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Abstract computing resources is hard; building them on time and within bud-

Increasingly complex requirements, coupled with with tightélet iS even harder. A particularly essential task is supporting the
economic and organizational constraints, are making it hard @u@lity of service (QoS) demands of mission-critical DRE systems
build complex distributed real-time embedded (DRE) systems &#at possess a mix of hard and soft real-time requirements, such as
tirely from scratch. The proportion of DRE systems made up fionics mission computing systems [1], mission-critical distributed
commercial-off-the-shelf (COTS) hardware and software is the@ddio/video processing [2], [3], and real-time robotic systems [4].
fore increasing significantly. There are relatively few systematic
empirical studies, however, that illustrate how suitable COTS-basBd Key Challenges: FlexibilitandQoS Assurance

hardware and software have become for mission-critical DRE sysprg systems have historically been custom developed iadan

tems. hocand inflexible manner. While many operational systems have

This paper provides the following contributions to the study @fsen puilt this way, this development process failed to address the
real-time quality of service (QoS) assurance and performancefghowing challenges adequately:

COTS—baged DRE systems: 1) it presents evidence that erijIe Reducing total ownership cost€ustom software develop-
configuration of COTS middleware mechanisms, and the operati@nt and evolution is labor-intensive and error-prone for complex
system settings they use, allows DRE systems to meet critical @@ systems, and can represent a substantial fraction of system
requirements over a wider range of load and jitter conditions thafecycle costs. Moreover, incommensurate lifetimes between long-
statically configured systems, (2) it shows that in addition to makifigeq pDRE systems¥= 20 years) and COTS platforms and tools
critical QoS assurances, non-critical QoS performance can be IM_5 years) lead to pervasive software obsolescence that multiply

proved through flexible support for alternative scheduling strategiggy) ownership costs by requiring periodic software redevelopment
and (3) it presents an empirical study of three canonical schedulinggy coTs refresh.

strategies—specifically the conditions that predict success of astrat- pgtaple QoS managemeriodern DRE systems must invest
egy for a production-quality DRE avionics mission computing Sygp ever-increasing proportion of functionality and QoS management
tem. Our results show that applying a flexible scheduling framewqpksoftware. Rapidly emerging technologies and flexibility required
to COTS hardware, operating systems, and middleware improygs yiverse operational contexts force deployment of multiple soft-

real-time QoS assurance and performance for mission-critical DR e versions on various platforms, while simultaneously preserv-

systems. _ _ _ _ing key QoS properties, such as real-time response and end-to-end
Keywords: Middleware and APIs, Quality of Service Issues, D'Spriority preservation.

tributed Real-time and Embedded Systems, Mission Critical Sys- Dependence on rigid assumptionGustom DRE systems are

tems, Dynamic Scheduling Algorithms and Analysis. scheduled inflexibly so that if assumptions aboutttital resource
load are violated, critical real-time constraints may be violated. Un-
I. INTRODUCTION fortunately this leads to provisioning of resources at levels that are
A. Emerging System Demands both (1) excessive compared to what is needed to assure the mini-

_ . mumcritical system requirements and (2) unrecoverable to improve
Distributed, real-time, and embedded (DRE) systems are becoemérage caseyperformgnce ) P

ing increasingly widespread and important. Examples of DRE sys- Insufficient responsiveness to varying operating environments:

;[/'?Q;‘Z'?;lg_dr:s;ei;%m;nun'rcear::g?ensavrvog:e'géx;;?jznpho?gc‘:z Custom DRE systems make rigid assumptions about system load
’ £e.g, genmn 9p and load jitter that can in unexpectedly varying environments lead

ﬁ:it%nigilgr? igﬁgiiirnog”lsnfsglrlss, a:ﬁ?\?)tje;hsfhseﬁtifﬂéi\;?;5est% f(1) a violation of critical QoS requirements, and/or (2) reduced
C . rformance in meeting non-critical QoS requirements. While static
DRE systems, they have one thing in commibie right answer de- P 9 Q d

: " scheduling might be replaced with dynamic scheduling in some sys-
livered oo [ate become; the wrong ansmrfaore spe'C|f|caIIy, DRE tems, anysingle-paradignapproach will naturally suffer these same
systems have the following types of requirements: limitations
o As distributed systemsDRE systems require capabilities to ' , )

Y 4 d P Fome aspects of the total ownership cost challenges Outlined

manage connections and data transfer between separate ¢ . . L
putersg P a?bove are being addressed for business applications by COTS soft-

. Asreal-time system®RE systems require predictable and ofhare, such as SOAP_/.NET and J2EE. Until recently, however, little
ficient control over end-to-end system resources. ha_s peen _dpne to simultaneously meet all of these challenges for
o As embedded systemBRE systems have weight, cost, anamssmn—crmcal DRE systems.
power constraints that limit their computing and memory re-
sources. C. A Promising Approach: Real-time CORBA Middleware
Designing DRE systems that implement their required capabili-Over the past several years, a promising solution to many of the
ties, are dependable, and are parsimonious in their use of limitgghllenges outlined above has emerged in the forrdistfibuted

_ _ _ object computing (DOC) middlewareDOC middleware is sys-
This work was supported in part by Boeing, DARPA ITO, DARPA contrac]

F33615-00-C-1697 (PCES) and AFRL contracts F3615-97-D-1155/DO (WSOA) a{fﬁ_ms software that resides between the applications and the under-
F33645-97-D-1155 (ASTD/ASFD). lying operating systems, network protocol stacks, and hardware [5].



Its primary role is to allow clients to invoke operations on tahave enhanced our prior work [1], [8] to focus on DRE systems with
get object implementations without concern for where the objdbi following characteristics:

resides, what language the object implementations are written in, Bounded execution time where the use of resources during
the OS/hardware platform, or the types of communication proto- each execution of a resource request stays within the limit of
cols, networks, and buses used to interconnect distributed applica- its specified duration.

tions [6]. « Bounded rates where resource requests arrive within a speci-

Real-time CORBA [7] is a DOC middleware standard that adds fied period.

QoS control capabilities to the original CORBA specification by (1) « Known operations, where all operations are visible to the
improving system predictability and bounding priority inversions  scheduler prior to scheduling, or are reflected entirely within
and (2) managing system resources end-to-end. At the heart of the execution times of other specified operations.

Real-time CORBA is an Object Request Broker (ORB) that providese. Critical and non-critical operations, where deadlines of all
run-time support to automate many DRE computing tasks, such as critical operations must be assured, and non-critical deadlines
connection management, marshaling/demarshaling, demultiplexing, should be met to the extent possible.

language and OS independence, resource scheduling and loadRedl-time QoS requirements of DRE systems with these character-
ancing, error handling and fault-tolerance, and security. istics have been addressed historically by scheduling tasks within a

First-generation ORBs did not provide features or optimizatiossgle paradigmsuch as:
to support DRE systems with stringent QoS requirements. To bets Static scheduling that assigns priorities tall tasks statically
ter meet these requirements, researchers at Washington Univer- and ensuring the task with the highdisted priority always
sity St. Louis and the University of California, Irvine have de-  runs[19], [23], or
veloped a second-generation ORB called TAO [8], which is ane Dynamic scheduling that ordersll tasks dynamically and en-
open-source implementation of Real-time CORBA that supports suring the task with the highesynamicpriority is dispatched
efficient, predictable, and flexible DRE computing. Prior work  preferentially [19], [4].
on TAO has explored many dimensions of high-performance ageatic scheduling can minimize overhead stemming frang,
real-time ORB design and performance, including scalable eveligpatching and admission control mechanisms, while dynamic
processing [9], request demultiplexing [10], I/O subsystem [1&theduling requires less priori knowledge of operation charac-
and protocol [12] integration, connection architectures [13], asytristics, e.g, rates of execution. However, using either of these
chronous [14] and synchronous [15] concurrent request processiigheduling paradigmeloneimposes the following limitations:
adaptive load balancing [16], meta-programming mechanisms [17]]) It does not isolate critical and non-critical load,
and IDL stub/skeleton optimizations [18]. 2) Itis brittle in the face of total load in excess of the feasible

