
The Design and Performance of Component

Middleware for QoS-enabled Deployment and

Con�guration of DRE Systems 1

Venkita Subramonian, a Gan Deng, b Christopher Gill, �;a

Jaiganesh Balasubramanian, b Liang-Jui Shen, a William Otte, b

Douglas C. Schmidt, b Aniruddha Gokhale, b Nanbor Wang c

aCSE Department, Washington University, St. Louis, MO, USA 2

bEECS Department, Vanderbilt University, Nashville, TN, USA 3

cTech-X Corp, Boulder, CO, USA

Abstract

Quality of service (QoS)-enabled component middleware can help reduce the com-

plexity of deploying and con�guring QoS aspects, such as priorities and rates of

invocation. Few empirical studies have been conducted, however, to guide developers

of distributed real-time and embedded (DRE) systems in choosing among alternative

designs and performance optimizations. Moreover, few empirical studies have been

conducted to examine the performance and
exibility trade-o�s between standards-

based and domain-speci�c DRE middleware solutions.

This paper makes three key contributions to research on QoS-enabled component

middleware for DRE systems. First, it describes optimizations applied to an im-

plementation of the OMG's Deployment and Con�guration (D&C) of Components

speci�cation that enable performance trade-o�s between QoS aspects of DRE sys-

tems. Second, it compares the performance of several dynamic and static con�gu-

ration mechanisms to help guide the selection of suitable con�guration mechanisms

based on speci�c DRE system requirements. Third, it compares the performance of

our static standards-based approach to an avionics domain-speci�c approach. Our re-

sults show that these optimizations (1) provide developers improved control over key

trade-o�s between
exibility and performance at di�erent stages of the DRE system

lifecycle, (2) enhance trustworthiness of component-based DRE systems by support-

ing greater customization of how they are con�gured to meet speci�c requirements of

each application, and (3) o�er greater
exibility at a reasonable performance cost,

compared to a domain-speci�c approach.

Key words: QoS-enabled component middleware, DRE system con�guration.

Preprint submitted to Elsevier Science 18 August 2006

1 Introduction

Challenging R&D problems are associated with producing software for dis-

tributed, real-time, and embedded (DRE) systems, where computers control

physical, chemical, or biological processes or devices. Examples of such systems

include airplanes and air tra�c control systems, power grids, oil re�neries, and

patient monitoring systems. Despite advances in standards-based commercial-

o�-the-shelf (COTS) middleware technologies, key challenges must be ad-

dressed before COTS software can be used to build mission-critical DRE

systems e�ectively and productively. For example, as DRE systems have in-

creased in scale and complexity over the past decade, a tension has arisen

between stringent performance requirements and the ease with which systems

can be developed, deployed, and con�gured to meet those requirements.

DRE systems require design- and run-time con�guration steps to customize

the behavior of reusable components to meet QoS requirements in the context

where they execute. Finding component con�gurations that meet application

QoS requirements is hard. For example, tuning the concurrency con�guration

of a multi-hypothesis tracker to support both real-time and fault-tolerant op-

eration involves trade-o�s that challenge even the most experienced engineers.

Moreover, since application functionality is distributed over many components

in a large-scale DRE system, developers must interconnect and integrate com-

ponents in a manner that is correct and e�cient, which is tedious and error-

prone using conventional hand-crafted con�guration processes.

In addition to being con�gured properly, the components assembled to form

an application must be deployed on the appropriate DRE system hosts. This

deployment process is also hard since characteristics of hosts onto which com-

ponents are deployed|and the networks over which they communicate|can

vary statically (e.g., due to di�erent hardware/software platforms used in a

product-line architecture) and dynamically (e.g., due to damage, changes in

mission modes of the system, or due to di�erences in the real vs. expected

behavior of applications during actual operation). Evaluating the operational

characteristics of these systems can also be tedious and error-prone, therefore,

particularly when components are deployed manually.

This section summarizes an ongoing evolution of distribution middleware plat-

forms [1], which are system software that enable developers to achieve trust-

worthy DRE system performance while meeting the increasingly rapid system

development, deployment, and upgrade cycles demanded by the economics of

� Correspondence: Campus Box 1045, One Brookings Drive, St. Louis, MO, 63130,

e-mail: cdgill@cse.wustl.edu, phone: (314) 935-7538, fax: (314) 935-7302.
1 CIAO is available as open-source software and can be obtained from

deuce.doc.wustl.edu/Download.html.
2 Supported in part by DARPA contracts F33615-f01-C-3048, 03-C-4111g (PCES).
3 Supported in part by DARPA, NSF, Lockheed Martin, Raytheon, and Siemens.

2

modern DRE system development. We also describe several remaining limita-

tions of the state-of-the-art and explain how the work presented in this paper

addresses those limitations.

Conventional distributed object computing (DOC) middleware such

as CORBA and Java RMI signi�cantly reduces the complexity of writing client

programs by separating application-level code from reusable system-level code,

but does not address QoS requirements.

