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This work-in-progress paper has been submitted to the Mitbm scratch. CORBA allows clients to invoke operations
dleware 2000 Conference, IFIP/ACM, Palisades, New Youdn distributed objects without concern for object location,
April 3-7, 2000. programming language, OS platform, communication proto-

cols and interconnects, and hardware [2]. Other common

Abstract DOC middleware technologies include Microsoft's Compo-

nent Object Model (COM) [3] and Sun JavaSoft’s Jini [4], Java
With the recent adoption of the CORBA component mo@&il [5], and Enterprise Java Beans (EJB) {6].
(CCM), application programmers now have a standard way The use of CORBA as a flexible infrastructure for dis-
to implement, manage, configure, and deploy components thiglited client/server applications has grown rapidly over the
implement and integrate CORBA services. The CCM stgast five years [7]. Until recently, however, there were no
dard not only enables greater software reuse for servers, GORBA ORBs that targeted high-performance and real-time
also provides greater flexibility for dynamic configuration afystems, which meant there CORBA was not used in these do-
CORBA applications. Thus, CCM appears to be well-suitgshins. In general, CORBA was perceived as inappropriate for
for general-purpose client/server applications. systems that possessed stringent deterministic and statistical

Due to the complexity of the standard and relative immatteal-time quality of service (QoS) requirements [8].
rity of implementations, however, CCM is not yet appropriate Over the past two years, however, CORBA has become
for mission-critical applications with high-performance anghcreasingly used in many embedded and real-time systems
real-time quality-of-server (QoS) requirements. Therefore, \eaerospace, telecommunications, medical systems, and dis-
have begun a project to identify, prototype, benchmark, aabuted interactive simulations. The increasing acceptance
timize, and deploy the key patterns and framework comp®-CORBA for these types of high-performance and real-
nents necessary to mature the CCM standard so it can be fifre systems stems largely from the maturations of stan-
plied successfully to mission-critical applications with stringards [9, 10, 11], patterns [12, 13], and QoS-enabled frame-
gent QoS requirements. work components [14, 15].

There are two contributions of our research project. First,
we are identifying the performance bottlenecks and other diiture trends and current limitations: The standardiza-
stacles that impede the use of CCM for high-performance dif and advanced R&D efforts on high-performance and real-
real-time applications. Second, we are demonstrating the @e CORBA mentioned above have aided the adoption of

fectiveness of our methodology of applying optimization prigORBA middleware in real-time system domains. However,
Cip'e patterns to a”eviate these Obstac|es_ CORBA servers fOI’ these domaInS haVe h|St0r|Ca”y been Im-

plemented in arad-hocmanner due to the lack of @mpo-
. nentmodel in the CORBA specification. This omission has
1 Introduction prompted the OMG to specify a standard CORBA Component
Research background: The demand for distributed objectModel (CCM) [16], which will be incorporated into the forth-
computing (DOC) middleware, such as OMG's Common Obeming CORBA 3.0 specification [17].
ject Request Broker Architecture (CORBA) [1], is growing With the advent of JavaSoft's EJB [6] and Microsoft’s Ac-
rapidly as deregulation and global competition makes it itiveX [18], components are becoming the preferred way to de-

creasingly hard to develop and maintain complex middleware

1we focus on CORBA because it is an open standard. However, the pat-
*This work was funded in part by Boeing, NSF grant NCR-9628218&rns resulting from this project will largely generalize from CORBA to other

DARPA contract 9701516, and Siemens. DOC middleware component technologies, such as COM and EJB.




velop and deploy reusable core building blocks for busines® implemented and how they interact. As a result, the lack
applications and services. In theory, the adoption of CCM wilf a standardized servant interaction model has yielded tightly
make it possible to integrate components needed to implenmeanipled,ad-hocservant implementations, which increase the
services and applications with less effort and greater portabibmplexity of software upgrades and reduce the reusability
ity. In addition, CCM will simplify the reconfiguration andand flexibility of CORBA-based software.

