
The Caml Light systemrelease 0.74Documentation and user's manualXavier LeroyDecember 2, 1997
Copyright c
 1997 Institut National de Recherche en Informatique et Automatique

2

ContentsI Getting started 71 Installation instructions 91.1 The Unix version : 91.2 The Macintosh version : 91.3 The MS-Windows version : 10II The Caml Light language reference manual 112 The core Caml Light language 132.1 Lexical conventions : 142.2 Global names : 162.3 Values : 172.4 Type expressions : 192.5 Constants : 202.6 Patterns : 202.7 Expressions : 222.8 Global de�nitions : 292.9 Directives : 312.10 Module implementations : 312.11 Module interfaces : 323 Language extensions 353.1 Streams, parsers, and printers : 353.2 Guards : 363.3 Range patterns : 373.4 Recursive de�nitions of values : 373.5 Local de�nitions using where : 373.6 Mutable variant types : 373.7 String access : 383.8 Alternate syntax : 383.9 In�x symbols : 393.10 Directives : 401

2III The Caml Light commands 434 Batch compilation (camlc) 454.1 Overview of the compiler : 454.2 Options : 464.3 Modules and the �le system : 494.4 Common errors : 495 The toplevel system (camllight) 535.1 Options : 545.2 Toplevel control functions : 555.3 The toplevel and the module system : 585.4 Common errors : 595.5 Building custom toplevel systems: camlmktop : 605.6 Options : 616 The runtime system (camlrun) 636.1 Overview : 636.2 Options : 646.3 Common errors : 647 The librarian (camllibr) 677.1 Overview : 677.2 Options : 687.3 Turning code into a library : 688 Lexer and parser generators (camllex, camlyacc) 718.1 Overview of camllex : 718.2 Syntax of lexer de�nitions : 728.3 Overview of camlyacc : 748.4 Syntax of grammar de�nitions : 748.5 Options : 768.6 A complete example : 769 The debugger (camldebug) 799.1 Compiling for debugging : 799.2 Invocation : 799.3 Commands : 809.4 Executing a program : 819.5 Breakpoints : 849.6 The call stack : 849.7 Examining variable values : 859.8 Controlling the debugger : 869.9 Miscellaneous commands : 89

310 Pro�ling (camlpro) 9110.1 Compiling for pro�ling : 9110.2 Pro�ling an execution : 9210.3 Printing pro�ling information : 9210.4 Known bugs : 9211 Using Caml Light under Emacs 9511.1 Updating your .emacs : 9511.2 The caml editing mode : 9511.3 Running the toplevel as an inferior process : 9611.4 Running the debugger as an inferior process : 9712 Interfacing C with Caml Light 9912.1 Overview and compilation information : 9912.2 The value type : 10112.3 Representation of Caml Light data types : 10212.4 Operations on values : 10312.5 Living in harmony with the garbage collector : 10512.6 A complete example : 107IV The Caml Light library 11113 The core library 11313.1 bool: boolean operations : 11313.2 builtin: base types and constructors : 11413.3 char: character operations : 11513.4 eq: generic comparisons : 11513.5 exc: exceptions : 11613.6 fchar: character operations, without sanity checks : : : : : : : : : : : : : : : : : : 11713.7 float: operations on
oating-point numbers : 11713.8 fstring: string operations, without sanity checks : : : : : : : : : : : : : : : : : : 11913.9 fvect: operations on vectors, without sanity checks : : : : : : : : : : : : : : : : : 11913.10 int: operations on integers : 12013.11 io: bu�ered input and output : 12213.12 list: operations on lists : 12713.13 pair: operations on pairs : 13013.14 ref: operations on references : 13013.15 stream: operations on streams : 13113.16 string: string operations : 13213.17 vect: operations on vectors : 13414 The standard library 13714.1 arg: parsing of command line arguments : 13714.2 baltree: basic balanced binary trees : 13814.3 filename: operations on �le names : 140

4 14.4 format: pretty printing : 14014.5 gc: memory management control and statistics : 14714.6 genlex: a generic lexical analyzer : 14914.7 hashtbl: hash tables and hash functions : 15014.8 lexing: the run-time library for lexers generated by camllex : : : : : : : : : : : : 15114.9 map: association tables over ordered types : 15314.10 parsing: the run-time library for parsers generated by camlyacc : : : : : : : : : : 15314.11 printexc: a catch-all exception handler : 15414.12 printf: formatting printing functions : 15414.13 queue: queues : 15614.14 random: pseudo-random number generator : 15714.15 set: sets over ordered types : 15714.16 sort: sorting and merging lists : 15814.17 stack: stacks : 15914.18 sys: system interface : 15915 The graphics library 16315.1 graphics: machine-independent graphics primitives : : : : : : : : : : : : : : : : : 16416 The unix library: Unix system calls 17116.1 unix: interface to the Unix system : 17117 The num library: arbitrary-precision rational arithmetic 19117.1 num: operations on numbers : 19117.2 arith_status:
ags that control rational arithmetic : : : : : : : : : : : : : : : : : 19418 The str library: regular expressions and string processing 19718.1 str: regular expressions and high-level string processing : : : : : : : : : : : : : : : 197V Appendix 20119 Further reading 20319.1 Programming in ML : 20319.2 Descriptions of ML dialects : 20419.3 Implementing functional programming languages : : : : : : : : : : : : : : : : : : : 20519.4 Applications of ML : 206Index to the library 207Index of keywords 216

ForewordThis manual documents the release 0.74 of the Caml Light system. It is organized as follows.� Part I, \Getting started", explains how to install Caml Light on your machine.� Part II, \The Caml Light language reference manual", is the reference description of the CamlLight language.� Part III, \The Caml Light commands", documents the Caml Light compiler, toplevel system,and programming utilities.� Part IV, \The Caml Light library", describes the modules provided in the standard library.� Part V, \Appendix", contains a short bibliography, an index of all identi�ers de�ned in thestandard library, and an index of Caml Light keywords.ConventionsThe Caml Light system comes in several versions: for Unix machines, for Macintoshes, and forPCs. The parts of this manual that are speci�c to one version are presented as shown below:Unix: This is material speci�c to the Unix version.Mac: This is material speci�c to the Macintosh version.PC: This is material speci�c to the PC version.LicenseThe Caml Light system is copyright c
 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997 InstitutNational de Recherche en Informatique et en Automatique (INRIA). INRIA holds all ownershiprights to the Caml Light system. See the �le COPYRIGHT in the distribution for the copyright notice.The Caml Light system can be freely redistributed. More precisely, INRIA grants any user ofthe Caml Light system the right to reproduce it, provided that the copies are distributed under theconditions given in the COPYRIGHT �le. The present documentation is distributed under the sameconditions. 5

6 ForewordAvailability by FTPThe complete Caml Light distribution resides on the machine ftp.inria.fr. The distribution �lescan be transferred by anonymous FTP:Host: ftp.inria.fr (Internet address 192.93.2.54)Login name: anonymousPassword: your e-mail addressDirectory: lang/caml-lightFiles: see the index in �le README

Part IGetting started

7

Chapter 1Installation instructionsThis chapter explains how to install Caml Light on your machine.1.1 The Unix versionRequirements. Any machine that runs under one of the various
avors of the Unix operatingsystem, and that has a
at, non-segmented, 32-bit or 64-bit address space. 4M of RAM, 2M of freedisk space. The graphics library requires X11 release 4 or later.Installation. The Unix version is distributed in source format, as a compressed tar �le namedcl74unix.tar.gz. To extract, move to the directory where you want the source �les to reside,transfer cl74unix.tar.gz to that directory, and executezcat cl74unix.tar.gz | tar xBf -This extracts the source �les in the current directory. The �le INSTALL contains complete instruc-tions on how to con�gure, compile and install Caml Light. Read it and follow the instructions.Troubleshooting. See the �le INSTALL.1.2 The Macintosh versionRequirements. Any Macintosh with at least 1M of RAM (2M is recommended), running System6 or 7. About 850K of free space on the disk. The parts of the Caml Light system that supportbatch compilation currently require the Macintosh Programmer's Workshop (MPW) version 3.2.MPW is Apple's development environment, and it is distributed by APDA, Apple's Programmersand Developers Association. See the �le READ ME in the distribution for APDA's address.Installation. Create the folder where the Caml Light �les will reside. Double-click on the �lecl74macbin.sea from the distribution. This displays a �le dialog box. Open the folder where theCaml Light �les will reside, and click on the Extract button. This will re-create all �les from thedistribution in the Caml Light folder.To test the installation, double-click on the application Caml Light. The \Caml Light output"window should display something like 9

10 > Caml Light version 0.74#In the \Caml Light input" window, enter 1+2;; and press the Return key. The \Caml Lightoutput" window should display:> Caml Light version 0.74#1+2;;- : int = 3#Select \Quit" from the \File" menu to return to the Finder.If you have MPW, you can install the batch compilation tools as follows. The tools and scriptsfrom the tools folder must reside in a place where MPW will �nd them as commands. Thereare two ways to achieve this result: either copy the �les in the tools folder to the Tools or theScripts folder in your MPW folder; or keep the �les in the tools folder and add the following lineto your UserStartup �le (assuming Caml Light resides in folder Caml Light on the disk namedMy HD): Set Commands "{Commands},My HD:Caml Light:tools:"In either case, you now have to edit the camlc script, and replace the stringMacintosh HD:Caml Light:lib:(in the �rst line) with the actual pathname of the lib folder. For example, if you put Caml Lightin folder Caml Light on the disk named My HD, the �rst line of camlc should read:Set stdlib "My HD:Caml Light:lib:"Troubleshooting. Here is one commonly encountered problem.Cannot find file stream.zi(Displayed in the \Caml Light output" window, with an alert box telling you that CamlLight has terminated abnormally.) This is an installation error. The folder named lib in thedistribution must always be in the same folder as the Caml Light application. It's OK tomove the application to another folder; but remember to move the lib directory to the samefolder. (To return to the Finder, �rst select \Quit" from the \File" menu.)1.3 The MS-Windows versionRequirements. A PC equipped with a 80386, 80486 or Pentium processor, running MS Windows3.x, Windows 95 or Windows NT. About 3M of free space on the disk. At least 8M of RAM isrecommended.Installation. The MS-Windows version is distributed as a self-extracting, self-installing archivenamed cl74win.exe. Simply run it and follow the steps of the installation program.

Part IIThe Caml Light language referencemanual

11

Chapter 2The core Caml Light languageForewordThis document is intended as a reference manual for the Caml Light language. It lists all languageconstructs, and gives their precise syntax and informal semantics. It is by no means a tutorialintroduction to the language: there is not a single example. A good working knowledge of thelanguage, as provided by the companion tutorial Functional programming using Caml Light, isassumed.No attempt has been made at mathematical rigor: words are employed with their intuitivemeaning, without further de�nition. As a consequence, the typing rules have been left out, by lackof the mathematical framework required to express them, while they are de�nitely part of a fullformal de�nition of the language. The reader interested in truly formal descriptions of languagesfrom the ML family is referred to The de�nition of Standard ML and Commentary on StandardML, by Milner, Tofte and Harper, MIT Press.WarningSeveral implementations of the Caml Light language are available, and they evolve at each re-lease. Consequently, this document carefully distinguishes the language and its implementations.Implementations can provide extra language constructs; moreover, all points left unspeci�ed inthis reference manual can be interpreted di�erently by the implementations. The purpose of thisreference manual is to specify those features that all implementations must provide.NotationsThe syntax of the language is given in BNF-like notation. Terminal symbols are set in typewriterfont (like this). Non-terminal symbols are set in italic font (like that). Square brackets [: : :]denote optional components. Curly brackets f: : :g denotes zero, one or several repetitions of theenclosed components. Curly bracket with a trailing plus sign f: : :g+ denote one or several repetitionsof the enclosed components. Parentheses (: : :) denote grouping.13

142.1 Lexical conventionsBlanksThe following characters are considered as blanks: space, newline, horizontal tabulation, carriagereturn, line feed and form feed. Blanks are ignored, but they separate adjacent identi�ers, literalsand keywords that would otherwise be confused as one single identi�er, literal or keyword.CommentsComments are introduced by the two characters (*, with no intervening blanks, and terminatedby the characters *), with no intervening blanks. Comments are treated as blank characters.Comments do not occur inside string or character literals. Nested comments are correctly handled.Identi�ers ident ::= letter fletter j 0 : : :9 j _gletter ::= A : : :Z j a : : :zIdenti�ers are sequences of letters, digits and _ (the underscore character), starting with a letter.Letters contain at least the 52 lowercase and uppercase letters from the ASCII set. Implementationscan recognize as letters other characters from the extended ASCII set. Identi�ers cannot containtwo adjacent underscore characters (__). Implementation may limit the number of characters of anidenti�er, but this limit must be above 256 characters. All characters in an identi�er are meaningful.Integer literals integer-literal ::= [-] f0 : : :9g+j [-] (0x j 0X) f0 : : :9 j A : : :F j a : : :fg+j [-] (0o j 0O) f0 : : :7g+j [-] (0b j 0B) f0 : : :1g+An integer literal is a sequence of one or more digits, optionally preceded by a minus sign. Bydefault, integer literals are in decimal (radix 10). The following pre�xes select a di�erent radix:Pre�x Radix0x, 0X hexadecimal (radix 16)0o, 0O octal (radix 8)0b, 0B binary (radix 2)(The initial 0 is the digit zero; the O for octal is the letter O.)Floating-point literals
oat-literal ::= [-] f0 : : :9g+ [. f0 : : :9g] [(e j E) [+ j -] f0 : : :9g+]Floating-point decimals consist in an integer part, a decimal part and an exponent part. Theinteger part is a sequence of one or more digits, optionally preceded by a minus sign. The decimal

Chapter 2. The core Caml Light language 15part is a decimal point followed by zero, one or more digits. The exponent part is the character eor E followed by an optional + or - sign, followed by one or more digits. The decimal part or theexponent part can be omitted, but not both to avoid ambiguity with integer literals.Character literals char-literal ::= ` regular-char `j ` \ (\ j ` j n j t j b j r) `j ` \ (0 : : :9) (0 : : :9) (0 : : :9) `Character literals are delimited by ` (backquote) characters. The two backquotes enclose eitherone character di�erent from ` and \, or one of the escape sequences below:Sequence Character denoted\\ backslash (\)\` backquote (`)\n newline (LF)\r return (CR)\t horizontal tabulation (TAB)\b backspace (BS)\ddd the character with ASCII code ddd in decimalString literals string-literal ::= " fstring-characterg "string-character ::= regular-charj \ (\ j " j n j t j b j r)j \ (0 : : :9) (0 : : :9) (0 : : :9)String literals are delimited by " (double quote) characters. The two double quotes enclose asequence of either characters di�erent from " and \, or escape sequences from the table below:Sequence Character denoted\\ backslash (\)\" double quote (")\n newline (LF)\r return (CR)\t horizontal tabulation (TAB)\b backspace (BS)\ddd the character with ASCII code ddd in decimalImplementations must support string literals up to 216 � 1 characters in length (65535 charac-ters).

16KeywordsThe identi�ers below are reserved as keywords, and cannot be employed otherwise:and as begin do done downtoelse end exception for fun functionif in let match mutable notof or prefix rec then totry type value where while withThe following character sequences are also keywords:# ! != & () * *. + +., - -. -> . .(/ /. : :::= ; ;; < <. <- <= <=. <> <>.= =. == > >. >= >=. @ [[|] ^ _ __ { | |] } 'AmbiguitiesLexical ambiguities are resolved according to the \longest match" rule: when a character sequencecan be decomposed into two tokens in several di�erent ways, the decomposition retained is the onewith the longest �rst token.2.2 Global namesGlobal names are used to denote value variables, value constructors (constant or non-constant),type constructors, and record labels. Internally, a global name consists of two parts: the name ofthe de�ning module (the module name), and the name of the global inside that module (the localname). The two parts of the name must be valid identi�ers. Externally, global names have thefollowing syntax: global-name ::= identj ident __ identThe form ident __ ident is called a quali�ed name. The �rst identi�er is the module name, thesecond identi�er is the local name. The form ident is called an unquali�ed name. The identi�er isthe local name; the module name is omitted. The compiler infers this module name following thecompletion rules given below, therefore transforming the unquali�ed name into a full global name.To complete an unquali�ed identi�er, the compiler checks a list of modules, the opened modules,to see if they de�ne a global with the same local name as the unquali�ed identi�er. When one isfound, the identi�er is completed into the full name of that global. That is, the compiler takes asmodule name the name of an opened module that de�nes a global with the same local name as theunquali�ed identi�er. If several modules satisfy this condition, the one that comes �rst in the listof opened modules is selected.The list of opened modules always includes the module currently being compiled (checked �rst).(In the case of a toplevel-based implementation, this is the module where all toplevel de�nitions areentered.) It also includes a number of standard library modules that provide the initial environment

Chapter 2. The core Caml Light language 17(checked last). In addition, the #open and #close directives can be used to add or remove modulesfrom that list. The modules added with #open are checked after the module currently beingcompiled, but before the initial standard library modules.variable ::= global-namej prefix operator-nameoperator-name ::= + j - j * j / j mod j +. j -. j *. j /.j @ j ^ j ! j := j = j <> j == j != j !j < j <= j > j <= j <. j <=. j >. j <=.cconstr ::= global-namej []j ()ncconstr ::= global-namej prefix ::typeconstr ::= global-namelabel ::= global-nameDepending on the context, global names can stand for global variables (variable), constant valueconstructors (cconstr), non-constant value constructors (ncconst), type constructors (typeconstr),or record labels (label). For variables and value constructors, special names built with prefix andan operator name are recognized. The tokens [] and () are also recognized as built-in constantconstructors (the empty list and the unit value).The syntax of the language restricts labels and type constructors to appear in certain positions,where no other kind of global names are accepted. Hence labels and type constructors have theirown name spaces. Value constructors and value variables live in the same name space: a globalname in value position is interpreted as a value constructor if it appears in the scope of a typedeclaration de�ning that constructor; otherwise, the global name is taken to be a value variable.For value constructors, the type declaration determines whether a constructor is constant or not.2.3 ValuesThis section describes the kinds of values that are manipulated by Caml Light programs.2.3.1 Base valuesInteger numbersInteger values are integer numbers from �230 to 230 � 1, that is �1073741824 to 1073741823.Implementations may support a wider range of integer values.Floating-point numbersFloating-point values are numbers in
oating-point representation. Everything about
oating-pointvalues is implementation-dependent, including the range of representable numbers, the number ofsigni�cant digits, and the way
oating-point results are rounded.

18CharactersCharacter values are represented as 8-bit integers between 0 and 255. Character codes between0 and 127 are interpreted following the ASCII standard. The interpretation of character codesbetween 128 and 255 is implementation-dependent.Character stringsString values are �nite sequences of characters. Implementations must support strings up to 216�1characters in length (65535 characters). Implementations may support longer strings.2.3.2 TuplesTuples of values are written (v1; : : : ; vn), standing for the n-tuple of values v1 to vn. Tuples of up to214� 1 elements (16383 elements) must be supported, though implementations may support tupleswith more elements.2.3.3 RecordsRecord values are labeled tuples of values. The record value written flabel1 = v1; : : : ; labeln = vngassociates the value vi to the record label labeli, for i = 1 : : :n. Records with up to 214 � 1 �elds(16383 �elds) must be supported, though implementations may support records with more �elds.2.3.4 ArraysArrays are �nite, variable-sized sequences of values of the same type. Arrays of length up to 214�1(16383 elements) must be supported, though implementations may support larger arrays.2.3.5 Variant valuesVariant values are either a constant constructor, or a pair of a non-constant constructor and avalue. The former case is written cconstr; the latter case is written ncconstr(v), where v is said tobe the argument of the non-constant constructor ncconstr.The following constants are treated like built-in constant constructors:Constant Constructorfalse the boolean falsetrue the boolean true() the \unit" value[] the empty list2.3.6 FunctionsFunctional values are mappings from values to values.

Chapter 2. The core Caml Light language 192.4 Type expressionstypexpr ::= ' identj (typexpr)j typexpr -> typexprj typexpr f* typexprg+j typeconstrj typexpr typeconstrj (typexpr f, typexprg) typeconstrThe table below shows the relative precedences and associativity of operators and non-closedtype constructions. The constructions with higher precedences come �rst.Operator AssociativityType constructor application {* {-> rightType expressions denote types in de�nitions of data types as well as in type constraints overpatterns and expressions.Type variablesThe type expression ' ident stands for the type variable named ident. In data type de�nitions, typevariables are names for the data type parameters. In type constraints, they represent unspeci�edtypes that can be instantiated by any type to satisfy the type constraint.Parenthesized typesThe type expression (typexpr) denotes the same type as typexpr.Function typesThe type expression typexpr1 -> typexpr2 denotes the type of functions mapping arguments oftype typexpr1 to results of type typexpr2.Tuple typesThe type expression typexpr1 * : : :* typexprn denotes the type of tuples whose elements belong totypes typexpr1; : : :typexprn respectively.Constructed typesType constructors with no parameter, as in typeconstr, are type expressions.The type expression typexpr typeconstr, where typeconstr is a type constructor with one pa-rameter, denotes the application of the unary type constructor typeconstr to the type typexpr.The type expression (typexpr1; : : : ; typexprn) typeconstr, where typeconstr is a type construc-tor with n parameters, denotes the application of the n-ary type constructor typeconstr to thetypes typexpr1 through typexprn.

202.5 Constants constant ::= integer-literalj
oat-literalj char-literalj string-literalj cconstrThe syntactic class of constants comprises literals from the four base types (integers,
oating-point numbers, characters, character strings), and constant constructors.2.6 Patterns pattern ::= identj _j pattern as identj (pattern)j (pattern : typexpr)j pattern | patternj constantj ncconstr patternj pattern , pattern f, patterngj { label = pattern f; label = patterng }j []j [pattern f; patterng]j pattern :: patternThe table below shows the relative precedences and associativity of operators and non-closedpattern constructions. The constructions with higher precedences come �rst.Operator AssociativityConstructor application {:: right, {| leftas {Patterns are templates that allow selecting data structures of a given shape, and binding iden-ti�ers to components of the data structure. This selection operation is called pattern matching;its outcome is either \this value does not match this pattern", or \this value matches this pattern,resulting in the following bindings of identi�ers to values".Variable patternsA pattern that consists in an identi�er matches any value, binding the identi�er to the value. Thepattern _ also matches any value, but does not bind any identi�er.

Chapter 2. The core Caml Light language 21Alias patternsThe pattern pattern1 as ident matches the same values as pattern1. If the matching againstpattern1 is successful, the identi�er ident is bound to the matched value, in addition to the bindingsperformed by the matching against pattern1.Parenthesized patternsThe pattern (pattern1) matches the same values as pattern1. A type constraint can appear in aparenthesized patterns, as in (pattern1 : typexpr). This constraint forces the type of pattern1 tobe compatible with type.\Or" patternsThe pattern pattern1 | pattern2 represents the logical \or" of the two patterns pattern1 andpattern2. A value matches pattern1 | pattern2 either if it matches pattern1 or if it matches pattern2.The two sub-patterns pattern1 and pattern2 must contain no identi�ers. Hence no bindings arereturned by matching against an \or" pattern.Constant patternsA pattern consisting in a constant matches the values that are equal to this constant.Variant patternsThe pattern ncconstr pattern1 matches all variants whose constructor is equal to ncconstr, andwhose argument matches pattern1.The pattern pattern1 :: pattern2 matches non-empty lists whose heads match pattern1, andwhose tails match pattern2. This pattern behaves like prefix :: (pattern1 , pattern2).The pattern [pattern1 ; : : :; patternn] matches lists of length n whose elements matchpattern1 : : :patternn, respectively. This pattern behaves like pattern1 :: : : ::: patternn :: [].Tuple patternsThe pattern pattern1 , : : :, patternn matches n-tuples whose components match the patternspattern1 through patternn. That is, the pattern matches the tuple values (v1; : : : ; vn) such thatpatterni matches vi for i = 1; : : : ; n.Record patternsThe pattern { label1 = pattern1 ; : : :; labeln = patternn } matches records that de�ne at leastthe labels label1 through labeln, and such that the value associated to label i match the patternpatterni, for i = 1; : : : ; n. The record value can de�ne more labels than label1 : : : labeln; the valuesassociated to these extra labels are not taken into account for matching.

222.7 Expressionsexpr ::= identj variablej constantj (expr)j begin expr endj (expr : typexpr)j expr , expr f, exprgj ncconstr exprj expr :: exprj [expr f; exprg]j [| expr f; exprg |]j { label = expr f; label = exprg }j expr exprj pre�x-op exprj expr in�x-op exprj expr . labelj expr . label <- exprj expr .(expr)j expr .(expr) <- exprj expr & exprj expr or exprj if expr then expr [else expr]j while expr do expr donej for ident = expr (to j downto) expr do expr donej expr ; exprj match expr with simple-matchingj fun multiple-matchingj function simple-matchingj try expr with simple-matchingj let [rec] let-binding fand let-binding g in exprsimple-matching ::= pattern -> expr f| pattern -> exprgmultiple-matching ::= pattern-list -> expr f| pattern-list -> exprgpattern-list ::= pattern fpatternglet-binding ::= pattern = exprj variable pattern-list = exprpre�x-op ::= - j -. j !in�x-op ::= + j - j * j / j mod j +. j -. j *. j /. j ** j @ j ^ j ! j :=j = j <> j == j != j < j <= j > j >= j <. j <=. j >. j >=.The table below shows the relative precedences and associativity of operators and non-closedconstructions. The constructions with higher precedence come �rst.

Chapter 2. The core Caml Light language 23Construction or operator Associativity! {. .({function application leftconstructor application {- -. (pre�x) {** rightmod left* *. / /. left+ +. - -. left:: right@ ^ rightcomparisons (= == < etc.) leftnot {& leftor left, {<- := rightif {; rightlet match fun function try {2.7.1 Simple expressionsConstantsExpressions consisting in a constant evaluate to this constant.VariablesExpressions consisting in a variable evaluate to the value bound to this variable in the currentevaluation environment. The variable can be either a quali�ed identi�er or a simple identi�er.Quali�ed identi�ers always denote global variables. Simple identi�ers denote either a local variable,if the identi�er is locally bound, or a global variable, whose full name is obtained by qualifying thesimple identi�er, as described in section 2.2.Parenthesized expressionsThe expressions (expr) and begin expr end have the same value as expr. Both constructs aresemantically equivalent, but it is good style to use begin : : :end inside control structures:if : : : then begin : : : ; : : : end else begin : : : ; : : : endand (: : :) for the other grouping situations.Parenthesized expressions can contain a type constraint, as in (expr : type). This constraintforces the type of expr to be compatible with type.

24Function abstractionThe most general form of function abstraction is:fun pattern11 : : : patternm1 -> expr1| : : :| pattern1n : : : patternmn -> exprnThis expression evaluates to a functional value with m curried arguments. When this function isapplied tom values v1 : : : vm, the values are matched against each pattern row pattern1i : : :patternmifor i from 1 to n. If one of these matchings succeeds, that is if the value vj matches the patternpatternji for all j = 1; : : : ; m, then the expression expr i associated to the selected pattern row isevaluated, and its value becomes the value of the function application. The evaluation of expr itakes place in an environment enriched by the bindings performed during the matching.If several pattern rows match the arguments, the one that occurs �rst in the function de�nitionis selected. If none of the pattern rows matches the argument, the exception Match_failure israised.If the function above is applied to less than m arguments, a functional value is returned, thatrepresents the partial application of the function to the arguments provided. This partial applicationis a function that, when applied to the remaining arguments, matches all arguments against thepattern rows as described above. Matching does not start until all m arguments have been providedto the function; hence, partial applications of the function to less than m arguments never raiseMatch_failure.All pattern rows in the function body must contain the same number of patterns. A variablemust not be bound more than once in one pattern row.Functions with only one argument can be de�ned with the function keyword instead of fun:function pattern1 -> expr1| : : :| patternn -> exprnThe function thus de�ned behaves exactly as described above. The only di�erence between the twoforms of function de�nition is how a parsing ambiguity is resolved. The two forms cconstr pattern(two patterns in a row) and ncconstr pattern (one pattern) cannot be distinguished syntactically.Function de�nitions introduced by fun resolve the ambiguity to the former form; function de�nitionsintroduced by function resolve it to the latter form (the former form makes no sense in this case).Function applicationFunction application is denoted by juxtaposition of expressions. The expressionexpr1 expr2 : : :exprn evaluates the expressions expr1 to exprn. The expression expr1must evaluate to a functional value, which is then applied to the values of expr2; : : : ; exprn. Theorder in which the expressions expr1; : : : ; exprn are evaluated is not speci�ed.Local de�nitionsThe let and let rec constructs bind variables locally. The construct

Chapter 2. The core Caml Light language 25let pattern1 = expr1 and : : :and patternn = exprn in exprevaluates expr1 : : :exprn in some unspeci�ed order, then matches their values against the patternspattern1 : : :patternn. If the matchings succeed, expr is evaluated in the environment enriched bythe bindings performed during matching, and the value of expr is returned as the value of the wholelet expression. If one of the matchings fails, the exception Match_failure is raised.An alternate syntax is provided to bind variables to functional values: instead of writingident = fun pattern1 : : :patternm -> exprin a let expression, one may instead writeident pattern1 : : :patternm = exprBoth forms bind ident to the curried function with m arguments and only one case,pattern1 : : :patternm -> expr .Recursive de�nitions of variables are introduced by let rec:let rec pattern1 = expr1 and : : :and patternn = exprn in exprThe only di�erence with the let construct described above is that the bindings of variables tovalues performed by the pattern-matching are considered already performed when the expressionsexpr1 to exprn are evaluated. That is, the expressions expr1 to exprn can reference identi�ers thatare bound by one of the patterns pattern1; : : : ; patternn, and expect them to have the same valueas in expr, the body of the let rec construct.The recursive de�nition is guaranteed to behave as described above if the expressions expr1to exprn are function de�nitions (fun : : : or function : : :), and the patterns pattern1 : : :patternnconsist in a single variable, as in:let rec ident1 = fun : : :and : : :and identn = fun : : :in exprThis de�nes ident1 : : : identn as mutually recursive functions local to expr . The behavior of otherforms of let rec de�nitions is implementation-dependent.2.7.2 Control constructsSequenceThe expression expr1 ; expr2 evaluates expr1 �rst, then expr2, and returns the value of expr2.ConditionalThe expression if expr1 then expr2 else expr3 evaluates to the value of expr2 if expr1 evaluatesto the boolean true, and to the value of expr3 if expr1 evaluates to the boolean false.The else expr3 part can be omitted, in which case it defaults to else ().

26Case expressionThe expression match exprwith pattern1 -> expr1| : : :| patternn -> exprnmatches the value of expr against the patterns pattern1 to patternn. If the matching againstpatterni succeeds, the associated expression expr i is evaluated, and its value becomes the value ofthe whole match expression. The evaluation of expri takes place in an environment enriched bythe bindings performed during matching. If several patterns match the value of expr, the one thatoccurs �rst in the match expression is selected. If none of the patterns match the value of expr,the exception Match_failure is raised.Boolean operatorsThe expression expr1 & expr2 evaluates to true if both expr1 and expr2 evaluate to true; otherwise,it evaluates to false. The �rst component, expr1, is evaluated �rst. The second component, expr2,is not evaluated if the �rst component evaluates to false. Hence, the expression expr1 & expr2behaves exactly as if expr1 then expr2 else false.The expression expr1 or expr2 evaluates to true if one of expr1 and expr2 evaluates to true;otherwise, it evaluates to false. The �rst component, expr1, is evaluated �rst. The secondcomponent, expr2, is not evaluated if the �rst component evaluates to true. Hence, the expressionexpr1 or expr2 behaves exactly asif expr1 then true else expr2.LoopsThe expression while expr1 do expr2 done repeatedly evaluates expr2 while expr1 evaluates totrue. The loop condition expr1 is evaluated and tested at the beginning of each iteration. Thewhole while : : :done expression evaluates to the unit value ().The expression for ident = expr1 to expr2 do expr3 done �rst evaluates the expressions expr1and expr2 (the boundaries) into integer values n and p. Then, the loop body expr3 is repeatedlyevaluated in an environment where the local variable named ident is successively bound to thevalues n, n+ 1, : : : , p� 1, p. The loop body is never evaluated if n > p.The expression for ident = expr1 downto expr2 do expr3 done �rst evaluates the expressionsexpr1 and expr2 (the boundaries) into integer values n and p. Then, the loop body expr3 isrepeatedly evaluated in an environment where the local variable named ident is successively boundto the values n, n � 1, : : : , p+ 1, p. The loop body is never evaluated if n < p.In both cases, the whole for expression evaluates to the unit value ().

Chapter 2. The core Caml Light language 27Exception handlingThe expression try exprwith pattern1 -> expr1| : : :| patternn -> exprnevaluates the expression expr and returns its value if the evaluation of expr does not raise anyexception. If the evaluation of expr raises an exception, the exception value is matched against thepatterns pattern1 to patternn. If the matching against patterni succeeds, the associated expressionexpr i is evaluated, and its value becomes the value of the whole try expression. The evaluation ofexpr i takes place in an environment enriched by the bindings performed during matching. If severalpatterns match the value of expr , the one that occurs �rst in the try expression is selected. If noneof the patterns matches the value of expr , the exception value is raised again, thereby transparently\passing through" the try construct.2.7.3 Operations on data structuresProductsThe expression expr1 , : : :, exprn evaluates to the n-tuple of the values of expressions expr1 toexprn. The evaluation order for the subexpressions is not speci�ed.VariantsThe expression ncconstr expr evaluates to the variant value whose constructor is ncconstr, andwhose argument is the value of expr.For lists, some syntactic sugar is provided. The expression expr1 :: expr2 stands for theconstructor prefix :: applied to the argument (expr1 , expr2), and therefore evaluates tothe list whose head is the value of expr1 and whose tail is the value of expr2. The expression[expr1 ; : : :; exprn] is equivalent to expr1 :: : : ::: exprn :: [], and therefore evaluates to thelist whose elements are the values of expr1 to exprn.RecordsThe expression { label1 = expr1 ; : : :; labeln = exprn } evaluates to the record value{ label1 = v1 ; : : :; labeln = vn }, where v i is the value of expr i for i = 1; : : : ; n. The labels label1to labeln must all belong to the same record types; all labels belonging to this record type mustappear exactly once in the record expression, though they can appear in any order. The order inwhich expr1 to exprn are evaluated is not speci�ed.The expression expr1 . label evaluates expr1 to a record value, and returns the value associatedto label in this record value.The expression expr1 . label <- expr2 evaluates expr1 to a record value, which is then modi�edin-place by replacing the value associated to label in this record by the value of expr2. Thisoperation is permitted only if label has been declared mutable in the de�nition of the record type.The whole expression expr1 . label <- expr2 evaluates to the unit value ().

28ArraysThe expression [| expr1 ; : : :; exprn |] evaluates to a n-element array, whose elements are ini-tialized with the values of expr1 to exprn respectively. The order in which these expressions areevaluated is unspeci�ed.The expression expr1 .(expr2) is equivalent to the application vect_item expr1 expr2. In theinitial environment, the identi�er vect_item resolves to a built-in function that returns the valueof element number expr2 in the array denoted by expr1. The �rst element has number 0; the lastelement has number n � 1, where n is the size of the array. The exception Invalid_argument israised if the access is out of bounds.The expression expr1 .(expr2) <- expr3 is equivalent to vect_assign expr1 expr2 expr3.In the initial environment, the identi�er vect_assign resolves to a built-in function that modi�esin-place the array denoted by expr1, replacing element number expr2 by the value of expr3. Theexception Invalid_argument is raised if the access is out of bounds. The built-in function returns(). Hence, the whole expression expr1 .(expr2) <- expr3 evaluates to the unit value ().This behavior of the two constructs expr1 .(expr2) and expr1 .(expr2) <- expr3 may changeif the meaning of the identi�ers vect_item and vect_assign is changed, either by rede�nition orby modi�cation of the list of opened modules. See the discussion below on operators.2.7.4 OperatorsThe operators written infix-op in the grammar above can appear in in�x position (between twoexpressions). The operators written prefix-op in the grammar above can appear in pre�x position(in front of an expression).The expression pre�x-op expr is interpreted as the application ident expr, where ident isthe identi�er associated to the operator pre�x-op in the table below. Similarly, the expressionexpr1 in�x-op expr2 is interpreted as the application ident expr1 expr2, where ident is the iden-ti�er associated to the operator in�x-op in the table below. The identi�ers written ident aboveare then evaluated following the rules in section 2.7.1. In the initial environment, they evaluateto built-in functions whose behavior is described in the table. The behavior of the constructionspre�x-op expr and expr1 in�x-op expr2 may change if the meaning of the identi�ers associated topre�x-op or in�x-op is changed, either by rede�nition of the identi�ers, or by modi�cation of thelist of opened modules, through the #open and #close directives.