Conventional component middleware technologies, such as the CORBA

Component Model (CCM), J2EE, and DCOM, extend DOC middleware by

(1) providing mechanisms that automate common middleware idioms, such as

interface navigation and event handling, (2) de�ning containers to encapsulate

common component functionality, and (3) dividing system development and

con�guration concerns into separate aspects, such as implementing application

functionality vs. con�guring resource management policies. These technologies

alone do not adequately address the QoS limitations of DOC middleware,

however, since they were designed largely to support enterprise applications,

rather DRE systems that have more stringent QoS needs.

QoS-enabled DOC middleware technologies, such as Real-Time CORBA

(RTCORBA) and the Real-Time Speci�cation for Java, address key QoS as-

pects in DRE systems. These technologies support explicit con�guration of

systemic QoS aspects, such as the priorities of threads invoking object meth-

ods. They do not provide component deployment and con�guration support,

however, which can lead to unnecessary tangling of application logic with code

for managing QoS aspects.

QoS-enabled component middleware technologies address the limitations

with earlier middleware techniques for DRE systems, by combining the ca-

pabilities of conventional component middleware and real-time DOC middle-

ware. One such technology is the Component Integrated ACE ORB (CIAO) [2],

which combines Lightweight CCM [3] mechanisms (e.g., for specifying, imple-

menting, packaging, assembling, and deploying components) and Real-time

CORBA mechanisms (e.g., thread pools and priority preservation policies) to

simplify and automate the trustworthy (re)deployment and (re)con�guration

of application components and QoS aspects in DRE systems. CIAO is built

atop The ACE ORB (TAO) [4], which is a widely used RTCORBA ORB.

Our previous work on CIAO [5] focused on supporting declarative con�gura-

tion of real-time aspects, conducting empirical studies to compare the perfor-

mance of those aspects in CIAO to their performance in TAO, and examining

how con�guring aspects at di�erent stages of the system lifecycle can improve

performance in comparison to real-time middleware approaches. This prior

work was concerned mainly with the deployment, con�guration and perfor-

mance of the real-time aspects, whereas this paper considers the performance

of the deployment and con�guration (D&C) mechanisms themselves.

3

Our research on deployment and con�guration of QoS-enabled component

middleware is motivated by the following limitations with the current state-

of-the-art in middleware technologies. Although our previous work has made

CIAO suitable for many DRE systems, some DRE systems have additional

constraints on system initialization times and available features (e.g., dy-

namic linking/loading), which the current generation of QoS-enabled com-

ponent middleware does not address. For example, reinitialization time can

be signi�cant in avionics mission computing systems that can be rebooted or

recon�gured while in service [6]. Moreover, few empirical case studies have

been conducted to compare the
exibility and performance, or to compare

standards-based vs. domain-speci�c component D&C approaches.

To overcome limitations with prior work, this paper describes a framework

for managing the deployment and con�guration of QoS-aware components

and middleware services. First, we describe the design and implementation

of a new deployment and con�guration framework that we have integrated

into CIAO, and compare its alternative dynamic and static deployment and

con�guration mechanisms. In addition to issues of static vs. dynamic link-

ing/loading [7], this paper considers a wider range of issues relevant to com-

ponent middleware, e.g., con�guration parsing and component assembly. We

compare the performance of dynamic and static component deployment and

con�guration mechanisms, using an illustrative example application built with

CIAO. The resulting performance pro�les and analysis help DRE system de-

velopers choose which component deployment and con�guration mechanisms

to use for particular DRE systems. Finally, we present an empirical case study

that compares deployment and con�guration mechanisms in CIAO, which im-

plements the OMG Lightweight CCM standard, vs. PRISM [8], which is an

avionics domain-speci�c component model developed by Boeing. This case

study helps developers of DRE systems understand trade-o�s in performance

vs.
exibility when applying standards-based vs. domain-customized compo-

nent deployment and con�guration solutions.

The remainder of this paper is organized as follows: Section 2 describes a

representative example application and describes a framework that enables

dynamic and static deployment and con�guration of CIAO components; Sec-

tion 3 presents the results of empirical studies conducted to quantify the rel-

ative performance of alternative dynamic and static mechanisms; Section 4

evaluates the performance and
exibility of static mechanisms in CIAO and

PRISM; Section 5 compares our work with related research on DRE system

deployment and con�guration tools and QoS-enabled component models; and

Section 6 presents concluding remarks.

2 Deploying and Con�guring Components in DRE Systems

Compared with conventional enterprise applications, DRE systems have more

stringent QoS requirements, such as end-to-end latency of component method

4

invocations, availability of CPU cycles to meet computation deadlines, and

rates of invocation of component methods. In open DRE systems [9], both

these stringent QoS requirements and requirements for standards-based, mod-

ular, and interoperable design must be satis�ed simultaneously. To ensure that

these systems can meet their QoS requirements, various deployment and con-

�guration (D&C) activities must be performed to allocate and manage system

computing and communication resources end-to-end. To provision end-to-end

QoS robustly throughout a DRE system and improve component reusabil-

ity, component D&C activities should be decoupled as much as possible from

component implementations. For example, D&C directives should be speci�ed

using component meta-data, such as XML con�guration information for CPU

and communication resource allocations, that specify the interfaces of each

component and the logical connections between components.

