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Abstract

With the recent adoption of the CORBA component model
(CCM), application programmers now have a standard way
to implement, manage, configure, and deploy components that
implement and integrate CORBA services. The CCM stan-
dard not only enables greater software reuse for servers, it
also provides greater flexibility for dynamic configuration of
CORBA applications. Thus, CCM appears to be well-suited
for general-purpose client/server applications.

Due to the complexity of the standard and relative immatu-
rity of implementations, however, CCM is not yet appropriate
for mission-critical applications with high-performance and
real-time quality-of-server (QoS) requirements. Therefore, we
have begun a project to identify, prototype, benchmark, op-
timize, and deploy the key patterns and framework compo-
nents necessary to mature the CCM standard so it can be ap-
plied successfully to mission-critical applications with strin-
gent QoS requirements.

There are two contributions of our research project. First,
we are identifying the performance bottlenecks and other ob-
stacles that impede the use of CCM for high-performance and
real-time applications. Second, we are demonstrating the ef-
fectiveness of our methodology of applying optimization prin-
ciple patterns to alleviate these obstacles.

1 Introduction
Research background: The demand for distributed object
computing (DOC) middleware, such as OMG’s Common Ob-
ject Request Broker Architecture (CORBA) [1], is growing
rapidly as deregulation and global competition makes it in-
creasingly hard to develop and maintain complex middleware

�This work was funded in part by Boeing, NSF grant NCR-9628218,
DARPA contract 9701516, and Siemens.

from scratch. CORBA allows clients to invoke operations
on distributed objects without concern for object location,
programming language, OS platform, communication proto-
cols and interconnects, and hardware [2]. Other common
DOC middleware technologies include Microsoft’s Compo-
nent Object Model (COM) [3] and Sun JavaSoft’s Jini [4], Java
RMI [5], and Enterprise Java Beans (EJB) [6].1

The use of CORBA as a flexible infrastructure for dis-
tributed client/server applications has grown rapidly over the
past five years [7]. Until recently, however, there were no
CORBA ORBs that targeted high-performance and real-time
systems, which meant there CORBA was not used in these do-
mains. In general, CORBA was perceived as inappropriate for
systems that possessed stringent deterministic and statistical
real-time quality of service (QoS) requirements [8].

Over the past two years, however, CORBA has become
increasingly used in many embedded and real-time systems
in aerospace, telecommunications, medical systems, and dis-
tributed interactive simulations. The increasing acceptance
of CORBA for these types of high-performance and real-
time systems stems largely from the maturations of stan-
dards [9, 10, 11], patterns [12, 13], and QoS-enabled frame-
work components [14, 15].

Future trends and current limitations: The standardiza-
tion and advanced R&D efforts on high-performance and real-
time CORBA mentioned above have aided the adoption of
CORBA middleware in real-time system domains. However,
CORBA servers for these domains have historically been im-
plemented in anad-hocmanner due to the lack of acompo-
nentmodel in the CORBA specification. This omission has
prompted the OMG to specify a standard CORBA Component
Model (CCM) [16], which will be incorporated into the forth-
coming CORBA 3.0 specification [17].

With the advent of JavaSoft’s EJB [6] and Microsoft’s Ac-
tiveX [18], components are becoming the preferred way to de-

1We focus on CORBA because it is an open standard. However, the pat-
terns resulting from this project will largely generalize from CORBA to other
DOC middleware component technologies, such as COM and EJB.
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velop and deploy reusable core building blocks for business
applications and services. In theory, the adoption of CCM will
make it possible to integrate components needed to implement
services and applications with less effort and greater portabil-
ity. In addition, CCM will simplify the reconfiguration and
replacement of existing application services by standardizing
the interconnection among components and interfaces.

