Patterns and Performance of Dynamic CORBA Middleware

Jeff Parsons
parsons@cs.wustl.edu
Department of Computer Science
Washington University in St.Louis

St. Louis. MO

Abstract DOC middleware has matured to encompass a wide range

of architectural styles (such as client/server and peer-to-peer)

As distributed systems increase in complexity, scope, and “%'Ha application domains (such as e-commerce, process au-

uity, the contexts n which they are appll'ed become more OPfkation, aerospace, and telecommunications). Consequently,
ended and dynamic. For example, an important and growi

o . s environments in which distributed applications must oper-
class of distributed applications, such as interface browse([jﬁe — along with the demands made on applications by these

nework managers, distributed debugging ?”d Vis.ualizatigﬂvironments — are now considerably more complex, hetero-
tools, and scripting languages, require flexible middlewa neous, and dynamic. In particular, clients must increasingly

support where statically typed knowledge of all possible opg teract with objects whose interfaces were unknown or per-
ation names and signatures at compile-time is overly restric

. : S) .Maps did not even exist when the application was compiled or
tive. Supporting these types of applications effectively requi

p fd i tvoing that bles the di ¢ loyed [2]. The need for this capability has also grown due
some form ot dynamic typing that eénables the diSCOVery of gbra o nt standardization of the interaction between DOC mid-
eration names and parameter types at run-time.

Thi i buti h v of ddleware and scripting languages, such as Python [3] and Cor-
IS paper provides two contr| u.tlons.to the study o .Mé\Script [4], that require dynamic typing capabilities in the

namically typed middleware. First, it outlines the key des'%derlying DOC middleware

challenges. faced when adding.dynamic typing CapabilityAci)ternative middleware type systems. Developers of dis-

CORBA middleware. Secgnd, I descnbe; hOW. thgse deg Juted applications that use statically typed programming

challenges were resolved via the systematic application of pI%tﬁguages such as C, C++, and Java, are generally quite fa-

terns and object-oriented design techniques. This work W&fliar with the statically typed capabilities provided by DOC

done in the context of the ADAPTIVE Communication Er'?fiddleware They are often much less familiar, however, with
vironment (ACE), which is an object-oriented toolkit for d : Y ' '

: S he dynamically typed capabilities provided by DOC middle-
veloping networked application software, and The ACE O%&%are. Sidebar 1 on page 2 briefly describes the differences

(TAO), which is an open-source and widely adopted OIV'between static and dynamic typing support for middleware.

CORBA object request broker (ORB) that is implemented Us., _.. . .
ing frameworks in ACE. Statically typed DOC middleware features generally yield

high performance since efficient marshaling and demarshaling
object code exists for even the most complex types. However,
1 Introduction this performance is achieved at the expense of decreased flex-
ibility and increased memory footprint. Applications that use
Emerging trends. Distributed object computing (DOC)statically typed middleware are less flexible since they cannot
middleware, such as CORBA, COM+, and Java RMI, is &qndle types not anticipated in the generated code. For exam-
advanced, mature, and field-tested paradigm that supports§e@ny new interface or operation, even a change in a single
composition of software objects that can be distributed or c@Reration parameter, triggers recompilation and relinking.
located throughout networked environments [1]. DOC mid- Conversely, dynamically typed middleware is often less ef-
dleware enables clients to invoke operations on target objdisignt than static typing due to the extra overhead incurred by
to perform interactions and invoke functionality needed t8€ dynamic type discovery and manipulation activities. How-
achieve application goals without hard-coding dependendi¥§". dynamic typing’s slower performance may be offset by
on the location, programming language, OS platform, coff reduc_ed footpr_lnt in the applllcatlon, due to thg rgplacement
munication protocols and interconnects, and hardware. In 8§c0mpiled application-specific code by generic interpreted
dition, DOC middleware simplifies distributed application ddPiddleware code. In addition, the development cycle-time of
velopment by automating key quality of service (QoS) propé}pphcatmns that use ldynamlcally typed mlddleware features
ties, such as security, fault tolerance, and transactional senf&h.be reduced significantly for the following reasons:
tics. e Scripting languages can be integrated with dynamically

Sidebar 1: Static vs. Dynamic Typing for DOC motivated by the intention to point out the performance penal-
Middleware ties incurred by certain requirements of the OMG specifica-

tion [19]. This paper extends our earlier work on statically
A typecan be defined aabstractlyas a seté.g, an Integer type| typed DOC middleware by focusing on patterns and design
could be the set of all integers [5]) ooncretelyas a rule for inter-| techniques that address the following challenges of dynami-
preting a sequence of bits starting at some address in memory [€lly typed DOC middleware:

A type systeriv] is a collection of rules for type equivalence, type | peyising efficient and persistent techniques for dynami-

checking, and type inference, along with methods to construct new . S e -
. o cally storing and retrieving descriptions of interfaces and
types. DOC middleware type systems can be classified into|two operations

general forms: e i
e Static typing, which binds objects to their types at compile- © Minimize the '.ncre"?‘se n fO_QtP“”t associated with
CORBA dynamic typing capabilities.

time. Code for boilerplate activities, such as marshal-
ing/demarshaling and operation dispatching, can be gener-e Assuring that applications that do not use dynamically
ated automatically since statically typed DOC middleware typed middleware features do not incur time/space over-
requires compile-time knowledge of all operation names and heads.

signatures.
e Dynamic typing, which binds objects to their types at rup-Paper organization. The remainder of this paper is orga-

time. Dynamically typed DOC middleware requires the eéxnized as follows. Section 2 describes the design of each dy-
plicit discovery z_and manipulation of operation names and $igsamic CORBA feature in TAO, ranging from the most basic to

EUUEES EL U, the most advanced; Section 3 evaluates the dynamic CORBA
capabilities provided by TAO and summarizes lessons learned
from our experiences; Section 4 discusses other middleware
typed middleware, providing a way for developers to (t¢search that is related to our work described in this paper;
create applications quickly and (2) modify the applic&ection 5 summarizes areas of future work; Section 6 contains

tions flexibly at run-time. concluding remarks; and Section 7 expresses acknowledge-
e New interfaces and operations can be introduced readihgnts. For completeness, Appendix A provides details of the
without triggering recompilation and relinking. underlying data structures used to store dynamic type informa-
tion in TAO.

The more a distributed system'’s topology resembles a star
(i.e., a central server and peripheral clients that do not talk di-
rectly to each other), the more likely a large amount of gen@- The Design of Dynamic CORBA Ca-
ated code will exist at the server location, since the server must pabilities
then have knowledge of multiple, mostly disjoint, sets of oper-
ations. A dynamically typed implementation of such a topal- . .
ogy need not include statically compiled code for each potéT—l Overview of Dynamic CORBA
tial client, and can therefore handle a potentially unboundesis section describes dynamic CORBA features and the de-
number of unique operations and operation signatures. sign of dynamic typing capabilities provided by TAO. Figure 1
R&D challenges. The work described in this paper wadlustrates the key features that comprise dynamic CORBA.
done in the context of The ACE ORB (TAO) [8], which is @&s shown in this figure, dynamic CORBA consists of the (1)
widely adopted open-source implementation of CORBA. OtlypeCode, which provides a structural type representation,
prior work on TAO has explored many dimensions of higlf2) Any, which represents a value in dynamic CORBA appli-
performance and real-time ORB design and performance,dations, (3) NamedValue/NVList, which provide a dynamic
cluding scalable event processing [9], request demultiplegpresentation of operation arguments and signatures, (4) Dy-
ing [10], /O subsystem [11] and protocol [12] integratiomamic Invocation Interface (DII), which defines the client-side
connection architectures [13], asynchronous [14] and symterface for dynamic CORBA applications, (5) the Dynamic
chronous [15] concurrent request processing, adaptive I&eleton Interface (DSI), which is the server-side counterpart
balancing [16], meta-programming mechanisms [17], and I@d the DII, (6) TypeCodeFactory, which is used to create types
stub/skeleton optimizations [18]. dynamically, (7) Dynamic Any, which is used to create and

Since its inception in 1996, the primary focus of researeRamine values in dynamic CORBA applications, (8) the In-
with TAO has been on high performance and predictable terface Repository (IFR), which is a distributed service that
havior in distributed real-time and embedded (DRE) systemspvides run-time access to CORBA type information, and (9)
where statically typed applications have predominanted. Whtad IFR loader, which populates the Interface Repository with
focus there has been on dynamic typing scenarios has beetnies that correspond to IDL declarations.

Interface
Repository

IDL I Implementation I Sidebar 2: IDL Example
Compiler Repository
D\

The following OMG IDL is representative of an online music fe-
commerce system. We use it throughout this section to illustrate
(Servant) .

INTERFACE REPOSITORY
(® IFR LOADER

in args

operatlon

Client

® osi i the use and interaction of various dynamic CORBA features.

% TYPECODE ‘ﬁ;nLo

® /\/A IEDVALUE / NVLIST DL interface Warehouse

(® TYPECODE FACTORY =i v \ + {

@ omamc any) [IDL j [RB J exception NotCarried {};

®on @” SIEES IEREACE Object Adapter struct format_info {

(ors core [Giopnopiesiops) | float price
boolean in_stock;
. . . struct title_info {
Figure 1: Features in Dynamic CORBA format_info cd;
format_info cassette;
T

typedef unsigned long sales_rank;

The preceding synopsis outlines the features in dynar fitle_info Getinfo (in string artist,
CORBA, but does not explain what these features do in ('(:‘J’t“ts ;g'sngagﬂe}ank)
tail. More importantly, there is no motivation fevhy these raises (NotCarried): -
features are important for middleware applications. The | ;
mainder of this section therefore explains why these featu.

are needed in dynamic CORBA by explaining the key software oo1)
H H . 6/00 ¥ 1/03

development problems they solve, which include: Interface Ropository Dynarnlc Any (iﬁ%;ii'_f)

1. Representing type information at run-time Dynamic Any 400 oL (CORBRZED

. . (CORBA 2.2) TypeCodeFactory IFR Loader TODAY

2. Defining a container for a value of any type \

3. Assembling an operation’s parameter list at run-time

4. Constructing a request at run-time N

5. Handling a request of unknown signature

. . . ‘ 1/99 1/00 ‘ ‘ 1’01 ‘ 1/02 1’;}3
6. Creating new type representations at run-time ves 3103
7. Composing and decomposing values of unknown type 3198
. . . TypeCode, Al
8. Implementing run-time type discovery NVList, DI, DSI
9. Managing type information storage

Figure 2: Timeline of Dynamic CORBA Features in TAO
Sidebar 2 presents the IDL example we use throughout this

section to illustrate the use and interaction of the various dy-

gamlc C%%B?Bf?turtes we :egln W'tdh tth(tahlowesttle\(/jel Cﬁroblem While statically typed applications may occasion-

dynamlc CORBA fea urés an hplroceleb Ig € mos adv requwe away to represent a type at run-time, dynamically
ynamic eatures, each level building upon and s ped applications have no compile-time knowledge of at least

suming the capabilities provided in the previous ones. me of the types it encounters. A dynamic CORBA imple-

sequence matches the chronology shown in Figure 2. Entation must therefore have a way to represent a type and
item at left, labeled below the timeline, represents the dynar(bfjlcextract information from it at run-time

CORBA features added to TAO by previous researchers in . . .