TAO isolates DRE systems from platform-specific QoS enforce-  |imit, even though critical load is below that limit, and
ment mechanisms by encapsulating a robust QoS framework fog) It is thus insufficiently responsive to variations in demands by
managing end-to-end resources within a standard set of CORBA the application or operating environment.
interfaces. TAO also reduces DRE system dependence on rigid asx hybrid static/dynamic scheduling paradigm used by the
sumptions by enabling alternative policies and mechanisms to MgF [4] and RMS+MLF [20] strategies has been proposed to (1)
plugged into its QoS framework. In fact, the Real-time CORBA 1 fartition critical and non-critical resource utilization using static
specification and its implementation in TAO address all the DRigechanisms such as thread priorities, and then (2) dynamically
system challenges outlined in Section eRceptfor insufficient re-  schedule operations within one [20] or more [4] partitions. The hy-
sponsiveness to varying operational environments. The reasonggd static/dynamic scheduling paradigm can therefore assure fea-
this omission is because ringle scheduling paradigm performssiple critical deadlines will be met, even when when total load is
best in all environments, which motivates our research in this papgfeasible. When the total load is feasible, however, the additional
on the design and performance of flexible scheduling framewoigerhead imposed by hybrid static/dynamic scheduling means that
for DRE middleware and applications. fewer non-critical deadlines can be met than in static scheduling.

To alleviate the drawbacks of single-paradigm scheduling—while
still preserving its key benefits—our work with the Kokyu frame-
work described in this paper allows DRE systems to spenifiti-

This paper extends our previous work on static [8] and dparadigmscheduling strategies that trade a small additional amount
namic [1] scheduling for Real-time CORBA by incorporating &f overhead for increased flexibility in (1) assuring critical QoS re-
strategized scheduling framewocklled Kokyu' as a service atop quirements and (2) enhancing the availability of resources to im-
TAO. Kokyu enables the configuration and empirical evaluation pfove non-critical performance. In particular, we present foun-
multiple scheduling paradigms, including: dational work towards strategies that can enforce each preferred

« Static scheduling strategie®.g, rate monotonic scheduling Single-paradigm strategy along the entire range of resource utiliza-

(RMS) [19], tion. . | o
. Dynamic scheduling strategiese.g, earliest deadline first Figure 1 illustrates the benefits of the Kokyu multi-paradigm ap-

D. An Inclusive Solution: Multi-paradigm Scheduling

(EDF) [19] and minimum laxity first (MLF) [4], and proach. The upper solid curved line shows a hypothetical ideal uti-
« Hybrid static/dynamic scheduling strategies,g, maximum lization of resources as system load increases. The solid square line
urgency first (MUF) [4] and RMS+MLF [20]. illustrates static single-paradigm strategies, such as RMS, that can

aqpproach the ideal under certain conditions, but may miss critical as-

Kokyu is applicable to an important class of demanding re LT S e
world DRE systems, which includes avionics mission compu urances be.yondacertam.Ilmlt,whlch |S|Ilustrat¢d by the utilization
value dropping to zero. Similarly, purely dynamic approaches may

ing [21], [22], mission-critical distributed audio/video process'ﬁerfeas'b'l't improvements under special cage hen rates
ing [2], [3], and real-time robotic systems [4]. To maintain scheddf” DMty improv ur peci 8, W
non-harmonic, yet the additional overhead they impose may re-

ing assurances and simplify testing for these types of systems, S .
g plify g yp 4 sult in missed critical assurances at an even lower level of load. Hy-

IKokyu is a Japanese word meaning literally “breath”, but also implying timin rid static-dynamic apprpaches, In contrast, ,Qﬁer feaS|'b|I|ty a_long
and coordination. the length of the load axis (as long as the critical load is feasible),
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and exhibit overhead that is intermediate between purely static and
purely dynamic approaches.

The dashed curve in Figure 1 shows how multi-paradigm schedul-
ing can approximate the best single-paradigm approach at each point
along the horizontal load axis. Due to mode switches or other adap-
tation mechanisms, multi-paradigm approaches may incur mét@ 2- Application and Middleware Layers
overhead than static and hybrid static/dynamic single-paradigm ap-

proaches. They are better s_uited than single-paradigm a[.:)proache.s,-l-he ACE ORB (TAO) [8], the TAO real-timevent channdb],
however, to approximate the ideal performance curve over its length. and the Kokyu strategized scheduler [1] middleware, which is
This paper shows how the Kokyu framework supports alterna-  jascribed in Section 11-B.

tive scheduling strategies implemented using COTS OS and mid; The Bold Stroke avionics domain-specific middleware [21],
dleware mechanisms. By doing so, Kokyu increases adaptability [22], which is described in Section II-C.

across product families, operating systems, and most importantly The ofp application components used for the studies, which
environmental conditions, while preserving the rigorous scheduling 516 described in Section 11-D.

guarantees and testability offered by prior work on statically sch
uled CORBA operations [8], [21], [22].

ePﬁe remainder of this section describes these layers of the open ex-
perimentation platform. Sidebar 1 defines key terminology used
throughout the paper.

E. Paper Organization

The remainder of this paper is organized as follows: SectionAt Overview of OS/Hardware Configurations
describes the application, middleware, OS, and hardware configurigure 3 shows the COTS hardware and operating system used in
rations that comprise the open experimentation platform used fhe experiments described in Section Ill, consisting of a commercial
our empirical studies; Section Il describes how our experiments/E-64 chassis with four commercial processor cards, a desktop
quantitatively evaluate the suitability of COTS-based hardware aggimputer running Windows NT 4.0, and a portable UNIX worksta-
software for mission-critical DRE systems; Section IV presents tfign. The desktop computer gathered metrics data and presented vi-
empirical results obtained on our open experimentation platforgualizations of processor utilization and deadline successes, failures,
Section V summarizes the observations and recommendations basgflcancellations. The UNIX workstation loaded the executable
on our results; Section VI compares our research on Kokyu with fjgrograms onto the boards in the VME chassis and provided a file
lated work; and Section VIl presents concluding remarks. server for the digital map display.

Two COTS processor cards, a Dy4-783 and a Dy4-177, per-
formed the map display function. The Dy4-783 card had a memory-
mapped display processor and the Dy4-177 card hosted an appli-

The work in this paper focuses on a mission-critical system th@ition component that ran the map display algorithms. The OFP
is representative of an important class of DRE systeths: op- system was distributed across the remaining two processor cards.
erational flight program (OFP) in an avionics mission computinghe first system card was a 200 MHz, PowerPC 604, Motorola card,
system An OFP manages sensors and operator displays, naviggfikch ran the experimental system described in Section II-D on the
the aircraft's course, and controls on-board equipment. The aviaykWorks [24] 5.3.1 real-time operating system. The second system
ics system used for this paper consists of OFP components hogig@l was a 100 MHz, PowerPC 603, Dy4-177 card. This card con-
on a domain-specific middleware infrastructure catedd Stroke  tained a MIL-STD-1553 MUX bus interface card and the Ethernet
which in turn is built using the distribution middleware capabilitiefterface for the VME chassis. All external communicatierg,
and common middleware services provided by the TAO Real-tirg@er the 1553 bus to avionics remote terminals, or over the VME
CORBA ORB [8]. backplane to diagnostic and debug systems, went through this card.