Chapter 2. The core Caml Light language 29Operator Associated Behavior in the default environmentidenti�er+ prefix + Integer addition.- (in�x) prefix - Integer subtraction.- (pre�x) minus Integer negation.* prefix * Integer multiplication./ prefix / Integer division. Raise Division_by_zero if second argu-ment is zero. The result is unspeci�ed if either argument isnegative.mod prefix mod Integer modulus. Raise Division_by_zero if second argu-ment is zero. The result is unspeci�ed if either argument isnegative.+. prefix +. Floating-point addition.-. (in�x) prefix -. Floating-point subtraction.-. (pre�x) minus_float Floating-point negation.*. prefix *. Floating-point multiplication./. prefix /. Floating-point division. Raise Division_by_zero if secondargument is zero.** prefix ** Floating-point exponentiation.@ prefix @ List concatenation.^ prefix ^ String concatenation.! prefix ! Dereferencing (return the current contents of a reference).:= prefix := Reference assignment (update the reference given as �rstargument with the value of the second argument).= prefix = Structural equality test.<> prefix <> Structural inequality test.== prefix == Physical equality test.!= prefix != Physical inequality test.< prefix < Test \less than" on integers.<= prefix <= Test \less than or equal " on integers.> prefix > Test \greater than" on integers.>= prefix >= Test \greater than or equal" on integers.<. prefix <. Test \less than" on
oating-point numbers.<=. prefix <=. Test \less than or equal " on
oating-point numbers.>. prefix >. Test \greater than" on
oating-point numbers.>=. prefix >=. Test \greater than or equal" on
oating-point numbers.The behavior of the +, -, *, /, mod, +., -., *. or /. operators is unspeci�ed if the result fallsoutside of the range of representable integers or
oating-point numbers, respectively. See chapter 13for a more precise description of the behavior of the operators above.2.8 Global de�nitionsThis section describes the constructs that bind global identi�ers (value variables, value constructors,type constructors, record labels).

302.8.1 Type de�nitionstype-de�nition ::= type typedef fand typedef gtypedef ::= type-params ident = constr-decl f| constr-declgj type-params ident = { label-decl f; label-declg }j type-params ident == typexprj type-params identtype-params ::= nothingj ' identj (' ident f, ' identg)constr-decl ::= identj ident of typexprlabel-decl ::= ident : typexprj mutable ident : typexprType de�nitions bind type constructors to data types: either variant types, record types, typeabbreviations, or abstract data types.Type de�nitions are introduced by the type keyword, and consist in one or several simplede�nitions, possibly mutually recursive, separated by the and keyword. Each simple de�nitionde�nes one type constructor.A simple de�nition consists in an identi�er, possibly preceded by one or several type parameters,and followed by a data type description. The identi�er is the local name of the type constructorbeing de�ned. (The module name for this type constructor is the name of the module beingcompiled.) The optional type parameters are either one type variable ' ident, for type constructorswith one parameter, or a list of type variables (' ident1; : : : ; ' identn), for type constructors withseveral parameters. These type parameters can appear in the type expressions of the right-handside of the de�nition.Variant typesThe type de�nition typeparams ident = constr-decl1 | : : :| constr-decln de�nes a variant type. Theconstructor declarations constr-decl1; : : : ; constr-decln describe the constructors associated to thisvariant type. The constructor declaration ident of typexpr declares the local name ident (in themodule being compiled) as a non-constant constructor, whose argument has type typexpr. Theconstructor declaration ident declares the local name ident (in the module being compiled) as aconstant constructor.Record typesThe type de�nition typeparams ident = { label-decl1 ; : : :; label-decln } de�nes a record type. Thelabel declarations label-decl1; : : : ; label-decln describe the labels associated to this record type. Thelabel declaration ident : typexpr declares the local name ident in the module being compiled as alabel, whose argument has type typexpr. The label declaration mutable ident : typexpr behavessimilarly; in addition, it allows physical modi�cation over the argument to this label.

Chapter 2. The core Caml Light language 31Type abbreviationsThe type de�nition typeparams ident == typexpr de�nes the type constructor ident as an abbrevi-ation for the type expression typexpr .Abstract typesThe type de�nition typeparams ident de�nes ident as an abstract type. When appearing in a mod-ule interface, this de�nition allows exporting a type constructor while hiding how it is representedin the module implementation.2.8.2 Exception de�nitionsexception-de�nition ::= exception constr-decl fand constr-declgException de�nitions add new constructors to the built-in variant type exn of exception values.The constructors are declared as for a de�nition of a variant type.2.9 Directives directive ::= # open stringj # close stringj # ident stringDirectives control the behavior of the compiler. They apply to the remainder of the currentcompilation unit.The two directives #open and #close modify the list of opened modules, that the compiler usesto complete unquali�ed identi�ers, as described in section 2.2. The directive #open string adds themodule whose name is given by the string constant string to the list of opened modules, in �rstposition. The directive #close string removes the �rst occurrence of the module whose name isgiven by the string constant string from the list of opened modules.Implementations can provide other directives, provided they follow the syntax # ident string ,where ident is the name of the directive, and the string constant string is the argument to thedirective. The behavior of these additional directives is implementation-dependent.2.10 Module implementationsimplementation ::= fimpl-phrase ;;gimpl-phrase ::= exprj value-de�nitionj type-de�nitionj exception-de�nitionj directivevalue-de�nition ::= let [rec] let-binding fand let-bindingg

32 A module implementation consists in a sequence of implementation phrases, terminated bydouble semicolons. An implementation phrase is either an expression, a value de�nition, a type orexception de�nition, or a directive. At run-time, implementation phrases are evaluated sequentially,in the order in which they appear in the module implementation.Implementation phrases consisting in an expression are evaluated for their side-e�ects.Value de�nitions bind global value variables in the same way as a let : : :in : : : expression bindslocal variables. The expressions are evaluated, and their values are matched against the left-handsides of the = sides, as explained in section 2.7.1. If the matching succeeds, the bindings of identi�ersto values performed during matching are interpreted as bindings to the global value variables whoselocal name is the identi�er, and whose module name is the name of the module. If the matchingfails, the exception Match_failure is raised. The scope of these bindings is the phrases that followthe value de�nition in the module implementation.Type and exception de�nitions introduce type constructors, variant constructors and recordlabels as described in sections 2.8.1 and 2.8.2. The scope of these de�nitions is the phrases thatfollow the value de�nition in the module implementation. The evaluation of an implementationphrase consisting in a type or exception de�nition produces no e�ect at run-time.Directives modify the behavior of the compiler on the subsequent phrases of the module im-plementation, as described in section 2.9. The evaluation of an implementation phrase consistingin a directive produces no e�ect at run-time. Directives apply only to the module currently beingcompiled; in particular, they have no e�ect on other modules that refer to globals exported by themodule being compiled.2.11 Module interfacesinterface ::= fintf-phrase ;;gintf-phrase ::= value-declarationj type-de�nitionj exception-de�nitionj directivevalue-declaration ::= value ident : typexpr fand ident : typexprgModule interfaces declare the global objects (value variables, type constructors, variant con-structors, record labels) that a module exports, that is, makes available to other modules. Othermodules can refer to these globals using quali�ed identi�ers or the #open directive, as explained insection 2.2.A module interface consists in a sequence of interface phrases, terminated by double semicolons.An interface phrase is either a value declaration, a type de�nition, an exception de�nition, or adirective.Value declarations declare global value variables that are exported by the module implementa-tion, and the types with which they are exported. The module implementation must de�ne thesevariables, with types at least as general as the types declared in the interface. The scope of thebindings for these global variables extends from the module implementation itself to all modulesthat refer to those variables.

Chapter 2. The core Caml Light language 33Type or exception de�nitions introduce type constructors, variant constructors and record la-bels as described in sections 2.8.1 and 2.8.2. Exception de�nitions and type de�nitions that are notabstract type declarations also take e�ect in the module implementation; that is, the type construc-tors, variant constructors and record labels they de�ne are considered bound on entrance to themodule implementation, and can be referred to by the implementation phrases. Type de�nitionsthat are not abstract type declarations must not be rede�ned in the module implementation. Incontrast, the type constructors that are declared abstract in a module interface must be de�ned inthe module implementation, with the same names.Directives modify the behavior of the compiler on the subsequent phrases of the module inter-face, as described in section 2.9. Directives apply only to the interface currently being compiled;in particular, they have no e�ect on other modules that refer to globals exported by the interfacebeing compiled.

34

Chapter 3Language extensionsThis chapter describes the language features that are implemented in Caml Light, but not describedin the Caml Light reference manual. In contrast with the fairly stable kernel language that isdescribed in the reference manual, the extensions presented here are still experimental, and maybe removed or changed in the future.3.1 Streams, parsers, and printersCaml Light comprises a built-in type for streams (possibly in�nite sequences of elements, that areevaluated on demand), and associated stream expressions, to build streams, and stream patterns,to destructure streams. Streams and stream patterns provide a natural approach to the writing ofrecursive-descent parsers.Streams are presented by the following extensions to the syntactic classes of expressions:expr ::= : : :j [< >]j [< stream-component f; stream-componentg >]j function stream-matchingj match expr with stream-matchingstream-component ::= ' exprj exprstream-matching ::= stream-pattern -> expr f| stream-pattern -> exprgstream-pattern ::= [< >]j [< stream-comp-pat f; stream-comp-patg >]stream-comp-pat ::= ' patternj expr patternj identStream expressions are bracketed by [< and >]. They represent the concatenation of theircomponents. The component ' expr represents the one-element stream whose element is the value35

36of expr . The component expr represents a sub-stream. For instance, if both s and t are streamsof integers, then [<'1; s; t; '2>] is a stream of integers containing the element 1, then theelements of s, then those of t, and �nally 2. The empty stream is denoted by [< >].Unlike any other kind of expressions in the language, stream expressions are submitted to lazyevaluation: the components are not evaluated when the stream is built, but only when they areaccessed during stream matching. The components are evaluated once, the �rst time they areaccessed; the following accesses reuse the value computed the �rst time.Stream patterns, also bracketed by [< and >], describe initial segments of streams. In particular,the stream pattern [< >]matches all streams. Stream pattern components are matched against thecorresponding elements of a stream. The component ' pattern matches the corresponding streamelement against the pattern. The component expr pattern applies the function denoted by expr tothe current stream, then matches the result of the function against pattern. Finally, the componentident simply binds the identi�er to the stream being matched. (The current implementation limitsident to appear last in a stream pattern.)Stream matching proceeds destructively: once a component has been matched, it is discardedfrom the stream (by in-place modi�cation).Stream matching proceeds in two steps: �rst, a pattern is selected by matching the streamagainst the �rst components of the stream patterns; then, the following components of the selectedpattern are checked against the stream. If the following components do not match, the exceptionParse_error is raised. There is no backtracking here: stream matching commits to the patternselected according to the �rst element. If none of the �rst components of the stream patterns match,the exception Parse_failure is raised. The Parse_failure exception causes the next alternativeto be tried, if it occurs during the matching of the �rst element of a stream, before matching hascommitted to one pattern.See Functional programming using Caml Light for a more gentle introductions to streams, andfor some examples of their use in writing parsers. A more formal presentation of streams, and adiscussion of alternate semantics, can be found in Parsers in ML by Michel Mauny and Daniel deRauglaudre, in the proceedings of the 1992 ACM conference on Lisp and Functional Programming.3.2 GuardsCases of a pattern matching can include guard expressions, which are arbitrary boolean expressionsthat must evaluate to true for the match case to be selected. Guards occur just before the -> tokenand are introduced by the when keyword:match exprwith pattern1[whencond1] -> expr1| : : :| patternn[whencondn] -> exprn(Same syntax for the fun, function, and try : : :with constructs.) During matching, if the value ofexpr matches some pattern patterni which has a guard condi, then the expression condi is evaluated(in an environment enriched by the bindings performed during matching). If condi evaluates totrue, then expri is evaluated and its value returned as the result of the matching, as usual. But ifcondi evaluates to false, the matching is resumed against the patterns following patterni.

Chapter 3. Language extensions 373.3 Range patternsIn patterns, Caml Light recognizes the form ` c ` .. ` d ` (two character constants separatedby ..) as a shorthand for the pattern` c ` | ` c1 ` | ` c2 ` | : : :| ` cn ` | ` d `where c1; c2; : : : ; cn are the characters that occur between c and d in the ASCII character set. Forinstance, the pattern `0`..`9` matches all characters that are digits.3.4 Recursive de�nitions of valuesBesides let rec de�nitions of functional values, as described in the reference manual, Caml Lightsupports a certain class of recursive de�nitions of non-functional values. For instance, the followingde�nition is accepted:let rec x = 1 :: y and y = 2 :: x;;and correctly binds x to the cyclic list 1::2::1::2::: : : , and y to the cyclic list2::1::2::1::: : :Informally, the class of accepted de�nitions consists of those de�nitionswhere the de�ned variables occur only inside function bodies or as a �eld of a data structure.Moreover, the patterns in the left-hand sides must be identi�ers, nothing more complex.3.5 Local de�nitions using whereA post�x syntax for local de�nitions is provided:expr ::= : : :j expr where [rec] let-bindingThe expression expr where let-binding behaves exactly as let let-binding in expr , and similarlyfor where rec and let rec.3.6 Mutable variant typesThe argument of a value constructor can be declared \mutable" when the variant type is de�ned:type foo = A of mutable int| B of mutable int * int| ...This allows in-place modi�cation of the argument part of a constructed value. Modi�cation isperformed by a new kind of expressions, written ident <- expr, where ident is an identi�er boundby pattern-matching to the argument of a mutable constructor, and expr denotes the value thatmust be stored in place of that argument. Continuing the example above:

38 let x = A 1 inbegin match x with A y -> y <- 2 | _ -> () end;xreturns the value A 2. The notation ident <- expr works also if ident is an identi�er bound bypattern-matching to the value of a mutable �eld in a record. For instance,type bar = {mutable lbl : int};;let x = {lbl = 1} inbegin match x with {lbl = y} -> y <- 2 end;xreturns the value {lbl = 2}.3.7 String accessExtra syntactic constructs are provided to access and modify characters in strings:expr ::= : : :j expr .[expr]j expr .[expr] <- exprThe expression expr1 .[expr2] is equivalent to the application nth_char expr1 expr2. In theinitial environment, the identi�er nth_char resolves to a built-in function that returns the characternumber expr2 in the string denoted by expr1. The �rst element has number 0; the last elementhas number n� 1, where n is the length of the string. The exception Invalid_argument is raisedif the access is out of bounds.The expression expr1 .[expr2] <- expr3 is equivalent to set_nth_char expr1 expr2 expr3. Inthe initial environment, the identi�er set_nth_char resolves to a built-in function that modi�esin-place the string denoted by expr1, replacing character number expr2 by the value of expr3. Theexception Invalid_argument is raised if the access is out of bounds. The built-in function returns().3.8 Alternate syntaxThe syntax of some constructs has been slightly relaxed:� An optional ; may terminate a sequence, list expression, or record expression. For instance,begin e1 ; e2 ; end is syntactically correct and synonymous with begin e1 ; e2 end.� Similarly, an optional | may begin a pattern-matching expression. For instance,function | pat1 -> expr1 | : : : is syntactically correct and synonymous withfunction pat1 -> expr1 | : : :.� The tokens && and || are recognized as synonymous for & (sequential \and") and or (sequen-tial \or"), respectively.

Chapter 3. Language extensions 393.9 In�x symbolsSequences of \operator characters", such as <=> or !!, are read as a single token from thein�x-symbol or pre�x-symbol class:in�x-symbol ::= (= j < j > j @ j ^ j | j & j ~ j + j - j * j / j $ j %) foperator-chargpre�x-symbol ::= (! j ?) foperator-chargoperator-char ::= ! j $ j % j & j * j + j - j . j / j : j ; j < j = j > j ? j @ j ^ j | j ~Tokens from these two classes generalize the built-in in�x and pre�x operators described in chap-ter 2: expr ::= : : :j pre�x-symbol exprj expr in�x-symbol exprvariable ::= : : :j prefix pre�x-symbolj prefix in�x-symbolNo #infix directive (section 3.10) is needed to give in�x symbols their in�x status. The precedencesand associativities of in�x symbols in expressions are determined by their �rst character(s): symbolsbeginning with ** have highest precedence (exponentiation), followed by symbols beginning with*, / or % (multiplication), then + and - (addition), then @ and ^ (concatenation), then all otherssymbols (comparisons). The updated precedence table for expressions is shown below. We write*: : :" to mean \any in�x symbol starting with *".

40 Construction or operator Associativity!: : : ?: : : {. .(.[{function application leftconstructor application {- -. (pre�x) {**: : : right*: : : /: : : %: : : mod left+: : : -: : : left:: right@: : : ^: : : rightcomparisons (= == < etc.), all other in�x symbols leftnot {& && leftor || left, {<- := rightif {; rightlet match fun function try {Some in�x and pre�x symbols are prede�ned in the default environment (see chapters 2 and 13 fora description of their behavior). The others are initially unbound and must be bound before use,with a let prefix in�x-symbol = expr or let prefix pre�x-symbol = expr binding.3.10 DirectivesIn addition to the standard #open and #close directives, Caml Light provides three additionaldirectives.#infix " id "Change the lexical status of the identi�er id: in the remainder of the compilation unit, id isrecognized as an in�x operator, just like +. The notation prefix id can be used to refer tothe identi�er id itself. Expressions of the form expr1 id expr2 are parsed as the applicationprefix id expr1 expr2. The argument to the #infix directive must be an identi�er, thatis, a sequence of letters, digits and underscores starting with a letter; otherwise, the #infixdeclaration has no e�ect. Example:#infix "union";;let prefix union = fun x y -> ... ;;[1,2] union [3,4];;#uninfix " id "Remove the in�x status attached to the identi�er id by a previous #infix " id " directive.

Chapter 3. Language extensions 41#directory " dir-name "Add the named directory to the path of directories searched for compiled module interface�les. This is equivalent to the -I command-line option to the batch compiler and the toplevelsystem.

42

Part IIIThe Caml Light commands

43

Chapter 4Batch compilation (camlc)This chapter describes how Caml Light programs can be compiled non-interactively, and turnedinto standalone executable �les. This is achieved by the command camlc, which compiles and linksCaml Light source �les.Mac: This command is not a standalone Macintosh application. To run camlc, you need theMacintosh Programmer's Workshop (MPW) programming environment. The programsgenerated by camlc are also MPW tools, not standalone Macintosh applications.4.1 Overview of the compilerThe camlc command has a command-line interface similar to the one of most C compilers. Itaccepts several types of arguments: source �les for module implementations; source �les for moduleinterfaces; and compiled module implementations.� Arguments ending in .mli are taken to be source �les for module interfaces. Module interfacesdeclare exported global identi�ers, de�ne public data types, and so on. From the �le x.mli,the camlc compiler produces a compiled interface in the �le x.zi.� Arguments ending in .ml are taken to be source �les for module implementation. Mod-ule implementations bind global identi�ers to values, de�ne private data types, and containexpressions to be evaluated for their side-e�ects. From the �le x.ml, the camlc compilerproduces compiled object code in the �le x.zo. If the interface �le x.mli exists, the moduleimplementation x.ml is checked against the corresponding compiled interface x.zi, whichis assumed to exist. If no interface x.mli is provided, the compilation of x.ml produces acompiled interface �le x.zi in addition to the compiled object code �le x.zo. The �le x.ziproduced corresponds to an interface that exports everything that is de�ned in the imple-mentation x.ml.� Arguments ending in .zo are taken to be compiled object code. These �les are linked together,along with the object code �les obtained by compiling .ml arguments (if any), and the CamlLight standard library, to produce a standalone executable program. The order in which.zo and .ml arguments are presented on the command line is relevant: global identi�ers areinitialized in that order at run-time, and it is a link-time error to use a global identi�er before45

46 having initialized it. Hence, a given x.zo �le must come before all .zo �les that refer toidenti�ers de�ned in the �le x.zo.The output of the linking phase is a �le containing compiled code that can be executed by theCaml Light runtime system: the command named camlrun. If caml.out is the name of the �leproduced by the linking phase, the commandcamlrun caml.out arg1 arg2 : : : argnexecutes the compiled code contained in caml.out, passing it as arguments the character stringsarg1 to argn. (See chapter 6 for more details.)Unix: On most Unix systems, the �le produced by the linking phase can be run directly, as in:./caml.out arg1 arg2 : : : argnThe produced �le has the executable bit set, and it manages to launch the bytecode inter-preter by itself.PC: The output �le produced by the linking phase is directly executable, provided it is givenextension .EXE. Hence, if the output �le is named caml_out.exe, you can execute it withthe commandcaml_out arg1 arg2 : : : argnActually, the produced �le caml_out.exe is a tiny executable �le prepended to the bytecode�le. The executable simply runs the camlrun runtime system on the remainder of the �le.(As a consequence, this is not a standalone executable: it still requires camlrun.exe toreside in one of the directories in the path.)4.2 OptionsThe following command-line options are recognized by camlc.-c Compile only. Suppress the linking phase of the compilation. Source code �les are turned intocompiled �les, but no executable �le is produced. This option is useful to compile modulesseparately.-ccopt optionPass the given option to the C compiler and linker, when linking in \custom runtime" mode(see the -custom option). For instance, -ccopt -Ldir causes the C linker to search for Clibraries in directory dir.-customLink in \custom runtime" mode. In the default linking mode, the linker produces bytecodethat is intended to be executed with the shared runtime system, camlrun. In the customruntime mode, the linker produces an output �le that contains both the runtime system andthe bytecode for the program. The resulting �le is considerably larger, but it can be executeddirectly, even if the camlrun command is not installed. Moreover, the \custom runtime" modeenables linking Caml Light code with user-de�ned C functions, as described in chapter 12.

Chapter 4. Batch compilation (camlc) 47Unix: Never strip an executable produced with the -custom option.PC: This option requires the DJGPP port of the GNU C compiler to be installed.-g Cause the compiler to produce additional debugging information. During the linking phase,this option add information at the end of the executable bytecode �le produced. This infor-mation is required by the debugger camldebug and also by the catch-all exception handlerfrom the standard library module printexc.During the compilation of an implementation �le (.ml �le), when the -g option is set, thecompiler adds debugging information to the .zo �le. It also writes a .zix �le that describesthe full interface of the .ml �le, that is, all types and values de�ned in the .ml �le, includingthose that are local to the .ml �le (i.e. not declared in the .mli interface �le). Used inconjunction with the -g option to the toplevel system (chapter 5), the .zix �le gives accessto the local values of the module, making it possible to print or \trace" them. The .zix �leis not produced if the implementation �le has no explicit interface, since, in this case, themodule has no local values.-i Cause the compiler to print the declared types, exceptions, and global variables (with theirinferred types) when compiling an implementation (.ml �le). This can be useful to checkthe types inferred by the compiler. Also, since the output follows the syntax of moduleinterfaces, it can help in writing an explicit interface (.mli �le) for a �le: just redirect thestandard output of the compiler to a .mli �le, and edit that �le to remove all declarationsof unexported globals.-I directoryAdd the given directory to the list of directories searched for compiled interface �les (.zi) andcompiled object code �les (.zo). By default, the current directory is searched �rst, then thestandard library directory. Directories added with -I are searched after the current directory,but before the standard library directory. When several directories are added with several -Ioptions on the command line, these directories are searched from right to left (the rightmostdirectory is searched �rst, the leftmost is searched last). (Directories can also be added tothe search path from inside the programs with the #directory directive; see chapter 3.)-lang language-codeTranslate the compiler messages to the speci�ed language. The language-code is fr for French,es for Spanish, de for German, : : : (See the �le camlmsgs.txt in the Caml Light standardlibrary directory for a list of available languages.) When an unknown language is speci�ed,or no translation is available for a message, American English is used by default.-o exec-�leSpecify the name of the output �le produced by the linker.Unix: The default output name is a.out, in keeping with the tradition.PC: The default output name is caml_out.exe.Mac: The default output name is Caml.Out.

48-O module-setSpecify which set of standard modules is to be implicitly \opened" at the beginning of acompilation. There are three module sets currently available:cautiousprovides the standard operations on integers,
oating-point numbers, characters, strings,arrays, : : : , as well as exception handling, basic input/output, etc. Operations from thecautious set perform range and bound checking on string and array operations, as wellas various sanity checks on their arguments.fastprovides the same operations as the cautious set, but without sanity checks on theirarguments. Programs compiled with -O fast are therefore slightly faster, but unsafe.nonesuppresses all automatic opening of modules. Compilation starts in an almost emptyenvironment. This option is not of general use, except to compile the standard libraryitself.The default compilation mode is -O cautious. See chapter 13 for a complete listing of themodules in the cautious and fast sets.-p Compile and link in pro�ling mode. See the description of the pro�ler camlpro in chapter 10.-v Print the version number of the compiler.-W Print extra warning messages for the following events:� A #open directive is useless (no identi�er in the opened module is ever referenced).� A variable name in a pattern matching is capitalized (often corresponds to a misspelledconstant constructor).Unix: The following environment variable is also consulted:LANGWhen set, control which language is used to print the compiler messages (see the -langcommand-line option).PC: The following option is also supported:@response-�leProcess the �les whose names are listed in �le response-�le, just as if these namesappeared on the command line. File names in response-�le are separated by blanks(spaces, tabs, newlines). This option allows to overcome silly limitations on the lengthof the command line.The following environment variables are also consulted:CAMLLIBContain the path to the standard library directory.

Chapter 4. Batch compilation (camlc) 49LANGWhen set, control which language is used to print the compiler messages (see the -langcommand-line option).4.3 Modules and the �le systemThis short section is intended to clarify the relationship between the names of the modules and thenames of the �les that contain their compiled interface and compiled implementation.The compiler always derives the name of the compiled module by taking the base name of thesource �le (.ml or .mli �le). That is, it strips the leading directory name, if any, as well as the .mlor .mli su�x. The produced .zi and .zo �les have the same base name as the source �le; hence,the compiled �les produced by the compiler always have their base name equal to the name of themodule they describe (for .zi �les) or implement (for .zo �les).For compiled interface �les (.zi �les), this invariant must be preserved at all times, since thecompiler relies on it to load the compiled interface �le for the modules that are used from the modulebeing compiled. Hence, it is risky and generally incorrect to rename .zi �les. It is admissible tomove them to another directory, if their base name is preserved, and the correct -I options aregiven to the compiler.Compiled bytecode �les (.zo �les), on the other hand, can be freely renamed once created.That's because 1- .zo �les contain the true name of the module they de�ne, so there is no need toderive that name from the �le name; 2- the linker never attempts to �nd by itself the .zo �le thatimplements a module of a given name: it relies on the user providing the list of .zo �les by hand.4.4 Common errorsThis section describes and explains the most frequently encountered error messages.Cannot �nd �le �lenameThe named �le could not be found in the current directory, nor in the directories of the searchpath. The �lename is either a compiled interface �le (.zi �le), or a compiled bytecode �le(.zo �le). If �lename has the format mod.zi, this means you are trying to compile a �le thatreferences identi�ers from module mod, but you have not yet compiled an interface for modulemod. Fix: compile mod.mli or mod.ml �rst, to create the compiled interface mod.zi.If �lename has the format mod.zo, this means you are trying to link a bytecode object �lethat does not exist yet. Fix: compile mod.ml �rst.If your program spans several directories, this error can also appear because you haven'tspeci�ed the directories to look into. Fix: add the correct -I options to the command line.Corrupted compiled interface �le �lenameThe compiler produces this error when it tries to read a compiled interface �le (.zi �le) thathas the wrong structure. This means something went wrong when this .zi �le was written:the disk was full, the compiler was interrupted in the middle of the �le creation, and so on.This error can also appear if a .zi �le is modi�ed after its creation by the compiler. Fix:remove the corrupted .zi �le, and rebuild it.

50This expression has type t1, but is used with type t2This is by far the most common type error in programs. Type t1 is the type inferred for theexpression (the part of the program that is displayed in the error message), by looking at theexpression itself. Type t2 is the type expected by the context of the expression; it is deducedby looking at how the value of this expression is used in the rest of the program. If the twotypes t1 and t2 are not compatible, then the error above is produced.In some cases, it is hard to understand why the two types t1 and t2 are incompatible. Forinstance, the compiler can report that \expression of type foo cannot be used with type foo",and it really seems that the two types foo are compatible. This is not always true. Twotype constructors can have the same name, but actually represent di�erent types. This canhappen if a type constructor is rede�ned. Example:type foo = A | B;;let f = function A -> 0 | B -> 1;;type foo = C | D;;f C;;This result in the error message \expression C of type foo cannot be used with type foo".Incompatible types with the same names can also appear when a module is changed andrecompiled, but some of its clients are not recompiled. That's because type constructors in.zi �les are not represented by their name (that would not su�ce to identify them, becauseof type rede�nitions), but by unique stamps that are assigned when the type declaration iscompiled. Consider the three modules:mod1.ml: type t = A | B;;let f = function A -> 0 | B -> 1;;mod2.ml: let g x = 1 + mod1__f(x);;mod3.ml: mod2__g mod1__A;;Now, assume mod1.ml is changed and recompiled, but mod2.ml is not recompiled. The recom-pilation of mod1.ml can change the stamp assigned to type t. But the interface mod2.zi willstill use the old stamp for mod1__t in the type of mod2__g. Hence, when compiling mod3.ml,the system complains that the argument type of mod2__g (that is, mod1__t with the oldstamp) is not compatible with the type of mod1__A (that is, mod1__t with the new stamp).Fix: use make or a similar tool to ensure that all clients of a module mod are recompiled whenthe interface mod.zi changes. To check that the Makefile contains the right dependencies,remove all .zi �les and rebuild the whole program; if no \Cannot �nd �le" error appears,you're all set.The type inferred for name, that is, t, contains non-generalizable type variablesType variables ('a, 'b, : : :) in a type t can be in either of two states: generalized (whichmeans that the type t is valid for all possible instantiations of the variables) and not gener-alized (which means that the type t is valid only for one instantiation of the variables). In a

Chapter 4. Batch compilation (camlc) 51let binding let name = expr, the type-checker normally generalizes as many type variablesas possible in the type of expr. However, this leads to unsoundness (a well-typed programcan crash) in conjunction with polymorphic mutable data structures. To avoid this, general-ization is performed at let bindings only if the bound expression expr belongs to the class of\syntactic values", which includes constants, identi�ers, functions, tuples of syntactic values,etc. In all other cases (for instance, expr is a function application), a polymorphic mutablecould have been created and generalization is therefore turned o�.Non-generalized type variables in a type cause no di�culties inside a given compilation unit(the contents of a .ml �le, or an interactive session), but they cannot be allowed in typeswritten in a .zi compiled interface �le, because they could be used inconsistently in othercompilation units. Therefore, the compiler
ags an error when a .ml implementation withouta .mli interface de�nes a global variable name whose type contains non-generalized typevariables. There are two solutions to this problem:� Add a type constraint or a .mli interface to give a monomorphic type (without typevariables) to name. For instance, instead of writinglet sort_int_list = sort (prefix <);;(* inferred type 'a list -> 'a list, with 'a not generalized *)writelet sort_int_list = (sort (prefix <) : int list -> int list);;� If you really need name to have a polymorphic type, turn its de�ning expression into afunction by adding an extra parameter. For instance, instead of writinglet map_length = map vect_length;;(* inferred type 'a vect list -> int list, with 'a not generalized *)write let map_length lv = map vect_length lv;;mod__name is referenced before being de�nedThis error appears when trying to link an incomplete or incorrectly ordered set of �les. Eitheryou have forgotten to provide an implementation for the module named mod on the commandline (typically, the �le named mod.zo, or a library containing that �le). Fix: add the missing.ml or .zo �le to the command line. Or, you have provided an implementation for the modulenamed mod, but it comes too late on the command line: the implementation of mod mustcome before all bytecode object �les that reference one of the global variables de�ned inmodule mod. Fix: change the order of .ml and .zo �les on the command line.Of course, you will always encounter this error if you have mutually recursive functions acrossmodules. That is, function mod1__f calls function mod2__g, and function mod2__g callsfunction mod1__f. In this case, no matter what permutations you perform on the commandline, the program will be rejected at link-time. Fixes:� Put f and g in the same module.� Parameterize one function by the other. That is, instead of having

52 mod1.ml: let f x = ... mod2__g ... ;;mod2.ml: let g y = ... mod1__f ... ;;de�nemod1.ml: let f g x = ... g ... ;;mod2.ml: let rec g y = ... mod1__f g ... ;;and link mod1 before mod2.� Use a reference to hold one of the two functions, as in :mod1.ml: let forward_g =ref((fun x -> failwith "forward_g") : <type>);;let f x = ... !forward_g ... ;;mod2.ml: let g y = ... mod1__f ... ;;mod1__forward_g := g;;Unavailable C primitive fThis error appears when trying to link code that calls external functions written in C in\default runtime" mode. As explained in chapter 12, such code must be linked in \customruntime" mode. Fix: add the -custom option, as well as the (native code) libraries and(native code) object �les that implement the required external functions.

