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An abridged version of this paper appeared in the IEEEIn recent years, R&D efforts have progressed along the fol-
Communications magazine, edited by Abdi Modarressi alosving dimensions:

Sheshadri Mohan, Vol 17, No. 10, October, 2000. 1: Providing scalable high-performance core networking
technologies, such as Gigabit Ethernet and terabit IP/ATM
routers.

Abstract 2. Defining network protocols and endsystem operating

This paper describes how recent advances in distributed o8> tem (OS) architectures that enforce QoS specifications pro-

. X . : . vided by applications.
ject computing (DOC) middleware are enabling the creation 4. Developing QoS-enabled distributed object comput-

of common quality-of-service (QoS) capabilities that supp%b .(DOC) middleware, which simplifies and coordinates

next-generation distributed applications. DOC I’mddk':'\"""‘[aepplication—level services to leverage the advances in networks

helps to S|mpI|fy.and coordinate applications in order to. Ieveﬁnd endsystems from end-to-end.
age the underlying network and endsystem QoS architectures i o o
more effectively. This paper also describes a QoS-enabIe@ther articles in this special issue focus on TINA, Megaco,

middleware framework used to customize the CORBA AP, H.323, and NGN control. This article describes R&D
dio/Video Streaming Service for applications on multiple opStivities on QoS-enabled DOC middieware frameworks for
erating system platforms. nf—:-xt_—generatmn dlsmbuted.apphcatlons. DOC middleware is
o . ) . distributed processing environment (DPE) software that re-
Keywords: Distributed object computing, QoS-enabled Midsjges hetween applications and the underlying operating sys-
dleware, CORBA-based Multimedia Streaming tems, protocol stacks, and hardware devices to simplify and
coordinate how these components are connected and interop-
. erate. As shown in Figure 1, DOC middleware is commonly
1 Introduction
Current R&D trends:  The successful commercialization of oo
today’s Internet is motivating new R&D on hardware and soft- e
ware infrastructure support for next-generation distributed ap-
plications, such as e-commerce, autonomous vehicle control,
and global event notification systems. Many R&D activities DISTRISUTION MIDDLEWARD
are focusing on how to scale the Internet to accommodate traf- HOST INFRASTRUCTURE MIDDLEWARE
fic from advanced applications requiring a wide range of capa-
bilities that support various quality-of-service (QoS) require-
ments, such as predictable performance, secure communica- HARDWARE DEVICES
tions, and fault tolerance. There are also efforts to deVeﬁE;ure 1: Layers of Distributed Object Computing (DOC)
adaptive applications, such as Internet telephony and stregiygieware
ing video, that require QoS guarantees, but can adjust dynam-
ically to changing user demands and available resources [Idecomposed into the following layers:
¢ Infrastructure middleware: This layer encapsulates
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and Sprint. oping and maintaining distributed applications via low-level
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network programming mechanisms, such as sockets. WidelyBy providing these benefits, DOC middleware helps to min-
used examples of infrastructure middleware include Java vinize the impact of vexing inherent and accidental complex-
tual machines (JVMs) and the ADAPTIVE Communicatioities [4], such as partial failures, distributed deadlock, and
Environment (ACE) [2]. non-portable programming APIs, that have historically com-

¢ Distribution middleware: This layer builds upon plicated the development of distributed applications. An in-
lower-level infrastructure middleware and allows clients to igreasingly important role is being played by “commercial-off-
voke operations on distributed objects without concern for dbe-shelf” (COTS) DOC middleware, such as CORBA and
ject location, programming language, OS platform, commiava, which is readily available for purchase or open-source
nication protocols and interconnects, and hardware [3]. agquisition. COTS middleware has become essential in to-
the heart of distribution middleware a@bject Request Bro-day’s software development organizations, which face many
kers(ORBs), such as the OMG’s CORBA, Microsoft's DCOMime- and effort-related constraints arising from global com-
(DCOM), and Sun'’s Java RMI. petitive pressures.

e Common middleware services: This layer augment the Paper organization: The remainder of this paper is orga-
distribution middleware by defining domain-independent sgized as follows: Section 2 outlines key properties of next-
vices, such as event notifications, logging, multimedia streageneration distributed applications to illustrate the require-
ing, persistence, security, transactions, fault tolerance, and gients being addressed by R&D on QoS-enabled DOC mid-
tributed concurrency control. Applications can reuse these sleware, endsystems, and networks; Section 3 outlines the
vices to perform common distribution tasks that would othégoS-related aspects of CORBA 3.0, which is emerging as the
wise be implemented manually. industry standard of choice for QoS-enabled distributed ap-

» Domain-specific services: Unlike the other three mid- plications; Section 4 describes the object-oriented design of a

dleware layers, domain-specific services are not gener@gftable QoS API; Section 5 presents a case study that shows
reusable, but instead are tailored to the requirements of giw this QoS APl is used to provide QoS in multimedia ser-
ticular domains, such as telecommunications, e-commendges; and Section 6 summarizes concluding remarks.
health-care, or process automation. Domain-specific services

are the least mature of the standardized middleware layers to- . .

day. Since they embody domain-specific knowledge, howewdr, Key Properties of Next-generation

they have the most potential to increase system quality and de- Distributed Applications
crease the cycle-time and effort required to develop particular

types of distributed applications. Next-generation distributed applications will require end-to-
Together, these DOC middleware layers provide the folloernd QoS support where network and system resources must
ing benefits: be managed both prior to and during run-time. For example,

1. Strategic focus: They elevate application developer foin mission-critical systems in domains such as telecommuni-
cus away from a preoccupation with low-level operating sygations, global trading, distributed electronic medical imag-
tem mechanisms and networking protocols. While it is inf?g, and aviation collision avoidance, failure to meet certain
portant to have a solid grasp of these topics, they are relgadlines can result in significant loss of property or even loss
tively tactical in scope. Therefore, these protocols and me6hlife. These types of systems must therefore be analyzed
anisms should be placed in the proper strategic context witBitd monitored off-lin@ndon-line to ensure that the resources
a broader software architecture. they require are allocated and managed properly.

