levels of voluntary context switching than the

message-based process architectures (shown in Figures 4.15, 4.16, and 4.17). This dif-

ference stems from the synchronization mechanisms used for the Layer Parallelism pro-

cess architecture. This process architecture uses sleep-locks to implement flow control

between protocol stack layers running in separate PEs. This type of flow control is nec-

essary since processing activities in each layer may execute at different rates. In SunOS,

thewait andsignal methods onCondition objects are implemented using sleep-

locks, which trigger voluntary context switches. In contrast, Connectional Parallelism

and Message Parallelism use adaptive spin-lock synchronization, which is less costly

since it typically doesnot trigger voluntary context switches. The substantially lower-

levels of voluntary context switching exhibited by Connectional Parallelism and Mes-

sage Parallelism helps to account for their consistently higher overall throughput and

greater relative speedup discussed in Section 4.6.1.

122

●

●

●

●

●

● ● ● ●
●

● ● ●
●

● ● ●
●

● ●

❍

❍
❍

❍ ❍
❍

❍

❍
❍ ❍ ❍

❍ ❍ ❍
❍

❍ ❍ ❍ ❍
❍

1 2 3 4 5 6 7 8 9 1011121314151617181920
0

0.5

1

1.5

2

2.5

3

3.5

4

R
el

at
iv

e
S

pe
ed

up

Number of Processing Elements

● With Presentation Layer

❍ Without Presentation Layer

Figure 4.14: Relative Speedup of Connectionless Layer Parallelism

As shown in Figure 4.15, Connectional Parallelism incurred the lowest levels of

context switching for the connection-oriented protocol stacks. In this process architec-

ture, after a message has been demultiplexed onto a connection, all that connection’s

context information is directly accessible within the address space of the associated

thread of control. In general, a thread of control in Connectional Parallelism processes

its connection’s messages without incurring additional context switching overhead.

4.6.3 Synchronization Measurements

Measurements of synchronization overhead were collected to determine the amount

of time spent acquiring and releasing locks onASX Mutex andCondition objects

during protocol processing on the 20,000 4 kbyte messages. Unlike context switches,

the SunOS 5.3/proc file system does not maintain accurate metrics on synchroniza-

tion overhead. Therefore, these measurements were obtained by bracketing theMutex

123

● ●
●

● ● ●
●

●

●

●
●

● ●

●
●

●
●

● ●
●

❍ ❍ ❍
❍

❍

❍
❍

❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍
❍ ❍ ❍ ❍

1 2 3 4 5 6 7 8 9 1011121314151617181920
0

2000

4000

6000

8000

10000

12000

14000

N
um

be
r

of
 C

on
te

xt
 S

w
itc

he
s

Number of Processing Elements

● Voluntary Context Switches

❍ Involuntary Context Switches

Figure 4.15: Connection-oriented Connectional Parallelism Context Switching

andCondition methods with calls to thegethrtime system call. This system call

uses the SunOS 5.3 high-resolution timer, which expresses time in nanoseconds from

an arbitrary time in the past. The time returned by thegethrtime system call is not

subject to resetting or drifting since it is not correlated with the current time of day.

Figures 4.20 through 4.24 indicate the total time (measured in msecs) used to ac-

quire and release locks onMutex andCondition synchronization objects. These

tests were performed using all three process architectures to implement connection-

oriented and connectionless protocol stacks that contained data-link, network, transport,

and presentation layer functionality. The message-based process architectures (Con-

nectional Parallelism and Message Parallelism, shown in Figures 4.20, 4.21, and 4.23)

usedMutex synchronization mechanisms that utilize adaptive spin-locks (which rarely

trigger a context switch). In contrast, the task-based process architecture (Layer Paral-

lelism, shown in Figures 4.22 and 4.24) utilized bothMutex andCondition objects

(Condition objectsdo trigger context switches).

124

● ● ●
●

●
●

● ●

● ● ●

●
●

●

● ●

● ●
● ●

❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍
❍ ❍ ❍ ❍ ❍ ❍

❍ ❍ ❍ ❍ ❍ ❍

1 2 3 4 5 6 7 8 9 1011121314151617181920
0

5000

10000

15000

20000

25000

N
um

be
r

of
 C

on
te

xt
 S

w
itc

he
s

Number of Processing Elements

● Voluntary Context Switches

❍ Involuntary Context Switches

Figure 4.16: Connection-oriented Message Parallelism Context Switching

Connection-oriented Connectional Parallelism (shown in Figure 4.20) exhibited

the lowest levels of synchronization overhead, which peaked at approximately 700 msecs.