Chapter 5The toplevel system (camllight)This chapter describes the toplevel system for Caml Light, that permits interactive use of the CamlLight system, through a read-eval-print loop. In this mode, the system repeatedly reads CamlLight phrases from the input, then typechecks, compile and evaluate them, then prints the inferredtype and result value, if any. The system prints a # (sharp) prompt before reading each phrase. Aphrase can span several lines. Phrases are delimited by ;; (the �nal double-semicolon).From the standpoint of the module system, all phrases entered at toplevel are treated as theimplementation of a module named top. Hence, all toplevel de�nitions are entered in the moduletop.Unix: The toplevel system is started by the command camllight. Phrases are read on standardinput, results are printed on standard output, errors on standard error. End-of-�le onstandard input terminates camllight (see also the quit system function below).The toplevel system does not perform line editing, but it can easily be used in conjunctionwith an external line editor such as fep; just run fep -emacs camllight or fep -vicamllight. Another option is to use camllight under Gnu Emacs, which gives the fullediting power of Emacs (see the directory contrib/camlmode in the distribution).At any point, the parsing, compilation or evaluation of the current phrase can be inter-rupted by pressing ctrl-C (or, more precisely, by sending the intr signal to the camllightprocess). This goes back to the # prompt.Mac: The toplevel system is presented as the standalone Macintosh application Caml Light. Thisapplication does not require the Macintosh Programmer's Workshop to run.Once launched from the Finder, the application opens two windows, \Caml Light Input"and \Caml Light Output". Phrases are entered in the \Caml Light Input" window. The\Caml Light Output" window displays a copy of the input phrases as they are processed bythe Caml Light toplevel, interspersed with the toplevel responses. The \Return" key sendsthe contents of the Input window to the Caml Light toplevel. The \Enter" key inserts anewline without sending the contents of the Input window. (This can be con�gured withthe \Preferences" menu item.)The contents of the input window can be edited at all times, with the standard Macintoshinterface. An history of previously entered phrases is maintained, and can be accessed withthe \Previous entry" (command-P) and \Next entry" (command-N) menu items.53

54 To quit the Caml Light application, either select \Quit" from the \Files" menu, or use thequit function described below.At any point, the parsing, compilation or evaluation of the current phrase can be interruptedby pressing \command-period", or by selecting the item \Interrupt Caml Light" in the\Caml Light" menu. This goes back to the # prompt.PC: The toplevel system is presented as a Windows application named Camlwin.exe. It shouldbe launched from the Windows �le manager or program manager.The \Terminal" windows is split in two panes. Phrases are entered and edited in thebottom pane. The top pane displays a copy of the input phrases as they are processed bythe Caml Light toplevel, interspersed with the toplevel responses. The \Return" key sendsthe contents of the bottom pane to the Caml Light toplevel. The \Enter" key inserts anewline without sending the contents of the Input window. (This can be con�gured withthe \Preferences" menu item.)The contents of the input window can be edited at all times, with the standard Windowsinterface. An history of previously entered phrases is maintained and displayed in a separatewindow.To quit the Camlwin application, either select \Quit" from the \File" menu, or use the quitfunction described below.At any point, the parsing, compilation or evaluation of the current phrase can be interruptedby selecting the \Interrupt Caml Light" menu item. This goes back to the # prompt.A text-only version of the toplevel system is available under the name caml.exe. It runsunder MSDOS as well as under Windows in a DOS window. No editing facilities areprovided.5.1 OptionsThe following command-line options are recognized by the caml or camllight commands.-g Start the toplevel system in debugging mode. This mode gives access to values and typesthat are local to a module, that is, not exported by the interface of the module. Whendebugging mode is o�, these local objects are not accessible (attempts to access them producean \Unbound identi�er" error). When debugging mode is on, these objects become visible,just like the objects that are exported in the module interface. In particular, values of abstracttypes are printed using their concrete representations, and the functions local to a modulecan be \traced" (see the trace function in section 5.2). This applies only to the modules thathave been compiled in debugging mode (either by the batch compiler with the -g option, orby the toplevel system in debugging mode), that is, those modules that have an associated.zix �le.-I directoryAdd the given directory to the list of directories searched for compiled interface �les (.zi) andcompiled object code �les (.zo). By default, the current directory is searched �rst, then thestandard library directory. Directories added with -I are searched after the current directory,

Chapter 5. The toplevel system (camllight) 55but before the standard library directory. When several directories are added with several -Ioptions on the command line, these directories are searched from right to left (the rightmostdirectory is searched �rst, the leftmost is searched last). Directories can also be added to thesearch path once the toplevel is running with the #directory directive; see chapter 3.-lang language-codeTranslate the toplevel messages to the speci�ed language. The language-code is fr for French,es for Spanish, de for German, : : : (See the �le camlmsgs.txt in the Caml Light standardlibrary directory for a list of available languages.) When an unknown language is speci�ed,or no translation is available for a message, American English is used by default.-O module-setSpecify which set of standard modules is to be implicitly \opened" when the toplevel starts.There are three module sets currently available:cautiousprovides the standard operations on integers,
oating-point numbers, characters, strings,arrays, : : : , as well as exception handling, basic input/output, : : :Operations from thecautious set perform range and bound checking on string and vector operations, as wellas various sanity checks on their arguments.fast provides the same operations as the cautious set, but without sanity checks on theirarguments. Programs compiled with -O fast are therefore slightly faster, but unsafe.nonesuppresses all automatic opening of modules. Compilation starts in an almost emptyenvironment. This option is not of general use.The default compilation mode is -O cautious. See chapter 13 for a complete listing of themodules in the cautious and fast sets.Unix: The following environment variables are also consulted:LANGWhen set, control which language is used to print the compiler messages (see the -langcommand-line option).LC_CTYPEIf set to iso_8859_1, accented characters (from the ISO Latin-1 character set) in stringand character literals are printed as is; otherwise, they are printed as decimal escapesequences (\ddd).5.2 Toplevel control functionsThe standard library module toplevel, opened by default when the toplevel system is launched,provides a number of functions that control the toplevel behavior, load �les in memory, and traceprogram execution.

56value quit : unit -> unitExit the toplevel loop and terminate the camllight command.value include : string -> unitRead, compile and execute source phrases from the given �le. The .ml extension isautomatically added to the �le name, if not present. This is textual inclusion: phrases areprocessed just as if they were typed on standard input. In particular, global identi�ersde�ned by these phrases are entered in the module named top, not in a new module.value load : string -> unitLoad in memory the source code for a module implementation. Read, compile and executesource phrases from the given �le. The .ml extension is automatically added if not present.The load function behaves much like include, except that a new module is created, withname the base name of the source �le name. Global identi�ers de�ned in the source �le areentered in this module, instead of the top module as in the case of include. For instance,assuming �le foo.ml contains the single phraselet bar = 1;;executing load "foo" de�nes the identi�er foo__bar with value 1. Caveat: the loadedmodule is not automatically opened: the identi�er bar does not automatically complete tofoo__bar. To achieve this, you must execute the directive #open "foo" afterwards.value compile : string -> unitCompile the source code for a module implementation or interface (.ml or .mli �le).Compilation proceeds as with the batch compiler, and produces the same results ascamlc -c. If the toplevel system is in debugging mode (option -g or function debug_modebelow), the compilation is also performed in debugging mode, as when giving the -g optionto the batch compiler. The result of the compilation is left in �les (.zo, .zi, .zix). Thecompiled code is not loaded in memory. Use load_object to load a .zo �le produced bycompile.value load_object : string -> unitLoad in memory the compiled bytecode contained in the given �le. The .zo extension isautomatically added to the �le name, if not present. The bytecode �le has been producedeither by the standalone compiler camlc or by the compile function. Global identi�ersde�ned in the �le being loaded are entered in their own module, not in the top module, justas with the load function.value trace : string -> unitAfter the execution of trace "foo", all calls to the global function named foo will be\traced". That is, the argument and the result are displayed for each call, as well as theexceptions escaping out of foo, either raised by foo itself, or raised by one of the functionscalled from foo. If foo is a curried function, each argument is printed as it is passed to thefunction. Only functions implemented in ML can be traced; system primitives such asstring_length or user-supplied C functions cannot.

Chapter 5. The toplevel system (camllight) 57value untrace : string -> unitExecuting untrace "foo" stops all tracing over the global function named foo.value verbose_mode: bool -> unitverbose_mode true causes the compile function to print the inferred types and otherinformation. verbose_mode false reverts to the default silent behavior.value install_printer : string -> unitinstall_printer "printername" registers the function named printername as a printerfor objects whose types match its argument type. That is, the toplevel loop will callprintername when it has such an object to print. The printing function printername mustuse the format library module to produce its output, otherwise the output of printernamewill not be correctly located in the values printed by the toplevel loop.value remove_printer : string -> unitremove_printer "printername" removes the function named printername from the tableof toplevel printers.value set_print_depth : int -> unitset_print_depth n limits the printing of values to a maximal depth of n. The parts ofvalues whose depth exceeds n are printed as ... (ellipsis).value set_print_length : int -> unitset_print_length n limits the number of value nodes printed to at most n. Remainingparts of values are printed as ... (ellipsis).value debug_mode: bool -> unitSet whether extended module interfaces must be used debug_mode true or notdebug_mode false. Extended module interfaces are .zix �les that describe the actualimplementation of a module, including private types and variables. They are generatedwhen compiling with camlc -g, or with the compile function above when debug_mode istrue. When debug_mode is true, toplevel phrases can refer to private types and variables ofmodules, and private functions can be traced with trace. Setting debug_mode true isequivalent to starting the toplevel with the -g option.value cd : string -> unitChange the current working directory.value directory : string -> unitAdd the given directory to the search path for �les. Same behavior as the -I option or the#directory directive.

585.3 The toplevel and the module systemToplevel phrases can refer to identi�ers de�ned in modules other than the top module withthe same mechanisms as for separately compiled modules: either by using quali�ed identi�ers(modulename__localname), or by using unquali�ed identi�ers that are automatically completedby searching the list of opened modules. (See section 2.2.) The modules opened at startup aregiven in the documentation for the standard library. Other modules can be opened with the #opendirective.However, before referencing a global variable from a module other than the top module, ade�nition of that global variable must have been entered in memory. At start-up, the toplevelsystem contains the de�nitions for all the identi�ers in the standard library. The de�nitions foruser modules can be entered with the load or load_object functions described above. Referencinga global variable for which no de�nition has been provided by load or load_object results inthe error \Identifier foo__bar is referenced before being defined". Since this is a trickypoint, let us consider some examples.1. The library function sub_string is de�ned in module string. This module is part of thestandard library, and is one of the modules automatically opened at start-up. Hence, bothphrases sub_string "qwerty" 1 3;;string__sub_string "qwerty" 1 3;;are correct, without having to use #open, load, or load_object.2. The library function printf is de�ned in module printf. This module is part of the standardlibrary, but it is not automatically opened at start-up. Hence, the phraseprintf__printf "%s %s" "hello" "world";;is correctly executed, whileprintf "%s %s" "hello" "world";;causes the error \Variable printf is unbound", since none of the currently opened mod-ules de�ne a global with local name printf. However,#open "printf";;printf "%s %s" "hello" "world";;executes correctly.3. Assume the �le foo.ml resides in the current directory, and contains the single phraselet x = 1;;

Chapter 5. The toplevel system (camllight) 59When the toplevel starts, references to x will cause the error \Variable x is unbound".References to foo__x will cause the error \Cannot find file foo.zi", since the typecheckeris attempting to load the compiled interface for module foo in order to �nd the type of x. Toload in memory the module foo, just do:load "foo";;Then, references to foo__x typecheck and evaluate correctly. Since load does not open themodule it loads, references to x will still fail with the error \Variable x is unbound". Youwill have to do#open "foo";;explicitly, for x to complete automatically into foo__x.4. Finally, assume the �le foo.ml above has been previously compiled with the camlc -c com-mand. The current directory therefore contains a compiled interface foo.zi, claiming thatfoo__x is a global variable with type int, and a compiled bytecode �le foo.zo, de�ningfoo__x to have the value 1. When the toplevel starts, references to foo__x will cause theerror \foo__x is referenced before being defined". In contrast with case 3 above, thetypechecker has succeeded in �nding the compiled interface for module foo. But executioncannot proceed, because no de�nition for foo__x has been entered in memory. To do so,execute: load_object "foo";;This loads the �le foo.zo in memory, therefore de�ning foo__x. Then, references to foo__xevaluate correctly. As in case 3 above, references to x still fail, because load_object doesnot open the module it loads. Again, you will have to do#open "foo";;explicitly, for x to complete automatically into foo__x.5.4 Common errorsThis section describes and explains the most frequently encountered error messages.Cannot �nd �le �lenameThe named �le could not be found in the current directory, nor in the directories of the searchpath.If �lename has the format mod.zi, this means the current phrase references identi�ers frommodule mod, but you have not yet compiled an interface for module mod. Fix: either loadthe �le mod.ml, which will also create in memory the compiled interface for module mod; oruse camlc to compile mod.mli or mod.ml, creating the compiled interface mod.zi, beforeyou start the toplevel.

60 If �lename has the format mod.zo, this means you are trying to load with load_object abytecode object �le that does not exist yet. Fix: compile mod.ml with camlc before youstart the toplevel. Or, use load instead of load_object to load the source code instead of acompiled object �le.If �lename has the format mod.ml, this means load or include could not �nd the speci�edsource �le. Fix: check the spelling of the �le name, or write it if it does not exist.mod__name is referenced before being de�nedYou have neglected to load in memory an implementation for a module, with load orload_object. This is explained in full detail in section 5.3 above.Corrupted compiled interface �le �lenameSee section 4.4.Expression of type t1 cannot be used with type t2See section 4.4.The type inferred for the value name, that is, t, contains type variables that cannot be generalizedSee section 4.4.5.5 Building custom toplevel systems: camlmktopThe camlmktop command builds Caml Light toplevels that contain user code preloaded at start-up.Mac: This command is not available in the Macintosh version.The camlmktop command takes as argument a set of .zo �les, and links them with the object�les that implement the Caml Light toplevel. The typical use is:camlmktop -o mytoplevel foo.zo bar.zo gee.zoThis creates the bytecode �le mytoplevel, containing the Caml Light toplevel system, plus thecode from the three .zo �les. To run this toplevel, give it as argument to the camllight command:camllight mytoplevelThis starts a regular toplevel loop, except that the code from foo.zo, bar.zo and gee.zo is alreadyloaded in memory, just as if you had typed:load_object "foo";;load_object "bar";;load_object "gee";;on entrance to the toplevel. The modules foo, bar and gee are not opened, though; you still haveto do #open "foo";;yourself, if this is what you wish.

Chapter 5. The toplevel system (camllight) 615.6 OptionsThe following command-line options are recognized by camlmktop.-ccopt optionPass the given option to the C compiler and linker, when linking in \custom runtime" mode.See the corresponding option for camlc, in chapter 4.-customLink in \custom runtime" mode. See the corresponding option for camlc, in chapter 4.-g Add debugging information to the toplevel �le produced, which can then be debugged withcamldebug (chapter 9).-I directoryAdd the given directory to the list of directories searched for compiled object code �les (.zo).-o exec-�leSpecify the name of the toplevel �le produced by the linker.Unix: The default is camltop.out.PC: The default is camltop.exe. The name must have .exe extension.

62

Chapter 6The runtime system (camlrun)The camlrun command executes bytecode �les produced by the linking phase of the camlc com-mand.Mac: This command is a MPW tool, not a standalone Macintosh application.6.1 OverviewThe camlrun command comprises three main parts: the bytecode interpreter, that actually executesbytecode �les; the memory allocator and garbage collector; and a set of C functions that implementprimitive operations such as input/output.The usage for camlrun is:camlrun options bytecode-executable arg1 ... argnThe �rst non-option argument is taken to be the name of the �le containing the executable bytecode.(That �le is searched in the executable path as well as in the current directory.) The remainingarguments are passed to the Caml Light program, in the string array sys__command_line. Element0 of this array is the name of the bytecode executable �le; elements 1 to n are the remainingarguments arg1 to argn.As mentioned in chapter 4, in most cases, the bytecode executable �les produced by the camlccommand are self-executable, and manage to launch the camlrun command on themselves auto-matically. That is, assuming caml.out is a bytecode executable �le,caml.out arg1 ... argnworks exactly ascamlrun caml.out arg1 ... argnNotice that it is not possible to pass options to camlrun when invoking caml.out directly.63

646.2 OptionsThe following command-line option is recognized by camlrun.-V Print out the camlrun version number. Exit immediately without executing any byte-code�le.The following environment variable are also consulted:CAMLRUNPARAMSet the garbage collection parameters. This variable must be a sequence of parameter spec-i�cations. A parameter speci�cation is an option letter followed by an = sign and a decimalnumber. There are four options, corresponding to the four �elds of the control recorddocumented in section 14.5:s (minor_heap_size) Size of the minor heap.i (major_heap_increment) Minimum size increment for the major heap.o (space_overhead) The major GC speed setting.v (verbose) Whether to print GC messages or not. 0 is false; 1 is true; other values maygive unexpected results.For example, under csh the commandsetenv CAMLRUNPARAM 's=250000 v=1'tells a subsequent camlrun to set its initial minor heap size to about 1 megabyte (on a 32-bitmachine) and to print its GC messages.PATH List of directories searched to �nd the bytecode executable �le.6.3 Common errorsThis section describes and explains the most frequently encountered error messages.�lename: no such file or directoryIf �lename is the name of a self-executable bytecode �le, this means that either that �le doesnot exist, or that it failed to run the camlrun bytecode interpreter on itself. The secondpossibility indicates that Caml Light has not been properly installed on your system.Cannot exec camlrun(When launching a self-executable bytecode �le.) The camlrun command could not be foundin the executable path. Check that Caml Light has been properly installed on your system.Cannot find the bytecode fileThe �le that camlrun is trying to execute (e.g. the �le given as �rst non-option argument tocamlrun) either does not exist, or is not a valid executable bytecode �le.

Chapter 6. The runtime system (camlrun) 65Truncated bytecode fileThe �le that camlrun is trying to execute is not a valid executable bytecode �le. Probably ithas been truncated or mangled since created. Erase and rebuild it.Uncaught exceptionThe program being executed contains a \stray" exception. That is, it raises an exception atsome point, and this exception is never caught. This causes immediate termination of theprogram. If you wish to know which exception thus escapes, use the printexc__f functionfrom the standard library (and don't forget to link your program with the -g option).Out of memoryThe program being executed requires more memory than available. Either the program buildstoo large data structures; or the program contains too many nested function calls, and thestack over
ows. In some cases, your program is perfectly correct, it just requires more memorythan your machine provides. (This happens quite frequently on small microcomputers, butis unlikely on Unix machines.) In other cases, the \out of memory" message reveals an errorin your program: non-terminating recursive function, allocation of an excessively large arrayor string, attempts to build an in�nite list or other data structure, : : :To help you diagnose this error, run your program with the -v option to camlrun. If itdisplays lots of \Growing stack: : :" messages, this is probably a looping recursive function.If it displays lots of \Growing heap: : :" messages, with the heap size growing slowly, this isprobably an attempt to construct a data structure with too many (in�nitely many?) cells.If it displays few \Growing heap: : :" messages, but with a huge increment in the heap size,this is probably an attempt to build an excessively large array or string.

66

Chapter 7The librarian (camllibr)Mac: This command is a MPW tool, not a standalone Macintosh application.7.1 OverviewThe camllibr program packs in one single �le a set of bytecode object �les (.zo �les). The resulting�le is also a bytecode object �le and also has the .zo extension. It can be passed to the link phaseof the camlc compiler in replacement of the original set of bytecode object �les. That is, afterrunning camllibr -o library.zo mod1.zo mod2.zo mod3.zi mod4.zoall calls to the linker with the formcamlc ... library.zo ...are exactly equivalent tocamlc ... mod1.zo mod2.zo mod3.zi mod4.zo ...The typical use of camllibr is to build a library composed of several modules: this way, usersof the library have only one .zo �le to specify on the command line to camlc, instead of a bunchof .zo �les, one per module contained in the library.The linking phase of camlc is clever enough to discard the code corresponding to useless phrases:in particular, de�nitions for global variables that are never used after their de�nitions. Hence, thereis no problem with putting many modules, even rarely used ones, into one single library: this willnot result in bigger executables.The usage for camllibr is:camllibr options �le1.zo ... �len.zowhere �le1.zo through �len.zo are the object �les to pack together. The order in which these �lenames are presented on the command line is relevant: the compiled phrases contained in the librarywill be executed in that order. (Remember that it is a link-time error to refer to a global variablethat has not yet been de�ned.) 67

687.2 OptionsThe following command-line options are recognized by camllibr.-I directoryAdd the given directory to the list of directories searched for the input .zo �les. By default,the current directory is searched �rst, then the standard library directory. Directories addedwith -I are searched after the current directory, but before the standard library directory.When several directories are added with several -I options on the command line, these direc-tories are searched from right to left (the rightmost directory is searched �rst, the leftmost issearched last).-o library-nameSpecify the name of the output �le. The default is library.zo.PC: The following option is also supported:@response-�leProcess the �les whose names are listed in �le response-�le, just as if these namesappeared on the command line. File names in response-�le are separated by blanks(spaces, tabs, newlines). This option allows to overcome silly limitations on the lengthof the command line.7.3 Turning code into a libraryTo develop a library, it is usually more convenient to split it into several modules, that re
ect theinternal structure of the library. From the standpoint of the library users, however, it is preferableto view the library as a single module, with only one interface �le (.zi �le) and one implementation�le (.zo �le): linking is easier, and there is no need to put a bunch of #open directives, nor to haveto remember the internal structure of the library.The camllibr command allows having a single .zo �le for the whole library. Here is how theCaml Light module system can be used (some say \abused") to have a single .zi �le for the wholelibrary. To be more concrete, assume that the library comprises three modules, windows, imagesand buttons. The idea is to add a fourth module, mylib, that re-exports the public parts ofwindows, images and buttons. The interface mylib.mli contains de�nitions for those types thatare public (exported with their de�nitions), declarations for those types that are abstract (exportedwithout their de�nitions), and declarations for the functions that can be called from the user's code:(* File mylib.mli *)type 'a option = None | Some of 'a;; (* a public type *)type window and image and button;; (* three abstract types *)value new_window : int -> int -> window (* the public functions *)and draw_image : image -> window -> int -> int -> unitand ...The implementation of the mylibmodule simply equates the abstract types and the public functionsto the corresponding types and functions in the modules windows, images and buttons:

Chapter 7. The librarian (camllibr) 69(* File mylib.ml *)type window == windows__winand image == images__pixmapand button == buttons__t;;let new_window = windows__open_windowand draw_image = images__drawand ...The �les windows.ml, images.ml and buttons.ml can open the mylibmodule, to access the publictypes de�ned in the interface mylib.mli, such as the option type. Of course, these modules mustnot reference the abstract types nor the public functions, to avoid circularities.Types such as windows__win in the example above can be exported by the windows moduleeither abstractly or concretely (with their de�nition). Often, it is necessary to export them con-cretely, because the other modules in the library (images, buttons) need to build or destructuredirectly values of that type. Even if windows__win is exported concretely by the windows module,that type will remain abstract to the library user, since it is abstracted by the public interfacemylib.The actual building of the library mylib proceeds as follows:camlc -c mylib.mli # create mylib.zicamlc -c windows.mli windows.ml images.mli images.mlcamlc -c buttons.mli buttons.mlcamlc -c mylib.ml # create mylib.zomv mylib.zo tmplib.zo # renaming to avoid overwriting mylib.zocamllibr -o mylib.zo windows.zo images.zo buttons.zo tmplib.zoThen, copy mylib.zi and mylib.zo to a place accessible to the library users. The other .zi and.zo �les need not be copied.

70

Chapter 8Lexer and parser generators(camllex, camlyacc)This chapter describes two program generators: camllex, that produces a lexical analyzer from aset of regular expressions with associated semantic actions, and camlyacc, that produces a parserfrom a grammar with associated semantic actions.These program generators are very close to the well-known lex and yacc commands that canbe found in most C programming environments. This chapter assumes a working knowledge of lexand yacc: while it describes the input syntax for camllex and camlyacc and the main di�erenceswith lex and yacc, it does not explain the basics of writing a lexer or parser description in lex andyacc. Readers unfamiliar with lex and yacc are referred to \Compilers: principles, techniques,and tools" by Aho, Sethi and Ullman (Addison-Wesley, 1986), \Compiler design in C" by Holub(Prentice-Hall, 1990), or \Lex & Yacc", by Mason and Brown (O'Reilly, 1990).Streams and stream matching, as described in section 3.1, provide an alternative way to writelexers and parsers. The stream matching technique is more powerful than the combination ofcamllex and camlyacc in some cases (higher-order parsers), but less powerful in other cases (prece-dences). Choose whichever approach is more adapted to your parsing problem.Mac: These commands are MPW tool, not standalone Macintosh applications.8.1 Overview of camllexThe camllex command produces a lexical analyzer from a set of regular expressions with attachedsemantic actions, in the style of lex. Assuming the input �le is lexer :mll, executingcamllex lexer.mllproduces Caml Light code for a lexical analyzer in �le lexer.ml. This �le de�nes one lexing func-tion per entry point in the lexer de�nition. These functions have the same names as the entrypoints. Lexing functions take as argument a lexer bu�er, and return the semantic attribute of thecorresponding entry point.Lexer bu�ers are an abstract data type implemented in the standard library module lexing.The functions create_lexer_channel, create_lexer_string and create_lexer from module71

72lexing create lexer bu�ers that read from an input channel, a character string, or any readingfunction, respectively. (See the description of module lexing in chapter 13.)When used in conjunction with a parser generated by camlyacc, the semantic actions computea value belonging to the type token de�ned by the generated parsing module. (See the descriptionof camlyacc below.)8.2 Syntax of lexer de�nitionsThe format of lexer de�nitions is as follows:f header grule entrypoint =parse regexp f action g| : : :| regexp f action gand entrypoint =parse : : :and : : :;; Comments are delimited by (* and *), as in Caml Light.8.2.1 HeaderThe header section is arbitrary Caml Light text enclosed in curly braces. It can be omitted. If it ispresent, the enclosed text is copied as is at the beginning of the output �le. Typically, the headersection contains the #open directives required by the actions, and possibly some auxiliary functionsused in the actions.8.2.2 Entry pointsThe names of the entry points must be valid Caml Light identi�ers.8.2.3 Regular expressionsThe regular expressions are in the style of lex, with a more Caml-like syntax.` charÀ character constant, with the same syntax as Caml Light character constants. Match thedenoted character._ Match any character.eof Match the end of the lexer input." string "A string constant, with the same syntax as Caml Light string constants. Match the corre-sponding sequence of characters.

Chapter 8. Lexer and parser generators (camllex, camlyacc) 73[character-set]Match any single character belonging to the given character set. Valid character sets are:single character constants ` c `; ranges of characters ` c1 ` - ` c2 ` (all characters betweenc1 and c2, inclusive); and the union of two or more character sets, denoted by concatenation.[^ character-set]Match any single character not belonging to the given character set.regexp *(Repetition.) Match the concatenation of zero or more strings that match regexp.regexp +(Strict repetition.) Match the concatenation of one or more strings that match regexp.regexp ?(Option.) Match either the empty string, or a string matching regexp.regexp1 | regexp2(Alternative.) Match any string that matches either regexp1 or regexp2regexp1 regexp2(Concatenation.) Match the concatenation of two strings, the �rst matching regexp1, thesecond matching regexp2.(regexp)Match the same strings as regexp.Concerning the precedences of operators, * and + have highest precedence, followed by ?, thenconcatenation, then | (alternation).8.2.4 ActionsThe actions are arbitrary Caml Light expressions. They are evaluated in a context where theidenti�er lexbuf is bound to the current lexer bu�er. Some typical uses for lexbuf, in conjunctionwith the operations on lexer bu�ers provided by the lexing standard library module, are listedbelow.lexing__get_lexeme lexbufReturn the matched string.lexing__get_lexeme_char lexbuf nReturn the nthcharacter in the matched string. The �rst character corresponds to n = 0.lexing__get_lexeme_start lexbufReturn the absolute position in the input text of the beginning of the matched string. The�rst character read from the input text has position 0.lexing__get_lexeme_end lexbufReturn the absolute position in the input text of the end of the matched string. The �rstcharacter read from the input text has position 0.

74entrypoint lexbuf(Where entrypoint is the name of another entry point in the same lexer de�nition.) Recursivelycall the lexer on the given entry point. Useful for lexing nested comments, for example.8.3 Overview of camlyaccThe camlyacc command produces a parser from a context-free grammar speci�cation with attachedsemantic actions, in the style of yacc. Assuming the input �le is grammar:mly, executingcamlyacc options grammar.mlyproduces Caml Light code for a parser in the �le grammar.ml, and its interface in �le grammar.mli.The generated module de�nes one parsing function per entry point in the grammar. Thesefunctions have the same names as the entry points. Parsing functions take as arguments a lexicalanalyzer (a function from lexer bu�ers to tokens) and a lexer bu�er, and return the semanticattribute of the corresponding entry point. Lexical analyzer functions are usually generated from alexer speci�cation by the camllex program. Lexer bu�ers are an abstract data type implementedin the standard library module lexing. Tokens are values from the concrete type token, de�nedin the interface �le grammar.mli produced by camlyacc.8.4 Syntax of grammar de�nitionsGrammar de�nitions have the following format:%fheader%gdeclarations%%rules%%trailerComments are enclosed between /* and */ (as in C) in the \declarations" and \rules" sections,and between (* and *) (as in Caml) in the \header" and \trailer" sections.8.4.1 Header and trailerThe header and the trailer sections are Caml Light code that is copied as is into �le grammar.ml.Both sections are optional. The header goes at the beginning of the output �le; it usually contains#open directives required by the semantic actions of the rules. The trailer goes at the end of theoutput �le.8.4.2 DeclarationsDeclarations are given one per line. They all start with a % sign.

Chapter 8. Lexer and parser generators (camllex, camlyacc) 75%token symbol : : :symbolDeclare the given symbols as tokens (terminal symbols). These symbols are added as constantconstructors for the token concrete type.%token < type > symbol : : :symbolDeclare the given symbols as tokens with an attached attribute of the given type. These sym-bols are added as constructors with arguments of the given type for the token concrete type.The type part is an arbitrary Caml Light type expression, except that all type constructornames must be fully quali�ed (e.g. modname__typename) for all types except standard built-intypes, even if the proper #open directives (e.g. #open "modname") were given in the headersection. That's because the header is copied only to the .ml output �le, but not to the .mlioutput �le, while the type part of a %token declaration is copied to both.%start symbol : : :symbolDeclare the given symbols as entry points for the grammar. For each entry point, a parsingfunction with the same name is de�ned in the output module. Non-terminals that are notdeclared as entry points have no such parsing function. Start symbols must be given a typewith the %type directive below.%type < type > symbol : : : symbolSpecify the type of the semantic attributes for the given symbols. This is mandatory for startsymbols only. Other nonterminal symbols need not be given types by hand: these types willbe inferred when running the output �les through the Caml Light compiler (unless the -soption is in e�ect). The type part is an arbitrary Caml Light type expression, except thatall type constructor names must be fully quali�ed (e.g. modname__typename) for all typesexcept standard built-in types, even if the proper #open directives (e.g. #open "modname")were given in the header section. That's because the header is copied only to the .ml output�le, but not to the .mli output �le, while the type part of a %token declaration is copied toboth.%left symbol : : :symbol%right symbol : : :symbol%nonassoc symbol : : : symbolAssociate precedences and associativities to the given symbols. All symbols on the same lineare given the same precedence. They have higher precedence than symbols declared beforein a %left, %right or %nonassoc line. They have lower precedence than symbols declaredafter in a %left, %right or %nonassoc line. The symbols are declared to associate to theleft (%left), to the right (%right), or to be non-associative (%nonassoc). The symbols areusually tokens. They can also be dummy nonterminals, for use with the %prec directive insidethe rules.

768.4.3 RulesThe syntax for rules is as usual:nonterminal :symbol : : : symbol f semantic-action g| : : :| symbol : : : symbol f semantic-action g;Rules can also contain the %prec symbol directive in the right-hand side part, to override thedefault precedence and associativity of the rule with the precedence and associativity of the givensymbol.Semantic actions are arbitrary Caml Light expressions, that are evaluated to produce the se-mantic attribute attached to the de�ned nonterminal. The semantic actions can access the semanticattributes of the symbols in the right-hand side of the rule with the $ notation: $1 is the attributefor the �rst (leftmost) symbol, $2 is the attribute for the second symbol, etc.Actions occurring in the middle of rules are not supported. Error recovery is not implemented.8.5 OptionsThe camlyacc command recognizes the following options:-v Generate a description of the parsing tables and a report on con
icts resulting from ambigu-ities in the grammar. The description is put in �le grammar.output.-s Generate a grammar.ml �le with smaller phrases. Semantic actions are presented in thegrammar.ml output �le as one large vector of functions. By default, this vector is built bya single phrase. When the grammar is large, or contains complicated semantic actions, theresulting phrase may require large amounts of memory to be compiled by Caml Light. Withthe -s option, the vector of actions is constructed incrementally, one phrase per action. Thislowers the memory requirements for the compiler, but it is no longer possible to infer thetypes of nonterminal symbols: typechecking is turned o� on symbols that do not have a typespeci�ed by a %type directive.-bpre�xName the output �les pre�x.ml, pre�x.mli, pre�x.output, instead of the default namingconvention.8.6 A complete exampleThe all-time favorite: a desk calculator. This program reads arithmetic expressions on standardinput, one per line, and prints their values. Here is the grammar de�nition:/* File parser.mly */%token <int> INT%token PLUS MINUS TIMES DIV

Chapter 8. Lexer and parser generators (camllex, camlyacc) 77%token LPAREN RPAREN%token EOL%left PLUS MINUS /* lowest precedence */%left TIMES DIV /* medium precedence */%nonassoc UMINUS /* highest precedence */%start Main /* the entry point */%type <int> Main%%Main:Expr EOL { $1 };Expr:INT { $1 }| LPAREN Expr RPAREN { $2 }| Expr PLUS Expr { $1 + $3 }| Expr MINUS Expr { $1 - $3 }| Expr TIMES Expr { $1 * $3 }| Expr DIV Expr { $1 / $3 }| MINUS Expr %prec UMINUS { - $2 };Here is the de�nition for the corresponding lexer:(* File lexer.mll *){#open "parser";; (* The type token is defined in parser.mli *)exception Eof;;}rule Token = parse[` ` `\t`] { Token lexbuf } (* skip blanks *)| [`\n`] { EOL }| [`0`-`9`]+ { INT(int_of_string (get_lexeme lexbuf)) }| `+` { PLUS }| `-` { MINUS }| `*` { TIMES }| `/` { DIV }| `(` { LPAREN }| `)` { RPAREN }| eof { raise Eof };;Here is the main program, that combines the parser with the lexer:(* File calc.ml *)trylet lexbuf = lexing__create_lexer_channel std_in inwhile true do

78 let result = parser__Main lexer__Token lexbuf inprint_int result; print_newline(); flush std_outdonewith Eof ->();;To compile everything, execute:camllex lexer.mll # generates lexer.mlcamlyacc parser.mly # generates parser.ml and parser.mlicamlc -c parser.mlicamlc -c lexer.mlcamlc -c parser.mlcamlc -c calc.mlcamlc -o calc lexer.zo parser.zo calc.zo

Chapter 9The debugger (camldebug)This chapter describes the Caml Light source-level replay debugger camldebug.Unix: The debugger resides in the directory contrib/debugger in the distribution. It requires aUnix system that provides BSD sockets.Mac: The debugger is not available.PC: The debugger is not available.9.1 Compiling for debuggingBefore the debugger can be used, the program must be compiled and linked with the -g option: all.zo �les that are part of the program should have been created with camlc -g, and they must belinked together with camlc -g.Compiling with -g entails no penalty on the running time of programs: .zo �les and bytecodeexecutable �les are bigger and take slightly longer to produce, but the executable �les run at exactlythe same speed as if they had been compiled without -g. It is therefore perfectly acceptable tocompile always in -g mode.9.2 Invocation9.2.1 Starting the debuggerThe Caml Light debugger is invoked by running the program camldebug with the name of thebytecode executable �le as argument:camldebug programThe following command-line options are recognized:-stdlib directoryLook for the standard library �les in directory instead of in the default directory.79

80-s socketUse socket for communicating with the debugged program. See the description of the com-mand set socket (section 9.8.7) for the format of socket.-c countSet the maximum number of checkpoints to count.-cd directoryRun the debugger program from the working directory directory, instead of the current di-rectory.-emacsTell the debugger it is executing under Emacs. (See section 11.4 for information on how torun the debugger under Emacs.)9.2.2 Quitting the debuggerThe command quit exits the debugger. You can also exit the debugger by typing an end-of-�lecharacter (usually ctrl-D).Typing an interrupt character (usually ctrl-C) will not exit the debugger, but will terminatethe action of any debugger command that is in progress and return to the debugger command level.9.3 CommandsA debugger command is a single line of input. It starts with a command name, which is followedby arguments depending on this name. Examples:rungoto 1000set arguments arg1 arg2A command name can be truncated as long as there is no ambiguity. For instance, go 1000is understood as goto 1000, since there are no other commands whose name starts with go. Forthe most frequently used commands, ambiguous abbreviations are allowed. For instance, r standsfor run even though there are others commands starting with r. You can test the validity of anabbreviation using the help command.If the previous command has been successful, a blank line (typing just RET) will repeat it.9.3.1 Getting helpThe Caml Light debugger has a simple on-line help system, which gives a brief description of eachcommand and variable.help Print the list of commands.help commandGive help about the command command.

