The Caml Light system
release 0.74

Documentation and user’s manual

Xavier Leroy

December 2, 1997

Copyright (© 1997 Institut National de Recherche en Informatique et Automatique

Contents

I Getting started

1 Installation instructions

1.1
1.2
1.3

The Unix version o o o o e e e e
The Macintosh version e e
The MS-Windows version i v v v v i i e e e e e e

IT The Caml Light language reference manual

2 The core Caml Light language

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11

Lexical conventions e e
Global names e e e e
Values e e e e
Type eXpressions o i e e e e e e e e e e e e e e e e
Constants e e e e e e e e
Patterns L e e e e e
Expressions L e e e e e e e
Global definitions e e e e e
Directives e e e e e e e e e
Module implementations
Module interfaces L

3 Language extensions

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

Streams, parsers, and printers Lo oo e e
Guards e e
Range patterns L L
Recursive definitions of values o o0 o oo
Local definitions using where L o o
Mutable variant types. L e e e e e e e
SETING ACCESS .« v v v v o e e e e e e e e e e e e e e e
Alternate syntax L. e e e e e e e e e
Infix symbols
Directives L e e e e

10

11

13
14
16
17
19
20
20
22
29
31
31
32

IIT The Caml Light commands 43
4 Batch compilation (camlec) 45
4.1 Overview of the compiler L 45
4.2 0Options o o e e e 46
4.3 Modules and the file system oL 49
4.4 COMMON €ITOTS « .+ v v v e v v e e e e e et e e e e e e e e 49
5 The toplevel system (camllight) 53
Bl Options o o o e 54
5.2 Toplevel control functions L o 55
5.3 The toplevel and the module system L o oo, 58
5.4 Common eITOTS . . . v v v v v v vt et e e e e e e e e e e e e 59
5.5 Building custom toplevel systems: camlmktop 60
5.6 Options o oL L e 61
6 The runtime system (camlrun) 63
6.1 Overview L L e 63
6.2 Options o L e 64
6.3 Common erTOrs o v v it e e e e e e e e e e 64
7 The librarian (camllibr) 67
7.1 Overview L L e e e e 67
7.2 Options L e e e e e e e 68
7.3 Turning code into alibrary oL L o 68
8 Lexer and parser generators (camllex, camlyacc) 71
8.1 Overview of camllex ot vttt e e e e 71
8.2 Syntax of lexer definitions L L L o 72
8.3 Overview of camlyacc e 74
8.4 Syntax of grammar definitions o oL o L L 74
8.5 Options o o o e 76
8.6 A complete example.o 76
9 The debugger (camldebug) 79
9.1 Compiling for debugging e 79
9.2 Invocation e e e e e e 79
9.3 Commands L L 80
9.4 Executing a program Lt e e e e 81
9.5 Breakpoints 84
9.6 The call stack 84
9.7 Examining variable values L o 85
9.8 Controlling the debugger 86
9.9 Miscellaneous commands Lo L e 89

10 Profiling (camlpro)
10.1 Compiling for profiling
10.2 Profiling an execution L
10.3 Printing profiling information o oo oo
10.4 Known bugs e

11 Using Caml Light under Emacs
11.1 Updating your .emacs o i i ittt e e e e
11.2 The caml editing mode e
11.3 Running the toplevel as an inferior process
11.4 Running the debugger as an inferior process

12 Interfacing C with Caml Light
12.1 Overview and compilation information
12.2 The value type e e e e
12.3 Representation of Caml Light data types
12.4 Operations on values e e e
12.5 Living in harmony with the garbage collector
12.6 A complete example e e e

IV The Caml Light library

13 The core library
13.1 bool: boolean operations e e
13.2 builtin: base types and constructors oL
13.3 char: character operations L oL
13.4 eq: generic compariSOns Lo e e e e e
13.5 exc: exceptionso e e e e
13.6 fchar: character operations, without sanity checks
13.7 float: operations on floating-point numberso oo
13.8 fstring: string operations, without sanity checks
13.9 fvect: operations on vectors, without sanity checks
13.10 int: operations on integers oL Lo e
13.11 io: buffered input and outputo oL
13.12 list: operations on lists L L L e
13.13 pair: operations on pairs Lo e e e e e e e e
13.14 ref: operations on references Lo L oL o
13.15 stream: operations on streamsol e
13.16 string: string operations o
13.17 vect: operations on vectors Lo e e e e

14 The standard library
14.1 arg: parsing of command line arguments L.
14.2 baltree: basic balanced binary trees
14.3 filename: operations on file names Lo L oo