In practice, however, the CCM standard and implementa-
tions are as immature today as the underlying CORBA stan-
dard and ORBs were three to four years ago. Moreover,
the CCM vendor community is largely focusing on the re-
quirements of e-commerce, workflow, report generation, and
other general-purpose business applications. The middleware
requirements for these applications generally focus on func-
tional interoperability, with little emphasis on assurance of or
control over mission-critical QoS aspects, such as timeliness,
precision, dependability, or minimal footprint [19]. As a re-
sult, it is not feasible to use off-the-shelf CCM implementa-
tions for high-performance and real-time systems.

Solution approach and expected results: To address these
shortcomings, we are conducting a research project toiden-
tify, prototype, benchmark, optimize, and deploy the key pat-
terns and QoS-enabled framework components necessary to
mature the standard CORBA Component Model so it can be
applied successfully to high-performance and real-time appli-
cations. This project focuses on aspects of the CCM spec-
ification that are critical to these types of applications. The
goals of this research are to leverage our previous experience
with QoS-enabled middleware [20, 19], add optimized high-
performance and real-time support to TAO’s CCM implemen-
tation, and transfer the results to the CORBA standardization
effort.

2 Technical Rationale

2.1 Overview of CORBA Component Model

2.1.1 Background and Existing Limitations

Historically, the CORBA specification [1] has concentrated on
defininginterfaces, which define contracts between clients and
servers. An interface defines how clientsviewandaccessob-
ject services provided by a server. Although this model has
certain virtues, such as location transparency, it has the fol-
lowing limitations:

Lack of standardized servant interaction model: The
CORBA specification has made little effort to define how to
implement servants. Although the Portable Object Adapter
(POA) specification first introduced in CORBA 2.2 [21] stan-
dardized the interactions between servants and ORBs, server
developers are still responsible for determining how servants

are implemented and how they interact. As a result, the lack
of a standardized servant interaction model has yielded tightly
coupled,ad-hocservant implementations, which increase the
complexity of software upgrades and reduce the reusability
and flexibility of CORBA-based software.

Increased time and space overhead: The original CORBA
object model treats all interfaces as client/server contracts. To
maintain the interface contract and increase reusability, there-
fore, developers must still model a servant using a general
CORBA interface, even if the service will only be used inter-
nally within a server. This constraint incurs unnecessary large
memory footprints and programming complexity. In addition,
it may incur unnecessary communication overhead for ORBs
that do not implement collocation optimizations [22].

2.1.2 OMG Solution! the CORBA Component Model

The OMG has addressed the limitations outlined above by
defining the CORBA Component Model (CCM). Figure 1
shows an overview of the run-time architecture of the CCM
model. This section gives a brief overview of the CCM ar-
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Figure 1: Overview of the CCM Run-time Architecture

chitecture. A more detailed overview can be found in Ap-
pendix A.

Componentsare the implementation entities that export a
set of interfaces to clients. Components support predefined in-
terfaces calledportsthat the CCM uses to facilitate interaction
among component and other ORB resources.Ports include
Facets, Receptacles, Event Sources/Sinks, andAttributes. In
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addition, components can inherit from one or moresupported
interfaces, which so-called “component-unaware” clients use
to access the component. Moreover, components define stan-
dard interfaces to support additional navigable interfaces, ac-
cept object references for delegating responsibilities, generate
and receive events, and support dynamic configuration of com-
ponents.

Home interfaces provide a factory service that man-
ages the lifecycle for components. Moreover, a home
implementation may choose to index component in-
stances with aprimary key, which are user-implemented
classes that identify component instances and derive from
Component::PrimaryKeyBase .

A container provides the run-time environment for a com-
ponent. A container’s run-time environment consists of var-
ious pre-defined hooks that provide strategies, such as per-
sistence, event notification, transaction, and security, to the
managed component. Each container manages one compo-
nent and is responsible for initializing the managed compo-
nent and connecting it to other components and ORB services.
The CCM deployment mechanism implements the contain-
ers through developer-specifiedmetadata, which instructs the
CCM deployment mechanism on how to create these contain-
ers.