Chapter 9. The debugger (camldebug) 81help set variable, help show variableGive help about the variable variable. The list of all debugger variables can be obtained withhelp set.help info topicGive help about topic. Use help info to get a list of known topics.9.3.2 Accessing the debugger stateset variable valueSet the debugger variable variable to the value value.show variablePrint the value of the debugger variable variable.info subjectGive information about the given subject. For instance, info breakpoints will print the listof all breakpoints.9.4 Executing a program9.4.1 EventsEvents are \interesting" locations in the source code, corresponding to the beginning or end ofevaluation of \interesting" sub-expressions. Events are the unit of single-stepping (stepping goes tothe next or previous event encountered in the program execution). Also, breakpoints can only beset at events. Thus, events play the role of line numbers in debuggers for conventional languages.During program execution, a counter is incremented at each event encountered. The value ofthis counter is referred as the current time. Thanks to reverse execution, it is possible to jumpback and forth to any time of the execution.Here is where the debugger events (written ./) are located in the source code:� Following a function application:(f arg)./� After receiving an argument to a function:fun x./ y./ z -> ./ ...If a curried function is de�ned by pattern-matching with several cases, events correspondingto the passing of arguments are displayed on the �rst case of the function, because pattern-matching has not yet determined which case to select:fun pat1./ pat2./ pat3 -> ./ ...| ...

82 � On each case of a pattern-matching de�nition (function, match: : :with construct, try: : :withconstruct):function pat1 -> ./ expr1| ...| patN -> ./ exprN� Between subexpressions of a sequence:expr1; ./ expr2; ./ ...; ./ exprN� In the two branches of a conditional expression:if cond then ./ expr1 else ./ expr2� At the beginning of each iteration of a loop:while cond do ./ body donefor i = a to b do ./ body doneExceptions: A function application followed by a function return is replaced by the compiler bya jump (tail-call optimization). In this case, no event is put after the function application. Also,no event is put after a function application when the function is a primitive function (written inC). Finally, several events may correspond to the same location in the compiled program. Then,the debugger cannot distinguish them, and selects one of the events to associate with the givencode location. The event chosen is a \function application" event if there is one at that location,or otherwise the event which appears last in the source. This heuristic generally picks the \mostinteresting" event associated with the code location.9.4.2 Starting the debugged programThe debugger starts executing the debugged program only when needed. This allows setting brea-points or assigning debugger variables before execution starts. There are several ways to startexecution:run Run the program until a breakpoint is hit, or the program terminates.step 0Load the program and stop on the �rst event.goto timeLoad the program and execute it until the given time. Useful when you already know ap-proximately at what time the problem appears. Also useful to set breakpoints on functionvalues that have not been computed at time 0 (see section 9.5).The execution of a program is a�ected by certain information it receives when the debuggerstarts it, such as the command-line arguments to the program and its working directory. Thedebugger provides commands to specify this information (set arguments and cd). These com-mands must be used before program execution starts. If you try to change the arguments or theworking directory after starting your program, the debugger will kill the program (after asking forcon�rmation).

Chapter 9. The debugger (camldebug) 839.4.3 Running the programThe following commands execute the program forward or backward, starting at the current time.The execution will stop either when speci�ed by the command or when a breakpoint is encountered.run Execute the program forward from current time. Stops at next breakpoint or when theprogram terminates.reverseExecute the program backward from current time. Mostly useful to go to the last breakpointencountered before the current time.step [count]Run the program and stop at the next event. With an argument, do it count times.backstep [count]Run the program backward and stop at the previous event. With an argument, do it counttimes.next [count]Run the program and stop at the next event, skipping over function calls. With an argument,do it count times.finishRun the program until the current function returns.9.4.4 Time travelYou can jump directly to a given time, without stopping on breakpoints, using the goto command.As you move through the program, the debugger maintains an history of the successive timesyou stop at. The last command can be used to revisit these times: each last command moves onestep back through the history. That is useful mainly to undo commands such as step and next.goto timeJump to the given time.last [count]Go back to the latest time recorded in the execution history. With an argument, do it counttimes.set history sizeSet the size of the execution history.9.4.5 Killing the programkill Kill the program being executed. This command is mainly useful if you wish to recompilethe program without leaving the debugger.

849.5 BreakpointsA breakpoint causes the program to stop whenever a certain point in the program is reached. Itcan be set in several ways using the break command. Breakpoints are assigned numbers when set,for further reference.breakSet a breakpoint at the current position in the program execution. The current position mustbe on an event (i.e., neither at the beginning, nor at the end of the program).break functionSet a breakpoint at the beginning of function. This works only when the functional value ofthe identi�er function has been computed and assigned to the identi�er. Hence this commandcannot be used at the very beginning of the program execution, when all identi�ers are stillunde�ned. Moreover, C functions are not recognized by the debugger.break @ [module] lineSet a breakpoint in module module (or in the current module if module is not given), at the�rst event of line line.break @ [module] line columnSet a breakpoint in module module (or in the current module if module is not given), at theevent closest to line line, column column.break @ [module] # characterSet a breakpoint in module module at the event closest to character number character.break addressSet a breakpoint at the code address address.delete [breakpoint-numbers]Delete the speci�ed breakpoints. Without argument, all breakpoints are deleted (after askingfor con�rmation).info breakpointsPrint the list of all breakpoints.9.6 The call stackEach time the program performs a function application, it saves the location of the application (thereturn address) in a block of data called a stack frame. The frame also contains the local variablesof the caller function. All the frames are allocated in a region of memory called the call stack. Thecommand backtrace (or bt) displays parts of the call stack.At any time, one of the stack frames is \selected" by the debugger; several debugger commandsrefer implicitly to the selected frame. In particular, whenever you ask the debugger for the valueof a local variable, the value is found in the selected frame. The commands frame, up and downselect whichever frame you are interested in.When the program stops, the debugger automatically selects the currently executing frame anddescribes it brie
y as the frame command does.

Chapter 9. The debugger (camldebug) 85frameDescribe the currently selected stack frame.frame frame-numberSelect a stack frame by number and describe it. The frame currently executing when theprogram stopped has number 0; its caller has number 1; and so on up the call stack.backtrace [count], bt [count]Print the call stack. This is useful to see which sequence of function calls led to the currentlyexecuting frame. With a positive argument, print only the innermost count frames. With anegative argument, print only the outermost -count frames.up [count]Select and display the stack frame just \above" the selected frame, that is, the frame thatcalled the selected frame. An argument says how many frames to go up.down [count]Select and display the stack frame just \below" the selected frame, that is, the frame thatwas called by the selected frame. An argument says how many frames to go down.9.7 Examining variable valuesThe debugger can print the current value of a program variable (either a global variable or a localvariable relative to the selected stack frame). It can also print selected parts of a value by matchingit against a pattern.Variable names can be speci�ed either fully quali�ed (module-name__var-name) or unquali�ed(var-name). Unquali�ed names either correspond to local variables, or are completed into fullyquali�ed global names by looking at a list of \opened" modules that de�ne the same name (seesection 9.8.5 for how to open modules in the debugger.) The completion follows the same rules asin the Caml Light language (see section 2.2).print variablesPrint the values of the given variables.match variable patternMatch the value of the given variable against a pattern, and print the values bound to theidenti�ers in the pattern.The syntax of patterns for the match command extends the one for Caml Light patterns:

86 pattern ::= identj _j (pattern)j ncconstr patternj pattern , pattern f, patterngj { label = pattern f; label = patterng }j []j [pattern f; patterng]j pattern :: patternj # integer-literal patternj > patternThe pattern ident, where ident is an identi�er, matches any value, and binds the identi�er tothis value. The pattern # n pattern matches a list, a vector or a tuple whose n-th element matchespattern. The pattern > pattern matches any constructed value whose argument matches pattern,regardless of the constructor; it is a shortcut for skipping a constructor.Example: assuming the value of a is Constr{x = [1;2;3;4]}, the command match a > {x =# 2 k} prints k = 3.set print_depth dLimit the printing of values to a maximal depth of d.set print_length lLimit the printing of values to at most l nodes printed.9.8 Controlling the debugger9.8.1 Setting the program name and argumentsset program �leSet the program name to �le.set arguments argumentsGive arguments as command-line arguments for the program.A shell is used to pass the arguments to the debugged program. You can therefore use wildcards,shell variables, and �le redirections inside the arguments. To debug programs that read fromstandard input, it is recommended to redirect their input from a �le (using set arguments <input-file), otherwise input to the program and input to the debugger are not properly separated.9.8.2 How programs are loadedThe loadingmode variable controls how the program is executed.set loadingmode directThe program is run directly by the debugger. This is the default mode.

Chapter 9. The debugger (camldebug) 87set loadingmode runtimeThe debugger execute the Caml Light runtime camlrun on the program. Rarely useful;moreover it prevents the debugging of programs compiled in \custom runtime" mode.set loadingmode manualThe user starts manually the program, when asked by the debugger. Allows remote debugging(see section 9.8.7).9.8.3 Search path for �lesThe debugger searches for source �les and compiled interface �les in a list of directories, the searchpath. The search path initially contains the current directory . and the standard library directory.The directory command adds directories to the path.Whenever the search path is modi�ed, the debugger will clear any information it may havecached about the �les.directory directorynamesAdd the given directories to the search path. These directories are added at the front, andwill therefore be searched �rst.directoryReset the search path. This requires con�rmation.9.8.4 Working directoryEach time a program is started in the debugger, it inherits its working directory from the currentworking directory of the debugger. This working directory is initially whatever it inherited from itsparent process (typically the shell), but you can specify a new working directory in the debuggerwith the cd command or the -cd command-line option.cd directorySet the working directory for camldebug to directory.pwd Print the working directory for camldebug.9.8.5 Module managementLike the Caml Light compiler, the debugger maintains a list of opened modules in order to resolvesvariable name ambiguities. The opened modules also a�ect the printing of values: whether fullyquali�ed names or short names are used for constructors and record labels.When a program is executed, the debugger automatically opens the modules of the standardlibrary it uses.open modulesOpen the given modules.close modulesClose the given modules.

88info modulesList the modules used by the program, and the open modules.9.8.6 Turning reverse execution on and o�In some cases, you may want to turn reverse execution o�. This speeds up the program execution,and is also sometimes useful for interactive programs.Normally, the debugger takes checkpoints of the program state from time to time. That is, itmakes a copy of the current state of the program (using the Unix system call fork). If the variablecheckpoints is set to off, the debugger will not take any checkpoints.set checkpoints on/o�Select whether the debugger makes checkpoints or not.9.8.7 Communication between the debugger and the programThe debugger communicate with the program being debugged through a Unix socket. You mayneed to change the socket name, for example if you need to run the debugger on a machine andyour program on another.set socket socketUse socket for communication with the program. socket can be either a �le name, or anInternet port speci�cation host:port, where host is a host name or an Internet address in dotnotation, and port is a port number on the host.On the debugged program side, the socket name is passed either by the -D command line optionto camlrun, or through the CAML_DEBUG_SOCKET environment variable.9.8.8 Fine-tuning the debuggerSeveral variables enables to �ne-tune the debugger. Reasonable defaults are provided, and youshould normally not have to change them.set processcount countSet the maximum number of checkpoints to count. More checkpoints facilitate going far backin time, but use more memory and create more Unix processes.As checkpointing is quite expensive, it must not be done too often. On the other hand, backwardexecution is faster when checkpoints are taken more often. In particular, backward single-steppingis more responsive when many checkpoints have been taken just before the current time. To �ne-tune the checkpointing strategy, the debugger does not take checkpoints at the same frequencyfor long displacements (e.g. run) and small ones (e.g. step). The two variables bigstep andsmallstep contain the number of events between two checkpoints in each case.set bigstep countSet the number of events between two checkpoints for long displacements.

Chapter 9. The debugger (camldebug) 89set smallstep countSet the number of events between two checkpoints for small displacements.The following commands display information on checkpoints and events:info checkpointsPrint a list of checkpoints.info events [module]Print the list of events in the given module (the current module, by default).9.9 Miscellaneous commandslist [module] [beginning] [end]List the source of module module, from line number beginning to line number end. By default,20 lines of the current module are displayed, starting 10 lines before the current position.source �lenameRead debugger commands from the script �lename.

90

Chapter 10Pro�ling (camlpro)This chapter describes how the execution of Caml Light programs can be pro�led, by recordinghow many times functions are called, branches of conditionals are taken, : : :Mac: This command is not available.PC: This command is not available.10.1 Compiling for pro�lingBefore pro�ling an execution, the program must be compiled in pro�ling mode, using the -p optionto the batch compiler camlc (see chapter 4). When compiling modules separately, the -p optionmust be given both when compiling the modules (production of .zo �les) and when linking themtogether.The amount of pro�ling information can be controlled by adding one or several letters after the-p option, indicating which parts of the program should be pro�led:a all optionsf function calls : a count point is set at the beginning of function bodiesi if : : :then : : :else : : : : count points are set in both then branch and else branchl while, for loops: a count point is set at the beginning of the loop bodym match branches: a count point is set at the beginning of the body of each brancht try : : :with : : : branches: a count point is set at the beginning of the body of each branchFor instance, compiling with -pfilm pro�les function calls, if: : : then : : :else: : : , loops andpattern matching.The -p option without additional letters defaults to -pfm, meaning that only function calls andpattern matching are pro�led. 91

9210.2 Pro�ling an executionRunning a bytecode executable �le that has been compiled and linked with -p records the executioncounts for the speci�ed parts of the program and saves them in a �le called camlpro.dump in thecurrent directory.More precisely, the dump �le camlpro.dump is written when the io__exit function is called.The linker, called with the -p option, adds io__exit 0 as the last phrase of the bytecode executable,in case the original program never calls io__exit. However, if the program terminates with anuncaught exception, the dump �le will not be produced.If a compatible dump �le already exists in the current directory, then the pro�ling informationis accumulated in this dump �le. This allows, for instance, the pro�ling of several executions of aprogram on di�erent inputs.10.3 Printing pro�ling informationThe camlpro command produces a source listing of the program modules where execution countshave been inserted as comments. For instance,camlpro foo.mlprints the source code for the foo module, with comments indicating how many times the functionsin this module have been called. Naturally, this information is accurate only if the source �le hasnot been modi�ed since the pro�ling execution took place.The following options are recognized by camlpro:compiler options -stdlib, -I, -include, -O, -open, -i, -langSee chapter 4 for the detailed usage.-f dump�leSpeci�es an alternate dump �le of pro�ling information-F stringSpeci�es an additional string to be output with pro�ling information. By default, camlprowill annotate progams with comments of the form (* n *) where n is the counter value fora pro�ling point. With option -F s, the annotation will be (* sn *).An additional argument speci�es the output �le. For instancecamlpro -f ../test/camlpro.dump foo.ml foo_profiled.mlwill save the annotated program in �le foo_profiled.ml. Otherwise, the annotated program iswritten on the standard output.10.4 Known bugsThe following situation (�le x.ml)

Chapter 10. Pro�ling (camlpro) 93let a = 1;;x__a ;;will break the pro�ler. More precisely, one should avoid to refer to symbols of the current modulewith the quali�ed symbol syntax.

94

Chapter 11Using Caml Light under EmacsThis chapter describes how Caml Light can be used in conjunction with Gnu Emacs version 19(version 18 is also partially supported).Unix: The Emacs Lisp �les implementing the Caml/Emacs interface are in contrib/camlmode inthe distribution.Mac: The Caml/Emacs interface is not available.PC: The Caml/Emacs interface is not available.11.1 Updating your .emacsThe following initializations must be added to your .emacs �le:(setq auto-mode-alist (cons '("\\.ml[iylp]?" . caml-mode) auto-mode-alist))(autoload 'caml-mode "caml" "Major mode for editing Caml code." t)(autoload 'run-caml "inf-caml" "Run an inferior Caml process." t)(autoload 'camldebug "camldebug" "Run the Caml debugger." t)11.2 The caml editing modeThe caml-mode function is a major editing mode for Caml source �les. It provides the correctsyntax tables, comment syntax, : : : for the Caml language. An extremely crude indentation facilityis provided, as well as a slightly enhanced next-error command (to display the location of acompilation error). The following key bindings are performed:TAB (function caml-indent-command)At the beginning of a line, indent that line like the line above. Successive TABs increasethe indentation level by 2 spaces (by default; can be set with the caml-mode-indentationvariable).M-TAB (function caml-unindent-command)Decrease the indentation level of the current phrase.95

96C-x ` (function caml-next-error)Display the next compilation error, just as next-error does. In addition, it puts the pointand the mark around the exact location of the error (the subexpression that caused the error).Under Emacs 19, that subexpression is also highlighted.M-C-h (function caml-mark-phrase)Mark the Caml phrase that contains the point: the point is put at the beginning of thephrase and the mark at the end. Phrases are delimited by ;; (the �nal double-semicolon).This function does not properly ignore ;; inside string literals or comments.C-x SPCWhen the Caml debugger is running as an inferior process (section 11.4 below), set a break-point at the current position of the point.M-C-x or C-c C-e (function caml-eval-phrase)When a Caml toplevel is running as an inferior process (section 11.3 below), send it thethe Caml phrase that contains the point. The phrase will then be evaluated by the inferiortoplevel as usual. The phrase is delimited by ;; as described for the caml-mark-phrasecommand.C-c C-r (function caml-eval-region)Send the region to a Caml toplevel running in an inferior process.11.3 Running the toplevel as an inferior processM-x run-caml starts a Caml toplevel with input and output in an Emacs bu�er named*inferior-caml*. This gives you the full power of Emacs to edit the input to the Caml toplevel.An history of input lines is maintained, as in Shell mode. This includes the following commands(see the function comint-mode for a complete description):RET Send the current line to the toplevel.M-n and M-pMove to the next or previous line in the history.M-r and M-sRegexp search in the history.C-c C-cSend a break (interrupt signal) to the Caml toplevel.Phrases can also be sent to the Caml toplevel for evaluation from any bu�er in Caml mode,using M-C-x, C-c C-e or C-c C-r.

Chapter 11. Using Caml Light under Emacs 9711.4 Running the debugger as an inferior processThe Caml debugger is started by the command M-x camldebug, with argument the name of theexecutable �le progname to debug. Communication with the debugger takes place in an Emacsbu�er named *camldebug-progname*. The editing and history facilities of Shell mode are availablefor interacting with the debugger.In addition, Emacs displays the source �les containing the current event (the current posi-tion in the program execution) and highlights the location of the event. This display is updatedsynchronously with the debugger action.The following bindings for the most common debugger commands are available in the*camldebug-progname* bu�er (see section 9.3 for a full explanation of the commands):M-r run command: execute the program forward.M-s step command: execute the program one step forward.M-b back command: execute the program one step backward.M-l last command: go back one step in the command history.C-c >down command: select the stack frame below the current frame.C-c <up command: select the stack frame above the current frame.C-c C-ffinish command: run till the current function returns.In a bu�er in Caml editing mode, C-x SPC sets a breakpoint at the current position of thepoint.

98

Chapter 12Interfacing C with Caml LightThis chapter describes how user-de�ned primitives, written in C, can be added to the Caml Lightruntime system and called from Caml Light code.12.1 Overview and compilation information12.1.1 Declaring primitivesUser primitives are declared in a module interface (a .mli �le), in the same way as a regularML value, except that the declaration is followed by the = sign, the function arity (number ofarguments), and the name of the corresponding C function. For instance, here is how the inputprimitive is declared in the interface for the standard library module io:value input : in_channel -> string -> int -> int -> int= 4 "input"Primitives with several arguments are always curried. The C function does not necessarily havethe same name as the ML function.Values thus declared primitive in a module interface must not be implemented in the moduleimplementation (the .ml �le). They can be used inside the module implementation.12.1.2 Implementing primitivesUser primitives with arity n � 5 are implemented by C functions that take n arguments of typevalue, and return a result of type value. The type value is the type of the representationsfor Caml Light values. It encodes objects of several base types (integers,
oating-point numbers,strings, : : :), as well as Caml Light data structures. The type value and the associated conversionfunctions and macros are described in details below. For instance, here is the declaration for the Cfunction implementing the input primitive:value input(channel, buffer, offset, length)value channel, buffer, offset, length;{...} 99

100When the primitive function is applied in a Caml Light program, the C function is called withthe values of the expressions to which the primitive is applied as arguments. The value returnedby the function is passed back to the Caml Light program as the result of the function application.User primitives with arity greater than 5 are implemented by C functions that receive twoarguments: a pointer to an array of Caml Light values (the values for the arguments), and aninteger which is the number of arguments provided:value prim_with_lots_of_args(argv, argn)value * argv;int argn;{ ... argv[0] ...; /* The first argument */... argv[6] ...; /* The seventh argument */}Implementing a user primitive is actually two separate tasks: on the one hand, decoding thearguments to extract C values from the given Caml Light values, and encoding the return value asa Caml Light value; on the other hand, actually computing the result from the arguments. Exceptfor very simple primitives, it is often preferable to have two distinct C functions to implementthese two tasks. The �rst function actually implements the primitive, taking native C values asarguments and returning a native C value. The second function, often called the \stub code", is asimple wrapper around the �rst function that converts its arguments from Caml Light values to Cvalues, call the �rst function, and convert the returned C value to Caml Light value. For instance,here is the stub code for the input primitive:value input(channel, buffer, offset, length)value channel, buffer, offset, length;{ return Val_long(getblock((struct channel *) channel,&Byte(buffer, Long_val(offset)),Long_val(length)));}(Here, Val_long, Long_val and so on are conversion macros for the type value, that will bedescribed later.) The hard work is performed by the function getblock, which is declared as:long getblock(channel, p, n)struct channel * channel;char * p;long n;{ ...}To write C code that operates on Caml Light values, the following include �les are provided:

Chapter 12. Interfacing C with Caml Light 101Include �le Providesmlvalues.h de�nition of the value type, and conversion macrosalloc.h allocation functions (to create structured Caml Light objects)memory.h miscellaneous memory-related functions (for in-place modi�cation ofstructures, etc).These �les reside in the Caml Light standard library directory (usually /usr/local/lib/caml-light).12.1.3 Linking C code with Caml Light codeThe Caml Light runtime system comprises three main parts: the bytecode interpreter, the mem-ory manager, and a set of C functions that implement the primitive operations. Some bytecodeinstructions are provided to call these C functions, designated by their o�set in a table of functions(the table of primitives).In the default mode, the Caml Light linker produces bytecode for the standard runtime system,with a standard set of primitives. References to primitives that are not in this standard set resultin the \unavailable C primitive" error.In the \custom runtime" mode, the Caml Light linker scans the bytecode object �les (.zo �les)and determines the set of required primitives. Then, it builds a suitable runtime system, by callingthe native code linker with:� the table of the required primitives� a library that provides the bytecode interpreter, the memory manager, and the standardprimitives� libraries and object code �les (.o �les) mentioned on the command line for the Caml Lightlinker, that provide implementations for the user's primitives.This builds a runtime system with the required primitives. The Caml Light linker generates byte-code for this custom runtime system. The bytecode is appended to the end of the custom runtimesystem, so that it will be automatically executed when the output �le (custom runtime + bytecode)is launched.To link in \custom runtime" mode, execute the camlc command with:� the -custom option� the names of the desired Caml Light object �les (.zo �les)� the names of the C object �les and libraries (.o and .a �les) that implement the requiredprimitives. (Libraries can also be speci�ed with the usual -l syntax.)12.2 The value typeAll Caml Light objects are represented by the C type value, de�ned in the include �le mlvalues.h,along with macros to manipulate values of that type. An object of type value is either:� an unboxed integer

102� a pointer to a block inside the heap (such as the blocks allocated through one of the alloc_*functions below)� a pointer to an object outside the heap (e.g., a pointer to a block allocated by malloc, or toa C variable).12.2.1 Integer valuesInteger values encode 31-bit signed integers. They are unboxed (unallocated).12.2.2 BlocksBlocks in the heap are garbage-collected, and therefore have strict structure constraints. Eachblock includes a header containing the size of the block (in words), and the tag of the block. Thetag governs how the contents of the blocks are structured. A tag lower than No_scan_tag indicatesa structured block, containing well-formed values, which is recursively traversed by the garbagecollector. A tag greater than or equal to No_scan_tag indicates a raw block, whose contents arenot scanned by the garbage collector. For the bene�ts of ad-hoc polymorphic primitives such asequality and structured input-output, structured and raw blocks are further classi�ed according totheir tags as follows:Tag Contents of the block0 to No_scan_tag� 1 A structured block (an array of Caml Light objects). Each�eld is a value.Closure_tag A closure representing a functional value. The �rst word isa pointer to a piece of bytecode, the second word is a valuecontaining the environment.String_tag A character string.Double_tag A double-precision
oating-point number.Abstract_tag A block representing an abstract datatype.Final_tag A block representing an abstract datatype with a \�naliza-tion" function, to be called when the block is deallocated.12.2.3 Pointers to outside the heapAny pointer to outside the heap can be safely cast to and from the type value. This includespointers returned by malloc, and pointers to C variables obtained with the & operator.12.3 Representation of Caml Light data typesThis section describes how Caml Light data types are encoded in the value type.

Chapter 12. Interfacing C with Caml Light 10312.3.1 Atomic typesCaml type Encodingint Unboxed integer values.char Unboxed integer values (ASCII code).float Blocks with tag Double_tag.string Blocks with tag String_tag.12.3.2 Product typesTuples and arrays are represented by pointers to blocks, with tag 0.Records are also represented by zero-tagged blocks. The ordering of labels in the record typedeclaration determines the layout of the record �elds: the value associated to the label declared�rst is stored in �eld 0 of the block, the value associated to the label declared next goes in �eld 1,and so on.12.3.3 Concrete typesConstructed terms are represented by blocks whose tag encode the constructor. The constructors fora given concrete type are numbered from 0 to the number of constructors minus one, following theorder in which they appear in the concrete type declaration. Constant constructors are representedby zero-sized blocks (atoms), tagged with the constructor number. Non-constant constructorsdeclared with a n-tuple as argument are represented by a block of size n, tagged with the constructornumber; the n �elds contain the components of its tuple argument. Other non-constant constructorsare represented by a block of size 1, tagged with the constructor number; the �eld 0 contains thevalue of the constructor argument. Example:Constructed term Representation() Size = 0, tag = 0false Size = 0, tag = 0true Size = 0, tag = 1[] Size = 0, tag = 0h::t Size = 2, tag = 1, �rst �eld = h, second �eld = t12.4 Operations on values12.4.1 Kind tests� Is_int(v) is true if value v is an immediate integer, false otherwise� Is_block(v) is true if value v is a pointer to a block, and false if it is an immediate integer.12.4.2 Operations on integers� Val_long(l) returns the value encoding the long int l� Long_val(v) returns the long int encoded in value v

104� Val_int(i) returns the value encoding the int i� Int_val(v) returns the int encoded in value v12.4.3 Accessing blocks� Wosize_val(v) returns the size of value v, in words, excluding the header.� Tag_val(v) returns the tag of value v.� Field(v; n) returns the value contained in the nth �eld of the structured block v. Fields arenumbered from 0 to Wosize_val(v)� 1.� Code_val(v) returns the code part of the closure v.� Env_val(v) returns the environment part of the closure v.� string_length(v) returns the length (number of characters) of the string v.� Byte(v; n) returns the nth character of the string v, with type char. Characters are numberedfrom 0 to string_length(v)� 1.� Byte_u(v; n) returns the nth character of the string v, with type unsigned char. Charactersare numbered from 0 to string_length(v)� 1.� String_val(v) returns a pointer to the �rst byte of the string v, with type char *. Thispointer is a valid C string: there is a null character after the last character in the string.However, Caml Light strings can contain embedded null characters, that will confuse theusual C functions over strings.� Double_val(v) returns the
oating-point number contained in value v, with type double.The expressions Field(v; n), Code_val(v), Env_val(v), Byte(v; n), Byte_u(v; n) andDouble_val(v) are valid l-values. Hence, they can be assigned to, resulting in an in-placemodi�cation of value v. Assigning directly to Field(v; n) must be done with care to avoidconfusing the garbage collector (see below).12.4.4 Allocating blocksFrom the standpoint of the allocation functions, blocks are divided according to their size as zero-sized blocks, small blocks (with size less than or equal to Max_young_wosize), and large blocks(with size greater than to Max_young_wosize). The constant Max_young_wosize is declared in theinclude �le mlvalues.h. It is guaranteed to be at least 64 (words), so that any block with constantsize less than or equal to 64 can be assumed to be small. For blocks whose size is computed atrun-time, the size must be compared against Max_young_wosize to determine the correct allocationprocedure.� Atom(t) returns an \atom" (zero-sized block) with tag t. Zero-sized blocks are preallocatedoutside of the heap. It is incorrect to try and allocate a zero-sized block using the functionsbelow. For instance, Atom(0) represents (), false and []; Atom(1) represents true. (As aconvenience, mlvalues.h de�nes the macros Val_unit, Val_false and Val_true.)

Chapter 12. Interfacing C with Caml Light 105� alloc(n; t) returns a fresh small block of size n � Max_young_wosize words, with tag t. Ifthis block is a structured block (i.e. if t < No_scan_tag), then the �elds of the block (initiallycontaining garbage) must be initialized with legal values (using direct assignment to the �eldsof the block) before the next allocation.� alloc_tuple(n) returns a fresh small block of size n � Max_young_wosize words, with tag0. The �elds of this block must be �lled with legal values before the next allocation ormodi�cation.� alloc_shr(n; t) returns a fresh block of size n, with tag t. The size of the block can be greaterthan Max_young_wosize. (It can also be smaller, but in this case it is more e�cient to callalloc instead of alloc_shr.) If this block is a structured block (i.e. if t < No_scan_tag),then the �elds of the block (initially containing garbage) must be initialized with legal values(using the initialize function described below) before the next allocation.� alloc_string(n) returns a string value of length n characters. The string initially containsgarbage.� copy_string(s) returns a string value containing a copy of the null-terminated C string s (achar *).� copy_double(d) returns a
oating-point value initialized with the double d.� alloc_array(f; a) allocates an array of values, calling function f over each element of theinput array a to transform it into a value. The array a is an array of pointers terminatedby the null pointer. The function f receives each pointer as argument, and returns a value.The zero-tagged block returned by alloc_array(f; a) is �lled with the values returned bythe successive calls to f .� copy_string_array(p) allocates an array of strings, copied from the pointer to a string arrayp (a char **).12.4.5 Raising exceptionsC functions cannot raise arbitrary exceptions. However, two functions are provided to raise twostandard exceptions:� failwith(s), where s is a null-terminated C string (with type char *), raises exceptionFailure with argument s.� invalid_argument(s), where s is a null-terminated C string (with type char *), raises ex-ception Invalid_argument with argument s.12.5 Living in harmony with the garbage collectorUnused blocks in the heap are automatically reclaimed by the garbage collector. This requires somecooperation from C code that manipulates heap-allocated blocks.

106Rule 1 After a structured block (a block with tag less than No_scan_tag) is allocated, all �elds ofthis block must be �lled with well-formed values before the next allocation operation. If the block hasbeen allocated with alloc or alloc_tuple, �lling is performed by direct assignment to the �elds ofthe block:Field(v, n) = vn;If the block has been allocated with alloc_shr, �lling is performed through the initialize function:initialize(&Field(v, n), vn);The next allocation can trigger a garbage collection. The garbage collector assumes that allstructured blocks contain well-formed values. Newly created blocks contain random data, whichgenerally do not represent well-formed values.If you really need to allocate before the �elds can receive their �nal value, �rst initialize witha constant value (e.g. Val_long(0)), then allocate, then modify the �elds with the correct value(see rule 3).Rule 2 Local variables containing values must be registered with the garbage collector (using thePush_roots and Pop_roots macros), if they are to survive a call to an allocation function.Registration is performed with the Push_roots and Pop_roots macros. Push_roots(r,n)declares an array r of n values and registers them with the garbage collector. The values containedin r[0] to r[n-1] are treated like roots by the garbage collector. A root value has the followingproperties: if it points to a heap-allocated block, this block (and its contents) will not be reclaimed;moreover, if this block is relocated by the garbage collector, the root value is updated to point to thenew location for the block. Push_roots(r,n)must occur in a C block exactly between the last localvariable declaration and the �rst statement in the block. To un-register the roots, Pop_roots()must be called before the C block containing Push_roots(r,n) is exited. (Roots are automaticallyun-registered if a Caml exception is raised.)Rule 3 Direct assignment to a �eld of a block, as inField(v, n) = w;is safe only if v is a block newly allocated by alloc or alloc_tuple; that is, if no allocation tookplace between the allocation of v and the assignment to the �eld. In all other cases, never assigndirectly. If the block has just been allocated by alloc_shr, use initialize to assign a value to a�eld for the �rst time:initialize(&Field(v, n), w);Otherwise, you are updating a �eld that previously contained a well-formed value; then, call themodify function:modify(&Field(v, n), w);To illustrate the rules above, here is a C function that builds and returns a list containing thetwo integers given as parameters:

Chapter 12. Interfacing C with Caml Light 107value alloc_list_int(i1, i2)int i1, i2;{ value result;Push_roots(r, 1);r[0] = alloc(2, 1); /* Allocate a cons cell */Field(r[0], 0) = Val_int(i2); /* car = the integer i2 */Field(r[0], 1) = Atom(0); /* cdr = the empty list [] */result = alloc(2, 1); /* Allocate the other cons cell */Field(result, 0) = Val_int(i1); /* car = the integer i1 */Field(result, 1) = r[0]; /* cdr = the first cons cell */Pop_roots();return result;}The \cons" cell allocated �rst needs to survive the allocation of the other cons cell; hence, the valuereturned by the �rst call to alloc must be stored in a registered root. The value returned by thesecond call to alloc can reside in the un-registered local variable result, since we won't do anyfurther allocation in this function.In the example above, the list is built bottom-up. Here is an alternate way, that proceedstop-down. It is less e�cient, but illustrates the use of modify.value alloc_list_int(i1, i2)int i1, i2;{ value tail;Push_roots(r, 1);r[0] = alloc(2, 1); /* Allocate a cons cell */Field(r[0], 0) = Val_int(i1); /* car = the integer i1 */Field(r[0], 1) = Val_int(0); /* A dummy valuetail = alloc(2, 1); /* Allocate the other cons cell */Field(tail, 0) = Val_int(i2); /* car = the integer i2 */Field(tail, 1) = Atom(0); /* cdr = the empty list [] */modify(&Field(r[0], 1), tail); /* cdr of the result = tail */Pop_roots();return r[0];}It would be incorrect to perform Field(r[0], 1) = tail directly, because the allocation of tailhas taken place since r[0] was allocated.12.6 A complete exampleThis section outlines how the functions from the Unix curses library can be made available to CamlLight programs. First of all, here is the interface curses.mli that declares the curses primitivesand data types:

108type window;; (* The type "window" remains abstract *)value initscr: unit -> window = 1 "curses_initscr"and endwin: unit -> unit = 1 "curses_endwin"and refresh: unit -> unit = 1 "curses_refresh"and wrefresh : window -> unit = 1 "curses_wrefresh"and newwin: int -> int -> int -> int -> window = 4 "curses_newwin"and mvwin: window -> int -> int -> unit = 3 "curses_mvwin"and addch: char -> unit = 1 "curses_addch"and mvwaddch: window -> int -> int -> char -> unit = 4 "curses_mvwaddch"and addstr: string -> unit = 1 "curses_addstr"and mvwaddstr: window -> int -> int -> string -> unit = 4 "curses_mvwaddstr";; (* lots more omitted *)To compile this interface:camlc -c curses.mliTo implement these functions, we just have to provide the stub code; the core functions arealready implemented in the curses library. The stub code �le, curses.o, looks like:#include <curses.h>#include <mlvalues.h>value curses_initscr(unit)value unit;{ return (value) initscr(); /* OK to coerce directly from WINDOW * to valuesince that's a block created by malloc() */}value curses_wrefresh(win)value win;{ wrefresh((WINDOW *) win);return Val_unit;}value curses_newwin(nlines, ncols, x0, y0)value nlines, ncols, x0, y0;{ return (value) newwin(Int_val(nlines), Int_val(ncols),Int_val(x0), Int_val(y0));}value curses_addch(c)value c;{

Chapter 12. Interfacing C with Caml Light 109addch(Int_val(c)); /* Characters are encoded like integers */return Val_unit;}value curses_addstr(s)value s;{ addstr(String_val(s));return Val_unit;}/* This goes on for pages. */(Actually, it would be better to create a library for the stub code, with each stub code functionin a separate �le, so that linking would pick only those functions from the curses library that areactually used.)The �le curses.c can be compiled with:cc -c -I/usr/local/lib/caml-light curses.cor, even simpler,camlc -c curses.c(When passed a .c �le, the camlc command simply calls cc on that �le, with the right -I option.)Now, here is a sample Caml Light program test.ml that uses the curses module:#open "curses";;let main_window = initscr () inlet small_window = newwin 10 5 20 10 inmvwaddstr main_window 10 2 "Hello";mvwaddstr small_window 4 3 "world";refresh();for i = 1 to 100000 do () done;endwin();;To compile this program, run:camlc -c test.mlFinally, to link everything together:camlc -custom -o test test.zo curses.o -lcurses

110

Part IVThe Caml Light library

111

Chapter 13The core libraryThis chapter describes the functions provided by the Caml Light core library. This library is specialin two ways:� It is automatically linked with the user's object code �les by the camlc command (chapter 4).Hence, the globals de�ned by these libraries can be used in standalone programs withouthaving to add any .zo �le on the command line for the linking phase. Similarly, in interactiveuse, these globals can be used in toplevel phrases without having to load any .zo �le inmemory.� The interfaces for the modules below are automatically \opened" when a compilation starts,or when the toplevel system is launched. Hence, it is possible to use unquali�ed identi�ers torefer to the functions provided by these modules, without adding #open directives. Actually,the list of automatically opened modules depend on the -O option given to the compiler orto the toplevel system:-O option Opened modules (reverse opening order)-O cautious (default) io, eq, int, float, ref, pair, list, vect, char,string, bool, exc, stream, builtin-O fast io, eq, int, float, ref, pair, list, fvect,fchar, fstring, bool, exc, stream, builtin-O none builtinConventionsFor easy reference, the modules are listed below in alphabetical order of module names. For eachmodule, the declarations from its interface �le are printed one by one in typewriter font, followedby a short comment. All modules and the identi�ers they export are indexed at the end of thisreport.13.1 bool: boolean operationsvalue prefix & : bool -> bool -> bool 113

114value prefix && : bool -> bool -> boolvalue prefix or : bool -> bool -> boolvalue prefix || : bool -> bool -> boolThe boolean and is written e1 & e2 or e1 && e2. The boolean or is written e1 or e2 ore1 || e2. Both constructs are sequential, left-to-right: e2 is evaluated only if needed.Actually, e1 & e2 is equivalent to if e1 then e2 else false, and e1 or e2 is equivalentto if e1 then true else e2.value prefix not : bool -> boolThe boolean negation.value string_of_bool : bool -> stringReturn a string representing the given boolean.13.2 builtin: base types and constructorsThis module de�nes some types and exceptions for which the language provides specialsyntax, and are therefore treated specially by the compiler.type inttype floattype stringtype charThe types of integers,
oating-point numbers, character strings, and characters, respectively.type exnThe type of exception values.type bool = false | trueThe type of boolean values.type 'a vectThe type of arrays whose elements have type 'a.type unit = ()The type of the unit value.type 'a list = [] | prefix :: of 'a * 'a listThe type of lists.type 'a option = None | Some of 'aThe type of optional values.exception Match_failure of string * int * intThe exception raised when a pattern-matching fails. The argument indicates the position inthe source code of the pattern-matching (source �le name, position of the �rst character ofthe matching, position of the last character.