2. Effective reuse: They amortize software life-cycle ef- In this section, we first present several scenarios that moti-
fort by leveraging previous development expertise and reifyiMgte key application requirements that must be addressed by
implementations of key patterns [4, 5] into reusable middiB&D on QoS-enabled DOC middleware. We then general-
ware frameworks [2]. Most distributed applications in the fize from these scenarios and summarize the QoS-related chal-
ture will be built by integrating and scripting domain-specifi€nges associated with supporting next-generation distributed
and common “pluggable” middleware service componen@pplications.
rather than being programmed entirely from scratch.

3. Open standards: They provicje a standard [3] set ob 1 Tele-immersion Application Scenarios
software components that help to direct the focus of develop-
ers towards higher-level software application architecture éwome of the most demanding types of next-generation QoS-
design concerns, such as the reuse of suitable security, @o&bled distributed applications involtele-immersion6],
resource management, and fault tolerance services and ashieh combines tele-conferencing, tele-presence, and virtual
ponents. reality. Tele-immersion places stringent demands at multiple



levels along the end-to-end path of distributed applicationghicles (UAVS) can provide surveillance, weapons delivery,
such as the following: and battle damage assessment capabilities at both tactical and
e Endsystems: Tele-immersion requires real-time restrategic scopes.
sponse and predictable behavior from endsystems to (1) interith support from tele-immersion applications, immedi-
act with the physical world within specific delay bounds angle remote interaction with the physical environment can help
(2) presentimages or other stimuli to users in real-time. maximize, effectiveness at all levels of the system. For ex-
e Networks: Tele-immersion end-users may be digsmple, a swarm of UAVs can (1) share sensor data, post-
tributed across the Internet or intranets. Thus, applicationSﬁ?dcessed data products, and remote operator requests and (2)
quire predictableetworkperformance to provide low-latencyaychange information with remote locatioesg, via satellite,

and high-bandwidth to applications end-to-end. as shown in Figure 3. To respond flexibly to unanticipated
Applying tele-immersion to health care: Intensive care

medicine is a domain where tele-immersion applications can
provide significant benefits. For instance, emergency teams
responding to natural disasters or urban terrorism must make
critical decisions based on information emerging from a va-

riety of sources at an accelerated tempo. Consultations with

remote experts, modeling of physiological processes, and inte-
gration of both existing and emerging information often must

be performed while in close proximity to patients, as illus-
trated in Figure 2. To support this scenario, it is essential that
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Figure 3: Unmanned Air Vehicle Example

situational factors that arise in its run-time environment, each
UAV must collaborate with others in its swarm and interact in
real-time with operators manning remote command and con-
trol systems.
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The ability of tele-immersion systems to preserve the nec-
— essary application QoS end-to-end will translate directly into
users’ perceived worth of next-generation applications and
their supporting services. For example, if a tele-medicine

i wETY system routinely delays the delivery of packets, it will pro-
ﬁ prysioLocicaL  Vide relatively low perceived value to its users. Supporting
MODELING the demanding tele-immersion applications outlined above,

therefore, requires a range of QoS support from network and
endsystem elements, and the DOC middleware that integrates

networking and computing technologies perform and ad&pése elements end-to-end.
in real-time to changing situational requirements, while still
maintaining QoS guarantees for critical operations, sucha® Synopsis of QoS-related Challenges for

tele-radiology or even tele-surgery. Next-generation Distributed Applications
Applying tele-immersion to aerospace: The aerospace do-

main will also receive significant benefit from tele-immersiokany research challenges arise when attempting to support
applications. In the battle zone of the future, a distributéite stringent QoS requirements of next-generation distributed
web of sensors, weapons, and decision-makers must interaapiplications, such as the tele-immersion scenarios presented
real-time to gain and preserve tactical advantage. Since battl&ection 2.1. Table 1 characterizes the key challenges as-
environments change constantly, systems must adapt rapsdigiated with developing QoS-enabled middleware for next-
both globally and locally. For instance, multiple unmanned gjeneration distributed applications. In general, solutions that

Figure 2: Real-Time Medical Informatics Example



Requirement |

Description

are emeﬂging to meet the QoS-related challenges outlined in

Next-generation applications must simultaiebadifossess the following capabilities:

use diverse sources of information, such as §awhey offer applications the ability to flexibly config-
sensor data, command & control policies, andure [ayered resource management mechanisms needed to

ol their QoS end-to-end;

Many next-generation applications must concurrently ) ,
ap utomatically protect resources needed by certain

ation-critical operations;

promote autonomous or semi-autonomous behavior
spond adaptively and reflectively to changing situa-

| aspects in their run-time environment.

wing section summarizes recent advances in DOC
ire that provide COTS-based implementations for

SHe n‘sghese capabilities.

cent Advances in QoS-enabled

ROC Middleware

nt R&D efforts have focused on DOC middleware

e past decade. These efforts have yielded open stan-
iIch as OMG CORBA [3], as well as popular propri-
(tions, such as Microsoft's Distributed Component
pdel (DCOM) and Sun’s Remote Method Invocation
us, DOC middleware is now available off-the-shelf

s clients to invoke operations on objects without con-
bject location, programming language, OS platform,

Diverse
inputs
operator input, while sustaining real-time beh
Diverse
outputs produce diverse outputs, such as filtered seftsor'@4t&
mechanical device commands, and imagery, S
resolution quality and timeliness is crucial to,0tfgsy
systems and users with whom they interact. g g
Shared Application-critical and/or time-critical operaticfisns
resources must share resources effectively end-to-end wit
operations that possess less stringent timﬂ% follg
or criticality constraints. middlewg
Critical QoS management for next-generation application
operations with hard timing constraints for certain critical
operations must insulate these operations from
the competing demands of non-critical op&atide‘
High The system infrastructure must react to hardw
availability failures, network topology changes, and feature
upgrades, and restore correct real-time operation
within a bounded interval after failures/ch%[\%féfﬁia'
Diverse There must be a balance between differer; ;rag’ s
resource sometimes competing resource managenient ng81
management | involving different kinds of resources, sucfb%s
LS . .Object M
goals maximizing utilization of the CPU or shari MI). T
link bandwidth fairly between threads at tqﬁgat aI.Iov
same priority. e fo ol
End-to-end | Many next-generation applications may opéerate .

requirements

) . ommun
in heterogeneous environments and must m]a}qlage
distributed and layered resources to enforé:% 'Sh.s E
end-to-end QoS requirements. S, Whig

ication protocols and interconnects, or hardware [3].

zction outlines the QoS-related aspects of CORBA
h is emerging as the industry standard for distributed

System
configuration

annlina

Developers of next-generation applicatiorﬁ”r‘ﬁg‘g til
be able to control the internal concurrenc;g end
resource management, and resource utili ?l%n 4
configurations throughout networks, endsystems,
middleware and applications, to provide tfge

- 1 O
end-to-end QoS to applications.