DOC group. The items labeled above the timeline repres namic CORBA solution — TypeCode. Define aType-
the contributions of the work described in this paper. T
rightmost item in the figure refers to a topic of future researc
which is discussed in Section 5.5.1.

dethat represents the structure of an IDL type. In dynamic
ORBA, a TypeCode keeps track of the type of a value and
a set (possibly empty) of parameters associated with that par-
ticular type. For example, the TypeCode fite_info
in our example IDL file is shown in Figure 3. The left side
2.2 Representing Type Information at Run- of the figure shows the abstract representation of the Type-
time Code, with its type format and associated parameters. The
right side of the figure shows the concrete representation, with
Context. An application that needs to be able to introspeitte actual values corresponding to the associated IDL declara-
on the types of its objects in order to function correctly.

kil I variables. In such cases, this unknown type will have an as-

sociated value. A dynamic CORBA implementation must be

able to manipulatee.g, copy, compare, or pass as an argu-

ment, values whose type is unknown at compile-time.

Dynamic CORBA solution — Any. Define anAny as a

generic container for a value of any type. In dynamic CORBA,

| an Any consists of a TypeCode and an opaque value of a type
described by the TypeCode, as shown in Figure 4. The actual

TypeCode
Any

Figure 4: Any

Fr

=l

representation of the value in memory can be left to the discre-
tion of the ORB implementor, but it must be general enough
to represent any type whatsoeweg, in C/C++ a likely can-
didate would be aoid pointer. Dynamic CORBA provides
standard operations to insert and access both the TypeCode
and the value. Insertion and extraction of the value is accom-
plished by means of overloaded operators, which are provided
by the ORB for the basic types. Like the TypeCode, an Any
may be used by a statically typed application, and in such cases
the IDL compiler generates the insertion and extraction oper-
tions filled in. TypeCode constants for the built-in IDL typeators for application-defined IDL types.

(such asshort , long , anddouble) are generated by thelmplementing the solution in TAO. Anys in TAO are opti-
ORB at startup. TypeCodes for user-defined static types (suotdbed in various ways. For example, when an Any is used in
asstructs andunions) are generated by an IDL com-a statically typed application, the insertion operator generated
piler [20] when it parses a file containing interface definitionby the IDL compiler for Anys of some aggregate type passes
Implementing the solution in TAO. In TAO, the in a type-specific dest.ructorforthat type, eIiminaFing.the need
TypeCode class stores the structural information in fr the_Any to refert_o its TypeCode when destrqymg its value.
buffer that is encoded using ti@®mmon Data Representatio n addition, an Any n TAO may store its value Q|ther gncoded
(CDR) format defined by thinternet Interoperable Protocol n CDR.form, as W'Fh the TypeCode, or as'/a|d. pomter,. .
(IOP) [20] required of all compliant ORBs. Class membepsependlng on the circumstances under which its value is in-
holding the data in more accessible form, such as a Iistsc?lned'

member names or list of member types, are computed as

il

ik

i R R

A

Figure 3: TypeCode

necessary. 2.4 Assembling an Operation’s Parameter List
at Run-time
2.3 Defining a Container for a Value of Any context. A dynamic CORBA client application that needs
Type to be able to pass parameters to an operation whose signature

o it does not know at compile-time.
Context. A.n application that nee_ds to be able to handle d%?oblem. If a dynamically typed application assigns a value
whose type is known only at run-time. to an operation parameter, the Any that might contain that
Problem. Dynamically typed applications often encounteralue lacks a local name (such as "artist” in our e-commerce
unknown types at run-time when they process constantsegample) and a direction (suchias, out , orinout) thata

CORBA operation argument has in addition to type and valule a NamedValue be null. When a NamedValue is used to rep-
Every operation will have a well-defined set of these parantesent the return type of an operation, the direction and name
ters. A dynamic CORBA implementation must therefore hagee ignored. As shown in Section 2.5, an NVList can be used
a way to generically represent both a single operation pardmeonstruct the argument list of an operation incrementally at
eter and an entire operation signature. run-time.

Dynamic CORBA solution — NamedValue and NVList. Implementing the solution in TAO. In TAO, some NVList '
Define aNamedValughat represents an operation argumeftéthods can be passed a *lazy evaluation” parameter to opti-
and anNVListthat represents an entire operation signature.THz€ for cases where the list is empty or all the NamedValues
dynamic CORBA, a NamedValue is a datatype consisting @ntain Anys that store their values agad pointer.

an Any, a string name, and a flag indicating the direction, as

shown in Figure 5. An NVList is a list of NamedValues, a.5 Constructing a Request at Run-time

Context. A dynamic client application that must invoke op-
erations on objects whose IDL interfaces are not known until
run-time.
NamedValue . Problem. Without compile-time knowledge of an IDL in-
Y terface’s operations and their signatures, a dynamically typed
application must explicitly construct and invoke a request at

run-time [2]. A dynamic CORBA implementation must there-
Figure 5: NamedValue fore be able to encapsulate information about a request and
add to this information incrementally at run-time.

Dynamic CORBA solution — Dynamic Invocation Inter-
shown in Figure 6. The types and order of the parametersfaige. Define aDynamic Invocation Interface (Dlljhat en-
ables a client to make a remote request on a target object for
which no generated stub code exists. In dynamic CORBA, this
interface is embodied in thRequesbbject, which contains
the target object reference, the operation name, an NVList

containing the argument values, a NamedValue for the return

value, and a list (if it is known at run-time) of possible user-

NVList

NamedValue e

]

Any defined exceptions that the operation may throw. All these en-
tities are shown in Figure reffig:request. TRequest object
> — . also provides methods for explicit invocation and for recov-
ery of the return value, and the values of angut or out

arguments that may have been passed.

Using our music e-commerce example from Sidebar 2 on
o page 3, the following C++ code constructs and invokes a DI
request, then extracts the results.

]

NamedValue e
Any

|

Direction Name

CORBA::Object_var target_obj = ...
/I get object reference from command line,
NamedValue [ypecode /I file, web page, etc.
Any CORBA::Request_var req =
target_obj->_request ("GetInfo");
reg->set_return_type (
Warehouse::_tc_title_info
)i
reg->add_in_arg (“artist") <<= "The Beatles";
reg->add_in_arg (“title”) <<= "Abbey Road";
CORBA::Any any (Warehouse::_tc_sales_rank);
reg->arguments ()->add_value (“"rank",

Figure 6: NVList any,
CORBA::ARG_OUT);

]

Value

|

reg->exceptions ()->add (

.. Warehouse::_tc_NotCarried
sufficient conditions for completely specifying the signature.

of an operation. It is therefore acceptable that the string namg>invoke ();

Sidebar 3: Performance Implications of DIl

Request

The extra overhead of request creation, plus addition of refurn

s type, arguments, and possibly exceptions results in a performance
Object Reference] Target Object penalty. The following figure compares the throughput for reguilar
~ Sl CORBA requests and DIl requests (the test was performed us-
— ing TAO version 1.2.3, running on Windows 2000, and compiled
String Operation Name by Visual Studio version 6.0).
—
. 6000
NVList Arguments
— M Static Invocation
5000 1 M Dynamic Invocation
—
NamedValue Return Value
4000
Calls
Flag Oneway? per 3000 1
Second
n 2000 -
Exception List User-defined
Exceptions
1000 -
ol
short octet long struct union small large small large
Figure 7: DIl Request Object g o oot oot
Data Type
const Warehouse:title_info *info; Th_e number of calls-per-second were cor_nputed by tlmlngr250
reg->return_value () >>= info; roundtrip requests for each data type, in which the servant cglcu-
CORBA::Any ptr out_value = lates the return value by cubing the input argument, or each|ele-
reg->arguments ()->item (2)->value (); ment of the input argument if it is a sequence. Sequence lergths
CORBA::ULong sales_rank; were set to 16 for octets and 4 for longs, to give an overall size

(*out_value) >>= sales_rank; of 16 bytes for small sequences. For large sequences, the lgngth

was set to 4096 for octets and 1024 for longs, to give an overall
Identifiers prefixed with tc_ refer to TypeCodes, which arg size of 4096 bytes. The figure above shows the greatest difference
used to set the return type and to createdbe argument, | in performance for small request payloads, and more compatable
since the client does not assign values to these parameterg performance as the request payload becomes larger. The overhead
for marshaling and demarshaling is therefore more significant gom-

Implementing the solution in TAO. A DIl request can be pared to the overhead for creating and populating the DIl request.

sent asynchronousliye., where the client does not block wait
ing for the reply. In such a case, the TARequest object
delegates this job to Reply Dispatcheclass, which is re-
sponsible for notifying thérequest object when the reply functionality in order to do its job. A dynamic CORBA imple-
has been received. Sidebar 3 describes the performance inmpéintation must provide a way to receive and handle requests
cations of DIl verses the CORBA Static Invocation Interfasgithout compile-time knowledge of operations or their signa-
(Sl. tures.