In addition to the building blocks outlined above, the CCM
standardizes component implementation, packaging, and de-
ployment. A Component Implementation Framework (CIF)
is defined to automate the component implementation and
persistent state management in a language independent way.
CIF uses the Component Implementation Definition Language
(CIDL) to generate component implementation skeletons. The
CCM also extends the Open Software Description (OSD),
which is a vocabulary of XML defined by W3C, to address
component packaging and deployment requirements.

2.2 Implementing and Optimizing the CCM

Section 2.1.2 outlines the key features defined in the CCM,
focusing on the overall model and how certain features inter-
act. This section outlines how we plan to implement and op-
timize the CCM for high-performance and real-time applica-
tions. Section 2.2.1 outlines key optimization principle pat-
terns [23] that can be applied to resolve design challenges
arising from targeting CCM for high-performance and real-
time applications. Optimization principle patterns document
rules for avoiding common design and implementation prob-
lems that degrade the efficiency, scalability, and predictability
of complex systems. Section 2.2.2 illustrates how these opti-
mization principle patterns can be applied to improve key QoS
aspects of specific CCM features.

2.2.1 Resolving Key CCM Design Challenges

As shown in Section 2.1.2, the CCM requires a significant
number of new classes and interfaces to support its specified
features. These requirements may cause problems for high-
performance and real-time applications due to unnecessary
time and space overhead incurred when components are col-
located within the same process or machine. To build a robust
CCM implementation and remove these overheads, therefore,
we are applying optimization principle patterns gleaned from
our previous experience [24, 12] optimizing TAO for high-
performance and real-time applications. Some important op-
timization principle patterns includeoptimizing for the com-
mon case, avoiding gratuitous waste, shifting computation in
time via precomputing, replacing general-purpose functions
with special-purpose ones, passing hints between layers, stor-
ing redundant state to speed up expensive computation, and
using efficient data structures.

Challenge: Enhancing component transparency:

�Context: A key benefit of the CCM iscomponent trans-
parency. The following transparencies are important for high-
performance and real-time applications:

� Location transparency– References to components and
objects can be passed among processes that may be dis-
tributed or collocated in different system configurations.
CCM applications should not be concerned whether com-
ponents are distributed or are collocated on the same pro-
cess or host. In particular, CCM applications should not
and cannot detect the location of an object reference and
should invoke an operation using the same method re-
gardless of where the object resides. In particular, com-
ponent location should not affect the semantics of opera-
tions, such as location forwarding, concurrency and dis-
patch policies,Current state, and interceptor invoca-
tions.

� Performance transparency– An ORB supporting the
CCM should provide different mechanisms to optimize
operation invocations based on the location of the objects.
However, CCM applications should be able to invoke an
operation using the most efficient method available for
each configuration. This must be done automatically,i.e.,
without developer intervention, so that applications can
obtain optimal performance and avoid unnecessary over-
head without being reprogrammed.

� Predictability transparency– No matter where the object
resides and what mechanism is used to invoke an oper-
ation, a CCM implementation must not incur overhead
that degrades latency and increases jitter. For instance,
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synchronization contention should be minimized, unnec-
essary dynamic memory management should be elimi-
nated in the critical path, priority-based queuing should
be used for all communication mechanisms, and priority
inversion should be minimized or eliminated.

� Problem: When a reference is passed back to the same
process, or to the same machine where the originating object
resides, many ORBs still use remote stubs to invoke opera-
tions via the reference. Thus, collocated references lack per-
formance transparency. Although it is sometimes possible to
use proprietary mechanisms to override this behavior, these
mechanisms hinder the locality transparency of collocated ob-
ject references. Some ORBs use short-circuited object ref-
erences to forward in-process collocated invocation directly
to servants. However, this approach impedes the predictabil-
ity transparency of collocated references because direct for-
warding deviates from the semantics of the CORBA object
model [22].