repl_acement of gxisting application services .by standardizing eased time and space overhead: The original CORBA

the interconnection among components and interfaces.  gpiact model treats all interfaces as client/server contracts. To
_ In practice, however, the CCM standard and implemen{@ainain the interface contract and increase reusability, there-
tions are as immature today as the underlying CORBA stqfze gevelopers must still model a servant using a general
dard and ORBs were three to four years ago. MoreovepRrpA interface, even if the service will only be used inter-
the CCM vendor community is largely focusing on the ez, within a server. This constraint incurs unnecessary large
quirements of e-commerce, workflow, report generation, 8ﬁln%mory footprints and programming complexity. In addition,

other general-purpose business applications. The middlewgfgay incur unnecessary communication overhead for ORBs
requirements for these applications generally focus on fuRes; 4o not implement collocation optimizations [22].
tional interoperability, with little emphasis on assurance of or

C°'“T°.' over m|SS|0n—'c'r|t|caI Q(.)S. aspects, .S'UCh as tlmelmeisl,lz OMG Solution— the CORBA Component Model
precision, dependability, or minimal footprint [19]. As a re-
sult, it is not feasible to use off-the-shelf CCM implementahe OMG has addressed the limitations outlined above by
tions for high-performance and real-time systems. defining the CORBA Component Model (CCM). Figure 1

shows an overview of the run-time architecture of the CCM

Solution approach and expected results: To address these X i , ) .
model. This section gives a brief overview of the CCM ar-

shortcomings, we are conducting a research projeadon-
tify, prototype, benchmark, optimize, and deploy the key pat-

terns and QoS-enabled framework components necessary to O~ Home | [EEE O—{ Home | camx
mature the standard CORBA Component Model so it can be ! ?
applied successfully to high-performance and real-time appli-mrnal O—looCoRBA 1 O<- Ol corea ol
cations This project focuses on aspects of the CCM specuurtes | O {7 | Xtemal ™ [COMPONENT] lo<]’
ification that are critical to these types of applications. The O
goals of this research are to leverage our previous experience
with QoS-enabled middleware [20, 19], add optimized high- 77 9
performance and real-time support to TAO’s CCM implemen- iertaces Itarmal
tation, and transfer the results to the CORBA standardization Container p—
effort. (P (P (P (P

) ) ORB
2 Technical Rationale | |
2.1 Overview of CORBA Component Model Transactions Persistent
2.1.1 Background and Existing Limitations
Historically, the CORBA specification [1] has concentrated on Secuiity Notification
defininginterfaceswhich define contracts between clients and

servers. An interface defines how cliemtewandaccessob-
ject services provided by a server. Although this model has Figure 1: Overview of the CCM Run-time Architecture
certain virtues, such as location transparency, it has the fol-

lowing limitations: chitecture. A more detailed overview can be found in Ap-

Lack of standardized servant interaction model: The pendix A.

CORBA specification has made little effort to define how to Componentsare the implementation entities that export a
implement servants. Although the Portable Object Adaptast of interfaces to clients. Components support predefined in-
(POA) specification first introduced in CORBA 2.2 [21] starterfaces callegortsthat the CCM uses to facilitate interaction
dardized the interactions between servants and ORBs, seaveong component and other ORB resourcBsrts include
developers are still responsible for determining how servaktxets ReceptaclesEvent Sources/SinkandAttributes In



addition, components can inherit from one or msupported 2.2.1 Resolving Key CCM Design Challenges
interfaces which so-called “component-unaware” clients use ] ] ] o
to access the component. Moreover, components define shown in Section 2.1.2, the CCM requires a significant

dard interfaces to support additional navigable interfaces, QEmber of new classes and interfaces to support its specified

cept object references for delegating responsibilities, genef&@ures. These requirements may cause problems for high-

and receive events, and support dynamic configuration of cdtfIformance and real-time applications due to unnecessary
ponents time and space overhead incurred when components are col-

ocated within the same process or machine. To build a robust

Home interfaces provide a factory service that maﬁﬁCM' | tati q th heads. theref
ages the lifecycle for components. Moreover, a home implémentation and remove these overneads, therefore,

implementation may choose to index component jwe are applying optimization principle patterns gleaned from

stances with aprimary key which are user-implementeaDur previous experience [24, 12] optimizing TAO for high-

classes that identify component instances and derive fr?ﬁ{ffoég)incﬁrindléea;tt'gﬁsaﬂgll'cgggp:{. iorﬂgr'?]gogf‘gt op-
Component::PrimaryKeyBase imization principie p inclu imizing

