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Motivation: The growth of online Internet services during
the past decade has increased the demand for scalable and
dependable distributed computing systems. For example, e-
Abstract . .
commerce systems and online stock trading systems concur-
CORBA is increasingly popular as distributed object corrrf?ntly service many clients that trgr)§m|t a large, qften bursty,
number of requests. To protect initial hardware investments

puting middleware for systems with stringent quality of sef; d avoid overcommitting resources these systems scale incre-
vice (QoS) requirements, including scalability and depen%ir—1 9 y

ability. One way to improve the scalability and dependabili{nentally by connecting servers via high-speed networks and

of CORBA-based applications is to balance system proce%l'gher purchasmg new servers as the number of clients increase
or leasing server cycles during peak hours.

ing load among multiple server hosts. Load balancing canA ) inal | d frocti hni :
help improve system scalability by ensuring that client appli- n increasingly popular and cost effective technique to im-

cation requests are distributed and processed equitably acr gg\ée networdk/ed sefrver perforr;achnacé balan'cmgvr\:hehr €
a group of servers. Likewise, it can help improve system irdware and/or software mechanisms determine which server

pendability by adapting dynamically to system configuratiéé}‘_l" e_xecute_each client reque_st. Load balancing mechanisms
changes that arise from hardware or software failures. istribute client workload equitably among back-end servers
to improve overall system responsiveness. These mechanisms

This paper presents four contributions to research ¥4n be provided in any or all of the following layers in a dis-
CORBA-based load balancing. First, we describe deﬁde{ﬂbutedpsystem' y gy

cies with common load-balancing techniques, such as intro-
ducing unnecessary overhead or not adapting dynamically tg, Network-based load balancing: This type of load bal-
changing load conditions. Second, we present a novel adgReing is provided by IP routers and domain name servers
tive load balancing service that can be implemented efficier‘(m\ls) that service a pool of host machines. For example,
using standard CORBA features. Third, we describe the k@ien a client resolves a hostname, the DNS can assign a dif-
design challenges we faced when adding this load balanciagent |P address to each request dynamically based on current
service to our CORBA ORB (TAO) and outline how we Igsad conditions. The client then contacts the designated back-
solved the challenges by applying patterns. Finally, we presg@ly server, unaware that a different server could be selected
the results of benchmark experiments that evaluate the pfgsits next DNS resolution. Routers can also be used to bind
and cons of different load balancing strategies empirically ByTcp flow to any back-end server based on the current load
measuring the overhead of each strategy and showing h@yiditions and then use that binding for the duration of the
well each strategy balances system load. flow.
Keywords: Middleware, patterns, CORBA, load balancing. High volume Web sites often use network-based load bal-
ancing at thenetworklayer (layer 3) andransportlayer (layer

*This work was funded in part by Automated Trading Desk, BBN, Cisc&)- !—ayer 3 and.4 load balancing (referred to as “switch-
DARPA contract 9701516, and Siemens MED. ing” in the trade literature [1]), use the IP address/hostname




and port, respectively, to determine where to forward pack-Our previous research on middleware has examined many
ets. Load balancing at these layers is somewhat limited, halimensions of ORB endsystem design, including static [6]
ever, by the fact that they do not take into account the contantd dynamic [7] scheduling, event processing [8], I/O sub-
of client requests. Instead, higher-layer mechanisms—suclsyagem [9] and pluggable protocol [10] integration, syn-
the so-called layer 5 switching described below—perform loaldronous [11] and asynchronous [12] ORB Core architectures,
balancing in accordance with the content of requests, suctOdB fault tolerance [13], systematic benchmarking of multi-
pathname information within a URL. ple ORBs [14], patterns for ORB extensibility [15] and ORB
performance [16]. This paper focuses on another dimension
in the CORBA research domaithe design and performance

of middleware-based load balancing mechanisms developed
using standard CORBAOur approach is based on standard
ORBA features available in any ORB compliant with the
%)nRBA 2.3 [4] (or later) specification. This approach can
%o be generalized to other distributed object computing mid-

¢ OS-based load balancing: This type of load balancing
is provided by distributed operating systems vulastering
load sharing, andprocess migratiorf2] mechanisms. Clus-
tering is a cost effective way to achieve high-availability a
high-performance by combining many commodity compute
to improve overall system processing power. Processes €

then be distributed transparently among computers in the C@ISe_ware such as COM+ and Java RMI. that offer similar fea-

ter.
Clusters generally employ load sharing and process r%ll[es'

gration. Balancing load across processors—or more genergyrBA load balancing example: To illustrate the benefits
across network nodes—can be achievedwieess migration of middleware-based load balancing, consider the CORBA-

mechanisms [3], where the state of a process is transferredf@red online stock trading system shown in Figure 1. A dis-
tween nodes. Transferring process state requires significant

platform infrastructure support to handle platform differencessassion Factories
between nodes. It may also limit applicability to programming (Replicas)
languages based on virtual machines, such as Java.

Session Factory

¢ Middleware-based load balancing: This type of load
balancing is performed in middleware, often on a per-session
or per-request basis. For example, layer 5 switching [1] has
become a popular technique to determine which Web server
should receive a client request for a particular URL. This strat-
egy also allows the detection of “hot spotsg’., frequently ac-
cessed URLs, so that additional resources can be allocated to
handle the large number of requests for such URLSs.

This paper focuses on another type of middleware-based
load balancing supported pbject request broker€ORBS),
such as CORBA [4]. ORB middleware allows clients to invoke
operations on distributed objects without concern for object
location, programming language, OS platform, communica-
tion protocols and interconnects, and hardware [5]. Moreover,
ORBs can determine which client requests to route to which
object replicas on which servers.

Middleware-based load balancing can be used in conjunc- .
tion with the specialized network-based and OS-based load Clients
balancing mechanisms outlined above. It can also be ap- Figure 1: A Distributed Online Stock Trading System
plied on top of commodity-off-the-shelf (COTS) networks
and operating systems, which helps reduce cost. In additisiputed online stock trading system creates sessions through
middleware-based load balancing can provide semanticaillrich trading is conducted. This system consists of multiple
rich customization hooks to perform load balancing based loack-end servers—callegblicas-that process session creation
a wide range of application-specific load balancing conditiomegquests sent by clients over a network. A replica is an object
such as run-time 1/0 vs. CPU overhead conditions. that can perform the same tasks as the original object. Server

1“Load sharing” should not be confused with “load balancireyg, pro- repIicag that perform the same Oper?‘tions can be grouped to-
cessing resources can bkaredamong processors but not necessabzy- 9€ther intoback-end server groupsvhich are also known as
anced replica groupsor object groups




For the example in Figure 1,session factoryl7] is repli- practice, achieving this degree of scalability and dependability
cated in an effort to reduce the load on any given factory. Thexjuires a sophisticated load balancing service. Ideally, inte-
load in this case is a combination of (1) the average numbegaoéting support for such a service should be transparent to ex-
session creation requests per unit time and (2) the total amastitig online stock trading components. Moreover, ifincoming
of resources employed currently to create sessions at a gregfuests arrive dynamically, a load balancing service may not
location. Loads are then balanced across all replicas in the sesefit froma priori QoS specifications, scheduling, or admis-
sion factory replica group. The replicas need not reside at #i@n control and must therefoeglaptdynamically to changes
same location. in run-time conditions.

The sole purpose of session factories is to create stock tradFhe CORBA load balancing service described in this pa-
ing sessions. Therefore, factories need not retain state, per fulfills the needs of applications with high scalability re-
they arestateless Moreover, in this type of system client requirements, such as the online stock trading system described
quests arrive dynamically—not deterministically—and the duggsove. In contrast, neither the network-based nor OS-based
tion of each request many not be knoapriori. load balancing solutions provide as straightforward, portable,

These conditions require that the distributed online stogkd economical a means of adapting load balancing decisions
trading system be able to redistribute requests to replicas lysed on application-level request characteristics, such as con-
namically. Otherwise, one or more replicas may potentiatént and duration.
become overloaded, whereas others will be underutilized. In
other words, the system mustlaptto changing load condi- Paper organization: The remainder of this paper is orga-
tions. In theory, applying adaptivity in conjunction with mulnized as follows: Section 2 summarizes the requirements of
tiple back-end servers can CORBA-based load balancing services and outlines the pros

and cons of alternative solution architectures; Section 3 de-

* Increase the scalability and dependability of the systerggripes the design of our load balancing service, which is

¢ Reduce the initial investment when the number of clier@sed on standard CORBA features and implemented us-

is small; and ing the TAO open-souréeCORBA-compliant ORB; Sec-

¢ Allow the system to scale up gracefully to handle mo}Lzon 4 evalgates thg.perfc.)rmanf:e of altemative load ba'af‘c'

clients and processing workload in larger configuratior{g':q strategies empirically; Sect-|on 5 compares our adaptive
middleware-based load balancing service with related work
In practice, achieving this degree of scalability and deper@fd outlines our future plans for enhancing TAO’s load balanc-
ability requires a sophisticated load balancing service. Ideg service; and Section 6 presents lessons learned and con-
ally, this service should be transparent to existing online stodkding remarks. For completeness, Appendix A presents an
trading components. Moreover, if incoming requests arriogerview of the standard CORBA reference architecture [4].
dynamically, a load balancing service may not benefit from
a priori QoS specifications, scheduling, or admission control

and must therefore adapt dynamically to changes in run-tide Requirements and Alternative Solu-

conditions. . .
CORBA:'s rich set of features provides the means to realize tion Architectures

an adaptive load balancing service. CORBA is an effective . ) . )
choice for distributed systems due to the inherent distributibfliS Section first describes the types of requirements that a

and common heterogeneity of clients and servers writtenGiPRBA-compliant load balancing service should be designed
different programming languages running on different harl§. address. Next, it presents an overview of several alternative
ware and software platforms. In this context, CORBA can siffg2d balancing architectures suitable for CORBA-based appli-

plify system implementation because it offers a language- &fj!oNs:

platform-neutral communication infrastructure. Moreover, it

reduces development effort by offering higher level prograc?-l Requirements for a CORBA Load Balanc-
ming abstractions that shield application developers from dis-— . .

tribution complexities, thereby allowing them to concentrate ing Service

their efforts on stock trading business logic. The OMG CORBA specification provides the core capabili-

In theory, having multiple back-end servers can (1) inCrégggs naeded to support load balancing. In particular, a CORBA
the scalability and dependability of the system, (2) reduce {86 pajancing service can take full advantage ofrémiest
initial investment when the number of clients is small, and

(3) allow the SyStem to scale up gracefully tO' hand_le MOre€2The source code and documentation for TAO can be downloaded from
clients and processing workload in larger configurations. ww.cs.wustl.edu/  ~schmidt/TAO.html




forwarding mechanisrh mandated by the CORBA specificaFor example, load balancers for certain types of systems as-
tion [4]. A CORBA server application can use this mechaume client requests occur at deterministic or stochastic rates
nism to forward client requests to other serviegamsparently that execute for known or fixed durations of time. While these
portably, andinteroperably assumptions may apply for certain types of applications, such

The CORBA specification, however, does stdndardize as continuous multimedia streaming [19], they do not apply in
load balancing interfaces. Nor does it specify load balaramplex Internet or military [20] environments where client
ing mechanisms, which are left as implementation decisiavgeration request patterns are dynamic and the duration of
for ORB providers. Below, therefore, we describe the key reach request may not be known in advance. In this paper,
quirements that CORBA load balancing services should be tieerefore, we focus on load balancing techniques that do not
signed to address. requirea priori scheduling information.