Figure 2 illustrates the interactions between the Kokyu frameworkis card also controlled timing for frame sequencing and display

and OFP application and middleware components. Along with Figpdates, upon which operation rates on the Motorola card depended.
ure 3 in Section lI-A, this figure shows how the OFP application

. . 2T hi i i
components were hosted on an open experimentation platform conthis platform, and the studle_s conducted on it, were supported unc_ier the Adap-
P P P P t%e Software Flight Demonstration (ASFD) program hosted by the Boeing Phantom

sisting of the following layers: Works Open Systems Architecture organization. This work was administered by the
o An OS/hardware platform consisting of the VxWorks real-timgmbedded Systems Branch of the Information Directorate, Air Force Research Labs

. L . FRL), Wright-Patterson Air Force Base, Dayton, Ohio. Portions of the TAO ORB
operating system on embedded hardware, which is descnbeﬁﬁlthe Bold Stroke open experimentation platform were developed under support

Section II-A. from DARPA ITO.

II. OPEN EXPERIMENTATION PLATFORM



Sidebar 1: Terminology

For clarity, we define the following terms used in the discus-
sion of the Bold Stroke open experimentation platform:

« Operation—A single short-lived computation run each
time an event is pushed to its component.

« Cancellation—Interdiction of the event push to an oper-
ation so that it will not be invoked. We denote schedul-
ing strategies using cancellation by a (© annotation in
Section IV.

« Load chain—A sequence of operations, where each op-
eration itself (except the last one) pushes an event to in-
voke the next operation in the chain. Subsequent events
have precedence dependencies on prior events in the
chain, and cancelling an operation in the chain amounts
to shedding the rest of the chain from that operation on-
ward.

o Route leg—A segment of a navigation route computed
in one operation invocation. Computing route legs was
implemented as a load chain in our experiments, with
each route segment successfully completed requesting
the next segment, up to the length of the chain. In par-
ticular, a realistic system might declare the computa-
tion of the first one or two legs to be critical operations,
that must be completed on time and cannot be can-
celled, while subsequent route legs might be declared
non-critical.

« Replication service—A middleware service provided by
the Boeing Bold Stroke infrastructure for replicating
data across mission-computing processors. Operation
deadlines in the experimental system correspond to the
points in time when their respective output values must
be delivered and flushed to the replication service.

« Remote terminals—Connected sensors and actuators in
the aircraft. In the open experimentation platform, emu-
lation software for these was connected to the mission
computer by a MIL-STD-1553 hardware bus, to simu-
late the inputs of actual sensors. The experimental sys-
tem, middleware, and hardware were demonstrated in
an AV-8B flight simulator at Boeing, which included an
AV-8B cockpit and hardware remote terminals.

Fig. 3. Hardware and Software Configuration

B. Overview of DOC Middleware Configurations

connections and

« Memory resources via buffering requests in queues and

bounding the size of thread pools.

As shown in Figure 2, the TAO Real-time Event Channel [9] is
a publish/subscribe service that mediates communication between
components acting as proxies for (1) remote terminals that interact
with the physical environment and (2) the operations that process
the data. Sensor proxies flush relevant data to the replication service
and thenpushevents through the Real-time Event Channel to the
processing operations.

Figure 2 also shows the Kokyu scheduling framework, which is a
CORBA service that provides scheduling and dispatching services
to TAO’s Real-time Event Channel. Kokyu is responsible for (1)
isolating critical processing from non-critical processing and (2)
making the remaining CPU time available to non-critical process-
ing. Kokyu provides these services via a scheduling strategy with
which itis configured to (1) assign priorities to operations and (2) to
specify the queueing discipline used at each priority level. By con-
figuring the TAO Real-time Event Channel according to the speci-
fied set of priorities and queue disciplines, the middleware services
described above enforce the mission computing system'’s real-time
QoS assurances and performance.

C. Overview of the Bold Stroke Platform

The open experimentation platform for our work is based on the
Bold Stroke domain-specific middleware [21], [22]. Bold Stroke
uses COTS hardware and middleware to produce a standards-based
component architecture for military avionics mission computing ca-
pabilities, such as navigation, data link management, and weapons
control. A driving objective of Bold Stroke is to support reusable
product-line applications, leading to a highly configurable appli-
cation component model and supporting reusable middleware ser-
vices, such as a replication service.

Bold Stroke has been developed and deployed using DOC mid-
dleware components and services based on the TAO Real-time ORB
and Real-time Event Channel, and the Kokyu framework described
in Section 1I-B. Figure 2 illustrates the middleware components in
Bold Stroke. As shown in this figure, Bold Stroke uses TAO Real-
time Event Channel atop the TAO ORB to communicate between
components (1) on the same endsystem and (2) distributed across
different endsystems. The Kokyu scheduler maintains information
required for priority-preserving dispatching, which in the experi-
mental framework described in Section Il was performed in dis-
patching queues within the TAO Real-time Event Channel.

D. Overview of the OFP Application

The OFP application used as the basis of our multi-paradigm
scheduling experiments provides avionics mission computing capa-
bilities for an AV-8B (Harrier) aircraft. The baseline version evolved
from

1) An AV-8B OFP written in assembly language, to

2) Asingle-board C/C++ OFP, and subsequently to

The COTS distributed object computing middleware used for the3) A distributed OFP using the Boeing AV-8 Open Systems Core
ASFD demonstration were based on the TAO 1.2 implementation Avionics Requirements airframe and the Boeing Bold Stroke
of Real-time CORBA [8], [7]. Real-time CORBA allows DRE de- domain-specific middleware described in Section II-C.
velopers to configure and control the following system resourcesAll major OFP components were implemented as periodically in-

voked operations, executed by event consumers. Operations were

« Processor resourceia thread pools, priority mechanismsdivided into two equivalence classes:
intra-process mutexes, and a global scheduling service for reals Hard real-time (HRT) for critical operations —Critical op-

time systems with fixed priorities
« Communication resourcesvia protocol properties and ex-

erations in the HRT class are those whose failure to meet any
given deadline has potentially significant consequences for the

plicit bindings to server objects using priority bands and private  correctness of the application.



o Soft real-time (SRT) for non-critical operations—Deadline whose resource demands (1) vary total load at longer time-scales
success for the non-critical SRT operations is desirable but ratross a series of stable epochs of operation, according to inputs
strictly mandatory. from the environment and/or human users and (2) produce differ-

There were five pre-defined rates of execution in the system: @it degrees of load jitter in invocation-to-invocation demands across

Hz, 20 Hz, 10 Hz, 5 Hz, and 1 Hz. Each operation runs at osborter time-scales within each epoch according to relevant factors,
of these rates. For the ASFD open experimentation platform, neuch as progress of a navigation computation in a rapidly evolving
20 Hz SRT functions were added to the OFP, including routes affdeat environment.

steering components, as well as a digital map display. e) Safe addition of non-critical processingio more fully oc-
cupy under-utilized resources in non-worst-case scenarios, it is de-
I1l. EXPERIMENTAL FRAMEWORK TO EVALUATE sirable to perform additional non-critical processing. While missing
MULTI-PARADIGM SCHEDULING a non-critical operation’s deadline does not compromise system cor-