Dynamic CORBA solution — Dynamic Skeleton Interface.
2.6 Handling a Request of Unknown Signature Define aDynamic Skeleton Interfac® provide functional-

] o ity to a server that corresponds to what DIl provides for a
Context. A dynamic CORBA server application that needgjent. 1n dynamic CORBA, DSI takes the form of a pure vir-

to be ab.le tq handle requests whose signatures are not kngqyyp Dynamic Implementation Routif@®IR), defined in the

at compile-time. ORB and overridden by the application. One of the DIR ar-
Problem. DIl provides the means to assemble and invokegaments is an instance of the cl&srverRequest , which
request dynamically, and is therefore useful only to a cliesbntains methods to demarshal the request arguments into the
A server in a dynamically typed application will need similakamedValue andNVList containers described above, and

to marshal the reply. that makes the actual call on tAgypeCodeFactory in-

the terface. An instantiation of the Component Configurator pat-
tern [22] is then used to load CORBA dynamic typing libraries
lrun-time. Figure 8 shows schematically how the component

Implementing the solution in TAO. When
ServerRequest class was first added to TAO, it han
dled both static and dynamic invocations, despite of the f4¢
that the DSI functionality of the class was not needed for the = — — _ _ _ _ _ _ _ _ _ _ _
static case. This class was later factored into two parts:

class Component_Configurator<TYPE>
e The originalServerRequest class, which now con- ORB

tained only DSI functionality, and
e Alightweight TAO_ServerRequest class.

static TYPE *instance (char *name);

1 |

— —— —— —

Instances of this new class are now created by the un- | He e s RIS (R (ST e
derlying ORB transport on the server as (1) a stand-alone | | vital TypeCode create xx 1 () =0; Tl e (DS
class to handle invocations statically and (2) a member of | T— i)

a ServerRequest instance to handle invocations dynam- “~— — — —
ically. Fr—————|————— \

class TypeCodeFactory_Adapter_Impl

2.7 Creating New Type Representations at
Run-time

I
I virtual TypeCode create_xx_tc ()
I
I

Context. A CORBA service or dynamic CORBA applica- | TypeCodeFactory (optional)
tion that needs to create a type that was not known at compile* — - — — — — — — — —
tme. s e = =)

Problem. A dynamic CORBA implementation must have oS ARSI

I
the ability to create TypeCodes at run-time. Section 2.5 de- : " s o ()
scribes how to use a TypeCode to marshal and demarshal a |
value of unknown type. We have not yet addressed the issue |
of how TypeCodes may be created dynamically, outside |
the aegis of an IDL compiler. J

Dynamic CORBA solution — TypeCodeFactory. Define
a TypeCodeFactoryhat bundles TypeCode creation methods
for each IDL type into a single interface. Since there are many

common use cases where dynamic typing (and therefore Ty@¢nfigurator works with an adapter by parametrizing it, and
Code creation) are not required, this interface can be compilgly the adapter makes it possible to add functionality to the
into a separate library that can be linked optionally by the a9RB, yet only penalize applications that do not use this func-
plication. tionality with the addition of a few pure virtual functions.
Implementing the solution in TAO. The OMG CORBA The component configurator and adapter, as well as an ab-
specification defines TypeCode creation methods in tféact factory [21] work together to:

CORBA::ORBinterface. Whether TypeCOde creation is re- ° Encapsu|ate TypeCOde creation so it can be used by the
quired or not, these methods must still be declared and the ORB or other tools and optionally linked by the applica-
linker must be satisfied. In TAO, we want to meet these re- tjgn

quirements in all use cases without adding unnecessary sizg greak the ORB dependencies on the TypeCode creation
to the ORB when TypeCode creation is not used. These methods to avoid penalizing applications that do not re-

forces were resolved in TAO by using the Adapter pattern [21]. qyire that functionality with additional ORB footprint
Rather than delegating the TypeCode creation call to the Type- gng

CodeFactory directly, we delegate Io an adapter class in§tead‘ Load dynamic typing libraries on demand.
TypeCodeFactory Adapter is an abstract class in-

cluded in the compilation of the ORB. It contains pure virtual Although we have avoided a memory footprint penalty for

methods corresponding to each TypeCode creation methodpplications that do not require a TypeCodeFactory, we would

CORBA::ORB The TypeCodeFactory library contains a corstill like to minimize the added footprint for applications

crete class derived fronTypeCodeFactory Adapter which do require it. By making the TypeCodeFactory inter-

Figure 8: Component Configurator and Adapter

face local in the OMG IDL specification, the size of the ge2.8 Composing and Decomposing Values of Un-
erated code for TypeCodeFactory is greatly reduced, as shown known Type
in Sidebar 4.

Sidebar 4: Adding Locality Constraints

A Dynamic Any is intended to be a temporary entity, used

the sole purpose of composing or decomposing a standard
when no static type information is available [23]. As such, it ne
not support remote creation, remote operation calls, export
process other than the one in which it was created, creatio
a stringified Interoperable Object Reference (IOR) or any of
common operations it inherits from tl@ORBA::Object inter-
face. The CORBA specification prohibits Dynamic Anys from g
ing all these things, and specifies the exceptions to be raised i
of them are attempted [20]. Moreover, TypeCodeFactory is
useful to a remote ORB, which can call its own TypeCode crea|
methods. Consequently, the TypeCodeFactory and Dynamic
classes have been implementedozsl interfaces.

If an IDL interface is declared with the extra keywdetal
none of its operations can be accessed remotely. In such case
IDL compiler does not generate a server class, and the applicat
implementation class inherits instead directly from the client-s
generated class, as shown in the following figure.

IDL file

Generated |'
Code

class foo_i
public virtual POA_foo
u

Application
Code

virtual void op ()
{

}
)‘

Usinglocal interfaces for Dynamic Any in TAO resulted i

Context. A dynamic CORBA application that needs to (1)
assign a value to a variable of a type unknown at compile-time
or (2) examine the contents of such an existing value.
Problem. When CORBA middleware uses static typing,
fofnere are overloaded Any insertion and extraction operators
Aawyailable for each known type. These operators insert or
redxtract values all at onces.g, the insertion operator for a
toseruct inserts the values of each member automatically and
Niff order since the member insertion operators have already
NSeen defined and generated by the IDL compiler. With dy-
namic typing, however, the insertion or extraction of the value
fa?nf an aggregate type must be recursively decomposed into ba-
ng{X types so the basic operators defined in the ORB can be used
ligince generated specialized operators may not be available.
Any TO support dynamic typing, incremental insertion or extrac-

tion is required. The logic of incremental Any insertion and

extraction is the same as that for interpretive marshaling and
sdidmarshaling (see Section 4.5) and for some ORB implemen-
ioggsions the same code may even be reused. Requiring an ap-
idstication to use such code adds to accidental complexity, how-
ever, and makes the application development process more te-
dious and error-prone. An application using dynamic typing
should therefore be able to compose and decompose Any val-
ues incrementally, without being exposed to low-level ORB
internals or implementation details.
Dynamic CORBA solution — Dynamic Any. Define aDy-
namic Anyhierarchy of types using the Facade pattern [21] to
provide a consistent and portable interface for dynamic man-
agement of Any values while hiding the underlying ORB de-
tails from applications. An empty Dynamic Any may be cre-
ated for composition by passing the appropriate TypeCode to
an instance obynAnyFactory while for decomposition, the
appropriate Any is passed to the factory.

Using Dynamic Anys, we can now expand our online music

o

h

a significant footprint reduction in the generated code, comparédcommerce example to include TypeCode creation and man-

to what would be generated by the IDL compiler for non-local
terfaces, as shown in the following figure.

TypeCodeFactory

nagement of the Any values, both before and after the DIl re-

guest, without recourse to the generated operators. First, we
initialize an ORB and create TypeCodes for the exception and
the typedef.

CORBA::ORB_var orb =
CORBA::ORB_init (/* suitable args */);
CORBA::StructMemberSeq members;
members.length (0);
CORBA::TypeCode_var _tc_NotCarried
orb->create_exception_tc (
"IDL:Warehouse/NotCarried:1.0",
"NotCarried",
members

);
CORBA::TypeCode_var _tc_sales_rank
orb->create_alias_tc (

"IDL:Warehouse/sales_rank:1.0", obj =

"sales_rank", orb->resolve_initial_references (

CORBA::_tc_ulong "DynAnyFactory"
)i ;
DynamicAny::DynAnyFactory_var factory =
Next we begin creation of the TypeCode for the complex re-Dy”a’;t')J?/i*n”{;DV”A”VFaCtory::—”a”OW (
turn type. First, we create the TypeCode for the member type.); '

DynamicAny::DynAny_var da =

members.length (2); factory->create_dyn_any_from_type_code (
members[0].name = CORBA::string_dup ("price"); CORBA::_tc_string
members[0].type =);
CORBA::TypeCode::_duplicate (da->insert_string ("The Beatles");
CORBA::_tc_float CORBA::Any var string_any = da->to_any ();
) reg->arguments ()->add_value ("artist",

members[0].type_def = CORBA:IDLType::_nil (); string_any.in (),
members[1].name = CORBA::ARG_IN);

CORBA::string_dup ("in_stock™);
members[1].type =

CORBA::TypeCode::_duplicate (Once a Dyngmlc Any is preated, the type it contains cannot
CORBA::_tc_boolean change, but it can be assigned another value of the same type.
);
members[1].type_def = CORBA::IDLType::_nil (); da->insert_string ("Abbey Road");
CORBA::TypeCode_var _tc_format_info = string any_z da->to_any ();
orb->Create_struct_tc (_ reg->arguments ()->add_value ('title",
"IDL:Warehouse/format_info:1.0", string_any.in ()
“format_info", CORBA:ARG_IN);
members

) A Dynamic Any created by the DynAnyFactory must be de-

Now we use the member TypeCode to create the Typecode&pyed when it has served its purpose.

the entire return type.
da->destroy ();

members[0].name = CORBA:string_dup ("cd");

members[0].type = _ Since arout argument is not assigned a value before invoca-
CORBA::TypeCode::_duplicate (tion, we can add it using only the TypeCode.
_tc_format_info.in ()
)i . .
members[1].name = CORBA::Any alias_any (_tc_saI?s_ra"nk.ln 0);
CORBA::string_dup ("cassette"); reg->arguments ()->add_value (‘rank”,
members[1].type = allas_an')./, _
CORBA::TypeCode:_duplicate (CORBA::ARG_OUT);
_tc_format_info.in ()
)i As before, we add the exception to the request and invoke it.

