
A Flexible Image Search Engine+
Panrit Tosukhowong*

Frederic Andres
Kinji Ono

Jo& Martinez
Noureddine Mouaddib

Nicolas Oessaigne§

Douglas C. Schmidt
Washington University, CDOC

Bryan Hall, Room 503

Campus Box 1045

One Brookings Drive

81-3-3942-5940 81-3-2-40-68-32-56 St. Louis, Missouri 63130-4899

{ono,andres}@ rd.nacsis.ac.jp (jmartine,nmouaddi}@ ireste.fr
l-31 4-935-4215

panrit@net.is.uec.ac.jp

ABSTRACT

ndessaig 63 ireste.fr

Multimedia searching over Internet has gained substantial
popularity in the past two years. Java’s networking features,
along with the growing number of Web browsers that can
execute Java apple&, facilitate distributed processing.
Networking and computational performances are key concerns
when considering the use of Java to develop performance-
sensitive distributed multimedia search engines. This paper
describes MISE, the MediaSys Image Search Engine over a
large-scale network. After an overview of the architecture, we
present the search capabilities of MISE as companion part of
image processing.

Keywords

The remainder of this paper is organised as follows: Section 2
overviews the MediaSys platform. Then, Section 3 describes the
key features of the MISE client applet. Next, Section 4 details
the search process. Finally, we give some concluding remarks.

2. THE MEDIASYS PLATFORM
The large-scale distributed image-based MediaSys system is
composed of a set of MediaSys servers and a set of MISE clients.
MediaSys servers are multimedia storage systems. Image data
produced by various devices are transferred to them. Using MISE
client tools, users with various roles and profiles can search for
and access to specified image data. Moreever. they can visualise
them and/or analyse them.

MediaSys, image search engine, retrieval by content, fuzzy logic.

1. INTRODUCTION
Lot of works in the field of multimedia management systems
have followed generic approaches and have developed
visualisation tools in the field of search by content, mainly for
images 1181 [191 [15] [5]. However, problems of large scale
distributed multimedia information systems such as the quality of
the search, the performance, the flexibility, and the
customisability have been mostIy ignored. MediaSys provides
such an extensible infrastructure for multimedia management.
For instance, plug-ins for image operations or filters can be
associated and integrated, even dynamically. This eases its
upgrades according to the user’s requirements and the evolving
technology.

The MediaSys server is based on the AHYDS platform (Active

Hypermedia Delivery System) [2], which is an active hypermedia
delivery system developed at NACSIS since 1995. MISE is an
evolution of Find’“aoE prototype [I I] developed at IRESTIYIRIN
since 1996. Furthermore, the MISE tool uses the resource
manager JACE [20] developed at Washington University, Saint
Louis, Missouri. Finally, the design follows the Active Object
approach of [S].

3. THE KEY FEATURES OF MISE

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advant
-age and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on Servers Or to
redistribute to lists, requires prior specific permission and/or a fee.

ACM Multimedia ‘99 (Part 2) 10199 Orlando. FL, USA
0 1999 ACM 1.58113-239-5/99/0010...65.00

MISE allows users to search for and access to any image stored
in a MediaSys server. In addition, the MISE applet provides a
hierarchical browser that allows users to traverse sets of images
on remote MediaSys servers. This makes it straightforward to
find and select images across the network, making MISE quite
usable, as well as easy to learn. Once an image has been
downloaded, image filters or image operations can process it.
Although MISE is targeted for distributed image systems, it is a
general-purpose image-manipulation engine. Image filters or
operations can be dynamically configured into MISE via the
Service Configurator pattern [17] without neither reloading nor
restarting the MISE applet. Conversely, a processed image can

NACSIS R&D
Otsuka 3-29-l Bunkyo-ku

Tokyo 112

IRESTE/IRIN
40 Christian Pauc La Chantrerie

BP 60601 44306 Nantes

Schmidt @cs.wustl.edu

t This paper has been supported in part by the Japanese Ministry
of Education under the COE Framework.

$ Ph.D. Student of The University of Electra-Communication
Tokyo, Japan

0 Visiting student researcher at NACSIS (JAPAN)
dessaign@mcsun4.rd.nacsis.ac.jp --

07

be uploaded to the image server from where the applet was
downloaded thanks to the MediaSys server support.