System
adaptation

Next-generation middleware frameworks @*ﬂ‘ét—gen
applications must be able to (1) autonom tiond
reflect upon situational factors as they ari '& its
their run-time environment and (2) adapt tgj BFSv.
factors while preserving the integrity of ke¥ver, the

mission-critical activities. creased

Operators must be ical systg

ti9ns that possess a wide range of QoS requirerhents.
ition, we outline the key open R&D issues related to

bled DOC middleware.

verview of CORBA 3.0 QoS Capabilities

eration DOC middleware was not targeted for ap-
with stringent QoS requirements. Not surpris-
efficiency, predictability, scalability, and depend-

As problematic. Over the past several years, how-

use of CORBA-based [3] DOC middleware has in-
significantly in aerospace, telecommunications, med-
ms, and distributed interactive simulation domains.

insulated from the programming model fo"l‘\‘%%é*@j'nains are characterized by applications with high-

managemeng.g, via suitable abstractionsperform
for communicating operator QoS requiremgpisM

nce and real-time QoS requirements. The increased
of CORBA middleware in these domains stems
ym-thefollowing two factors:

monitoring/controlling the received QO0S. |argely fr

Development
time & cost
management

The time and effort expended to develop, vafiti#ted
optimize, deploy, maintain, and upgrade "smggza
generation distributed applications must be

n'b'IeLtIéUCIORBA 3.0 standard should be available in 2001. How-
key components [7, 8, 3] are already specified and available in

S.

amortized across product families.

%
Table 1: QoS-related Challenges for Next-generation Dis-
tributed Applications



1. The maturation of DOC middleware patterns and Below, we outline the QoS-related capabilities in CORBA
frameworks: A number of notable advances in patterns ar®l0, starting from the lowest level of abstraction and building
frameworks for QoS-enabled middleware have occurred g to higher-level common services and applications.

cently. For instance, research conducted in the DARPA Q§&@mmunication infrastructure resource management: A

rum program [1, 9] has identified key design and optimizati6éfORBA 3.0 endsystem must leverage policies and mecha-
patterns [4], which have been instantiated into high-qualitysms in the communication infrastructure that support re-
frameworks [2, 10] for QoS-enabled DOC middleware ars@urce guarantees. This support can range from (1) determin-
applications. These patterns and frameworks are now beirgwhich connection to use for a particular invocation to (2)
applied widely in COTS DOC middleware products [11].  exploiting advanced protocol properties, such as controlling
2. The maturation of DOC middleware standards: The the cell pacing rate of ATM virtual circuits.

OMG's suite of CORBA standards has matured consideraflp scheduling mechanisms: ORBs exploit OS mecha-
over the last several years, particularly with respect to the spisms to schedule application-level activities end-to-end. The
ification of QoS-enabled components and capabilities. For ffORBA 3.0 specification targets fixed-priority real-time sys-
stance, the forthcoming CORBA 3.0 [3] standard includes ti&ns, where thread priorities are set by applications and only
Messaging [8] and Real-time specifications [7]. The CORB#1anged by the ORB endsystem to enforce priority inheritance
Messaging specification defines asynchronous operation m@jdpriority ceiling policies. Thus, these mechanisms corre-
els and allows applications to control many end-to-end OFBond to managing OS thread scheduling priorities. CORBA
QoS policies, such as timeouts, priority queueing order, apd focuses on operating systems that allow applications to
message reliability semantics. The Real-time CORBA spesfecify thread scheduling priorities and policies. For exam-
fication defines standard interfaces and policies for managig, the real-time extensions in IEEE POSIX 1003.1c define
ORB processing, communication, and memory resources. & static priority FIFO thread scheduling policy that meets this

As shown in Figure 4, CORBA 3.0 ORB endsystems cofgquirement. _ o
ORB endsystem: ORBs are responsible for communicating
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Figure 4: QoS-enabled ORB Endsystem Capabilities ine A global Scheduling Service [7, 9, 12] that distributed

NETWORK

CORBA 3.0

sist of network interfaces, operating system I/O subsystems

requests between clients and servers transparently. An ORB
endsystem must therefore provide standard interfaces that al-
low applications to specify their resource requirements to an
ORB. The policy framework defined in CORBA 3.0 defines
standard interfaces and QoS policies that allow applications to
configure and control the following resources:

e Processor resourcesia thread pools, priority mecha-

nisms, and intra-process mutexes;

e Communication resourcesa protocol properties and ex-
plicit bindings with non-multiplexed connections;

e Memory resourcesia buffering requests in queues and
bounding the size of thread pools.

Common middleware services: Having a QoS-enabled
ORB that manages endsystem and communication resources
does not provide a complete end-to-end solution. Therefore,
ORBs must also preserve QoS properties for higher-level com-
mon services and application components, such as the follow-
ing defined in CORBA 3.0:

applications can use to manage and schedule distributed
resources via fixed-priority analysis and scheduling tech-
nigues.

and communication protocols, and CORBA-compliant mid-

¢ An Audio/Video (A/V) Streaming Service [13] that fa-

dleware components and services. CORBA 3.0 identifies ca
pabilities that can begertically (i.e., network interface— ap-
plication layer) andhorizontally(i.e., peer-to-peer) integrated
and managed by ORB endsystems to ensure end-to-end pre-A Fault Tolerance service [14] that defines a standard set
dictable behavior for operations exchanged between CORBA of interfaces, policies, and components to provide robust
clients and servers. support for applications requiring high availability.

cilitates the creation of data, video, and audio streams
between two or more media devices.