To address the challenges of system performance and D&C
exibility, CIAO

extends the component container de�nition and meta-data representation and

manipulation capabilities found in conventional component middleware. For

example, CIAO allows con�guration of the RTCORBA priority model policies,

RTCORBA threading policies, and invocation rates that are relevant to the

example application we describe below, and to the experiments described in

Sections 3 and 4.

Example application. To show how CIAO's con�guration capabilities can

be applied to real-world DRE systems, we now describe a representative exam-

ple from the avionics domain [8]. Figure 1 illustrates a basic single-processor

Heads-Up
Display

GPS AirframeRate
Generator

Fig. 1. Example (Basic SP) Scenario

(Basic SP) scenario involving four software components: (1) a Rate Gen-

erator component wraps a timer that triggers pushing of events at speci�c

periodic rates to event consumers that register for those events; (2) a GPS

component wraps one or more hardware devices for navigation; (3) an Air-

frame component wraps the avionics airframe hardware; and (4) aHeads-up

Display component wraps the hardware for a display device in the cockpit.

When the GPS component receives a triggering event from the Rate Generator

component it refreshes its location from the navigation hardware device and

caches this value. The GPS component then pushes a triggering event to the

Airframe component, which pulls the new value from the GPS component.

The Airframe component next pushes the triggering event to the Heads-up

Display component, which pulls the new value from the Airframe component

and updates its displays in the cockpit.

This example is representative of real-world avionics applications [10] in which

5

components executing on embedded micro-controller boards manage physical

sensors throughout an aircraft to provide timely situational awareness to the

pilot and other personnel. In practice, DRE systems based on QoS-enabled

component middleware [8] often contain a large number (i.e., several thou-

sand) of components, with subsets of components linked via specialized net-

working devices, such as VME buses and Firechannel interconnects. Although

applications and their real-time requirements and operating environments may

di�er, many DRE systems share the types of rate-activated computation and

display/output QoS constraints illustrated by the Basic SP example described

above. This example therefore represents a broader class of systems to which

our work applies.

D&C capabilities for CIAO. The Deployment And Con�guration Engine

(DAnCE) is a middleware framework we developed for CIAO based on the

OMG's Deployment and Con�guration (D&C) speci�cation [11], which is part

of the Lightweight CCM speci�cation [3]. This speci�cation standardizes many

deployment and con�guration aspects of component-based systems, including

component con�guration, assembly, and packaging; package con�guration and

deployment; and resource management. These aspects are handled via a data

model and a runtime model. The data model can be used to de�ne/generate

XML schemas for storing and interchanging meta-data that describes com-

ponent assemblies and their deployment and con�guration attributes. The

runtime model de�nes a set of managers that process the meta-data described

in the data model to deploy, execute, and control application components.

We now describe the dynamic assembly of components, where component im-

plementations are loaded from dynamically linked libraries (DLLs). We then

describe the limitations with this approach in the context of DRE systems and

explain how we overcome these drawbacks by using a static D&C approach

that is better suited to meet the stringent memory and performance con-

straints of DRE systems. Irrespective of whether con�guration is dynamic or

static, however, DAnCE allows di�erent functional and real-time policies and

mechanisms to be con�gured in each of the following canonical steps of its over-

all D&C process: (1) create the component server environment within which

homes and containers reside, (2) create home factories for the component

containers, (3) create containers for the components, (4) create the compo-

nents themselves, (5) register components, (6) establish connections between

components, and (7) activate the components so they can process and make

requests. Section 3 uses the relative latency of each of these steps to compare

the performance of dynamic and static D&C mechanisms in DAnCE. Section 4

then uses these steps to compare DAnCE's static con�guration mechanisms

to those in Boeing's domain-speci�c PRISM component model.

Dynamic D&C using DAnCE. As is shown in Figure 2, a DRE system

deployer creates XML descriptors for application deployment and con�gu-

ration meta-data using model-driven engineering tools [12]. This meta-data

6

Execution Manager

System

Deployer

1. Deploy a

component

assembly Domain

Application

Manager

2. Deploy

components

on each node

ITS D&C

Profile

D&C
Profile

Node Manager

Node

Application

Manager

Node

Application
Container

4. configure component

server resources

7. Install

component

& homes

6. Create

containers

3. Create

component

server

5. Load and initialize

middleware servicesRepository

Manager

Deployment Target Host

Fig. 2. Dynamic D&C with the DAnCE Framework

describes (1) the DRE system component instances to deploy, (2) how these

components should be initialized, (3) what QoS policies these components

must contain, (4) what middleware services the components use, and (5) how

the components are connected to form component assemblies. This meta-data

is compliant with the data model in the OMG D&C speci�cation.