This synchronization overhead was approximately 1 order of magnitude lower than the

results shown in Figures 4.21 through 4.24. Moreover, the amount of synchronization

overhead incurred by Connectional Parallelism did not increase significantly as the num-

ber of PEs increased from 1 to 20. This behavior occurs since after a message is demulti-

plexed onto a PE/connection, few additional synchronization operations are required. In

addition, since Connectional Parallelism processes messages within a single PE cache,

it leverages off of SPARCcenter 2000 multi-processor cache affinity properties [VZ91].

The synchronization overhead incurred by connection-oriented Message Paral-

lelism (shown in Figure 4.21) peaked at just over 6,000 msecs. Moreover, the rate of

growth increased fairly steadily as the number of PEs increased from 1 to 20. This be-

havior occurs from the lock contention caused byMutex objects that serialize access

125

● ● ● ● ●
● ●

●
●

●

●

●

●

●
●

●

● ●
● ●

❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍

1 2 3 4 5 6 7 8 9 1011121314151617181920
0

5000

10000

15000

20000

25000

30000

N
um

be
r

of
 C

on
te

xt
 S

w
itc

he
s

Number of Processing Elements

● Voluntary Context Switches

❍ Involuntary Context Switches

Figure 4.17: Connectionless Message Parallelism Context Switching

to theMap Manager connection demultiplexer (discussed in Section 3.3.4.1). In con-

trast, the connectionless Message Parallelism protocol stack does not require the use of

this connection demultiplexer. Therefore, the amount of synchronization overhead it

incurred was much lower, peaking at under 1,800 msecs.

Connection-oriented Layer Parallelism exhibited two types of synchronization

overhead (shown in Figure 4.22). The amount of overhead resulting fromMutex ob-

jects peaked at just over 2,000 msecs, which was lower than that of connection-oriented

Message Parallelism (shown in Figure 4.21). However, the amount of synchronization

overhead from theCondition objects was much higher, peaking at approximately

18,000 msecs (shown in Figure 4.22). In the Layer Parallelism implementation, the

Condition objects implemented flow control between separate layers executing on

different PEs in a protocol stack. The connectionless version of Layer Parallelism also

exhibited high levels of synchronization overhead (shown in Figure 4.24).

126

● ● ●
●

●

●

●

●
● ● ●

●
● ●

●
● ●

●

● ●

❍
❍

❍
❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍

1 2 3 4 5 6 7 8 9 1011121314151617181920
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

N
um

be
r

of
 C

on
te

xt
 S

w
itc

he
s

Number of Processing Elements

● Voluntary Context Switches

❍ Involuntary Context Switches

Figure 4.18: Connection-oriented Layer Parallelism Context Switching

4.7 Summary

The following observations resulted from our experience gained by conducting

performance experiments on alternative process architectures for connectionless and

connection-oriented protocol stacks:

� Implementing the task-based process architectures was relatively straightforward.

These process architectures map onto conventional layered communication mod-

els using well-structured “producer/consumer” designs [Atk88]. Minimal syn-

chronization was necessarywithin a layer since parallel processing was serialized

at a service access point (such as the service access point defined between the

network and transport layers). However, as shown by the performance experi-

ments, the task-based Layer Parallelism process architecture exhibited high levels

of context switching and synchronization overhead on the SunOS shared memory

multi-processor platform.

127

● ● ●
●

●

●

●

●
● ● ●

●
● ●

●
● ●

●

● ●

❍
❍

❍
❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍

1 2 3 4 5 6 7 8 9 1011121314151617181920
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

N
um

be
r

of
 C

on
te

xt
 S

w
itc

he
s

Number of Processing Elements

● Voluntary Context Switches

❍ Involuntary Context Switches

Figure 4.19: Connectionless Layer Parallelism Context Switching

� Implementing the message-based process architectures was challenging since the

concurrency control mechanisms were more complex. However, the message-

based process architectures used parallelism more effectively than the task-based

process architectures. This is due in part to the fact that message-based process ar-

chitecture parallelism was based upon dynamic characteristics (such as messages

or connections). This dynamism enables the message-based process architectures

to use a larger number of PEs effectively. As described in Section 4.6.1, the rela-

tive speedups gained from parallel message-based process architectures scaled up

to use a relatively high number of PEs. In contrast, the parallelism used by the

task-based process architectures depended on relatively static characteristics (such

as the number of layers or protocol tasks), which did not scale up. In addition,

the higher rate of growth for context switching and synchronization (discussed in

Sections 4.6.2 and 4.6.3) hampered the ability of Layer Parallelism to effectively

utilize a large number of PEs.