These services augment ORBs to provide mechanisms tb@RBA 3.0, only defines limited protocol property APls and
support the specification and enforcement of end-to-end oma&mnot yet handle sophisticated network-level QoS capabili-
ation timing, stream synchronization, and dependability. Diges, such as IntServ and DiffServ. Section 4 describes a richer
velopers can structure their applications to exploit the reusa@ieS API, calledAQoSA that can be integrated with CORBA
capabilities exported by QoS-enabled ORBs and their assaci-other DOC middleware so that applications can both (1)

ated higher-level common services. benefit from middleware capabilities and (2) utilize network-
level QoS support via portable middleware-centric APIs.
3.2 Open R&D Issues Multiple QoS property integration: While emerging

network-level QoS mechanisms are essential enabling tech-
Meeting the QoS requirements of next-generation distribute@logies, they are insufficient in isolation because they only
applications requires an integrated framework architecture th@nage network-level QoS. Likewise, although some oper-
can deliver end-to-end QoS support at multiple levels of a@ing systems now support real-time scheduling of CPU re-
straction. While DOC middleware based on CORBA 3.0 c$ources, they do not provide integrated end-to-end solutions.
fers solutions to certain resource management challenges facg@eneral, conventional QoS solutions tend to focus either
ing researchers and developers, it does not yet provide a c@mspecific network signaling and enforcement mechanisms or
plete solution for all types of distributed applications. In pagingle endsystem resource allocation techniques. While these
ticular, the CORBA specification does not yet define standdg$earch activities are important building blocks, they often
components, protocols, or APIs that support the following cgield point solutions that emphasize relatively fixed, lower-
pabilities: level policies and mechanisms.
Dynamic resource management: The real-time support in  Introducing application-level awareness of changes to ex-
CORBA 3.0 targets applications designed using fixed-priorfgcted and delivered QoS is a new direction for inserting adap-
scheduling. However, an important class of real-time apgive behavior into distributed applications. Adaptation can oc-
cations encounter dynamic load conditions that can vary sige at any and all of the various system layers, including cus-
nificantly at run-time, particularly in interactive telecommuntomized approaches in the application itself and standard ser-
cation systems and open-loop control platforms. It is hard féee (re)configurations within the supporting middleware and
developers of these types of systems to determine the prioritiegvork infrastructure, such as the following examples:
of various operationa priori without significantly underutiliz-  ® Application-level adaptation: This type of adaptation
ing various resources, such as CPU and network bandwidtRight involve moving from full-motion video over high-speed

To address these issues, the OMG is attempting litks to audio and still imagery or even text-only interactions
standardize dynamic CORBA scheduling [15] techniqueé¥/er low-speed links. _ _ .
such as deadline-based [16], value-based [17], and hybri@ Service-level adaptation: This type of adaptation
static/dynamic [12] scheduling. Dynamic scheduling offefaight involve acquiring additional bandwidth by preempting
relief from certain limitations of static scheduling, such as r8-low-priority application or automatically instantiating addi-
source underutilization. It often has a higher run-time codgnal resource replicas when others become unreachable.
however, because certain scheduling operations must be peWe believe the key to success in these adaptations lies in
formed on-line. Moreover, operations can be scheduled digveloping translucent paths through system layers that can
namically that may never be dispatched. Therefore, additiomaegrate multiple QoS properties effectively. These properties
R&D is necessary to determine the most suitable ways to intedst encompass botferformance measurgsuch as latency
grate dynamic scheduling into DOC middleware. and throughput, anahission-critical aspectsuch as real-time
Portable networking QoS APIs: Many network-oriented constraints, dependability, and security. A key R&D challenge
QoS technologies, such as integrated services (IntServ), @ifto provide maximum utility to applications and end-users
ferentiated services (DiffServ), multi-protocol label switchwhile minimizing interference that can result from a series of
ing (MPLS), common open policy service (COPS), and bandedependent or transparent actions [1].
width brokers (BB), have been defined to enable network-level
QoS. Most existing approaches are highly platform/protocol- .
specific, however. This tight coupling makesiit hard to develdp  AQOSA: a Common Middleware-
and deploy'p.o'rtable applications that use these networking centric QOS API
QoS capabilities effectively.

Some work has been done to provide developers with stanq
dard programming interfaces [18] that can leverage advances
in underlying network technology to provide application-levéls network-level QoS protocols and mechanisms mature, de-
QoS guarantees. However, standard DOC middleware, suchedspers increasingly require a common interface for (1) spec-

Motivation



ifying the QoS requirements of their distributed applicationsWe have designed a common QoS API based on the archi-
and (2) receiving notifications from the underlying netwotkcture shown in Figure 5 and implemented it within ACE [2].
and QoS infrastructure when QoS-related conditions chan§€E is a widely-used open-source infrastructure middle-
This common application QoS API is motivated by the followware framework that implements key patterns [4] for high-
ing needs: performance and real-time communication systems.AQE

e Enhanced portability: To adapt more readily to newQoS API(AQ0SA) provides a portable C++ encapsulation of
market opportunities and technology innovations, applicatidm® separate implementations of the IntServ resource reser-
must be shielded from non-portable platform- and protoceftion setup protocol (RSVP): tHeQoSimplementation on
specific details, such as representations of QoS parameterd/imdlows 2000 and thRSVP AP(RAPI) implementation on
mechanisms for detecting changes in the network-level QoBNIX.

¢ Higher-level QoS specification: Although network- RSVP is designed for IntServ networks and provides QoS
level QoS protocols provide mechanisms for allocating rer particular flows via three major components: packet
sources between endsystems, they do not address the tidassifier anadmission controllerand apacket scheduleas
lation from application-level QoS parameters to network-lev&own in Figure 6. These QoS components facilitate the cre-
QoS parameters.

e Increased adaptivity: QoS-enabled distributed appli- Host System RSVP-enabled Router
cations and higher-level middleware must be notified when
available resources change so that they can re-negotiate their
QoS specifications.