� Solution ! Collocation optimizations: To improve
the performance and predictability of collocated component
communication, we will apply the following optimizations to
TAO’s CCM implementation:

� Process-collocation– Process-collocation improves the
performance and predictability transparencies for objects
that reside in the same address space with the servant,
while maintaining locality transparency. To implement
process-collocation, the ORB must identify the location
of the component’s reference without explicit application
programmer intervention and without violating the poli-
cies specified by POAs and the component containers.
Once the ORB determines that this reference is collocated
in the same process, all operation invocations can be for-
warded to a special collocation stub’s method. The goal
of the process-collocation is to ensure the performance
of accessing in-process collocated components is compa-
rable to accessing regular C++ components, while still
providing predictability transparency in the framework.

� Host-collocation– For a host-collocated component, it is
also necessary to identify the location of a component ref-
erence transparently. Because TAO allows applications to
plug in various transport protocols into an ORB [25], we
plan to implement a shared memory transport protocol for
TAO. This pluggable transport will allow operations host
collocated components and objects to be invoked trans-
parently and efficiently via shared memory.

Collocation optimizations illustrate the principle patterns
of (1) avoiding gratuitous wasteby avoiding invoking col-
located operations using remote stubs and (2)replacing in-

efficient general-purpose operations with optimized special-
purpose onesby creating special collocated stubs for invok-
ing collocated operations. Our previous experience [12, 22]
shows that collocation can reduce the overhead of many high-
performance and real-time applications significantly,without
affecting the semantics defined by the CORBA object model.

Challenge: Enhancing component configurability and cus-
tomizability:

� Context: As shown in Section 2.1.2, the CCM is a very
large and complex specification. In particular, a substantial
number of features must be implemented to support the com-
plete specification.

� Problem: Many real-time applications are deployed in
systems with very stringent memory limits. Often, they run in
relatively stable configurations once they are deployed. Thus,
much of middleware required to implement certain CCM fea-
tures will be largely unused. This rarely used code may con-
sume excessive memory, which is often a limited resource for
real-time systems. When applicationsdo require certain fea-
tures, however, it should be possible to configure them flexibly.

� Solution ! Dynamic configuration of components:
To reduce unnecessary memory usage, while still allowing
applications to use certain features when necessary, we are
improving the dynamic configurability of TAO. Previous re-
search [26] demonstrates that ORB middleware can be dynam-
ically reconfigured at run-time by dynamically linking in the
necessary components. We will take this work to the next level
by addressing the following topics:

� Configurable ORB-level middleware– We will explore
how to further partition TAO’s internal structure to max-
imize its configurability. In particular, we will examine
different configurable communication mechanisms, such
as shared memory and high-speed backplanes, by extend-
ing TAO’s existing pluggable protocols framework [25]
to support dynamically linkable protocols and marshal-
ing/demarshaling.

� Configurable component and component infrastructure
– We will enable the stub and skeleton code generated
by TAO’s IDL compiler to be linked dynamically from
shared libraries. Other CCM mandated interfaces that
support the semantics of component implementations can
be linked dynamically, as well. For example, a com-
ponent may support severalsupported interfaces, even
though only a subset will be used in certain configura-
tions.

In CCM, a component can be used to support another col-
located component. The interfaces for these supporting
component require no remote stubs and skeletons. This

4



finer partitioning will allow CCM applications to store
system implementation components in secondary stor-
age. Thus, only those portions that are required for the
proper functioning of a particular configuration will be
linked dynamically,without losing the generality of the
standard CORBA Component Model.

The use of dynamic configuration outlined above applies
the optimization principle pattern ofavoid gratuitous waste
by avoiding loading in software that is not needed at run-time.

2.2.2 Implementing the CCM for High-performance and
Real-time Systems

This section outlines the major areas that we will apply the op-
timization principle patterns and techniques identified in Sec-
tion 2.2.1 to our real-time, high-performance CCM implemen-
tation.