A ai des th " . tf mon caseavoiding gratuitous wasteshifting computation in

container provi ?S etr_un- me_envwon;nen prta C]? ime via precomputingreplacing general-purpose functions
; ) S run-time environment Consists of vafy, special-purpose onggassing hints between layesior-
ious pre-defined hooks that provide strategies, such as

. e . ; “redundant state to speed up expensive computadiod
sistence, event notification, transaction, and security, to P P exp put

; ing efficient data structures
managed component. Each container manages one compo-

nent and is responsible for initializing the managed Com@hallenge: Enhancing component transparency:

nent and connecting it to other components and ORB services.

The CCM deployment mechanism implements the contain- ] .

ers through developer-specifietetadatawhich instructs the ~ ® Context: A key benefit of the CCM isomponent trans-

CCM deployment mechanism on how to create these contdiatency The following transparencies are important for high-
ers. performance and real-time applications:

In addition to the building blocks outlined above, the CCM e Location transparency References to components and
standardizes component implementation, packaging, and de- objects can be passed among processes that may be dis-
ployment. A Component Implementation Framework (CIF) tributed or collocated in different system configurations.
is defined to automate the component implementation and CCM applications should not be concerned whether com-
persistent state management in a language independent way.ponents are distributed or are collocated on the same pro-
CIF uses the Component Implementation Definition Language cess or host. In particular, CCM applications should not
(CIDL) to generate component implementation skeletons. The and cannot detect the location of an object reference and
CCM also extends the Open Software Description (OSD), should invoke an operation using the same method re-
which is a vocabulary of XML defined by W3C, to address gardless of where the object resides. In particular, com-
component packaging and deployment requirements. ponent location should not affect the semantics of opera-

tions, such as location forwarding, concurrency and dis-
patch policiesCurrent state, and interceptor invoca-

2.2 Implementing and Optimizing the CCM tions.

Performance transparency An ORB supporting the
CCM should provide different mechanisms to optimize
operation invocations based on the location of the objects.
However, CCM applications should be able to invoke an
operation using the most efficient method available for
each configuration. This must be done automaticady,
without developer intervention, so that applications can
obtain optimal performance and avoid unnecessary over-
head without being reprogrammed.

Section 2.1.2 outlines the key features defined in the ccm?!
focusing on the overall model and how certain features inter-
act. This section outlines how we plan to implement and op-
timize the CCM for high-performance and real-time applica-
tions. Section 2.2.1 outlines key optimization principle pat-
terns [23] that can be applied to resolve design challenges
arising from targeting CCM for high-performance and real-
time applications. Optimization principle patterns document
rules for avoiding common design and implementation prob-
lems that degrade the efficiency, scalability, and predictabilitye Predictability transparency No matter where the object

of complex systems. Section 2.2.2 illustrates how these opti- resides and what mechanism is used to invoke an oper-
mization principle patterns can be applied to improve key QoS ation, a CCM implementation must not incur overhead
aspects of specific CCM features. that degrades latency and increases jitter. For instance,



synchronization contention should be minimized, unneefficient general-purpose operations with optimized special-
essary dynamic memory management should be elipixpose onedy creating special collocated stubs for invok-
nated in the critical path, priority-based queuing shoultg collocated operations. Our previous experience [12, 22]
be used for all communication mechanisms, and prioriihiows that collocation can reduce the overhead of many high-
inversion should be minimized or eliminated. performance and real-time applications significantlithout
affecting the semantics defined by the CORBA object model.