Chapter 13. The core library 11513.3 char: character operationsvalue int_of_char : char -> intReturn the ASCII code of the argument.value char_of_int : int -> charReturn the character with the given ASCII code. Raise Invalid_argument "char_of_int"if the argument is outside the range 0{255.value string_of_char : char -> stringReturn a string representing the given character.value char_for_read : char -> stringReturn a string representing the given character, with special characters escaped followingthe lexical conventions of Caml Light.13.4 eq: generic comparisonsvalue prefix = : 'a -> 'a -> boole1 = e2 tests for structural equality of e1 and e2. Mutable structures (e.g. references andarrays) are equal if and only if their current contents are structurally equal, even if the twomutable objects are not the same physical object. Equality between functional values raisesInvalid_argument. Equality between cyclic data structures may not terminate.value prefix <> : 'a -> 'a -> boolNegation of prefix =.value prefix < : 'a -> 'a -> boolvalue prefix <= : 'a -> 'a -> boolvalue prefix > : 'a -> 'a -> boolvalue prefix >= : 'a -> 'a -> boolStructural ordering functions. These functions coincide with the usual orderings overinteger, string and
oating-point numbers, and extend them to a total ordering over alltypes. The ordering is compatible with prefix =. As in the case of prefix =, mutablestructures are compared by contents. Comparison between functional values raisesInvalid_argument. Comparison between cyclic structures may not terminate.value compare: 'a -> 'a -> intcompare x y returns 0 if x=y, a negative integer if x<y, and a positive integer if x>y. Thesame restrictions as for = apply. compare can be used as the comparison function requiredby the set and map modules.

116value min: 'a -> 'a -> 'aReturn the smaller of the two arguments.value max: 'a -> 'a -> 'aReturn the greater of the two arguments.value prefix == : 'a -> 'a -> boole1 == e2 tests for physical equality of e1 and e2. On integers and characters, it is the sameas structural equality. On mutable structures, e1 == e2 is true if and only if physicalmodi�cation of e1 also a�ects e2. On non-mutable structures, the behavior of prefix == isimplementation-dependent, except that e1 == e2 implies e1 = e2.value prefix != : 'a -> 'a -> boolNegation of prefix ==.13.5 exc: exceptionsvalue raise : exn -> 'aRaise the given exception value.A few general-purpose prede�ned exceptions.exception Out_of_memoryRaised by the garbage collector, when there is insu�cient memory to complete thecomputation.exception Invalid_argument of stringRaised by library functions to signal that the given arguments do not make sense.exception Failure of stringRaised by library functions to signal that they are unde�ned on the given arguments.exception Not_foundRaised by search functions when the desired object could not be found.exception ExitThis exception is not raised by any library function. It is provided for use in your programs.value failwith : string -> 'aRaise exception Failure with the given string.value invalid_arg : string -> 'aRaise exception Invalid_argument with the given string.

Chapter 13. The core library 11713.6 fchar: character operations, without sanity checksThis module implements the same functions as the char module, but does not performbound checks on the arguments of the functions. The functions are therefore faster thanthose in the char module, but calling these functions with incorrect parameters (that is,parameters that would cause the Invalid_argument exception to be raised by thecorresponding functions in the char module) can crash the program.13.7 float: operations on
oating-point numbersvalue int_of_float : float -> intTruncate the given
oat to an integer value. The result is unspeci�ed if it falls outside therange of representable integers.value float_of_int : int -> floatConvert an integer to
oating-point.value minus : float -> floatvalue minus_float : float -> floatUnary negation.value prefix + : float -> float -> floatvalue prefix +. : float -> float -> floatvalue add_float : float -> float -> floatAddition.value prefix - : float -> float -> floatvalue prefix -. : float -> float -> floatvalue sub_float : float -> float -> floatSubtraction.value prefix * : float -> float -> floatvalue prefix *. : float -> float -> floatvalue mult_float : float -> float -> floatProduct.value prefix / : float -> float -> floatvalue prefix /. : float -> float -> floatvalue div_float : float -> float -> floatDivision.

118value prefix ** : float -> float -> floatvalue prefix **. : float -> float -> floatvalue power : float -> float -> floatExponentiation.value eq_float : float -> float -> boolvalue prefix =. : float -> float -> boolFloating-point equality. Equivalent to generic equality, just faster.value neq_float : float -> float -> boolvalue prefix <>. : float -> float -> boolNegation of eq_float.value prefix <. : float -> float -> boolvalue lt_float : float -> float -> boolvalue prefix >. : float -> float -> boolvalue gt_float : float -> float -> boolvalue prefix <=. : float -> float -> boolvalue le_float : float -> float -> boolvalue prefix >=. : float -> float -> boolvalue ge_float : float -> float -> boolUsual comparisons between
oating-point numbers.value acos : float -> floatvalue asin : float -> floatvalue atan : float -> floatvalue atan2 : float -> float -> floatvalue cos : float -> floatvalue cosh : float -> floatvalue exp : float -> floatvalue log : float -> floatvalue log10 : float -> floatvalue sin : float -> floatvalue sinh : float -> floatvalue sqrt : float -> floatvalue tan : float -> floatvalue tanh : float -> floatUsual transcendental functions on
oating-point numbers.value ceil : float -> floatvalue floor : float -> floatRound the given
oat to an integer value. floor f returns the greatest integer value lessthan or equal to f. ceil f returns the least integer value greater than or equal to f.

Chapter 13. The core library 119value abs_float : float -> floatReturn the absolute value of the argument.value mod_float : float -> float -> floatfmod a b returns the remainder of a with respect to b.value frexp : float -> float * intfrexp f returns the pair of the signi�cant and the exponent of f (when f is zero, thesigni�cant x and the exponent n of f are equal to zero; when f is non-zero, they are de�nedby f = x *. 2 ** n).value ldexp : float -> int -> floatldexp x n returns x *. 2 ** n.value modf : float -> float * floatmodf f returns the pair of the fractional and integral part of f.value string_of_float : float -> stringConvert the given
oat to its decimal representation.value float_of_string : string -> floatConvert the given string to a
oat, in decimal. The result is unspeci�ed if the given string isnot a valid representation of a
oat.13.8 fstring: string operations, without sanity checksThis module implements the same functions as the string module, but does not performbound checks on the arguments of the functions. The functions are therefore faster thanthose in the string module, but calling these functions with incorrect parameters (that is,parameters that would cause the Invalid_argument exception to be raised by thecorresponding functions in the string module) can crash the program.13.9 fvect: operations on vectors, without sanity checksThis module implements the same functions as the vect module, but does not performbound checks on the arguments of the functions. The functions are therefore faster thanthose in the vect module, but calling these functions with incorrect parameters (that is,parameters that would cause the Invalid_argument exception to be raised by thecorresponding functions in the vect module) can crash the program.

12013.10 int: operations on integersIntegers are 31 bits wide (or 63 bits on 64-bit processors). All operations are taken modulo231 (or 263). They do not fail on over
ow.exception Division_by_zerovalue minus : int -> intvalue minus_int : int -> intUnary negation. You can write -e instead of minus e.value succ : int -> intsucc x is x+1.value pred : int -> intpred x is x-1.value prefix + : int -> int -> intvalue add_int : int -> int -> intAddition.value prefix - : int -> int -> intvalue sub_int : int -> int -> intSubtraction.value prefix * : int -> int -> intvalue mult_int : int -> int -> intMultiplication.value prefix / : int -> int -> intvalue div_int : int -> int -> intvalue prefix quo : int -> int -> intInteger division. Raise Division_by_zero if the second argument is 0. Give unpredictableresults if either argument is negative.value prefix mod : int -> int -> intRemainder. Raise Division_by_zero if the second argument is 0. Give unpredictableresults if either argument is negative.value eq_int : int -> int -> boolInteger equality. Equivalent to generic equality, just faster.value neq_int : int -> int -> boolNegation of eq_int.

Chapter 13. The core library 121value lt_int : int -> int -> boolvalue gt_int : int -> int -> boolvalue le_int : int -> int -> boolvalue ge_int : int -> int -> boolUsual comparisons between integers.value abs : int -> intReturn the absolute value of the argument.value max_int : intvalue min_int : intThe greatest and smallest integer values.Bitwise operationsvalue prefix land : int -> int -> intBitwise logical and.value prefix lor : int -> int -> intBitwise logical or.value prefix lxor : int -> int -> intBitwise logical exclusive or.value lnot : int -> intBitwise complementvalue prefix lsl : int -> int -> intvalue lshift_left : int -> int -> intn lsl m, or equivalently lshift_left n m, shifts n to the left by m bits.value prefix lsr : int -> int -> intn lsr m shifts n to the right by m bits. This is a logical shift: zeroes are inserted regardlessof sign.value prefix asr : int -> int -> intvalue lshift_right : int -> int -> intn asr m, or equivalently lshift_right n m, shifts n to the right by m bits. This is anarithmetic shift: the sign bit is replicated.

122Conversion functionsvalue string_of_int : int -> stringConvert the given integer to its decimal representation.value int_of_string : string -> intConvert the given string to an integer, in decimal (by default) or in hexadecimal, octal orbinary if the string begins with 0x, 0o or 0b. Raise Failure "int_of_string" if the givenstring is not a valid representation of an integer.13.11 io: bu�ered input and outputtype in_channeltype out_channelThe abstract types of input channels and output channels.exception End_of_fileRaised when an operation cannot complete, because the end of the �le has been reached.value stdin : in_channelvalue std_in : in_channelvalue stdout : out_channelvalue std_out : out_channelvalue stderr : out_channelvalue std_err : out_channelThe standard input, standard output, and standard error output for the process. std_in,std_out and std_err are respectively synonymous with stdin, stdout and stderr.value exit : int -> 'aFlush all pending writes on std_out and std_err, and terminate the process, returning thegiven status code to the operating system (usually 0 to indicate no errors, and a smallpositive integer to indicate failure.) This function should be called at the end of allstandalone programs that output results on std_out or std_err; otherwise, the programmay appear to produce no output, or its output may be truncated.Output functions on standard outputvalue print_char : char -> unitPrint the character on standard output.

Chapter 13. The core library 123value print_string : string -> unitPrint the string on standard output.value print_int : int -> unitPrint the integer, in decimal, on standard output.value print_float : float -> unitPrint the
oating-point number, in decimal, on standard output.value print_endline : string -> unitPrint the string, followed by a newline character, on standard output.value print_newline : unit -> unitPrint a newline character on standard output, and
ush standard output. This can be usedto simulate line bu�ering of standard output.Output functions on standard errorvalue prerr_char : char -> unitPrint the character on standard error.value prerr_string : string -> unitPrint the string on standard error.value prerr_int : int -> unitPrint the integer, in decimal, on standard error.value prerr_float : float -> unitPrint the
oating-point number, in decimal, on standard error.value prerr_endline : string -> unitPrint the string, followed by a newline character on standard error and
ush standard error.

124Input functions on standard inputvalue read_line : unit -> stringFlush standard output, then read characters from standard input until a newline characteris encountered. Return the string of all characters read, without the newline character atthe end.value read_int : unit -> intFlush standard output, then read one line from standard input and convert it to an integer.Raise Failure "int_of_string" if the line read is not a valid representation of an integer.value read_float : unit -> floatFlush standard output, then read one line from standard input and convert it to a
oating-point number. The result is unspeci�ed if the line read is not a valid representationof a
oating-point number.General output functionsvalue open_out : string -> out_channelOpen the named �le for writing, and return a new output channel on that �le, positionnedat the beginning of the �le. The �le is truncated to zero length if it already exists. It iscreated if it does not already exists. Raise sys__Sys_error if the �le could not be opened.value open_out_bin : string -> out_channelSame as open_out, but the �le is opened in binary mode, so that no translation takes placeduring writes. On operating systems that do not distinguish between text mode and binarymode, this function behaves like open_out.value open_out_gen : sys__open_flag list -> int -> string -> out_channelopen_out_gen mode rights filename opens the �le named filename for writing, asabove. The extra argument mode specify the opening mode (see sys__open). The extraargument rights speci�es the �le permissions, in case the �le must be created (seesys__open). open_out and open_out_bin are special cases of this function.value open_descriptor_out : int -> out_channelopen_descriptor_out fd returns a bu�ered output channel writing to the �le descriptorfd. The �le descriptor fd must have been previously opened for writing, else the behavior isunde�ned.value flush : out_channel -> unitFlush the bu�er associated with the given output channel, performing all pending writes onthat channel. Interactive programs must be careful about
ushing std_out and std_err atthe right time.

Chapter 13. The core library 125value output_char : out_channel -> char -> unitWrite the character on the given output channel.value output_string : out_channel -> string -> unitWrite the string on the given output channel.value output : out_channel -> string -> int -> int -> unitoutput chan buff ofs len writes len characters from string buff, starting at o�set ofs,to the output channel chan. Raise Invalid_argument "output" if ofs and len do notdesignate a valid substring of buff.value output_byte : out_channel -> int -> unitWrite one 8-bit integer (as the single character with that code) on the given output channel.The given integer is taken modulo 256.value output_binary_int : out_channel -> int -> unitWrite one integer in binary format on the given output channel. The only reliable way toread it back is through the input_binary_int function. The format is compatible across allmachines for a given version of Caml Light.value output_value : out_channel -> 'a -> unitWrite the representation of a structured value of any type to a channel. Circularities andsharing inside the value are detected and preserved. The object can be read back, by thefunction input_value. The format is compatible across all machines for a given version ofCaml Light.value output_compact_value : out_channel -> 'a -> unitSame as output_value, but uses a di�erent format, which occupies less space on the �le,but takes more time to generate and read back.value seek_out : out_channel -> int -> unitseek_out chan pos sets the current writing position to pos for channel chan. This worksonly for regular �les. On �les of other kinds (such as terminals, pipes and sockets), thebehavior is unspeci�ed.value pos_out : out_channel -> intReturn the current writing position for the given channel.value out_channel_length : out_channel -> intReturn the total length (number of characters) of the given channel. This works only forregular �les. On �les of other kinds, the result is meaningless.value close_out : out_channel -> unitClose the given channel,
ushing all bu�ered write operations. The behavior is unspeci�ed ifany of the functions above is called on a closed channel.

126General input functionsvalue open_in : string -> in_channelOpen the named �le for reading, and return a new input channel on that �le, positionned atthe beginning of the �le. Raise sys__Sys_error if the �le could not be opened.value open_in_bin : string -> in_channelSame as open_in, but the �le is opened in binary mode, so that no translation takes placeduring reads. On operating systems that do not distinguish between text mode and binarymode, this function behaves like open_in.value open_in_gen : sys__open_flag list -> int -> string -> in_channelopen_in_gen mode rights filename opens the �le named filename for reading, as above.The extra arguments mode and rights specify the opening mode and �le permissions (seesys__open). open_in and open_in_bin are special cases of this function.value open_descriptor_in : int -> in_channelopen_descriptor_in fd returns a bu�ered input channel reading from the �le descriptorfd. The �le descriptor fd must have been previously opened for reading, else the behavior isunde�ned.value input_char : in_channel -> charRead one character from the given input channel. Raise End_of_file if there are no morecharacters to read.value input_line : in_channel -> stringRead characters from the given input channel, until a newline character is encountered.Return the string of all characters read, without the newline character at the end. RaiseEnd_of_file if the end of the �le is reached at the beginning of line.value input : in_channel -> string -> int -> int -> intinput chan buff ofs len attempts to read len characters from channel chan, storingthem in string buff, starting at character number ofs. It returns the actual number ofcharacters read, between 0 and len (inclusive). A return value of 0 means that the end of�le was reached. A return value between 0 and len exclusive means that no more characterswere available at that time; input must be called again to read the remaining characters, ifdesired. Exception Invalid_argument "input" is raised if ofs and len do not designate avalid substring of buff.value really_input : in_channel -> string -> int -> int -> unitreally_input chan buff ofs len reads len characters from channel chan, storing themin string buff, starting at character number ofs. Raise End_of_file if the end of �le isreached before len characters have been read. Raise Invalid_argument "really_input" ifofs and len do not designate a valid substring of buff.

Chapter 13. The core library 127value input_byte : in_channel -> intSame as input_char, but return the 8-bit integer representing the character. RaiseEnd_of_file if an end of �le was reached.value input_binary_int : in_channel -> intRead an integer encoded in binary format from the given input channel. Seeoutput_binary_int. Raise End_of_file if an end of �le was reached while reading theinteger.value input_value : in_channel -> 'aRead the representation of a structured value, as produced by output_value oroutput_compact_value, and return the corresponding value. This is not type-safe. Thetype of the returned object is not 'a properly speaking: the returned object has one uniquetype, which cannot be determined at compile-time. The programmer should explicitly givethe expected type of the returned value, using the following syntax:(input_value chan : type). The behavior is unspeci�ed if the object in the �le does notbelong to the given type.value seek_in : in_channel -> int -> unitseek_in chan pos sets the current reading position to pos for channel chan. This worksonly for regular �les. On �les of other kinds, the behavior is unspeci�ed.value pos_in : in_channel -> intReturn the current reading position for the given channel.value in_channel_length : in_channel -> intReturn the total length (number of characters) of the given channel. This works only forregular �les. On �les of other kinds, the result is meaningless.value close_in : in_channel -> unitClose the given channel. Anything can happen if any of the functions above is called on aclosed channel.13.12 list: operations on listsvalue list_length : 'a list -> intReturn the length (number of elements) of the given list.value prefix @ : 'a list -> 'a list -> 'a listList concatenation.

128value hd : 'a list -> 'aReturn the �rst element of the given list. Raise Failure "hd" if the list is empty.value tl : 'a list -> 'a listReturn the given list without its �rst element. Raise Failure "tl" if the list is empty.value rev : 'a list -> 'a listList reversal.value map : ('a -> 'b) -> 'a list -> 'b listmap f [a1; ...; an] applies function f to a1, ..., an, and builds the list[f a1; ...; f an] with the results returned by f.value do_list : ('a -> unit) -> 'a list -> unitdo_list f [a1; ...; an] applies function f in turn to a1; ...; an, discarding all theresults. It is equivalent to begin f a1; f a2; ...; f an; () end.value it_list : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'ait_list f a [b1; ...; bn] is f (... (f (f a b1) b2) ...) bn.value list_it : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'blist_it f [a1; ...; an] b is f a1 (f a2 (... (f an b) ...)).value map2 : ('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c listmap2 f [a1; ...; an] [b1; ...; bn] is [f a1 b1; ...; f an bn]. RaiseInvalid_argument "map2" if the two lists have di�erent lengths.value do_list2 : ('a -> 'b -> unit) -> 'a list -> 'b list -> unitdo_list2 f [a1; ...; an] [b1; ...; bn] calls in turn f a1 b1; ...; f an bn,discarding the results. Raise Invalid_argument "do_list2" if the two lists have di�erentlengths.value it_list2 : ('a -> 'b -> 'c -> 'a) -> 'a -> 'b list -> 'c list -> 'ait_list2 f a [b1; ...; bn] [c1; ...; cn] isf (... (f (f a b1 c1) b2 c2) ...) bn cn. Raise Invalid_argument "it_list2" ifthe two lists have di�erent lengths.value list_it2 : ('a -> 'b -> 'c -> 'c) -> 'a list -> 'b list -> 'c -> 'clist_it2 f [a1; ...; an] [b1; ...; bn] c isf a1 b1 (f a2 b2 (... (f an bn c) ...)). Raise Invalid_argument "list_it2" ifthe two lists have di�erent lengths.

Chapter 13. The core library 129value flat_map : ('a -> 'b list) -> 'a list -> 'b listflat_map f [l1; ...; ln] is (f l1) @ (f l2) @ ... @ (f ln).value for_all : ('a -> bool) -> 'a list -> boolfor_all p [a1; ...; an] is (p a1) & (p a2) & ... & (p an).value exists : ('a -> bool) -> 'a list -> boolexists p [a1; ...; an] is (p a1) or (p a2) or ... or (p an).value mem : 'a -> 'a list -> boolmem a l is true if and only if a is structurally equal (see module eq) to an element of l.value memq : 'a -> 'a list -> boolmemq a l is true if and only if a is physically equal (see module eq) to an element of l.value except : 'a -> 'a list -> 'a listexcept a l returns the list l where the �rst element structurally equal to a has beenremoved. The list l is returned unchanged if it does not contain a.value exceptq : 'a -> 'a list -> 'a listSame as except, with physical equality instead of structural equality.value subtract : 'a list -> 'a list -> 'a listsubtract l1 l2 returns the list l1 where all elements structurally equal to one of theelements of l2 have been removed.value union : 'a list -> 'a list -> 'a listunion l1 l2 appends before list l2 all the elements of list l1 that are not structurallyequal to an element of l2.value intersect : 'a list -> 'a list -> 'a listintersect l1 l2 returns the list of the elements of l1 that are structurally equal to anelement of l2.value index : 'a -> 'a list -> intindex a l returns the position of the �rst element of list l that is structurally equal to a.The head of the list has position 0. Raise Not_found if a is not present in l.value assoc : 'a -> ('a * 'b) list -> 'bassoc a l returns the value associated with key a in the list of pairs l. That is,assoc a [...; (a,b); ...] = b if (a,b) is the leftmost binding of a in list l. RaiseNot_found if there is no value associated with a in the list l.value assq : 'a -> ('a * 'b) list -> 'bSame as assoc, but use physical equality instead of structural equality to compare keys.value mem_assoc : 'a -> ('a * 'b) list -> boolSame as assoc, but simply return true if a binding exists, and false if no bindings exist forthe given key.

13013.13 pair: operations on pairsvalue fst : 'a * 'b -> 'aReturn the �rst component of a pair.value snd : 'a * 'b -> 'bReturn the second component of a pair.value split : ('a * 'b) list -> 'a list * 'b listTransform a list of pairs into a pair of lists: split [(a1,b1); ...; (an,bn)] is([a1; ...; an], [b1; ...; bn])value combine : 'a list * 'b list -> ('a * 'b) listTransform a pair of lists into a list of pairs: combine ([a1; ...; an], [b1; ...; bn]) is[(a1,b1); ...; (an,bn)]. Raise Invalid_argument "combine" if the two lists havedi�erent lengths.value map_combine : ('a * 'b -> 'c) -> 'a list * 'b list -> 'c listmap_combine f ([a1; ...; an], [b1; ...; bn]) is [f (a1, b1); ...; f (an, bn)].Raise invalid_argument "map_combine" if the two lists have di�erent lengths.value do_list_combine : ('a * 'b -> unit) -> 'a list * 'b list -> unitdo_list_combine f ([a1; ...; an], [b1; ...; bn]) calls in turnf (a1, b1); ...; f (an, bn), discarding the results. RaiseInvalid_argument "do_list_combine" if the two lists have di�erent lengths.13.14 ref: operations on referencestype 'a ref = ref of mutable 'aThe type of references (mutable indirection cells) containing a value of type 'a.value prefix ! : 'a ref -> 'a!r returns the current contents of reference r. Could be de�ned as fun (ref x) -> x.value prefix := : 'a ref -> 'a -> unitr := a stores the value of a in reference r.value incr : int ref -> unitIncrement the integer contained in the given reference. Could be de�ned asfun r -> r := succ !r.value decr : int ref -> unitDecrement the integer contained in the given reference. Could be de�ned asfun r -> r := pred !r.

Chapter 13. The core library 13113.15 stream: operations on streamstype 'a streamThe type of streams containing values of type 'a.exception Parse_failureRaised by parsers when none of the �rst component of the stream patterns is acceptedexception Parse_errorRaised by parsers when the �rst component of a stream pattern is accepted, but one of thefollowing components is rejectedvalue stream_next : 'a stream -> 'astream_next s returns the �rst element of stream s, and removes it from the stream. RaiseParse_failure if the stream is empty.value stream_from : (unit -> 'a) -> 'a streamstream_from f returns the stream which fetches its terminals using the function f. Thisfunction could be de�ned as:let rec stream_from f = [< 'f(); stream_from f >]but is implemented more e�ciently.value stream_of_string : string -> char streamstream_of_string s returns the stream of the characters in string s.value stream_of_channel : in_channel -> char streamstream_of_channel ic returns the stream of characters read on channel ic.value do_stream : ('a -> unit) -> 'a stream -> unitdo_stream f s scans the whole stream s, applying the function f in turn to each terminalencounteredvalue stream_check : ('a -> bool) -> 'a stream -> 'astream_check p returns the parser which returns the �rst terminal of the stream if thepredicate p returns true on this terminal, and raises Parse_failure otherwise.value end_of_stream : 'a stream -> unitReturn () i� the stream is empty, and raise Parse_failure otherwise.value stream_get : 'a stream -> 'a * 'a streamstream_get s return the �rst element of the stream s, and a stream containing theremaining elements of s. Raise Parse_failure if the stream is empty. The stream s is notmodi�ed. This function makes it possible to access a stream non-destructively.

13213.16 string: string operationsvalue string_length : string -> intReturn the length (number of characters) of the given string.value nth_char : string -> int -> charnth_char s n returns character number n in string s. The �rst character is characternumber 0. The last character is character number string_length s - 1. RaiseInvalid_argument "nth_char" if n is ouside the range 0 to (string_length s - 1). Youcan also write s.[n] instead of nth_char s n.value set_nth_char : string -> int -> char -> unitset_nth_char s n c modi�es string s in place, replacing the character number n by c.Raise Invalid_argument "set_nth_char" if n is ouside the range 0 to(string_length s - 1). You can also write s.[n] <- c instead of set_nth_char s n c.value prefix ^ : string -> string -> strings1 ^ s2 returns a fresh string containing the concatenation of the strings s1 and s2.value concat : string list -> stringReturn a fresh string containing the concatenation of all the strings in the argument list.value sub_string : string -> int -> int -> stringsub_string s start len returns a fresh string of length len, containing the charactersnumber start to start + len - 1 of string s. Raise Invalid_argument "sub_string" ifstart and len do not designate a valid substring of s; that is, if start < 0, or len < 0, orstart + len > string_length s.value create_string : int -> stringcreate_string n returns a fresh string of length n. The string initially contains arbitrarycharacters.value make_string : int -> char -> stringmake_string n c returns a fresh string of length n, �lled with the character c.value fill_string : string -> int -> int -> char -> unitfill_string s start len c modi�es string s in place, replacing the characters numberstart to start + len - 1 by c. Raise Invalid_argument "fill_string" if start andlen do not designate a valid substring of s.

Chapter 13. The core library 133value blit_string : string -> int -> string -> int -> int -> unitblit_string s1 o1 s2 o2 len copies len characters from string s1, starting at characternumber o1, to string s2, starting at character number o2. It works correctly even if s1 ands2 are the same string, and the source and destination chunks overlap. RaiseInvalid_argument "blit_string" if o1 and len do not designate a valid substring of s1,or if o2 and len do not designate a valid substring of s2.value replace_string : string -> string -> int -> unitreplace_string dest src start copies all characters from the string src into the stringdst, starting at character number start in dst. RaiseInvalid_argument "replace_string" if copying would over
ow string dest.value eq_string : string -> string -> boolvalue neq_string : string -> string -> boolvalue le_string : string -> string -> boolvalue lt_string : string -> string -> boolvalue ge_string : string -> string -> boolvalue gt_string : string -> string -> boolComparison functions (lexicographic ordering) between strings.value compare_strings : string -> string -> intGeneral comparison between strings. compare_strings s1 s2 returns 0 if s1 and s2 areequal, or else -2 if s1 is a pre�x of s2, or 2 if s2 is a pre�x of s1, or else -1 if s1 islexicographically before s2, or 1 if s2 is lexicographically before s1.value string_for_read : string -> stringReturn a copy of the argument, with special characters represented by escape sequences,following the lexical conventions of Caml Light.value index_char: string -> char -> intindex_char s c returns the position of the leftmost occurrence of character c in string s.Raise Not_found if c does not occur in s.value rindex_char: string -> char -> intrindex_char s c returns the position of the rightmost occurrence of character c in strings. Raise Not_found if c does not occur in s.value index_char_from: string -> int -> char -> intvalue rindex_char_from: string -> int -> char -> intSame as index_char and rindex_char, but start searching at the character position givenas second argument. index_char s c is equivalent to index_char_from s 0 c, andrindex_char s c to rindex_char_from s (string_length s - 1) c.

13413.17 vect: operations on vectorsvalue vect_length : 'a vect -> intReturn the length (number of elements) of the given vector.value vect_item : 'a vect -> int -> 'avect_item v n returns the element number n of vector v. The �rst element has number 0.The last element has number vect_length v - 1. Raise Invalid_argument "vect_item"if n is outside the range 0 to (vect_length v - 1). You can also write v.(n) instead ofvect_item v n.value vect_assign : 'a vect -> int -> 'a -> unitvect_assign v n x modi�es vector v in place, replacing element number n with x. RaiseInvalid_argument "vect_assign" if n is outside the range 0 to vect_length v - 1. Youcan also write v.(n) <- x instead of vect_assign v n x.value make_vect : int -> 'a -> 'a vectmake_vect n x returns a fresh vector of length n, initialized with x. All the elements of thisnew vector are initially physically equal to x (see module eq). Consequently, if x is mutable,it is shared among all elements of the vector, and modifying x through one of the vectorentries will modify all other entries at the same time.value make_matrix : int -> int -> 'a -> 'a vect vectmake_matrix dimx dimy e returns a two-dimensional array (a vector of vectors) with �rstdimension dimx and second dimension dimy. All the elements of this new matrix areinitially physically equal to e. The element (x,y) of a matrix m is accessed with the notationm.(x).(y).value init_vect : int -> (int -> 'a) -> 'a vectinit_vect n f returns a fresh array of length n, with element number i equal to f i.value concat_vect : 'a vect -> 'a vect -> 'a vectconcat_vect v1 v2 returns a fresh vector containing the concatenation of vectors v1 andv2.value sub_vect : 'a vect -> int -> int -> 'a vectsub_vect v start len returns a fresh vector of length len, containing the elementsnumber start to start + len - 1 of vector v. Raise Invalid_argument "sub_vect" ifstart and len do not designate a valid subvector of v; that is, if start < 0, or len < 0, orstart + len > vect_length v.value copy_vect : 'a vect -> 'a vectcopy_vect v returns a copy of v, that is, a fresh vector containing the same elements as v.

Chapter 13. The core library 135value fill_vect : 'a vect -> int -> int -> 'a -> unitfill_vect v ofs len x modi�es the vector v in place, storing x in elements number ofsto ofs + len - 1. Raise Invalid_argument "fill_vect" if ofs and len do not designatea valid subvector of v.value blit_vect : 'a vect -> int -> 'a vect -> int -> int -> unitblit_vect v1 o1 v2 o2 len copies len elements from vector v1, starting at elementnumber o1, to vector v2, starting at element number o2. It works correctly even if v1 andv2 are the same vector, and the source and destination chunks overlap. RaiseInvalid_argument "blit_vect" if o1 and len do not designate a valid subvector of v1, orif o2 and len do not designate a valid subvector of v2.value list_of_vect : 'a vect -> 'a listlist_of_vect v returns the list of all the elements of v, that is:[v.(0); v.(1); ...; v.(vect_length v - 1)].value vect_of_list : 'a list -> 'a vectvect_of_list l returns a fresh vector containing the elements of l.value map_vect : ('a -> 'b) -> 'a vect -> 'b vectmap_vect f v applies function f to all the elements of v, and builds a vector with theresults returned by f: [| f v.(0); f v.(1); ...; f v.(vect_length v - 1) |].value map_vect_list : ('a -> 'b) -> 'a vect -> 'b listmap_vect_list f v applies function f to all the elements of v, and builds a list with theresults returned by f: [f v.(0); f v.(1); ...; f v.(vect_length v - 1)].value do_vect : ('a -> unit) -> 'a vect -> unitdo_vect f v applies function f in turn to all the elements of v, discarding all the results:f v.(0); f v.(1); ...; f v.(vect_length v - 1); ().