ORB extensions: Three major extensions are required to the
current ORB specification. Of them, the addition of local-
ity constrained interfaces has the most impact on the over-
all performance of CORBA applications. This addition de-
fines thelocal keyword to the IDL syntax to support lo-
cality constrained object interfaces. Thelocal keyword al-
lows programmers to define and use their own locality con-
strained objects to avoid unnecessary network traffic and mar-
shaling/demarshaling operations. It is an example of the opti-
mization principle pattern ofavoiding gratuitous waste.

Component model: As mentioned in Section 2.1, the CCM
specifies several component APIs that support core compo-
nent features. These APIs allow application developers to
interconnect components and objects together. Although the
addition of local interface keyword in the CCM specifica-
tion improves the performance locality constrainted compo-
nents, there are still cases where a component can be used
both locally and remotely. In this case, we will apply the
principle patternsavoiding gratuitous wasteandreplacing in-
efficient general-purpose operations with optimized special-
purpose onesby invoking methods via a special collocated ob-
ject reference on a collocated component. In contrast, invok-
ing the operation through the remote interface stub would im-
pose unnecessary performance overhead from parameter mar-
shaling/demarshaling and transport protocol traffic/latency.

Containers: Containers provide interconnections for man-
aged components, as described in Section 2.1. The CCM
employs several common ORB services to manage resources
within containers. In general, the Object Transactions Service
may not be relevant for real-time applications with determin-
istic QoS requirements due to the overhead associated with
this service. Conversely, the Notification Service has been

identified as a useful component for real-time telecommuni-
cation management applications. Therefore, we are optimiz-
ing TAO’s existing real-time Events Service [27] to support
key Notification Service features, such as event filtering, so
it can be integrated into our CCM implementation for high-
performance and real-time applications.

Packaging and deployment tools: The packaging the de-
ployment tools defined in CCM allow software to be com-
posed into packages (files) and be deployed using an applica-
tion server. Most environments for real-time applications have
very stringent memory requirements. Therefore, it is impor-
tant to explore ways to minimize the extra memory footprint
incurred by the component model through finer partitioning of
libraries and dynamic configuration.

We will support an XML-based packaging and deployment
tool and integrate the dynamic configuration support outlined
in Section 2.2 with this tool. The use of XML simplifies the
maintenance of packaging and deployment descriptions be-
cause it is human-readable. Moreover, because XML is exten-
sible and supports namespaces, the standard component APIs
can be extended without violating the CCM specification.

3 Related Work

The following work on middleware and component technolo-
gies is related to our project.

EJB: The Enterprise Java Bean [6] is Java’s solution to the
component model. It supports binary program compatibil-
ity within various Java run-time environments. Although the
write-once/run-anywhere philosophy of Java simplifies com-
ponent deployment, having to support all the native OS mech-
anisms limits Java applications’ flexibility and performance.
The requirement of automatic garbage collection, which can
be started at anytime and run for undetermined amount of
time, also makes Java unsuitable for many real-time appli-
cations. Moreover, the lack of a Java event demultiplexing
mechanism forces developers to use threads to service multi-
ple event sources, which does not scale well [28].

While the CCM is modeled closely on the EJB specifica-
tion [16], the CCM is arguably more flexible. First, because
CCM is based on CORBA, it can work on any platform and
language. In contrast, EJB is focused on Java-only systems.
Second, CCM developers are not limited to the use of threads
to service multiple event services since CORBA defines a
wider range of concurrency models, including reactive dis-
patching and thread pools. Although packaging and deploying
CCM components for heterogeneous platforms may be com-
plicated to maintain due to the number of platform/OS com-
binations, this is rarely a problem for real-time applications,
which run on largely homogeneous environments.
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Component Object Model (COM+): COM+ is Microsoft’s
distributed object computing architecture. It is an integra-
tion of COM, DCOM, and Microsoft Transaction Server
(MTS) [29]. Unlike CORBA, which was developed for dis-
tributed object computing, COM+ was originally developed
for local object access and later added extra layers for remote
accessibility [3]. While Microsoft claims that COM+ is binary
compatible on all platforms, it is used primarily on Microsoft
platforms, none of which are real-time operating systems.2