91
91
92
92
92

95
95
95
96
97

99

99
101
102
103
105
107

111

113
113
114
115
115
116
117
117
119
119
120
122
127
130
130
131
132
134

14.4 format: pretty printing L e 140
14.5 gc: memory management control and statistics 0 0L 147
14.6 genlex: a generic lexical analyzer 0L 149
14.7 hashtbl: hash tables and hash functions L0 150
14.8 lexing: the run-time library for lexers generated by camllex 151
14.9 map: association tables over ordered types o oL 153
14.10 parsing: the run-time library for parsers generated by camlyacc 153
14.11 printexc: a catch-all exception handler 154
14.12 printf: formatting printing functions o oL 154
14.13 queue: queues L e 156
14.14 random: pseudo-random number generator oL 157
14.15 set: sets over ordered types L L L e e 157
14.16 sort: sorting and merging lists L L o oo 158
14.17 stack: stacks L L L 159
14.18 sys: system interface Lo 159
15 The graphics library 163
15.1 graphics: machine-independent graphics primitives 164
16 The unix library: Unix system calls 171
16.1 unix: interface to the Unix system oo 171
17 The num library: arbitrary-precision rational arithmetic 191
17.1 num: operations on numbers L L o 191
17.2 arith_status: flags that control rational arithmetic 194
18 The str library: regular expressions and string processing 197
18.1 str: regular expressions and high-level string processing 197
V Appendix 201
19 Further reading 203
19.1 Programming in ML o e 203
19.2 Descriptions of ML dialects o o 204
19.3 Implementing functional programming languages 205
19.4 Applications of ML L L e 206
Index to the library 207

Index of keywords 216

Foreword

This manual documents the release 0.74 of the Caml Light system. It is organized as follows.
o Part [, “Getting started”, explains how to install Caml Light on your machine.

o Part II, “The Caml Light language reference manual”, is the reference description of the Caml
Light language.

o Part III, “The Caml Light commands”, documents the Caml Light compiler, toplevel system,
and programming utilities.

o Part IV, “The Caml Light library”, describes the modules provided in the standard library.

o Part V, “Appendix”, contains a short bibliography, an index of all identifiers defined in the
standard library, and an index of Caml Light keywords.

Conventions

The Caml Light system comes in several versions: for Unix machines, for Macintoshes, and for
PCs. The parts of this manual that are specific to one version are presented as shown below:

Unix: This is material specific to the Unix version.
Mac: This is material specific to the Macintosh version.

PC: This is material specific to the PC version.

License

The Caml Light system is copyright (© 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997 Institut
National de Recherche en Informatique et en Automatique (INRIA). INRIA holds all ownership
rights to the Caml Light system. See the file COPYRIGHT in the distribution for the copyright notice.

The Caml Light system can be freely redistributed. More precisely, INRIA grants any user of
the Caml Light system the right to reproduce it, provided that the copies are distributed under the
conditions given in the COPYRIGHT file. The present documentation is distributed under the same
conditions.

6 Foreword

Availability by FTP

The complete Caml Light distribution resides on the machine ftp.inria.fr. The distribution files
can be transferred by anonymous FTP:

Host: ftp.inria.fr (Internet address 192.93.2.54)
Login name: anonymous
Password: your e-mail address

Directory: lang/caml-light
Files: see the index in file README

Part 1

Getting started

Chapter 1

Installation instructions

This chapter explains how to install Caml Light on your machine.

1.1 The Unix version

Requirements. Any machine that runs under one of the various flavors of the Unix operating
system, and that has a flat, non-segmented, 32-bit or 64-bit address space. 4M of RAM, 2M of free
disk space. The graphics library requires X11 release 4 or later.

Installation. The Unix version is distributed in source format, as a compressed tar file named
cl74unix.tar.gz. To extract, move to the directory where you want the source files to reside,
transfer c174unix.tar.gz to that directory, and execute

zcat cl74unix.tar.gz | tar xBf -

This extracts the source files in the current directory. The file INSTALL contains complete instruc-
tions on how to configure, compile and install Caml Light. Read it and follow the instructions.

Troubleshooting. See the file INSTALL.

1.2 The Macintosh version

Requirements. Any Macintosh with at least 1M of RAM (2M is recommended), running System
6 or 7. About 850K of free space on the disk. The parts of the Caml Light system that support
batch compilation currently require the Macintosh Programmer’s Workshop (MPW) version 3.2.
MPW is Apple’s development environment, and it is distributed by APDA, Apple’s Programmers
and Developers Association. See the file READ ME in the distribution for APDA’s address.

Installation. Create the folder where the Caml Light files will reside. Double-click on the file
cl74macbin.sea from the distribution. This displays a file dialog box. Open the folder where the
Caml Light files will reside, and click on the Extract button. This will re-create all files from the
distribution in the Caml Light folder.

To test the installation, double-click on the application Caml Light. The “Caml Light output”
window should display something like

10

> Caml Light version 0.74

#

In the “Caml Light input” window, enter 1+2;; and press the Return key. The “Caml Light
output” window should display:

> Caml Light version 0.74
#1+2;;

- : int = 3

#

Select “Quit” from the “File” menu to return to the Finder.

If you have MPW, you can install the batch compilation tools as follows. The tools and scripts
from the tools folder must reside in a place where MPW will find them as commands. There
are two ways to achieve this result: either copy the files in the tools folder to the Tools or the
Scripts folder in your MPW folder; or keep the files in the tools folder and add the following line
to your UserStartup file (assuming Caml Light resides in folder Caml Light on the disk named
My HD):

Set Commands "{Commands},My HD:Caml Light:tools:"
In either case, you now have to edit the camlc script, and replace the string
Macintosh HD:Caml Light:1lib:

(in the first line) with the actual pathname of the 1ib folder. For example, if you put Caml Light
in folder Caml Light on the disk named My HD, the first line of camlc should read:

Set stdlib "My HD:Caml Light:1ib:"

Troubleshooting. Here is one commonly encountered problem.