Support an object-oriented load balancing model: Inthe Maximize scalability and equalize dynamic load distribu-
CORBA programming model objects are the unit of abstragon:  Although it is common practice to design lightweight
tion and system architects reason about objects in ordefdigy distribution capabilitie®.g, based on extensions to nam-
manage their available resources. Thus, the granularityjgf services [21], these approaches do not balance dynamic
load balancing in CORBA should be based on objects, rati¢dds equitably, which limits their scalability. Thus, a CORBA
than, e.g, processes or TCP/IP addresses. Moreover, a 19g8d balancing service must increase system scalability by
balanCing service and ORB should coordinate the interacti(?ﬁléximizing dynamic resource utilization in a group of servers
amongsmultipleobject replicas. Sets of multiple object repliyhose resources would not otherwise be used as efficiently.
cas are calledbject groupr replica groups By improving resource utilization via load balancing, the over-

Client application transparency: Distributing work load all scalability of the server group should be enhanced signifi-
amongst multiple servers should require little or no modiff@nty-

catlzns 0 thﬁ w?y n V\.'hlclh Coggggzﬂl'ci'obnf are devthrease system dependability: Load balancing services
oped normally. In particular, a oad balancing S€ky, 150 handle certain types of server failures. By using

\Iil'ﬁe S,hOUId be as tr?ngpar elnt'as Cpg‘cl’;ét:? to ﬁ“en}[,s a”?' selr finistrative interfaces or automated policies, for example,
IKEWISE, & general principle in IS that client Imp e(:I?nts that access a crashed or failing server can be migrated

mentations should be as simple as possible. A CORBA I% other servers until the failure is resolved. Load balanc-

balancing service that follows this principle should therefoirﬁg services need not provide full fault-tolerance capabilities,

require no changes to clients whose requests it balances. howeverj.e., it should not be the role of a load balancing ser-
Server application transparency: Although load balancing vice to detect and mask failures [22, 23]. Instead, they should
should ideally require few modifications to servers, this gaaiovide mechanisms to handle those failures efficiently when
is hard to achieve in practice. For example, load balancitigy are detected by administrators or other componentsin the
a stateful CORBA object requires the transfer of its state sgstem.

a new replica. The application implementation must either

perform the transfer itself or define hooks that allow the Io%'pgort a(;j?inistratt)[ve task|§ : Sé/stem .adlrlninis_trhatorsd_m ay
balancing framework to perform the state transfer as unobtf&® to add new object replicas dynamically, without disrupt-
sively as possible [18] Ing or suspending service for existing clients. A good CORBA

The situation for stateless CORBA servers is different. Imad balqncing serviqe should allow the dynam?q addition of
this case, the implementation of an server objests/ant new replicas and adjust to the new load conditions rapidly.

should require no changes to support load balancing {rgiewise, the service should allow the removal of replicas for
changes to the servapplicationmay still be required unolerupgrades, preemptive maintenance, or re-allocation of system

certain conditions. For example, some applications may defifid®!"€s:
ad hocload metrics, such as number of active transactionS\@himal overhead: A CORBA load balancing service

user sessions. In practice, collecting these metrics may requif§id not introduce undue latency or networking overhead
some modifications to server application code. since otherwise it can actually reduce—-rather than enhance—

Dynamic client operation request patterns: Load balanc- overall system performance. In particular, an implementation
ing services can be based on various client request pattelifft (1) increases the average number of messages per-request
or (2) uses a single server to process all requests may be in-
" 3Theh_5ta”dard ‘?ORB'%QCAT'ONHFO_RWAR';G'OP message _Useg golfa'appropriate for high-performance and/or large-scale applica-
cllitate this request forwarding mechanism is discussed in Section 3.3.1. figns. Section 4 illustrates empirically how certain load bal-
The servant is a programming language entity that implements object .
functionality in a server application. ancing strategies can degrade overall performance due to ex-

cess overhead.
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Support application-defined load metrics and balancing e Per-session- Client requests will continue to be for-
policies: Different types of applications have different no-  warded to the same replica for the duration seasion,
tions of load. Thus, a CORBA load balancing service should which is usually defined by the lifetime of the client [24].

allow applications to: e Per-request- Each client request will be forwarded to a
potentially different replicai.e., bound to a replica each

¢ Specify the semantics of metrics used to measure load time a request is invoked

— For example, some applications may want to bal- .
ance CPU load, whereas other applications may be mor& On-demang- Client requests can be re-bound to another
concerned with balancing /O resources, communication 'eplica whenever deemed necessary by the load balancer.
bandwidth, or memory load. This design forces a client to send its requests to a differ-

ent replica than the one it is sending requests to currently.
¢ Set policies that determine the load balancing service’s
semantics- For example, some applications may want {8a1ancing policy: When designing a load balancing service
distribute load uniformly, others randomly, and still othy js important to select an appropriate algorithm that decides
ers may want load distributed based on dynamic metriggich replica will process each incoming request. For exam-
such as current CPU load or current time. ple, applications where all requests generate nearly identical

L ) , - amounts of load can use a simple round-robin algorithm, while
Support for application-defined metrics and policies need notjications where load generated by each request cannot be

affect client transparency because these policies can be adlal dicted in advance may require more advanced algorithms.

istered solely for server replicas. Thus, clients can be shieldgq)eneral, load balancing policies can be classified into the
from knowledge of load balancing metrics and policies. following categories:

CORBA interoperability and portgbility: Application dg- « Non-adaptive- A load balancer can use non-adaptive
velopers rarely want to be restricted t.o a smgle provider’s policies, such as a simple round-robin algorithm or a ran-
ORB. Therefore, a CORBA load balancing service should not 44 mization algorithm, to select which replica will handle

rely on extensions to GIOP/IIOP, which are standard protocols
that allow heterogeneous CORBA clients and servers to inter- . , .
operate. Likewise, it is desirable to avoid implementing load® Adaptive— A load balancer can use adaptive policies

balanced objects by adding proprietary extensions to an ORB. that utilize run-time information, such as the amount of
idle CPU available on each back-end server, to select the

replica that will handle a particular request.

a particular request.

2.2 Overview of Alternative CORBA Load Bal-
ancing Strategies and Architectures 2.2.2 Load Balancing Architectures

There are a variety of strategies and architectures for devisfigtombining the strategies described above in various ways,
CORBA load balancing services. Different alternatives prtyiS Possible to create the alternative load balancing architec-

vide different levels of support for the requirements outlinddres described below. In the ensuing discussion, we refer back
in Section 2.1, as we describe below. to the requirements presented in Section 2.1 to evaluate the

pros and cons of these strategipmlitatively Section 4 then
evaluates these different strategigmntitatively

2:2.1 Load Balancing Strategies Non-adaptive per-session architectures: One way to de-

There are various strategies for designing CORBA load b&idn @ CORBA load balancer is make to the load balancer

ancing services. These strategies can be classified alongigct the target replica when a client/server session is first
following orthogonal dimensions: establishedi.e., when a client obtains an object reference to

a CORBA object—namely the replica—and connects to that ob-
Client binding granularity: A load balancebindsa client ject, as shown in Figure 2.
request to a replica each time a load balancing decision idNote that the balancing policy in this architecturenisn-
made. Specifically, a client’s requests are bound to the replictaptivesince the client interacts with the same server to
selected by the load balancer. Client binding mechanismswWiich it was directed originally, regardless of that server’s load
clude GIOPLOCATION_FORWARD messages, modified stanconditions. This architecture is suitable for load balancing
dard CORBA services, .(Hd hqcpropngtary interfaces. . Re_ 5In the context of CORBA, aessiondefines the period of time during
gardless of the mechanism, client binding can be classified g&eh a client is connected to a given server for the purpose of invoking re-
cording to its granularity, as follows: mote operations on objects in that server.




rebind clients. Instead, clients could be re-bound at regular
6&/@0\\ time intervals, for example.

Adaptive per-session architecture: This architecture is
similar to the non-adaptive per-session approach. The pri-
mary difference is that an adaptive per-session can use run-
time load information to select the replica, thereby alleviat-
@ ing the need to bind new clients to heavily loaded replicas.
This strategy only represents a slight improvement, however,
Figure 2: A Non-Adaptive Per-Session Architecture  Since the load generated by clients can change after binding
decisions are made. In this situation, the adaptive on-demand

o ) ) ) _architecture offers a clear advantage since it can respond to
policies that implement round-robin or randomized ba|a”0'69namic changes in client load.

algorithms.

Different clients can be directed to different object replicd¥laptive per-request architectures: A more adaptive re-
by either using (1) a middleware activation daemon, such a@ugst architecture for CORBA load balancing is shown in Fig-
CORBA Implementation Repository [25] or (2) a lookup seHre 3. This design introduces a front-end server, which is a
vice, such as the CORBA Naming or Trading service. For ex-
ample, Orbix [26] provides an extension to the CORBA Nam-

3. send_request()—»

: Client

ing Service that returns references to object replicas in either < S
a random or round-robin order. o7 Dy 2 g,
Load balancing services based on a per-session client bind- & g9 ){‘9;7%20@8,0
. - . . N /“y
ing architecture can be implemented to support many require- 5606/ 0«900 0 A

ments defined in Section 2.1. For example, per-session client >
binding architectures generally satisfy requirements for appli
cation transparency, increased system dependability, minim
overhead, and CORBA interoperability. The primary bene-
fit of per-session client binding is that it incurs less run-time
overhead than the alternative architectures described below. Figure 3: An Adaptive Per-request Architecture
Non-adaptive per-session architectures do not, however, sat-
isfy the requirement to handldynamicclient operation re- proxy [27] that receives all client requests. In this case, the
quest patterns adaptively. In particular, forwarding is péfront-end server” is the load balancer. The load balancer
formed only when the client binds to the objett., when selects an appropriate back-end server replica in accordance
it invokes its first request. Overall system performance magth its load balancing policy and forwards the request to that
suffer, therefore, if multiple clients that impose high loads areplica. The front-end server proxy waits for the replica’s re-
bound to the same server, even if other servers are less loaglydto arrive and then returns it to the client. Informational
Unfortunately, non-adaptive per-session architectures havenmessages—callddad advisoriesare sent from the load bal-
provisions to reassign their clients to available servers. ancer to replicas when attempting to balance loads. These ad-

Non-adaptive per-request architectures: A non-adaptive visories cause the replicas to either accept requests or redirect

per-request architecture shares many characteristics with! back to the load balancer.

non-adaptive per-session architecture. The primary difference he primary beneﬁt ofan adaptive rqugst forwardmg archi-
is that a client is bound to a replicgach timea request is tecture is its potential for greater scalability and fairness. For

invoked in the non-adaptive per-request architecture, ratﬁéfimple’ the front-end server proxy can examine the current
thanjust onceduring the initial request binding. This archi—oad on each replica before selecting the target of each request,

tecture has the disadvantage of degrading performance du\%m?h may allow it to distribute load more equitably. Hence,

increased communication overhead, as shown in Section this forwardllng arqh'ltecture is suitable for use with adaptive
load balancing policies.