e Problem: When a reference is passed back to the sa@kallenge: Enhancing component configurability and cus-
process, or to the same machine where the originating objeehizability:
resides, many ORBs still use remote stubs to invoke opera-
tions via the reference. Thus, collocated references lack per; context:  As shown in Section 2.1.2, the CCM is a very

formance transparency. Although it is sometimes possibleige and complex specification. In particular, a substantial

use proprietary mechanisms to override this behavior, thesgnper of features must be implemented to support the com-
mechanisms hinder the locality transparency of collocated %te specification.

ject references. Some ORBs use short-circuited object ref- . o ]
erences to forward in-process collocated invocation directly® Problem: Many real-time applications are deployed in
to servants. However, this approach impedes the predictaB¥§tems with very stringent memory limits. Often, they runin
ity transparency of collocated references because direct f&#2tively stable configurations once they are deployed. Thus,

warding deviates from the semantics of the CORBA objd®uch of middleware required to implement certain CCM fea-
model [22]. tures will be largely unused. This rarely used code may con-

. _ o . sume excessive memory, which is often a limited resource for
e Solution — Collocation optimizations: To improve yeg|-time systems. When applicatiods require certain fea-

the performance and predictability of collocated componeQtes, however, it should be possible to configure them flexibly.
communication, we will apply the following optimizations to

TAO's CCM implementation: e Solution — Dynamic configuration of components:

To reduce unnecessary memory usage, while still allowing
e Process-collocation Process-collocation improves th@Pplications to use certain features when necessary, we are
performance and predictability transparencies for obje##@Proving the dynamic configurability of TAO. Previous re-
that reside in the same address space with the servaf@rch [26] demonstrates that ORB middleware can be dynam-
while maintaining locality transparency. To implemed?a”y reconfigured at run-time by dyngmlcally linking in the
process-collocation, the ORB must identify the locatidicessary components. We W|I!take this work to the next level
of the component's reference without explicit applicatiopy @ddressing the following topics:
programmer intervention and without violating the poli-
cies specified by POAs and the component containers®
Once the ORB determines that this reference is collocated

in the same process, all operation invocations can be for- : o )
different configurable communication mechanisms, such

warded to a special collocation stub’s method. The goal hared d hiah d backol by extend
of the process-collocation is to ensure the performance as shareéd memory and nigh-speed backplanes, by extend-

of accessing in-process collocated components is compa- ing TAO's eX|st|ng. plugg_able protocols framework [25]
rable to accessing regular C++ components, while stil to support dynamically linkable protocols and marshal-

providing predictability transparency in the framework. ing/demarshaling.

Configurable ORB-level middleware We will explore
how to further partition TAO’s internal structure to max-
imize its configurability. In particular, we will examine

e Configurable component and component infrastructure
— We will enable the stub and skeleton code generated
by TAO'’s IDL compiler to be linked dynamically from
shared libraries. Other CCM mandated interfaces that
support the semantics of componentimplementations can
be linked dynamically, as well. For example, a com-
ponent may support seversilipported interfaceseven

e Host-collocation- For a host-collocated component, it is
also necessary to identify the location of a component ref-
erence transparently. Because TAO allows applications to
plug in various transport protocols into an ORB [25], we
plan to implement a shared memory transport protocol for
TAO. This pluggable transport will allow operations host
collocated components and objects to be invoked trans-

parently and efficiently via shared memory.

Collocation optimizations illustrate the principle patterns

of (1) avoiding gratuitous wastéy avoiding invoking col-
located operations using remote stubs andrép)acing in-

though only a subset will be used in certain configura-
tions.

In CCM, a component can be used to support another col-
located component. The interfaces for these supporting
component require no remote stubs and skeletons. This



finer partitioning will allow CCM applications to storeidentified as a useful component for real-time telecommuni-
system implementation components in secondary stoation management applications. Therefore, we are optimiz-
age. Thus, only those portions that are required for timg TAO’s existing real-time Events Service [27] to support
proper functioning of a particular configuration will bé&ey Notification Service features, such as event filtering, so
linked dynamicallywithout losing the generality of theit can be integrated into our CCM implementation for high-
standard CORBA Component Model. performance and real-time applications.