Section Il outlined the Bold Stroke architecture and the OFP dgCtness, reduced or even zero value accrues to the application for
plication components for avionics mission computing. This sehat operat!qn’s use of th_e resources._lt|s cru0|al., hovygver, to assure
tion describes the design of experiments that empirically evaﬁh‘—at non-critical pr_ocessmg_does not mtgrfere with critical process-
ate the suitability of COTS-based hardware and software for thdd@ @nd cause critical deadlines to be missed.
types of mission-critical DRE systems. We focus on three canoni-These design and implementation challenges addressed by Bold
cal scheduling strategies—Rate Monotonic Scheduling (RMS) [1S}iroke and Kokyu are also fundamental to many other DRE systems
Maximum Urgency First (MUF) [4], and RMS+Minimum Laxity with similar requirements and constraints. Our previous work [1]
First (MLF) [20]—to determine which performs better under repretescribed the design and implementation challenges we addressed
sentative environmental conditions with varylogdandload jitter.  to apply Kokyu to Real-time CORBA and thus integrate Kokyu

within the Bold Stroke architecture. This paper extends our earlier
A. OFP Application Design and Implementation Challenges  work by presenting empirical studies that show how Kokyu can then
Challenges addressed by Bold StroRéhe Bold Stroke archi- meet the above open challenges not historically addressed by Bold
tecture addresses the following key design and implementation ct§roke. The results in this paper can be generalized to a broader class
lenges confronted by OFP applications: of DRE systems that perform both critical and non-critical process-
a) Scheduling assurance of critical operations is requirehg and that operate in dynamically varying environments.
prior to run-time: In OFP applications, as in many other DRE
systems, the consequences of missing a deadline at run-time BarExperimental Design

be CataStrophiC. For examp|e, failure to pI’OCGSS an input from thq[\/e have app“ed the Open experimenta' p|atform described in
pilot by a specified deadline can be disastrous in an avionics apgiction Il to determine the degree to which the challenges described
cation,e.g, during navigation through a dense threat environmefg. Section 111-A can be met (1) using Commercial off-the-shelf
It is therefore essential to assyraor to run-timethat even in the (COTS) hardware, operating systems, and middlewiage ¢sing
worst-case scenario(s), all critical processing deadlines will be MBY4 and Motorola cards, the VxWorks OS, and the TAO, TAO
Bold Stroke has historically addressed this challenge through stadigal-time Event Channel, and Kokyu middleware) and (2) across
scheduling and extensive testing and validation. a range of environmental conditions. The remainder of this section
b) Severe resource limitationsLike many other DRE sys- gescribes the hypotheses tested, the variables that were controlled,
tems, OFP applications must perfoefficientprocessing due t0 gnd the variables that were measured in our studies.
strict resource constraints, such as cost, weight, and power cont) Hypotheses: The hypotheses explored in these studies are
sumption restrictions. In particular, it is desirable to provision onlshown in Table I. This table also notes which challenges described

the resources needed to meet worst-case critical processing reqiir&ection I11-A are addressed by each hypothesis. To test these hy-
ments. Bold Stroke has historically addressed this challenge by

clustering operations within an OFP application into a set of coar _ _ Hypothesis Challenges

grain mutually exclusivenodesand provisioning resources for thg Multi-paradigm scheduling is needed to both (1A, B, and D
worst-case mode. maintain QoS assurances for DRE systems while

c) Adaptability across produc't.familiesSome'l'DRE real-time gzglénbc;i?r?éﬁ‘g_g’;gg?énrﬁgcpepr%%%gi_Ievels achipv-
systems are custom-built for specific product families. Developménhrastructure factors, such as dynamic queue oVe€ and E
and testing costs can be reduced if critical and non-critical resouragad, may influence both the ability to enforce ciit-
requirements can be shown to be isolated. In addition, validatjoi¢al processingassurancesand the ability to im-
and certification of components can be shared across product fanRfOve non-critical processingerformance

lies, which amortizes development time and effort. Bold Stroke ad- TABLE |

dresses this challenge by using CORBA to separate interfaces from HYPOTHESESSTUDIED AND CHALLENGES ADDRESSED
implementations and support component reuse [8].

Challenges addressed by Kokye apply the Kokyu schedul-
ing framework to the Bold Stroke architecture to address the ab@@heses, and to study the potential benefits and consequences of (1)
challenges in a broader range of contexts, as described in Sectiorsipporting alternative scheduling strategies and (2) working toward
Furthermore, Kokyu addresses the following design and impleméhe ability to perform beneficial adaptation among them at run-time,
tation challenges confronted by OFP applications, but not addres#&gdgran identical trials using each of the following canonical schedul-
historically by the Bold Stroke platform itself: ing strategies:

d) Robust performance under widely varying environmentale RMS [19], which is a purely static strategy that assigns priori-
conditions: As noted in Section |, next-generation DRE systems ties in rate order and manages requests at each priority level in
must repond flexibly to variations in load and load jitter imposed first-in-first-out (FIFO) order.
by the external environment. For example, next-generation avions MUF [4], which is a hybrid static/dynamic strategy that assigns
ics mission computing applications implement features, such as on- static priorities by operation criticality, and schedules within
demand imagery download [2] and decision aiding systems [25], each static priority by minimum laxity.




« RMS+MLF [20], which first schedules critical operations ac- IR NS U IS A W= R TR Rl

cording to rate and then non-critical operations at lower prior- 0 | Omsec 1 route leg
ity according to laxity 1] Oto5msec 1 route leg
y " . . 2 | 5to 10 msec 2 route legs
We selected these strategies since they are most applicable to OFP 3 | 0to 10 msec 3route legs
application requirements to support both hard real-time (HRT) andl 4 | Omsec 4 route legs
soft real-time (SRT) operations under a range of load and load jitter 5 | Oto5msec S route legs
o e
2) "ConFroIIed Varlablgs: To examine effects.of varying Ioaq and 8 T 0Omsec 8 route legs
load jitter in the production-quality avionics mission computing en- 9 [ 0to 5 msec 9 route legs
vironment described in Section IlI-A, many next-generation DRE 10 | 5to 10 msec 10 route legs
systems must satisfy resource demands that 11 | Oto 10 msec 11 route legs
« Vary overall at longer time-scales across a series of stable TABLE Il
epochs of operation and LOADS FOR EACH OPERATING REGION

« Produce different degrees of jitter in invocation-to-invocation
demands across shorter time-scales within each epoch.

To model variation in both load and load jitter imposed by these, Regions 0, 4 and $ave fixed HRT event consumer loads, with
types of demands, we added operations to a sequence of twelve no additional variability.
epochs of operation, each representing a distoptrating re- . Regions 1, 5, and $have variability of between 0 msec and 5
gion[2] numbered 0-11, as shown in Figure 4. msec for each of the 10 Hz, 5 Hz, and 1 Hz rates, for a total
variability of between 0 and 80 msec of each 1 Hz franee,
0 between 0 and 8 percent variability.
« Regions 2, 6, and 1(ave variability of between 5 msec and
10 msec for each of the 10 Hz, 5 Hz, and 1 Hz rates, for a total
1 5 9 variability of between 80 and 160 msec of each 1 Hz frame,
i.e, between 8 and 16 percent variability.
0 4 8 « Regions 3, 7, and 1have variability of between 0 msec and
10 msec for each of the 10 Hz, 5 Hz, and 1 Hz rates, for a total
variability of between 0 and 160 msec of each 1 Hz fraineg,
between 0 and 16 percent variability.
Fig. 4. Operating Regions Total variability was thus lowest in regions 0, 4, and 8, higher in
regions 1, 5, and 9, higher still in regions 3, 7, and 11, and high-
In addition to the fixed OFP operations, which were present agsh in regions 2, 6, and 10. Thange of variability was lowest in
active in each operating region, we introduced chains of additiomebions 0, 4, and 8, was comparable in odd-numbered regions, and
20 Hz SRT route leg updates (see Sidebar 1) to each operatingwas highest in regions 2, 6, and 10.
gion. We varied the length of the request chain to move from lowestEach of the scheduling strategies examined in these trials was
to highestfundamentahon-critical load. We did this incrementally studied both with and without SRT operation cancellation enabled.
from region 1 to region 11, while keeping the fundamental critic# cancellation was enabled, an operationfzall monitor adapter
load constant across operating regions. We kept the non-critical lgaslild simply omit an upcall to the operation if its advertised worst-
the same in region 0 and region 1 to ensure that we compared the:gke execution time exceeded the time remaining before its deadline
fects of two different levels of jitter with no change in fundamentait the point of upcall.
load in at least one case. The route leg update operation was registered as both an event
To examine the effects of (1) varying levels of load jitter acrogsgnsumer and event supplier for TAO’s Real-time Event Channel.
similar fundamental loads and (2) similar levels of jitter across varywhen an event consumer routine is called, it updates one route leg.
ing non-critical loads, we added an additional HRT event consumgthere are remaining steps in its computation chain (according to
to the second card at each of the following rates: 10 Hz, 5 Hz, agi chain length for the current region, as described in Table 1), it
1 Hz HRT. The additional operations acted in these experimentsighes a SRT event to be consumed if needed. If a SRT event to the
surrogates for the workload variation that would normally be agoute leg update consumer is cancelled, therefore, additional SRT
sociated with a distributed production OFP. The CPU utilizatiosyyents are not pushed to the Real-time Event Channel even if the
by these additional HRT event consumers was randomized acr@gfile indicates that there should be additional updates.