RSVP RSVP
e N Ssignaling (~ ™ Signaling

Application Process =T - = RSVP Process - -==|-— >
4.2 Solution Approach — a Common
Middleware-centric QoS API

[} ! [
|
\ 4 | ¥
RSVP |_ _ _ _|_ 1 Routing Policy
Data Process [ Control

All these considerations motivate the need for a comm|™ amreeton
platform- and protocol-independent QoS API that can expq Admission contel
the underlying network-level QoS protocols to applicationsy [ — y . LA Data
higher-level DOC middleware, as shown in Figure 5. TH o=t S| pae Fiow cassiter | st o
Scheduler
HOST A DL HOST B - - <
] = , |
TG« B Figure 6: Components in RSVP-enabled Endsystems and Net-

= work Elements

10
) QosAPI

M \ ation and management of distributed reservation state across
(e8] a variety of multicast or unicast delivery paths. RSVP de-
(gffﬁ; epce fines aQoS sessioas a flow with a particular destination and
e T transport-layer protocol.
Unfortunately, the APIs provided by the GQoS and RAPI
IntServimplementations are non-portable and differ along var-
Figure 5: End-to-end QoS Architecture ious dimensions, such as the following:

e Socket characteristics: GQoS closely couples each
end-to-end QoS architecture shown in Figure 5 allows p0oS session to a socket endpoint by passing QoS session pa-
plications to obtain network-level QoS guarantees via stdgmeters to the socket calls. Conversely, RAPI handles the
dard distribution middleware and middleware services, such@@S specification separately from sockets, so that a QoS ses-
CORBA ORBs and the CORBA A/V Streaming Service [13Eion can be specified independently of a socket.

Moreover, this architecture simultaneously leverages other ime Operating system and event integration: The RAPI
portant middleware benefits, such as platform- and protodatplementation runs in a separate process address space and
independence. In addition, a middleware-centric QoS API aqaotifies an application of QoS-related events via a UNIX-
provide additional functionality, such as coordinating the bindemain socket. Thus, the application must listen on this
ing of QoS to designated application media streams and trasmeket, as well as its usual data-mode sockets. Conversely,
lating standard QoS flow requirements to network-level Q&Q0S is integrated into the Windows 2000 kernel and does not
properties. require an application to listen on a different socket. Instead,

COPS

/—RSVP-ENABLED QOS —//—DIFFSERV-ENABLED QOS—//—RSVP-ENABLED QOS—/



it supports QoS event notifications that distinguish betweepattern [4], which allows servers to decouple event demulti-
QoS and other events at the socket level. plexing/dispatching from their application-specific event han-
Given these differences, it is hard to develop portable aping- Thus, AQoSAs event notification mechanisms support
cations that are programmed directly using GQoS and RABYS common usage.
Yet, developers can benefit greatly if changes to the underlying? addition, AQOSA applies the Decorator pattern [5],
QoS implementation does not entail changing their appli¥#dich extends an object dynamically by attaching new respon-
tion design and implementation. To allow developers to cre&tgilities transparently. AQOSA uses this pattern to enhance
QoS-enabled applications that are independent of the undi-existing ACE event handler functionality @S decora-
lying endsystem platform or IntServ protocol implementatioRon. For example, as described in Section 4.2, the native RAPI

therefore, AQOSA factors out common functionality and eRP! requires an application to listen on two sockets, whereas
ports an infrastructure middleware API. the GQoS API requires just one. The AQoSA QoS decorators

allow applications to “QoS-enable” themselves dynamically,

. ithout requiring any changes to the existing ACE reactive
4.3 Overview of the ACE Q0S API (AQOSA)  gent handiing moder. XS v

AQOSA was designed by (1) inductively identifying commoAdvanced QoS capabilities: AQOSA binds multicast or
patterns [4, 5] used to program to existing QoS APIs and (®)icast flows to reservations via a uniform and portable com-
developing components that reified these patterns. Below, pesient called @oS sessian A QoS session represents the
describe how our AQoSA implementation addresses key @gplication’s notion of the underlying network-level QoS.
sign requirements. Though modeled originally using IntServ RSVP sessions, a
Portability: AQOSA encapsulates applications from the d&QoSA QoS session can also accommodate other QoS mech-
tails of platform-dependent GQoS and RAPI IntServ implanisms, such as DiffServ.

mentations in the underlying endsystem platform. AQ0SAAn AQ0SA QoS session explicitly separates QoS proper-
encapsulates the functions, data structures, and macros tieedof its sessions from lower-level socket data transfer as-
to represent various QoS parameters in these two IntServ peets. Internally, the ACE QoS socket maintains an associa-
plementations. Thus, applications and higher-level DOC miibn between QoS sessions to which an application has sub-
dleware can access IntServ capabilities via a convenient aadbed. This separation of concerns also facilitates more ad-
portable QoS programming interface. vanced QoS functionality, such as QoS event notification.
Extensibility: AQOSA enables new network- and Figure 7 depicts the UML class diagram for the components

endsystem-level QoS mechanisms to be integrated withpupQoSA. These components allow applications to specify
tedious refactoring of its public API%.g, it is straightfor-

ward to extend AQOSA to support other QoS models, such as ACE_SocK
DiffServ. To accomplish this, AQoSA extends the existing
ACE framework components by introducing new capabilities i 1 N
that allow applications and underlying DOC middleware to AGE_SOCK Connoctor | | ACE_SOGK Accoptor AGE_SOCK Dgram
manage QoS multicast or unicast sessions. Moreover, AQOSA T
applies several patterns to ensure that new network-level QoS ACE_Qos_Session ACE_SOOK_Daram_toast
implementations can be easily integrated without changing oon) I
appliations that uses its API. o 5

For example, AQOSA uses the Factory Method pattern [5], i i ACE_SOCK Dgram_ Meast_Gos
which decouples the creation of an object from its use, to re- AcE Gaos Session| | Ace_Rapt_session | [

lieve applications from managing the lifetime of QoS session
objects. Once created, the QoS session object is added to a list ~ o
of session objects to which a socket has subscribed. AQoSA
makes it possible to accommodate new QoS mechanisms via

ACE_QoS_Session_Factory

create_session ()
destroy_session ()

subclassing. To ensure that new mechanisms conform to ex- ACE QoS Manager

isting interfaces, AQOSA uses the Adapter pattern [S], which ACE Unbounded Set <ACE QoS Session>

allows interoperability between components that were not de- fon_soe_susion 0

signed to work together initially.