Reflective ORBs: Kon and Campell [26] demonstrate that
TAO can be reconfigured at run-time by dynamically linking in
the required components. Although their research provides a
proof-of-concept for dynamic configurable middleware frame-
work, their research does not explore performance implica-
tions and optimizations related to component-based middle-
ware. We expect the CCM’s packaging and deployment frame-
work will supersede theirComponentConfiguratorand will
define standard strategies and patterns for packaging com-
ponents. Our proposed research on dynamic configuration
will concentrate on reducing memory footprint for supporting
component model, without compromising the completeness of
the model.

COM interceptors: Hunt and Scott [30] described how to
implement interceptors in COM. The concept they used to im-
plement interceptors is similar to TAO’s collocated stub [22],
in that both use alternative stubs to masquerade as operation
targets. While this concept is effective, their work was done in
the context of COM. Therefore, our research will explore the
effects of applying these concepts to CCM.

Active Badge System: Szymaszek, Uszok, and Zieli´nski
built a component-oriented system using Orbix’s smart proxy
facility in their work on the Active Badge System [31]. In this
case study, they used the smart proxies to provide the compo-
nent framework and stringed the system entities with various
ORB services like Event Service, Persistency Service and Se-
curity Service. Although the work is not directly related to the
CCM, it identifies the key services used by the CCM and the
importance of local objects and collocation optimizations that
are the focal points in our research.

4 Current Status and Future Work

We have just begun work on the research described in this
paper. TAO already implements some basic collocation op-
timizations [22] and supports dynamic configuration of TAO
internal component at application startup time [32]. Many is-
sues are still unresolved, however. The following outlines the
future tasks for our research project:

2There are UNIX implementations of COM available, but they are not
widely used and do not support the latest COM+ specification.

Task 1 – Benchmarking the existing CCM and other com-
ponent technologies: This task will provide us more infor-
mation on the limitations of current existing implementation
of CCM. It will also help us to identify the sources of perfor-
mance bottlenecks and nondeterminism. We will also bench-
mark similar component technologies including Java’s EJB
and Microsoft’s DCOM to study these technologies’ limita-
tions and bottlenecks.

Task 2– Implementing the basic component support of
CCM in TAO: The CCM introduces many new features to
CORBA. This task will implement support for using the basic
component model into TAO. It can be further divided into the
following three subtasks:

� Task 2.1: Modify TAO and the TAO IDL compiler to
support and conform with additional modification of CORBA
specifications that are not component related. This includes
support for local interfaces and some minor interface changes.

� Task 2.2: Implement the basic component support in
TAO. This task requires modification to TAO IDL to gener-
ate component specific code, and to the ORB core to become
component-aware.

� Task 2.3: Modify and improve some of TAO’s ORB
services, such as its Real-time Event Service, to become
component-aware. This will improve the efficiency later when
we add more advanced features of the CCM.

Task 3 – Apply optimizations for real-time applications:
This task includes applying the optimizations mentioned in
Section 2.2.1 to the modifications and additions in TAO. It in-
volves adapting the current process-collocation optimization
for the CCM implementation, implementing a share memory
transfer protocol for host-collocation optimization.

Task 4 – Improve dynamic configurability of TAO: This
task involves adding the XML-based packaging and deploy-
ment tool specified in the CCM specification and integrating it
with the dynamic linking of ORB components and IDL com-
piler generated code.

Task 5 – Identify and implement the suitable concurrency
strategies for the CCM for real-time applications: Key
concurrency strategies must be identified and implemented to
avoid priority inversion when using the CCM programming
model in real-time applications.

5 Concluding Remarks

The CORBA object model and conventional ORBs have only
recently begun specifying and implementing a standard [16]
for composing and deploying “componentizable” services. Si-
multaneously, developers of high-performance, real-time, mis-
sion critical applications have begun employing distributed
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object computing middleware based on CORBA [26, 33,
34, 35, 36, 37, 38, 24]. Therefore, we believe it is essen-
tial to start leveraging experience in designing, optimizing,
and tuning QoS-enabled ORB middleware to ensure stan-
dard CORBA Component Model (CCM) implementations will
be sufficiently mature before they are considered for high-
performance and real-time systems.