Non-adaptive on-demand architectures: Non-adaptive  ynfortunately, this architecture can also introduce excessive
on-demand architectures have the same characteristic§a@hcy and network overhead because each request is pro-

their per-session counterparts described above. Howe¥ggsed by a front-end server. Moreover, two new network mes-
non-adaptive on-demand architectures allow re-shuffling s%fges are introduced:

client bindings at an arbitrary pointin time. Note that run-time
information, such as CPU load, is not used to decide when td. The request from the front-end server to the replica; and

Server proxy.




2. The corresponding reply from the back-end servewde and no changes to the object implementations (servants)
(replica) to the front-end server. themselves.

In addition, to ensure that the system is scalable and depend € Primary drawback with adaptive on-demand architec-
able €.g, no single point of failure), multiple intermediatdures is that server replicas must be prepared to receive mes-
servers may be required. This configuration in turn requir%%ges from a load balancer and redirect clients to that load bal-
complex algorithms that propagate the current load infornficer- Although the required changes do not affect application
tion to all front-end servers. It also requires a mechanism!@§iC; @pplication developers must modify a server's initializa-
assign clients to the correct front-end server. In a sense, thifg and activation components to respond to the load advisory
fore, the load balancing problem must be solved both for baB€SSages mentioned above. Advanced ways of overcoming

endand front-end servers, which complicates system desifiis drawback are discussed in Section 5.3. .
and implementation. It is possible to overcome some drawbacks of adaptive

. . . : . on-demand load balancers, however, by applying standard
Adaptive on-demand architecture: This architecture is the CORBA portable interceptors [28], as discussed in Sec-
primary focus of thg remalnqer of this paper. As shown in Fiflon 5.3. Likewise, implementations based on the patterns [29]
ure 4, clients receive an object reference to the load balaqﬁ%e CORBA Component Model (CCM) [30] can implement
load balancing without requiring changes to application code.
In the CCM, acontaineris responsible for configuring the

~
N PQOQ 04 portable object adapter (POA) [5] that manages a component.
S RS h 's adaptive on-demand load balancer | i
(\6; <O %0, a%o Thus, TAO’s adaptive on-demand load balancer just requires
\/66/\\0*/ \/OQOO’J/OQ enhancing standard CCM containers so they support load bal-
o ancing, without incurring other changes to application code.

3. send_request()—»

: Client

. Server Replica
I —

3 The Design of the TAO CORBA
Load Balancing Service

Figure 4: An Adaptive On-Demand Architecture

initially. Using CORBA's standard. OCATION_FORWARD

mechanism, the load balancer can redirect the initial client fidtis section describes the design of an adaptive load balancing

guest to the appropriate target server replica. CORBA cliesg&vice in TAO [6], which is a CORBA-compliant ORB that

will continue to use the new object reference obtained as parpports applications with stringent QoS requirements. TAO’s

of the LOCATION_FORWARD message to communicate witHoad balancing service makes it easier to develop distributed

this replica directly until they are redirected again or finiskpplications in heterogeneous environments by providing ap-

their conversation. plication transparency, high flexibility, scalability, run-time
Unlike the non-adaptive architectures described earliadaptability, and interoperability.

adaptive load balancers that forward requests on-demand can

monitor replica load continuously. Using this load information )

and the policies specified by an application, a load balanéed ~Component Structure in TAO’s Load Bal-

can determine how equitably the load is distributed. When  ancing Service

load becomes unbalanced, the load balancer can communicate

with one or more replicas and request them to use the standd@yre 5 illustrates the componehis the TAO's load bal-
CORBA LOCATION_FORWARD mechanism to redirect subse@NCiNg service, which supports adaptive load balancing and

quent clients back to the load balancer. The load balancer Wiirdeémand request forwarding. Each of these components is
then redirect the client to a less loaded replica. Upon recéipftlined below:

of aLOCATION_FORWARD Message, a standard CORBA clie
ORB re-contacts the load balancer, which then redirects

rFé%plica locator: This component identifies which replicas
client transparently to a less heavily loaded replica. Wi

receive which requests. It is also the mechanism that
Using this architecture, the overall distributed object co inds clients to the identified replicas. The replica locator can

puting system can (1) recover from unequitable client/repli stlmgler?entgdog\ortablius!ng standa;}rd CORBA {)lorta?le 0%'

bindings while (2) amortizing the additional network and pré@C adapter ( ) mechanisms, such as servant locators [5],

cessing overhead over mUItlple requests. This strategy Sa‘tlb“e"&l'he termcomponentised throughout this paper refers to a “component”

mogt of the rquirements outlined in SeCt_ion .2-1'- .“:‘ Parti.CiH‘the general sensie.,, an identifiable entity in a program, rather than in the
lar, it requires minimal changes to the application initializatiotiore specific sense of the CORBA Component Model [30].




: Client

: Load Analyzerf ———————————

1

loads ,O—: Replica Proxy

: Replica

Srequests

. Load Monitor

A load monitor also processes load advisories sent by the load
balancer and informs replicas when they should accept re-
guests versus forward them back to the load balancer.

Load analyzer: This component decides which replica will
receive the next client request. The replica locator described
above obtains a reference to a replica from the load analyzer
and then forwards the request to that replica. The load analyzer
also allows a load balancing strategy to be selected explicitly
at run-time, while maintaining a simple and flexible design.
Since the load balancing strategy can be chosen at run-time,
replica selection can be tailored to fit the dynamics of a system
that is being load balanced.

Replica proxy: Each object managed by TAO’s load bal-
ancing service communicates with it via a unique proxy. The
load balancer uses these replica proxies to distinguish differ-
ent replicas to workaround CORBA's so-called “weak” notion
of object identity [23], where two references to the same ob-
ject may have different values. Thus, it is only possible to
compare theequivalenceof two object references. Two ob-
ject references are equivalent if they refer to the same object.

Figure 5: Components in the TAO Load Balancing Servicetherwise, they are not equivalent if they do not refer to the

same object or the ORB was unable to make this determina-

which implement the Interceptor pattern [29]. The Replica igon. Itis the intentional ambiguity of the latter case that makes

cator forwards each request it receives to the replica sele

by the load analyzer described below.

Load monitor: This component (1) monitors loads on Load balancer: This componen.t is a mediator that'inte-
given replica, (2) reports replica loads to a load balancer, H@tes all the components described above. It provides an

(3) responds to load advisories sent by the load balancer.

&GQRBA object identity “weak” Section 3.3.5 discusses the

replica proxy in more detail.

intgrface through which load balancing can be administered,

depicted in Figure 6, a load monitor can be configured wifijthout exposing clients to the intricate interactions between

get_load()—»

Pull Policy

. Load Balancer E Load Monitor!—!: Server Replica!

<—report_load()

: Replica Proxy

: Load Balancer

Figure 6:

either of two policies:

e Pull policy — In this mode, a load balancer can query a
given replica load on-demanide., “pull” loads from the

load monitor.

e Push policy— In this mode, a load monitor can “push”

Push Policy

I: Load Monitor!—!: Server Replica!

Load Reporting Policies

load reports to the load balancer.

the components it integrates.

3.2 Dynamic Interactions in TAO’s Load Bal-
ancing Service

As described in Section 2.2, selecting a target replica using
a non-adaptive balancing policy can yield non-uniform loads
across replicas. In contrast, selecting a replica adaptively for
each request can incur excessive overhead and latency. To
avoid either extreme, therefore, TAO’s load balancing service
provides a hybrid solution via one of its load balancing strate-
gies, whose interactions are shown in Figure 7. Each interac-
tion in Figure 7 is outlined below.

1. Aclient obtains an object reference to what appears to be
a replica and invokes an operation. In actuality, however,
the client transparently invokes the request on the load
balancer itself.

2. After the requestis received from the client, the load bal-
ancer's POA dispatches the request to its servant locator,
i.e., the replica locator component.

7See [31] for the rationale behind CORBA's object identity semantics.



3.3 Design Challenges and Their Solutions

Client Load Balancer | | Replica Locator | | Load Analyzer || Load Monitor

Replica | The following design challenges were identified prior to and
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11

. The replica locator then transparently redirects the clie3n

‘ | ! | during the development of TAO's load balancing service:

j__

1. send_request() 6. get_load()

1. Implementing portable load balancing

2. send_request()

3. get_replica() L-) 7. is_overloaded()
|
4. LOCATION_FORWARD() 8. load_advisory() ‘
K———————1 el niti )
9. issue_control()

5. send_request()

Enhancing feedback and control
Supporting modular load balancing strategies
Coping with adaptive load balancing hazards

o s~ DN

77777777777777777777777777777777777777 Identifying objects uniquely
B Load Monitor and Rephcaj 6. Integrating all the load balancing components effectively
are at the same location.
These challenges and the solutions we applied to address them
are discussed below. The solutions to each design challenge

manifest themselves within the load balancing service compo-
nents described in Section 3.1. Readers who are not interested

J» 10. LOCATION_FORWARD()

Figure 7: TAO Load Balancer Interactions

. Next, the replica locator queries its load analyzer for §hthe design and rationale of TAO’s load balancing service

appropriate server replica. should skip to the performance results in Section 4.

5.1 Challenge 1: Implementing Portable Load Balanc-
ing

sen replica until the load balancer detects a high load ANtext: A CORBA load balancing service is being imple-
that replica. The additional indirection and overhead iﬁ]ented in accordance with the requirements outlined in Sec-

curred by per-request load balancing architectures (468 2.
Section 2.2.2) is eliminated since the client commurProblem: Changing application code—particularly client
cates with the replica directly. applications—to support load balancing can be tedious, error-

to the chosen replica.