QoS Event Notification: AQOSA provides applications Figure 7: AQoSA QoS Class Design

with a platform-independent API for receiving notifications
when the underlying network QoS changes. ACE applicad query for the QoS configured currently for a particularly
tions often use an event handling model based on the Reaatdcast or a multicast session. The UML diagram also shows



how AQOSA uses the Bridge pattern [5], which provides a2. Itthen registers QoS decorated event handler with a re-
uniform interface for different mechanisms implementatioresgtor to handle the QoS and 1/O events. This handler updates
such as RAPI and GQoS. New QoS mechanisms can be adtiedQoS state of a QoS session by calling tipelate _qos

by subclassing implementations of this interface. In additiangthod on a QoS session object. This method internally calls
the diagram shows how AQOSA applies the Factory Metheidher therapi _dispatch  function on UNIX or passes the
pattern [5] to create and manage the lifetime of QoS sessto_GET_Qosflag to the Win32VSAloctl function.

objects subscribed to by applications. 3. When an RSVP QoS event arrives, the reactor notifies
Adaptivity:  Applications or higher-level middleware musthe associated QoS session event handler. The application then
be notified when changes to the state of their QoS ocaatrieves the QoS parameters from this handler and adaptively
AQOSA notifies an application when (1) a particular QoS statenegotiate its requested QoS.

is established for its specified flows and (2) when QoS state i%pplications may choose not to obtain the QoS immediately

updatedg.g, if there are changes to the existing set of resejer 3 QoS event occurs. Instead, they may defer it and have

vations for _a particular session. In RSVP, these ”°t'f'cat'°ﬁ‘§1ispatched at a later point in the program. They can also run

are carried irRSVP events _ the event handling mechanism in a different thread of control

As shown in Figure 8, AQOSA receives and handlgg,q optain QoS notifications synchronously. This latter model
is motivated by the Half-Sync/Half-Async pattern [4], which

Application SR decouples synchronous from asynchronous processing in con-
Event Handler current systems.

5 Case Study: Applying AQOSA to the
CORBA Audio/Video Streaming Ser-

ACE vice
————————————— /- ----\---------- As shown in Section 4.3, AQoSA shields applications from
( RAPI fd) (Win QoS Events ) the non-portable aspects of the underlying operating system
QoS Service [ [ and network-level QoS implementations. The infrastructure
Provider RAPI GQoS middleware abstractions provided by AQoSA are sufficient for
Daemon Service Provider certain types of applications, such as controlling and manag-
777777777777777777777777777777 ing network switch and router elements [18]. Other types of
© PATH applications, however, can benefit from higher-level middle-
QoS ® RESV ware programming models that supports a broader range of
Protocol ® PATH_ERROR . .
@ RESV_ERROR protocols and common middleware services.
© REQ_CONFIRM For example, the TAO open-source real-time CORBA
””””””””””””””””””” ORB [9] provides an implementation of the CORBA A/V
Network == Streaming Service [13], which supports multimedia applica-
RSVP ROUTER RSVP ROUTER tions, such as video-on-demand and tele-immersion. The QoS
requirements of these types of applications depend on the fol-
Figure 8: ACE QoS Event Handling lowing factors:

¢ Application class,such as interactive vs. non-interactive.
RSVP events uniformly for different network-level QoS iminteractive applications require real-time response and hence
plementations via the Reactor pattern [4]. In this paredictable delivery of application data with bounded end-to-
tern, asynchronous event demultiplexsuch asselect or end latencies. In contrast, non-interactive applications have
WaitForMultipleObjects , handles event demultiplex-less stringent response requirements, but often possess higher
ing and an associated reactor notifies previously registet@gughput demands.
application-specific event handlers so they can adapt to Qo$ Application media types, such as audio and video. De-

state change events. pending on the media type, different performance criteria may
An AQOSA application can use the Reactor pattern to adapiply. For example, audio delivery is sensitive to delay, loss,
to QoS state change events, as follows: and bandwidth, and hence needs guaranteed QoS. In contrast,

1. It instantiates a reactor to listen for various types ¥fdeo can often be best-effort since it is less sensitive to delay,
events, such as I/O events, timer events, and QoS events.
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loss, and bandwidth. Therefore, it can be adapted more readilfhe CORBA A/V Streaming Service specification defines
to the available network QoS. interfaces and policies to allow applications to specify end-to-

e Application adaptation policies, which may require im- €nd QoS parameters, such as video frame rate or audio sample
p||c|t or exp"cit adaptations to Changes in delivered QosS. |rfate, for individual flows within a stream. It also defines a
plicit adaptation is transparent to the application lageg, Mandatory set of network-level QoS parameters, such as to-
dropping selected portions of a video stream at the transgeth bucket, peak-bandwidth, and token rate. These QoS pa-
layer. Conversely, explicit adaptation, such as changing quédineters are specified as name/value pairs using the CORBA

tization coefficients or application coding algorithms, is nétroperty Service. Multimedia applications and A/V Stream-
transparent to applications. ing Service implementations use these name/value pairs to (1)

. . . L egotiate QoS between two peer media devices and (2) modify
To provide acceptable QoS to multimedia applications fic QoS if there is a violation in the initial QoS or if the speci-

veloped using TAO, we therefore developed a QOS-enable e .
implementation of the CORBA A/V Streaming Service using';e QoS cannot be met due to run-time environment changes.
AQOSA, as described in this section.

5.2 Implementing the TAO A/V Streaming Ser-

5.1 Overview of the CORBA A/V Streaming vice with AQOSA
Service Though the CORBA A/V Streaming Servispecificatiorpro-

. . vides interfaces to specify and modify QoS, it is the responsi-
The CORBA A/V Streaming Service controls and manages ity of implementationso enforce the negotiated QoS. For
creation of streams between two or more media devices. fko's A/ Streaming Service implementation, we designed a
though the original intent of this service was to transmit auti@ mework based upon the ACE QoS API (AQoSA) described
and video streams, it can be used to send any type of d{asection 4.3. This framework provides a middleware in-
Applications control and manage A/V streams using the Aférface that encapsulates QoS-specific details within the TAO
Streaming Service components shown in Figure 9. Streaip§ streaming Service, rather than in the multimedia appli-

cations. To obtain end-to-end QoS therefore, application de-
Stream MMDevice
Stream Stream
MMDevice @ @

velopers simply specify the QoS they require for each flow in
their streams. These specifications are translated, enforced,
and modified transparently by the AQoSA-enabled TAO AV
Streaming Service.