Reducing the memory footprint required to support the
CCM is another area of concern for many real-time appli-
cations. Therefore, our research will implement a highly-
flexible, just-in-time dynamic linking framework. This frame-
work will reduce the memory footprint of TAO and CCM via
dynamic configuration of middleware infrastructure, compo-
nents, and services.

Based on our past experience on benchmarking, developing,
optimizing, and deploying high-performance, real-time ORBs,
we will identify the performance bottlenecks in conventional
CCM implementations. We will apply optimization principle
patterns so that developers in the high-performance and real-
time communities can enjoy the advantages provided by the
new CCM standard.
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A Overview of the CORBA Compo-
nent Model Specification

This section presents a detailed overview of the CCM archi-
tecture.

Components: A component is a basic CORBAmeta-type,
i.e., it can be referenced by multiple object references of dif-
ferent types. Each component has a set ofsupported interfaces
that it inherits from other interfaces or components. A compo-
nent encapsulates a design entity and is referenced by acom-
ponent reference. For “component-unaware” clients, compo-
nent references behave just like regular object references,i.e.,
clients can invoke operations defined in supported interfaces.
As shown in Figure 2, components interact with external en-
tities, such as ORB services or other components, through the
following port mechanisms:

� Facets: A facet, also called aprovided interface, is an
interface contract exposed by a component. Facets are similar

Provided

(Supported interface)
Component

Interfaces
Provided interface

implementations

Component reference

Figure 2: Architecture of a CCM Component

to COM’s component model [3] in that they allow a compo-
nent to supportunrelated interfaces. Unrelated interfaces ex-
posed through facets need not be related through inheritance
to the component’s supported interfaces.

The CCM’s component model allows clients tonavigate
among provided interfaces and the equivalent interface de-
fined by a component. In contrast, regular CORBA objects
only allow clients to traverse interfaces in their inheritance
trees. Clients that use components need not be component-
aware. Only component-aware clients, however, can use the
CCM navigation mechanism to traverse through the interfaces
offered by a component.

� Receptacles: Components mayconnectto other objects
and invoke methods upon those objects.Receptaclesare used
to specify the object connections among components and ob-
jects. Receptacles also provide a generic way to connect cer-
tain types of objects to a component. A receptacle can have
single or multiple connections.

� Event Sources/Sinks: Components can express their
interests to each other by supplying and consuming events
throughevent sourcesandevent sinks. The CCM event inter-
faces defines a subset of the CORBA Notification Service [39]
as its event delivery mechanism, although the use of CORBA
Notification Service is not required and component developers
may choose to implement their own notification mechanism.
The ability to connect various parts of a system using the noti-
fication mechanism is a common use-case in event-driven real-
time systems [27, 40].

� Attributes: A component can useattributesto represent
the states of an entire component. Component attributes differ
from interfaces attributes, which describe the internal states of
individual interfaces. Component attributes provide a standard
mechanism for setting component states and are intended to be
used by the CCM framework to configure component.

For instance, aconfigure complete operation is de-
fined in each component interface to transition a component
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from configuration phase to operation phase. Component im-
plementors may deactivate access to certain attributes during
configuration phase or operation phase. The specification does
not limit the access of component attribute interfaces to the
configuration phase, however, and clients can still gain ac-
cess to the attribute interfaces. Therefore, if an implementor
chooses to do so, attributes can be used by clients as regular
interfaces to access state in a component.

The distinction between configuration phase and operating
phase allows component developers to enforce data encapsu-
lation without losing the flexibility of dynamic configuration.