Cannot find file stream.zi
(Displayed in the “Caml Light output” window, with an alert box telling you that Caml
Light has terminated abnormally.) This is an installation error. The folder named 1ib in the
distribution must always be in the same folder as the Caml Light application. It’s OK to
move the application to another folder; but remember to move the 1ib directory to the same
folder. (To return to the Finder, first select “Quit” from the “File” menu.)

1.3 The MS-Windows version

Requirements. A PC equipped with a 80386, 80486 or Pentium processor, running MS Windows
3.x, Windows 95 or Windows NT. About 3M of free space on the disk. At least 8M of RAM is
recommended.

Installation. The MS-Windows version is distributed as a self-extracting, self-installing archive
named cl74win.exe. Simply run it and follow the steps of the installation program.

Part 11

The Caml Light language reference
manual

11

Chapter 2

The core Caml Light language

Foreword

This document is intended as a reference manual for the Caml Light language. It lists all language
constructs, and gives their precise syntax and informal semantics. It is by no means a tutorial
introduction to the language: there is not a single example. A good working knowledge of the
language, as provided by the companion tutorial Functional programming using Caml Light, is
assumed.

No attempt has been made at mathematical rigor: words are employed with their intuitive
meaning, without further definition. As a consequence, the typing rules have been left out, by lack
of the mathematical framework required to express them, while they are definitely part of a full
formal definition of the language. The reader interested in truly formal descriptions of languages
from the ML family is referred to The definition of Standard ML and Commentary on Standard
ML, by Milner, Tofte and Harper, MIT Press.

Warning

Several implementations of the Caml Light language are available, and they evolve at each re-
lease. Consequently, this document carefully distinguishes the language and its implementations.
Implementations can provide extra language constructs; moreover, all points left unspecified in
this reference manual can be interpreted differently by the implementations. The purpose of this
reference manual is to specify those features that all implementations must provide.

Notations

The syntax of the language is given in BNF-like notation. Terminal symbols are set in typewriter
font (like this). Non-terminal symbols are set in italic font (like that). Square brackets [..]
denote optional components. Curly brackets {...} denotes zero, one or several repetitions of the
enclosed components. Curly bracket with a trailing plus sign {...} T denote one or several repetitions
of the enclosed components. Parentheses (...) denote grouping.

13

14

2.1 Lexical conventions

Blanks

The following characters are considered as blanks: space, newline, horizontal tabulation, carriage
return, line feed and form feed. Blanks are ignored, but they separate adjacent identifiers, literals
and keywords that would otherwise be confused as one single identifier, literal or keyword.

Comments

Comments are introduced by the two characters (*, with no intervening blanks, and terminated
by the characters *), with no intervening blanks. Comments are treated as blank characters.
Comments do not occur inside string or character literals. Nested comments are correctly handled.

Identifiers
ident ::= letter {letter | 0...9| _}

letter == A...Z]a...z

Identifiers are sequences of letters, digits and _ (the underscore character), starting with a letter.
Letters contain at least the 52 lowercase and uppercase letters from the ASCII set. Implementations
can recognize as letters other characters from the extended ASCII set. Identifiers cannot contain
two adjacent underscore characters (__). Implementation may limit the number of characters of an
identifier, but this limit must be above 256 characters. All charactersin an identifier are meaningful.

Integer literals

integer-literal = [-]{0...9}7T
| [-](0x]0X){0...9]A...F|a...£}T
I H EOO |00) {0...7}F

0b | 0B) {0...1}7T

An integer literal is a sequence of one or more digits, optionally preceded by a minus sign. By
default, integer literals are in decimal (radix 10). The following prefixes select a different radix:

Prefix | Radix

0x, 0X | hexadecimal (radix 16)
0o, 00 | octal (radix 8)

Ob, OB | binary (radix 2)

(The initial 0 is the digit zero; the 0 for octal is the letter O.)

Floating-point literals

float-literal == [-]{0...9}t [. {0...9}][(e|E)[+|-]{0...9}7]

Floating-point decimals consist in an integer part, a decimal part and an exponent part. The
integer part is a sequence of one or more digits, optionally preceded by a minus sign. The decimal

Chapter 2. The core Caml Light language 15

part is a decimal point followed by zero, one or more digits. The exponent part is the character e
or E followed by an optional + or - sign, followed by one or more digits. The decimal part or the
exponent part can be omitted, but not both to avoid ambiguity with integer literals.

Character literals

¢ ¢

char-Iiteral regular-char

AN IR
| “\(0...9)(0...9)(0...9) ¢

Character literals are delimited by ¢ (backquote) characters. The two backquotes enclose either

one character different from ¢ and \, or one of the escape sequences bhelow:

Sequence | Character denoted

\\ backslash (\)

\¢ backquote ()

\n newline (LF)

\r return (CR)

\t horizontal tabulation (TAB)

\b backspace (BS)

\ddd the character with ASCII code ddd in decimal

String literals

string-literal " {string-character} "

regular-char
VA" nft]b|r)
\(0...9)(0...9)(0...9)

string-character

String literals are delimited by " (double quote) characters. The two double quotes enclose a
sequence of either characters different from ' and \, or escape sequences from the table below:

Sequence | Character denoted

\\ backslash (\)

\" double quote (")

\n newline (LF)

\r return (CR)

\t horizontal tabulation (TAB)

\b backspace (BS)

\ddd the character with ASCII code ddd in decimal

Implementations must support string literals up to 216 — 1 characters in length (65535 charac-
ters).

