
Scalable High-Performance Event

Filtering for Dynamic Multi-point

Applications

Douglas C. Schmidt

schmidt@cs.wustl.edu

Washington University, St. Louis

1

Introduction

� Dynamic multi-point ("DMP") applications

bene�t from high-performance event �lter-

ing

� DMP applications include:

{ Satellite telemetry processing

{ Large-scale network management

{ Real-time market data analysis

{ On-line news services

{ Distributed agents in mobile personal communica-

tion systems

2

Key Characteristics of Dynamic

Multi-point Applications

� Multiple suppliers

{ Continuous stream of events (messages) gener-

ated in real-time

{ Potentially complex event data formats

{ High volume of events

� Multiple consumers

{ Consumers process events in real-time

{ Each consumer may subscribe to a subset of total

events

{ Consumers may add, delete, or modify subscrip-

tions dynamically

3

General Structure of Dynamic

Multi-point Applications

EVENT FLOW

SUPPLIER

SUPPLIER

SUPPLIER

CONSUMER

CONSUMER

CONSUMER

CONSUMER

4

Ericsson DMP Applications

~100

SUPERVISORS

EVENT

FILTER

TELECOM

SWITCH(ES)

HIGH-SPEED

LAN/MAN

HIGH-SPEED

LAN/MAN

EVENT

FILTER

EVENT

FILTER

� Call center management

5

Event Filtering Overview

� In DMP applications, each event sent by a
supplier may be sent to a di�erent subset
of consumers

{ i.e., not all consumers receive every event

� Thus, event �ltering is an important \data

reduction" technique

� Filtering may occur at multiple locations in

a distributed system

6

Event Filtering Criteria

� Stateless

{ Event type

{ Event values

{ Event generation time

� State-based

{ Event frequency

{ Event state changes

7

Research Topics

� Performance

{ High throughput and low delay

{ Load balancing

{ Scalability

� Flexible/lightweight Con�guration

{ Automated type checking, generation, and opti-

mization of �lters

{ Flexible partitioning and placement

{ Dynamic extensibility

8

Scalability Optimizations

SUPPLIER

CONSUMER

EVENT

FILTER

ENGINE

SUPPLIER

...

...
CONSUMER CONSUMER CONSUMER

FILTERS

9

SUPPLIER

CONSUMER

EVENT

FILTER

ENGINE

SUPPLIER

...

...
CONSUMER CONSUMER CONSUMER

FILTERS

...

10

SUPPLIER

CONSUMER

EVENT

FILTER

ENGINE

SUPPLIER

...

...
CONSUMER CONSUMER CONSUMER

FILTERS

...

11

SUPPLIER

CONSUMER

EVENT

FILTER

ENGINE

SUPPLIER

...

...
CONSUMER CONSUMER CONSUMER

FILTERS

12

SUPPLIER

CONSUMER

EVENT

FILTER

ENGINE

SUPPLIER

...

...
CONSUMER CONSUMER CONSUMER

FILTERS

13

SUPPLIER

CONSUMER

EVENT

FILTER

ENGINE

SUPPLIER

...

...
CONSUMER CONSUMER CONSUMER

FILTERS

14

Optimization Techniques

� Event �ltering optimizations:

{ Compile rather than interpret

{ Coalesce multiple �lters

. Dynamic trie

. Finite automaton

{ Process �lters in parallel

{ Distribute vs. centralize �lters

15

Flexible/Lightweight Filter

Con�guration

� Filters generated and optimized automati-
cally

{ Based on OMG IDL and ACE OO framework

� Partitioning and placement of event �lters

may be deferred until installation-time or

run-time

� Explicit dynamic linking provides lightweight
extensibility at run-time

{ Facilitates compilation, rather than interpretation

16

Distributed Event Filtering

SUPPLIER

CONSUMER

SUPPLIER

EVENT

SERVER

CONSUMER

CONSUMER CONSUMER

EVENT

SERVER

CONSUMER

CONSUMER

ROUTER/

SWITCH

ROUTER/

SWITCH

FILTERS

FILTERS

17

Filter Schema Notation

� Schema notation is based on a superset of

OMG IDL

� Properties of OMG IDL

{ Implicitly typed

{ Supports complex data types

� Extensions to IDL for event �ltering

{ Bit �elds

{ Meta-data

18

Example Filter Schema

� Format of a logging record de�ned in OMG

IDL

module Logger

{

// Types of logging messages.

enum Log_Priority {

LOG_DEBUG, // Debugging messages

LOG_WARNING, // Warning messages

LOG_ERROR, // Errors

LOG_EMERG // A panic condition

};

// Format of the logging record.

struct Log_Record {

Log_Priority type;

long time;

long app_id;

long host_id;

sequence<char> msg_data;

};

};

19

Filter Expression Language

� Based on superset of C++ expressions

{ \N in a row"

// Matches if 10 consecutive error messages sent from

// an application with a particular host and app id.

"this->app_id == 2001 && this->host_id == x7237d923

&& this->type{0..9} == Logger::LOG_ERROR"

{ \State changes and thresholding"

// Matches if the absolute value of the length of

// two consecutive messages from application 2010

// differ by more than 100 bytes.

"this->app_id == 2010 && abs (this->length{0} -

this->length{1}) > 100"

{ Timestamps

// Matches if the time stamp of the message is

// between noon and 1 pm.

"this->time >= 12:00:00 && this->time <= 13:00:00"

20

Related Work

� ISIS News

* Filtering at destination only

* Simple �ltering criteria (i.e., character strings)

� Packet �lters

* Primarily interpreted, not compiled

* Limited support for generalized coalescing

* Limitations on �ltering criteria

� HP OpenView OSI event services

* Interpreted

* Exceedingly ine�cient process architecture

� OMG CORBA Services

* De�nes an event �lter constraint language

21

Work in Progress

� Evolve OO framework prototype

{ Based on OMG CORBA

� Integrate the OO framework into testbed
environment at Washington University

{ e.g., ATM networks and 20-CPUs SPARCcenter

2000 parallel processor

� Use OO framework and testbed to conduct
experiments that identify and alleviate bot-
tlenecks in dynamic multi-point applications

{ Event tra�c patterns based on production DMP

applications

22

Concluding Remarks

� A growing class of distributed applications

require support for high-performance, dis-

tributed event �ltering

� Extensible object-oriented framework for event
�ltering helps to:

1. Simplify application development, con�guration,

and recon�guration

2. Enable extensive optimizations

� Wash. U. infrastructure provides high-speed

ATM networks and parallel processing to

experiment with event �ltering for dynamic

multi-point applications

23