136

Chapter 14The standard libraryThis chapter describes the functions provided by the Caml Light standard library. Just as themodules from the core library, the modules from the standard library are automatically linked withthe user's object code �les by the camlc command. Hence, the globals de�ned by these librariescan be used in standalone programs without having to add any .zo �le on the command line for thelinking phase. Similarly, in interactive use, these globals can be used in toplevel phrases withouthaving to load any .zo �le in memory.Unlike the modules from the core library, the modules from the standard library are not auto-matically \opened" when a compilation starts, or when the toplevel system is launched. Hence itis necessary to use quali�ed identi�ers to refer to the functions provided by these modules, or toadd #open directives.ConventionsFor easy reference, the modules are listed below in alphabetical order of module names. For eachmodule, the declarations from its interface �le are printed one by one in typewriter font, followedby a short comment. All modules and the identi�ers they export are indexed at the end of thisreport.14.1 arg: parsing of command line argumentsThis module provides a general mechanism for extracting options and arguments from thecommand line to the program.Syntax of command lines: A keyword is a character string starting with a -. An option is akeyword alone or followed by an argument. There are four types of keywords: Unit, String,Int, and Float. Unit keywords do not take an argument. String, Int, and Float keywordstake the following word on the command line as an argument. Arguments not preceded by akeyword are called anonymous arguments.Examples (cmd is assumed to be the command name):cmd -flag (a unit option) 137

138 cmd -int 1 (an int option with argument 1)cmd -string foobar (a string option with argument "foobar")cmd -float 12.34 (a
oat option with argument 12.34)cmd 1 2 3 (three anonymous arguments: "1", "2", and "3")cmd 1 2 -flag 3 -string bar 4(four anonymous arguments, a unit option, anda string option with argument "bar")type spec =String of (string -> unit)| Int of (int -> unit)| Unit of (unit -> unit)| Float of (float -> unit)The concrete type describing the behavior associated with a keyword.value parse : (string * spec) list -> (string -> unit) -> unitparse speclist anonfun parses the command line, calling the functions in speclistwhenever appropriate, and anonfun on anonymous arguments. The functions are called inthe same order as they appear on the command line. The strings in the(string * spec) list are keywords and must start with a -, else they are ignored. Forthe user to be able to specify anonymous arguments starting with a -, include for example("--", String anonfun) in speclist.exception Bad of stringFunctions in speclist or anonfun can raise Bad with an error message to reject invalidarguments.14.2 baltree: basic balanced binary treesThis module implements balanced ordered binary trees. All operations over binary trees areapplicative (no side-e�ects). The set and map modules are based on this module. Thismodules gives a more direct access to the internals of the binary tree implementation thanthe set and map abstractions, but is more delicate to use and not as safe. For advancedusers only.type 'a t = Empty | Node of 'a t * 'a * 'a t * intThe type of trees containing elements of type 'a. Empty is the empty tree (containing noelements).type 'a contents = Nothing | Something of 'aUsed with the functions modify and split, to represent the presence or the absence of anelement in a tree.

Chapter 14. The standard library 139value add: ('a -> int) -> 'a -> 'a t -> 'a tadd f x t inserts the element x into the tree t. f is an ordering function: f y must return0 if x and y are equal (or equivalent), a negative integer if x is smaller than y, and a positiveinteger if x is greater than y. The tree t is returned unchanged if it already contains anelement equivalent to x (that is, an element y such that f y is 0). The ordering f must beconsistent with the orderings used to build t with add, remove, modify or split operations.value contains: ('a -> int) -> 'a t -> boolcontains f t checks whether t contains an element satisfying f, that is, an element x suchthat f x is 0. f is an ordering function with the same constraints as for add. It can becoarser (identify more elements) than the orderings used to build t, but must be consistentwith them.value find: ('a -> int) -> 'a t -> 'aSame as contains, except that find f t returns the element x such that f x is 0, or raisesNot_found if none has been found.value remove: ('a -> int) -> 'a t -> 'a tremove f t removes one element x of t such that f x is 0. f is an ordering function withthe same constraints as for add. t is returned unchanged if it does not contain any elementsatisfying f. If several elements of t satisfy f, only one is removed.value modify: ('a -> int) -> ('a contents -> 'a contents) -> 'a t -> 'a tGeneral insertion/modi�cation/deletion function. modify f g t searchs t for an element xsatisfying the ordering function f. If one is found, g is applied to Something x; if g returnsNothing, the element x is removed; if g returns Something y, the element y replaces x inthe tree. (It is assumed that x and y are equivalent, in particular, that f y is 0.) If the treedoes not contain any x satisfying f, g is applied to Nothing; if it returns Nothing, the treeis returned unchanged; if it returns Something x, the element x is inserted in the tree. (It isassumed that f x is 0.) The functions add and remove are special cases of modify, slightlymore e�cient.value split: ('a -> int) -> 'a t -> 'a t * 'a contents * 'a tsplit f t returns a triple (less, elt, greater) where less is a tree containing allelements x of t such that f x is negative, greater is a tree containing all elements x of tsuch that f x is positive, and elt is Something x if t contains an element x such that f xis 0, and Nothing otherwise.value compare: ('a -> 'a -> int) -> 'a t -> 'a t -> intCompare two trees. The �rst argument f is a comparison function over the tree elements:f e1 e2 is zero if the elements e1 and e2 are equal, negative if e1 is smaller than e2, andpositive if e1 is greater than e2. compare f t1 t2 compares the fringes of t1 and t2 bylexicographic extension of f.

14014.3 filename: operations on �le namesvalue current_dir_name : stringThe conventional name for the current directory (e.g. . in Unix).value concat : string -> string -> stringconcat dir file returns a �le name that designates �le file in directory dir.value is_absolute : string -> boolReturn true if the �le name is absolute or starts with an explicit reference to the currentdirectory (./ or ../ in Unix), and false if it is relative to the current directory.value check_suffix : string -> string -> boolcheck_suffix name suff returns true if the �lename name ends with the su�x suff.value chop_suffix : string -> string -> stringchop_suffix name suff removes the su�x suff from the �lename name. The behavior isunde�ned if name does not end with the su�x suff.value basename : string -> stringvalue dirname : string -> stringSplit a �le name into directory name / base �le name.concat (dirname name) (basename name) returns a �le name which is equivalent to name.Moreover, after setting the current directory to dirname name (with sys__chdir),references to basename name (which is a relative �le name) designate the same �le as namebefore the call to chdir.14.4 format: pretty printingThis module implements a pretty-printing facility to format text within \pretty-printingboxes". The pretty-printer breaks lines at speci�ed break hints, and indents lines accordingto the box structure.Rule of thumb for casual users:use simple boxes (as obtained by open_box 0);use simple break hints (as obtained by print_cut () that outputs a simple break hint, orby print_space () that ouputs a space indicating a break hint);once a box is opened, display its material with basic printing functions (e. g. print_intand print_string);when the material for a box has been printed, call close_box () to close the box;at the end of your routine, evaluate print_newline () to close all remaining boxes and
ush the pretty-printer.

Chapter 14. The standard library 141You may alternatively consider this module as providing an extension to the printf facility:you can simply add pretty-printing annotations to your regular printf formats, as explainedbelow in the documentation of the function fprintf.The behaviour of pretty-printing commands is unspeci�ed if there is no openedpretty-printing box. Each box opened via one of the open_ functions below must be closedusing close_box for proper formatting. Otherwise, some of the material printed in theboxes may not be output, or may be formatted incorrectly.In case of interactive use, the system closes all opened boxes and
ushes all pending text (aswith the print_newline function) after each phrase. Each phrase is therefore executed inthe initial state of the pretty-printer.Boxesvalue open_box : int -> unitopen_box d opens a new pretty-printing box with o�set d. This box is the general purposepretty-printing box. Material in this box is displayed \horizontal or vertical": break hintsinside the box may lead to a new line, if there is no more room on the line to print theremainder of the box, or if a new line may lead to a new indentation (demonstrating theindentation of the box). When a new line is printed in the box, d is added to the currentindentation.value close_box : unit -> unitClose the most recently opened pretty-printing box.Formatting functionsvalue print_string : string -> unitprint_string str prints str in the current box.value print_as : int -> string -> unitprint_as len str prints str in the current box. The pretty-printer formats str as if itwere of length len.value print_int : int -> unitPrint an integer in the current box.value print_float : float -> unitPrint a
oating point number in the current box.value print_char : char -> unitPrint a character in the current box.value print_bool : bool -> unitPrint an boolean in the current box.

142Break hintsvalue print_space : unit -> unitprint_space () is used to separate items (typically to print a space between two words). Itindicates that the line may be split at this point. It either prints one space or splits the line.It is equivalent to print_break 1 0.value print_cut : unit -> unitprint_cut () is used to mark a good break position. It indicates that the line may be splitat this point. It either prints nothing or splits the line. This allows line splitting at thecurrent point, without printing spaces or adding indentation. It is equivalent toprint_break 0 0.value print_break : int -> int -> unitInsert a break hint in a pretty-printing box. print_break nspaces offset indicates thatthe line may be split (a newline character is printed) at this point, if the contents of thecurrent box does not �t on one line. If the line is split at that point, offset is added to thecurrent indentation. If the line is not split, nspaces spaces are printed.value print_flush : unit -> unitFlush the pretty printer: all opened boxes are closed, and all pending text is displayed.value print_newline : unit -> unitEquivalent to print_flush followed by a new line.value force_newline : unit -> unitForce a newline in the current box. Not the normal way of pretty-printing, you shouldprefer break hints.value print_if_newline : unit -> unitExecute the next formatting command if the preceding line has just been split. Otherwise,ignore the next formatting command.Marginvalue set_margin : int -> unitset_margin d sets the value of the right margin to d (in characters): this value is used todetect line over
ows that leads to split lines. Nothing happens if d is smaller than 2 orbigger than 999999999.value get_margin : unit -> intReturn the position of the right margin.

Chapter 14. The standard library 143Maximum indentation limitvalue set_max_indent : int -> unitset_max_indent d sets the value of the maximum indentation limit to d (in characters):once this limit is reached, boxes are rejected to the left, if they do not �t on the current line.Nothing happens if d is smaller than 2 or bigger than 999999999.value get_max_indent : unit -> intReturn the value of the maximum indentation limit (in characters).Formatting depth: maximum number of boxes allowed before ellipsisvalue set_max_boxes : int -> unitset_max_boxes max sets the maximum number of boxes simultaneously opened. Materialinside boxes nested deeper is printed as an ellipsis (more precisely as the text returned byget_ellipsis_text ()). Nothing happens if max is not greater than 1.value get_max_boxes : unit -> intReturn the maximum number of boxes allowed before ellipsis.value over_max_boxes : unit -> boolTest the maximum number of boxes allowed have already been opened.Advanced formattingvalue open_hbox : unit -> unitopen_hbox () opens a new pretty-printing box. This box is \horizontal": the line is notsplit in this box (new lines may still occur inside boxes nested deeper).value open_vbox : int -> unitopen_vbox d opens a new pretty-printing box with o�set d. This box is \vertical": everybreak hint inside this box leads to a new line. When a new line is printed in the box, d isadded to the current indentation.value open_hvbox : int -> unitopen_hvbox d opens a new pretty-printing box with o�set d. This box is\horizontal-vertical": it behaves as an \horizontal" box if it �ts on a single line, otherwise itbehaves as a \vertical" box. When a new line is printed in the box, d is added to thecurrent indentation.value open_hovbox : int -> unitopen_hovbox d opens a new pretty-printing box with o�set d. This box is \horizontal orvertical": break hints inside this box may lead to a new line, if there is no more room on theline to print the remainder of the box. When a new line is printed in the box, d is added tothe current indentation.

144Tabulationsvalue open_tbox : unit -> unitOpen a tabulation box.value close_tbox : unit -> unitClose the most recently opened tabulation box.value print_tbreak : int -> int -> unitBreak hint in a tabulation box. print_tbreak spaces offset moves the insertion point tothe next tabulation (spaces being added to this position). Nothing occurs if insertion pointis already on a tabulation mark. If there is no next tabulation on the line, then a newline isprinted and the insertion point moves to the �rst tabulation of the box. If a new line isprinted, offset is added to the current indentation.value set_tab : unit -> unitSet a tabulation mark at the current insertion point.value print_tab : unit -> unitprint_tab () is equivalent to print_tbreak (0,0).Ellipsisvalue set_ellipsis_text : string -> unitSet the text of the ellipsis printed when too many boxes are opened (a single dot, ., bydefault).value get_ellipsis_text : unit -> stringReturn the text of the ellipsis.Redirecting formatter outputvalue set_formatter_out_channel : out_channel -> unitRedirect the pretty-printer output to the given channel.value set_formatter_output_functions :(string -> int -> int -> unit) -> (unit -> unit) -> unitset_formatter_output_functions out flush redirects the pretty-printer output to thefunctions out and flush. The out function performs the pretty-printer output. It is calledwith a string s, a start position p, and a number of characters n; it is supposed to outputcharacters p to p+n-1 of s. The flush function is called whenever the pretty-printer is
ushed using print_flush or print_newline.value get_formatter_output_functions :unit -> (string -> int -> int -> unit) * (unit -> unit)Return the current output functions of the pretty-printer.

Chapter 14. The standard library 145Multiple formatted outputtype formatterAbstract data type corresponding to a pretty-printer and all its machinery. De�ning newpretty-printers permits the output of material in parallel on several channels. Parameters ofthe pretty-printer are local to the pretty-printer: margin, maximum indentation limit,maximum number of boxes simultaneously opened, ellipsis, and so on, are speci�c to eachpretty-printer and may be �xed independently. A new formatter is obtained by calling themake_formatter function.value std_formatter : formatterThe standard formatter used by the formatting functions above. It is de�ned usingmake_formatter with output function output stdout and
ushing functionfun () -> flush stdout.value err_formatter : formatterA formatter to use with formatting functions below for output to standard error. It isde�ned using make_formatter with output function output stderr and
ushing functionfun () -> flush stderr.value make_formatter :(string -> int -> int -> unit) -> (unit -> unit) -> formattermake_formatter out flush returns a new formatter that writes according to the outputfunction out, and
ushing function flush. Hence, a formatter to out channel oc is returnedby make_formatter (output oc) (fun () -> flush oc).value pp_open_hbox : formatter -> unit -> unitvalue pp_open_vbox : formatter -> int -> unitvalue pp_open_hvbox : formatter -> int -> unitvalue pp_open_hovbox : formatter -> int -> unitvalue pp_open_box : formatter -> int -> unitvalue pp_close_box : formatter -> unit -> unitvalue pp_print_string : formatter -> string -> unitvalue pp_print_as : formatter -> int -> string -> unitvalue pp_print_int : formatter -> int -> unitvalue pp_print_float : formatter -> float -> unitvalue pp_print_char : formatter -> char -> unitvalue pp_print_bool : formatter -> bool -> unitvalue pp_print_break : formatter -> int -> int -> unitvalue pp_print_cut : formatter -> unit -> unitvalue pp_print_space : formatter -> unit -> unitvalue pp_force_newline : formatter -> unit -> unitvalue pp_print_flush : formatter -> unit -> unitvalue pp_print_newline : formatter -> unit -> unitvalue pp_print_if_newline : formatter -> unit -> unit

146value pp_open_tbox : formatter -> unit -> unitvalue pp_close_tbox : formatter -> unit -> unitvalue pp_print_tbreak : formatter -> int -> int -> unitvalue pp_set_tab : formatter -> unit -> unitvalue pp_print_tab : formatter -> unit -> unitvalue pp_set_margin : formatter -> int -> unitvalue pp_get_margin : formatter -> unit -> intvalue pp_set_max_indent : formatter -> int -> unitvalue pp_get_max_indent : formatter -> unit -> intvalue pp_set_max_boxes : formatter -> int -> unitvalue pp_get_max_boxes : formatter -> unit -> intvalue pp_over_max_boxes : formatter -> unit -> boolvalue pp_set_ellipsis_text : formatter -> string -> unitvalue pp_get_ellipsis_text : formatter -> unit -> stringvalue pp_set_formatter_out_channel : formatter -> out_channel -> unitvalue pp_set_formatter_output_functions : formatter ->(string -> int -> int -> unit) -> (unit -> unit) -> unitvalue pp_get_formatter_output_functions :formatter -> unit -> (string -> int -> int -> unit) * (unit -> unit)The basic functions to use with formatters. These functions are the basic ones: usualfunctions operating on the standard formatter are de�ned via partial evaluation of theseprimitives. For instance, print_string is equal to pp_print_string std_formatter.value fprintf : formatter -> ('a, formatter, unit) format -> 'afprintf ff format arg1 ... argN formats the arguments arg1 to argN according to theformat string format, and outputs the resulting string on the formatter ff. The format is acharacter string which contains three types of objects: plain characters and conversionspeci�cations as speci�ed in the printf module, and pretty-printing indications. Thepretty-printing indication characters are introduced by a @ character, and their meaningsare:[: open a pretty-printing box. The type and o�set of the box may be optionally speci�edwith the following syntax: the < character, followed by an optional box type indication, thenan optional integer o�set, and the closing > character. Box type is one of h, v, hv, or hov,which stand respectively for an horizontal, vertical, \horizontal-vertical" and \horizontal orvertical" box.]: close the most recently opened pretty-printing box.,: output a good break as with print_cut ().: output a space, as with print_space ().\n: force a newline, as with force_newline ().;: output a good break as with print_break. The nspaces and offset parameters of thebreak may be optionally speci�ed with the following syntax: the < character, followed by aninteger nspaces value, then an integer o�set, and a closing > character..:
ush the pretty printer as with print_newline ().@: a plain @ character.

Chapter 14. The standard library 147value printf : ('a, formatter, unit) format -> 'aSame as fprintf, but output on std_formatter.value eprintf: ('a, formatter, unit) format -> 'aSame as fprintf, but output on err_formatter.14.5 gc: memory management control and statisticstype stat = {minor_words : int;promoted_words : int;major_words : int;minor_collections : int;major_collections : int;heap_words : int;heap_chunks : int;live_words : int;live_blocks : int;free_words : int;free_blocks : int;largest_words : int;fragments : int} The memory management counters are returned in a stat record. All the numbers arecomputed since the start of the program. The �elds of this record are:minor_words Number of words allocated in the minor heap.promoted_words Number of words allocated in the minor heap that survived a minorcollection and were moved to the major heap.major_words Number of words allocated in the major heap, including the promoted words.minor_collections Number of minor collections.major_collections Number of major collection cycles, not counting the current cycle.heap_words Total size of the major heap, in words.heap_chunks Number of times the major heap size was increased.live_words Number of words of live data in the major heap, including the header words.live_blocks Number of live objects in the major heap.free_words Number of words in the free list.free_blocks Number of objects in the free list.largest_words Size (in words) of the largest object in the free list.fragments Number of wasted words due to fragmentation. These are 1-words free blocksplaced between two live objects. They cannot be inserted in the free list, thus they are notavailable for allocation.

148 The total amount of memory allocated by the program is (in words)minor_words + major_words - promoted_words. Multiply by the word size (4 on a 32-bitmachine, 8 on a 64-bit machine) to get the number of bytes.type control = {mutable minor_heap_size : int;mutable major_heap_increment : int;mutable space_overhead : int;mutable verbose : bool} The GC parameters are given as a control record. The �elds are:minor_heap_size The size (in words) of the minor heap. Changing this parameter willtrigger a minor collection.major_heap_increment The minimum number of words to add to the major heap whenincreasing it.space_overhead The major GC speed is computed from this parameter. This is thepercentage of heap space that will be "wasted" because the GC does not immediatly collectunreachable objects. The GC will work more (use more CPU time and collect objects moreeagerly) if space_overhead is smaller. The computation of the GC speed assumes that theamount of live data is constant.verbose This
ag controls the GC messages on standard error output.value stat : unit -> statReturn the current values of the memory management counters in a stat record.value print_stat : io__out_channel -> unitPrint the current values of the memory management counters (in human-readable form)into the channel argument.value get : unit -> controlReturn the current values of the GC parameters in a control record.value set : control -> unitset r changes the GC parameters according to the control record r. The normal usage is:let r = gc__get () in (* Get the current parameters. *)r.verbose <- true; (* Change some of them. *)gc__set r (* Set the new values. *)value minor : unit -> unitTrigger a minor collection.

Chapter 14. The standard library 149value major : unit -> unitFinish the current major collection cycle.value full_major : unit -> unitFinish the current major collection cycle and perform a complete new cycle. This willcollect all currently unreachable objects.14.6 genlex: a generic lexical analyzerThis module implements a simple \standard" lexical analyzer, presented as a function fromcharacter streams to token streams. It implements roughly the lexical conventions of Caml,but is parameterized by the set of keywords of your language.type token =Kwd of string| Ident of string| Int of int| Float of float| String of string| Char of charThe type of tokens. The lexical classes are: Int and Float for integer and
oating-pointnumbers; String for string literals, enclosed in double quotes; Char for character literals,enclosed in backquotes; Ident for identi�ers (either sequences of letters, digits, underscoresand quotes, or sequences of \operator characters" such as +, *, etc); and Kwd for keywords(either identi�ers or single \special characters" such as (, }, etc).value make_lexer: string list -> (char stream -> token stream)Construct the lexer function. The �rst argument is the list of keywords. An identi�er s isreturned as Kwd s if s belongs to this list, and as Ident s otherwise. A special character sis returned as Kwd s if s belongs to this list, and cause a lexical error (exceptionParse_error) otherwise. Blanks and newlines are skipped. Comments delimited by (* and*) are skipped as well, and can be nested.Example: a lexer suitable for a desk calculator is obtained bylet lexer = make_lexer ["+";"-";"*";"/";"let";"="; "("; ")"]The associated parser would be a function from token stream to, for instance, int, andwould have rules such as:

150 let parse_expr = function[< 'Int n >] -> n| [< 'Kwd "("; parse_expr n; 'Kwd ")" >] -> n| [< parse_expr n1; (parse_remainder n1) n2 >] -> n2and parse_remainder n1 = function[< 'Kwd "+"; parse_expr n2 >] -> n1+n2| ...14.7 hashtbl: hash tables and hash functionsHash tables are hashed association tables, with in-place modi�cation.type ('a, 'b) tThe type of hash tables from type 'a to type 'b.value new : int -> ('a,'b) tnew n creates a new, empty hash table, with initial size n. The table grows as needed, so nis just an initial guess. Better results are said to be achieved when n is a prime number.Raise Invalid_argument "hashtbl__new" if n is less than 1.value clear : ('a, 'b) t -> unitEmpty a hash table.value add : ('a, 'b) t -> 'a -> 'b -> unitadd tbl x y adds a binding of x to y in table tbl. Previous bindings for x are notremoved, but simply hidden. That is, after performing remove tbl x, the previous bindingfor x, if any, is restored. (This is the semantics of association lists.)value find : ('a, 'b) t -> 'a -> 'bfind tbl x returns the current binding of x in tbl, or raises Not_found if no such bindingexists.value find_all : ('a, 'b) t -> 'a -> 'b listfind_all tbl x returns the list of all data associated with x in tbl. The current binding isreturned �rst, then the previous bindings, in reverse order of introduction in the table.value remove : ('a, 'b) t -> 'a -> unitremove tbl x removes the current binding of x in tbl, restoring the previous binding if itexists. It does nothing if x is not bound in tbl.

Chapter 14. The standard library 151value do_table : ('a -> 'b -> unit) -> ('a, 'b) t -> unitdo_table f tbl applies f to all bindings in table tbl, discarding all the results. f receivesthe key as �rst argument, and the associated value as second argument. Each binding ispresented exactly once to f. The order in which the bindings are passed to f isunpredictable, except that successive bindings for the same key are presented in reversechronological order (most recent �rst).value do_table_rev : ('a -> 'b -> unit) -> ('a, 'b) t -> unitSame as do_table, except that successive bindings for the same key are presented inchronological order (oldest �rst).The polymorphic hash primitivevalue hash : 'a -> inthash x associates a positive integer to any value of any type. It is guaranteed that if x = y,then hash x = hash y. Moreover, hash always terminates, even on cyclic structures.value hash_param : int -> int -> 'a -> inthash_param n m x computes a hash value for x, with the same properties as for hash. Thetwo extra parameters n and m give more precise control over hashing. Hashing performs adepth-�rst, right-to-left traversal of the structure x, stopping after n meaningful nodes wereencountered, or m nodes, meaningful or not, were encountered. Meaningful nodes are:integers;
oating-point numbers; strings; characters; booleans; and constant constructors.Larger values of m and n means that more nodes are taken into account to compute the �nalhash value, and therefore collisions are less likely to happen. However, hashing takes longer.The parameters m and n govern the tradeo� between accuracy and speed.14.8 lexing: the run-time library for lexers generated bycamllexLexer bu�erstype lexbuf ={ refill_buff : lexbuf -> unit;lex_buffer : string;mutable lex_abs_pos : int;mutable lex_start_pos : int;mutable lex_curr_pos : int;mutable lex_last_pos : int;mutable lex_last_action : lexbuf -> obj }The type of lexer bu�ers. A lexer bu�er is the argument passed to the scanning functionsde�ned by the generated scanners. The lexer bu�er holds the current state of the scanner,plus a function to re�ll the bu�er from the input.

152value create_lexer_channel : in_channel -> lexbufCreate a lexer bu�er on the given input channel. create_lexer_channel inchan returns alexer bu�er which reads from the input channel inchan, at the current reading position.value create_lexer_string : string -> lexbufCreate a lexer bu�er which reads from the given string. Reading starts from the �rstcharacter in the string. An end-of-input condition is generated when the end of the string isreached.value create_lexer : (string -> int -> int) -> lexbufCreate a lexer bu�er with the given function as its reading method. When the scanner needsmore characters, it will call the given function, giving it a character string s and a charactercount n. The function should put n characters or less in s, starting at character number 0,and return the number of characters provided. A return value of 0 means end of input.Functions for lexer semantic actionsThe following functions can be called from the semantic actions of lexer de�nitions (the MLcode enclosed in braces that computes the value returned by lexing functions). They giveaccess to the character string matched by the regular expression associated with thesemantic action. These functions must be applied to the argument lexbuf, which, in thecode generated by camllex, is bound to the lexer bu�er passed to the parsing function.value get_lexeme : lexbuf -> stringget_lexeme lexbuf returns the string matched by the regular expression.value get_lexeme_char : lexbuf -> int -> charget_lexeme_char lexbuf i returns character number i in the matched string.value get_lexeme_start : lexbuf -> intget_lexeme_start lexbuf returns the position in the input stream of the �rst character ofthe matched string. The �rst character of the stream has position 0.value get_lexeme_end : lexbuf -> intget_lexeme_end lexbuf returns the position in the input stream of the character followingthe last character of the matched string. The �rst character of the stream has position 0.

Chapter 14. The standard library 15314.9 map: association tables over ordered typesThis module implements applicative association tables, also known as �nite maps ordictionaries, given a total ordering function over the keys. All operations over maps arepurely applicative (no side-e�ects). The implementation uses balanced binary trees, andtherefore searching and insertion take time logarithmic in the size of the map.type ('a, 'b) tThe type of maps from type 'a to type 'b.value empty: ('a -> 'a -> int) -> ('a, 'b) tThe empty map. The argument is a total ordering function over the set elements. This is atwo-argument function f such that f e1 e2 is zero if the elements e1 and e2 are equal,f e1 e2 is strictly negative if e1 is smaller than e2, and f e1 e2 is strictly positive if e1 isgreater than e2. Examples: a suitable ordering function for type int is prefix -. You canalso use the generic structural comparison function eq__compare.value add: 'a -> 'b -> ('a, 'b) t -> ('a, 'b) tadd x y m returns a map containing the same bindings as m, plus a binding of x to y.Previous bindings for x in m are not removed, but simply hidden: they reappear afterperforming a remove operation. (This is the semantics of association lists.)value find:'a -> ('a, 'b) t -> 'bfind x m returns the current binding of x in m, or raises Not_found if no such binding exists.value remove: 'a -> ('a, 'b) t -> ('a, 'b) tremove x m returns a map containing the same bindings as m except the current binding forx. The previous binding for x is restored if it exists. m is returned unchanged if x is notbound in m.value iter: ('a -> 'b -> unit) -> ('a, 'b) t -> unititer f m applies f to all bindings in map m, discarding the results. f receives the key as�rst argument, and the associated value as second argument. The order in which thebindings are passed to f is unspeci�ed. Only current bindings are presented to f: bindingshidden by more recent bindings are not passed to f.14.10 parsing: the run-time library for parsers generated bycamlyaccvalue symbol_start : unit -> intvalue symbol_end : unit -> intsymbol_start and symbol_end are to be called in the action part of a grammar rule only.They return the position of the string that matches the left-hand side of the rule:symbol_start() returns the position of the �rst character; symbol_end() returns theposition of the last character, plus one. The �rst character in a �le is at position 0.

154value rhs_start: int -> intvalue rhs_end: int -> intSame as symbol_start and symbol_end above, but return the position of the stringmatching the nth item on the right-hand side of the rule, where n is the integer parameterto lhs_start and lhs_end. n is 1 for the leftmost item.value clear_parser : unit -> unitEmpty the parser stack. Call it just after a parsing function has returned, to remove allpointers from the parser stack to structures that were built by semantic actions duringparsing. This is optional, but lowers the memory requirements of the programs.exception Parse_errorRaised when a parser encounters a syntax error.14.11 printexc: a catch-all exception handlervalue f: ('a -> 'b) -> 'a -> 'bprintexc__f fn x applies fn to x and returns the result. If the evaluation of fn x raisesany exception, the name of the exception is printed on standard error output, and theprograms aborts with exit code 2. Typical use is printexc__f main (), where main, withtype unit->unit, is the entry point of a standalone program, to catch and print strayexceptions. For printexc__f to work properly, the program must have been linked with the-g option.14.12 printf: formatting printing functionstype ('a, 'b, 'c) formatThe type of format strings. 'a is the type of the parameters of the string, 'c is the resulttype for the printf-style function, and 'b is the type of the �rst argument given to %a and%t printing functions.value fprintf: out_channel -> ('a, out_channel, unit) format -> 'afprintf outchan format arg1 ... argN formats the arguments arg1 to argN accordingto the format string format, and outputs the resulting string on the channel outchan. Theformat is a character string which contains two types of objects: plain characters, which aresimply copied to the output channel, and conversion speci�cations, each of which causesconversion and printing of one argument. Conversion speci�cations consist in the %character, followed by optional
ags and �eld widths, followed by one conversion character.The conversion characters and their meanings are:d or i: convert an integer argument to signed decimal

Chapter 14. The standard library 155u: convert an integer argument to unsigned decimalx: convert an integer argument to unsigned hexadecimal, using lowercase letters.X: convert an integer argument to unsigned hexadecimal, using uppercase letters.s: insert a string argumentc: insert a character argumentf: convert a
oating-point argument to decimal notation, in the style dddd.ddde or E: convert a
oating-point argument to decimal notation, in the style d.ddd e+-dd(mantissa and exponent)g or G: convert a
oating-point argument to decimal notation, in style f or e, E (whicheveris more compact)b: convert a boolean argument to the string true or falsea: user-de�ned printer. Takes two arguments and apply the �rst one to outchan (thecurrent output channel) and to the second argument. The �rst argument must thereforehave type out_channel -> 'b -> unit and the second 'b. The output produced by thefunction is therefore inserted in the output of fprintf at the current point.t: same as %a, but takes only one argument (with type out_channel -> unit) and apply itto outchan.Refer to the C library printf function for the meaning of
ags and �eld width speci�ers. Iftoo few arguments are provided, printing stops just before converting the �rst missingargument.value printf: ('a, out_channel, unit) format -> 'aSame as fprintf, but output on std_out.value eprintf: ('a, out_channel, unit) format -> 'aSame as fprintf, but output on std_err.value sprintf: ('a, unit, string) format -> 'aSame as fprintf, except that the result of the formatting is returned as a string instead ofbeing written on a channel.value fprint: out_channel -> string -> unitPrint the given string on the given output channel, without any formatting. This is thesame function as output_string of module io.value print: string -> unitPrint the given string on std_out, without any formatting. This is the same function asprint_string of module io.value eprint: string -> unitPrint the given string on std_err, without any formatting. This is the same function asprerr_string of module io.

15614.13 queue: queuesThis module implements queues (FIFOs), with in-place modi�cation.type 'a tThe type of queues containing elements of type 'a.exception EmptyRaised when take is applied to an empty queue.value new: unit -> 'a tReturn a new queue, initially empty.value add: 'a -> 'a t -> unitadd x q adds the element x at the end of the queue q.value take: 'a t -> 'atake q removes and returns the �rst element in queue q, or raises Empty if the queue isempty.value peek: 'a t -> 'apeek q returns the �rst element in queue q, without removing it from the queue, or raisesEmpty if the queue is empty.value clear : 'a t -> unitDiscard all elements from a queue.value length: 'a t -> intReturn the number of elements in a queue.value iter: ('a -> unit) -> 'a t -> unititer f q applies f in turn to all elements of q, from the least recently entered to the mostrecently entered. The queue itself is unchanged.

Chapter 14. The standard library 15714.14 random: pseudo-random number generatorvalue init : int -> unitInitialize the generator, using the argument as a seed. The same seed will always yield thesame sequence of numbers.value full_init : int vect -> unitSame as init but takes more data as seed. It is not useful to give more than 55 integers.value int : int -> intrandom__int bound returns a random number between 0 (inclusive) and bound (exclusive).bound must be positive and smaller than 230.value float : float -> floatrandom__float bound returns a random number between 0 (inclusive) and bound(exclusive).14.15 set: sets over ordered typesThis module implements the set data structure, given a total ordering function over the setelements. All operations over sets are purely applicative (no side-e�ects). Theimplementation uses balanced binary trees, and is therefore reasonably e�cient: insertionand membership take time logarithmic in the size of the set, for instance.type 'a tThe type of sets containing elements of type 'a.value empty: ('a -> 'a -> int) -> 'a tThe empty set. The argument is a total ordering function over the set elements. This is atwo-argument function f such that f e1 e2 is zero if the elements e1 and e2 are equal,f e1 e2 is strictly negative if e1 is smaller than e2, and f e1 e2 is strictly positive if e1 isgreater than e2. Examples: a suitable ordering function for type int is prefix -. You canalso use the generic structural comparison function eq__compare.value is_empty: 'a t -> boolTest whether a set is empty or not.value mem: 'a -> 'a t -> boolmem x s tests whether x belongs to the set s.

158value add: 'a -> 'a t -> 'a tadd x s returns a set containing all elements of s, plus x. If x was already in s, s isreturned unchanged.value remove: 'a -> 'a t -> 'a tremove x s returns a set containing all elements of s, except x. If x was not in s, s isreturned unchanged.value union: 'a t -> 'a t -> 'a tvalue inter: 'a t -> 'a t -> 'a tvalue diff: 'a t -> 'a t -> 'a tUnion, intersection and set di�erence.value equal: 'a t -> 'a t -> boolequal s1 s2 tests whether the sets s1 and s2 are equal, that is, contain the same elements.value compare: 'a t -> 'a t -> intTotal ordering between sets. Can be used as the ordering function for doing sets of sets.value elements: 'a t -> 'a listReturn the list of all elements of the given set. The elements appear in the list in somenon-speci�ed order.value iter: ('a -> unit) -> 'a t -> unititer f s applies f in turn to all elements of s, and discards the results. The elements of sare presented to f in a non-speci�ed order.value fold: ('a -> 'b -> 'b) -> 'a t -> 'b -> 'bfold f s a computes (f xN ... (f x2 (f x1 a))...), where x1 ... xN are theelements of s. The order in which elements of s are presented to f is not speci�ed.value choose: 'a t -> 'aReturn one element of the given set, or raise Not_found if the set is empty. Which elementis chosen is not speci�ed, but equal elements will be chosen for equal sets.14.16 sort: sorting and merging listsvalue sort : ('a -> 'a -> bool) -> 'a list -> 'a listSort a list in increasing order according to an ordering predicate. The predicate shouldreturn true if its �rst argument is less than or equal to its second argument.value merge : ('a -> 'a -> bool) -> 'a list -> 'a list -> 'a listMerge two lists according to the given predicate. Assuming the two argument lists aresorted according to the predicate, merge returns a sorted list containing the elements fromthe two lists. The behavior is unde�ned if the two argument lists were not sorted.

Chapter 14. The standard library 15914.17 stack: stacksThis module implements stacks (LIFOs), with in-place modi�cation.type 'a tThe type of stacks containing elements of type 'a.exception EmptyRaised when pop is applied to an empty stack.value new: unit -> 'a tReturn a new stack, initially empty.value push: 'a -> 'a t -> unitpush x s adds the element x at the top of stack s.value pop: 'a t -> 'apop s removes and returns the topmost element in stack s, or raises Empty if the stack isempty.value clear : 'a t -> unitDiscard all elements from a stack.value length: 'a t -> intReturn the number of elements in a stack.value iter: ('a -> unit) -> 'a t -> unititer f s applies f in turn to all elements of s, from the element at the top of the stack tothe element at the bottom of the stack. The stack itself is unchanged.14.18 sys: system interfaceThis module provides a simple interface to the operating system.exception Sys_error of stringRaised by some functions in the sys and io modules, when the underlying system calls fail.The argument to Sys_error is a string describing the error. The texts of the error messagesare implementation-dependent, and should not be relied upon to catch speci�c systemerrors.