To support additional D&C concerns not addressed by the OMG speci�cation,

we enhanced the speci�cation-de�ned data model by describing additional

deployment concerns (such as real-time QoS requirements and middleware

service con�guration and deployment) discussed in Section 2. By default,

DAnCE runs an ExecutionManager as a daemon to manage the deployment

process for one or more domains, which are target environments consisting of

nodes, interconnects, bridges, and resources. An ExecutionManager manages

a set of DomainApplicationManagers, which in turn manage the deployment

of components within a single domain. A DomainApplicationManager splits

a deployment plan into multiple sub-plans, one for each node in a domain. A

NodeManager runs as a daemon on each node and manages the deployment

of all components that reside on that node, irrespective of the particular ap-

plication with which they are associated. The NodeManager creates the Node-

ApplicationManager, which in turn creates the NodeApplication component

servers that host application-speci�c containers and components.

Static D&C using DAnCE. Although the dynamic approach DAnCE of-

fers by default provides a highly
exible environment for system deployment

and con�guration, it also su�ers from the following drawbacks for DRE sys-

tems with stringent performance constraints: (1) XML parsing may be too

expensive to be performed during system (re)initialization, (2) multiple pro-

cess address spaces may be required to coordinate the creation and assembly

of components, and (3) on-line loading of component implementations may

not be possible on real-time OS (RTOS) platforms, such as VxWorks, where

dynamically linking facilities are not available.

To address these limitations of dynamic component assembly, we have ex-

tended DAnCE to support an alternative static approach where key con�gu-

ration tasks are performed o�-line, including parsing the XML �les and �nding

the function entry points for creating homes and components. Moreover, all

run-time and deployment-time con�guration mechanisms use statically linked

C++ objects rather than loading implementation libraries dynamically. These

enhancements serve two purposes: (1) the components in an application can be

7

identi�ed and analyzed before runtime, which enhances testing and veri�cation

and (2) the latency and jitter of run-time operations following initialization

is reduced. Due to the nuances of the platforms traditionally used for de-

ploying DRE systems, not all features of conventional platforms (e.g., DLLs)

are available or usable for deployment and con�guration. By refactoring the

D&C mechanisms to use only statically linked components, we ensure that

our approach can be realized on highly constrained RTOS platforms, such as

VxWorks.

The static D&C approach in DAnCE is illustrated in Figure 3. As is shown in

StaticDAnCE
Parser

Parsed plan and
function entry

points for home
and servant

creation (plan.h)

Flattened
deployment plan

(.cdp) file

OFFLINE Run time

StaticDAnCEApp.cpp
(a static NodeManager)

#include “plan.h”
new CIAO::Static_NodeManager_Impl("NodeManager",
 ….
 &static_config_entrypoints_maps);

Deployment time

Static
NodeManager

Static
NodeApplication

Manager

Static
NodeApplication

creates

creates

Container
creates

In-process entry points from
plan.h used to create home
and servant

C++ object creation
instead of spawning a
new process

Fig. 3. Static Component Assembly in DAnCE

this �gure, an o�ine parser is used (1) to parse the XML deployment plan and

(2) generate a C++ header �le containing the entry points to functions for

creating homes and components. These entry points reference implementations

that are statically linked with a daemon process hosting a StaticNodeManager

object that takes the generated entry points as a parameter. The StaticNode-

Manager has the same interface as a NodeManager and hence supports all the

operations of a NodeManager.

At deployment time, the StaticNodeManager (3) creates a StaticNodeApplication-

Manager C++ object rather than spawning a new process. Similarly, Static-

NodeApplicationManager (4) creates statically linked StaticNodeApplication

C++ objects rather than spawning new processes. Finally, the statically linked

component implementations are also (5) instantiated directly rather than by

loading them from DLLs. Using this static approach, each endsystem can be

booted and initialized within a single address space, so that if all of the com-

ponents in an assembly are deployed on the same node, there is no need for

inter-process communication to create and assemble components.

3 Empirical Comparison of Dynamic and Static D&C

To evaluate the dynamic and static mechanisms in CIAO's DAnCE described

in Section 2, we used the Basic SP application (also described in Section 2) as

the basis for experiments we conducted to quantify the performance of static

and dynamic D&C mechanisms. To measure the cost of con�guring real-time

QoS aspects as well as the baseline cost of con�guring components, these ex-

periments were conducted both with and without real-time extensions, which

we term RTCIAO and CIAO, respectively. Our experiments used CIAO 0.4.1

8

on a Pentium-IV 2.5 GHz machine with 500 MB RAM, 512 KB cache, running

KURT-Linux 2.4.18, and leveraging the Pentium time stamp counter to ob-

tain nanosecond resolution in our timing measurements. For each experiment

presented in this section and the next, we report all data collected during a

series of repeated con�guration runs (one sample per run).