CORBA::TypeCode_var _tc_title_info =
orb->create_struct_tc () .
"IDL:Warehouseftitle_info:1.0" reg->exceptions ()->add (_tc_NotCarried.in ());

"title_info" reg->invoke ();
members
); Now we extract the return value, but this time we do it incre-

_ . _ ‘mentally using Dynamic Anys. First we create a Dynamic Any
As in the previous version, we must nest get the tal’get Objﬁ’gh'] the Any return value of the request_

reference, create the DIl request, and set the return type.
DynamicAny::DynAny_var da_retval =

CORBA::Object_var target_obj = ... factory->create_dyn_any (
/I get object reference from command line, reg->return_value ()
/I file, web page, etc.);
CORBA::Request_var req = DynamicAny::DynStruct_var ds_retval =
target_obj->_request ("Getlnfo"); DynamicAny::DynStruct::_narrow (
reg->set_return_type (_tc_title_info.in ()); da_retval.in ()

Instead of using Any insertion operators to add arguments to
the request, however, we use Dynamic Anys. Then we extract the first member and access its values.

DynamicAny::DynAny_var da_member =
ds_retval->current_component ();
DynamicAny::DynStruct_var ds_member
DynamicAny::DynStruct::_narrow (
da_member.in ()

)i
CORBA::Float cd_price
ds_member->get_float ();
CORBA::Boolean cd_in_stock = 0;
if (ds_member->next ()) {

|
| DynAny
[

| -
| DynArray :

[

.

| 1 1~
| DynEnum |
| I

i

| S

| DynSequence |

-

DynAny_i

- -
|

- = |
IDynStrucl | | Dynunion

| L_f_l

cd_in_stock = ds_member->get_boolean ();

}

DynArray_i

DynEnum_i

DynSequence_i

DynUnion_i

DynStruct_i

Finally, we advance to the second member and repeat the pr
cess.

DynCommon

CORBA::Float cassette_price = 0;
CORBA::Boolean cassette_in_stock = 0;
if (ds_retval->next ()) {
da_member = ds_retval->current_component ();
ds_member
DynamicAny::DynStruct::_narrow (
da_member.in ()
)i
cassette_price = ds_member->get_float ();
cassette_in_stock =
ds_member->get_boolean ();
}

da_retval->destroy ();

We also use a Dynamic Any to extract the value of dle
argument.

DynamicAny::DynAny_var da_out =
factory->create_dyn_any (
*req->arguments ()->item (2)->value ()

-

DynAny_i

DynArray_i

|
—>| DynArray [

——— -

DynEnum_i

—==nA

|
f———>{ DynEnum
|

DynSequence_i

|
—>| DynSequence

| I — |

DynStruct_i

r=—-

—D: DynStruct
|

DynUnion_i

|
f——> DynUnion
| I

Figure 9: Dynamic Any Inheritance Alternatives

CORBA::ULong sales_rank = da_out->get_ulong ();
da_out->destroy ();

Implementing the solution in TAO. The TAO implementa-
tion of Dynamic Any uses the Composite pattern [21] to facil-
itate incremental composition and decomposition of Dynamic
Anys. This implementation requires that any member of a Dy-
namic Any containing a non-basic type itself be a Dynamic
Any. As with TypeCodeFactory, the TAO Dynamic Any im-
plementation is contained in a separate library that can be o
tionally compiled and linked.

As shown in Figure 2, some time after the original imple-
mentation of Dynamic Any in TAO, a large number of changes
in the CORBA specification of Dynamic Any necessitated an

relative
size
of
compiled
library

1.2

0.8

0.6

0.4

0.2

without DynCommon

with DynCommon

extensive reimplementation. At this time, we reduced the size
of the Dynamic Any library considerably by modifying the in-

Figure 10: Dynamic Any Footprint Reduction

heritance structure. The upper diagram in Figure 9 shows the

original inheritance structure of the implementation classes,
while the bottom diagram shows the modified version, which

uses an intermediate non-instantiated class to contain commiass inheritance structure. The size of the Dynamic Any li-
code. In Figure 10, we see that the size of the Dynamic Ahyary was further reduced by adding locality constraints to the

library was reduced by over 40% as a result of the modifidL interfaces, as shown in Sidebar 4 on page 8.

10

2.9 Implementing Run-time Type Discovery const char *repo_id =
o)) target_obj->_interface_repository_id ();
Context. An application that needs information about theoRBA::Contained_var contained =

operations of some object reference. repo->lookup_id (repo_id);
Problem. Section 2.8 showed how the TypeCodeFactory ¢ Rgégﬁf;{iffzgsggﬁr_ﬁg%ﬁf(:
be used to create a TypeCode for any legal IDL type, and also contained.in ()

showed how Dynamic Anys can be used to compose or decom-);

pose a regular Any that corresponds to that type. Likewi%a
Section 2.5 showed how DIl can be used to create and exe
an invocation of any signature legal for an IDL operation. It IS
rarely useful, however, to create types, typed values, or op&PRBA::InterfaceDef_var obj_def =
ation signatures without guidance from any external informa-target_obj->_get_interface ();

tion. Moreover, as useful as Anys are as generic containgjg; we want to get a list of the interface’s operations, so we
they create a potential problem by allowing the possibility @k for its contents and limit the resulting list to operations
bypassing a compiler’s built-in type checking and enforcemq{my.
mechanisms. _ _

To solve these problems, some way of obtaining exterﬁéﬁi’zggQgﬂ?eencgegc—(‘)’gBOA‘:’%f_tggzration’
type information is required. There are several possible ways 0):
to get such information, ranging from a translation table that
uses rules to map one type system to another, from an evidi2 second argument tontents indicates that we are not
channel that carries type information about its clients (suchex€luding inherited operations in our list. Now that we have a
the CORBA Notification Service), or from a repository [23]ist of our target object’s operations, we must have some crite-
Such a repository should be persistent, updateable, and loctigetp tell us which operation is the one we want. We assume
at a well-known address. that such criteria are in place in the application, and iterate
Dynamic CORBA solution — A Repository For Type In- over the operation list.
formation. Define arinterface RepositorfiFR) service that corpa::ULong length = operations->length ():
provides CORBA type information at run-time. The locatioOORBA::OperationDef_var target_op;
of a CORBA IFR can be resolved by the ORB in a mannff (CORBA:ULong i = 0; i < length; ++i) {
similar to other CORBA serviceg,g, via a Naming Service " (criteria are satisfied /) {

{ rnatively, we can try to get the interface definition from
e target object directly by replacing the above lines with

: . o o target_op =
or Trading Service. It stores its information in the formlof arg;eo_RonA::OperationDef::_narrOW (
terface Repository Objec{tR Objects) that derive directly or operations[il.in ()
indirectly from the abstract base claS8®RBA::IRObject break)_?

which is derived fronCORBA::Object . The operations de-
fined in the various concrete IR Object classes are the means

by which the repository can be queried and updated. The))
repository itself is also an IR Object. Now we can create a DIl request, using the operation’s name.

Using the CORBA Interface Repository, we can now URORBA::String_var op_name =
date our online music e-commerce example to be completelyarget_op->name ();
free of reliance on outside knowledge, other than that obtairfé¢RBA-Request_var req = .
from the Interface Repository. After initializing the ORB, we target_obj->_request (op_name.in ();
resolve the IFR just as we did with DynAnyFactory. We can also set the return type and populate the request’s ex-
ception list. The Interface Repository creates the TypeCode by

CORBA::Object_var repo_obj = calling the TypeCodeFactory.

orb->resolve_initial_references (

“InterfaceRepository” CORBA::TypeCode_var rettype =

target_op->result ();
reg->set_return_type (rettype.in ());
CORBA::ExceptionDefSeq_var op_excepts =
. . . . target_op->exceptions ();
We then get the repository id of the target object, and use iidgyth = op_excepts.length ();
look up the target object definition in the repositéry. CORBA::TypeCode_var except_type;
for (CORBA::ULong j = 0; j < length; ++j) {
INaturally, CORBA programmers should always check if the result of a except_type = op_excepts|i].type ();
_narrow() operation is 0, but we leave such things out in this example in req->exceptions ()->add (except_type.in ());
the interest of brevity.

)i
CORBA::Repository_var repo =
CORBA::Repository::_narrow (repo_obj.in ());

11

Next we query the operation definition for the parameter list. o Efficient storage and retrieval of complex nested types
CORBA::ParDescriptionSeq_var op_params = * OO database characteristics
target_op->params (); e Persistent storage option

The typeParDescriptionSeq is a sequence of structs, Since IR Objects contain information about the definition
each containing the parameter’s descriptiery, its name, of other objects, they may be viewed as meta-objects that con-
type, and direction. From this information, we can createigin the information in their state. The Memento pattern was
Dynamic Any for each argument and assign the value as ugxd to externalize and record this state without violating en-
saw in the previous version of our example. We can find a#psulation [21]. This pattern also allows restoration of the

more about the operation’s return type as follows: meta-object from its recorded state, reversibility of transac-
CORBA:IDLType_var ret_def = tions, a.nd the stprage of mcrem_ental changes in state. The
target_op->result_def (); underlying container of the repository uses hash tables for ef-

ficient retrieval of the meta-object state, and a memory map
Likewise, we can further quemget_def for its structure to for persistence. The globally unique repository id that every
assist in incrementally extracting the member values of B named type declaration has can be used, if is known, as a
complex return type in our example. Note that the code exakey for storage in a special index section for increased lookup
ple is now free of the arbitrary, hard-coded values and actiafficiency.
that it contained in the previous two versions. : . -

: ; _ IFR underlying container data structures. To mimic
Figure 11 shows a UML sequence diagram of a dlstr|butﬁ1d° :

. .) . e nested structure of the data contained by Interface Repos-
scenario consisting of a client, a server, an interface repos . : . !
. . . . iataQfY: its underlying container takes the form of a tree-like hi-
itory, and an interface repository loader (with an associate .

i . erarchy of hash tables. Each table can contain both values
IDL file), all remote from each other. Although this scenari : . . o)
) . ! : . §stored as integers, strings or binary chunks of specified size),
is only one of several possible configurations and action Se- .

: . . nd other tables (stored as string key names) caletions

guences, it serves to show how all the dynamic typing capagn— - A
o . eehch of which is the root of a subtree, as shown in Figure 12.
ities work together. The object name boxes at the top of eac

lifeline are color coded, with objects of like color being neces-

sarily collocated. TypeCodes and Anys are also objects in this ?
scenario, but since no calls are made on any of their methods,
they are not given lifelines of their own. OO a0
Note that the client creates the DIl request while the inter-
face repository is being updated. It is shown this way in the []
figure to save space, and in an actual execution would cause n an]aD) I:I I;I (i

problem, as long as the update is completed before the clien O :I
gueries the repository. In the interest of brevity, the complete |—| |—| |—|
set of calls to the Interface Repository and to Dynamic Anys
has been collapsed, and the extraction of the return value hg o) o o O (@) O <> O
been omitted.
Implementing the solution in TAO. The TAO IFR imple-
mentation is a large and complex piece of software, with the O O (@) <>
source code generated from the OMG IDL specification alone supree g meger - onay
totaling over 100,000 lines. Below, we present the design chal-
lenges encountered in the design and implementation of the
TAO IFR and explain how these challenges were met.