160value command_line : string vectThe command line arguments given to the process. The �rst element is the command nameused to invoke the program.value interactive: boolTrue if we're running under the toplevel system. False if we're running as a standaloneprogram.type file_perm == intvalue s_irusr : file_permvalue s_iwusr : file_permvalue s_ixusr : file_permvalue s_irgrp : file_permvalue s_iwgrp : file_permvalue s_ixgrp : file_permvalue s_iroth : file_permvalue s_iwoth : file_permvalue s_ixoth : file_permvalue s_isuid : file_permvalue s_isgid : file_permvalue s_irall : file_permvalue s_iwall : file_permvalue s_ixall : file_permAccess permissions for �les. r is reading permission, w is writing permission, x is executionpermission. usr means permissions for the user owning the �le, grp for the group owningthe �le, oth for others. isuid and isgid are for set-user-id and set-group-id �les,respectively. The remaining are combinations of the permissions above.type open_flag =O_RDONLY (* open read-only *)| O_WRONLY (* open write-only *)| O_RDWR (* open for reading and writing *)| O_APPEND (* open for appending *)| O_CREAT (* create the file if nonexistent *)| O_TRUNC (* truncate the file to 0 if it exists *)| O_EXCL (* fails if the file exists *)| O_BINARY (* open in binary mode *)| O_TEXT (* open in text mode *)The commands for open.value exit : int -> 'aTerminate the program and return the given status code to the operating system. Incontrast with the function exit from module io, this exit function does not
ush thestandard output and standard error channels.

Chapter 14. The standard library 161value open : string -> open_flag list -> file_perm -> intOpen a �le. The second argument is the opening mode. The third argument is thepermissions to use if the �le must be created. The result is a �le descriptor opened on the�le.value close : int -> unitClose a �le descriptor.value remove : string -> unitRemove the given �le name from the �le system.value rename : string -> string -> unitRename a �le. The �rst argument is the old name and the second is the new name.value getenv : string -> stringReturn the value associated to a variable in the process environment. Raise Not_found ifthe variable is unbound.value chdir : string -> unitChange the current working directory of the process. Note that there is no easy way ofgetting the current working directory from the operating system.value system_command : string -> intExecute the given shell command and return its exit code.value time : unit -> floatReturn the processor time, in seconds, used by the program since the beginning of execution.exception BreakException Break is raised on user interrupt if catch_break is on.value catch_break : bool -> unitcatch_break governs whether user interrupt terminates the program or raises the Breakexception. Call catch_break true to enable raising Break, and catch_break false to letthe system terminate the program on user interrupt.

162

Chapter 15The graphics libraryThis chapter describes the portable graphics primitives that come standard in the implementationof Caml Light on micro-computers.Unix: On Unix workstations running the X11 windows system, an implementation of the graphicsprimitives is available in the directory contrib/libgraph in the distribution. See the �leREADME in this directory for information on building and using camlgraph, a toplevel systemthat includes the graphics primitives, and linking standalone programs with the library.Drawing takes place in a separate window that is created when open_graph is called.Mac: The graphics primitive are available from the standalone application that runs the toplevelsystem. They are not available from programs compiled by camlc and run under the MPWshell. Drawing takes place in a separate window, that can be made visible with the \Showgraphics window" menu entry.PC: The graphics primitive are available from the Windows application that runs the toplevelsystem. They are not available from programs compiled by camlc and run in a DOScommand window. Drawing takes place in a separate window.The screen coordinates are interpreted as shown in the �gure below. Notice that the coordinatesystem used is the same as in mathematics: y increases from the bottom of the screen to the topof the screen, and angles are measured counterclockwise (in degrees). Drawing is clipped to thescreen.
- x6y Screensize_x()

size_y() pixel at (x; y)xy 163

164Here are the graphics mode speci�cations supported by open_graph on the various implementationsof this library.Unix: The argument to open_graph has the format "display-name geometry", where display-nameis the name of the X-windows display to connect to, and geometry is a standard X-windowsgeometry speci�cation. The two components are separated by a space. Either can beomitted, or both. Examples:open_graph "foo:0"connects to the display foo:0 and creates a window with the default geometryopen_graph "foo:0 300x100+50-0"connects to the display foo:0 and creates a window 300 pixels wide by 100 pixels tall,at location (50; 0)open_graph " 300x100+50-0"connects to the default display and creates a window 300 pixels wide by 100 pixels tall,at location (50; 0)open_graph ""connects to the default display and creates a window with the default geometry.Mac: The argument to open_graph is ignored.PC: The argument to open_graph has the format "widthxheight" or "widthxheight+x+y", wherewidth and height are the initial dimensions of the graphics windows, and x and y are theposition of the upper-left corner of the graphics window. If omitted, (width,height) defaultto (600,400) and (x,y) default to (10, 10).15.1 graphics: machine-independent graphics primitivesexception Graphic_failure of stringRaised by the functions below when they encounter an error.Initializationsvalue open_graph: string -> unitShow the graphics window or switch the screen to graphic mode. The graphics window iscleared. The string argument is used to pass optional information on the desired graphicsmode, the graphics window size, and so on. Its interpretation is implementation-dependent.If the empty string is given, a sensible default is selected.value close_graph: unit -> unitDelete the graphics window or switch the screen back to text mode.

Chapter 15. The graphics library 165value clear_graph : unit -> unitErase the graphics window.value size_x : unit -> intvalue size_y : unit -> intReturn the size of the graphics window. Coordinates of the screen pixels range over0 .. size_x()-1 and 0 .. size_y()-1. Drawings outside of this rectangle are clipped,without causing an error. The origin (0,0) is at the lower left corner.Colorstype color == intA color is speci�ed by its R, G, B components. Each component is in the range 0..255.The three components are packed in an int: 0xRRGGBB, where RR are the two hexadecimaldigits for the red component, GG for the green component, BB for the blue component.value rgb: int -> int -> int -> colorrgb r g b returns the integer encoding the color with red component r, green componentg, and blue component b. r, g and b are in the range 0..255.value set_color : color -> unitSet the current drawing color.value black : colorvalue white : colorvalue red : colorvalue green : colorvalue blue : colorvalue yellow : colorvalue cyan : colorvalue magenta : colorSome prede�ned colors.value background: colorvalue foreground: colorDefault background and foreground colors (usually, either black foreground on a whitebackground or white foreground on a black background). clear_graph �lls the screen withthe background color. The initial drawing color is foreground.

166Point and line drawingvalue plot : int -> int -> unitPlot the given point with the current drawing color.value point_color : int -> int -> colorReturn the color of the given point.value moveto : int -> int -> unitPosition the current point.value current_point : unit -> int * intReturn the position of the current point.value lineto : int -> int -> unitDraw a line with endpoints the current point and the given point, and move the currentpoint to the given point.value draw_arc : int -> int -> int -> int -> int -> int -> unitdraw_arc x y rx ry a1 a2 draws an elliptical arc with center x,y, horizontal radius rx,vertical radius ry, from angle a1 to angle a2 (in degrees). The current point is unchanged.value draw_ellipse : int -> int -> int -> int -> unitdraw_ellipse x y rx ry draws an ellipse with center x,y, horizontal radius rx andvertical radius ry. The current point is unchanged.value draw_circle : int -> int -> int -> unitdraw_circle x y r draws a circle with center x,y and radius r. The current point isunchanged.value set_line_width : int -> unitSet the width of points and lines drawn with the functions above. Under X Windows,set_line_width 0 selects a width of 1 pixel and a faster, but less precise drawingalgorithm than the one used when set_line_width 1 is speci�ed.Text drawingvalue draw_char : char -> unitvalue draw_string : string -> unitDraw a character or a character string with lower left corner at current position. Afterdrawing, the current position is set to the lower right corner of the text drawn.value set_font : string -> unitvalue set_text_size : int -> unitSet the font and character size used for drawing text. The interpretation of the argumentsto set_font and set_text_size is implementation-dependent.value text_size : string -> int * intReturn the dimensions of the given text, if it were drawn with the current font and size.

Chapter 15. The graphics library 167Fillingvalue fill_rect : int -> int -> int -> int -> unitfill_rect x y w h �lls the rectangle with lower left corner at x,y, width w and heigth h,with the current color.value fill_poly : (int * int) vect -> unitFill the given polygon with the current color. The array contains the coordinates of thevertices of the polygon.value fill_arc : int -> int -> int -> int -> int -> int -> unitFill an elliptical pie slice with the current color. The parameters are the same as fordraw_arc.value fill_ellipse : int -> int -> int -> int -> unitFill an ellipse with the current color. The parameters are the same as for draw_ellipse.value fill_circle : int -> int -> int -> unitFill a circle with the current color. The parameters are the same as for draw_circle.Imagestype imageThe abstract type for images, in internal representation. Externally, images are representedas matrices of colors.value transp : colorIn matrices of colors, this color represent a \transparent" point: when drawing thecorresponding image, all pixels on the screen corresponding to a transparent pixel in theimage will not be modi�ed, while other points will be set to the color of the correspondingpoint in the image. This allows superimposing an image over an existing background.value make_image : color vect vect -> imageConvert the given color matrix to an image. Each sub-array represents one horizontal line.All sub-arrays must have the same length; otherwise, exception Graphic_failure is raised.value dump_image : image -> color vect vectConvert an image to a color matrix.value draw_image : image -> int -> int -> unitDraw the given image with lower left corner at the given point.

168value get_image : int -> int -> int -> int -> imageCapture the contents of a rectangle on the screen as an image. The parameters are the sameas for fill_rect.value create_image : int -> int -> imagecreate_image w h returns a new image w pixels wide and h pixels tall, to be used inconjunction with blit_image. The initial image contents are random.value blit_image : image -> int -> int -> unitblit_image img x y copies screen pixels into the image img, modifying img in-place. Thepixels copied are those inside the rectangle with lower left corner at x,y, and width andheight equal to those of the image.Mouse and keyboard eventstype status ={ mouse_x : int; (* X coordinate of the mouse *)mouse_y : int; (* Y coordinate of the mouse *)button : bool; (* true if a mouse button is pressed *)keypressed : bool; (* true if a key has been pressed *)key : char } (* the character for the key pressed *)To report events.type event =Button_down (* A mouse button is pressed *)| Button_up (* A mouse button is released *)| Key_pressed (* A key is pressed *)| Mouse_motion (* The mouse is moved *)| Poll (* Don't wait; return immediately *)To specify events to wait for.value wait_next_event : event list -> statusWait until one of the events speci�ed in the given event list occurs, and return the status ofthe mouse and keyboard at that time. If Poll is given in the event list, return immediatelywith the current status. If the mouse cursor is outside of the graphics window, the mouse_xand mouse_y �elds of the event are outside the range 0..size_x()-1, 0..size_y()-1.Keypresses are queued, and dequeued one by one when the Key_pressed event is speci�ed.

Chapter 15. The graphics library 169Mouse and keyboard pollingvalue mouse_pos : unit -> int * intReturn the position of the mouse cursor, relative to the graphics window. If the mousecursor is outside of the graphics window, mouse_pos() returns a point outside of the range0..size_x()-1, 0..size_y()-1.value button_down : unit -> boolReturn true if the mouse button is pressed, false otherwise.value read_key : unit -> charWait for a key to be pressed, and return the corresponding character. Keypresses arequeued.value key_pressed : unit -> boolReturn true if a keypress is available; that is, if read_key would not block.Soundvalue sound : int -> int -> unitsound freq dur plays a sound at frequency freq (in hertz) for a duration dur (inmilliseconds). On the Macintosh, the frequency is rounded to the nearest note in theequal-tempered scale.

170

Chapter 16The unix library: Unix system callsThe unix library (distributed in contrib/libunix) makes many Unix system calls and system-related library functions available to Caml Light programs. This chapter describes brie
y thefunctions provided. Refer to sections 2 and 3 of the Unix manual for more details on the behaviorof these functions.Not all functions are provided by all Unix variants. If some functions are not available, theywill raise Invalid_arg when called.Programs that use the unix library must be linked in \custom runtime" mode, as follows:camlc -custom other options unix.zo other �les -lunixFor interactive use of the unix library, run camllight camlunix.Mac: This library is not available.PC: This library is not available.16.1 unix: interface to the Unix systemError reporttype error =ENOERR| EPERM (* Not owner *)| ENOENT (* No such file or directory *)| ESRCH (* No such process *)| EINTR (* Interrupted system call *)| EIO (* I/O error *)| ENXIO (* No such device or address *)| E2BIG (* Arg list too long *)| ENOEXEC (* Exec format error *)| EBADF (* Bad file number *)| ECHILD (* No children *)| EAGAIN (* No more processes *)171

172| ENOMEM (* Not enough core *)| EACCES (* Permission denied *)| EFAULT (* Bad address *)| ENOTBLK (* Block device required *)| EBUSY (* Mount device busy *)| EEXIST (* File exists *)| EXDEV (* Cross-device link *)| ENODEV (* No such device *)| ENOTDIR (* Not a directory*)| EISDIR (* Is a directory *)| EINVAL (* Invalid argument *)| ENFILE (* File table overflow *)| EMFILE (* Too many open files *)| ENOTTY (* Not a typewriter *)| ETXTBSY (* Text file busy *)| EFBIG (* File too large *)| ENOSPC (* No space left on device *)| ESPIPE (* Illegal seek *)| EROFS (* Read-only file system *)| EMLINK (* Too many links *)| EPIPE (* Broken pipe *)| EDOM (* Argument too large *)| ERANGE (* Result too large *)| EWOULDBLOCK (* Operation would block *)| EINPROGRESS (* Operation now in progress *)| EALREADY (* Operation already in progress *)| ENOTSOCK (* Socket operation on non-socket *)| EDESTADDRREQ (* Destination address required *)| EMSGSIZE (* Message too long *)| EPROTOTYPE (* Protocol wrong type for socket *)| ENOPROTOOPT (* Protocol not available *)| EPROTONOSUPPORT (* Protocol not supported *)| ESOCKTNOSUPPORT (* Socket type not supported *)| EOPNOTSUPP (* Operation not supported on socket *)| EPFNOSUPPORT (* Protocol family not supported *)| EAFNOSUPPORT (* Address family not supported by protocol family *)| EADDRINUSE (* Address already in use *)| EADDRNOTAVAIL (* Can't assign requested address *)| ENETDOWN (* Network is down *)| ENETUNREACH (* Network is unreachable *)| ENETRESET (* Network dropped connection on reset *)| ECONNABORTED (* Software caused connection abort *)| ECONNRESET (* Connection reset by peer *)| ENOBUFS (* No buffer space available *)| EISCONN (* Socket is already connected *)

Chapter 16. The unix library: Unix system calls 173| ENOTCONN (* Socket is not connected *)| ESHUTDOWN (* Can't send after socket shutdown *)| ETOOMANYREFS (* Too many references: can't splice *)| ETIMEDOUT (* Connection timed out *)| ECONNREFUSED (* Connection refused *)| ELOOP (* Too many levels of symbolic links *)| ENAMETOOLONG (* File name too long *)| EHOSTDOWN (* Host is down *)| EHOSTUNREACH (* No route to host *)| ENOTEMPTY (* Directory not empty *)| EPROCLIM (* Too many processes *)| EUSERS (* Too many users *)| EDQUOT (* Disc quota exceeded *)| ESTALE (* Stale NFS file handle *)| EREMOTE (* Too many levels of remote in path *)| EIDRM (* Identifier removed *)| EDEADLK (* Deadlock condition. *)| ENOLCK (* No record locks available. *)| ENOSYS (* Function not implemented *)| EUNKNOWNERRThe type of error codes.exception Unix_error of error * string * stringRaised by the system calls below when an error is encountered. The �rst component is theerror code; the second component is the function name; the third component is the stringparameter to the function, if it has one, or the empty string otherwise.value error_message : error -> stringReturn a string describing the given error code.value handle_unix_error : ('a -> 'b) -> 'a -> 'bhandle_unix_error f x applies f to x and returns the result. If the exception Unix_erroris raised, it prints a message describing the error and exits with code 2.Interface with the parent processvalue environment : unit -> string vectReturn the process environment, as an array of strings with the format \variable=value".See also sys__getenv.

174Process handlingtype process_status =WEXITED of int| WSIGNALED of int * bool| WSTOPPED of intThe termination status of a process. WEXITED means that the process terminated normallyby exit; the argument is the return code. WSIGNALED means that the process was killed bya signal; the �rst argument is the signal number, the second argument indicates whether a\core dump" was performed. WSTOPPED means that the process was stopped by a signal; theargument is the signal number.type wait_flag =WNOHANG| WUNTRACEDFlags for waitopt and waitpid. WNOHANG means do not block if no child has died yet, butimmediately return with a pid equal to 0. WUNTRACED means report also the children thatreceive stop signals.value execv : string -> string vect -> unitexecv prog args execute the program in �le prog, with the arguments args, and thecurrent process environment.value execve : string -> string vect -> string vect -> unitSame as execv, except that the third argument provides the environment to the programexecuted.value execvp : string -> string vect -> unitSame as execv, except that the program is searched in the path.value fork : unit -> intFork a new process. The returned integer is 0 for the child process, the pid of the childprocess for the parent process.value wait : unit -> int * process_statusWait until one of the children processes die, and return its pid and termination status.value waitopt : wait_flag list -> int * process_statusSame as wait, but takes a list of options to avoid blocking, or also report stopped children.The pid returned is 0 if no child has changed status.value waitpid : wait_flag list -> int -> int * process_statusSame as waitopt, but waits for the process whose pid is given. Negative pid argumentsrepresent process groups.

Chapter 16. The unix library: Unix system calls 175value system : string -> process_statusExecute the given command, wait until it terminates, and return its termination status.The string is interpreted by the shell /bin/sh and therefore can contain redirections,quotes, variables, etc. The result WEXITED 127 indicates that the shell couldn't be executed.value getpid : unit -> intReturn the pid of the process.value getppid : unit -> intReturn the pid of the parent process.value nice : int -> intChange the process priority. The integer argument is added to the \nice" value. (Highervalues of the \nice" value mean lower priorities.) Return the new nice value.Basic �le input/outputtype file_descrThe abstract type of �le descriptors.value stdin : file_descrvalue stdout : file_descrvalue stderr : file_descrFile descriptors for standard input, standard output and standard error.type open_flag =O_RDONLY (* Open for reading *)| O_WRONLY (* Open for writing *)| O_RDWR (* Open for reading and writing *)| O_NDELAY (* Open in non-blocking mode *)| O_APPEND (* Open for append *)| O_CREAT (* Create if nonexistent *)| O_TRUNC (* Truncate to 0 length if existing *)| O_EXCL (* Fail if existing *)The
ags to open.type file_perm == intThe type of �le access rights.value open : string -> open_flag list -> file_perm -> file_descrOpen the named �le with the given
ags. Third argument is the permissions to give to the�le if it is created. Return a �le descriptor on the named �le.

176value close : file_descr -> unitClose a �le descriptor.value read : file_descr -> string -> int -> int -> intread fd buff start len reads len characters from descriptor fd, storing them in stringbuff, starting at position ofs in string buff. Return the number of characters actually read.value write : file_descr -> string -> int -> int -> intwrite fd buff start len writes len characters to descriptor fd, taking them from stringbuff, starting at position ofs in string buff. Return the number of characters actuallywritten.Interfacing with the standard input/output library (module io).value in_channel_of_descr : file_descr -> in_channelCreate an input channel reading from the given descriptor.value out_channel_of_descr : file_descr -> out_channelCreate an output channel writing on the given descriptor.value descr_of_in_channel : in_channel -> file_descrReturn the descriptor corresponding to an input channel.value descr_of_out_channel : out_channel -> file_descrReturn the descriptor corresponding to an output channel.Seeking and truncatingtype seek_command =SEEK_SET| SEEK_CUR| SEEK_ENDPositioning modes for lseek. SEEK_SET indicates positions relative to the beginning of the�le, SEEK_CUR relative to the current position, SEEK_END relative to the end of the �le.value lseek : file_descr -> int -> seek_command -> intSet the current position for a �le descriptorvalue truncate : string -> int -> unitTruncates the named �le to the given size.value ftruncate : file_descr -> int -> unitTruncates the �le corresponding to the given descriptor to the given size.

Chapter 16. The unix library: Unix system calls 177File statisticstype file_kind =S_REG (* Regular file *)| S_DIR (* Directory *)| S_CHR (* Character device *)| S_BLK (* Block device *)| S_LNK (* Symbolic link *)| S_FIFO (* Named pipe *)| S_SOCK (* Socket *)type stats ={ st_dev : int; (* Device number *)st_ino : int; (* Inode number *)st_kind : file_kind; (* Kind of the file *)st_perm : file_perm; (* Access rights *)st_nlink : int; (* Number of links *)st_uid : int; (* User id of the owner *)st_gid : int; (* Group id of the owner *)st_rdev : int; (* Device minor number *)st_size : int; (* Size in bytes *)st_atime : int; (* Last access time *)st_mtime : int; (* Last modification time *)st_ctime : int } (* Last status change time *)The informations returned by the stat calls.value stat : string -> statsReturn the information for the named �le.value lstat : string -> statsSame as stat, but in case the �le is a symbolic link, return the information for the link itself.value fstat : file_descr -> statsReturn the information for the �le associated with the given descriptor.Operations on �le namesvalue unlink : string -> unitRemoves the named �levalue rename : string -> string -> unitrename old new changes the name of a �le from old to new.value link : string -> string -> unitlink source dest creates a hard link named dest to the �le named new.

178File permissions and ownershiptype access_permission =R_OK (* Read permission *)| W_OK (* Write permission *)| X_OK (* Execution permission *)| F_OK (* File exists *)Flags for the access call.value chmod : string -> file_perm -> unitChange the permissions of the named �le.value fchmod : file_descr -> file_perm -> unitChange the permissions of an opened �le.value chown : string -> int -> int -> unitChange the owner uid and owner gid of the named �le.value fchown : file_descr -> int -> int -> unitChange the owner uid and owner gid of an opened �le.value umask : int -> intSet the process creation mask, and return the previous mask.value access : string -> access_permission list -> unitCheck that the process has the given permissions over the named �le. Raise Unix_errorotherwise.File descriptor hackingvalue fcntl_int : file_descr -> int -> int -> intInterface to fcntl in the case where the argument is an integer. The �rst integer argumentis the command code; the second is the integer parameter.value fcntl_ptr : file_descr -> int -> string -> intInterface to fcntl in the case where the argument is a pointer. The integer argument is thecommand code. A pointer to the string argument is passed as argument to the command.

Chapter 16. The unix library: Unix system calls 179Directoriesvalue mkdir : string -> file_perm -> unitCreate a directory with the given permissions.value rmdir : string -> unitRemove an empty directory.value chdir : string -> unitChange the process working directory.value getcwd : unit -> stringReturn the name of the current working directory.type dir_handleThe type of descriptors over opened directories.value opendir : string -> dir_handleOpen a descriptor on a directoryvalue readdir : dir_handle -> stringReturn the next entry in a directory. Raise End_of_file when the end of the directory hasbeen reached.value rewinddir : dir_handle -> unitReposition the descriptor to the beginning of the directoryvalue closedir : dir_handle -> unitClose a directory descriptor.Pipes and redirectionsvalue pipe : unit -> file_descr * file_descrCreate a pipe. The �rst component of the result is opened for reading, that's the exit to thepipe. The second component is opened for writing, that's the entrace to the pipe.value dup : file_descr -> file_descrDuplicate a descriptor.value dup2 : file_descr -> file_descr -> unitdup2 fd1 fd2 duplicates fd1 to fd2, closing fd2 if already opened.

180value open_process_in: string -> in_channelvalue open_process_out: string -> out_channelvalue open_process: string -> in_channel * out_channelHigh-level pipe and process management. These functions run the given command inparallel with the program, and return channels connected to the standard input and/or thestandard output of the command. The command is interpreted by the shell /bin/sh (cf.system). Warning: writes on channels are bu�ered, hence be careful to call flush at theright times to ensure correct synchronization.value close_process_in: in_channel -> process_statusvalue close_process_out: out_channel -> process_statusvalue close_process: in_channel * out_channel -> process_statusClose channels opened by open_process_in, open_process_out and open_process,respectively, wait for the associated command to terminate, and return its terminationstatus.Symbolic linksvalue symlink : string -> string -> unitsymlink source dest creates the �le dest as a symbolic link to the �le source.value readlink : string -> stringRead the contents of a link.Named pipesvalue mkfifo : string -> file_perm -> unitCreate a named pipe with the given permissions.Special �lesvalue ioctl_int : file_descr -> int -> int -> intInterface to ioctl in the case where the argument is an integer. The �rst integer argumentis the command code; the second is the integer parameter.value ioctl_ptr : file_descr -> int -> string -> intInterface to ioctl in the case where the argument is a pointer. The integer argument is thecommand code. A pointer to the string argument is passed as argument to the command.

Chapter 16. The unix library: Unix system calls 181Pollingvalue select :file_descr list -> file_descr list -> file_descr list -> float ->file_descr list * file_descr list * file_descr listWait until some input/output operations become possible on some channels. The three listarguments are, respectively, a set of descriptors to check for reading (�rst argument), forwriting (second argument), or for exceptional conditions (third argument). The fourthargument is the maximal timeout, in seconds; a negative fourth argument means no timeout(unbounded wait). The result is composed of three sets of descriptors: those ready forreading (�rst component), ready for writing (second component), and over which anexceptional condition is pending (third component).Lockingtype lock_command =F_ULOCK (* Unlock a region *)| F_LOCK (* Lock a region, and block if already locked *)| F_TLOCK (* Lock a region, or fail if already locked *)| F_TEST (* Test a region for other process' locks *)Commands for lockf.value lockf : file_descr -> lock_command -> int -> unitlockf fd cmd size puts a lock on a region of the �le opened as fd. The region starts at thecurrent read/write position for fd (as set by lseek), and extends size bytes forward if sizeis positive, size bytes backwards if size is negative, or to the end of the �le if size is zero.Signalstype signal =SIGHUP (* hangup *)| SIGINT (* interrupt *)| SIGQUIT (* quit *)| SIGILL (* illegal instruction (not reset when caught) *)| SIGTRAP (* trace trap (not reset when caught) *)| SIGABRT (* used by abort *)| SIGEMT (* EMT instruction *)| SIGFPE (* floating point exception *)| SIGKILL (* kill (cannot be caught or ignored) *)| SIGBUS (* bus error *)| SIGSEGV (* segmentation violation *)| SIGSYS (* bad argument to system call *)| SIGPIPE (* write on a pipe with no one to read it *)

182| SIGALRM (* alarm clock *)| SIGTERM (* software termination signal from kill *)| SIGURG (* urgent condition on IO channel *)| SIGSTOP (* sendable stop signal not from tty *)| SIGTSTP (* stop signal from tty *)| SIGCONT (* continue a stopped process *)| SIGCHLD (* to parent on child stop or exit *)| SIGIO (* input/output possible signal *)| SIGXCPU (* exceeded CPU time limit *)| SIGXFSZ (* exceeded file size limit *)| SIGVTALRM (* virtual time alarm *)| SIGPROF (* profiling time alarm *)| SIGWINCH (* window changed *)| SIGLOST (* resource lost (eg, record-lock lost) *)| SIGUSR1 (* user defined signal 1 *)| SIGUSR2 (* user defined signal 2 *)The type of signals.type signal_handler =Signal_default (* Default behavior for the signal *)| Signal_ignore (* Ignore the signal *)| Signal_handle of (unit -> unit) (* Call the given functionwhen the signal occurs. *)The behavior on receipt of a signalvalue kill : int -> signal -> unitSend a signal to the process with the given process id.value signal : signal -> signal_handler -> unitSet the behavior to be taken on receipt of the given signal.value pause : unit -> unitWait until a non-ignored signal is delivered.Time functionstype process_times ={ tms_utime : float; (* User time for the process *)tms_stime : float; (* System time for the process *)tms_cutime : float; (* User time for the children processes *)tms_cstime : float } (* System time for the children processes *)The execution times (CPU times) of a process.

Chapter 16. The unix library: Unix system calls 183type tm ={ tm_sec : int; (* Seconds 0..59 *)tm_min : int; (* Minutes 0..59 *)tm_hour : int; (* Hours 0..23 *)tm_mday : int; (* Day of month 1..31 *)tm_mon : int; (* Month of year 0..11 *)tm_year : int; (* Year - 1900 *)tm_wday : int; (* Day of week (Sunday is 0) *)tm_yday : int; (* Day of year 0..365 *)tm_isdst : bool } (* Daylight time savings in effect *)The type representing wallclock time and calendar date.value time : unit -> intReturn the current time since 00:00:00 GMT, Jan. 1, 1970, in seconds.value gettimeofday : unit -> floatSame as time, but with resolution better than 1 second.value gmtime : int -> tmConvert a time in seconds, as returned by time, into a date and a time. Assumes Greenwichmeridian time zone.value localtime : int -> tmConvert a time in seconds, as returned by time, into a date and a time. Assumes the localtime zone.value alarm : int -> intSchedule a SIGALRM signals after the given number of seconds.value sleep : int -> unitStop execution for the given number of seconds.value times : unit -> process_timesReturn the execution times of the process.value utimes : string -> int -> int -> unitSet the last access time (second arg) and last modi�cation time (third arg) for a �le. Timesare expressed in seconds from 00:00:00 GMT, Jan. 1, 1970.

184User id, group idvalue getuid : unit -> intReturn the user id of the user executing the process.value geteuid : unit -> intReturn the e�ective user id under which the process runs.value setuid : int -> unitSet the real user id and e�ective user id for the process.value getgid : unit -> intReturn the group id of the user executing the process.value getegid : unit -> intReturn the e�ective group id under which the process runs.value setgid : int -> unitSet the real group id and e�ective group id for the process.value getgroups : unit -> int vectReturn the list of groups to which the user executing the process belongs.type passwd_entry ={ pw_name : string;pw_passwd : string;pw_uid : int;pw_gid : int;pw_gecos : string;pw_dir : string;pw_shell : string }Structure of entries in the passwd database.type group_entry ={ gr_name : string;gr_passwd : string;gr_gid : int;gr_mem : string vect }Structure of entries in the groups database.value getlogin : unit -> stringReturn the login name of the user executing the process.

Chapter 16. The unix library: Unix system calls 185value getpwnam : string -> passwd_entryFind an entry in passwd with the given name, or raise Not_found.value getgrnam : string -> group_entryFind an entry in group with the given name, or raise Not_found.value getpwuid : int -> passwd_entryFind an entry in passwd with the given user id, or raise Not_found.value getgrgid : int -> group_entryFind an entry in group with the given group id, or raise Not_found.Internet addressestype inet_addrThe abstract type of Internet addresses.value inet_addr_of_string : string -> inet_addrvalue string_of_inet_addr : inet_addr -> stringConversions between string with the format XXX.YYY.ZZZ.TTT and Internet addresses.inet_addr_of_string raises Failure when given a string that does not match this format.Socketstype socket_domain =PF_UNIX (* Unix domain *)| PF_INET (* Internet domain *)The type of socket domains.type socket_type =SOCK_STREAM (* Stream socket *)| SOCK_DGRAM (* Datagram socket *)| SOCK_RAW (* Raw socket *)| SOCK_SEQPACKET (* Sequenced packets socket *)The type of socket kinds, specifying the semantics of communications.type sockaddr =ADDR_UNIX of string| ADDR_INET of inet_addr * intThe type of socket addresses. ADDR_UNIX name is a socket address in the Unix domain; nameis a �le name in the �le system. ADDR_INET(addr,port) is a socket address in the Internetdomain; addr is the Internet address of the machine, and port is the port number.

186type shutdown_command =SHUTDOWN_RECEIVE (* Close for receiving *)| SHUTDOWN_SEND (* Close for sending *)| SHUTDOWN_ALL (* Close both *)The type of commands for shutdown.type msg_flag =MSG_OOB| MSG_DONTROUTE| MSG_PEEKThe
ags for recv, recvfrom, send and sendto.value socket : socket_domain -> socket_type -> int -> file_descrCreate a new socket in the given domain, and with the given kind. The third argument isthe protocol type; 0 selects the default protocol for that kind of sockets.value socketpair :socket_domain -> socket_type -> int -> file_descr * file_descrCreate a pair of unnamed sockets, connected together.value accept : file_descr -> file_descr * sockaddrAccept connections on the given socket. The returned descriptor is a socket connected tothe client; the returned address is the address of the connecting client.value bind : file_descr -> sockaddr -> unitBind a socket to an address.value connect : file_descr -> sockaddr -> unitConnect a socket to an address.value listen : file_descr -> int -> unitSet up a socket for receiving connection requests. The integer argument is the maximalnumber of pending requests.value shutdown : file_descr -> shutdown_command -> unitShutdown a socket connection. SHUTDOWN_SEND as second argument causes reads on theother end of the connection to return an end-of-�le condition. SHUTDOWN_RECEIVE causeswrites on the other end of the connection to return a closed pipe condition (SIGPIPE signal).value getsockname : file_descr -> sockaddrReturn the address of the given socket.

Chapter 16. The unix library: Unix system calls 187value getpeername : file_descr -> sockaddrReturn the address of the host connected to the given socket.value recv : file_descr -> string -> int -> int -> msg_flag list -> intvalue recvfrom :file_descr -> string -> int -> int -> msg_flag list -> int * sockaddrReceive data from an unconnected socket.value send : file_descr -> string -> int -> int -> msg_flag list -> intvalue sendto :file_descr -> string -> int -> int -> msg_flag list -> sockaddr -> intSend data over an unconnected socket.High-level network connection functionsvalue open_connection : sockaddr -> in_channel * out_channelConnect to a server at the given address. Return a pair of bu�ered channels connected tothe server. Remember to call flush on the output channel at the right times to ensurecorrect synchronization.value shutdown_connection : in_channel -> unit\Shut down" a connection established with open_connection; that is, transmit anend-of-�le condition to the server reading on the other side of the connection.value establish_server : (in_channel -> out_channel -> unit) -> sockaddr -> unitEstablish a server on the given address. The function given as �rst argument is called foreach connection with two bu�ered channels connected to the client. A new process iscreated for each connection. The function establish_server never returns normally.Host and protocol databasestype host_entry ={ h_name : string;h_aliases : string vect;h_addrtype : socket_domain;h_addr_list : inet_addr vect }Structure of entries in the hosts database.type protocol_entry ={ p_name : string;p_aliases : string vect;p_proto : int }Structure of entries in the protocols database.