a given range in each operating region, with the range of variationthe end point of a route leg is a necessary input to the next route

MEAN JTTER —

NON-CRITICAL LOAD —»

cycling every four regions through the following: leg (.e, its starting point). If a route leg missed its deadline, its end
1) 0 msec (lowest mean and lowest variance) point would be produced after the data are flushed to the replication
2) 0-5 msec (medium-low mean, medium variance) service. Any subsequent route legs computed in that chain would
3) 5-10 msec (highest mean, medium variance) then likely be erroneous. Shedding the route leg load chain at the
4) 0-10 msec (medium-high mean, highest variance) first missed deadline removes operations that would otherwise con-

Execution time variability within each range was implemented &me CPU time without adding utility. The cancellation policy out-
a pseudo-random sequence initialized with the same seed for diigd above therefore enables an increase in efficiency in operation
strategy. The system moved to the next operating region every Thgpatching, without a loss of utility for the larger class of chained
seconds in each trial. The same profile of load and load jitter waigerations, of which route leg updates are one example.
therefore applied for each strategy, allowing direct comparisons of3) Measured Variables:To measure the effects of varying load
trials for different strategies. Table Il shows how the HRT executi@nd load jitter described in Section IlI-B.2, we instrumented the
variability and additional SRT loads were combined in each regiaapplication and middleware using lightweight, high-resolution time

stamps to profile system behavior. We collected three types of in-



formation: and RMS+MLF each with and without cancellation of SRT opera-
1) Latency of dispatching enqueue and dequeue actions tions.
2) Missed, made, and cancelled operation deadlines Summary of test resultskFigure 6 shows effective load on
3) Latency of the operation executions themselves the system with each scheduling strategg, the total number of
A key challenge in collecting and using this information is to dgequests enqueued, in each of the operating regions. Scheduling
so without violating either the space- or time-requirements of t§éategies using operation cancellation are indicated®yannota-

OFP application. In particular, data collection and extraction mJi@n- MUF and RMS+MLF (both with cancellation) enqueued fewer
be done so that (1) relevant data are collected and not lost, (2) data

extraction is sufficient to avoid data collection overflowing avail-

able data storage space(s), and (3) neither collection nor extraction EE—
of data interferes with the real-time constraints of the system itself. | |-+sae
To achieve this, we first optimized the data probes and cache for [e-more |

s
8
5]
s

both efficiency and flexibility. Second, we leveraged the existing
phasing of application operations to provide regular windows of re-
duced contention for the CPU, in which to extract collected data.
Figure 5 shows the resulting framing of operations in the executing — ** /\
OFP. This framing is designed to improve real-time behavior as fol-

3400
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dispatch requests overall due to the effects of cancellation on the
Fig. 5. Framing of Operation Requests and Metrics Data Extraction Points chains of operations described in Section IlI-B.2, when one op-
) ) o eration of a chain is cancelled, subsequent requests for that operation
lows: (1) frame periods are harmonic and (2) initiation of requestsjge not made. The other strategies, RMS, MUF, and RMS+MLF (all
staggered to reduce contentio®,, avoiding the canonical critical ithout cancellation), and RMS with cancellation, enqueued a total

5 3800

enqueued requests

Fig. 6. Total Requests Enqueued

instant for as many operations as possible. number of dispatch requests that rose linearly from around 3,100 in
regions 0 and 1 to above 4,500 in region 11.
IV. EMPIRICAL RESULTS Figure 7 shows the total number of HRT and SRT operation dead-

We now present our results from running the trials described[A€S made, missed, and cancelled for the MUF strategycancel-
Section I11-B, using the open experimental platform described f@iion: Figure 8 shows the same results for MWithoutcancella-
Section 1. Specifically, we systematically examine the hypothon- The total operation loads in RMS+MLF were similar to those
ses described in Table | and note how a particular OFP challerfigdUF, both with and without cancellation respectively. Cancella-
described in Section I1I-A is or is not met in each case. We thg" in RMS+MLF was similarly successful in reducing the number
empirically evaluate the suitability of COTS-based hardware afé ©Peration deadlines missed though again with a lower number
software—in particular our use of TAO, the TAO Real-time Ever}f Operation deadlines made. As with MUF, RMS+MLF met more

Channel, and the Kokyu framework, for mission-critical DRE sydeadlines under lower levels of jittér., in operating regions 0, 4,
tems. 8, than under higher levels of jitterg., in operating regions 1-3,

5-7, and 9-11, respectively.
) Figure 9 shows the total number of HRT and SRT operation dead-

A. Extending QoS Assurances lines made, missed, and cancelled for the RMS strateitfyout

Hypothesis — Multi-paradigm scheduling is needed to both (¢ancellation. Performance results for RM&h cancellation were
maintain QoS assurances for DRE systems while (2) increasing pegarly identical to those in Figure 9, except that RMS with cancella-
formance beyond levels achievable by single-paradigm approachisn first missed HRT deadlines in operating region 6, rather than 7.
We apply multi-paradigm scheduling to meet challenges A, B, aRMS with cancellation failed to cancel even a single non-critical
D described in Section IlI-A. In particular, in cases where crieperation dispatch request: both RMS with cancellation and RMS
ical requirements are feasible—but total processing requiremewithout cancellation showed a total operation load similar to that
are not—we expect that multi-paradigm scheduling will maintaisf MUF without cancellation and RMS+MLF without cancellation.
critical assurances where single-paradigm., (static, dynamic, or Both RMS with cancellation and RMS without cancellation show a
even hybrid) approaches cannot. Second, we expect multi-paradgigmificant number of HRT deadlines missed in the later, more heav-
scheduling to provide more effective use of scarce resources tiigrioaded operating regions, and RMS with cancellation both (1)
single paradigm approaches, by consideissgedulingmodes as missed more HRT deadlines overall and (2) first missed deadlines in
well as application modes. Finally, we expect that multi-paradigam earlier operating region with lower total load, than RMS without
scheduling will both meet critical assurances and improve noreancellation.
critical performance robustly under widely varying environmental  Analysis of test resultsin each of the operation behavior
conditions. graphs above, it is instructive to compare the slope of the top curve,

Overview of the testTo evaluate this hypothesis, we examwhich indicates the increase in the total number of dispatch requests
ined the dispatching load and how each strategy performed in méetsubsequent operating regions. In Figure 8 the slope of the to-
ing critical deadlines as the load increased. In particular, we dat requests curve is similar to that shown in Figure 6, though the
amined the total number of operation deadlines missed, made, and/e is slightly lower as some dispatch requests are for internal de-
cancelled for each of the six strategies examined,RMS, MUF, pendency correlations in the event channel, and not for application