128

●

●

●
●

● ● ●

●
● ●

● ●
●

●
●

● ●
● ●

●

1 2 3 4 5 6 7 8 9 1011121314151617181920
0

100

200

300

400

500

600

700

800

S
yn

ch
ro

ni
za

tio
n

O
ve

rh
ea

d
(m

se
cs

)

Number of Processing Elements

● Mutex Overhead

Figure 4.20: Connection-oriented Connectional Parallelism Synchronization Overhead

� Connectional Parallelism becomes more suitable than Message Parallelism as the

number of connections approaches the number of PEs. Message Parallelism, on

the other hand, is more suitable when the number of active connections is signif-

icantly less than the number of available PEs. In addition, unlike Connectional

Parallelism, Message Parallelism is suitable for connectionless applications.

� It appears that connection-oriented Message Parallelism benefits more from paral-

lelism when the protocol stack contains presentation layer processing. As shown

in Figure 4.8, the speedup curve for connection-oriented Message Parallelism

without presentation layer processing flattens out after 8 PEs. In contrast, when

presentation layer processing is performed, the speedup continues until 16 PEs.

This behavior results from the relatively low amount of synchronization overhead

associated with parallel processing at the presentation layer. In contrast, the rel-

ative speedup for Connectional Parallelism without presentation layer processing

continues to increase steadily up to 20 PEs (shown in Figure 4.7). Connectional

129

●
● ●

● ●
●

●
● ●

●
●

●

●
●

●

●
●

●
●

●

1 2 3 4 5 6 7 8 9 1011121314151617181920
0

1000

2000

3000

4000

5000

6000

7000

S
yn

ch
ro

ni
za

tio
n

O
ve

rh
ea

d
(m

se
cs

)

Number of Processing Elements

● Mutex Overhead

Figure 4.21: Connection-oriented Message Parallelism Synchronization Overhead

Parallelism performs well in this case due to its low levels of synchronization and

context switching overhead.

� It appears that the relative cost of synchronization operations has a substantial

impact on process architecture performance. On the SPARCcenter 2000 shared

memory multi-processor running SunOS 5.3, the message-based process archi-

tectures benefit from their use of inexpensive adaptive spin-locks. In contrast,

the task-based process architectures were penalized by the much higher (i.e., two

orders of magnitude) cost of sleep-lock synchronization. We conjecture that a

multi-processor platform possessing different synchronization properties would

produce significantly different results. For example, if the experiments reported

in this chapter were replicated on a non-shared memory, message-passing trans-

puter platform [Zit91], it is likely that the performance of the task-based process

architectures would improve relative to the message-based process architectures.

130

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

❍ ❍

❍
❍ ❍

❍
❍

❍
❍

❍
❍ ❍

❍ ❍ ❍ ❍ ❍ ❍
❍

❍

1 2 3 4 5 6 7 8 9 1011121314151617181920
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

S
yn

ch
ro

ni
za

tio
n

O
ve

rh
ea

d
(m

se
cs

)

Number of Processing Elements

● Mutex Overhead

❍ Condition Overhead

Figure 4.22: Connection-oriented Layer Parallelism Synchronization Overhead

●

● ● ● ● ● ●
● ● ●

●
●

● ●
●

●
●

●

● ●

1 2 3 4 5 6 7 8 9 1011121314151617181920
0

200

400

600

800

1000

1200

1400

1600

1800

S
yn

ch
ro

ni
za

tio
n

O
ve

rh
ea

d
(m

se
cs

)

Number of Processing Elements

● Mutex Overhead

Figure 4.23: Connectionless Message Parallelism Synchronization Overhead

131

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

❍ ❍
❍ ❍ ❍ ❍

❍

❍
❍

❍
❍

❍
❍

❍ ❍ ❍
❍

❍
❍

❍

1 2 3 4 5 6 7 8 9 1011121314151617181920
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

S
yn

ch
ro

ni
za

tio
n

O
ve

rh
ea

d
(m

se
cs

)

Number of Processing Elements

● Mutex Overhead

❍ Condition Overhead

Figure 4.24: Connectionless Layer Parallelism Synchronization Overhead

Chapter 5

Conclusions and Future Research

Problems

This paper describes performance measurements obtained by using theASXframe-

work to parallelize a connection-oriented protocol stack implemented with Connectional

Parallelism and Message Parallelism process architectures. TheASX framework pro-

vides an integrated set of object-oriented components that facilitate experimentation

with different types of process architectures on multi-processor platforms. By decou-

pling the protocol-specific functionality from the underlying process architecture, the

ASXframework increased component reuse and simplified the development, configura-

tion, and experimentation with parallel protocol stacks.