The use of dynamic configuration outlined above appliBgckaging and deployment tools: The packaging the de-
the optimization principle pattern afvoid gratuitous waste Ployment tools defined in CCM allow software to be com-

by avoiding loading in software that is not needed at run-tinR9Sed into packages (files) and be deployed using an applica-
tion server. Most environments for real-time applications have

) ) very stringent memory requirements. Therefore, it is impor-
2.2.2 Implementing the CCM for High-performance and  tant to explore ways to minimize the extra memory footprint
Real-time Systems incurred by the component model through finer partitioning of

This section outlines the major areas that we will apply the JB)_ranes and dynamic configuration.

timization principle patterns and techniques identified in Sec-Y/& Will support an XML-based packaging and deployment

tion 2.2.1 to our real-time, high-performance CCM implemeFQOI and integrate the dynamic configuration support outlined
tation. in Section 2.2 with this tool. The use of XML simplifies the

maintenance of packaging and deployment descriptions be-
ORB extensions: Three major extensions are required to theause it is human-readable. Moreover, because XML is exten-
current ORB specification. Of them, the addition of locasible and supports namespaces, the standard component APls
ity constrained interfaces has the most impact on the ovesn be extended without violating the CCM specification.
all performance of CORBA applications. This addition de-
fines thelocal keyword to the IDL syntax to support lo-
cality constrained object interfaces. Tleeal keywordal- 3 Related Work
lows programmers to define and use their own locality con-
strained objects to avoid unnecessary network traffic and mpfie following work on middleware and component technolo-
shaling/demarshaling operations. Itis an example of the opfies is related to our project.
mization principle pattern cdvoiding gratuitous waste

EJB: The Enterprise Java Bean [6] is Java’s solution to the
Component mOde|2 As mentioned in Section 21, the CCNbomponent modeL It Supports binary program Compatibil_
specifies several component APIs that support core COmpithin various Java run-time environments. Although the
nent features. These APIs allow application dEVe|0perSWﬂte-once/run-anywhere philosophy of Java simplifies com-
interconnect components and objects together. Although gigent deployment, having to support all the native OS mech-
addition oflocal interface keyword in the CCM specificagnisms limits Java applications’ flexibility and performance.
tion improves the performance locality constrainted compphe requirement of automatic garbage collection, which can
nents, there are still cases where a component can be ysedtarted at anytime and run for undetermined amount of
both locally and remotely. In this case, we will apply thgme, also makes Java unsuitable for many real-time appli-
principle patterngwvoiding gratuitous wastandreplacing in- cations. Moreover, the lack of a Java event demultiplexing
efficient general-purpose operations with optimized specigiechanism forces developers to use threads to service multi-
purpose oneby invoking methods via a special collocated Otble event sources, which does not scale well [28].
ject reference on a collocated component. In contrast, invokyyhjle the CCM is modeled closely on the EJB specifica-
ing the operation through the remote interface stub would ifsp, [16], the CCM is arguably more flexible. First, because
pose unnecessary performance overhead from parameter @@fy is based on CORBA, it can work on any platform and
shaling/demarshaling and transport protocol traffic/latency.|anguage. In contrast, EJB is focused on Java-only systems.

Containers: Containers provide interconnections for marpecond, CCM developers are not limited to the use of threads

aged components, as described in Section 2.1. The ctopervice multiple event services since CORBA defines a
employs several common ORB services to manage resouldér range of concurrency models, including reactive dis-

within containers. In general, the Object Transactions ServR@ching and thread pools. Although packaging and deploying

may not be relevant for real-time applications with determift ™ components for heterogeneous platforms may be com-

istic QoS requirements due to the overhead associated Wiifat€d to maintain due to the number of platform/OS com-

this service. Conversely, the Notification Service has bedRations, this is rarely a problem for real-time applications,
which run on largely homogeneous environments.

