Scalable High-Performance Event
Filtering for Dynamic Multi-point

Applications

Douglas C. Schmidt

schmidt@cs.wustl.edu

Washington University, St. Louis

Introduction

e Dynamic multi-point (" DMP”) applications
benefit from high-performance event filter-
ing

e DMP applications include:

Satellite telemetry processing

— Large-scale network management

— Real-time market data analysis

— On-line news services

— Distributed agents in mobile personal communica-
tion systems

Key Characteristics of Dynamic

Multi-point Applications

e Multiple suppliers

— Continuous stream of events (messages) gener-
ated in real-time

— Potentially complex event data formats

— High volume of events

e Multiple consumers

— Consumers process events in real-time

— Each consumer may subscribe to a subset of total
events

— Consumers may add, delete, or modify subscrip-
tions dynamically

General Structure of Dynamic

Multi-point Applications

SUPPLIER

CONSUMER

CONSUMER

———% EVENT FLOW

Ericsson DMP Applications

<
Bl
TELECOM
HIGH-SPEED SWITCH(ES)

LAN/MAN

FILTER

EVENT
FILTER

HIGH-SPEED

~100
SUPERVISORS

e Call center management

Event Filtering Overview

e In DMP applications, each event sent by a
supplier may be sent to a different subset
of consumers

— i.e., not all consumers receive every event

e Thus, event filtering is an important “data
reduction” technique

e Filtering may occur at multiple locations in
a distributed system

Event Filtering Criteria

e Stateless

— Event type
— Event values

— Event generation time

e State-based

— Event frequency

— Event state changes

Research Topics

e Performance

— High throughput and low delay
— Load balancing

— Scalability

e Flexible/lightweight Configuration

— Automated type checking, generation, and opti-
mization of filters

— Flexible partitioning and placement

— Dynamic extensibility

Scalability Optimizations

g

-
e UPPLIER
SUPPLIER SUPPLIER eee
L X}
FILTERS
EVENT
N [.
FILTERS FILTER | | | |
EVENT N T I E SR I
ENGINE | | | |
FILTER —— e l—— =
ENGINE
I) |) | | B
I § I E I E eoe CONSUMER CONSUMER CONSUMER CONSUMER
& J
CONSUMER CONSUMER CONSUMER CONSUMER
& J
9 10
(()
SUPPLIER SUPPLIER SUPPLIER SUPPLIER
L X} L X]
FILTERS FILTERS
EVENT e __ EVENT
— |~ |~ | — | e ———————— =
FILTER | | | | | | | | FILTER | |
ENGINE l > l > l >0 eee l > ENGINE I }
S B DU p— - e
I b | b pooe I b | b pooe
CONSUMER CONSUMER CONSUMER CONSUMER CONSUMER CONSUMER CONSUMER CONSUMER
J & J
11

12

~N
SUPPLIER SUPPLIER
cee
FILTERS
EVENT |
FILTER ‘r
ENGINE
v
Ly B _F -
CONSUMER CONSUMER CONSUMER CONSUMER
. J
13

SUPPLIER SUPPLIER

eee
FILTERS

EVENT |

FILTER ‘r

ENGINE |

CONSUMER CONSUMER CONSUMER CONSUMER
. J
14

Optimization Techniques

e Event filtering optimizations:

— Compile rather than interpret

— Coalesce multiple filters

> Dynamic trie
> Finite automaton
— Process filters in parallel

— Distribute vs. centralize filters

15

Flexible/Lightweight Filter
Configuration

e Filters generated and optimized automati-
cally

— Based on OMG IDL and ACE OO framework

e Partitioning and placement of event filters
may be deferred until installation-time or
run-time

e Explicit dynamic linking provides lightweight
extensibility at run-time

— Facilitates compilation, rather than interpretation

16

Distributed Event Filtering

~
CONSUMER CONSUMER CONSUMER
SUPPLIER mm@
e
CONSUMER
ROUTER/
e E
@g
e e
CONSUMER
SUPPLIER
FILTERS
CONSUMER
SERVER EVE
SERVER
J

17

Filter Schema Notation

e Schema notation is based on a superset of
OMG IDL

e Properties of OMG IDL

— Implicitly typed

— Supports complex data types

e Extensions to IDL for event filtering

— Bit fields

— Meta-data

18

Example Filter Schema

e Format of a logging record defined in OMG
IDL

module Logger
{

// Types of logging messages.
enum Log_Priority {
LOG_DEBUG, // Debugging messages
LOG_WARNING, // Warning messages
LOG_ERROR, // Errors
LOG_EMERG // A panic condition
};

// Format of the logging record.
struct Log_Record {
Log_Priority type;

long time;
long app_id;
long host_id;

sequence<char> msg_data;

19

Filter Expression Language

e Based on superset of C4++4 expressions
— “Nin a row”

// Matches if 10 consecutive error messages sent from
// an application with a particular host and app id.

"this->app_id == 2001 && this->host_id == x7237d923
&& this->type{0..9} == Logger: :LOG_ERROR"

— “State changes and thresholding”

// Matches if the absolute value of the length of

// two consecutive messages from application 2010

// differ by more than 100 bytes.

"this->app_id == 2010 &% abs (this->length{0} -
this->length{1}) > 100"

— Timestamps

// Matches if the time stamp of the message is
// between noon and 1 pm.
"this->time >= 12:00:00 && this->time <= 13:00:00"

20

Related Work

ISIS News

* Filtering at destination only
* Simple filtering criteria (i.e., character strings)

Packet filters

* Primarily interpreted, not compiled
* Limited support for generalized coalescing
* Limitations on filtering criteria

HP OpenView OSI event services

* Interpreted
* Exceedingly inefficient process architecture

OMG CORBA Services

* Defines an event filter constraint language

21

Concluding Remarks

e A growing class of distributed applications
require support for high-performance, dis-
tributed event filtering

e Extensible object-oriented framework for event
filtering helps to:

1. Simplify application development, configuration,
and reconfiguration

2. Enable extensive optimizations

e Wash. U. infrastructure provides high-speed
ATM networks and parallel processing to
experiment with event filtering for dynamic
multi-point applications

23

Work in Progress

e Evolve OO framework prototype

— Based on OMG CORBA

e Integrate the OO framework into testbed
environment at Washington University

— e.g., ATM networks and 20-CPUs SPARCcenter
2000 parallel processor

e Use OO framework and testbed to conduct
experiments that identify and alleviate bot-
tlenecks in dynamic multi-point applications

— Event traffic patterns based on production DMP
applications

22