5.2.1 Components in TAO’s A/V Streaming Service

- |x| Multimedia
| == | Stream supplier Framework

- [ One per device
Consumer D One per stream

Figure 9: CORBA A/V Streaming Service Components

TAO’s A/V Streaming Service framework comprises three
main components, which are shown in Figure 10 and outlined

Application

QoS QoS
Monitoring Adaptation

are terminated by endpoints that can be distributed across net-
works and are controlled by a stream control interface, which
manages the behavior of each stream.

The CORBA A/V Streaming Service combines (1) the flex-
ibility and portability of the CORBA object-oriented program-
ming model with (2) the efficiency of lower-level transport
protocols. The stream connection establishment and manage
ment is performed via conventional CORBA operations. In

Perceptual QOS

0S Mappin
eg. Good Quality Video Q S

Application QoS
eg. video frame-rate

v

contrast, data transfer can be performed directly via more effi- ek 00s ‘ Q0S-Based Transport AP ’
cient lower-level protocols, such as ATM, UDP, TCP, and RTP.

This separation of concerns addresses the needs of develo

ers who want to leverage the language and platform flexibil- BE:C[U = P

ity of CORBA, without incurring the overhead of transferring

data via the standard CORBA interoperable inter-ORB proteigure 10: QoS Components in the TAO A/V Streaming Ser-
col (I1OP) operation path through the ORB. vice Framework
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below. Service is layered atop TAO and ACE, which handle flow con-

1. QoS mapping: TAO's QoS mapping component transtrol processing and media transfer, respectively. The CORBA
lates QoS parameters between the application-level #@Hd service uses AQOSA for network-level QoS provision-
network-level. QoS mapping can be performed both duriiit@, renegotiation and violation notification control, and media
resource allocation and during renegotiations. This translatfeansfer. Likewise, application-level end-to-end QoS is
process allows application developers to specify QoS as per- L
ceptual qualitiese.g, the video quality can be specified by 1. Translated. from ,appllcatlon-lgvel to network-level pa-
the frame rate for a video flow. The QoS mapping component rameters via TAO’s Q0S mapping component and

is then responsible for translating the frame rate into networR. Passed through the portable AQoSA interfaces that
bandwidth requirements. portably encapsulate the GQoS and RAPI APls.

2. QoS monitoring and adaptation: These two compo-
nents support applications that require QoS guarantees,
are flexible in their needs.g, they can adapt to changingo
resource availability within specified QoS bounds. The Q
monitoring component, which consists of AQoSA and tlﬁ
higher-level TAO middleware framework, measures end-
end QoS of application flows over a finite period of time. gomne .
there are violations in the reserved QoS the monitoring com;%gat'on endpoints.

nent notifies the application of actual resources available cur-

rently. TAO's CORBA A/V service QoS midleware can theb.2.2 Meeting Design Requirements

decide if the available QoS is sufficient to meet the require- . , . .
ments specified by an application. As with AQoSA, TAO'’s A/V Streaming Service framework

If the available QoS is insufficient, TAO’s A/V StreamingVas designed by (1) inductively identifying common pat-

Service notifies the application, which in turn can renegoti fns [4, 5] used to program to existing QOS APIs and (2) de-

the QoS or adapt to the available QoS. Adaptation can occh%{ ping a framework that reified these patterns. Below, we

various levels of abstraction, ranging from the transpad( desctr|tze OUBZAO S éj/\k/ Staeammg Sef"'ce fratlmework imple-
flow control), to the applicatione(g, MPEG-II coding rate men allona:j resse.bl €y design reqwrenr]]en S AN
adaptation), to middleware signaling §, QoS renegotiation). Generlg an exygnS{ € QoS mapping: The CORBA

Due to the extensible design of TAO's QoS adaptation COmﬁ_reammg specification allows apphcatlon develope.rs to spec-
nent, various adaptation algorithms can be configured. TA the QoS for any data stream V|a'percept.ual quallty param-
QoS adaptation component is accessible by (1) the appli%ga—rs' These paramet.ers chargcten;e application performance
tion, which performs application-level adaptation and (2) tRd provide a convenient configuration model for developers.

distribution middleware, which coordinates the transport-le\;@ enforce the specified QoS, however, the application-level
adaptation. QoS parameters must be translated to network-level QoS that

. . . are used to transport the flows. Hence, a QoS translation com-
3. QoS-Based transport API: This componentis provided b Q

. . onent is required. The key design challenges involve (1) pro-
2 Q0Sh, i enfrces e lorend Q0% by reservng Hing « gner aplcaton-evel Qs tonetworclel QoS
ments. As shown in Figure 11, the CORBA A/V Streami parameter mapping that is independent of the codec and net-

"Work and (2) making it easy to change mapping schemes.
To address these challenges for video streams, we identi-
fied a set of application-level QOS parametesfiarpness
CORBA A/V SErvicE color, andrate. The sharpness of the video stream resolution
is mapped to luminance quality; color is mapped to the color
depth; and rate is mapped to frame rate where luminance, color
depth, and frame rate are network-level QoS parameters for a
AQOSA video stream. A single quality factor in the range [0..1] is used
to specify the required quality of the displayed video, where 0
C RAPI ) C GQOS) is the best and 1 is the worst quality. The relative preference
of these perceptual quality parameters can also be specified by
assigning them weights.
TAO’s A/V Streaming Service defines generic mapping
Figure 11: QoS-based Transport API functions to map application-level quality factors and relative

AQPSA uses the underlying network-level QoS capabilities to
rovision the specified QoS to individual application flows. In
dition, AQoSA provides mechanisms that are used by TAO'’s
0S monitoring and adaptation components to detect QoS vi-
ations and to notify the A/V Streaming Service middleware