5



Component Object Model (COM+): COM+ is Microsoft’s Task 1 — Benchmarking the existing CCM and other com-
distributed object computing architecture. It is an integrpenent technologies: This task will provide us more infor-
tion of COM, DCOM, and Microsoft Transaction Servemation on the limitations of current existing implementation
(MTS) [29]. Unlike CORBA, which was developed for disof CCM. It will also help us to identify the sources of perfor-
tributed object computing, COM+ was originally developeghance bottlenecks and nondeterminism. We will also bench-
for local object access and later added extra layers for remoigrk similar component technologies including Java’'s EJB
accessibility [3]. While Microsoft claims that COM+ is binaryand Microsoft's DCOM to study these technologies’ limita-
compatible on all platforms, it is used primarily on Microsotions and bottlenecks.

platforms, none of which are real-time operating systéms. Task 2— Implementing the basic component support of

Reflective ORBs: Kon and Campell [26] demonstrate tha¢CM in TAO:  The CCM introduces many new features to
TAO can be reconfigured at run-time by dynamically linking if ORBA. This task will implement support for using the basic
the required components. Although their research providegnponent model into TAO. It can be further divided into the
proof-of-conceptfor dynamic configurable middleware framéallowing three subtasks:

work, their research does not explore performance implicas Task 2.1: Modify TAO and the TAO IDL compiler to
tions and optimizations related to component-based middiepport and conform with additional modification of CORBA
ware. We expectthe CCM's packaging and deployment framggecifications that are not component related. This includes

work will supersede theiComponentConfiguratoand will - support for local interfaces and some minor interface changes.

define standard strategies and patterns for packaging COM:- sk 2.2- Implement the basic compenent support in

ponents. Our proposed research on dynamic configura%_ This task requires modification to TAO IDL to gener-

will concentrate on reducing memory footprint for supportmg[? component specific code, and to the ORB core to become

component model, without compromising the completeness o
component-aware.
the model.

. ) e Task 2.3: Modify and improve some of TAO’'s ORB
COM interceptors:  Hunt and Scott [30] described how tQgryices, such as its Real-time Event Service, to become
implement interceptors in COM. The concept they used 10 iflsmponent-aware. This will improve the efficiency later when
plement interceptors is similar to TAO’s collocated stub [22},6 5dd more advanced features of the CCM.
in that both use alternative stubs to masquerade as operation

targets. While this concept is effective, their work was done |§SK 3 — Apply optimizations for real-time applications:

the context of COM. Therefore, our research will explore tHd!IS t@sk includes applying the optimizations mentioned in
effects of applying these concepts to CCM. Section 2.2.1 to the modifications and additions in TAO. Itin-

volves adapting the current process-collocation optimization
Active Badge System: Szymaszek, Uszok, and Zieski for the CCM implementation, implementing a share memory
built a component-oriented system using Orbix’s smart prosnsfer protocol for host-collocation optimization.
facility in their work on the Active Badge System [31]. In thisl.ask 4_

case study, they used the smart proxies to provide the co Improve dynamic configurability of TAO: ~This

. . : MARK involves adding the XML-based packaging and deploy-
nent framework and stringed the system entities with varig &Nt tool specified in the CCM specification and integrating it

O e D, e e s o O comporen a4 1
y - g y iler generated code.

CCM, it identifies the key services used by the CCM and the

importance of local objects and collocation optimizations thEsk 5 — Identify and implement the suitable concurrency
are the focal points in our research. strategies for the CCM for real-time applications: Key

concurrency strategies must be identified and implemented to
avoid priority inversion when using the CCM programming