There are six main components in a MISE client applet:

Graphical User Interface: which provides a front-end to the
image search engine and to the image processing tool. It enables
the users to search images, to receive images, to process them
and to send them back to image servers (MediaSys server.)
Figure 1 illustrates the MISE graphical user interface (GUI.)

Server Locator: which locates a URL address associated to the
user role that can reference an image or an image server
(MediaSys-typed server). If the URL points to a MediaSys server,
its content is listed so those users can browse them to choose one
image to process.

Image Downloader: which downloads an image or a set of
images located by the Server Locator as input of the search
process (see in Section 4).

Image Uploader: which uploads the currently displayed image to
the server from where the applet was downloaded (applet
security restrictions.) In addition, the MediaSys server supports
data uploading using the HTTP and its PUT method.

Image Processing Tool: which extract characteristics from the
displayed image using either filters, or other image analysis
techniques. The end of the image processing is characterized by
the display of the resulting image. Figure 2 is a snapshot of this
Tool.

Plug-ins Configurator 131: which downloads dynamically image
processing plug-ins such as image filters, edge detectors, colour
detectors from the MediaSys Server and configures them in the
applet according to the needs of the user. The Filter Configurator
uses the Service Configurator pattern [17] to dynamically
configure the image filters and image operation.

Figure 1. The MISE User Interface

4. THE MISE SEARCH PROCESS
The search process is located at the server side. Its input consists
of a set of sample images along with their associated weights as
given by the user in the client applet. The purpose of the search
engine is to retrieve an ordered list of images of decreasing
similarity with respect to the user’s choices. Classically, sample
images with the highest weight, say 1 .O, will always be retrieved
(if they are in the database), whereas the ones with the lowest
weight, accordingly0.0, will never appear in the result list. A
threshold has to be given in order not to retrieve about the whole
database.

Figure 2. The Image Processing Tool

4.1 The Relevance Feedback Loop Approach
From the user’s point of view, the process has been extremely
simplified. It is based on the information retrieval paradigm [6].
The end-user selects whether the currently displayed images fit
his or her need or not. In Figure 1, under each image, a slider
allows him or her to give a rank between 0 and 1 (default is 0.5.)
The use of example and counter-example images offers
advantages. First, this is easier for the end-user because it is
more intuitive. Secondly, the graphical interaction is limited to
weight annotations of images, rather than tuning several
unintuitive knobs, as pointed out by other authors [l] [16]. From
this input, the system infers automatically one formal query that
best fits the user’s hints, with respect to the set of properties that
have been extracted on each image and activated in the interface.
This query is issued onto the database and a new list of images is
displayed for another relevance feedback loop. The process
continues until the user is satisfied by the returned answer, or
that he or she feels that good images are not present in the
database [12]. The current version of the system is based on
fuzzy logic, though the underlying query language remains OQL
(Object Query Language) [4].

4.2 The Indexing Process
Each image in the database has to be indexed. The indexing
process consists in extracting as much features as possible.
Possible features are regions, global histograms for colours or
intensity, edges, and even meta-data such as keywords (which
can be provided “automatically” through advanced image formats,

88

e. g., the forthcoming MPEG-7.) Currently, only colour
segmentation of regions has been tested for retrieval by contents.
Histograms and above all keywords are being added and should
provide much more precise searches thanks to semantics [15].
The segmentation process in regions is done with respect to a
given colour partitioning. The algorithm and the obtained results
have been detailed in [9, 101. For the sake of retrieval, regions
are characterised by a set of unary and binary functions, such as
the horizontal position or the adjacency of two regions
respectively.

4.3 The Query Inference
The other technical part of the querying process is to find the
“best” query to issue on the database related to the given set of
sample images. This problem is NP-complete, as demonstrated in
[lo]. Therefore, an approximate algorithm is required, in order
not to incur too high a search time. Our choice has been to use
genetic algorithms [7] for several reasons. They offer a good
compromise between speed, “exhaustive” search, ease of
paralleling in the future among the variety of learning machine
and optimisation algorithms [14] [13]. Furthermore, several of
the alternative algorithms present some severe drawback with
respect to the precise requirements of searching for an OQL
query (e. g. “branch-and-bound” was not applicable at all due to
the presence of both examples and counter-examples).