¢ IFR design challenges. Like TypeCodes and Dynamic
Anys, the Interface Repository must be able to deal with com-* Request dispatching. The CORBA Portable Object
posite types that may be deeply nested and complex. The/@,ﬁapter (POA) is a server-side entity that matches requests to
erations that retrieve items from the repository and create négvants. There may be several POAs in a server process, each
entries in the repository both have CORBA objects as their éMdh one or more servants that are registered with it, and each
productsl The repository may be required to have a |ong |if\éeated with zero or more pOllcy values that govern facets of
time, longer than that of an ORB or an application proce'g§. behavior. When the Interface Repository service starts up,

The design of the Interface Repository therefore requires thEOA is created to manage it. This POA is created with the
resolution of the following forces: PERSISTENTpolicy, which enables the use of a backing store

Figure 12: Underlying Container Structure

12

|
————t————>
I: ! L
[D |
|: |
i
é—_—D

Figure 11: Client Request Using Dynamic Typing

to aid in restoration of state in the event of a server crash. Afass IFR_ServantLocator
other POA is created to manage the contents of the repository. public PortableServer::ServantLocator

It also has theeERSISTENTpOlicy, as well as three others: public:

e USERID—When an object is registered with its POA, the Vi”“a(':Oig:taé’é?tiirl‘é’ggsz:Y%”gjeirt‘fé”‘ﬁg (
POA requir'es the Objectld pprtion of the IOR to be exter- PortableServer-PO. A_'btr poa ’
nally supplied instead of being created by the ORB. We)
will see how this Objectld is used to create servants and

CORBA::String_var s =

I n entry in the r itory.
to locate an entry in the repository . PortableServer::Objectld_to_string (oid);
e USE_SERVANT_MANAGER—The POA does not dispatch ACE_Configuration_Section_Key root_key =
to a servant already in its object table, but instead creates this->repo_->root_key ();
a servant. The servant may be created once for the life- ACE_Configuration_Section_Key servant_key;
. f the POA (thi . . lles M ACE_Configuration *config =
time of the (this option is calle8ervant gnaggr ' this->repo_->config ();
or created and destroyed for each request (this options is config->expand_path (root_key,
calledServant Locator s.in (),

. servant_key);
e NON_RETAIN—Selects the Servant Locator option above. |t servant Factory *factory = Y)

this->repo_->servant_factory ();

e Servant creation and lifecycle The Servant Locator op- P°;;i?§iirc"reegt§e;‘;?c;nstegz:‘\fa;t ey

tion creates a servant for each method invocation, by subclass- poa):
ing PortableServer::ServantLocator and overrid- return servant;

ing its methodsgpreinvoke andpostinvoke . Belowisa }

simplified version of the override in our implementation.

13

virtual void postinvoke (information that resides in an Interface Repository, the most

PortableServer::Servant servant common source of input is conversion from IDL declarations.

() An Interface Repository loader that accomplishes such con-
delete servant: versions would need to parse these declarations in the man-

} ner of an IDL compiler, although its subsequent actions would
private: o be quite different. When processing IDL declarations, such a

TAO_Repository i *repo_; - : -
. mechanism should reuse the parsing engine of the IDL com-
piler.

The Objectld of a repository entry is composed from its IDbynamic CORBA solution — IFR Loader. Create arlFR

scoped name, using backslashes for separators. In our oniaglerthat translates the contents of an IDL file into Interface
music e-commerce example, the IR Object correspondingR@pository entries.

the operatiorGetInfo() would have an Objectld formecIlmplementing the solution in TAO. The TAO IFR loader
by the following: shares an IDL parsing engine with the TAO IDL compiler. To

PortableServer::Objectld *oid = reuse t_he IDL compiler’§ pa_rsing engine, it was first necessary
PortableServer::string_to_Objectld (to modify the IDL compiler itself, which had previously been
"Warehouse\Getinfo” compiled and linked as a monolithically program. To improve

); its flexibility, it was refactored [24] into three components:

There is a one-to-one mapping between an entry’s scoped Front-end (FE) library , which is resuable software for
name and the path name from the repository root to the entry’s validing grammar and syntax, and for building the AST.
location, and we can convert in either direction using a stringe Back-end (BE) library, which is a pluggable library for
like the one above as an intermediate. The repository con- specialized functionsg.g, code generation or Interface
tainer methoaxpand _path takes the string and returns the Repository management.
internal key Corresponding tothe entry’s location. AppendIXA ° Top-|eve| executable which is a thin |ayer for prepro-
contains more extensive coverage of the Interface Repository’s cessing, parsing command line arguments, initialization,

internal structure and layout. _ and execution. This component can vary with the back-
After we have the entry key, we pass it to a servant fac- end library since it must be aware of the command-line
tory, which reads theCORBA::DefinitionKind value arguments recognized by the particular back-end that is

(see Appendix A) stored in the section corresponding to the (sed.
key. The servant factory then creates an instance of the appro-

priate class based on tiefinitionKind , passing in the Figure 13 shows how the IDL compiler has been refactored
key as state. The resulting servant now represents the reparsit then extended to serve multiple purposes. Like the TAO
tory entry and is ready for the upcall. IDL compiler, the back-end library of the TAO Interface

¢ IR object creation and lifecycle A reference to an IR Repository loader uses the Visitor pattern [21] to traverse the
Object may be obtained by creating a new entry in the rep8ST and perform its actions through the usual scheme of dou-
itory (in which case a reference to the new entry will be réle dispatching with virtual methods. The specific action taken
turned to the caller) or by querying an existing IR Object refetepends on the most derived type of both the AST node and
ence. The IR Object reference obtained by either method whie visitor.
be valid until the Interface Repository service is shut down orBy default the loader creates entries in the repository corre-
until the repository contents are modified in a way that changg®nding to declarations in the processed IDL file, but it may
the path in the repository tree from the root to the entry c@iso be set by command-line argument to remove the entries,
responding to the IR Object. If this happens, the path stritighey are found in the repository. Managing the contents of
constituting the Objectld is no longer valid, and a fresh objdbie interface repository in this way enhances the repository’s

reference must be obtained. built-in error checking, which is defined by CORBA excep-
tions specified for various error cases, but is by no means a
2.10 Managing Run-time Type Information foolproof guard against IDL errors and inconsistencies.

The IDL parser can detect errors within a single IDL file
Context. Any domain where an Interface Repository will bearly, before any remote calls on the repository are made. Us-
used to provide interface definition information. ing the create/destroy portion of the CORBA Interface Repos-
Problem. An Interface Repository must have associatéry API in an ad hoc manner, on the other hand, provides
with it one or more mechanisms to add, remove, and updatesuch early detection of IDL errors, and may necessitate a
its contents. Although there may be many sources for tin@nsaction reversal in order to keep the repository in a correct

14

their use will be circumscribed, since the end product of Dy-

IDL Executable
namic Any composition (an Any) can then be used only in a

NamedValue and NVList, on which DIl itself depends), but

static invocation. If an application can make a static invocation

with an Any in the argument list, it is likely that the generated

insertion and extraction operators for that Any are present as
well, which would probably eliminate the need for Dynamic
IDL BE FE IDL Anys in the first place. Likewise, the Interface Rgpository dpes
Library Library Execitable pot depend on DII, but the results of IFR queries are of I|m-'

ited use unless they are targeted for the assembly of a dynamic

invocation.
Hybrid Applications. Although the examples and compar-
isons in this paper have presented applications as either wholly
statically types or wholly dynamically typed, in a real applica-
tion this need not be the case. An application may use dy-
namic typing in only some areas, or it may use a subset of
dynamic typing capabilities, subject to the dependencies men-
tioned previously. An application may also have some “out-
of-band” source of type information at run-time. This source

IDL BE
Library

IDL
Executable

FE
Library

IFR

IFR Loader may replace one or more dynamic typing capabilities.
Loader . Y
Library Executable Overhead vs. Generality. An application is most adaptable

and flexible when it uses the complete set of dynamic typing
capabilities. As we have seen in Figure 14, this choice may
Figure 13: IDL Compiler Modularization nearly double the size of the middleware that must be linked
by the application, compared to one that uses static typing. We
have also seen from the example code in Sections 2.5 and 2.8

and consistent state. In any event, if such a transaction refié the size of the application code itself may grow, as well
sal does become necessary, the entry-removing option ofagdhe indirection of function calls. Although minimizing size

Interface Repository loader makes it a simple matter to ba¥kd indirection are worthwhile, there are many cases where
out of a transaction at the file level. their sacrifice is an acceptable tradeoff, when adaptability and

flexibility are the paramount concerns.

Portability. The dynamic typing capabilities mentioned in
3 Evaluation and Lessons Learned this paper have been part of the CORBA specification for some

time. Any CORBA-compliant ORB will provide a complete
This section evaluates the dynamic CORBA capabilities prset, and applications that run on multiple ORB implementa-
vided by TAO and summarizes lessons learned from our expens should find few if any restrictions in choice of ORB ven-
riences. dor.