16

Keywords

The identifiers below are reserved as keywords, and cannot be employed otherwise:

and as begin do done downto
else end exception for fun function
if in let match mutable not

of or prefix rec then to

try type value where while with

The following character sequences are also keywords:

! = & () * ., o+ +
, - - > O/ /.
= . <. <= <= <=, <O <.
= = = > >, >= >=. @ [Cl
- - - {1 | 117} ’
Ambiguities

Lexical ambiguities are resolved according to the “longest match” rule: when a character sequence
can be decomposed into two tokens in several different ways, the decomposition retained is the one
with the longest first token.

2.2 Global names

Global names are used to denote value variables, value constructors (constant or non-constant),
type constructors, and record labels. Internally, a global name consists of two parts: the name of
the defining module (the module name), and the name of the global inside that module (the local
name). The two parts of the name must be valid identifiers. Externally, global names have the
following syntax:
global-name ::= ident
| ident __ ident

The form ident __ ident is called a qualified name. The first identifier is the module name, the
second identifier is the local name. The form ident is called an unqualified name. The identifier is
the local name; the module name is omitted. The compiler infers this module name following the
completion rules given below, therefore transforming the unqualified name into a full global name.

To complete an unqualified identifier, the compiler checks a list of modules, the opened modules,
to see if they define a global with the same local name as the unqualified identifier. When one is
found, the identifier is completed into the full name of that global. That is, the compiler takes as
module name the name of an opened module that defines a global with the same local name as the
unqualified identifier. If several modules satisfy this condition, the one that comes first in the list
of opened modules is selected.

The list of opened modules always includes the module currently being compiled (checked first).

(In the case of a toplevel-based implementation, this is the module where all toplevel definitions are
entered.) It also includes a number of standard library modules that provide the initial environment

Chapter 2. The core Caml Light language 17

(checked last). In addition, the #open and #close directives can be used to add or remove modules
from that list. The modules added with #open are checked after the module currently being
compiled, but before the initial standard library modules.

variable ::= global-name
| prefix operator-name

[=][/[mod|+.
@~ || :=]=]|<>] !
< <=|> =< <= |>. | <=.

operator-name

cconstr = global-name
| O
| O
ncconstr ::= global-name
| prefix ::
typeconstr = global-name
label ::= global-name

Depending on the context, global names can stand for global variables (variable), constant value
constructors (cconstr), non-constant value constructors (ncconst), type constructors (typeconstr),
or record labels (label). For variables and value constructors, special names built with prefix and
an operator name are recognized. The tokens []1 and () are also recognized as built-in constant
constructors (the empty list and the unit value).

The syntax of the language restricts labels and type constructors to appear in certain positions,
where no other kind of global names are accepted. Hence labels and type constructors have their
own name spaces. Value constructors and value variables live in the same name space: a global
name in value position is interpreted as a value constructor if it appears in the scope of a type
declaration defining that constructor; otherwise, the global name is taken to be a value variable.
For value constructors, the type declaration determines whether a constructor is constant or not.

2.3 Values

This section describes the kinds of values that are manipulated by Caml Light programs.

2.3.1 Base values
Integer numbers

Integer values are integer numbers from —2°0 to 23° — 1, that is —1073741824 to 1073741823.
Implementations may support a wider range of integer values.

Floating-point numbers

Floating-point values are numbers in floating-point representation. Everything about floating-point
values is implementation-dependent, including the range of representable numbers, the number of
significant digits, and the way floating-point results are rounded.

18

Characters

Character values are represented as 8-bit integers between 0 and 255. Character codes between
0 and 127 are interpreted following the ASCII standard. The interpretation of character codes
between 128 and 255 is implementation-dependent.

Character strings

String values are finite sequences of characters. Implementations must support strings up to 2'6 —1
characters in length (65535 characters). Implementations may support longer strings.

2.3.2 Tuples

Tuples of values are written (v1,...,v,), standing for the n-tuple of values v; to v,. Tuples of up to
214 1 elements (16383 elements) must be supported, though implementations may support tuples
with more elements.

2.3.3 Records

Record values are labeled tuples of values. The record value written {labely = vy;...;label, = v,}
associates the value v; to the record label label;, for i = 1...n. Records with up to 2'* — 1 fields
(16383 fields) must be supported, though implementations may support records with more fields.

2.3.4 Arrays

Arrays are finite, variable-sized sequences of values of the same type. Arrays of length up to 2 —1
(16383 elements) must be supported, though implementations may support larger arrays.

2.3.5 Variant values

Variant values are either a constant constructor, or a pair of a non-constant constructor and a
value. The former case is written cconstr; the latter case is written ncconstr(v), where v is said to
be the argument of the non-constant constructor ncconstr.