4 Current Status and Future Work model in real-time applications.

We have just begun work on the research described in (t%is C ludi R K
paper. TAO already implements some basic collocation op- oncluding remarks

timizations [22] and supports dynamic configuration of TA . .
internal component at application startup time [32]. Many i he Ct?%BA object ”_“O.de' ang pon\I/entlor;.al ORBtS hj\ve;-jorlﬂg
sues are still unresolved, however. The following outlines tﬁnecen y begun specifying and implementing a standard [16]

f ks f earch project: or composing and deploying “componentizable” services. Si-

2There are UNIX implementations of COM available, but they are n&_‘UItan.eQUSW: de\_/elqpers of high'performanC93 rea"'tim_e' mis-
widely used and do not support the latest COM+ specification. sion critical applications have begun employing distributed



object computing middleware based on CORBA [26, 3B4] D. C. Schmidt, “ACE: an Object-Oriented Framework for Developing

34, 35, 36, 37, 38, 24]. Therefore, we believe it is essen-
tial to start leveraging experience in designing, optimizing,
and tuning QoS-enabled ORB middleware to ensure strﬁps-

dard CORBA Component Model (CCM) implementations wi

be sufficiently mature before they are considered for high-
performance and real-time systems. [16]

Reducing the memory footprint required to support the
CCM is another area of concern for many real-time appli-
cations. Therefore, our research will implement a highlg}-7

flexible, just-in-time dynamic linking framework. This framei18

work will reduce the memory footprint of TAO and CCM via

dynamic configuration of middleware infrastructure, COMPfy)

nents, and services.

Based on our past experience on benchmarking, developing,
optimizing, and deploying high-performance, real-time ORBSs,
we will identify the performance bottlenecks in conventional

CCM implementations. We will apply optimization principle

patterns so that developers in the high-performance and r&&-
time communities can enjoy the advantages provided by the

new CCM standard.

[21]
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A Overview of the CORBA Compo-

nent Model Specification e Event Sources/Sinks: Components can express their
interests to each other by supplying and consuming events

. . . . hevent sourceandevent sinksThe CCM event inter-
This section presents a detailed overview of the CCM arcﬂ?-roug . o .
tecture P aces defines a subset of the CORBA Notification Service [39]

' as its event delivery mechanism, although the use of CORBA

Components: A component is a basic CORBmeta-type Notification Service is not required and component developers
i.e., it can be referenced by multiple object references of ditay choose to implement their own notification mechanism.
ferent types. Each component has a ssupfported interfaces The ability to connect various parts of a system using the noti-
that it inherits from other interfaces or components. A compécation mechanismis a common use-case in event-driven real-
nent encapsulates a design entity and is referencectbyna time systems [27, 40].
ponent referenceFor “component-unaware” clients, compo- . .
nent references behave just like regular object referenees, = * Attributes: A gomponentcan ussttributesto represent.
clients can invoke operations defined in supported interfac§ States of an entire component. Component attributes differ
As shown in Figure 2, components interact with external 'ﬁgm.mterf'aces attributes, which desqube the mtgrnal states of
tities, such as ORB services or other components, through'ﬁf@v'du"fll mterfacqs. Component attributes prowae a standard
following port mechanisms: mechanism for setting component states and are intended to be
used by the CCM framework to configure component.

e Facets: A facet also called grovided interfaceis an  For instance, a&onfigure _complete operation is de-

interface contract exposed by a component. Facets are sinfitead in each component interface to transition a component



from configuration phase to operation phase. Componentif . DL
plementors may deactivate access to certain attributes dur| FiLES FILES
configuration phase or operation phase. The specification does l

not limit the access of component attribute interfaces to the

configuration phase, however, and clients can still gain ac- ¢, Component-

cess to the attribute interfaces. Therefore, if an implementorcompie™ | Repaciay [« Awared

chooses to do so, attributes can be used by clients as regular 1Dt Sorpler

interfaces to access state in a component. l
The distinction between configuration phase and operat] ¢, onent Server Client

phase allows component developers to enforce data enca|mplementatio Skeletons Stubs

[ i i il ; . . kel
lation without losing the flexibility of dynamic configuration. Sketetons

e Components Home: A new keyword,home, is intro- \ / /

duced to supportomponent homesA component home is| Component CH+ C++ Shent,
. Implementatior—" compiler CompiléTr | Code
the factory interface for a component. Each component ho| source Code

manages exactly one type of component. Home interfaces carn
optionally use &eyto manage instances of the managed com-
ponent. The key, if one exists, maps to an instance of the

component. For keylessiome interface, invoking the factory Cg;gg?ggm Client
method simply creates a new instance of the managed compo- (DLL, orEXE) Program
nent type.