3.1 Evaluation of Dynamic Typing Capabilities 3.2 Lessons Learned

Section 2 presented a wide range of dynamic typing capalielow, we present the key lessons learned from our experi-
ties and demonstrated their use. Based on our experiencednee in the design and use of dynamic typing capabilities in
plementing and using these capabilities, we have observeddi@RBA.

possibilities, tradeoffs, and limitations of dynamic typing c@®RB Footprint Management. Not every ORB or applica-
pabilities described below. tion will require all, or even any, of the dynamic typing ca-
Interdependency. The order in which the various dynamigabilities. In such cases, we wish to avoid penalizing an ap-
typing capabilities have been presented in this paper can gication with extra footprint for capabilities it does not use.
be viewed as a progression of dependency. For exampleThe Interface Repository service can be compiled and run in
Any cannot exist without a TypeCode, and all the other dg-separate process, as is the case with other common CORBA
namic typing capabilities depend on these two. In some casesyices, but it would be advantageous for the ORB to know
the dependency is not absolute, but nevertheless imposesatigut the client-side portion of the Interface Repository, in
nificant limitations. Dynamic Anys do not depend on DIl (ocases where the ORB has no IFR of its own running but wishes

15

to connect to a remote IFR. We can have the best of ba@thTAO to be compiled into separate libraries. This practice
worlds by separating the client-side and server-side portidias been repeated with other components of TAO, and is a
of the IFR, and compiling the client-side portion in a separatere flexible alternative to the Minimum CORBA specifica-
library, as with TypeCodeFactory and Dynamic Any. An apion [20]. Subsetting work in TAO is ongoing, and is further
plication can optionally link only to this library, while the IFRdescribed in Section 5.2.
service must always link to it.
However, there are dependencies between the ORB and the
client-side portion of the IFR that must be circumvented b4- Related Work
fore this separation of libraries can be achieved. As shown in
Figure 8, the solution for TypeCodeFactory has also been pis section compares and contrasts our work with represen-
plied to the IFR client library, with an abstract/concrete set giftive related work. Sections 4.1 and 4.2 each describes non-
adapter classes and a Component Configurator to make SORBA research that is a precursor to elements of the OMG
that only pure virtual functions are added to the ORB if thgyecification related to dynamic typing. Section 4.3 compares
application does not need to use an Interface Repository. some features of the Interface Repository to a similar entity in
Figure 14 shows the relative sizes of all the dynamic tyRticrosoft COM. Section 4.4 describes a scripting language
that uses the dynamic typing capabilities mentioned in this

25 paper. Section 4.5 compares the different marshaling mech-
anisms used with static and dynamic typing. Finally, Sec-
2+—— tion 4.6 places dynamic typing in a larger context, as one of

a group of meta-programming mechanisms.
1.5 +—

Relative
Size

1 4.1 Dynamic Type and Value Representation
o5 The idea of combining an object’s value along with a type de-
scription in a generic type container has been studied for many
0 : : B - = years. For example, in 1989, Abadi et al [25] introduced a
QRB* ORE IFRClent DVTn”y“‘C pe bl data'type ca!led)ynamicas an aid to type determ.ination at'
Factory run-time. This data type was a two-tuple, consisting of a bi-

nary representation of the data object and a representation of
Figure 14: Relative Sizes of ORB and Dynamic Typing Capiés type. The Dynamic design was prescient of the CORBA
bilities Any.

ing capabilities that have been mentioned so far, along wihp Self-Describing Objects

the size of the ORB both with and without them. The size

of the ORB without any dynamic typing capabilities has bedie virtual method get_interface() defined in
normalized to 1.0. The graph shows that the size of the ORBRBA::Object enables any CORBA object to be queried
nearly doubles when all the dynamic typing capabilities aabout its own definition. The object does not physically
linked in. By selecting only the subset of capabilities needembntain the description information, but instead resolves an
developers can keep the size of their applications to a mimterface repository (if one is running that has registered with
mum. the same ORB to which the object’'s POA is registered) and
Software Reuse. It is widely accepted that software reuspasses in its repository id for lookup.

results from the use of design patterns. However, softwardn [26], Muckelbauer and Russo describe how they de-
reuse may also be accomplished outside the application of aalpped the Renaissance Interface Description Language
design pattern. For example, the modularization of the TAQIDL). An RIDL specification is translated into a tar-
IDL compiler described in Section 2.10 enabled the reusegeft language, such as C++, and then used by an
the code which parses IDL and constructs an AST. This caalgect to describe itself when its implicitly supported
now resides in its own library, and is available for use witkignature() method is called. ThHEORBA::Object::
code-generating backends targeting other languages, sucteasinterface() method is much more flexible. Since
Java or XML. get_interface() accesses an interface repository, a
ORB Subsetting. DII/DSI, TypeCodeFactory, DynamicCORBA::InterfaceDef IR Objectis returned, which may
Any and the Interface Repository have all been implemeniadurn be queried to retrieve information about the interface’s

16

operations, attributes, typedefs, or other IDL types the intd:5 Compiled vs. Interpretive Marshaling
face may contain, as well as a list of ancestors. The queré

may also be made with options that mask the type of conteff] sends requests statically using a teghnique caberd-
piled marshaling[31]. Compiled marshaling is performed

via overloaded operators that are generated by TAO'’s IDL
compiler for each new IDL type defined in an application.
)) Other code generated by the IDL compiler uses these opera-
4.3 Microsoft COM Automation tors to marshal and demarshal operation parameters automat-

o) ically. Since both client and server have compiled this gener-
Automationis a feature of Microsoft COM [27] that makesieq code, there is no need for the application to do any type

it easier for macro and interpretive languages (usually Yri\'vestigation at run-time, at either endpoint.
sual Basic or Visual Basic Script) to access COM cOM-The dynamic alternative to compiled marshaling is called
ponents [28]. To make the access useful, COM AutoMgserpretive marshaling In interpretive marshaling, the ap-
tion provides run-time type information in gype library. pjication uses methods provided by the ORB to traverse the
A type library can be created by calling the COM Augee jike structure of a TypeCode at run-time, doing so recur-
tomation methodCreateTypLib and using the resultinggjyely until basic IDL types are discovered, at which point
ICreateTypeLib interface to populate the type libraryyhe ORB-defined operators for the basic types can be used to
However, a type library is more often created from an IDly5rsha| or demarshal the values. This process corresponds to
file by the Microsoft IDL (MIDL) compiler, using Microsoft yhe |p|_ compiler's generation of specialized operators, except
extensions to the Distributed Computing Environment (DCR,¢ the IDL compiler traverses part of the Abstract Syntax
specification [29]. Tree (AST), while the generic ORB code traverses the Type-
The Microsoft COM type library is similar in purpose taCode.
the CORBA Interface Repository, and is likewise populatedComparison of compiled and interpretive marshaling re-
with IDL declarations. However, a type library may also usggals the classic time/space tradeoff. With compiled marshal-
Microsoft's extensions to OMG IDL. These extensions inclugigy, we save the time used for tree traversal by moving it to
the library keyword, which can label sections of an IDL fileompile-time and delegating it to the IDL compiler, and the
for compilation into the type library (unlabeled sections afgice we pay is the extra generated code, which grows with
excluded) and a provision for including help strings in an IDkach new declared data type. Interpretive marshaling, by do-
file. ing the traversal at run-time, can use one-size-fits-all code that
Microsoft COM type libraries are more limited than thés centrally located in the ORB and available to any number of

CORBA Interface Repository in many ways. For examplepplications [18].
each COM type library is populated from the contents of a sin-Besides the time/space tradeoff, there is another difference
gle IDL file, and may not be combined into a larger repositobetween compiled and interpretive marshaling, and thus also
that can be used as a warehouse of type information. In ad@itween static and dynamic typing — an important difference
tion, the TAO Interface Repository loader has a command-litnat is the primary motivation for the work described in this pa-
option that causes the contents of the IDL file to be removeelr. An application that uses only compiled marshaling must
from the repository. This option, when used in conjuncti@iso use static typing, and cannot therefore handle any oper-
with the normal adding mode, provides a safe way to updat®ns that are not defined at compile-time. Conversely, an
the IFR with a new version of an IDL file. application that uses the ORB’s general-purpose code for in-

terpretive marshaling may still limit itself to static typing, but

it need not do so. It may instead use the dynamic typing ca-
4.4 CorbaScript pabilities described in Section 2 to handle an unlimited set of

interfaces, parameter types, and operation signatures. Such an

CorbaScript is an object-oriented interpretive language tig@Plication can adapt, be open-ended, and even evolve over

can be used to create generic applications whose behal{Bf-

can be determined at run-time [30]. It uses Dynamic Anys,

DII/DSI, and the Interface Repository to construct CORBA 6 Middleware Meta-Programming Mecha-
clients and servers directly from IDL decarations, without nisms

need for compiled stub and skeleton code. Integrating Cor-

baScript with TAO proved to be an excellent regression testlibe dynamic typing capabilities described in this paper form
detect inconsistencies and incompatibilities with TAO's Intepart of a larger group of middleware-based meta-programming
face Repository and Dynamic Any implementation. mechanisms that improve the adaptability of distributed appli-

reported or exclude inherited operations.

17

cations. Examples of these meta-programming mechanissnarely warranted with interpretive marshaling since it is en-

include [17]: tirely internal to the ORB. Alternate methods that do not copy
e Smart proxies, which modify interface behavior withoutMember data when accessed could be created and used inter-
requiring application re-implementation. nally within the ORB.

e Portable Interceptors, which are a standard CORBA
feature' that can be used at specified points in the eng Footprint Reduction
to-end invocation path.

e Pluggable protocols which are used to decouple arrhe dynamic typing tools whose design and implementation
ORB’s transport protocols from its higher-level compdave been described in this paper have all been created as self-
nents. contained libraries, making the additional compilation time

¢ Bridges, which are used to connect ORBs residing in dikind the additional footprint from linking completely optional.
ferent domains or systems running different middlewaktowever, the most basic CORBA dynamic typing capabilities,
technologies. such as TypeCodes, Anys, and the ORB'’s interpretive marshal-

, i ing code, have not yet been separated in this way. Restructur-
These meta-programming mechanisms can be used by t?I‘?éjof ORB code to minimize dependencies plus the use of

static and dynqmic .CORBA a'pplications. We the'refore do NAE Component Configurator [22] and Adapter [21] patterns,

focus on them in this paper since our emphasis is on dyna@iGyescribed in Sections 2.7 would allow further subsetting of

CORBA features. the ORB, along with reduced footprint and increased config-
urability.

5 Future Work
o _ 5.3 Interface Repository Scalability
Although the work presented in this paper covers a timespan

of over three years, there are many more R&D issues that$ealability of the TAO Interface Repository could be increased
main to be addressed, both in the area of dynamic CORBAjrirboth directions if the repository container class were mod-
general and in the area of dynamic typing in particular. Thited to allow a size to be passed to the constructor of the un-
section presents an overview of these topics, and, where piestying hash tables. Currently a default size is used for all

sible, some speculation about fruitful approaches. hash table construction. Another approach to increased scala-
bility would be to use real-time hash functions and tables [33],
5.1 Performance Optimization which amortize their resizing.