In our case, each chromosome represents a possible query. A
query is a conjunction of the various functions applied to several
regions that are quantified existentially. For each function, we
provide an inclusion test, i. e. a disjunction of possible outcomes
[ll]. Each candidate query (chromosome) is applied to each
sample image in order to compute its fitness, i. e., how close to
the user’s hint it is. The algorithm stops once the best
chromosome fitness of a generation has reached a threshold value,
or if a maximum number of generations have been computed.

4.4 Fuzzy Queries
Though the introduction of fuzzy logic in the search algorithm is
quite time consuming (about 10 times slower than its crisp
counterpart), it has some fundamental implications.

Let us consider the horizontal function as an example. In the
crisp version, the x centroids of the regions were categorised into
only five possible position classes: west, middle west, middle,
middle east, and east. In the fuzzy version, we kept the same
classification but provided smooth transitions between the
classes, i. e. the linguistic variables.

For the sake of illustration, let us use the example described in
Figure 3. The shown region is located in the middle east class.
However, if a query asks for a region in the middle position, the
horizontal position function witI not return a null value, but a
value close to 0.5.

The used norm and co-norm are the standard max and min
operators. Each chromosome is applied on each sample image to
obtain its fuzzy membership degree with respect to the
represented query.

The best chromosome is the one with the shortest distance
between the weights given by the user and the corresponding list
of membership degrees. We adopted a mere Euclidean distance,
which penalises large differences.

Additionally, all users’ hints cannot be considered with the same
importance. Intuitively, at the one end, if a user indicates that an
image is absolutely comparable (resp. unrelated) to his or her
expectations, then this hint must be strongly taken into
consideration. At the other end, a weight of 0.5 does not give any
information at all about the kind of images that the user is
looking for (the default value, as shown in Figure 1.) We use a
sinusoidal formula to adjust the quality of an hint. Actually, it is
used to adjust the value of a difference, the formula being
difference = (weight - degree) x quality (weight), which are in
turn used in the Euclidean distance computation.

4.5 Crisp logic vs. fuzzy logic
Though the fuzzy implementation is time consuming, it allows
more flexibility and solves some problems. First, the user is no
longer constrained to a frustrating ternary choice: positive or
negative sample, or irrelevant image. The use of weights brings
some flexibility, though we had to control its impact through the
quality function. Then, the system is much less sensitive to bad
positive examples. Effectively, a positive sample must respect all

the predicates of a query, whereas a negative sample can be
satisfied as long as at least one predicate fails. Therefore, if the
user provides a positive example that is incompatible with the
other examples, then the system cannot infer a meaningful crisp
query. With fuzzy logic, and the Euclidean distance metrics,
some mistakes can be tolerated. Also, thanks to the membership
degree, images can be ranked, and the size of the retrieved set
can be adjusted with a minimal threshold value.

0.5

middle

Figure 3. A region, the horizontal position
values of which are 1.0 for middle-east, 0.5

for middle. and 0.0 for others
89

5. CONCLUSION
This paper described the design and the implementation of the
MediaSys Image Search Engine (MISE), a multimedia
distributed system over Internet and/or high-speed networks.
This system enables the users to search, to browse, to process,
and to store images according to the combination of visual and
textual features with metadata related to the images. The
MediaSys servers store the meta-data, visual and textual features,
and the images themselves over a large scale distributed and
heterogeneous system.

MISE, the first client tool of the MediaSys project, gains its
efficiency by the use of Java. The Java approach enables to build
valuable tool as MISE is a simple, portable, and distributed
system.

As on-going research work, the MediaSys Image Search Engine
is being extended in terms of flexible search algorithms with new
image features such as metadata support, tizzy thesaurus, and
multi-resolution. Performance evaluation will assess our
approach and the architecture of MISE search algorithm.

6. ACKNOWLEDGEMENTS
We would like to thank NACSIS, IRESTE/IRIN and Washington
University/CDOC for supporting this project.