The following constants are treated like built-in constant constructors:

Constant Constructor

false the boolean false
true the boolean true
O the “unit” value
] the empty list

2.3.6 Functions

Functional values are mappings from values to values.

Chapter 2. The core Caml Light language 19

2.4 Type expressions

typexpr = ’ ident
| (typexpr)
| typexpr -> typexpr
| typexpr {* typexpr}*
| typeconstr
| typexpr typeconstr
|

(typexpr {, typexpr}) typeconstr

The table below shows the relative precedences and associativity of operators and non-closed
type constructions. The constructions with higher precedences come first.

Operator Associativity
Type constructor application | —

* _

-> right

Type expressions denote types in definitions of data types as well as in type constraints over
patterns and expressions.

Type variables

The type expression ’ ident stands for the type variable named ident. In data type definitions, type
variables are names for the data type parameters. In type constraints, they represent unspecified
types that can be instantiated by any type to satisfy the type constraint.

Parenthesized types
The type expression (typexpr) denotes the same type as typexpr.

Function types

The type expression typexpry -> typexpr, denotes the type of functions mapping arguments of
type typexpry to results of type typexprs.

Tuple types

The type expression typexpry *...* typexpr, denotes the type of tuples whose elements belong to
types typexpry,...typexpr, respectively.

Constructed types

Type constructors with no parameter, as in typeconstr, are type expressions.
The type expression typexpr typeconstr, where typeconstr is a type constructor with one pa-
rameter, denotes the application of the unary type constructor typeconstr to the type typexpr.
The type expression (typexpry,...,typexpr,) typeconstr, where typeconstr is a type construc-
tor with n parameters, denotes the application of the m-ary type constructor typeconstr to the
types typexpr, through typexpr,.

20

2.5 Constants

constant

integer-literal
float-literal
char-Iiteral
string-literal
cconstr

The syntactic class of constants comprises literals from the four base types (integers, floating-

point numbers, characters, character strings), and constant constructors.

2.6 Patterns

pattern

ident

pattern as ident

(pattern)

(pattern : typexpr)
pattern | pattern

constant

ncconstr pattern

pattern , pattern {, pattern}
{ label = pattern {; label = pattern} }
L]

[pattern {; pattern}]
pattern :: pattern

The table below shows the relative precedences and associativity of operators and non-closed

pattern constructions. The constructions with higher precedences come first.

as

Operator Associativity
Constructor application | —
right

left

Patterns are templates that allow selecting data structures of a given shape, and binding iden-
tifiers to components of the data structure. This selection operation is called pattern matching;
its outcome is either “this value does not match this pattern”, or “this value matches this pattern,
resulting in the following bindings of identifiers to values”.

Variable patterns

A pattern that consists in an identifier matches any value, binding the identifier to the value. The
pattern _ also matches any value, but does not bind any identifier.

Chapter 2. The core Caml Light language 21

Alias patterns

The pattern pattern; as ident matches the same values as pattern,. If the matching against
patterny is successful, the identifier ident is bound to the matched value, in addition to the bindings
performed by the matching against pattern,.

Parenthesized patterns

The pattern (pattern;) matches the same values as pattern,;. A type constraint can appear in a
parenthesized patterns, asin (patterny : typexpr). This constraint forces the type of pattern; to
be compatible with type.

“Or” patterns

The pattern pattern; | pattern, represents the logical “or” of the two patterns pattern; and
patterny. A value matches pattern, | pattern, either if it matches pattern, or if it matches pattern,.
The two sub-patterns pattern; and pattern, must contain no identifiers. Hence no bindings are
returned by matching against an “or” pattern.

Constant patterns

A pattern consisting in a constant matches the values that are equal to this constant.

Variant patterns

The pattern ncconstr pattern; matches all variants whose constructor is equal to ncconstr, and
whose argument matches pattern;.

The pattern pattern, :: pattern, matches non-empty lists whose heads match pattern;, and
whose tails match pattern,. This pattern behaves like prefix :: (pattern; , pattern,).

The pattern [pattern; ;...; pattern, 1 matches lists of length n whose elements match
pattern, ...pattern,, respectively. This pattern behaves like pattern; ::...:: pattern, :: [].

Tuple patterns

The pattern pattern; ,..., pattern, matches n-tuples whose components match the patterns
pattern; through pattern,. That is, the pattern matches the tuple values (vq,...,v,) such that
pattern; matches v; fore=1,...,n.

Record patterns

The pattern { label; = pattern, ;...; label, = pattern, } matches records that define at least
the labels label; through Ilabel,, and such that the value associated to label; match the pattern
pattern,;, for i = 1,...,n. The record value can define more labels than labely ...label,; the values
associated to these extra labels are not taken into account for matching.