The experimental results presented in this dissertation demonstrate that to increase

performance significantly, the speed-up obtained from parallelizing a protocol stack

must outweight the context switching and synchronization overhead associated with

parallel processing. If these sources of overhead are large, parallelizing a protocol stack

will not yield substantial benefits. The task-based Layer Parallelism process architecture

exhibited high levels of context switching and synchronization, and did not effectively

utilize the available multi-processing resources on a SPARCcenter 2000 shared memory

132

133

multi-processor platform containing 20 processing elements. In contrast, the message-

based process architectures (Connectional Parallelism and Message Parallelism) incurred

significantly less context switching and synchronization overhead, and exhibited much

higher levels of performance and multi-processing resource utilization. In general, the

results from these experiments underscore the importance of the process architecture on

parallel communication subsystem performance.

Selecting an appropriate process architecture is an important design considera-

tion in application domains other than communication subsystems. Over the next sev-

eral years, I plan to replicate my performance experiments using more powerful multi-

processor end-systems (based on both shared memory and message passing computer ar-

chitectures – such as Transputers) and higher-capacity networks (such as ATM) in order

to investigate the scalability of the alternative process architectures on a range of appli-

cations. For example, I am currently working on generalizing my dissertation research to

address more general distributed system topics involving system and network manage-

ment (such as high-speed event service mechanisms for terrestrial- and satellite-based

telecommunication switch management) and integrated database/high-speed communi-

cation systems (such as wide-area video-on-demand servers). These types of systems

also benefit from a flexible framework that automates and simplifies the dynamic con-

figuration and parallel execution of their distributed services.

My current research involves extending theASX framework to use parallel pro-

cessing, along with various filter composition techniques, to optimize event filtering

[Sch94c] for dynamic multi-point (DMP) applications. Examples of DMP applications

include satellite telemetry processing systems, fault management in large-scale network

management systems, real-time market data analysis systems, on-line news “clipping”

services, and distributed agents for mobile personal communication systems. Event fil-

tering is a data reduction mechanism that eliminates unnecessary network traffic and

134

unnecessary processing at consumer endsystems in DMP systems. In addition, filter-

ing is used to demultiplex and classify events, which supports network monitoring and

automated fault management.

In the next five years, I envision that my research will involve experimentation-

based techniques for integrating distributed computing and end-system parallel process-

ing to address applications like tele-conferencing, scientific visualization, medical imag-

ing, and global personal communication systems in a gigabit network environment. Ide-

ally, I would like to become a participant in a gigabit testbed environment that would

enable me to conduct my research in both wide-area and local-area settings.

Bibliography

[ABG+86] M. Accetta, R. Baron, D. Golub, R. Rashid, A. Tevanian, and M. Young.

Mach: A New Kernel Foundation for UNIX Development. InProceedings

of the Summer 1986 USENIX Technical Conference and Exhibition, June

1986.

[ABLL92] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and

Henry M. Levy. Scheduler Activiation: Effective Kernel Support for the

User-Level Management of Parallelism.ACM Transactions on Computer

Systems, pages 53–79, February 1992.

[ACR88] M. Stella Atkins, Samuel T. Chanson, and James B. Robinson. LNTP –

An Efficient Transport Protocol for Local Area Networks. InProceedings

of the Conference on Global Communications (GLOBECOM), pages 705–

710, 1988.

[Atk88] M. Stella Atkins. Experiments in SR with Different Upcall Program Struc-

tures.ACM Transactions on Computer Systems, 6(4):365–392, November

1988.

[Bir89] Andrew D. Birrell. An Introduction to Programming with Threads. Tech-

nical Report SRC-035, Digital Equipment Corporation, January 1989.

[Bja90] Bjarne Stroustrup and Margret Ellis.The Annotated C++ Reference Man-

ual. Addison-Wesley, 1990.

135

136

[Bja91] Bjarne Stroustrup. The C++ Programming Language, 2nd Edition.

Addison-Wesley, 1991.

[BL88] Ronald E. Barkley and T. Paul Lee. A Heap-Based Callout Implementa-

tion to Meet Real-Time Needs. InProceedings of the USENIX Summer

Conference, pages 213–222. USENIX Association, June 1988.

[BO92] Don Batory and Sean W. O’Malley. The Design and Implementation of

Hierarchical Software Systems Using Reusable Components.ACM Trans-

actions on Software Engineering and Methodology, 1(4), October 1992.

[Boo93] Grady Booch. Object Oriented Analysis and Design with Applications

(2nd Edition). Benjamin/Cummings, Redwood City, California, 1993.

[BSS93] Donald F. Box, Douglas C. Schmidt, and Tatsuya Suda. ADAPTIVE: An

Object-Oriented Framework for Flexible and Adaptive Communication

Protocols. InProceedings of the 4th IFIP Conference on High Perfor-

mance Networking, pages 367–382, Liege, Belgium, 1993. IFIP.

[BZ93] Torsten Braun and Martina Zitterbart. Parallel Transport System Design.

In Proceedings of the 4th IFIP Conference on High Performance Network-

ing, Belgium, 1993. IFIP.