Assembly. We examined the time taken to assemble all the components in

the Basic SP application, including the time to create the server, homes,

containers and components and to establish necessary registrations of, and

connections between, the components. Application assembly with the static

D&C approach takes almost two orders of magnitude less time than with

the dynamic approach. This is largely because the dynamic con�guration ap-

proach parses XML �les at run-time and loads component implementation

libraries dynamically, both of which are performed o�-line in the static ap-

proach. The assembly times involving D&C of real-time aspects (RTCIAO)

are higher than those without real-time aspects (CIAO) since CIAO must also

create RTCORBA thread pools, lanes, and threads at run-time in both ap-

proaches. We now compare the individual segments of the D&C process to

determine which segments contribute the most to the longer assembly times

seen with the dynamic approach.

Component server creation. The results of this comparison, shown in Fig-

ure 4, reveal that this stage contributes the most to the delay observed in

the dynamic approach, which is consistent with our expectations based on the

discussion of the dynamic and static D&C mechanisms in Section 2. Specif-

ically, in this stage a separate component server process is spawned in the

dynamic approach, whereas in the static approach a component server object

is created in-process at the beginning. Spawning a separate process incurs

signi�cant overhead, as is seen in the performance of the dynamic approach.

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35

T
i
m
e

(
m
s
e
c
)

Samples

Dynamic RT-CIAO
Dynamic CIAO

Static RT-CIAO
Static CIAO

Fig. 4. Server

 0.1

 1

 10

 100

 1000

 0 20 40 60 80 100 120 140

T
i
m
e

(
m
s
e
c
)

Samples

Dynamic RT-CIAO
Dynamic CIAO

Static RT-CIAO
Static CIAO

Fig. 5. Home

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50 60 70

T
i
m
e

(
m
s
e
c
)

Samples

Dynamic RT-CIAO
Dynamic CIAO

Static RT-CIAO
Static CIAO

Fig. 6. Container

Home creation. Figure 5 shows that the creation time for component homes

is much higher in the dynamic approach due to the cost of loading DLLs.

More interesting is the bi-modal distribution of latencies seen in these results,

for all four test programs (static/dynamic, with/without real-time features).

We attribute this e�ect to the di�erences between con�guration parameters

for di�erent component homes.

Container creation. We attribute di�erences in container creation times

between RTCIAO and CIAO to the di�erent real-time and non-real-time con-

9

tainer implementations. Creation time is slightly higher in the dynamic ap-

proach. The times taken to create containers are shown in Figure 6. The times

for RTCIAO are again bi-modal since two di�erent containers are created in

our test program, each with a di�erent policy con�guration. The number of

samples collected for RTCIAO is also twice that for CIAO, since CIAO only

creates one container without RT policies.

Component creation. The dynamic approach takes slightly more time than

the static approach to create components. In the dynamic approach, the com-

ponent implementations are packaged in DLLs and hence a greater overhead

is incurred to load these libraries into memory. We attribute the bi-modal

distribution seen in Figure 7 to di�erences between the number of facets, re-

ceptacles, and other interface ports each component must support.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100

T
i
m
e

(
m
s
e
c
)

Samples

Dynamic RT-CIAO
Dynamic CIAO

Static RT-CIAO
Static CIAO

Fig. 7. Components

 0.05

 0.1

 0.15

 0.2

 0.25

 0 20 40 60 80 100 120 140

T
i
m
e

(
m
s
e
c
)

Samples

Dynamic RT-CIAO
Dynamic CIAO

Static RT-CIAO
Static CIAO

Fig. 8. Registration

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 20 40 60 80 100 120 140

T
i
m
e

(
m
s
e
c
)

Samples

Dynamic RT-CIAO
Dynamic CIAO

Static RT-CIAO
Static CIAO

Fig. 9. Connections

Component registration. Figure 8 shows the time taken to register com-

ponents, in which a reference to a component is published, e.g., to a naming

service or a disk �le. In our experiments, the reference to the Rate Generator

component was stored in a disk �le. The time the static CIAO mechanisms

took to write a component object reference to a �le was slightly lower with

con�guration of real-time features than without. We divided the code sequence

for component registration into di�erent segments and measured the duration

of each of these segments. These micro-benchmarks revealed that the creation

of the stringi�ed interoperable object reference (IOR) contributed the most

to the di�erence (�0.03 msec) between static CIAO and static RTCIAO. We

attribute this di�erence to the di�erent portable object adapters (CORBA

mechanisms for hosting objects and dispatching requests to them) used by

static CIAO vs. static RTCIAO to create the IOR.

Connection establishment. The results of this comparison are shown in

Figure 9. We attribute the bi-modal distribution seen there to di�erences

between the number and kinds of interface ports involved in each connection.

We note that the time di�erences between the dynamic and static versions

seen for container creation, component creation, component registration and

connection creation are relatively small compared to those seen for component

server and home creation. We attribute the di�erences in container creation

and connection creation to the XML parsing overhead incurred by the dynamic

approach. In particular, the dynamic approach uses the visitor pattern to

traverse the parsed XML data structure, which incurs slightly more overhead

10

at each step compared to the simple iterator constructs used by the static

approach to traverse information stored in C++ arrays.