. Requests will continue to be sedirectly to the cho-

. The load balancer monitors the replica’s load. DependiPine. and costly. Changing the middleware infrastructure

on the load reporting policy (séead monitordescription {0 Support load balancing i's also .pro.blematic since the same
in Section 3.1) that is configured, the load monitor wilniddleware may be used in applications that do not require
either report the load to the balancer or the load balant@®d balancing, in which case extra overhead and footprint

will query the load monitor for the replica’s load. may be unacceptable. Likewise, usiad hocor proprietary
interfaces to add load balancing to existing middleware can

. As loads are collected by the load balancer, the load atease maintenance effort and may be unattractive to appli-

lyzer analyzes the load on the replica. cation developers who fear “vendor lock-in" from features that

. If a replica becomes overloaded the load balancer @@ unavailable in other middleware.

dynamically forward the client to another less loaded So, how can we implement load balancing transparently
replica. To achieve the transparency requirements owithout changing applications, middleware or using propri-
lined in Section 2.1, TAO'’s load balancer does not coratary features?

municate with the client applicat’ion when forwarding &o|ytion — the Interceptor pattern: The Interceptor pat-
to anothgr replica. Instegd,, TAO's |03C! balancer issueg, [29] allows a framework to transparently add services that
load advisory to the replica’s load monitor. are triggered automatically when certain events occur. This

. The load monitor issues a control message to the repligattern enhances extensibility by exposing a common inter-

Depending on the contents of the load advisory issutge implemented by eoncrete interceptorMethods in this
by the load balancer, this control message will cause théerface are invoked by dispatcher
replica to either accept or redirect requests. The Interceptor pattern can be implemented via standard

. When instructed by the load monitor, the replica uses Egl(e)RBA POA [4] features. For example, the role of the in-

GIOPLOCATION_FORWARD message to redirect the nex erceptor is played by aervant locatdt and the role of the

request sent by a client back to the load balancer. 8Servant locators are a meta-programming mechanism [32] that allows

. . . . CORBA server application developers to obtain custom object implementa-
. At this point the load balancing cycle starts again. tions dynamically, rather than using the POA's active object map [16].




dispatcher is played byROA In particular, aeplica locator requests to the appropriate replica transparendy,without

can implement the standard CORB&rvantLocator [4] affecting server application code.

interface provided by the POA. After receiving a request, the replica locator obtains a ref-
Figure 8 illustrates how load can be balanced transparemtignce to the replica chosen by the load analyzer (see Sec-

using standard CORBA features. Initially, clients are givdion 3.3.3) and throws &orwardRequest  exception ini-

tialized with a copy of that reference. The server ORB catches

this exception and then returng @CATION_FORWARD GIOP

message. When the client ORB receives this message, the

66&\@@ o CORBA specification requires it to
N N
%8 . . e
doas  LoadBalancer ) 1. Re-issue the request to the new location specified by the
# O ~_ - . .
NP - object references embedded in thEBC ATION_FORWARD
Y 3. send_request()—» response; and

H Replica | 2. To continue using that location until either the communi-
cation fails or the client is redirected again.

Thus, a server application and an ORB can forward client re-
guests to other servemmnsparently portably, andinteroper-

eé\Q P T ably
@& : Load Balancer
6 ~ -~ .
»eé\ g T 3.3.2 Challenge 2: Enhancing Feedback and Control
— — Context: An adaptiveload balancing service must deter-
mine the current load conditions on replicas registered with
(b) it. A load balancer should not need to know the type of load

metric beforehand, however. Moreover, a load balancer must
Figure 8: Load Balancing Transparency in Applications: (g3ke steps to ensure that loads across its registered replicas are
request forwarded by the client and (b) request forwardedisalanced. These steps include (1) forcing the replica to redi-
behalf of the client. rect the client back to the load balancer when its load is high

_ o and (2) forcing the replica to once again accept client requests
an object reference to the load balancer, so they first issuaBen its load is nominal.

guests to the load balancer. The load balancer’s servant locator _ . ,
intercepts those requests and forwards them transparentlyfgP/em: ~ Sampling loads from replicas should be as trans-

the appropriate replicas. Depending on the type of client birfg'€nt as possible to the replicas. If load sampling was not

ing granularity (see Section 2.2) selected by the applicatidi@sParent, a load balancer would have to sample loads from
one of the following actions will occur: server replicas directly, which is undesirable since it would

require replicas to collect loads. If replicas collect loads, how-
e The client will forward requests to the appropriateVer, application developers must modify existing application
replica, as shown in Figure 8(a); or code to support load balancing. Such an obtrusive design does
. . not scale well from a deployment point of view, nor is it always
. Theiload balancer will for\{vard requests tp thg appmp”%easible to alter existing application code.
replica on behalf of the client, as shown in Figure 8(b). Moreover, a load balancer should not be tightly coupled to a
particular load metric. Only theagnitudeof the load should
Applying the solution in TAO:  In TAO, each replica regis- be considered when making load balancing decisions, so that
ters itself with the load balancer. Each replica then becomes ®ad balancer can support any type of load metric, rather
potential candidate to handle a request intercepted by the Itizah just one type of metric. The same deployment scalability
balancer. The interception is performed by a servant locatoissues encountered for load sampling transparency also apply
TAO’s load balancer implements its own servant locatdrere. If a load balancer were load-metric specific it would be
which is registered with the load balancer’'s POA. When a newastly to deploy load balancers for distributed applications that
request arrives, the POA delegates the task of locating a stégtjuire balancing based on several load metrics. For example,
able servant to the servant locator, rather than using the seseparate load balancer would be needed to balance replicas
vant lookup mechanism in the POA's active object map [1@ased on various metrics, such as CPU, I/0O, memory, network,
Thus, the load balancer can use the servant locator to forwand battery power utilization.
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In addition, a load balancer must react to various replica 1. get_load()—»

load conditions to ensure that loads across replicas are bal- 2. load_advisory()—» 3. reject_requests()—»
anced. For example, when high load conditions occur,
replica must be instructed to forward the client request back : —

to the load balancer so subsequent requests can be reassignE
to a less loaded replica.
So, how can we implement a flexible load balancing service

that can be extended to support new load metrics, as welk@$|oad balancer and set the state of the current replica load to
different policies to collect such metrics? one of the following values:

ggure 9: Feedback and Control when Balancing Loads

Solution — the Strategy and Mediator patterns: The Nominal— When the load i inal. th i i
Strategy [17] design pattern allows the behavior of frameworks® | ominai= WWnhen the foad 1S hominal, the replica contin-
ues to accept requests.

and components to be selected and changed flexibly. For ex-
ample, the same interface can be used to obtain different typee High — A high load advisory causes the replica to redi-
of loads on a given set of resources. Only object implementa- rect client requests by forwarding them back to the load
tions must change since load measuring techniques may differ balancer, at which point the load balancer forwards the
for each type of load. Each implementation is called a “strat- request to a less loaded replica.
egy” and can be embodied in an object callddad monitor
A load monitor implements a strategy for monitoring loadghese two state values are the defaults provided by TAO. Users
on a given resource. The interface for reporting loads to & define their own customized load states, however, by cus-
load balancer or to obtain loads from the load monitor r&kMizing the load analyzer and load monitor component im-
mains unchanged for each load monitoring strategy. Strategimentations.
ing load monitoring makes it possible to use a load balancedAO’s load balancer isdaptivedue to the bi-directional
that is not specific to a particular type of load, such as cpegedback/control channel between the load monitor and the
load or battery power utilization. Thus, a load balancer nelégd balancer, which allows TAO’s load balancer to admin-
not be specialized for a given type of load. This design sifgter control.  Since the load monitor is decoupled from the
plifies deployment of a load balanced distributed system sid@ad balancer it is also possible to balance loads across repli-
one load balancer can balance many different types of loadcas based on various types of load metrics. For instance, one
The Mediator [17] design pattern defines an object that d¥Pe of load monitor could report CPU loads, whereas another
capsulates how objects will interact. In addition to playing t§@uld report I/O resource load. The fact that the type of load
role of a strategy, a load monitor acts as a mediator betweenRfsented to the load balancer is opaque allows the same load
load balancer and a given replica. This pattern ensures tHsncer—specifically the load analysis algorithm—to be reused
is a loose coupling between the load balancer and the sef@eny load metric.
replicas. Thus, the load balancer need not have any knowl-
edge of the interface exported by the replica. 3.3.3 Challenge 3: Supporting Modular Load Balancing
Inits capacity as a mediator, aload monitor respondstoload  strategies
balancing requests sent by the load balancer. Depending on the
type of request the load balancer sends to the load monitor,@@text: A distributed system employs a load balancing
replica will either continue accepting client requests or redirggivice to improve overall throughput by ensuring that loads
the client back to the load balancer. Note that the load balangeioss replicas are as uniform as possible. In some applica-
never interacts with the replica directly — all interaction occu#i@ns, loads may peak in a predictable fashion, such as at cer-
via the load monitor. Similarly, the replica never interacts witdin times of the day or days of the week. In other applications,
the load balancer directly. Instead, it interacts with the lo#gRds cannot be predicted easalyriori.

balancer indirectly through the load monitor. Problem: Since certain load analysis techniques are not suit-

Applying the solution in TAO: When registering a replicaable for all use-cases, it may be useful to analyze a set of
with TAO'’s load balancer, its corresponding load monitor igplica loads in different ways depending on the situation. For
also registered. As shown in Figure 9, the load balan@xample, to predict future replica loads it may be useful to an-
queries the load monitor for the load on the current replica, atyze the history of loads for a given object group, thereby an-
suming that pull-based load monitoring is being used (see Sigipating high load conditions. Conversely, this level of anal-
tion 3.1). In other words, the load balancer receiffezsiback ysis may be too costly in other use-cases, if the duration
from the load monitor. Load balancing control messagest-the analysis exceeds the time required to complete client
calledload advisoriesare then sent to the load monitor fronnequest processing.
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In some applications it may even be necessary to change the

load analysis algorithm dynamically,g, to adapt to new ap- +Load Balancer Rt >lGroup 1 : Object Group
plication workloads. Moreover, bringing the system down to ~Load Analyzer - references : object(id)
reconfigure the load balancing strategy may be unacceptable N
for applications with stringent 247 availability requirements. Balancing Strategy
Likewise, application developers may be interested in evaluat-
ing several alternative load balancing policies, in which case
requiring a full recompilation or relink cycle would unduly in- - Component Confiqurator
crease system development effort. A load balancing service Dylgzg';;'gn'gﬁg
cannot simply implement all possible load balancing strate- strategies.

. . . . . Round Robin : Balancing Strategy
gies, howevere.g, application developers may wish to define

application-specific oad-hocload balancing algorithms dur-
ing testing or deployment. N o A

So, how can we allow dynamic (re)configurations of the % Minimum Dispersion.: Balancing Strategy
load balancing service, such as the load monitor and load an-

alyzer, without requiring expensive system recompilations or _ ing th .
interruptions of service? Figure 10: Applying the Component Configurator Pattern to

TAO'’s Load Balancing Service

Solution — the Component Configurator pattern: The

Component Configuratatesign pattern [29] allows applica-

tions to link and unlink components into and out of an applica-l. The average load across all replicas within a given ob-

tion at run-time. In TAO’s load balancing service this pattern ject group is updated each time a load balancing decision

can be used to change the replica selection strategy dynami- OCCurs.

cally. Thus, a load balancer can use this pattern t0 adapt ® g jnstantaneous load on each replica is then compared
different Ic_>ad balancing use-cases, without being hard-coded ., i1 average load.

to handle just those use-cases.