22

2.7 Expressions

expr = ident
| variable
| constant
| Cexpr)

| begin expr end

| Cexpr : typexpr)

| expr, expr{, expr}

| ncconstr expr

| expr :: expr

| Cexpr {; expr}

| Ll expr {; expr} 1]

| {label = expr {; label = expr} }

| expr expr

| prefix-op expr

| expr infix-op expr

| expr . label

| expr . label <- expr

| expr .(expr)

| expr .(expr) <- expr

| expr & expr

| expror expr

| if expr then expr [else expr]

| while expr do expr done

| for ident = expr (to | downto) expr do expr done

| expr ; expr

| match expr with simple-matching

| fun multiple-matching

| function simple-matching

| try expr with simple-matching

| let [rec] let-binding {and let-binding } in expr

simple-matching ::= pattern -> expr {| pattern -> expr}
multiple-matching ::= pattern-list => expr {| pattern-list -> expr}
pattern-list ::= pattern {pattern}
let-binding ::= pattern = expr
| variable pattern-list = expr
prefix-op == -|-.]!
infix-op = +|=|*|/|mod|+.|-.|*.|/.|*x|@|~|']:=

| =<]==|!=]<|<=|>]|>=|<. |<=.|>.|>=.

The table below shows the relative precedences and associativity of operators and non-closed
constructions. The constructions with higher precedence come first.

Chapter 2. The core Caml Light language 23

Construction or operator Associativity
[} _

. (-
function application left
constructor application -

- -. (prefix) -

*ok right
mod left
x ox. [/ /. left
+ 4. - - left
s right
Q- right
comparisons (= == < etc.) | left
not -

& left
or left
<- = right
if -

; right
let match fun function try | -

2.7.1 Simple expressions
Constants

Expressions consisting in a constant evaluate to this constant.

Variables

Expressions consisting in a variable evaluate to the value bound to this variable in the current
evaluation environment. The variable can be either a qualified identifier or a simple identifier.
Qualified identifiers always denote global variables. Simple identifiers denote either a local variable,
if the identifier is locally bound, or a global variable, whose full name is obtained by qualifying the
simple identifier, as described in section 2.2.

Parenthesized expressions

The expressions (expr) and begin expr end have the same value as expr. Both constructs are
semantically equivalent, but it is good style to use begin...end inside control structures:

if ... then begin ... ; ... end else begin ... ; ... end

and (...) for the other grouping situations.
Parenthesized expressions can contain a type constraint, as in (expr : type). This constraint
forces the type of expr to be compatible with type.

24

Function abstraction

The most general form of function abstraction is:

fun pattern% ... pattern]* -> expr
I

I pattern}z ... pattern]' -> expr,

This expression evaluates to a functional value with m curried arguments. When this function is
applied to m values vy ... vy, the values are matched against each pattern row pattern! ...pattern™
for ¢ from 1 to n. If one of these matchings succeeds, that is if the value v; matches the pattern
patterni for all j = 1,...,m, then the expression expr; associated to the selected pattern row is
evaluated, and its value becomes the value of the function application. The evaluation of expr,
takes place in an environment enriched by the bindings performed during the matching.

If several pattern rows match the arguments, the one that occurs first in the function definition
is selected. If none of the pattern rows matches the argument, the exception Match_failure is
raised.

If the function above is applied to less than m arguments, a functional value is returned, that
represents the partial application of the function to the arguments provided. This partial application
is a function that, when applied to the remaining arguments, matches all arguments against the
pattern rows as described above. Matching does not start until all m arguments have been provided
to the function; hence, partial applications of the function to less than m arguments never raise
Match_failure.

All pattern rows in the function body must contain the same number of patterns. A variable
must not be bound more than once in one pattern row.

Functions with only one argument can be defined with the function keyword instead of fun:

function pattern; -> expry
I

| Dpattern, -> expr,

The function thus defined behaves exactly as described above. The only difference between the two
forms of function definition is how a parsing ambiguity is resolved. The two forms cconstr pattern
(two patterns in a row) and ncconstr pattern (one pattern) cannot be distinguished syntactically.
Function definitions introduced by fun resolve the ambiguity to the former form; function definitions
introduced by function resolve it to the latter form (the former form makes no sense in this case).

Function application

Function application is denoted by juxtaposition of expressions. The expression
expry; expry...expr, evaluates the expressions expr; to expr,. The expression expry
must evaluate to a functional value, which is then applied to the values of expry,...,expr,. The
order in which the expressions expry,...,expr, are evaluated is not specified.

Local definitions

The let and let rec constructs bind variables locally. The construct

Chapter 2. The core Caml Light language 25

let pattern; = expry and...and pattern, = expr, in expr

evaluates expry ...expr, in some unspecified order, then matches their values against the patterns
patterny . ..pattern,. If the matchings succeed, expr is evaluated in the environment enriched by
the bindings performed during matching, and the value of expr is returned as the value of the whole
let expression. If one of the matchings fails, the exception Match_failure is raised.

An alternate syntax is provided to bind variables to functional values: instead of writing

ident = fun pattern, ...pattern,, -> expr
in a let expression, one may instead write
ident pattern, ...pattern,, = expr
Both forms bind ident to the curried function with m arguments and only one case,

pattern, ...pattern, -> expr.

Recursive definitions of variables are introduced by let rec:
let rec pattern; = expr; and...and pattern, = expr, in expr

The only difference with the let construct described above is that the bindings of variables to
values performed by the pattern-matching are considered already performed when the expressions
expry to expr, are evaluated. That is, the expressions expr, to expr, can reference identifiers that
are bound by one of the patterns pattern,,..., pattern,, and expect them to have the same value
as in expr, the body of the let rec construct.