5000

| [ els of jitter,i.e., in operating regions 0, 4, 8, than under higher levels
S of jitter, i.e., in operating regions 1-3, 5-7, and 9-11, respectively.
O] s Interestingly, adding cancellation had no apparent benefit at all
3500 M with RMS in this application. In fact, it showed a greater number
00— of HRT deadlines missed and a lower number of HRT deadlines

made, in regions 6 though 11. We attribute this effect to the priority
assignment in RMS, under which 20 Hz SRT requests for operations
in the route leg chains were dispatched at the highest priority.

a) Summary: The results above support the hypothesis that

2500

2000

number of operations

1500

1000 multi-paradigm scheduling is needed to extend QoS assurances and
500 N P performance for DRE systems beyond those achievable by single-
W paradigm approaches. RMS was only able to meet critical deadlines
T I s 4 s & 1 & s ® = inoperating regions O through 6. With two exceptions discussed

operating region

in Section 1V-B, MUF and RMS+MLF were able to meet critical
deadlines in all operating regions. However, RMS made more non-

Fig. 7. MUF Operation Behavior With Cancellation critical deadlines in operating regions 0 through 6. We therefore be-
5000 lieve multi-paradigm scheduling is both beneficial and empirically
= supported for use in mission-critical DRE systems.

4500 +—
—e—HRT made
—8— SRT missed /
4000 +—
—&— SRT made /
3500 4 —8—HRT missed

// B. Impact of Infrastructure Factors on Scheduling Feasibility

3000

Hypothesis — Infrastructure factors, such as dynamic queue or
cancellation overhead, may influence both the ability to enforce crit-

2500

number of operations

2000 ical processing assurances, and the ability to improve non-critical
1500 processing performanceMulti-paradigm scheduling can extend the
- ,// range of environmental conditions over which assurances can be
N PN /"%X made and performance improved (as described in Section IV-A).

W N —— However, we must also examine the effects of infrastructure fac-
0

e e e e e e ——e——e——e——=—  {0[SON multi-paradigm scheduling, to meet challenges C and E de-
operating region scribed in Section llI-A. In particular, DRE system developers must
during validation and certificatiotonsiderspecial cases where crit-
ical assurances are violated, to ensure isolation of critical and non-
critical resource requirements. Furthermore, careful study is needed
to identifythose special cases and ensure non-critical processing is
operations. Without cancellation, the total operation load in MURded safely. We therefore must examine queueing and cancellation
was thus proportional to the number of enqueued requests. overhead empirically to further address the challenge of daptabil-
In Figure 7, the S|ope of the total requests curve was much |étysacross product families, while also addressing the Challenge of
than in Figure 8, indicating a lower and more slowly increasing totg&fely adding non-critical processing, as described in Section IlI-A.
operation load. The total operation load in MUF with cancellation Overview of the testTo evaluate this hypothesis we first ex-
was well bounded, which we attribute to the effects of cancellatiamined the queueing latency induced by the infrastructure itself. We
on route leg update chains. Cancellation in MUF successfully tten compared the ability of strategies incurring differing levels of
duced the number of operation deadlines missed, though it alsoaeerhead to meet critical deadlines. As before, we examine the total
sulted in a lower number of operation deadlines made. Both witumber of operation deadlines missed, made, and cancelled for each
and without cancellation, MUF met more deadlines under lower lewf the scheduling strategies.

Fig. 8. MUF Operation Behavior Without Cancellation
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Fig. 10. Mean Enqueue Latency Per Operation
Fig. 9. RMS Operation Behavior Without Cancellation



Summary of test result$zigures 10 and 11 show the mean eman overall vulnerability of the RMS+MLF strategy with cancella-
gqueue and dequeue latencies for each strategy in each operatingor-and the MUF strategy without cancellation at that point, rather
gion, respectively. These figures illustrate that enqueue calls showlegh from a single anomaly. In particular, if delays from preemption
higher latency than dequeue calls. MUF with and without cancély spurious VxWorks network task interrupts contributed to this ef-
lation had the highest mean enqueue and dequeue latencies, feith it appears unlikely that a single long preemption interval was
lower latencies for RMS and RMS+MLF both with and without cannvolved.
cellation. Summary:These results support the hypothesis that infrastruc-

In light of the differences in overhead between MUF angre factors may influence both the ability to enforce critical process-
RMS+MLF, it is instructive to examine closely the HRT deadlineipg assurances, and the ability to improve non-critical processing
missed in strategies other than RMS beyond the total feasibilggrformance. In particular, the missed deadlines in MUF without
limit. In addition to the missed HRT deadlines for RMS with andancellation and RMS+MLF with cancellation correlate with addi-
without cancellation described in Section IV-A, one HRT deadlinfonal overhead of mechanisms for (1) dynamic queue management
was missed in region 9 in each of the MUF without cancellation agéd (2) operation cancellation, respectively. We therefore believe
RMS+MLF with cancellation strategies. Interestingly, this is thghat while multi-paradigm scheduling is empirically supported for
only case of a missed HRT deadline outside RMS; it occurred in thee in mission-critical DRE systems, additional experiments and

same region at the same sampling point for both strategies. careful and thorough testing are needed to more fully assess the
" impacts of these kinds of mechanisms on mission-critical DRE sys-
—e— MUF dequeue temS

—o—MUF © dequeue

—a— RMS+MLF dequeue
—&— RMS*MLF © dequeue
—=— RMS dequeue

—5- RMS © dequeue

.

" m V. OBSERVATIONS AND RECOMMENDATIONS

Sections Il and IV focused on the empirical study of canonical
1 scheduling strategies for avionics mission computer OFPs. Mis-
sion computing software, like many other next-generation DRE soft-
: ware, is increasingly required to execute in more flexible ways and
e in increasingly varying environments. Characterizing the actual
performance of the Kokyu middleware infrastructure in a realistic
setting under a variety of load and load jitter conditions is there-
fore of fundamental importance. Moreover, new increasingly non-
ot 2 s 4 s s 7 s 9 w0 om deterministic types of processing, such as video and imaging [2],
i are being targeted for transition to these DRE systems. The Kokyu
framework’s ability to manage variations in execution load and load
Fig. 11. Mean Dequeue Latency Per Operation jitter through alternative scheduling strategies increases the appli-
cability of these techniques to DRE systems with next-generation

Analysis of test resultsThe most important feature of the en'softv(\iare requirements and architectures.

queue and dequeue latency plots above is that the mean enqueue fr work also opens a larger possibility: performing truly adap-

dequeue latencies did not rise significantly with increasing load e scheduling using alternative strategies at run-time, to accom-

variations in jitter. Including preemption and jitter delays, the com- o . ; .
. . . ate variations in the systems operating environment and cur-
bined average queueing latency in each strategy (1) took aroun - S .
mission objectives. There are several ongoing areas of research

pisec per dispatch request for RMS and RMS+MLF, (2) took aroups complete, as Section VII describes, before this type of run-time

32 piS€eC per dispatch request for MUF’ aqd (3) for each strategy é%hptation will be applicable to avionics mission computing OFPs.
mained comparable across operating regions.