At times it may be necessary to load balance only a few3: If the difference between the average load and the instan-
replicas, in which case a simple load balancing strategy may taneous load is larger than the tolerance set byrtime-
suffice. In other situations, such as during periods of peak ac- Mum dispersiofoad balancing strategy, the load balancer
tivity during the workday, a load balancing strategy may need Will attempt to decrease the difference so that they fall
modifications to account for increased load. In such cases, Within the tolerance.

a more complex strategy may be necessary. The Component i o )
Configurator pattern makes it easy to dynamically config te that a set of replicas balanced via this strategy will not

load balancing algorithms appropriate for different use-ca € :ass(;;\dr.lly ha\{erttk)1e same Iﬁad or;.each %féhem., bUt ov;r time
withoutstopping and restarting the load balancer. the loaddispersiorbetween the replicas will be minimized.

Applying the solution in TAO: TAO's load analyzer uses A large amount of work on load balancing strategies [33]
the Component Configurator pattern to customize the load B@s already been done. Many of those same strategies can
ancing algorithm used when making load balancing decisioR8,integrated in to the CORBA-based load balancing service
as depicted in Figure 10. TAO's load balancing service canj@ the Component Configurator pattern implementation de-
configured dynamically to support the following strategies: Scribed above.

e Round-robin:  This non-adaptive strategy is straightfor- . _ .
ward and does not take load into account. Instead, it simgip-4 Challenge 4: Coping With Adaptive Load Balanc-
causes a request to be forwarded to the next replica in the ob-  Ing Hazards

Ject group being load balanced [21]. Context: A customized adaptive load balancing strategy is

e Minimum dispersion: This adaptive strategy is moreunder development by a distributed application developer.
sophisticated than the round-robin algorithm described aboVbis load balancing strategy will be used to balance loads
The goal of this strategy is to ensure load differences faltross a group of replicas.

within a certain toleranca,e., it attempts to ensure that the _ . ) ) )
average difference in load between each replica is minimizE&oPlem:  Adaptive load balancing has the potential to im-

The following steps are used in this on-demand adaptive stR§2ve system responsiveness. It is hard to ensure the stability
eqy: of loads across replicas when the overall state of distributed

systems changes quickly due to the following hazards:

12



e Thundering herd: When aless loaded replica suddenlp optimize. In contrasfppush modelsan resubmit load infor-
becomes available, a “thundering herd” phenomenon may owation when it has changed beyond a pre-set threshold or after
cur if the load balancer forwards all requests to that repliadixed period of time.
immediately. If the rate at which the loads are reported and an-
alyzed is slower than the rate at which requests are forwar@#gblem: When receiving information about the load in one
to the replica, it is possible that the load on that replica wikplica the load balancing service should determine the source
increase rapidly. ldeally, the rate at which requests are fofthe load information efficiently and uniquely. This goal can
warded to replicas should be less than or equal to the ratd@@chieved easily via pull models, but it is harder to imple-
which loads are reported and analyzed. Satisfying this conglient via push models. CORBA does not provide a lightweight
tion can eliminate the thundering herd phenomenon. mechanism to determine the source of a reqi@dbreover,
as described in Section 3.1, CORBA provige=ak identityor

o.BaIancmg paroxysms. The smaller the number 0fobljnects, relying on the replica object reference to distinguish
replicas, the harder it can be to balance loads across ﬂ%ﬁem would not be portable

effectively. For example, if only two replicas are available - .

then one replica may be more loaded than the other. A naivgo’ how can we portaply and efficiently determine the
load balancing strategy will attempt to shift the load to the |eRQUrce of the load information®?

loaded replica, at which point it will most likely become th
replica with the greater load. The entire process of shifting
load may begin again, causing system instability.

olution — the Asynchronous Completion Token pattern:

Fis pattern is used to efficiently dispatch processing tasks that
result from responses to asynchronous operations invoked by
So, how can we adapt to dynamic changes in load, but withelient [29]. In the load balancing service, the replica proxy
out overreacting transient, short lived or sample errors in thiays the role of an asynchronous completion token (ACT).
load metric? Load monitors communicate load updates via their replica

Solution — Dampening load sampling rates and request proxy objects, as shown in Figure 11. The load balancing ser-

redirection: The minimum dispersiohoad balancing strat-
egy described in Section 3.3.3 can be employed to alleviate the
thundering herd phenomenon and balancing paroxysms since kreport,‘oado
it will not attempt to shift loads the moment an imbalance oc-
curs. Specifically, by relaxing the criteria used to decide when
loads across a group of replicas is balanced, a load balancer
can adjust to large load discrepancies with less probability of | \wnich load monit
experiencing the hazards discussed above. The criteria for de- is the load report
ciding when to shift loads can also change dynamically as the | coming from?
number of replicas increases.

Using control theory terminology, this behavior is called
dampening where the system minimizes unpredictable be-
havior by reacting slowly to changes and waiting for definite
trends to minimize over-control decisions. TAO’s minimum
dispersion balancing strategy does not react to changes in load
immediately because its default load balancing strategy aver- _ ;

. . assigns a replica
ages !nstantaneous load sa_mples ywth oIdgr load values. The proxy to each load
empirical results presented in Section 4.3 illustrate the effects monitor.
of TAO’s dampening mechanisms.

: Load Monitor A

. Load Balancer

: Load Monitor B

<«—report_load()

: Replica Proxy A|—|: Load Monitor A|

: Replica Proxy B|—|: Load Monitor B|

The load balanc

Figure 11: Identifying the Source of a Message Uniquely

3.3.5 Challenge 5: Identifying Objects Uniquely
_ . . . vice creates a unigue replica proxy for each monitor. When
Context: A load balancing service that manages multiplge repiica proxy implementation creates and caches the iden-

objects is responsible for collecting and analyzing informgs, of the replica ACT and load monitor that will later use
tion, such as the state, health, and environmental cond|t|9[ﬂ§, replica proxy. This design allows the replica proxy to de-

throughout the lifetime of each object it manages. This igsymine the identity of the remote replica efficiently whenever
formation is obtained from the load monitor, as described iRw load information is received.

Se_Ction 3.3.2. ) In Some_ applications USingLﬂl modelto ac- 9The CORBA Security Service [34] can authenticate client requests, but
quire the load information may not scale well and can be haii@ is a much more expensive mechanism than required for many applications.
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Applying the solution in TAO: TAO uses a CORBA e Client binding interactions: Rather than binding itself
Object to play the role of an asynchronous completion tée a specific replica that may be highly loaded, TAO’s load
ken. The load balancing service creates a different CORBAlancer binds the client to a suitable replica. The load bal-
Object —called aReplicaProxy —for each replica. This ancer creates an object reference that corresponds to a group
proxy is created when the replica registers itself with the loafireplicas—called awbject group-being load balanced. In-
balancing service initially. All future communication with thestead of using an object reference that directly refers to a given
load balancing service is performed through the proxy. Theplica, the client uses the object reference created by the load
Asynchronous Completion Token pattern allows the load bhklancer that represents the appropriate object group. This de-
ancing service to process the requests from each replica sffin causes the client to invoke a request on the load balancer
ciently and unambiguously. initially, at which point the client is re-bound to a replica cho-
As each load is reported to thieplicaProxy , the load sen by the load balancer.
analyzer is notified that a new load is available for analysis.It is important to note that the CORBA object model was
Since theReplicaProxy  caches the object reference of itsitentionally designed to decouple the object implementation
corresponding replica, the load balancer can redirect the cligatn the object references that clients use to access the im-
to a nominally loaded replica using the cached replica objpi¢mentations. In TAO’s load balancing service we exploit
reference. this feature of CORBA to hide the particular location, num-
ber, and characteristics of the replicas behind an object refer-
i _ence that points clients to the load balancing service. Clients
3.3.6 Challenge 6: '”‘egfa“”g All the Load Balancing applications are shielded by this extra level of indirection by
Components Effectively their ORBSs, and use a load balanced object just like any other

Context: As illustrated above, a load balanced distributdd®RBA object, unaware of the situation except perhaps for
system has many components that interact with each otiHf, difference in performance. _ _
For example, clients issue requests to replicas. Load moniJ he load balancer also rebinds the client to another replica
tors measure loads on replicas continuously and control clig¥tUsing other components, such as the load monitor. In that
access to the replicas. Load analyzers decide if loads on refise, & client is forwarded back to the load balancer so that the

cas are nominal or high. Finally, replica locators bind clierg§€nt binding process can be begin again. Thus, load balanc-
to replicas. ing remains completely transparent to client applications.

Problem: Al the components mentioned above must col- ¢ L0ad monitor and load analyzer interactions: The
laborate effectively to ensure that a distributed system is Id48d balancer allows the load analyzer to be completely decou-
balanced. Direct interaction between some of those compl§td from load monitors. Load monitors are registered with
nents may complicate the implementation of distributed ap [ie load balancer. This design allows the load balancer to re-

cations, however, since certain functionality may be expog&ive oad reports from each registered load monitor. These
to a given component unnecessarily. load reports are then delegated to the load analyzer for analy-

So, how can we integrate the functionality of all the lo %'s. The means by which these loads were obtained is hidden
balancing components without unduly coupling all of them? 0™ the load analyzer.

Solution — the Mediator pattern: The Mediator pattern

provides a means to coordinate and simplify interactions #é- Performance Results

tween associated objects. This pattern shields the objects from

relationships and interactions that are not needed for theirfedr load balancing to improve the overall performance of

fective operation. CORBA-based systems significantly, the load balancing ser-

A load balancercomponent can be used to tie together alice must incur minimal overhead. A key contribution of

the components listed above. It coordinates all interactioP&O’s load balancing service is that it increases overall system

between other components., it is a mediator. For example throughput by distributing requests across multiple back-end

it shields the client from the component interactions necessa@yvers (replicas) without increasing round-trip latency and jit-

to conduct load balancing. Thus, clients can remain unawtgesignificantly.

of the interactions mediated by the load balancer, which helpghis section describes the design and results of several ex-

to satisfy application transparency requirements. periments we performed to measure the benefits of TAO’s load
balancing strategy empirically, as well as to demonstrate the

Applying the solution in TAO:  As shown in Figure 5, the |imitations with the alternative load balancing strategies out-

load balancer in TAO mediates the following types of compgined in Section 2.2. The first set of experiments in Section 4.2
nent interactions:
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show the amount of overhead incurred by the request forwatd-Classic Latency test: In this benchmark, we use high-
ing architectures described in this paper. The second setesblution OS timers to measure the throughput, latency, and
experiments in Section 4.3 demonstrate how TAO's load bgtter of requests made on an instance of a CORBA object that
ancer can maintain balanced loads dynamicaligefficiently, verifies a given integer is prime. Prime number factorization
whereas alternative load balancing strategies cannot. provides a suitable workload for our load balancing tests since
each operation runs for a relatively long time. In addition, it
is a stateless service that shields the results from transitional

4.1 Hardware/Software Benchmarking Plat- effects that would otherwise occur when transferring state be-
form tween load balanced stateful replicas.