The recursive definition is guaranteed to behave as described above if the expressions expry
to expr, are function definitions (fun... or function...), and the patterns pattern, ...pattern,
consist in a single variable, as in:

let rec ident; = fun...and...and ident, = fun...in expr

This defines identy .. .ident, as mutually recursive functions local to expr. The behavior of other
forms of let rec definitions is implementation-dependent.

2.7.2 Control constructs
Sequence

The expression expr; ; expr, evaluates expry first, then exprsy, and returns the value of expr,.

Conditional

The expression if expr; then expr, else expry evaluates to the value of expr, if expr; evaluates
to the boolean true, and to the value of exprs if expry evaluates to the boolean false.
The else exprs part can be omitted, in which case it defaults to else ().

26

Case expression

The expression
match expr

with pattern; -> expry
I

| pattern, -> expr,

matches the value of expr against the patterns pattern; to pattern,. If the matching against

pattern; succeeds, the associated expression expr; is evaluated, and its value becomes the value of
the whole match expression. The evaluation of expr; takes place in an environment enriched by
the bindings performed during matching. If several patterns match the value of expr, the one that
occurs first in the match expression is selected. If none of the patterns match the value of expr,
the exception Match_failure is raised.

Boolean operators

The expression expry & expr, evaluates to true if both expr; and expr, evaluate to true; otherwise,
it evaluates to false. The first component, expry, is evaluated first. The second component, expr,,
is not evaluated if the first component evaluates to false. Hence, the expression expr; & expr,
behaves exactly as

if expr, then expr, else false.

The expression expry or expr, evaluates to true if one of expr, and expr, evaluates to true;
otherwise, it evaluates to false. The first component, expry, is evaluated first. The second
component, expry, is not evaluated if the first component evaluates to true. Hence, the expression
expry or expr, behaves exactly as

if expr, then true else expr,.

Loops

The expression while expr; do expr, done repeatedly evaluates expr, while expr; evaluates to
true. The loop condition expry is evaluated and tested at the beginning of each iteration. The
whole while...done expression evaluates to the unit value ().

The expression for ident = expry to expry do exprs done first evaluates the expressions expry
and expry (the boundaries) into integer values n and p. Then, the loop body exprs is repeatedly
evaluated in an environment where the local variable named ident is successively bound to the
values n,n+1,...,p— 1, p. The loop body is never evaluated if n > p.

The expression for ident = expr; downto expr, do exprs done first evaluates the expressions
expr; and expr, (the boundaries) into integer values n and p. Then, the loop body exprs is
repeatedly evaluated in an environment where the local variable named ident is successively bound
to the values n,n—1, ..., p+ 1, p. The loop body is never evaluated if n < p.

In both cases, the whole for expression evaluates to the unit value ().

Chapter 2. The core Caml Light language 27

Exception handling

The expression
try expr
with pattern; -> expry
I

| pattern, -> expr,

evaluates the expression expr and returns its value if the evaluation of expr does not raise any

exception. If the evaluation of expr raises an exception, the exception value is matched against the
patterns pattern, to pattern,. If the matching against pattern; succeeds, the associated expression
expr; is evaluated, and its value becomes the value of the whole try expression. The evaluation of
expr; takes place in an environment enriched by the bindings performed during matching. If several
patterns match the value of expr, the one that occurs first in the try expression is selected. If none
of the patterns matches the value of expr, the exception value is raised again, thereby transparently
“passing through” the try construct.

2.7.3 Operations on data structures
Products

The expression expry , ..., expr, evaluates to the n-tuple of the values of expressions expry to
expr,,. The evaluation order for the subexpressions is not specified.

Variants

The expression ncconstr expr evaluates to the variant value whose constructor is ncconstr, and
whose argument is the value of expr.

For lists, some syntactic sugar is provided. The expression expr; :: expr, stands for the
constructor prefix :: applied to the argument (expry , expr,), and therefore evaluates to
the list whose head is the value of expr; and whose tail is the value of expry. The expression
[expry ;...; expr,] is equivalent to expry ::...:: expr, :: [1, and therefore evaluates to the
list whose elements are the values of expry to expr,,.

Records
The expression { labely = expry ;...; label, = expr, } evaluates to the record value
{labely = vy ;...; label, = v, }, where v; is the value of expr; for ¢ = 1,...,n. The labels labely

to label,, must all belong to the same record types; all labels belonging to this record type must
appear exactly once in the record expression, though they can appear in any order. The order in
which expry to expr, are evaluated is not specified.

The expression expry . label evaluates expry to a record value, and returns the value associated
to label in this record value.

The expression expr; . label <- expr, evaluates expry to a record value, which is then modified
in-place by replacing the value associated to label in this record by the value of expr,. This
operation is permitted only if label has been declared mutable in the definition of the record type.
The whole expression expry . label <- expr, evaluates to the unit value ().

28

Arrays

The expression [| expry ;...; expr, |] evaluates to a n-element array, whose elements are ini-
tialized with the values of expry to expr, respectively. The order in which these expressions are
evaluated is unspecified.