0 it can renegotiate QoS between peer media devices and ap-

TAO ORB
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weights specified by application developers into the netwotk-the available QoS. To modify QoS requirements, the appli-
level QoS parameters, such as the peak bandwidth of the videdions can then use AQ0SA to renegotiate their QoS parame-
The specified mappings from perceptual quality to system aeds, within the bounds of the available QoS.
network parameters are independent of the codec and networlpplications may require either implicit or explicit adapta-
However, the values of the relative weights may vary acrassn, where the former is transparent to the application and the
codecs. TAO's A/V Streaming Service uses wavelet transftatter is not. Both types of adaptations must be supported for
mations [19] to encode video streams. Alternative mappiafiective dynamic QoS management. Appropriate filter and
schemes can be configured via BteategyPattern [5], which adaptor selection mechanisms are also required.
defines a family of interchangeable algorithms. To address these requirements, TAO's A/V Streaming Ser-
Specific QoS parameter monitoring: After applications vice containsQoS Adaptorand QoS Filter components that
specify their required QoS, AQOSA uses reservations to helpable applications to adapt to changes in available QoS, as
enforce these specifications. At the time of the reservation faows:
application may receive the desired QoS. If network condi-e Q0S Adaptors: These components provide explicit
tions change over time and the desired QoS is no longerasi@ptation by manipulating the codec or changing the video
available, however, application performance may be affecflgyout time.
adversely. Hence, multimedia applications must be notifiede QoS Filters: These components are present both at
when the current QoS changes so that appropriate steps cagepgers and receivers and reside between the application and
taken to either modify the QoS requirements or terminate tihe network and provide implicit adaptation. Senders use
flows. shaping filtersto tune the data flow in accordance with avail-
As described in Section 4.3, AQoSA propagates certafle network resources, such as buffers or packet transmis-
network-level QoS state changes to higher-level middlew&ien rates. Receivers uselection filtersto deliver parts of
and applications. However, other types of QoS changes #@ data stream to the application as dictated by application
not detected by AQOSA. For example, certain QoS paramet&8S requirements. For example, video streams encoded us-
such as late frames, are not detected by the AQoSA netwdfg wavelet transforms can drop low frequency image frames
level QoS event notifier. Likewise, if a receiver adapts to avaithen the specified QoS does not require high resolution.
able QoS resources it must be notified when changes occur t&0 facilitate the selection and addition of filters, TAO’s A/V
specific QoS parameters, such as jitter, so it can then sefeigeaming Service applies the Chain of Responsibility Pat-
tively accept or reject the sender’s data. To facilitate specif@n [5]. This pattern avoids the coupling of the sender of a
receiver adaptations we have added the following monitorifgfiuest from the receiver by giving more than one object a
components to TAO'’s A/V Streaming Service: chance to handle the request. TAO's QoS Adaptors and Fil-
e Bandwidth monitor:  This component uses AQOSA’SterS are the rfeceiving objects and thgy pass the request along
notification mechanisms to determine changes in the baHt# chain until one of them handles it as dictated by the QoS
width over a period of time. Applications can then adapt apo/icy:

propriately by scaling the flows either up or down. To facilitate the selection of the appropriate adaptation and

« Late frame monitor: This component checks the arfllter components, TAO’s A/V Streaming Service defines a

rival times of the packets to determine if they are delayed &QS_Policy objgct through V\.'h.iCh application .developers. can
yond an expected time and should therefore be dropped. specify the required QoS policies, such as which adaptation(s)

. o . and filter(s) to apply. The QoS policy helps the receiving ob-
la .siggetrar:éoiw:j(i)crzétiv?;fsacgclj;npoens(tag; T:t\e:vsourfslfpczc:e;s?%ﬁts in the chain of adaptors and filters decide if they must
ay . 9 : 9 {ocess the data or forward it to the next receiving object in
is detected, the receiver can notify the sender to decrease the

frame rat hechain.
ame rate. QoS management in multicast scenarios: TAO’'s CORBA

All three monitors use the Reactor pattern [4] and TAO&/V Streaming Service can be used to develop multicast ap-
internal reactor instance to notify the application of changesglications, such as videoconferencing. The AQoSA layer pro-
the corresponding QoS parameters. Applications can regisigles a multicast QOS session management that such applica-
event handlers with TAO'’s reactor for these monitor events.tions can leverage to enforce QoS in multicast scenarios and to
Media flow adaptation: Network conditions may changebe notified when QoS changes. However, conventional adap-
over time. Thus, applications may no longer receive the Qteffion to changes in QoS is not practical and scalable in the
they specified originally. AQoSA's QoS notification mechanulticast scenarios. For example, if more than one receiver
nisms can inform the application of changes to the currensignds a change in QoS request to a seraelif the requests
available QOS. Applications can decide to terminate the care not identical, it may be hard for the sender to satisfy all the
responding flow(s), modify their QoS requirements, or adapguests.
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To handle multicast applications, TAO's A/V Streamingnables applications to run portably on multiple configuration
Service uses a receiver-centric QoS adaptation approach. @hidoperating platforms. Thus, they can be adapted more read-
QoS adaptation is achieved by splitting data streams into silfpto new market opportunities, technology innovations, and
streams, each with different bandwidth requirements. All sulynamic changes in their run-time environments.
streams are then transmitted, as follows: The case study described in Section 5 is representative of

e One flow: In this scenario, the receiver selection filtethe emerging class of multimedia applications whose resource
can choose the packets of a particular substream as allowetBoyiirements can vary dynamically at run-time. The QoS-
the available bandwidth. enabled CORBA ORB and Audio/Video Streaming Service

e Three separate flows: In this scenario, each substreamiddleware developed using ACE and TAO help to simplify
can subscribe to a separate multicast group and the recedvet coordinate such applications. These capabilities provide
can tune in to all or any group as allowed by the availaldecost-effective strategy for improving the quality of service
bandwidth. received by end-users. This, in turn, helps to reduce deci-

When the receivers require a change in their QoS request@/action times for time-critical applications and generally
the RESV messages sent from these receivers are mergeddyoves overall system response in dynamically changing en-
that the sender receives a single request. The merging caMiiggments.
done by the network filters in the data path or by a filter at theACE, AQOSA, TAO, and TAO's A/V Streaming Service
sender. have been applied to a range of real-time applications, in-

cluding many telecommunication systems, aerospace Sys-
tems, financial systems, medical systems, and manufactur-
6 Concluding Remarks ing process control systems. The source code and docu-
mentation for ACE and TAO are freely available from URL
Advances in core hardware technologies and protocols arevemav.cs.wustl.edu/ ~schmidt/TAO.html
abling the convergence of data and voice networks into a single
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