2. Latency test with non-adaptive per-request load balanc-
Benchmarks performed for this paper were run using three §3@ strategy:  This variant ofLatency test was designed to
MHz dual CPU Intel Pentium IIl workstations, and one 40§amonstrate the performance and scalabilitppfimal load
MHz quad CPU Intel Pentium Il Xeon workstation, all runningak:mcing using per-request forwarding as the underlying re-
Debian GNU/Linux “potato” GLIBC 2.1), with Linux kernel quest forwarding architecture. This variant added a special-
version 2.2.16. GNU/Linux is an open-source operating sygeq “forwarding server” to the test, whose sole purpose was

tem that supports kernel-level multi-tasking, multi-threadingy forward requests to a target server at the fastest possible
and symmetric multiprocessing. All workstations are copate. No changes were made to the client.

nected through a 100 Mbps ethernet switch. This testbed is

depicted in Figure 12. All benchmarks were run in the POSRX L'atency test with "I'AO’s'adaptive on-demand load bal-
ancing strategy: This variant of theLatency test added

support for TAO’s adaptive on-demand load balancer to the
classicLatency test. ThelLatency test client code re-
mained unchanged, thereby preserving client transparency.
This variant quantified the performance and scalability impact
of TAO's adaptive on-demand load balancer.

Dual CPU
Replica Host

4.2 Benchmarking the Overhead of Load Bal-
ancing Mechanisms

ik

Dual CPU These benchmarks measure the degree of end-to-end overhead

100 MBps incurred by adding load balancing to CORBA applications.

Quad CPU Network Switch
Client Host

Load Balancer
Host Overhead measurement technique: The overhead experi-
ments presented in this paper compute the throughput, latency,
and jitter incurred to communicate between a single-threaded
client and a single-threaded serviee ( one replica) using the
following four request forwarding architectures:

Dual CPU

Replica Host 1. No load balancing: To establish a performance base-

line without load balancing, theatency performance test
Figure 12: Load Balancing Experiment Testbed was first run between a single-threaded client and a single-
threaded server (one replica) residing on separate worksta-
real-time thread scheduling class [35]. This scheduling cldé$s. These results reflect the baseline performance of a TAO
enhances the integrity of our results by ensuring the thre&Hgnt/server application.
created during the experiment were not preempted arbitrarily. A non-adaptive per-session client binding architec-
during their execution. ture: We then configured TAO's load balancer to use the
The core CORBA benchmarking software is based on then-adaptive per-session load balancing strategy when balanc-
“Latency " performance test distributed with the TAO opening loads on d.atency test server. We did this by simply
source software relead®Figure 1 illustrates the basic desigmdding the registration code to thatency test server imple-
of this performance test. All benchmarks use one of the fatkentation, which causes the replica to register itself with the

lowing variations of thd_atency test: load balancer so that it can be load balanced. No changes to
105ee$ TAQ.ROOT/performance-tests/Latency/ in the TAO re-  the ?OreLatenCy test implementation were made_- Since the
lease for the source code of this benchmark. replica sends no feedback to the load balancer, this benchmark
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establishes a baseline for the best performance achievablslight increase in latency incurred by TAO’s approach is
a load balancer that utilizes a per-session client binding graaused by

ularity.

e The additional processing resources the load monitor

3. A non-adaptive per-request client binding architec- needs to perform load monitoring; and

ture: Next, we added a specialized non-adaptive per-request
“forwarding server” to the origindlatency test. Thisserver ¢ Theresources used when sending periodic load reports to
just forwards client requests to an unmodified backend server. the load balancet.e., “push-based” load monitoring.

The forwarding server resided on a different machine than ej- o ) L

ther the client or backend server, which themselves each 1&§S€ results clearly show that it is possible to minimize la-
on separate workstations. Since the forwarding server is €8ICY overhead, yet still provide adaptive load balancing. As
sentially a lightweight load balancer, this benchmark provid@2own in Figure 13, the jitter did not change appreciably be-
a baseline for the best performance achievable by a load B4EEN each of the test cases, which illustrates that load bal-

ancer using a per-request client binding granularity. ancmiq thardly affects the time required for client requests to
complete.

4. An adaptive op-demand client pinding architecture: _ Figure 14 shows how the average throughput differs be-
Finally, TAO's adaptive on-demand client binding granularifyyeen each load balancing strategy. Again, only one client and

was included in the experiment by adding tbad monitor one server were used for this experiment. Not surprisingly, the
described in Section 3.3.2 to thatency test server. This

enhancement allowed TAO's load balancer to react to the cpr
rent load on thd.atency test server. TAO’s load balancer, Throughput Comparison
the client, and the server each ran on separate workstatiq g,
i.e., three workstations were involved in this benchmark. N § 4000
changes were made to the client portion ofthéency test, |5 3500 7 ]
nor were any substantial changes made to the core servant 2 2500 +— =
plementation. % T ]
Overhead benchmark results: The results illustrated in EL 1288 ] |
Figure 13 quantify the latency imposed by adding log 3 © ‘ ‘ ‘ !
g Classic Latency Test Latency Test Latency Test
= Latency w/Per-Session w/Per-Request w/TAO On-
Latency Comparison Performance Load Balancer Load Balancer Demand Load
Test Balancer
700
6007 mLatency - Jitter Figure 14: Load Balancing Throughput Overhead
500 — [ Average Latency
% 400, [ClLatency + Jitter I throughput remained basically unchanged for the non-adaptive
g 200 - per-session approach since only one out of 200,000 requests
& was forwarded. The remaining requests were all sent to di-
0 rectly to the servei,e., all requests were running at their max-
100 1 — — imum speed.
0 : : | Figure 14 illustrates that throughput decreases dramatically
ertomance Tot  Seckion Load | Request Load | on-bumand Load inthe per-requeststrategy due to the fact that it (1) forwards re-
Balancer Balancer Balancer guests on behalf of the client and (2) forwards replies received
from the replica to the client, thereby doubling the commu-
Figure 13: Load Balancing Latency Overhead nication required to complete a request. This architecture is
clearly not suitable for throughput-sensitive applications.
balancing—specifically request forwarding—to thatency In contrast, the throughput in TAO’s load balancing ap-

performance test. All overhead benchmarks were run wjiloach only decreased slightly with respect to the case where
200,000 iterations. As shown in this figure, a non-adaptime load balancing was performed. The slight decrease in
per-session approach imposes essentially no latency overtieamighput can be attributed to the same factors that caused
to the classid_atency test. In contrast, the non-adaptivéhe slight in increase in latency described abaes,(1) addi-
per-request approach more than doubles the average latdmmyal resources used by the load monitor and (2) the commu-
TAQO's adaptive on-demand approach adds little latency. Thieation between the load balancer and the load monitor.
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4.3 Load Balancing Strategy Effectiveness , ,
Loads Under Non-Adaptive Per-Session

The following set of benchmarks quantify how effective eac Strategy
load balancing strategy is at maintaining balanced load acrqg
a given set of replicas. First, the effectiveness of the no 25

adaptive per-session load balancing strategy is shown. N¢ :Egg::g:;
the effectiveness of the adaptive on-demand strategy employ 20 Replica 3
by TAO is illustrated. In all cases, we used thatency test —Replica4

from the overhead benchmarks in Section 4.2 for the expe
ments.

15 f
r

10

Effectiveness measurement technique: The goal of this
benchmark was to overload certain replicas in a group and th
measure how different load balancing strategies handled t
imbalanced loads. We hypothesized that loads across rej
cas should remain imbalanced when using non-adaptive p
session load balancing strategies. Conversely, when us
adaptive load balancing strategies, such as TAO'’s adaptive
load balancing strategy, loads across replicas should be Bature 15: Effectiveness of Non-Adaptive Per-Session Load
anced shortly after imbalances are detected. Balancing

To create this situation, folratency test server replicas—
each with a dedicated CPU-were registered with TAO's
load balancer during each effectiveness experiment. Eiégﬂ line representing the load on replica 4. In addition, note
Latency test clients were then launched. Half the clientgat the same number of iterations were issued by each client.
issued requests at a higher rate than the other half. For @%lce some clients issued requests at a faster rate (10 Hz),
ample, the first client issued requests at a rate of ten requBgiever, those clients completed their execution before the
per-second, the second client issued requests at a rate ofgigts with the lower request rates (5 Hz). This difference
requests per-second, the third at ten requests per-secondiref€auest rate accounts for the sudden drop in load half way
The actual load was not important for this set of experimenggfore the slowerife., low load) clients completed their exe-
Instead, it was theelativeload on each replica that was imporeution.

tant,i.e., a well balanced set of replicas should have relatlve.ly-I-AO,s adaptive load balancing strategy effectiveness:

similar loads, regardless of the actual values of the load. 1 test demonstrated the benefits of an adaptive load balanc-
Effectiveness benchmark results: The results of the effec-ing strategy. Therefore, we increased the load imposed by each
tiveness tests are described below. client and increased the number of iterations from 200,000 to

. . . . 750,000. Four clients running at 100 Hz and another four run-
° Nqn-adapt_lve per-session load balancing effectlyenesshing at 50 Hz were started and ended simultaneously.

For .th's expenment, TAO's Iqad balancer was configured toClient request rates were increased to exaggerate load im-
use itsround-robinload balancing strategy. This strategy do%s

. . alance and to make the load balancing more obvious as it
not perform any analysis on reported loads, but simply for-

) . . - rogresses. It was necessary to increase the number of iter-
wards client requests to a given replica. The client then con9 y

tinues to issue requests to the same replica over the Iifetiméat'?nS in this experiment because of the higher client request

that replica. The load balancer thus appliesribe-adaptive Fates. If the number of iterations were capped at the 200,000

) A : . ..~ used in the overhead experiments in Section 4.2 this experi-
per-sessiorstrategyi,i.e., it is only involved during the initial ;
client request ment could have ended before loads across the replicas were

Figure 15 illustrates the loads incurred on each of tﬁglasn?iadﬁre 16 illustrates, the loads across all four replicas
Latency server replicas using non-adaptive per-session lg dA‘ 9 ' P

balancing. The results quantify the degree to which loa itggtﬁg cv);:f‘eha%r;ggr?geo;cnti'g; Il(;;::lil ﬁ:cfl?;'it?]réugslgﬁd
across replicas become unbalanced by using this strat '

Since there is no feedback loop between the replicas and o the load balancer periodically rebinding clients to less

load balancer, itis not possible to shift load from highly Ioadé ded replicas. By the time a given rebind completed, the

) . X replica load had become imbalanced, at which point the client
replicas to less heavily loaded replicas.