4 Case Study: Static D&C in CIAO and PRISM

This section compares the design, implementation, and performance of DAnCE's

static D&C mechanisms described in Section 2 with similar mechanisms in

Boeing's PRISM [8], which is an avionics domain-speci�c component model

developed by Boeing. DAnCE and PRISM both share the same TAO in-

frastructure. We �rst compare and contrast the static D&C steps and then

present an empirical performance comparison of the static D&C mechanisms

in DAnCE and PRISM using the Basic SP scenario described in Section 2. To

our knowledge, this is the �rst empirical comparison of an implementation of

the OMG's D&C speci�cation with a domain-speci�c approach.

In the experiments described in this section, we compare similar individual

stages of the two models. In addition to the D&C steps CIAO's DAnCE has

in common with PRISM, DAnCE also creates a server object and container

objects. The PRISM component model also includes a number of other con-

�guration activities beyond those examined here, including but not limited

to initialization of services like persistence, distribution and concurrency. We

focus only on the D&C activities in the component assembly stage that are

comparable between CIAO and PRISM, and hence consider initialization of

other PRISM services and creation of CIAO server and container objects to

be out of scope for the purposes of this discussion.

Assembly steps in CIAO's DAnCE. DAnCE performs the following steps

when assembling CIAO components. First, home executor and servant objects

are created, the home servant object is registered with the POA, and an object

reference is created for the home. The second step creates components using

the home object reference created in the �rst step. A component's object

reference is then advertised, e.g., in a �le or through a naming service. This

last step is optional and is done only if it is speci�ed in the assembly descriptor

in CIAO (since PRISM does not perform this action we omit this step from

further consideration). Finally, connections are established between matching

publisher and consumer ports, according to the connection speci�cations in

the descriptor �les. The connections between publisher and consumer ports

were achieved via a two-way call mechanism.

Assembly steps in Boeing's PRISM. The following steps are performed

in the assembly of PRISM components. A home object is �rst created for each

component. The home then creates a factory for that component. Each com-

ponent's factory next creates the component implementation including facets,

receptacles and equivalent interfaces so that connections can be made from/to

other components. Finally, the connections between facets and receptacles|

and between event sources and sinks|are established.

11

In PRISM, a connection between an event supplier and an event sink is es-

tablished by means of the TAO Real-Time Event Channel (RTEC). These

correspond to the \publishes" and \consumes" ports in CCM, though the

CIAO version used in our experiments did not use the RTEC to connect a

publisher and consumer. For our comparisons, we therefore do not take into

account the connections established by means of the RTEC. We also note

that most of the PRISM objects created in these steps are plain C++ objects,

rather than CCM components used in CIAO.

Evaluation of DAnCE and PRISM static con�guration. These exper-

iments were run on a Motorola 5110-2263 VME board with a MPC7410 500

MHz processor on a 100 MHz bus with 512 MB RAM, running VxWorks 5.4.2,

using a post-0.4 (pre-release) version of CIAO and DAnCE and the Basic SP

application (shown in Figure 1 and described in Section 2) as part of Boeing

PCES Open Experimentation Platform (release 3.0). A key di�erence between

CIAO and PRISM is that CIAO provides distinct server and container objects,

whereas PRISM does not. In terms of performance, the server and container

creation overheads seen with CIAO's static con�guration mechanisms in Sec-

tion 3 are avoided in PRISM. This improvement comes at a cost in
exibility,

however, in that components are more tightly coupled to details of their server

environment.

Home creation. Figure 10 shows the time taken by CIAO and PRISM to

create a home object. In PRISM, the home object is a plain C++ object so its

creation time consists of one dynamic memory allocation and initialization of

the home object. In CIAO, home creation involves creation of a home executor

and a home servant. The home servant is registered in the POA and an object

reference is stored for later use to create components. These are both CORBA

objects and creating and activating them is more expensive than creating

plain C++ objects. Moreover, additional overhead in CIAO can occur due to

standards-compliant operations, such as building CORBA policy lists.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.5 1 1.5 2 2.5 3

F
r
e
q
u
e
n
c
y

Creation Time (msec)

PRISM
CIAO

Fig. 10. Home

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.5 1 1.5 2 2.5 3 3.5 4

F
r
e
q
u
e
n
c
y

Creation Time (msec)

PRISM
CIAO

Fig. 11. Components

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

F
r
e
q
u
e
n
c
y

Creation Time (msec)

PRISM
CIAO

Fig. 12. Connections

Component creation. Figure 11 compares component creation times in

CIAO and PRISM. In CIAO, the distribution of component creation times

is bi-modal, with the left peak corresponding to the Heads-Up Display com-

ponent and the right peak corresponding to the GPS and Airframe compo-

nents. We attribute this variation between components to di�erences in the

component initialization code for the Heads-Up Display component versus the

other components. As is shown in Figure 1 in Section 2, the Heads-Up Display

12

component has only one receptacle and one consumer port. The GPS com-

ponent is triggered by another component that sends periodic timer events.