We observed one missed HRT deadline in region 9 in each of t{%%sed on the results in this paper, however, these problems appear

two strategies: MUF without cancellation and RMS+MLF with cal ﬂ%(gsble’ and planned future work will lead to a more complete so-
cellation. We now examine the possible causes of this phenomenon, '

As Section I1I-B.2 describes, the same pseudo-random sequenc%elow' we present key observations and recommendations based

was used for the load jitter function, and the same basic load fulpd our empirical results from Section IV. These observations and

tion was used across strategies. It is therefore notable that the sHM@ mmendatlgnsapply hoth to the particular avionics mission com-
g application studied and to a larger family of mission-critical

operation missed one deadline in the same data sample of the SB?E
region in two different strategies. The HRT operation that miss systems.
its deadline in both cases was the 10 Hz HRT additional operation
used to induce randomized jitter to various operating regions, as Re—
scribed in Section 111-B.2. '
The range of jitter in this operation for region 9, shown in Ta-  Observation — Hybrid static/dynamic scheduling strategies met
ble 11, is 0 to 5 msec, or 0 to 5 percent of a 100 msec 10 Hz franwitical deadlines in operating regions where static strategies could
There was no significant difference in latency for that one openast: The hybrid static/dynamic scheduling strategies MUF and
tion among the strategies in that region, either in the minimulRMS+MLF (both without cancellation) were effective in manag-
maximum, or mean, or at the sample point at which the deadliimg dynamic SRT load, and isolating HRT and SRT resource uti-
was missed. However, MUF without cancellation and RMS+MLEkzation, across a wider range of total load. Moreover, they did so
with cancellation had slightly higher accrued HRT latency overalhder different levels and ranges of randomized jitter in the exe-
at sample 140, where the deadline was missed. Moreover, evecuifion times of certain HRT and SRT operations at different rates.
preemption by the 40 Hz reactor thread occurred, the deadline Admse results support the hypothesis that multi-paradigm scheduling
already been missed and the cause must be attributed to otherifaneeded and beneficial to extend QoS assurances for DRE systems
tors. It therefore appears likely the missed deadline resulted froaeyond those achievable by single-paradigm approaches.

usec)

latency

an dequeue

Extend Assurances via Hybrid Scheduling



Recommendation — Applying hybrid scheduling can be effemd effectiveness of any given scheduling strategy are functions of
tive for mission-critical DRE applications that experience overloagnvironmental factors, in addition to the effects of the infrastructure
Criticality-aware hybrid static/dynamic scheduling in middlewareverheads discussed in Section IV-B.
should be considered for systems that (1) have both critical and non- Recommendation — Use different scheduling strategies under
critical operations, (2) have critical load that is always feasible, adifferent load conditions¥or the avionics mission computing ap-

(3) may incur total load in excess of the feasible bound. plication studied, we recommend using the following scheduling
strategies in the following cases:
B. Pay Attention to Infrastructure Overhead « RMS if the system is not subject to overloads,

o RMS+MLF or MUF if the system is subject to overloads but
some degradation of non-critical performance is acceptable
when the system is not overloaded, or

Using mode switching at run-time between RMS when the sys-
tem is not overloaded, and RMS+MLF or MUF when it is.

Observation — Overhead from cancellation and dynamic
scheduling is reasonable, but impacts performance and may impact
feasibility: Dynamic queue managementis used to a lesser extent by
the RMS+MLF variants, and to a greater extent by the MUF vari- *
ants. The overhead of increased dynamic queue management was
noticeable, but was within a reasonable scafat.p) of the more
static queue management overhead. Moreover, this overhead was VI
in large part justified by increases in effectiveness or efficiency or
both. Queueing loads appeared to remain relatively stable for eacbistributed real-time and embedded (DRE) computing is an
scheduling strategy, as may be expected for such a harmonic gmerging field of study. An increasing number of research efforts
riodic application. Developers of rate-based real-time distributade focusing on end-to-end quality of service (QoS) properties, such
applications should therefore consider dynamic scheduling in mas timeliness, by integrating QoS management policies and mecha-
dleware to be a reasonable and useful technique. nisms,e.g, real-time scheduling into standards-based middleware,

While in all but one sample MUF and RMS+MLF were able tgsuch as Real-time CORBA. Pioneering efforts are beginning to ex-
enforce critical assurances, the same sample late in operatingtead this field by providing meta-capabilities, such as configuration
gion 9 showed a single missed deadline for MUF without cancélexibility, reflection, and ultimately adaptation, while still meeting
lation and RMS+MLF with cancellation. These two strategies hatrict QoS assurances. This section describes representative work
intermediate overhead among the strategies that made all other thit is related to our Kokyu framework.
ical deadlines in region 9. These results support the hypothesis that Avionics platform research: The following two branches of
infrastructure factors, such as dynamic queue overhead, may infésearch are endeavoring to make QoS-managed system infrastruc-
ence both the ability to enforce critical processing assurances, an@ a prevalent and reusable feature of avionics computing systems:
the ability to improve non-critical processing performance. e Avionics domain platform researctStandardized avionics

Recommendation — Perform careful empirical evaluation @fiatforms, such as the ARINC Avionics Application Software Stan-
sources of overhead associated with chosen scheduling strategigsd Interface (APEX) for Integrated Modular Avionics (IMA) [26],
and in particular their impacts on performance and feasibility: provide QoS assurances for systems in the avionics domain. McEI-
The above observations suggest a vulnerability of scheduling strafgne [27] examines the question of how to support operations with
gies that impose overheads such as cancellation or dynamic qugsfe real-time constraints and possibly long running or variable

management to missing critical deadlines. This is apparently défigth computations, in canonical avionics-specific platforms, such
to some form of interference between non-critical and critical prgs |MA.

cessing. Additional experiments are needed, however, to isolate the 4 open systems avionics researcBharp, Doerret al. [21],

particular mechanisms and effects involved. Moreover, careful €] address the challenge of retaining key QoS assurances in avion-
pirical testing of specific DRE systems is always recommended. jcs systems, while achieving improvements in modularity, reuse, cy-
cle times, and cost across families of flight software applications.
C. Apply Multiple Scheduling Paradigms The Bold Stroke avionics domain-specific middleware described in
Observation — The dominant scheduling strategy differesoECtion II-C hgs emerged and evolv_ed through Fhat work. Our re-
search on flexible and adaptive real-time scheduling and dispatching

across operating regiondn Figure 12 we recolor each of the oper- o .
ating regions originally portrayed in Figure 4 to show the schele—aS conducteq within the conte>'<t of the Bold Stroke infrastructure,
d has contributed to its evolution.

ing strategy that performed best in each region. The static Rl\ﬁg
g 9y P g CORBA-related QoS middleware research: There is a

. RELATED WORK

™ OVER LOADED growing body of work related to CORBA-based QoS middleware.

2 6 We focus below on related CORBA middleware research efforts that
T address scheduling or other forms of adaptive QoS management.
x g e Standard specificationsThe OMG Real-Time CORBA
E 1 5 ' 1.0 [28] specification includes interfaces for an optional schedul-
5 ' [ RMS ing service that can be implemented readily using Kokyu's flexi-
E 0 4 X : ?f#; ble scheduling and dispatching capabilities. We plan to release an
= TOTAL LOAD FEASIBLE MLE implementation of this service built using the Kokyu framework.

Emerging COTS middleware standards, such as Dynamic Schedul-
ing Real-Time the Common Object Request Broker Architecture
Fig. 12. Most Effective Strategy by Operating Region (CORBA) 2.0 (DSRTCORBA) [29], as well as the non-CORBA
Real-Time Specification for Jav&’ (RTSJ) [30], generalize the

strategy without cancellation performed best among the strategiessible range of scheduler implementations, rather than specifying
studied when the total load was below the feasible limit. Above thafparticular scheduling approach. Kokyu offers a natural basis for
limit the hybrid static/dynamic RMS+MLF or MUF strategies perreuse of policies and mechanisms in implementing schedulers and
formed best. These results support the hypothesis that the efficieasgociated dispatching infrastructures for either of these standards.