[CDJM91] Ramon Caceres, Peter Danzig, Sugih Jamin, and Danny Mitzel. Char-

acteristics of Wide-Area TCP/IP Conversations. InProceedings of the

SIGCOMM Symposium on Communications Architectures and Protocols,

pages 101–112, Zurich Switzerland, September 1991. ACM.

[Che87] David R. Cheriton. UIO: A Uniform I/O System Interface for Distributed

Systems.ACM Transactions on Computer Systems, 5(1):12–46, February

1987.

137

[Cla85] David D. Clark. The Structuring of Systems Using Upcalls. InProceed-

ings of the10th Symposium on Operating System Principles, Shark Is.,

WA, 1985.

[CRJ87] Roy Campbell, Vincent Russo, and Gary Johnson. The Design of a Mul-

tiprocessor Operating System. InProceedings of the USENIX C++ Work-

shop, pages 109–126. USENIX Association, November 1987.

[CS91] Douglas E. Comer and David L. Stevens.Internetworking with TCP/IP

Vol II: Design, Implementation, and Internals. Prentice Hall, Englewood

Cliffs, NJ, 1991.

[CSSZ90] Eric C. Cooper, Peter A. Steenkiste, Robert D. Sansom, and Brian D. Zill.

Protocol Implementation on the Nectar Communication Processor. InPro-

ceedings of the SIGCOMM Symposium on Communications Architectures

and Protocols, pages 135–144, Philadelphia, PA, September 1990. ACM.

[CT90] David D. Clark and David L. Tennenhouse. Architectural Considerations

for a New Generation of Protocols. InProceedings of the SIGCOMM

Symposium on Communications Architectures and Protocols, pages 200–

208, Philadelphia, PA, September 1990. ACM.

[Cus93] Helen Custer.Inside Windows NT. Microsoft Press, Redmond, Washing-

ton, 1993.

[CWWS92] Jon Crowcroft, Ian Wakeman, Zheng Wang, and Dejan Sirovica. Is Lay-

ering Harmful?IEEE Network Magazine, January 1992.

[DAPP93] Peter Druschel, Mark B. Abbott, Michael Pagels, and Larry L. Peterson.

Network subsystem design.IEEE Network (Special Issue on End-System

Support for High Speed Networks), 7(4), July 1993.

138

[DDK+90] Willibald Doeringer, Doug Dykeman, Matthias Kaiserswerth, Bernd

Meister, Harry Rudin, and Robin Williamson. A Survey of Light-Weight

Transport Protocols for High-Speed Networks.IEEE Transactions on

Communication, 38(11):2025–2039, November 1990.

[EKB+92] J.R. Eykholt, S.R. Kleiman, S. Barton, R. Faulkner, A Shivalingiah,

M. Smith, D. Stein, J. Voll, M. Weeks, and D. Williams. Beyond Mul-

tiprocessing... Multithreading the SunOS Kernel. InProceedings of the

Summer USENIX Conference, San Antonio, Texas, June 1992.

[Fel90] David C. Feldmeier. Multiplexing Issues in Communications System De-

sign. InProceedings of the SIGCOMM Symposium on Communications

Architectures and Protocols, pages 209–219, Philadelphia, PA, September

1990. ACM.

[FM92] D.C. Feldmeier and A.J. McAuley. Reducing Ordering Constraints to Im-

prove Performance. InProceedings of the3rd IFIP Workshop on Protocols

for High-Speed Networks, Stockholm, Sweden, May 1992.

[Gar90] Arun Garg. Parallel STREAMS: a Multi-Process Implementation. InPro-

ceedings of the Winter USENIX Conference, Washington, D.C., January

1990.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.De-

sign Patterns: Elements of Reusable Object-Oriented Software. Addison-

Wesley, Reading, MA, 1994.

[GKWW89] D. Giarrizzo, M. Kaiserswerth, T Wicki, and R. Williamson. High-Speed

Parallel Protocol Implementations. InProceedings of the 1st International

Workshop on High-Speed Networks, pages 165–180, May 1989.

139

[GNI92] M. Goldberg, Gerald Neufeld, and Mabo Ito. A Parallel Approach to OSI

Connection-Oriented Protocols. InProceedings of the3rd IFIP Workshop

on Protocols for High-Speed Networks, Stockholm, Sweden, May 1992.

[Haa91] Zygmunt Haas. A Protocol Structure for High-Speed Communication

Over Broadband ISDN.IEEE Network Magazine, pages 64–70, January

1991.

[HMPT89] Norman C. Hutchinson, Shivakant Mishra, Larry L. Peterson, and Vicraj T.

Thomas. Tools for Implementing Network Protocols.Software Practice

and Experience, 19(9):895–916, September 1989.