As seenin Section 2.9, queries or updates to the TAO Interface))
Repository presently use the Servant Locator option to cregeé Interface Repository Federation

temporary servants for each call. Such a scheme is an effici

t
) rI1ough not possible in the current implementation, it is con-
I I I he fly. L
way to encapsulate a logical OO database entry on the yceglvable foran ORB to have access to multiple interface repos-

requires that servants be created by a factory, however, where . e

heap allocation must be used, thereby degrading performaht(%'?s' _Federatlon .Of Ieposnorles C.OUId have one of several

Since the set of operations of all IR Object classes is Staﬁ&c,)tlvatlons, each with its own benefits.

the locations of method implementations in memory could be.

stored in a table, and the opgrathns dispatched using a per- unigue only within a single repository.

fect hashing scheme [32]. Using this method of operation dis- o .

patch, one generic servant (whose lifetime parallels that of the® Specialized contents for each repository.

repository) could handle all queries and updates, eliminating® Different security restrictions for each repository.

the need for heap or even stack allocations for servant creation

with each call. . .
As discussed in Section 4.5, interpretive marshaling in §h5 Emerging Technologies

ORB does not perform as well as cpmpiled mars.haling iNg&N5 1 The CORBA Component Model

erated code. Interpretive marshaling is slower in part due to

the use of certain accessor methods in the TypeCode and Sryeral areas of research related to the CORBA Component

interfaces, which must return copies of their member data. TMedel (CCM) [34] have the potential for cross-fertilization

caller is then responsible for destroying the copy. In an applitth dynamic typing and dynamic CORBA. They are de-

cation, this type of copying makes sense. However, copysgibed in the paragraphs below.

Reduction of id clashes, since repository ids must be

18

Component Feature Discovery. Through the 6 Concluding Remarks

Navigations , Receptacles , and Events inter-

faces, clients may discover the facets, receptacles, and eVéwet widespread transition to component models as the

sources/sinks supported by a component. CORBAs dynampé@radigm of choice for distributed application development

typing capabilities could facilitate a self-describing capabiliig increasing the interest in dynamically typed middleware,

in a component. Alternatively, they could work with the CCMhich is an integral part of component-based application de-

Component Implementation Definition Language (CIDIMelopment [37]. To support changing requirements and con-

compiler to generate a table of such information to be includéitions late in application lifecycles,e., during deployment

in the componentimplementation. and at run-time, DOC middleware must therefore continue
to evolve to support these new requirements. This paper (1)
presents the key design challenges faced when adding dy-

Component Configuration. A component-aware Interfacenamic typing capabilities to CORBA middleware and (2) de-

Repository could maintain a dynamic database of infornggribes how these design challenges were resolved via the

tion to be used interactively by the CCM configuration integystematic application of patterns and object-oriented design

faces Configurator ~, StandardConfigurator , and techniques.
HomeConfiguraion during the configuration and deploy- Despite the widespread acceptance of DOC middleware,
ment phases of distributed component application. such as CORBA, COM+, and J2EE, developers are still faced

with a great deal of diversity and heterogeneity among service

domains when trying to achieve widespread deployment and
IDL Extensions. The import keyword mandated by CCMuse of their applications. For this reason, there is a growing
will require the IDL compiler to use dynamic typing for itgnterest in dynamic applications that can be open-ended and
support. This support could be realized by software that essa@iaptive. By examining an extensive number of examples,
tially does the reverse of TAO's Interface Repository loada&ye have shown that dynamic typing enables applications to
i.e., generates IDL declarations from repository entries. A®ssess these qualities, and therefore can work effectively in
interface repository would also be an ideal place for applicd®mains where application using statically typed middleware
tions to discover component port information. alone cannot.

By extending previous work on dynamic CORBA in TAO,

we have designed and implemented a complete set of dy-
5.5.2 Model-Integrated Computing namic typing capabilities for TAO. By judicious application

of patterns, software reuse, refactoring, and library subsetting,
Model-Integrated Computing (MIC) extends the scope and wge have shown that extensive functionality can be added to
of models with model analyzers and model interpreters so thgy ORB implementation without incurring excessive penal-
can be used in every phase of system development [35]. ties in performance overhead or memory footprint for applica-

tion that do not use the additional capability. All the dynamic

CORBA capabilities described in this paper are available in
IFR and Configuration Manager. In a component-basedthe TAO ORB, which can be downloaded frafeuce.doc.
approach to MIC, a component-aware Interface Repositavystl.edu/Download.html
could function as a component database for use by the MIC
Configuration Manager [36] in component assembly. This
collaboration would give a system dynamic re-configuratiof Acknowledgements
cabability based on current run-time information.

The four years | have spent at the Center for Distributed Ob-

ject Computing in the Department of Computer Science at
Component Compatiblity. A Configuration Manager or Washington University have been immensely rewarding and
other MIC tool may wish to know if two components are conenjoyable. | am indebted to a number of people who have
patible before connecting them. This decision might be magtered with me in abundance their patience, generosity, good
on the basis of the components’ ancestey, whether or notit humor, wisdom, and experience, and | would like to acknowl-
inherits from a given IDL interface. This can be discovered leglge each one individually.
callingtheis_a() method that is inherited by all children of | would first like to express my thanks to Dr. Douglas C.
CORBA::Object . However, with no compiled stub code t&schmidt, who is responsible for my joining the DOC Group,
use, the MIC tool would have to compose a DIl request, eviem my job as a DOC Group staff researcher, and for my be-
though the name and signature of the operation is known, coming a graduate student. It was because of his challenging

19

encouragement and attention that | chose to pursue a caresubisections of a "defns” section, since the available hash ta-
Computer Science. ble iterators do not guarantee to reproduce this order. Nodes

I would also like to thank the faculty and staff of the Ddabeled "<xxxxxxxx>" represent some unsigned long value
partment of Computer Science at Washington University fior hex converted to a string. Unsigned long values labeled
making my return to university life propitious and stimulaf:‘count” contain the number of subsection entries in the table.
ing. | am especially grateful to the members of my master'slR Objects corresponding to typed IDL declarations in-
project committee: Dr. Ron K. Cytron, Dr. Christopher Cherit from one or both of the abstract IR Object classes
Gill, and Mr. Fred Kuhns, from each of whom | have benefiGontainer andContained . Figures 16 and 17 show the
ted enormously due to my association with them in both th@i@de structure common to all IR Object types inheriting from
professional and academic capacities. | would also like to ex-
press my appreciation to Dr. Sally Goldman of the Department
of Computer Science at Washington University, and Mr. Paul
Feldker of the Department of Physics at St. Louis Commu-
nity College, who rekindled the fascination with science and
mathematics | first experienced as a child.

I am indebted to past and present members of the DOC
Group, for their friendship, collaboration, and perpetual will-
ingness to share time, knowledge, and experience. These
members include, but are not limited to, Mr. Nanbor Wang, Figure 16: Container
Mr. Balachandran Natarajan, Mr. Ossama Othman, Mr. Car-
los O’'Ryan, Dr. Irfan Pyarali, Dr. Aniruddha Gokhale, and
Mr. Krishnakumar Balasubramanian.

Finally, | wish to express my eternal gratitude to my mother,
Elaine Parsons, who has given me a lifetime of support, praise,
and encouragement.

|"00000000"| |"00000001"| |"00000002"| o

XXXXXXXX>"

“def_kind"

A Appendix , _
Figure 17: Contained

This section contains the details of how the Memento pattern
was used to externalize the state of the meta-objects (IR dils:se base classes. Nodes for specific IR Object types shown
jects) that describe IDL declarations in the Interface Repoll-subsequent figures will exist in addition to those for any
tory. The figures below show the underlying structures in tR@se classes that apply from these two figures. For a complete
Interface Repository container for entries corresponding to figscription of the inheritance structure of IR Objects, see the
various IR Object types. As explained in Section 2, interrfaPRBA specification [20].
IDs of nodes in the tree of hash tables can be of four types Figure 18 shows the root of the tree and its children. Subse-
string, unsigned long, binary chunk (of specified length) or the
root of another subtree.

Figure 15 shows how each of these node types is represented

O O O <&

subtree string unsigned long binary

|"repoﬁids"| |"pkinds" | |"strings" | |"wstrings" | |"sequences" | |"arrays" | |"defns" |

Figure 15: Node Type Legend
Figure 18: Repository Root
in subsequent figures. The labels shown on each node are the
string names that constitute the external id in the hash talgjeent figures show expansions of these child nodes.
Many of these string names are converted from the hexadecithe subtree shown in Figure 19 is an index section where
mal representation of unsigned long integers. This was deapository ids are mapped to strings which are backslash-
to preserve the order of declaration when iterating over theparated segments representing the path from the root to the

20

"repo_ids"

Figure 19: Repository ID Index Section

"00000000" "00000001"

entry correspondingto the repository id. The path string can be

passed to a method in the Interface Repository container class

that returns the external id of the item, if it is in the repository.
Figure 20 shows the expansion of the section that contains

Figure 22: WstringDef Section

"sequences"

Figure 20: PrimitiveDef Section

"00000000" "00000001"

IR Objects of type PrimitiveDef, which correspond to the basic

IDL data types.
Figures 21 and 22 show the subtrees that contain entries for

"element_path"

"def_kind"

Figure 23: SequenceDef Section

"00000000" "00000001"

“def_kind"

Figure 21: StringDef Section

IDL string and wide strings, respectively. The structure of both
subtrees is identical, since IDL strings and wide strings are not
named types, so only the bound is needed to distinguish odef_ina")
string or wstring from another.

Figures 23 and 24 show the subtrees that contain IDL decla-
rations of sequences and arrays, respectively. Like IDL strings
and wide strings, IDL sequences and arrays are not hamed
types, so their declarations are collected in these top-level sec- Figure 24: ArrayDef Section
tions. The rightmost child of the root node in Figure 18 corre-
sponds to the “defns” node seen in Figure 16, since the repos-
itory is itself an IR Object that inherits from Container.

“00000000"
G

“00000001"

“element_path"

“def_kind" "length” "element_path"

21

The remaining figures in this section show the entry struc-
tures for named IDL types. Figure 25 shows the structure

"XXXXXXXX>"

Coriginal_type" D

Figure 25: AliasDef

for AliasDef, the IR Object type that corresponds to an IDL

typedef declaration. We see that this structure is quite sim-
ple, requiring only a path to the original type, located else-
where in the repository. Figure 26 shows the node structure
corresponding to an IDL interface’s attribute declaration. The

"XXXXXXXX"

Figure 26: AttributeDef

"mode” value tells us whether or not the attribute has been de-
clared as read-only, the "typeath” string holds the path to the
repository entry for the attribute’s type, and the "name” string
contains the attribute’s local name in the enclosing interface
declaration.