NON-CRITICAL LOAD —»



¢ BBN QuO: The Quality Objects(QuO) distributed object dleware and can perform effectively on a wide range of commonly
middleware is developed at BBN Technologies [31]. QuO is basadailable real-time and general-purpose OS platforms.
on CORBA and provides the following support for agile applica-
tions running in wide-area networks: (i)n-time performance tun-
ing and configuratiorthrough the specification @oS regiongsbe- . i ] ]
havior alternatives, and reconfiguration strategies that allows thel© quantify the tradeoffs between static and dynamic scheduling
QuO run-time to adaptively trigger reconfiguration as system con@gorithms, we developed a strategized scheduling service frame-
tions change (represented by transitions between operating regi#f¥K called Kokyu and integrated this framework with TAO [8],
and (2)feedbaclacross software and distribution boundaries bas¥fich is our high-performance, real-time ORB, and the TAO Real-
on a control loop in which client applications and server objects féme Event Channel, which is a QoS-enabled publish/subscribe ser-
quest levels of service and are notified of changes in service. Wge> Our experimental results demonsirate that no single schedul-
have integrated Kokyu into the QuO framework, as described in [#]9 Paradigm is ideal in all cases, and therefore multi-paradigm

« UCSB RealizeThe Realize project at UCSB has developeﬁChe_dU'!”g is both suitable and beneficial to mission-critical DRE
an approach based on object migration and replication, to imprgRplications. In particular, multi-paradigm scheduling can provide
performance of soft real-time distributed systems [32], [33]. ThiOth assurancesand increasegerformanceto DRE applications
approach constitutes a higher level of adaptive control for soft re#fith both critical and non-critical operations.
time QoS management, and is complementary to Kokyu. In particu-1 NiS paper describes how we used the TAO ORB, TAO's Real-
lar, a system developer might apply Realize to provide soft real-tifi@® Event Channel, and Kokyu to empirically measure the over-
load balancing across endsystems, using the Kokyu framework toffgad. effectiveness, and efficiency of different scheduling strategies
tegrate scheduling and dispatching of both critical and non-critidg12 Production-quality DRE application: an operational flight pro-
load. gram for avionics mission computing built atop the Boeing Bold

« UCI TMO: The Time-triggered Message-triggered Objecétroke domain—specific middl_eware. Our empir?cal measuremgnts
(TMO) project [34] at the University of California, Irvine, supports‘,’rov'de a fou_ndatlon upon whlch we are deveIopmg practical gwde—
the integrated design of distributed OO systems and real-time sfifi€S o configure and use multi-paradigm scheduling strategies for
ulators of their operating environments. The TMO model provid&€al-time CORBA applications. We conclude by summarizing our
structured timing semantics for distributed real-time object-orient&FSOns learned in this work and outlining our planned areas of fu-
applications by extending conventional invocation semantics for dhr€ Work. ,
ject methodsi.e, CORBA operations, to include (1) invocation of ~ Summary of lessons learnedhe following are key lessons
time-triggered operations based on system times and (2) invocatfefned from our application of COTS hardware and software tech-
and time bounded execution of conventional message-triggered '6%'—09'95 tO.aVIonIC.S missions C_omputmg: N
erations. TMO, Kokyu, and TAO are complementary technologies ® Multi-paradigm scheduling is necessary and beneficial.:
because (1) TMO and Kokyu extend and generalize TAO's exiéﬁlh”.e standards, such_ as the Reall—t|me CQRBA 1.0 and 2.0 speci-
ing time-based invocation capabilities and (2) TAO provides a coligations, address key issues for mission-critical DRE systems, they

figurable and dependable connection infrastructure needed by §fv€ essential areas unspecified, notably: (1) which scheduling
TMO CNCM service. strategies are suitable to a particular DRE system and (2) which will

Non-CORBA QoS research: In addition to CORBA-related outperform the others under each set of environmental conditions

QoS middleware research, our work on Kokyu is also related to yithin which the system runs. Our empirical results demonstrate the

following QoS research conducted outside CORBA: limitations of anysingle-paradignapproach, and show that RMS is

« Utah CRM: Regehr and Lepreau [35] propose the CPU Rg_referable when total load is feasible, whereas strategies that can

source Manager (CRM), a middleware service for managing pILBQIate critical and non-critical processing are preferable in over-

cessor allocation using scheduling abstractions provided by COLP%d sitqations. OL_Jr results also indicate th_at hybrid static/d)_/namic
operating systems. They examine different kinds of QoS resgf1eduling strategies can be used in Real-time CORBA applications
vations and propose a unifying low-level middleware abstractid® (1) qffer h'|gher resource ut|I|;at|on than purely static sched.ulmg
layer to shield developers from accidental complexities produced Y teglesfwnh 'a'cc?ptable .run-t|me CfOSt’ (2) prelse;ve dschheo(ljulllng as(;
variations in scheduling abstractions at the operating system leggjrances for critical operations even for an overloaded schedule, an
Our approach focuses @mcapsulatiorf scheduling and dispatch- (3) Provide applications the flexibility to adapt to varying applica-
ing policies, and providing flexible infrastructure to allow arbitrar)t/'On reQU|remepts and platfo.rm features. . ,
composition of heuristics. Rather than enclosing a known set of ¢ Careful instrumentation and analysis to measure infras-

common abstractions, our aim is to provide flexible support fgicture overhead and its impact is necessahile hybrid

diverse and possibly unanticipated combinations of scheduling FEti¢/dynamic scheduling mechanisms added some overhead, our

quirements, mechanisms, and policies in middleware results show that (1) the overhead is within reasonable bounds for

« UCI RED-Linux Scheduling FrameworkVang,et al,, at the DRE applications, and (2) offered suitable performance across dif-

University of California, Irvine, have proposed a general schedtff—rem levels of load and load jitter. The case of a missed critical

ing framework [36] to unify three distinct kinds of scheduling ap_eadllne reportgq n Sectlon I\V-B urges Ca%‘“"”' however, as well
proaches:priority-based time-based andshare-based They de- 25 cgreful 'e.mp|r|cal evaluation when applying these technlques o
compose scheduling behavior into policgli¢cator) and mecha- r_mssmn-crltlcgl DRE systems. our r_esults show that.Wh”e opera-
nism (dispatching components, which are similar to the KokyJ'(,)n c_an(_:el_latlon did not improveffectivenesef sc_hedulmg strate-
scheduling service framework. They have implemented the dles, it did improveefficiencywhen moderate or high levels of jitter

patching portion of this framework in their real-time extensions fyere present. ) .
the Linux kernel, called RED-Linux. While the RED-Linux ap- Future work: We are currently exploring the following areas

proach to scheduling relies on special-purpose extensions to the!(y&Ur future re.sear.ch on multi-paradigm scheduling of Real-time
kernel, our Kokyu framework relies only on commonly availabl& ORBA operations:

0s fean.”es’ such as preemptive thread priorities. Our dISpatChlr?ng, TAO’s Real-time Event Channel, and Kokyu are available as open-source
mechanisms can therefore augment standards-based CORBA giiivare fromwww.cs.wustl.edu/"schmidt/TAO.htmi

VIl. CONCLUDING REMARKS



1) Performance models—We are investigating models for the[13] D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale, “Software

2)

3)

4)

results seen in this work, particularly whether the better per-
formance of MUF under moderate jitter is due to (1) incidental
slack-stealing effects allowed by the greater overhead of dy-
namic scheduling or (2) a particular capability of the schedut
ing mechanism itself.

Distributed scheduling behavior—Further empirical mea-
surements are needed to determine the impact of factors stich
as network latency on the end-to-end performance of dynam-
ically scheduled distributed systems.

Application requirements—A detailed examination of the
impact of application specific requirements, such as policies
for handling missed deadlines, will help guide the develop-7]
ment of additional strategies for dynamically scheduled sys-
tems.

Adaptive control—We are exploring whether adaptive conl18]
trol laws for alternation between scheduling strategies can be
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