[HP91] Norman C. Hutchinson and Larry L. Peterson. Thex-kernel: An Architec-

ture for Implementing Network Protocols.IEEE Transactions on Software

Engineering, 17(1):64–76, January 1991.

[Jac88] Van Jacobson. Congestion Avoidance and Control. InProceedings of the

SIGCOMM Symposium on Communications Architectures and Protocols,

Stanford, Calif., August 1988.

[JBB92] Van Jacobson, Robert Braden, and David Borman. TCP Extensions for

High Performance.Network Information Center RFC 1323, pages 1–37,

October 1992.

[JF88] R. Johnson and B. Foote. Designing Reusable Classes.Journal of Object-

Oriented Programming, 1(5):22–35, June/July 1988.

[JSB90] Jiraj Jain, Mischa Schwartz, and Theodore Bashkow. Transport Proto-

col Processing at GBPS Rates. InProceedings of the SIGCOMM Sym-

posium on Communications Architectures and Protocols, pages 188–199,

Philadelphia, PA, September 1990. ACM.

140

[KC88] Hemant Kanakia and David R. Cheriton. The VMP Network Adapter

Board (NAB): High-Performance Network Communication for Multipro-

cessors. InProceedings of the SIGCOMM Symposium on Communications

Architectures and Protocols, pages 175–187, Stanford, CA, August 1988.

ACM.

[LC87] Mark A. Linton and Paul R. Calder. The Design and Implementation of

InterViews. InProceedings of the USENIX C++ Workshop, November

1987.

[LKAS93] Bert Lindgren, Bobby Krupczak, Mostafa Ammar, and Karsten Schwan.

Parallelism and Configurability in High Performance Protocol Archi-

tectures. InProceedings of the Second Workshop on the Architecture

and Implementation of High Performance Communication Subsystems,

Williamsburg, Virgina, September 1993. IEEE.

[LMKQ89] S. J. Leffler, M.K. McKusick, M.J. Karels, and J.S. Quarterman.The De-

sign and Implementation of the 4.3BSD UNIX Operating System. Addison-

Wesley, 1989.

[Mat93] Mats Bjorkman and Per Gunningberg. Locking Strategies in Multipro-

cessor Implementations of Protocols. InProceedings of the SIGCOMM

Symposium on Communications Architectures and Protocols, San Fran-

cisco, California, 1993. ACM.

[MB91] J. C. Mogul and A. Borg. The Effects of Context Switches on Cache Per-

formance. InProceedings of the4th International Conference on Architec-

tural Support for Programming Languages and Operating Systems (ASP-

LOS), Santa Clara, CA, April 1991. ACM.

141

[MD91] Paul E. McKenney and Ken F. Dove. Efficient Demultiplexing of Incom-

ing TCP Packets. Technical Report SQN TR92-01, Sequent Computer

Systems, Inc., December 1991.

[MJ93] Steven McCanne and Van Jacobson. The BSD Packet Filter: A New Ar-

chitecture for User-level Packet Capture. InProceedings of the Winter

USENIX Conference, pages 259–270, San Diego, CA, January 1993.

[MK91] Maria D. Maggio and David W. Krumme. A Flexible System Call Interface

for Interprocess Communication in a Distributed Memory Multicomputer.

Operating Systems Review, 25(2):4–21, April 1991.

[MS92] H. E. Meleis and D. N. Serpanos. Memory Management in High-Speed

Communication Subsystems. InProceedings of the1st IEEE Workshop

on the Architecture and Implementation of High Performance Communi-

cation Subsystems, February 1992.

[NYKT94] Erich M. Nahum, David J. Yates, James F. Kurose, and Don Towsley. Per-

formance Issues in Parallelized Network Protocols. InSubmission to the

Operating Systems Design and Implementation conference. USENIX As-

sociation, November 1994.

[OP92] Sean W. O’Malley and Larry L. Peterson. A Dynamic Network Archi-

tecture. ACM Transactions on Computer Systems, 10(2):110–143, May

1992.

[PBS89] Larry L. Peterson, Nick Buchholz, and Richard D. Schlichting. Preserving

and Using Context Information in Interprocess Communication.ACM

Transactions on Computer Systems, 7(3):217–246, August 1989.

[PR90] D. L. Presotto and D. M. Ritchie. Interprocess Communication in the Ninth

Edition UNIX System. UNIX Research System Papers, Tenth Edition,

2(8):523–530, 1990.

142

[Pre93] David Presotto. Multiprocessor Streams for Plan 9. InProceedings of

the United Kingdom UNIX User Group Summer Proceedings, London,

England, January 1993.

[PS91] Thomas F. La Porta and Mischa Schwartz. Architectures, Features, and

Implementation of High-Speed Transport Protocols.IEEE Network Mag-

azine, pages 14–22, May 1991.