� Components Home: A new keyword,home, is intro-
duced to supportcomponent homes. A component home is
the factory interface for a component. Each component home
manages exactly one type of component. Home interfaces can
optionally use akeyto manage instances of the managed com-
ponent. The key, if one exists, maps to an instance of the
component. For akeylesshome interface, invoking the factory
method simply creates a new instance of the managed compo-
nent type.

Component Implementation Framework (CIF): The
CORBA Component Implementation Framework(CIF) de-
fines the programming model for managing components’ per-
sistent states and constructing component implementations.
The CCM specification defines a declarative language,Com-
ponent Implementation Definition Language(CIDL), to de-
scribe implementations and persistent states for components
and component homes. As shown in Figure 3, the CIF uses
the CIDL descriptions to generate programming skeletons
that automate basic behaviors of components, such as naviga-
tion, identity inquiries, activation, state management, lifecycle
management, transactions, and security.

Containers: The CCM container programming model de-
fines a set of APIs that simplify the task of developing and/or
configuring CORBA applications. A container encapsulates a
component implementation and uses these APIs to provide a
run-time environment for the component that it manages. Fig-
ure 1 on page 2 shows the architecture of the container pro-
gramming model.

Each container manages a component implementation de-
fined by the CIF. A container creates its own POA for all the
interfaces it manages. These interfaces can be decomposed as
follows:

External APIs: These are the interfaces defined by the
component including thesupported interfaces, provided inter-
faces, and the componenthomeinterface. External APIs are
available to clients.

Container APIs: These include theinternal interfaces
that the component can invoke to access to the services pro-
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Implementation

C++
Compiler

C++
Compiler
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Code
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Component
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Client
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Compiler Awared

IDL Compiler

Component-
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Figure 3: Using IDL and CIDL for component implementation

vided by the container and thecallback interfacesthat the con-
tainer can invoke on the component.
Through the collaboration of these interfaces, a container pro-
vides its managed component access to its POA and the ser-
vices supported by the ORB.

There are two types of container interfaces: (1)sessioncon-
tainer interfaces for transient components and (2)entity con-
tainer interfaces for persistent components. ACORBA Usage
Model specifies the required interaction pattern between the
container and the POA and the CORBA Services by specify-
ing the interfaces’ transientness/persistency and cardinality of
servant to OID mapping.

Thecomponent categorydefines the legal combinations of
the container API types and the CORBA usage models. By
specifying a container’s component category along with other
policies, component developers can specify a wide range of
configuration options in the CIF. The CIF then generates the
component implementation with proper strategies for persis-
tence, event notification, transaction, security, etc.

When combined with OMG’s Real-time CORBA [10] and
Messaging [11] specifications, the container programming
model provides application developers with a model for cre-
ating, specifying, and partitioning various run-time character-
istics, such as end-to-end priority and connection bandwidth
utilization, for components in real-time systems.

Packaging and Deployment: The CCM defines standard
techniques and patterns for packaging and deploying compo-
nents. The CCM uses theOpen Software Description(OSD),
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which is an XML Document Type Definition (DTD) defined
by W3C to describe software packages and their dependen-
cies. The deployment mechanism allows remote installation
and activation of new or modified components. The OSD
feature is useful for certain real-time applications that require
dynamic configuration or off-site software maintenance, such
as upgrading software packages on-board space vehicles in-
flight.

ORB extension! locality constrainted interfaces: Lo-
cality constrained interfaces have historically been lim-
ited to ORB-defined types, such asCORBA::NVList ,
CORBA::Request , and CORBA::TypeCode , and were
often defined using so-called pseudo-IDL (PIDL) [41]. To
support the component model efficiently, and to eliminate
the need for PIDL, the CCM specifies a new IDL keyword,
called local , which standardizes the definition oflocality
constrainedinterfaces. As its name implies, a local interface
is (1) only valid in the process in which it is instantiated and
(2) cannot be externalized to or invoked from other processes.
Adding standard support for locality constrained interfaces to
CORBA is particularly important for server-only components
because it helps improve performance and minimize memory
footprint.
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