Figure 27 shows the node structure for ConstantDef. The
size of the stored binary data is determined by the constant’s

"XXXXXXXX>"

“type_path" @

Figure 27: ConstantDef

type, which must be looked up at retrieval time in order to
extract the constant’s value. The path value in "tyag¢h”

will point either to an entry in one of the top-level sections
"pkinds”, "strings” or "wstrings”, or to an EnumDef entry,
whose structure is shown in Figure 28. In an EnumDef en-
try, a "count” value and hex-to-string subsections are used to
preserve the order of the enum values when a repository query
iterates over them to create a list.

In Figures 29 and 30, we see that the entry structures are
identical, the only difference in the two being in IDL syntax,
where an exception may contain no members while a struct
may not. In the repository, both StructDefs and ExceptionDefs

22

"XXXXXXXX>"

I"OOOOOOOO" I I"OOOOOOOl” I

Figure 28: EnumDef

HXXXXXXXX>"

Figure 29: ExceptionDef

"XXXXXXXX>"

Figure 30: StructDef

have a "refs” section, which in turn contains a "count” value

and hex-to-string subsections, again to preserve the member

order in the event of iteration by a repository query. An Excep- Figure 33: NativeDef

tionDef in the repository representing an empty IDL exception

would have a "count” value of 0 under the "refs” section, and

nothing else. be expected since the corresponding IDL declaration contains
Figure 31 shows how the entry structure for UnionDef isone. On the other hand, the node structure for an Opera-

tionDef, shown in Figure 34 is the most complex. There is a
"mode” value, which tells us if the IDL operation is declared

"XXXXXXKX

Figure 31: UnionDef

similar to that for ExceptionDef and StructDef, with the ad-
dition of a path to the entry for the discriminator type, and a
label value for each member. If a member happens also to be Figure 34: OperationDef
declared inside the enclosing union, struct or exception, the
"path” string for the member will point to an entry under thgs oneway, and a "result” value which contains the path to the
"defns” section of the member’s enclosing scope, since Unig@pository entry corresponding to the operation’s return type.
Def, StructDef and ExceptionDef a” inherit from Containe'lrhe "contexts” Section Contains the String names of the Oper_
As explained above, nodes common to all IR Object inheritiggon’s contexts, if any, and the "exceptions” section contains
from Container and/or Contained are not shown in every figypg paths to ExceptionDef entries in the repository for any ex-
to keep them as uncluttered as possible. The node strucigigtions the operation may raise. Finally, the "params” section
for InterfaceDef, shown in Figure 32, has a section contajfys a "count” value and hex-to-string subsections to preserve
the order of parameter declaration. Each parameter subsec-
tion is in turn composed of a "mode” value, which labels the
parameter ag . inout , orout , a string value containing
the parameter’s name, and a string containing the path to the
repository entry corresponding to the parameter’s type.

“inherited”

"00000000" "00000001" .

"00000000" | |"00000001"

‘References

[1] R.E. Schantz and D. C. Schmidt, “Middleware for Distributed Systems:
Evolving the Common Structure for Network-centric Applications,” in
Encyclopedia of Software Engineerirfd. Marciniak and G. Telecki,
eds.), New York: Wiley & Sons, 2002.

[2] D.C. Schmidtand S. Vinoski, “Dynamic CORBA, Part 1: The Dynamic
Invocation Interface,C/C++ Users Journal July 2002.

Figure 32: InterfaceDef [3] Object Management Grou@ython 1.2 RTF ReparOMG Document
ptc/02-06-05 ed., June 2002.

ing a list of parent interfaces, and a section each for attributgs opject Management GrouppLscript RTF Repot OMG Document

and operations, each of which has a "count” value and hex-to- ptc/01-08-29 ed., June 2001.

string subsections to preserve the order of declaration. [5] Jim Coplien, Advanced C++: Programming Styles and Idiams
Figure 33 shows that a repository entry for an IDL native Addison-Wesley, 1992.

declaration contains no additional information, which is tge] Stan LippmanC++ Primer, 224 Edition. Addison-Wesley, 1991.

|"00000000"| |"00000001"| -

23

(7]

(8]

El

[10]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

Kenneth C. LoudenProgramming Languages — Principles and Prac{25]
tice. PWS, 1993.

D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and Perfor-
mance of Real-Time Object Request BrokeSgmputer Communica- [26]
tions vol. 21, pp. 294-324, Apr. 1998.

T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The Design and
Performance of a Real-time CORBA Event Service,Pimceedings of [27]
OOPSLA '97 (Atlanta, GA), pp. 184-199, ACM, Oct. 1997. [28]

A. Gokhale and D. C. Schmidt, “Measuring and Optimizing CORBfog)
Latency and Scalability Over High-speed NetworKEransactions on
Computing vol. 47, no. 4, 1998.

[30
F. Kuhns, D. C. Schmidt, C. O’'Ryan, and D. Levine, “Supporting High-
performance I/O in QoS-enabled ORB Middlewar€Juster Comput-
ing: the Journal on Networks, Software, and Applicatiord. 3, no. 3,
2000.

C. O'Ryan, F. Kuhns, D. C. Schmidt, O. Othman, and J. Parsons, “The
Design and Performance of a Pluggable Protocols Framework for R‘T@E]
time Distributed Object Computing Middleware,” Rroceedings of the
Middleware 2000 ConferencACM/IFIP, Apr. 2000.

D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale, "SOﬂWﬁ%]
Architectures for Reducing Priority Inversion and Non-determinism
Real-time Object Request Brokerdgurnal of Real-time Systems, spe-
cial issue on Real-time Computing in the Age of the Web and the Inter-
net vol. 21, no. 2, 2001. [34]

A. B. Arulanthu, C. O’'Ryan, D. C. Schmidt, M. Kircher, and J. Par-
sons, “The Design and Performance of a Scalable ORB Architecture [@?]
CORBA Asynchronous Messaging,” Proceedings of the Middleware
2000 ConferenceACM/IFIP, Apr. 2000. [36]

C. O'Ryan, D. C. Schmidt, F. Kuhns, M. Spivak, J. Parsons, |. Pyarali,
and D. L. Levine, “Evaluating Policies and Mechanisms to Support Dis-
tributed Real-Time Applications with CORBAConcurrency and Com- [37]
puting: Practice and Experienceol. 13, no. 2, pp. 507-541, 2001.

O. Othman, C. O’'Ryan, and D. C. Schmidt, “An Efficient Adaptive
Load Balancing Service for CORBAJEEE Distributed Systems On-
line, vol. 2, Mar. 2001.

N. Wang, D. C. Schmidt, O. Othman, and K. Parameswaran, “Eval-
uating Meta-Programming Mechanisms for ORB Middlewal&EE
Communication Magazine, special issue on Evolving Communications
Software: Techniques and Technologiesl. 39, Oct. 2001.

A. Gokhale and D. C. Schmidt, “Optimizing a CORBA 1IOP Proto-
col Engine for Minimal Footprint Multimedia Systemslpurnal on Se-
lected Areas in Communications special issue on Service Enabling Plat-
forms for Networked Multimedia Systerasl. 17, Sept. 1999.

A. Gokhale and D. C. Schmidt, “The Performance of the CORBA Dy-
namic Invocation Interface and Dynamic Skeleton Interface over High-
Speed ATM Networks,” irProceedings of GLOBECOM '9§London,
England), pp. 50-56, IEEE, Nov. 1996.

Object Management Groufghe Common Object Request Broker: Ar-
chitecture and Specification, Revision,Z&c. 2001.

E. Gamma, R. H. an Ralph Johnson, and J. Vlissid®ssign Pat-
terns: Elements of Reusable Object-Oriented SoftwReading, MA:
Addison-Wesley, 1995.

D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmamattern-
Oriented Software Architecture: Patterns for Concurrent and Networked
Objects, Volume.2New York: Wiley & Sons, 2000.

M. Henning and S. Vinoskihdvanced CORBA Programming with C++
Reading, MA: Addison-Wesley, 1999.

M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. RobeiRefactor-
ing - Improving the Design of Existing Cad®eading, Massachusetts:
Addison-Wesley, 1999.

(31]

24

M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin, “Dynamic typing in
a statically typed language,” it6t» ACM Symposium on Principles of
Programming Languagepp. 213-277, ACM Press, 1989.

P. A. MuckelBauer and V. F. Russo, “The Renaissance Distributed
Object System,” Department of Computer Science, Technical Report
TR.93-022, Purdue University, 1993.

D. Box, Essential COM Addison-Wesley, Reading, MA, 1998.
D. Rogersoninside COM Redmond, WA: Microsoft Press, 1997.

W. Rosenberry, D. Kenney, and G. Fischéinderstanding DCE
O'Reilly and Associates, Inc., 1992.

] P. Merle, C. Gransart, J. Roos, and J. Geib, “CorbaScript: A Dedicated

CORBA Scripting Language,” IfHEP’98 Computing in High Energy
Physics (Chicago, IL), 1998.

A. Gokhale and D. C. Schmidt, “Techniques for Optimizing CORBA
Middleware for Distributed Embedded Systems,Piroceedings of IN-
FOCOM '99, Mar. 1999.

D. C. Schmidt, “GPERF: A Perfect Hash Function GeneratorPiio-
ceedings of the2? C++ Conference (San Francisco, California),
pp. 87-102, USENIX, Apr. 1990.

S. Friedman, N. Leidenfrost, B. C. Brodie, and R. K. Cytron, “Hashta-
bles for embedded and real-time systems,Pmceedings of the IEEE
Workshop on Real-Time Embedded Syst@081.

Object Management Grouf;ORBA 3.0 New Components Chapters
OMG TC Document ptc/2001-11-03 ed., Nov. 2001.

J. Sztipanovits and G. Karsai, “Model-Integrated ComputingFEE
Computervol. 30, pp. 110-112, Apr. 1997.

T. Bapty, S. Neema, J. Scott, J. Sztipanovits, and S. Asaad, “Model-
Integrated Tools for the Design of Dynamically Reconfigurable Sys-
tems,” Tech. Rep. ISIS-99-01, Vanderbilt University, 2000.

G. T. Heineman and B. T. CouncilComponent-Based Software En-
gineering: Putting the Pieces Together Reading, Massachusetts:
Addison-Wesley, 2001.