[PS93] Thomas La Porta and Mischa Schwartz. Performance Analysis of MSP: a

Feature-Rich High-Speed Transport Protocol. InProceedings of the Con-

ference on Computer Communications (INFOCOM), San Francisco, Cal-

ifornia, 1993. IEEE.

[Rag93] Steve Rago.UNIX System V Network Programming. Addison-Wesley,

Reading, MA, 1993.

[Rit84] Dennis Ritchie. A Stream Input–Output System.AT&T Bell Labs Techni-

cal Journal, 63(8):311–324, October 1984.

[SBS93] Douglas C. Schmidt, Donald F. Box, and Tatsuya Suda. ADAPTIVE: A

Dynamically Assembled Protocol Transformation, Integration, and eVal-

uation Environment.Journal of Concurrency: Practice and Experience,

5(4):269–286, June 1993.

[Sch92] Douglas C. Schmidt. IPCSAP: An Object-Oriented Interface to Interpro-

cess Communication Services.C++ Report, 4(9), November/December

1992.

[Sch93a] Douglas C. Schmidt. The Object-Oriented Design and Implementation of

the Reactor: A C++ Wrapper for UNIX I/O Multiplexing (Part 2 of 2).

C++ Report, 5(7), September 1993.

143

[Sch93b] Douglas C. Schmidt. The Reactor: An Object-Oriented Interface for

Event-Driven UNIX I/O Multiplexing (Part 1 of 2).C++ Report, 5(2),

February 1993.

[Sch94a] Douglas C. Schmidt. A Domain Analysis of Network Daemon Design

Dimensions.C++ Report, 6(3), March/April 1994.

[Sch94b] Douglas C. Schmidt. ASX: an Object-Oriented Framework for Devel-

oping Distributed Applications. InProceedings of the6th USENIX C++

Technical Conference, Cambridge, Massachusetts, April 1994. USENIX

Association.

[Sch94c] Douglas C. Schmidt. High-Performance Event Filtering for Dynamic

Multi-point Applications. In 1st Workshop on High Performance Protocol

Architectures (HIPPARCH). INRIA, December 1994.

[Sch94d] Douglas C. Schmidt. Transparently Parameterizing Synchronization

Mechanisms into a Concurrent Distributed Application.C++ Report,

6(6), July/August 1994.

[Sch95] Douglas C. Schmidt. Reactor: An Object Behavioral Pattern for Concur-

rent Event Demultiplexing and Event Handler Dispatching. In James O.

Coplien and Douglas C. Schmidt, editors,Pattern Languages of Pro-

grams, Reading, MA, June 1995. Addison-Wesley.

[SP90] J. Sterbenz and G. Parulkar. AXON: Application-Oriented Lightweight

Transport Protocol Design. InInternational Conference on Computers

and Communications, New Delhi, India, November 1990.

[SPY+93] Sunil Saxena, J. Kent Peacock, Fred Yang, Vijaya Verma, and Mohan Kr-

ishnan. Pitfalls in Multithreading SVR4 STREAMS and other Weightless

Processes. InProceedings of the Winter USENIX Conference, pages 85–

106, San Diego, CA, January 1993.

144

[SS93] Douglas C. Schmidt and Tatsuya Suda. Transport System Architecture

Services for High-Performance Communications Systems.IEEE Journal

on Selected Areas in Communication, 11(4):489–506, May 1993.

[SS94a] Douglas C. Schmidt and Tatsuya Suda. An Object-Oriented Framework

for Dynamically Configuring Extensible Distributed Communication Sys-

tems. IEE/BCS Distributed Systems Engineering Journal (Special Issue

on Configurable Distributed Systems), 2:280–293, December 1994.

[SS94b] Douglas C. Schmidt and Tatsuya Suda. Experiences with an Object-

Oriented Architecture for Developing Extensible Distributed System

Management Software. InProceedings of the Conference on Global Com-

munications (GLOBECOM), San Francisco, CA, November/December

1994. IEEE.

[SS94c] Douglas C. Schmidt and Tatsuya Suda. Measuring the Impact of Alterna-

tive Parallel Process Architectures on Communication Subsystem Perfor-

mance. InProceedings of the4th International Workshop on Protocols for

High-Speed Networks, Vancouver, British Columbia, August 1994. IFIP.

[SS94d] Douglas C. Schmidt and Tatsuya Suda. The Service Configurator Frame-

work: An Extensible Architecture for Dynamically Configuring Concur-

rent, Multi-Service Network Daemons. InProceedings of the Second In-

ternational Workshop on Configurable Distributed Systems, pages 190–

201, Pittsburgh, PA, March 1994. IEEE.