NOt_e that two of 'the replicas (3 and 4) had 'the same loadiithe 150 Hz equilibrium load corresponds to one 100 Hz client and one
The line representing the load on replica 3 is obscured #myHz client on each of the four replicas.
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) the adaptive load balancing strategy, these results show that
Loads Under Adaptive On-Demand Strategy adaptive load balancing strategies can maintain balanced loads
across a given set of replicas.

g v ] 5 Related and Future Work
% ——Replica 1 . . . .
8 —Replica This section outlines related research on load balancing and
g Replica 3 describes how it compares and contrasts to our work on TAO's
=1 ——Replica 4 load balancing service. We first compare our middleware-
3 | based load balancing strategies with work at other levels of
0 W abstraction. Next, we describe how our work compares with
"B EhgR8 B8B83 8338 30B other research on CORBA-based load balancing. We finish
Elapsed Time (seconds) by outlining our future research plans to enhance TAO’s load

balancing service.

Figure 16: Effectiveness of Adaptive On-Demand Load Bal-
ancing 5.1 Related Research on Load Balancing

As discussed in Section 1, load balancing mechanisms have

was rebound to another replica. These initial fluctuations Q&N iMplemented at various levels, such as in the network,

typical of the adaptive load balancing hazards discussedin» @nd middleware. Some implementations, such as the Con-
Section 3.3.4. dor [36] and Beowulf [37] clustering systems, combine as-

The load balancer required several iterations to balance ?ﬁétg from multiple levels. Th_|s paper focuses primarily on
middleware-based load balancing, but many concepts and pat-

loads across the replicase, to stabilize. Had it not beer‘terns used in middleware-based load balancing also apply to
for the dampening (see Section 3.3.4) built into TAO’s ada 9 pply

) X o ARetwork-based and OS-based load balancing, as described be-
tive on-demand load balancing strategy, it is likely that replica
loads would have oscillated for the duration of the experiment.™
Dampening prevents the load balancer from basing its degetwork-based load balancing: Network-based load bal-
sions on instantaneous replica loads, and to use average laadig implementations often make decisions based on the fre-
instead. guency with which a given location is accessed. The decision
It is instructive to compare the results in Figure 16 to ti where to service a request can be made at various stages
non-adaptive per-session load balancing architecture resul@limg the path to its destination. For example, a router [38] or
Figure 15. Loads in the non-adaptive approach remained IS server could decide where to send a request.
balanced. Using the adaptive on-demand approach, the oveNetwork-based load balancing has the disadvantage that
head is minimizedndloads remain balanced. load balancing decisions are based solely on the request tar-
After it was obvious that the loads were balandesi, equi- 9€t, which hampers flexibility significantly. However, recent
librium was reached, the experiment was terminated. This gvelopments in network-based load balancing do take advan-
counts for the uniform drops in load depicted in Figure 18ge of request content. These hybrid implementations [1]
Contrast this to the non-uniform drops in load that occuredRfovide finer-grained load analysis, which can improve load
the overhead experiments in Section 4.2, where clients wa@ancing decisions. Nevertheless, the metric used in load bal-
allowed to complete all iterations. In both cases, the numB&¢cing decisions is still restricted to the frequency with which
of iterations is less important than the fact that the iteratioRgliven target is accessed.
were executed to (1) illustrate the effects of load balancing and/nfortunately, frequency alone is not always an adequate
(2) ensure that the overall results were not subject to transi@ad metric since some requests may incur large loads on
effects, such as periodic execution of operating system taskge target host.g, when Web servers process CGI requests.
The actual time required to reach the equilibrium load d¥hen combined with load ba_lancing decisions based solely on
pends greatly on the load balancing strategy. The examﬁ@et access frequency, the increased loads f_rom su_ch requests
above was based on the minimum dispersion strategy 880 degrade overall system performance. It is possible to an-
scribed in Section 3.3.3. A more sophisticated adaptive IO?JMZ? the content of each request to determine if it is a *high
balancing strategy could have been employed to improve [fd” request, but this requirespriori knowledge of request

time to reach equilibrium. Regardless of the complexity Q]egti\r/rig, which is infeasible in many distributed computing
y .
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OS-based load balancing: Some distributed operating sysforward HTTP requests [41] to a number of hosts that repli-
tems, such as Chorus [39], can distribute processes transpate the target web page. Overall throughput can be increased
ently across remote OS endsystem nodes. Other tools, sugihg any of the load balancing approaches presented in this
as GNU Queue [40], allow users to execute remote procegsager. The key is that the Web server performs the HTTP re-
as if they were run on the local machine. Load balancing pguest load balancing.

formed at this level has the advantage that it can be impleThe CORBA-based load balancing concepts detailed in this
mented transparently to applications. When loads are too hjpgtper are generally applicable to other middleware imple-
at their current location, running applications can be migrategbntations, such as COM+ [42]. In fact, a middleware-
to other nodes relatively transparently. As with the networkased load balancing service calledmponent Load Balanc-
based architecture, however, load balancing at this level mailkes(CLB) [43] is available from Microsoft for COM+ appli-

it hard to choose which metric to use when deciding wherations.

to move processes since application-level metrics and policies

are not available at this level. 5.2 Related Research on CORBA-based Load

Middleware-based load balancing: Middleware-based Balancing
load balancing implementations reside between the appl
tion and the OS/network. Middleware shields the applicati
from tedious and error-prone low-level OS complexitiegf
while also providing an interface to make load balancing @RB-level: Load balancing can be implemented inside the
this level as transparent as possible. Moreover, middlew@®B itself. For example, aload balancing implementation can
can be implemented with sufficient flexibility to overcome thimke direct advantage of request invocation information avail-
disadvantages in network-based and OS-based load balanabig within the POA when it makes load balancing decisions.
architectures outlined above. Moreover, middleware resources used by each object can also
CORBA is an example of middleware that provides the fdbe monitored directly via this design, as described in [44]. For
lowing capabilities needed to implement an effective load bakample, Inprise’s VisiBroker implements a similar strategy,
ancing service: where Visibroker's object adapter [45] creates object refer-
ences that point to Visibroker's Implementation Repository,
e Application developers can customize how their systesHiled the OSAgent, that plays both the role of an activation
is load balanced without being restricted by the limitedtaemon and a load balancer.
and often hard-coded—metrics available in network-base®RB-level techniques have the advantage that the amount

ica- . .
g}?DRBA load balancing can be implemented at several levels
the OMG reference architecture, such as the following:

and OS-based load balancing. of indirection involved when balancing loads can be reduced
« Applications can select at run-time the metric(s) useddgcause load balancing mechanisms are closely coupled with
to guide load balancing decisions. the ORBe.g, the length of communication paths is shortened.

. ! ! ) However, ORB-level load balancing has the disadvantage that
o New mc_atngs can also be ‘?'ef'”ed with _relatlve ease ﬁ’yrequires modifications to the ORB itself. Unless or un-
separating mterface from |mplem(_antat|are., EXPOS- il such modifications are adopted by the OMG, they will be
Ing a con3|stent.|nterface for each |mplementat|on. S%‘Arbprietary, which reduces their portability and interoperabil-
tion 3'3:2 describes how a Ioaq.monltormg COMPONERE Therefore, TAO's load balancing service does not rely on
can be implemented for a specific load metric, yet ke B-level extensions or non-standard features.

the load balancing service load metric agnostic. TAO's load balancing service does not require any modifi-

Moreover, a middleware-based load balancing service &%,qions to the ORB core or objgct agiapter. Instead, iF takes
be used in conjunction with network- and OS-based load b3 lvantage of standard mechanisms in CORBA 2.X to imple-

ancing facilities, which supports some interesting load balat%?_nt adaptive load balancing. Like the Visibroker implemen-

ing combinations. For example, if an application just balanc.t@é'on and the strategies described in [44], TAO's approach

load based on request frequency, a middleware-based load'§dfansparent to Iclients. pnlikel the ORB-bgse(;j approaches,
ancer can delegate load balancing tasks to the network or @¥/€ver, ourimplementation only uses standard CORBA fea-

layers. Conversely, the middleware-based load balancer it88ifS: Thus, it can be ported to any C++ CORBA ORB that

could be load balanced at the network or OS level, thereby dmplements the CORBA 2.2 or newer specification.

viding additional network/host resources for use by the miBervice-level: Load balancing can also be implemented as a

dleware and other applications. CORBA service. For example, the research reported in [46]
Other examples of middleware-based load balancing extends the CORBA Event Service to support both load bal-

clude some Web server implementations. Web servers aacing and fault tolerance. Their system builds a hierarchy of
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event channelthat fan out from event sourcippliersto the runs. Since interceptors reside within the ORB no modifica-
event sinkconsumers Each event consumer is assigned tot@n to server application code is necessary, other than regis-
different leaf in the event channel hierarchy, and both fixed ateding the interceptor with the ORB when it starts running.

adaptive load balancmg,ls performed .to dlstrlpute consumers ~ oo Component Model (CCM):  The CCM [30]
evenly. In contrast, TAO's load balancing service can be use . .
. . . . introduces containersto decouple application component
for application defined objects, as well as event services. . ) ) R o
8g|c from the configuration, initialization, and administra-
Jon of servers. In the CCM, a container creates the POA
nd interceptors required to activate and control a component.
hese are the same CORBA mechanisms used to implement
He_ server components in TAO's load balancing service. The
adaptive per-session load balancer, which suffers from the I%ndard CCM containers can be extended to implement auto-
advantages described in Section 2.2. BEAs WebLogic [4 tic load balanC|pgenencallywﬂhout changing application
. .- cpmponent behavior.
uses a per-request load balancing strategy, also described In
Section 2.2. In contrast, TAO’s load balancing service doBgcentralized load balancing models: The CORBA-based
not incur the per-request network overhead of the BEA stritad balancing architecture described in this paper is based on
egy, yet can still adapt to dynamic changes in the load, unl&eentralizedload balancing model. Specifically, it assumes
Orbix’s load balancing service. that one load balancer performs all load balancing tasks for a
particular distributed system. This model simplifies the design
and implementation of the load balancer, but introduces a sin-

5.3 Future Work gle point of failure, which can impede system reliability and

This paper addresses an important part of the load balandifglability.

service design space. In particular, we focus on client transOne solution is to implement@operativdoad balancing
parency, centralized load balancing, stateless replicas, &fgvice. In this model, load balancing is facilitated through a
“pest-effort” adaptive balancing policies. However, additionéistributed set of load balancers that collectively form a single
steps can be taken to enhance TAO's load balancing serviegical load balancing service. This model has the advantage

For example, a complete solution should also provide otfiBat a single point of failure does not exist, and that no single
capabilities, such as supporting: bottleneck point exists either. Load balancing decisions would

_ _ _ be made cooperativelye., each load balancer could commu-
o Transparent load balancing to server object replicas; nicate with other balancers to decide how best to balance loads

¢ Decentralized load balancing models; across a given group of replicas.