Figure 3: Using IDL and CIDL for component implementation
Component Implementation Framework (CIF): The
CORBA Component Implementation Framewo(®IF) de-
fines the programming model for managing Components’ pé‘ded by the container and tleallback interfaceshat the con-
sistent states and constructing component implementatidAger can invoke on the component.
The CCM specification defines a declarative langugyen- Through the collaboration of these interfaces, a container pro-
ponent Implementation Definition Langua¢@IDL), to de- Vides its managed component access to its POA and the ser-
scribe implementations and persistent states for componé#gs supported by the ORB.
and component homes. As shown in Figure 3, the CIF used here are two types of container interfaces:gdgsiorcon-
the CIDL descriptions to generate programming skeletdaéner interfaces for transient components ande(@jty con-
that automate basic behaviors of components, such as naJRjaer interfaces for persistent componentsCABRBA Usage
tion, identity inquiries, activation, state management, lifecydéodel specifies the required interaction pattern between the
management, transactions, and Security_ container and the POA and the CORBA Services by SDECify'

. . Th , ) del d ing the interfaces’ transientness/persistency and cardinality of
Containers: The CCM container programming mode €ervant to OID mapping.

fines a set of APIs that simplify the task of developing and/or . component categorgefines the legal combinations of

configuring QORBA appl'ications. A container encapsulat¢§}1ae container API types and the CORBA usage models. By
component |mplementat|on and uses these APIS to provid %cifying a container’'s component category along with other
run-time environment for the component that it manages. F Slicies, component developers can specify a wide range of

ure 1 on page 2 shows the architecture of the container p(58|"1fi(‘:1uration options in the CIF. The CIF then generates the

gramming merI. . . _component implementation with proper strategies for persis-
) Each container manages a component implementation t%%'ce, event notification, transaction, security, etc.
flned by th.e CIF. A container creates its own POA for all the \an combined with OMG's Real-time CORBA [10] and
interfaces it manages. These interfaces can be decompos«mle%%aging [11] specifications, the container programming
follows: model provides application developers with a model for cre-
External APIs: These are the interfaces defined by thading, specifying, and partitioning various run-time character-
component including theupported interfacegrovided inter- istics, such as end-to-end priority and connection bandwidth
faces and the componeiitomeinterface. External APls areutilization, for components in real-time systems.

available to clients. Packaging and Deployment. The CCM defines standard

Container APls: These include thénternal interfaces techniques and patterns for packaging and deploying compo-
that the component can invoke to access to the services pients. The CCM uses th@pen Software DescriptiofOSD),



which is an XML Document Type Definition (DTD) defined

by W3C to describe software packages and their dependen-
cies. The deployment mechanism allows remote installation
and activation of new or modified components. The OSD
feature is useful for certain real-time applications that require
dynamic configuration or off-site software maintenance, such
as upgrading software packages on-board space vehicles in-
flight.

ORB extension — locality constrainted interfaces: Lo-
cality constrained interfaces have historically been lim-
ited to ORB-defined types, such a&ORBA::NVList |,
CORBA::Request , and CORBA::TypeCode , and were
often defined using so-called pseudo-IDL (PIDL) [41]. To
support the component model efficiently, and to eliminate
the need for PIDL, the CCM specifies a new IDL keyword,
calledlocal , which standardizes the definition tfcality
constrainednterfaces. As its hame implies, a local interface
is (1) only valid in the process in which it is instantiated and
(2) cannot be externalized to or invoked from other processes.
Adding standard support for locality constrained interfaces to
CORBA is particularly important for server-only components
because it helps improve performance and minimize memory
footprint.
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