Hence the GPS and Airframe components each have a facet, a receptacle, and

a publisher port. The PRISM model does not show as pronounced a variation

because the objects are plain C++ objects, as opposed to CORBA objects in

CIAO. This result leads to an important observation for the design of com-

ponent D&C mechanisms for DRE systems:
exibility can be traded o� for

performance through greater coupling of component implementations by se-

lectively replacing CORBA objects with C++ objects wherever the remote or

cross-language invocation capabilities CORBA provides are not needed. Our

future work focuses on automating these optimizations.

Connection establishment. Figure 12 shows a comparison of the connection

establishment times in CIAO and PRISM. These results further support our

earlier observation that the use of CORBA objects instead of C++ objects is

the dominant di�erence between CIAO and PRISM con�guration times.

5 Related Work

The OpenCCM (corbaweb.lifl.fr/OpenCCM/) Distributed Computing In-

frastructure (DCI) federates distributed services to form a deployment domain

for CORBA Component Model (CCM) applications. We are working with the

OpenCCM team to enhance their DCI so that it is compliant with the OMG

D&C speci�cation and interoperable with DAnCE.

[13] proposes using an architecture description language that allows assembly-

level activation of components and describes assembly hierarchically. [14] pro-

poses to use the Globus Toolkit to deploy CCM components in a computa-

tional grid. DAnCE descriptors can specify QoS requirements and/or server

resource con�gurations, so it is customized to meet the D&C needs of appli-

cations with real-time QoS requirements.

[14] proposes to use the Globus Toolkit to deploy CCM components in a

computational grid. Unlike DAnCE, this approach does not provide model-

driven engineering tools [12] that enable developers to capture concerns such

as deployment planning and server con�guration, visually. Moreover, DAnCE

is targeted at DRE systems with stringent real-time QoS requirements, rather

than grid systems, which do not provide real-time support.

Proactive [15] is designed for deploying object-oriented grid applications and

is similar to DAnCE in that it also separately describes the target environment

using XML descriptors. DAnCE goes further to specify component interdepen-

dencies and to ensure system consistency at deployment time.

The Quality Objects (QuO) framework [16] separates QoS programming from

application logic. Where QuO emphasizes dynamic QoS provisioning, DAnCE

emphasizes static QoS provisioning and integration of needed D&C mech-

anisms at di�erent stages of the development lifecycle. The dynamicTAO

13

project [17] applies re
ective middleware techniques to realize dynamic QoS

provisioning in the TAO ORB at runtime by dynamically linking selected mod-

ules, according to the features required by the applications. Unlike DAnCE,

however, dynamicTAO uses a conventional DOC middleware paradigm for de-

ployment and con�guration, rather than a component middleware paradigm.

Gorton and Liu [18] have studied the performance of an example stock trading

application under di�erent EJB-based component architectures. These studies

focused on scalability and other concerns appropriate to enterprise computing

applications, Whereas our studies have focused on real-time concerns appro-

priate to the DRE application domains for which CIAO and DAnCE were

designed. Weis, et al., have developed a model-driven approach to con�guring

QoS aspects of distributed systems [19] that is complementary to our approach

with CIAO and DAnCE.

6 Concluding Remarks

QoS-enabled component middleware is the latest stage of an ongoing evolution

of technologies for the development, deployment, and con�guration (D&C) of

complex DRE systems. Our experimental results in this paper show that static

component D&C mechanisms can o�er signi�cant improvements in perfor-

mance and footprint over dynamic mechanisms, while still o�ering
exibility

for component-based DRE systems. Our detailed experiments revealed areas

where the cost of dynamic mechanisms was small relative to other factors, sug-

gesting it may be useful to reintroduce some dynamic D&C features that were

removed in the static approach. The results presented in Section 3 also re-

vealed one area|component registration|in which performance of the static

approach was comparable to (RTCIAO) or even lagged behind (CIAO) that of

the dynamic approach. These results emphasize the importance of conducting

detailed segment measurements rather than relying on aggregate latency to

assess performance of individual mechanisms, and may help to identify areas

where the static approach could be optimized further.

This paper has presented several new empirical benchmarks and practical tech-

niques for use in con�guring component-based DRE systems. For example,

our results show that dynamic D&C features such as DLLs and spawning new

processes may be too costly for some DRE systems, resulting in high initial-

ization/reboot times. Moreover, since DLLs are not available on all platforms,

our static D&C mechanisms expand the range of platforms on which compo-

nent based DRE systems can be built. DRE system developers should use the

static D&C approach for applications with more stringent system initialization

time constraints, or that must operate on highly constrained platforms.