Distributed systems whose servers retain state; Stateful replicas: Another issue we will address in future
work involves load balancing of stateful replicas. To load bal-
ance replicas that retain state, some means of maintaining state
Fault tolerant load balancing; consistency between replicas is necessary. Techniques used to
achieve this consistency include (1) using reliable multicast to

) share the current state efficiently between multiple replicas, (2)
Advanced replica management. providing hooks within a replica that allow a load balancer to
g_erform state transfers explicitly to another less loaded replica
So that request servicing can continue there, or (3) a combi-
nation of both (1) and (2). Efficient load balancing of stateful
Server transparency: Itis non-trivial to achieve transparenteplicas is non-trivial, however, due to the additional load in-
server load balancing since obtaining feedback from a giveurred by ensuring state consistency between replicas.

replica and controlling it without altering server applicatioand monitoring granularity: A server can have multiple
code is hard. Fortunately, CORBA-based distributed systems s

. : Pjects running in it. If there are a many objects in the server
can achieve server transparency by taking advantage of the fol- " o . ;
. . i then instantiating a load monitor (see Section 3.3.2) for each
lowing recently standardized CORBA features:

object may not scale. For example, load monitor resources,
e Portable Interceptors: Portable interceptors [28, 32]such as memory, CPU, and network bandwidth, can starve ob-

can capture client requests transparently before they are mists or processes running on the same server.

patched to an object replica. For examplesemver request To improve the scalability of the load balancing system, we

interceptorcould be added to the ORB where a given repligdan to support a more scalable load monitoring granularity.

Various commercial CORBA implementations also provi
service-level load balancing. For example, IONA's Orbix [2
can perform load balancing using the CORBA Naming S
vice. Different replicas are returned to different clients Wh?
they resolve an object. This design represents a typical n

Enhanced server side scalability;

Better quality of service; and

Below, we outline future work that we are conducting to a
dress these topics.
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Rather than instantiating a load monitor for each object on tha@lanced evenly when the overall state of distributed systems
server, a single load monitor could be associated with a gralfanges rapidly. For example, several new replicas may be
of objects that share a common load metric. For example, ddded to an object group dynamically, which cannot be pre-
spite the fact that objects may implement different interfacelicted by a load balancer. Likewise, a poorly designed load
all are load balanced based on CPU utilization. balancing strategy cannot handle degenerate load balancing

We believe this design can significantly reduce the amowainditions, such as unstable replica loads.
of resources imposed by adding server load balancing suppor§ome approaches that can be used to improve the effective-
i.e., load monitors for a large number of objects residing in thss of a given load balancing strategy are:
same server. However, it also introduces some complexities
to the load monitor implementation. For example, suppose a , i .
load balancer detects a high load and issues a load advisofy Take into account pa.s"[ load trends in an effort to antici-
to the shared load monitor. The load monitor must now decide P2at€ future load conditions.
which objects sharing that load monitor should shed their load
e.g, by forcing the client to contact the load balancer so that it
can be re-bound to another replica.

Other problems can occur when multiple object groups re-
side on a single server. Load balancing decisions for one ob-
ject group may actually interfere with load balancing decisions
for another object group. Suppose both object groups are bal-
anced based on CPU load. The load balancer detects low load
conditions for the first object group, causing requests to be sER€se approaches can improve the stability of adaptive load
to that object group, which causes the CPU load to increasd8ffncing strategies so that they perform better under heavy
the given server. Since the second object group is load Bagds or loads that change rapidly.
anced based on CPU load, the load balancer will detect a high
load on the server due to the increased load caused by the, re- . o .
guests sent to the first object group. At this point, the |0A§v'anced replllca management: It is common practice to .
balancer will cause the second object group to reject reques?ss.Ign a service that balances loads across a group of repli-

. : . .cas supplied to it by applications explicitly. In particular,
Thus, the second object group is starved by the first Objﬁ;% 's load balancing service described in this paper makes

group. In this scenario, the two object groups must be lo S
balanced collectively, which implies a common load monitar attempt to control replica lifetime. More advanced solu-
must be used for botr,1 object groups lons, however, can determine how replicas are created and

destroyed.

Fault tolerant load balancing: By using the adaptive Forexample, suppose there are only two replicas in a replica
CORBA-based load balancing architecture described in thi$yp and that their loads are high. Without additional repli-
paper, clients that have not been forwarded to replicas can g it may be hard to maintain balanced loads. A load balanc-
be denied service. Some form of fault tolerance is therefggg service with the ability to create and destroy replicas on-
needed to prevent this situation. Fortunately, CORBA defitgsmand may provide more flexible load balancing strategizes,
a standardrault Tolerance23] service to address these typeg g, a load balancer could create a replica at a third location in

of failures. an effort to decrease the workload on the two initial replicas.

Making a load balancing service fault tolerant by means OfThose familiar with fault tolerance services may recognize
Fault Tolerant CORBA can alleviate one of the inherent prob- y 9

. . T . A similarity between their replica management strategies and
lems with centralized load balancing: its single point of fail; . . :

o .2 . hose of load balancing services. Both types of services can
ure. It can also ensure that state within replicas is consisten

in o ) :
the case of stateful replicas. This capability can simplify a Iodglntrol replica lifetimese.g, by creating replicas on-demand.

. . : ault tolerance service requires sufficient replicas to provide

balancer implementation since the load balancer can delega? . . . .
; : . ult recovery, while a load balancing service requires enough

the task of ensuring state consistency between replicas to ﬁ1
Fault Tolerance service. One implementation of the CORé
Fault Tolerance service is DOORS [13, 48]. Since DOO
itself is a CORBA service implemented using TAO integrati
it with TAO's load balancer should be straightforward.

» Take advantage of sophisticated algorithms based on con-
trol theory that are designed specifically to restore system
equilibrium when it is perturbed by external forces. In
the case of load balancing, external forces could be addi-
tional client requests or transient loads generated by other
applications running over the network and end-systems.

g\pﬁicas to provide balanced loads. Although the underlying
lénctionality for each type of service is different, the interface
exposed by each service can be similar. Therefore, the IDL in-
Nerfaces exposed by TAO's next-generation load balancing ser-
vice under development currently is based largely on the IDL
Improved quality of service support: As mentioned in interfaces standardized by the Fault Tolerant CORBA specifi-
Section 3.3.4, itis hard to ensure that loads across replicas s&tjon [23].
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6 Concluding Remarks still requires specialized skills, however, along with the use of
somewhat poorly documented features. We believe that fur-
As network-centric computing becomes more pervasive ahér research and documentation of the effective architectures
applications become more distributed, the demand for greated design patterns used in the implementation of higher-level
scalability and dependability is increasing. Distributed systaDORBA services is required to advance the state of the prac-
scalability can degrade significantly, however, when serveite and to allow application developers to make better deci-
become overloaded by the volume of client requests. To @ibns when designing their systems.
leviate such bottlenecks, load balancing mechanisms can b8AO and TAO'’s load balancing service have been applied
used to distribute system load across object replicas residing: wide range of distributed applications, including many
on multiple servers. telecommunication systems, aerospace/military systems,
Load can be balanced at several levels, including the natline trading systems, medical systems, and manufacturing
work, OS, and middleware. Network-based and OS-bag®dcess control systems. All the source code, examples,
load balancing architectures suffer from several limitations:and documentation for TAO, its load balancing service,
and its other CORBA services is freely available from URL

e The lack of flexibility arises from the inability to sUp-http:/mww.cs.wustl.edu/ ~schmidt/TAO.html
port application-definedanetrics at run-time when mak-

ing load balancing decisions.
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A Overview of the CORBA Reference oRB Core:  When a client invokes an operation on an ob-
Architecture ject, the ORB Core is responsible for delivering the request
to the object and returning a response, if any, to the client.

CORBA Object Request Brokers (ORBSs) allow clients to irﬁo-‘n ORB Core is |mplemgnteq as a run-tl'me library I|'nked
voke operations on distributed objects without concern for dpto client and server appllcatlons. For objects executing re-
ject location, programming language, OS platform, com u_otgly, a CORBA-compliant ORB Core communicates via a
nication protocols and interconnects, and hardware [5]. Figston of the General Inter-ORB Protocol (GIOP), such as
ure 17 illustrates the key components in the CORBA refererlC8 Internet Inter-ORB Prqtpcol (1OP) that runs atop the T.C.P
model [49] that collaborate to provide this degree of portab“—"’mSport protocol. In addition, custom Envwonment-Spemﬁc
ity, interoperability, and transparenty. Each component in Inter-ORB protocols (ESIOPs) can also be defined.

OMG IDL Stubs and Skeletons: DL stubs and skeletons
serve as a “glue” between the client and servants, respectively,
and the ORB. Stubs implement tfR¥oxy pattern [17] and
provide a strongly-typedstatic invocation interfac€Sll) that
marshals application parameters into a common message-level
representation. Conversely, skeletons implemengithapter
pattern [17] and demarshal the message-level representation
back into typed parameters that are meaningful to an applica-

Coommor T ) wn

(C) STANDARD INTERFACE () stanparp Lancuace mareing  IDL Compiler:  An IDL compiler transforms OMG IDL
@D ORB-speciFic INTERFACE () STANDARD PROTOCOL definitions into stubs and skeletons that are generated automat-
ically in an application programming language, such as C++

Figure 17: Key Components in the CORBA 2.x Referen®&Java. In addition to providing programming language trans-

in args
operation()

out args + return value

IDL IDL A
IDL COMPILER SKELETON] OBJECT
STUBS

OBJECT
(SERVANT)

ADAPTER

Model parency, IDL compilers eliminate common sources of network
programming errors and provide opportunities for automated
the CORBA reference model is outlined below: compiler optimizations [50].

Client: A client is arole that obtains references to object®'PieCt Adapter:  An Object Adapter is a composite compo-
and invokes operations on them to perform application tasRENt that associates servants with objects, creates object refer-
Objects can be remote or collocated relative to the client. I&ces, demultiplexes incoming requests to servants, and col-
ally, a client can access a remote object just like a local objdporates with the IDL skeleton to dispatch the appropriate
i.e, object —soperation(args) . Figure 17 shows how OPeration upcall on a servant. Object Adapters enable ORBs
the underlying ORB components described below transmit fg-Support various types of servants that possess similar re-

mote operation requests transparently from client to objectduirements. This design results in a smaller and simpler ORB
that can support a wide range of object granularities, lifetimes,

Object: In CORBA, an object is an instance of an OMGylicies, implementation styles, and other properties.
Interface Definition Language (IDL) interface. Each object

is identified by anobject referencewhich associates one or
more paths through which a client can access an object on a
server. Anobject ID associates an object with its implemen-
tation, called a servant, and is unique within the scope of an
Object Adapter. Over its lifetime, an object has one or more
servants associated with it that implement its interface.

Servant: This component implements the operations de-
fined by an OMG IDL interface. In object-oriented (OO) lan-
guages, such as C++ and Java, servants are implemented us-
ing one or more class instances. In non-OO languages, such
as C, servants are typically implemented using functions and
struct s. A client never interacts with servants directly, but

always through ohjects identified by object references.

12This overview only focuses on the CORBA components relevant to this
paper. For a complete synopsis of CORBA's components see [49].
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