188type service_entry ={ s_name : string;s_aliases : string vect;s_port : int;s_proto : string }Structure of entries in the services database.value gethostname : unit -> stringReturn the name of the local host.value gethostbyname : string -> host_entryFind an entry in hosts with the given name, or raise Not_found.value gethostbyaddr : inet_addr -> host_entryFind an entry in hosts with the given address, or raise Not_found.value getprotobyname : string -> protocol_entryFind an entry in protocols with the given name, or raise Not_found.value getprotobynumber : int -> protocol_entryFind an entry in protocols with the given protocol number, or raise Not_found.value getservbyname : string -> string -> service_entryFind an entry in services with the given name, or raise Not_found.value getservbyport : int -> string -> service_entryFind an entry in services with the given service number, or raise Not_found.Terminal interfaceThe following functions implement the POSIX standard terminal interface. They providecontrol over asynchronous communication ports and pseudo-terminals. Refer to thetermios man page for a complete description.type terminal_io = {Input modes:

Chapter 16. The unix library: Unix system calls 189mutable c_ignbrk: bool; (* Ignore the break condition. *)mutable c_brkint: bool; (* Signal interrupt on break condition. *)mutable c_ignpar: bool; (* Ignore characters with parity errors. *)mutable c_parmrk: bool; (* Mark parity errors. *)mutable c_inpck: bool; (* Enable parity check on input. *)mutable c_istrip: bool; (* Strip 8th bit on input characters. *)mutable c_inlcr: bool; (* Map NL to CR on input. *)mutable c_igncr: bool; (* Ignore CR on input. *)mutable c_icrnl: bool; (* Map CR to NL on input. *)mutable c_ixon: bool; (* Recognize XON/XOFF characters on input. *)mutable c_ixoff: bool; (* Emit XON/XOFF chars to control input flow. *)Output modes:mutable c_opost: bool; (* Enable output processing. *)Control modes:mutable c_obaud: int; (* Output baud rate (0 means close connection).*)mutable c_ibaud: int; (* Input baud rate. *)mutable c_csize: int; (* Number of bits per character (5-8). *)mutable c_cstopb: int; (* Number of stop bits (1-2). *)mutable c_cread: bool; (* Reception is enabled. *)mutable c_parenb: bool; (* Enable parity generation and detection. *)mutable c_parodd: bool; (* Specify odd parity instead of even. *)mutable c_hupcl: bool; (* Hang up on last close. *)mutable c_clocal: bool; (* Ignore modem status lines. *)Local modes:mutable c_isig: bool; (* Generate signal on INTR, QUIT, SUSP. *)mutable c_icanon: bool; (* Enable canonical processing(line buffering and editing) *)mutable c_noflsh: bool; (* Disable flush after INTR, QUIT, SUSP. *)mutable c_echo: bool; (* Echo input characters. *)mutable c_echoe: bool; (* Echo ERASE (to erase previous character). *)mutable c_echok: bool; (* Echo KILL (to erase the current line). *)mutable c_echonl: bool; (* Echo NL even if c_echo is not set. *)Control characters:mutable c_vintr: char; (* Interrupt character (usually ctrl-C). *)mutable c_vquit: char; (* Quit character (usually ctrl-\). *)mutable c_verase: char; (* Erase character (usually DEL or ctrl-H). *)mutable c_vkill: char; (* Kill line character (usually ctrl-U). *)mutable c_veof: char; (* End-of-file character (usually ctrl-D). *)mutable c_veol: char; (* Alternate end-of-line char. (usually none). *)mutable c_vmin: int; (* Minimum number of characters to read

190 before the read request is satisfied. *)mutable c_vtime: int; (* Maximum read wait (in 0.1s units). *)mutable c_vstart: char; (* Start character (usually ctrl-Q). *)mutable c_vstop: char (* Stop character (usually ctrl-S). *)}value tcgetattr: file_descr -> terminal_ioReturn the status of the terminal referred to by the given �le descriptor.type setattr_when = TCSANOW | TCSADRAIN | TCSAFLUSHvalue tcsetattr: file_descr -> setattr_when -> terminal_io -> unitSet the status of the terminal referred to by the given �le descriptor. The second argumentindicates when the status change takes place: immediately (TCSANOW), when all pendingoutput has been transmitted (TCSADRAIN), or after
ushing all input that has been receivedbut not read (TCSAFLUSH). TCSADRAIN is recommended when changing the outputparameters; TCSAFLUSH, when changing the input parameters.value tcsendbreak: file_descr -> int -> unitSend a break condition on the given �le descriptor. The second argument is the duration ofthe break, in 0.1s units; 0 means standard duration (0.25s).value tcdrain: file_descr -> unitWaits until all output written on the given �le descriptor has been transmitted.type flush_queue = TCIFLUSH | TCOFLUSH | TCIOFLUSHvalue tcflush: file_descr -> flush_queue -> unitDiscard data written on the given �le descriptor but not yet transmitted, or data receivedbut not yet read, depending on the second argument: TCIFLUSH
ushes data received butnot read, TCOFLUSH
ushes data written but not transmitted, and TCIOFLUSH
ushes both.type flow_action = TCOOFF | TCOON | TCIOFF | TCIONvalue tcflow: file_descr -> flow_action -> unitSuspend or restart reception or transmission of data on the given �le descriptor, dependingon the second argument: TCOOFF suspends output, TCOON restarts output, TCIOFF transmitsa STOP character to suspend input, and TCION transmits a START character to restartinput.

Chapter 17The num library: arbitrary-precisionrational arithmeticThe num library (distributed in contrib/libnum) implements exact-precision rational arithmetic.It is built upon the state-of-the-art BigNum arbitrary-precision integer arithmetic package, andtherefore achieves very high performance.The functions provided in this library are fully documented in The CAML Numbers Refer-ence Manual by Val�erie M�enissier-Morain, technical report 141, INRIA, july 1992 (available byanonymous FTP from ftp.inria.fr, directory INRIA/publications/RT, �le RT-0141.ps.Z). Asummary of the functions is given below.Programs that use the num library must be linked in \custom runtime" mode, as follows:camlc -custom other options nums.zo other �les -lnumsFor interactive use of the num library, run camllight camlnum.Mac: This library is not available.PC: This library is available by default in the standard runtime system and in the toplevelsystem. Programs that use this library can be linked normally, without the -custom option.17.1 num: operations on numbersNumbers (type num) are arbitrary-precision rational numbers, plus the special elements 1/0(in�nity) and 0/0 (unde�ned).type num = Int of int | Big_int of big_int | Ratio of ratioThe type of numbers.value normalize_num : num -> numvalue numerator_num : num -> numvalue denominator_num : num -> num 191

192Arithmetic operationsvalue prefix +/ : num -> num -> numvalue add_num : num -> num -> numAdditionvalue minus_num : num -> numUnary negation.value prefix -/ : num -> num -> numvalue sub_num : num -> num -> numSubtractionvalue prefix */ : num -> num -> numvalue mult_num : num -> num -> numMultiplicationvalue square_num : num -> numSquaringvalue prefix // : num -> num -> numvalue div_num : num -> num -> numDivisionvalue quo_num : num -> num -> numvalue mod_num : num -> num -> numEuclidean division: quotient and remaindervalue prefix **/ : num -> num -> numvalue power_num : num -> num -> numExponentiationvalue is_integer_num : num -> boolTest if a number is an integervalue integer_num : num -> numvalue floor_num : num -> numvalue round_num : num -> numvalue ceiling_num : num -> numApproximate a number by an integer. floor_num n returns the largest integer smaller orequal to n. ceiling_num n returns the smallest integer bigger or equal to n.integer_num n returns the integer closest to n. In case of ties, rounds towards zero.round_num n returns the integer closest to n. In case of ties, rounds o� zero.

Chapter 17. The num library: arbitrary-precision rational arithmetic 193value sign_num : num -> intReturn -1, 0 or 1 according to the sign of the argument.value prefix =/ : num -> num -> boolvalue prefix </ : num -> num -> boolvalue prefix >/ : num -> num -> boolvalue prefix <=/ : num -> num -> boolvalue prefix >=/ : num -> num -> boolvalue prefix <>/ : num -> num -> boolvalue eq_num : num -> num -> boolvalue lt_num : num -> num -> boolvalue le_num : num -> num -> boolvalue gt_num : num -> num -> boolvalue ge_num : num -> num -> boolUsual comparisons between numbersvalue compare_num : num -> num -> intReturn -1, 0 or 1 if the �rst argument is less than, equal to, or greater than the secondargument.value max_num : num -> num -> numvalue min_num : num -> num -> numReturn the greater (resp. the smaller) of the two arguments.value abs_num : num -> numAbsolute value.value succ_num: num -> numsucc n is n+1value pred_num: num -> numpred n is n-1value incr_num: num ref -> unitincr r is r:=!r+1, where r is a reference to a number.value decr_num: num ref -> unitdecr r is r:=!r-1, where r is a reference to a number.

194Coercions with stringsvalue string_of_num : num -> stringConvert a number to a string, using fractional notation.value approx_num_fix : int -> num -> stringvalue approx_num_exp : int -> num -> stringApproximate a number by a decimal. The �rst argument is the required precision. Thesecond argument is the number to approximate. approx_fix uses decimal notation; the �rstargument is the number of digits after the decimal point. approx_exp uses scienti�c(exponential) notation; the �rst argument is the number of digits in the mantissa.value num_of_string : string -> numConvert a string to a number.Coercions between numerical typesvalue int_of_num : num -> intvalue num_of_int : int -> numvalue nat_of_num : num -> nat__natvalue num_of_nat : nat__nat -> numvalue num_of_big_int : big_int -> numvalue big_int_of_num : num -> big_intvalue ratio_of_num : num -> ratiovalue num_of_ratio : ratio -> numvalue float_of_num : num -> floatvalue num_of_float : float -> numvalue sys_print_num : int -> string -> num -> string -> unitvalue print_num : num -> unit17.2 arith_status:
ags that control rational arithmeticvalue arith_status: unit -> unitPrint the current status of the arithmetic
ags.value get_error_when_null_denominator : unit -> boolvalue set_error_when_null_denominator : bool -> unitGet or set the
ag null_denominator. When on, attempting to create a rational with anull denominator raises an exception. When o�, rationals with null denominators areaccepted. Initially: on.

Chapter 17. The num library: arbitrary-precision rational arithmetic 195value get_normalize_ratio : unit -> boolvalue set_normalize_ratio : bool -> unitGet or set the
ag normalize_ratio. When on, rational numbers are normalized after eachoperation. When o�, rational numbers are not normalized until printed. Initially: o�.value get_normalize_ratio_when_printing : unit -> boolvalue set_normalize_ratio_when_printing : bool -> unitGet or set the
ag normalize_ratio_when_printing. When on, rational numbers arenormalized before being printed. When o�, rational numbers are printed as is, withoutnormalization. Initially: on.value get_approx_printing : unit -> boolvalue set_approx_printing : bool -> unitGet or set the
ag approx_printing. When on, rational numbers are printed as a decimalapproximation. When o�, rational numbers are printed as a fraction. Initially: o�.value get_floating_precision : unit -> intvalue set_floating_precision : int -> unitGet or set the parameter floating_precision. This parameter is the number of digitsdisplayed when approx_printing is on. Initially: 12.

196

Chapter 18The str library: regular expressionsand string processingThe str library (distributed in contrib/libstr) provides high-level string processing functions,some based on regular expressions. It is intended to support the kind of �le processing that isusually performed with scripting languages such as awk, perl or sed.Programs that use the str library must be linked in \custom runtime" mode, as follows:camlc -custom other options str.zo other �les -lstrFor interactive use of the str library, run camllight camlstr.Mac: This library is not available.PC: This library is not available.18.1 str: regular expressions and high-level string processingRegular expressionstype regexpThe type of compiled regular expressions.value regexp: string -> regexpCompile a regular expression. The syntax for regular expressions is the same as in GnuEmacs. The special characters are \$^.*+?[]. The following constructs are recognized:. matches any character except newline* (post�x) matches the previous expression zero, one or several times+ (post�x) matches the previous expression one or several times? (post�x) matches the previous expression once or not at all[..] character set; ranges are denoted with -, as in a-z; an initial ^, as in ^0-9,complements the set 197

198 ^ matches at beginning of line$ matches at end of line\| (in�x) alternative between two expressions\(..\) grouping and naming of the enclosed expression\1 the text matched by the �rst \(...\) expression (\2 for the second expression, etc)\b matches word boundaries\ quotes special characters.value regexp_case_fold: string -> regexpSame as regexp, but the compiled expression will match text in a case-insensitive way:uppercase and lowercase letters will be considered equivalent.String matching and searchingvalue string_match: regexp -> string -> int -> boolstring_match r s start tests whether the characters in s starting at position startmatch the regular expression r. The �rst character of a string has position 0, as usual.value search_forward: regexp -> string -> int -> intsearch_forward r s start searchs the string s for a substring matching the regularexpression r. The search starts at position start and proceeds towards the end of thestring. Return the position of the �rst character of the matched substring, or raiseNot_found if no substring matches.value search_backward: regexp -> string -> int -> intSame as search_forward, but the search proceeds towards the beginning of the string.value matched_string: string -> stringmatched_string s returns the substring of s that was matched by the lateststring_match, search_forward or search_backward. The user must make sure that theparameter s is the same string that was passed to the matching or searching function.value match_beginning: unit -> intvalue match_end: unit -> intmatch_beginning() returns the position of the �rst character of the substring that wasmatched by string_match, search_forward or search_backward. match_end() returnsthe position of the character following the last character of the matched substring.value matched_group: int -> string -> stringmatched_group n s returns the substring of s that was matched by the nth group \(...\)of the regular expression during the latest string_match, search_forward orsearch_backward. The user must make sure that the parameter s is the same string thatwas passed to the matching or searching function.

Chapter 18. The str library: regular expressions and string processing 199value group_beginning: int -> intvalue group_end: int -> intgroup_beginning n returns the position of the �rst character of the substring that wasmatched by the nth group of the regular expression. group_end n returns the position ofthe character following the last character of the matched substring.Replacementvalue global_replace: regexp -> string -> string -> stringglobal_replace regexp repl s returns a string identical to s, except that all substringsof s that match regexp have been replaced by repl. The replacement text repl can contain\1, \2, etc; these sequences will be replaced by the text matched by the corresponding groupin the regular expression. \0 stands for the text matched by the whole regular expression.value replace_first: regexp -> string -> string -> stringSame as global_replace, except that only the �rst substring matching the regularexpression is replaced.value global_substitute: regexp -> (string -> string) -> string -> stringglobal_substitute regexp subst s returns a string identical to s, except that allsubstrings of s that match regexp have been replaced by the result of function subst. Thefunction subst is called once for each matching substring, and receives s (the whole text) asargument.value substitute_first: regexp -> (string -> string) -> string -> stringSame as global_substitute, except that only the �rst substring matching the regularexpression is replaced.Splittingvalue split: regexp -> string -> string listsplit r s splits s into substrings, taking as delimiters the substrings that match r, andreturns the list of substrings. For instance, split (regexp "[\t]+") s splits s intoblank-separated words.value bounded_split: regexp -> string -> int -> string listSame as split, but splits into at most n substrings, where n is the extra integer parameter.

200Joiningvalue concat: string list -> stringSame as string__concat: catenate a list of string.value join: string -> string list -> stringCatenate a list of string. The �rst argument is a separator, which is inserted between thestrings.Extracting substringsvalue string_before: string -> int -> stringstring_before s n returns the substring of all characters of s that precede position n(excluding the character at position n).value string_after: string -> int -> stringstring_after s n returns the substring of all characters of s that follow position n(including the character at position n).value first_chars: string -> int -> stringfirst_chars s n returns the �rst n characters of s. This is the same function asstring_before.value last_chars: string -> int -> stringlast_chars s n returns the last n characters of s.Formattingvalue format: ('a, unit, string) printf__format -> 'aSame as printf__sprintf.

Part VAppendix

201

Chapter 19Further readingFor the interested reader, we list below some references to books and reports related (sometimesloosely) to Caml Light.19.1 Programming in MLThe books below are programming courses taught in ML. Their main goal is to teach programming,not to describe ML in full details | though most contain fairly good introductions to the MLlanguage. Some of those books use the Standard ML dialect instead of the Caml dialect, so youwill have to keep in mind the di�erences in syntax and in semantics.� Pierre Weis and Xavier Leroy. Le langage Caml. Inter�Editions, 1993.The natural companion to this manual, provided you read French. This book is a step-by-step introduction to programming in Caml, and presents many realistic examples of Camlprograms.� Guy Cousineau and Michel Mauny. Approche fonctionnelle de la programmation. Ediscience,1995.Another Caml programming course written in French, with many original examples.� Lawrence C. Paulson. ML for the working programmer. Cambridge University Press, 1991.A good introduction to programming in Standard ML. Develops a theorem prover as a com-plete example. Contains a presentation of the module system of Standard ML.� Je�rey D. Ullman. Elements of ML programming. Prentice Hall, 1993.Another good introduction to programming in Standard ML. No realistic examples, but avery detailed presentation of the language constructs.� Ryan Stansifer. ML primer. Prentice-Hall, 1992.A short, but nice introduction to programming in Standard ML.� Th�er�ese Accart Hardin and V�eronique Donzeau-Gouge Vigui�e. Concepts et outils de la pro-grammation. Du fonctionnel �a l'imp�eratif avec Caml et Ada. Inter�Editions, 1992.203

204 A �rst course in programming, that �rst introduces the main programming notions in Caml,then shows them underlying Ada. Intended for beginners; slow-paced for the others.� Rachel Harrison. Abstract Data Types in Standard ML. John Wiley & Sons, 1993.A presentation of Standard ML from the standpoint of abstract data types. Uses intensivelythe Standard ML module system.� Harold Abelson and Gerald Jay Sussman. Structure and Interpretation of Computer Pro-grams. The MIT press, 1985. (French translation: Structure et interpr�etation des programmesinformatiques, Inter�Editions, 1989.)An outstanding course on programming, taught in Scheme, the modern dialect of Lisp. Wellworth reading, even if you are more interested in ML than in Lisp.19.2 Descriptions of ML dialectsThe books and reports below are descriptions of various programming languages from the MLfamily. They assume some familiarity with ML.� Xavier Leroy and Pierre Weis. Manuel de r�ef�erence du langage Caml. Inter�Editions, 1993.The French edition of the present reference manual and user's manual.� Robert Harper. Introduction to Standard ML. Technical report ECS-LFCS-86-14, Universityof Edinburgh, 1986.An overview of Standard ML, including the module system. Terse, but still readable.� Robin Milner, Mads Tofte and Robert Harper. The de�nition of Standard ML. The MITpress, 1990.A complete formal de�nition of Standard ML, in the framework of structured operational se-mantics. This book is probably the most mathematically precise de�nition of a programminglanguage ever written. It is heavy on formalism and extremely terse, so even readers who arethoroughly familiar with ML will have major di�culties with it.� Robin Milner and Mads Tofte. Commentary on Standard ML. The MIT Press, 1991.A commentary on the book above, that attempts to explain the most delicate parts andmotivate the design choices. Easier to read than the De�nition, but still rather involving.� Guy Cousineau and G�erard Huet. The CAML primer. Technical report 122, INRIA, 1990.A short description of the original Caml system, from which Caml Light has evolved. Somefamiliarity with Lisp is assumed.� Pierre Weis et al. The CAML reference manual, version 2.6.1. Technical report 121, INRIA,1990.The manual for the original Caml system, from which Caml Light has evolved.

Chapter 19. Further reading 205� Michael J. Gordon, Arthur J. Milner and Christopher P. Wadsworth. Edinburgh LCF. LectureNotes in Computer Science volume 78, Springer-Verlag, 1979.This is the �rst published description of the ML language, at the time when it was nothingmore than the control language for the LCF system, a theorem prover. This book is nowobsolete, since the ML language has much evolved since then; but it is still of historicalinterest.� Paul Hudak, Simon Peyton-Jones and Philip Wadler. Report on the programming languageHaskell, version 1.1. Technical report, Yale University, 1991.Haskell is a purely functional language with lazy semantics that shares many importantpoints with ML (full functionality, polymorphic typing), but has interesting features of itsown (dynamic overloading, also called type classes).19.3 Implementing functional programming languagesThe references below are intended for those who are curious to learn how a language like CamlLight is compiled and implemented.� Xavier Leroy. The ZINC experiment: an economical implementation of the ML language.Technical report 117, INRIA, 1990. (Available by anonymous FTP on ftp.inria.fr.)A description of the ZINC implementation, the prototype ML implementation that hasevolved into Caml Light. Large parts of this report still apply to the current Caml Lightsystem, in particular the description of the execution model and abstract machine. Otherparts are now obsolete. Yet this report still gives a complete overview of the implementationtechniques used in Caml Light.� Simon Peyton-Jones. The implementation of functional programming languages. Prentice-Hall, 1987. (French translation: Mise en �uvre des langages fonctionnels de programmation,Masson, 1990.)An excellent description of the implementation of purely functional languages with lazy se-mantics, using the technique known as graph reduction. The part of the book that deals withthe transformation from ML to enriched lambda-calculus directly applies to Caml Light. Youwill �nd a good description of how pattern-matching is compiled and how types are inferred.The remainder of the book does not apply directly to Caml Light, since Caml Light is notpurely functional (it has side-e�ects), has strict semantics, and does not use graph reductionat all.� Andrew W. Appel. Compiling with continuations. Cambridge University Press, 1992.A complete description of an optimizing compiler for Standard ML, based on an intermediaterepresentation called continuation-passing style. Shows how many advanced program opti-mizations can be applied to ML. Not directly relevant to the Caml Light system, since CamlLight does not use continuation-passing style at all, and makes little attempts at optimizingprograms.

20619.4 Applications of MLThe following reports show ML at work in various, sometimes unexpected, areas.� Emmanuel Chailloux and Guy Cousineau. The MLgraph primer. Technical report 92-15,�Ecole Normale Sup�erieure, 1992. (Available by anonymous FTP on ftp.ens.fr.)Describes a Caml Light library that produces Postscript pictures through high-level drawingfunctions.� Xavier Leroy. Programmation du syst�eme Unix en Caml Light. Technical report 147, INRIA,1992. (Available by anonymous FTP on ftp.inria.fr.)A Unix systems programming course, demonstrating the use of the Caml Light library thatgives access to Unix system calls.� John H. Reppy. Concurrent programming with events | The concurrent ML manual. CornellUniversity, 1990. (Available by anonymous FTP on research.att.com.)Concurrent ML extends Standard ML of New Jersey with concurrent processes that commu-nicate through channels and events.� Jeannette M. Wing, Manuel Faehndrich, J. Gregory Morrisett and Scottt Nettles. Extensionsto Standard ML to support transactions. Technical report CMU-CS-92-132, Carnegie-MellonUniversity, 1992. (Available by anonymous FTP on reports.adm.cs.cmu.edu.)How to integrate the basic database operations to Standard ML.� Emden R. Gansner and John H. Reppy. eXene. Bell Labs, 1991. (Available by anonymousFTP on research.att.com.)An interface between Standard ML of New Jersey and the X Windows windowing system.

Index to the library! (in�x), 130!= (in�x), 116& (in�x), 114&& (in�x), 114* (in�x), 117, 120** (in�x), 118**. (in�x), 118**/ (in�x), 192*. (in�x), 117*/ (in�x), 192+ (in�x), 117, 120+. (in�x), 117+/ (in�x), 192- (in�x), 117, 120-. (in�x), 117-/ (in�x), 192/ (in�x), 117, 120/. (in�x), 117// (in�x), 192< (in�x), 115<. (in�x), 118</ (in�x), 193<= (in�x), 115<=. (in�x), 118<=/ (in�x), 193<> (in�x), 115<>. (in�x), 118<>/ (in�x), 193= (in�x), 115=. (in�x), 118=/ (in�x), 193== (in�x), 116> (in�x), 115>. (in�x), 118>/ (in�x), 193>= (in�x), 115>=. (in�x), 118

>=/ (in�x), 193@ (in�x), 127^ (in�x), 132|| (in�x), 114abs, 121abs_float, 119abs_num, 193accept, 186access, 178acos, 118add, 139, 150, 153, 156, 158add_float, 117add_int, 120add_num, 192alarm, 183approx_num_exp, 194approx_num_fix, 194arg (module), 137arith_status, 194arith_status (module), 194asin, 118asr (in�x), 121assoc, 129assq, 129atan, 118atan2, 118background, 165Bad (exception), 138baltree (module), 138basename, 140big_int_of_num, 194bind, 186black, 165blit_image, 168blit_string, 133207

208blit_vect, 135blue, 165bool (module), 113bounded_split, 199Break (exception), 161builtin (module), 114button_down, 169catch_break, 161cd, 57ceil, 118ceiling_num, 192char (module), 115char_for_read, 115char_of_int, 115chdir, 161, 179check_suffix, 140chmod, 178choose, 158chop_suffix, 140chown, 178clear, 150, 156, 159clear_graph, 165clear_parser, 154close, 161, 176close_box, 141close_graph, 164close_in, 127close_out, 125close_process, 180close_process_in, 180close_process_out, 180close_tbox, 144closedir, 179combine, 130command_line, 160compare, 115, 139, 158compare_num, 193compare_strings, 133compile, 56concat, 132, 140, 200concat_vect, 134connect, 186contains, 139copy_vect, 134

cos, 118cosh, 118create_image, 168create_lexer, 152create_lexer_channel, 152create_lexer_string, 152create_string, 132current_dir_name, 140current_point, 166cyan, 165debug_mode, 57decr, 130decr_num, 193denominator_num, 191descr_of_in_channel, 176descr_of_out_channel, 176diff, 158directory, 57dirname, 140div_float, 117div_int, 120div_num, 192Division_by_zero (exception), 120do_list, 128do_list2, 128do_list_combine, 130do_stream, 131do_table, 151do_table_rev, 151do_vect, 135draw_arc, 166draw_char, 166draw_circle, 166draw_ellipse, 166draw_image, 167draw_string, 166dump_image, 167dup, 179dup2, 179elements, 158empty, 153, 157Empty (exception), 156, 159End_of_file (exception), 122end_of_stream, 131

Index to the library 209environment, 173eprint, 155eprintf, 147, 155eq (module), 115eq_float, 118eq_int, 120eq_num, 193eq_string, 133equal, 158err_formatter, 145error_message, 173establish_server, 187exc (module), 116except, 129exceptq, 129execv, 174execve, 174execvp, 174exists, 129exit, 122, 160Exit (exception), 116exp, 118Failure (exception), 116failwith, 116fchar (module), 117fchmod, 178fchown, 178fcntl_int, 178fcntl_ptr, 178filename (module), 140fill_arc, 167fill_circle, 167fill_ellipse, 167fill_poly, 167fill_rect, 167fill_string, 132fill_vect, 135find, 139, 150, 153find_all, 150first_chars, 200flat_map, 129float, 157float (module), 117float_of_int, 117

float_of_num, 194float_of_string, 119floor, 118floor_num, 192flush, 124fold, 158for_all, 129force_newline, 142foreground, 165fork, 174format, 200format (module), 140fprint, 155fprintf, 146, 154frexp, 119fst, 130fstat, 177fstring (module), 119ftruncate, 176full_init, 157full_major, 149fvect (module), 119gc (module), 147ge_float, 118ge_int, 121ge_num, 193ge_string, 133genlex (module), 149get, 148get_approx_printing, 195get_ellipsis_text, 144get_error_when_null_denominator, 194get_floating_precision, 195get_formatter_output_functions, 144get_image, 168get_lexeme, 152get_lexeme_char, 152get_lexeme_end, 152get_lexeme_start, 152get_margin, 142get_max_boxes, 143get_max_indent, 143get_normalize_ratio, 195get_normalize_ratio_when_printing, 195

210getcwd, 179getegid, 184getenv, 161geteuid, 184getgid, 184getgrgid, 185getgrnam, 185getgroups, 184gethostbyaddr, 188gethostbyname, 188gethostname, 188getlogin, 184getpeername, 187getpid, 175getppid, 175getprotobyname, 188getprotobynumber, 188getpwnam, 185getpwuid, 185getservbyname, 188getservbyport, 188getsockname, 186gettimeofday, 183getuid, 184global_replace, 199global_substitute, 199gmtime, 183Graphic_failure (exception), 164graphics (module), 164green, 165group_beginning, 199group_end, 199gt_float, 118gt_int, 121gt_num, 193gt_string, 133handle_unix_error, 173hash, 151hash_param, 151hashtbl (module), 150hd, 128in_channel_length, 127in_channel_of_descr, 176include, 56

incr, 130incr_num, 193index, 129index_char, 133index_char_from, 133inet_addr_of_string, 185init, 157init_vect, 134input, 126input_binary_int, 127input_byte, 127input_char, 126input_line, 126input_value, 127install_printer, 57int, 157int (module), 120int_of_char, 115int_of_float, 117int_of_num, 194int_of_string, 122integer_num, 192inter, 158interactive, 160intersect, 129invalid_arg, 116Invalid_argument (exception), 116io (module), 122ioctl_int, 180ioctl_ptr, 180is_absolute, 140is_empty, 157is_integer_num, 192it_list, 128it_list2, 128iter, 153, 156, 158, 159join, 200key_pressed, 169kill, 182land (in�x), 121last_chars, 200ldexp, 119le_float, 118

Index to the library 211le_int, 121le_num, 193le_string, 133length, 156, 159lexing (module), 151lineto, 166link, 177list (module), 127list_it, 128list_it2, 128list_length, 127list_of_vect, 135listen, 186lnot, 121load, 56load_object, 56localtime, 183lockf, 181log, 118log10, 118lor (in�x), 121lseek, 176lshift_left, 121lshift_right, 121lsl (in�x), 121lsr (in�x), 121lstat, 177lt_float, 118lt_int, 121lt_num, 193lt_string, 133lxor (in�x), 121magenta, 165major, 149make_formatter, 145make_image, 167make_lexer, 149make_matrix, 134make_string, 132make_vect, 134map, 128map (module), 153map2, 128map_combine, 130

map_vect, 135map_vect_list, 135match_beginning, 198match_end, 198Match_failure (exception), 24{26, 114matched_group, 198matched_string, 198max, 116max_int, 121max_num, 193mem, 129, 157mem_assoc, 129memq, 129merge, 158min, 116min_int, 121min_num, 193minor, 148minus, 117, 120minus_float, 117minus_int, 120minus_num, 192mkdir, 179mkfifo, 180mod (in�x), 120mod_float, 119mod_num, 192modf, 119modify, 139mouse_pos, 169moveto, 166mult_float, 117mult_int, 120mult_num, 192nat_of_num, 194neq_float, 118neq_int, 120neq_string, 133new, 150, 156, 159nice, 175normalize_num, 191not (in�x), 114Not_found (exception), 116nth_char, 132

212num (module), 191num_of_big_int, 194num_of_float, 194num_of_int, 194num_of_nat, 194num_of_ratio, 194num_of_string, 194numerator_num, 191open, 161, 175open_box, 141open_connection, 187open_descriptor_in, 126open_descriptor_out, 124open_graph, 164open_hbox, 143open_hovbox, 143open_hvbox, 143open_in, 126open_in_bin, 126open_in_gen, 126open_out, 124open_out_bin, 124open_out_gen, 124open_process, 180open_process_in, 180open_process_out, 180open_tbox, 144open_vbox, 143opendir, 179or (in�x), 114out_channel_length, 125out_channel_of_descr, 176Out_of_memory (exception), 116output, 125output_binary_int, 125output_byte, 125output_char, 125output_compact_value, 125output_string, 125output_value, 125over_max_boxes, 143pair (module), 130parse, 138Parse_error (exception), 131, 154

Parse_failure (exception), 131parsing (module), 153pause, 182peek, 156pipe, 179plot, 166point_color, 166pop, 159pos_in, 127pos_out, 125power, 118power_num, 192pp_close_box, 146pp_close_tbox, 146pp_force_newline, 146pp_get_ellipsis_text, 146pp_get_formatter_output_functions, 146pp_get_margin, 146pp_get_max_boxes, 146pp_get_max_indent, 146pp_open_box, 146pp_open_hbox, 146pp_open_hovbox, 146pp_open_hvbox, 146pp_open_tbox, 146pp_open_vbox, 146pp_over_max_boxes, 146pp_print_as, 146pp_print_bool, 146pp_print_break, 146pp_print_char, 146pp_print_cut, 146pp_print_float, 146pp_print_flush, 146pp_print_if_newline, 146pp_print_int, 146pp_print_newline, 146pp_print_space, 146pp_print_string, 146pp_print_tab, 146pp_print_tbreak, 146pp_set_ellipsis_text, 146pp_set_formatter_out_channel, 146pp_set_formatter_output_functions, 146pp_set_margin, 146

Index to the library 213pp_set_max_boxes, 146pp_set_max_indent, 146pp_set_tab, 146pred, 120pred_num, 193prerr_char, 123prerr_endline, 123prerr_float, 123prerr_int, 123prerr_string, 123print, 155print_as, 141print_bool, 141print_break, 142print_char, 122, 141print_cut, 142print_endline, 123print_float, 123, 141print_flush, 142print_if_newline, 142print_int, 123, 141print_newline, 123, 142print_num, 194print_space, 142print_stat, 148print_string, 123, 141print_tab, 144print_tbreak, 144printexc (module), 154printf, 147, 155printf (module), 154push, 159queue (module), 156quit, 56quo (in�x), 120quo_num, 192raise, 116random (module), 157ratio_of_num, 194read, 176read_float, 124read_int, 124read_key, 169read_line, 124

readdir, 179readlink, 180really_input, 126recv, 187recvfrom, 187red, 165ref (module), 130regexp, 197regexp_case_fold, 198remove, 139, 150, 153, 158, 161remove_printer, 57rename, 161, 177replace_first, 199replace_string, 133rev, 128rewinddir, 179rgb, 165rhs_end, 154rhs_start, 154rindex_char, 133rindex_char_from, 133rmdir, 179round_num, 192s_irall, 160s_irgrp, 160s_iroth, 160s_irusr, 160s_isgid, 160s_isuid, 160s_iwall, 160s_iwgrp, 160s_iwoth, 160s_iwusr, 160s_ixall, 160s_ixgrp, 160s_ixoth, 160s_ixusr, 160search_backward, 198search_forward, 198seek_in, 127seek_out, 125select, 181send, 187sendto, 187

214set, 148set (module), 157set_approx_printing, 195set_color, 165set_ellipsis_text, 144set_error_when_null_denominator, 194set_floating_precision, 195set_font, 166set_formatter_out_channel, 144set_formatter_output_functions, 144set_line_width, 166set_margin, 142set_max_boxes, 143set_max_indent, 143set_normalize_ratio, 195set_normalize_ratio_when_printing, 195set_nth_char, 132set_print_depth, 57set_print_length, 57set_tab, 144set_text_size, 166setgid, 184setuid, 184shutdown, 186shutdown_connection, 187sign_num, 193signal, 182sin, 118sinh, 118size_x, 165size_y, 165sleep, 183snd, 130socket, 186socketpair, 186sort, 158sort (module), 158sound, 169split, 130, 139, 199sprintf, 155sqrt, 118square_num, 192stack (module), 159stat, 148, 177std_err, 122

std_formatter, 145std_in, 122std_out, 122stderr, 122, 175stdin, 122, 175stdout, 122, 175str (module), 197stream (module), 131stream_check, 131stream_from, 131stream_get, 131stream_next, 131stream_of_channel, 131stream_of_string, 131string (module), 132string_after, 200string_before, 200string_for_read, 133string_length, 132string_match, 198string_of_bool, 114string_of_char, 115string_of_float, 119string_of_inet_addr, 185string_of_int, 122string_of_num, 194sub_float, 117sub_int, 120sub_num, 192sub_string, 132sub_vect, 134substitute_first, 199subtract, 129succ, 120succ_num, 193symbol_end, 153symbol_start, 153symlink, 180sys (module), 159Sys_error (exception), 159sys_print_num, 194system, 175system_command, 161take, 156

Index to the library 215tan, 118tanh, 118tcdrain, 190tcflow, 190tcflush, 190tcgetattr, 190tcsendbreak, 190tcsetattr, 190text_size, 166time, 161, 183times, 183tl, 128toplevel (module), 55trace, 56transp, 167truncate, 176umask, 178union, 129, 158unix (module), 171Unix_error (exception), 173unlink, 177untrace, 57utimes, 183vect (module), 134vect_assign, 134vect_item, 134vect_length, 134vect_of_list, 135verbose_mode, 57wait, 174wait_next_event, 168waitopt, 174waitpid, 174white, 165write, 176yellow, 165

Index of keywordsand, see let, type, exception, value, whereas, 21begin, 22, 23do, see while, fordone, see while, fordownto, see forelse, see ifend, 22, 23exception, 31, 32for, 22, 26fun, 22function, 22, 35if, 22, 25in, see letlet, 22, 24match, 22, 26, 35mutable, 30, 37not, 22of, see type, exceptionor, 22, 26prefix, 22, 28, 39rec, see let, wherethen, see ifto, see fortry, 22, 27type, 30, 32value, 32

when, 36where, 37while, 26with, see match, try

216