This paper has also quanti�ed trade-o�s between standards-based and domain-

speci�c D&C mechanisms, so that system developers can make informed and

precise engineering decisions to meet the performance and
exibility needs

14

of each particular DRE application. For example, our studies of PRISM and

CIAO showed that
exibility can be traded for performance by using C++ ob-

jects instead of CORBA objects, and quanti�ed those performance trade-o�s

on realistic DRE system platforms. Some CORBA objects could be replaced

with C++ objects to optimize system initialization times and this process

should be guided by a thorough empirical evaluation as well as by application

requirements.

Many of the techniques presented in this paper can be applied to other compo-

nent based environments, such as EJB. For example, the performance cost of

XML parsing at runtime can be reduced by pre-parsing XML descriptor �les

into Java arrays of structures o�-line and then compiling them into e�cient

on-line driver programs, much as we did in C++.

References

[1] R. E. Schantz and D. C. Schmidt, \Middleware for Distributed Systems:

Evolving the Common Structure for Network-centric Applications," in

Encyclopedia of Software Engineering (J. Marciniak and G. Telecki, eds.), New

York: Wiley & Sons, 2002.

[2] Institute for Software Integrated Systems, \Component-Integrated ACE ORB

(CIAO)." www.dre.vanderbilt.edu/CIAO/, Vanderbilt University.

[3] Object Management Group, Light Weight CORBA Component Model Revised

Submission, OMG Document realtime/03-05-05 ed., May 2003.

[4] D. C. Schmidt, D. L. Levine, and S. Mungee, \The Design and Performance

of Real-time Object Request Brokers," Computer Communications, vol. 21,

pp. 294{324, Apr. 1998.

[5] N. Wang, Composing Systemic Aspects into Component-Oriented DOC

Middleware. PhD thesis, Washington University, May 2004. Tech Report

WUCSE-2004-23 at http://www.cse.seas.wustl.edu/research-techreports.asp.

[6] D. C. Sharp, \Reducing Avionics Software Cost Through Component Based

Product Line Development," in Proceedings of the 10th Annual Software

Technology Conference, Apr. 1998.

[7] M. Franz, \Dynamic Linking of Software Components," IEEE Computer,

pp. 74{81, Mar. 1997.

[8] D. C. Sharp and W. C. Roll, \Model-Based Integration of Reusable Component-

Based Avionics System," in Proc. of the Workshop on Model-Driven Embedded

Systems in RTAS 2003, May 2003.

[9] Open Systems Joint Task Force, \What is an Open System?."

http://www.acq.osd.mil/osjtf/whatisos.html.

15

[10] C. D. Gill, J. M. Gossett, D. Corman, J. P. Loyall, R. E. Schantz, M. Atighetchi,

and D. C. Schmidt, \Integrated Adaptive QoS Management in Middleware: An

Empirical Case Study," in Proceedings of the 10th Real-time Technology and

Application Symposium (RTAS '04), Embedded Applications Track, (Toronto,

CA), IEEE, May 2004.

[11] OMG, Deployment and Con�guration Adopted Submission, Document ptc/03-

07-08 ed., July 2003.

[12] D. C. Schmidt, \Model-Driven Engineering," IEEE Computer, vol. 39, no. 2,

2006.

[13] V. Quema, R. Balter, L. Bellissard, D. Feliot, A. Freyssinet, and S. Lacourte,

\Asynchronous, Hierarchical and Scalable Deployment of Component-Based

Applications," in Proc. of the 2nd International Working Conference on

Component Deployment (CD 2004), (Edinburgh, UK), May 2004.

[14] S. Lacour, C. Perez, and T. Priol, \Deploying CORBA Components on a

Computational Grid: General Principles and Early Experiments Using the

Globus Toolkit," in Proc. of the 2nd International Working Conference on

Component Deployment (CD 2004), (Edinburgh, UK), May 2004.

[15] F. Baude, D. Caromel, F. Huet, L. Mestre, and J. Vayssiere, \Interactive

and Descriptor-based Deployment of Object-Oriented Grid Applications," in

Proc. of the 11th International Symposium on High Performance Distributed

Computing (HPDC'02), (Edinburgh, UK), July 2002.

[16] J. A. Zinky, D. E. Bakken, and R. Schantz, \Architectural Support for Quality

of Service for CORBA Objects," Theory and Practice of Object Systems, vol. 3,

no. 1, pp. 1{20, 1997.

[17] F. Kon, F. Costa, G. Blair, and R. H. Campbell, \The Case for Re
ective

Middleware," Communications ACM, vol. 45, pp. 33{38, June 2002.

[18] I. Gorton and A. Liu, \Performance Evaluation of EJB-Based Component

Architectures," IEEE Internet Computing, vol. 7, pp. 18{23, May 2003.

[19] T. Weis, A. Ulbrich, K. Geihs, and C. Becker, \Quality of Service in Middleware

and Applications: A Model-Driven Approach," in 8th IEEE International

Enterprise Distributed Object Computing Conference (EDOC '04), pp. 160{171,

Sept. 2004.

16