[SS95a] Douglas C. Schmidt and Tatsuya Suda. Measuring the Performance of Al-

ternative Process Architectures for Parallelizing Communication Subsys-

tems.Submitted to the IEEE/ACM Journal of Transactions on Networking,

1995.

145

[SS95b] Douglas C. Schmidt and Tatsuya Suda. Measuring the performance of

parallel message-based process architectures. InProceedings of the Con-

ference on Computer Communications (INFOCOM), Boston, MA, April

1995. IEEE.

[SSS+93] Douglas C. Schmidt, Burkhard Stiller, Tatsuya Suda, Ahmed Tantawy, and

Martina Zitterbart. Language Support for Flexible, Application-Tailored

Protocol Configuration. InProceedings of the18th Conference on Local

Computer Networks, pages 369–378, Minneapolis, Minnesota, September

1993.

[Ste90] W. Richard Stevens.UNIX Network Programming. Prentice Hall, Engle-

wood Cliffs, NJ, 1990.

[Ste92] W. Richard Stevens.Advanced Programming in the UNIX Environment.

Addison Wesley, Reading, Massachusetts, 1992.

[Sun87] Sun Microsystems. XDR: External Data Representation Standard.Net-

work Information Center RFC 1014, June 1987.

[Sun92] Sun Microsystems.Network Interfaces Programmer’s Guide, Chapter 6

(TLI Interface) edition, 1992.

[Svo89] Liba Svobodova. Implementing OSI Systems.IEEE Journal on Selected

Areas in Communications, SAC-7:1115–1130, September 1989.

[Ten89] David L. Tennenhouse. Layered Multiplexing Considered Harmful. In

Proceedings of the1st International Workshop on High-Speed Networks,

May 1989.

[TRG+87] Avadis Tevanian, Richard Rashid, David Golub, David Black, Eric

Cooper, and Michael Young. Mach Threads and the Unix Kernel: The

Battle for Control. InProceedings of the USENIX Summer Conference.

USENIX Association, August 1987.

146

[USN84] USNA. TTCP: a test of TCP and UDP Performance, Dec 1984.

[VL87] George Varghese and Tony Lauck. Hashed and Hierarchical Timing

Wheels: Data Structures for the Efficient Implementation of a Timer Fa-

cility. In The Proceedings of the11th Symposium on Operating System

Principles, November 1987.

[VZ91] Raj Vaswani and John Zahorjan. The Implications of Cache Affinity on

Processor Scheduling for Multiprogrammed, Shared Memory Multipro-

cessors. InProceedings of the13th Symposium on Operating System Prin-

ciples, pages 26–40, Pacific Grove, CA, October 1991. ACM.

[WBC+93] G. Watson, D. Banks, C. Calamvokis, C. Dalton, A. Edwards, and J. Lum-

ley. Afterburner.IEEE Network Magazine, 7(4), July 1993.

[WF93] C. Murray Woodside and R. Greg Franks. Alternative Software Architec-

tures for Parallel Protocol Execution with Synchronous IPC.IEEE/ACM

Transactions on Networking, 1(2), April 1993.

[WGM88] A. Weinand, E. Gamma, and R. Marty. ET++ - an object-oriented appli-

cation framework in C++. InProceedings of the Object-Oriented Pro-

gramming Systems, Languages and Applications Conference, pages 46–

57. ACM, September 1988.

[WM87] Richard W. Watson and Sandy A. Mamrak. Gaining Efficiency in Trans-

port Services by Appropriate Design and Implementation Choices.ACM

Transactions on Computer Systems, 5(2):97–120, May 1987.

[WM89] C. Murray Woodside and J. Ramiro Montealegre. The Effect of Buffer-

ing Strategies on Protocol Execution Performance.IEEE Transactions on

Communications, 37(6):545–554, June 1989.

[Zit91] Martina Zitterbart. High-Speed Transport Components.IEEE Network

Magazine, pages 54–63, January 1991.

147

[ZJ91] Jonathan M. Zweig and Ralph Johnson. Delegation in C++.Journal of

Object-Oriented Programming, 4(7):31–34, November/December 1991.

[ZS90] Xi Zhang and Aruna Seneviratne. An Efficient Implementation of High-

Speed Protocol without Data Copying. InProceedings of the15th Con-

ference on Local Computer Networks, pages 443–450, Minneapolis, MN,

October 1990. IEEE.

[ZST93] Martina Zitterbart, Burkhard Stiller, and Ahmed Tantawy. A Model for

High-Performance Communication Subsystems.IEEE Journal on Se-

lected Areas in Communication, 11(4):507–519, May 1993.

[Zwe90] Jonathan M. Zweig. The Conduit: a Communication Abstraction in C++.

In Proceedings of the2nd USENIX C++ Conference, pages 191–203.

USENIX Association, April 1990.