7. REFERENCES
[I] Ahanger, G., Little, T. D. C.; A Survey of

Technologies for Parsing and Indexing Digitai Video;
Journal of Visual Communication and Image
Representation, (Special Issue on Digital Libraries),
March 1996, Vol. 7, No. 1, pp. 28-43

[2] And&s, F., Ono, K.; Active Hypermedia Delivery
System; Proc. of the Int’l Conf. On Data Engineering
(ICDE’98), Florida, February 1998, pp. 600.

[3] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad,
P., Stal, M.; Parrem-oriented Software Architecture -
A System of Patterns; Wiley and Sons, 1996.

[4] Cattel, R. G. G., Barry, D., Bartels, D., Berler, M.,
Eastman, J., Gamerman, S., Jordan, D., Springer, A.,
Strickland, H., Wade, D.; The Object Database
Standard: ODMG 2.0; Morgan Kaufmann Publishers,
Inc., San Francisco, California, 1997, 270 p.

[S] Chang, S., Smith, J., Beigi, M., Benitez, A.; Visual
Information Retrieval from Large Distribued Online
Repositories; Communications of the ACM, Vol. 40,
No. 12, December 1997, pp. 63-71.

[6] Frakes, W. B., Baeza-Yates, R.; Information
Retrieval: Data Structures & Algon’thms; Prentice-
Hall, 1992, 504 p.

[7] Goldberg, D. E.; Genetic Algorithms; Addison-Wesley,
1991

[8] Lavender, R. G., Schmidt, D. C.; Active Object: an
Object Behavioral Pattern for Concurrent

Programming; in Pattern Languages of Program
Design, Reading, MA : Addison-Wesley, 1996.

[9] Martinez, J., Guillaume, S.; Cofour Image Retrieval
Fitted to Classical Querying; Proc. of the gth Int’l
Conf. on Image Analysis and Processing (ICIAP’97),
Vol. II, Florence, Italy, September 17-19, 1997, pp.
14-21 (in LNCS No. 1311).

[lO]Martinez, J., Guillaume, S.; Colour Image Retrieval
Fitted to Classical Querying; Networking and
Information Systems Journal, Vol. 1, No 2-3, 1998, pp.
251-278 (Editions HERMES, Paris, ISBN 2-86601-
731-5).

[111 Martinez, J., Marchand, S.; Towards Inntelligent
Retrieval in Image Databases; Proc. of the 5* Int’l
Worshop on Multi-Media Data Base Systems
(MMDBMSP8), August 5-7, 1998, Dayton, Ohio,
USA, pp. 38-45 (IEEE Computer Press, Los Alamitos,
California, USA, ISBN O-8186-8676-6)

[12]Martinez, J., Mouaddib, N.; Multimedia and
Databases: A Survey; Networking and Information
Systems journal (NISJ), Vol. 1, No. 6, 1999 (Editions
HERMES, Paris)

[131 Michalski, R. S., Bratko, I., Kubat, M. (Eds.);
Machine Learning and Data Mining: Methods and
Applications; John Wiley & Sons, New York, 1998,
456 p.

[141 MitchelI, T. M.; Machine feaming; WCB/MacGraw-
Hill, 1997,414 p.

[151 Ogle, V. E., Stonebraker, M.; Chabot: Retrieval from
a Relational Database of Images; IEEE Computer,
September 1995, pp. 40-48.

[16] Santini, S., Jain, R.; Beyond Query by Example; Proc.
of the 6* Int’l ACM Conf. on Multimedia (MM’98),
Bristol, UK, September 1998.

[17]Schmidt, D. C., Suda, T.; An Object-oriented
Framework for Dynamically ConfZguting Extensible
Distributed Communication Systems; IEEXXS
Distributed Systems Engineering Journal (Special
Issue on Configurable Distributed Systems), Vol.2,
December 1994, pp. 280-293.

[18] Swain, M. J., Ballard, D. H.; Color Indexing;
International Journal of Computer Vision, 7(l), 1991.

[19] Swain M. J.; Interactive Indexing into Image
Databases; Proc. of SPIE, Storage and Retrieval for
Image and Video Databases, Vol. 1908, San Jose,
California, February 1993, pp. 95-103.

[20] Java ACE Home Page. The ADAPTIVE
Communication Environment in Java version 1.4.6,
Washington University/CDOC.

90