The expression expry . (expry) is equivalent to the application vect_item expry expr,. In the
initial environment, the identifier vect_item resolves to a built-in function that returns the value
of element number expr, in the array denoted by expry. The first element has number 0; the last
element has number n — 1, where n is the size of the array. The exception Invalid_argument is
raised if the access is out of bounds.

The expression expry .{ expry) <- expry is equivalent to vect_assign expr, expry exprs.
In the initial environment, the identifier vect_assign resolves to a built-in function that modifies
in-place the array denoted by expry, replacing element number expry by the value of exprs. The
exception Invalid_argument is raised if the access is out of bounds. The built-in function returns
(). Hence, the whole expression expry . (expry) <- exprs evaluates to the unit value ().

This behavior of the two constructs expry . (expry) and expry . (expry) <- expr; may change
if the meaning of the identifiers vect_item and vect_assign is changed, either by redefinition or
by modification of the list of opened modules. See the discussion below on operators.

2.7.4 Operators

The operators written infix-op in the grammar above can appear in infix position (between two
expressions). The operators written prefix-op in the grammar above can appear in prefix position
(in front of an expression).

The expression prefix-op expr is interpreted as the application ident expr, where ident is
the identifier associated to the operator prefix-op in the table below. Similarly, the expression
expry infix-op expr, is interpreted as the application ident expr, expr,y, where ident is the iden-
tifier associated to the operator infix-op in the table below. The identifiers written ident above
are then evaluated following the rules in section 2.7.1. In the initial environment, they evaluate
to built-in functions whose behavior is described in the table. The behavior of the constructions
prefix-op expr and expry infix-op expry, may change if the meaning of the identifiers associated to
prefix-op or infix-op is changed, either by redefinition of the identifiers, or by modification of the
list of opened modules, through the #open and #close directives.

Chapter 2. The core Caml Light language

Operator Associated Behavior in the default environment

identifier

+ prefix + Integer addition.

- (infix) prefix - Integer subtraction.

- (prefix) | minus Integer negation.

* prefix * Integer multiplication.

/ prefix / Integer division. Raise Division_by_zero if second argu-
ment is zero. The result is unspecified if either argument is
negative.

mod prefix mod | Integer modulus. Raise Division_by_zero if second argu-
ment is zero. The result is unspecified if either argument is
negative.

+. prefix +. Floating-point addition.

-. (infix) | prefix -. Floating-point subtraction.

-. (prefix) | minus_float | Floating-point negation.

* prefix *. Floating-point multiplication.

/. prefix /. Floating-point division. Raise Division_by_zero if second
argument is zero.

*k prefix *x Floating-point exponentiation.

prefix List concatenation.
- prefix ~ String concatenation.
! prefix ! Dereferencing (return the current contents of a reference).
= prefix := Reference assignment (update the reference given as first
argument with the value of the second argument).

= prefix = Structural equality test.

<> prefix <> Structural inequality test.

== prefix == Physical equality test.

1= prefix != Physical inequality test.

< prefix < Test “less than” on integers.

<= prefix <= Test “less than or equal ” on integers.

> prefix > Test “greater than” on integers.

>= prefix >= Test “greater than or equal” on integers.

<, prefix <. Test “less than” on floating-point numbers.

<= prefix <=. | Test “less than or equal 7 on floating-point numbers.

>, prefix >. Test “greater than” on floating-point numbers.

>= prefix >=. | Test “greater than or equal” on floating-point numbers.

The behavior

of the +,

-, % /,mod, +., -., *.

29

or /. operators is unspecified if the result falls

outside of the range of representable integers or floating-point numbers, respectively. See chapter 13
for a more precise description of the behavior of the operators above.

2.8 Global definitions

This section describes the constructs that bind global identifiers (value variables, value constructors,

type constructors, record labels).

30

2.8.1 Type definitions

type-definition type typedef {and typedef}

type-params ident = constr-decl {| constr-decl}
type-params ident = { label-decl {; label-decl} }
tvpe-params ident == typexpr

type-params ident

typedef

nothing
> ident

(? ident {, ’ ident})

type-params

constr-decl ::= ident
| ident of typexpr

label-decl ::= ident : typexpr
| mutable ident : typexpr

Type definitions bind type constructors to data types: either variant types, record types, type
abbreviations, or abstract data types.

Type definitions are introduced by the type keyword, and consist in one or several simple
definitions, possibly mutually recursive, separated by the and keyword. Each simple definition
defines one type constructor.

A simple definition consists in an identifier, possibly preceded by one or several type parameters,
and followed by a data type description. The identifier is the local name of the type constructor
being defined. (The module name for this type constructor is the name of the module being
compiled.) The optional type parameters are either one type variable ’ ident, for type constructors
with one parameter, or a list of type variables (’ identq, ..., ident,), for type constructors with
several parameters. These type parameters can appear in the type expressions of the right-hand
side of the definition.

Variant types

The type definition typeparams ident = constr-decly | ... | constr-decl, defines a variant type. The
constructor declarations constr-decly, ..., constr-decl, describe the constructors associated to this
variant type. The constructor declaration ident of typexpr declares the local name ident (in the
module being compiled) as a non-constant constructor, whose argument has type typexpr. The
constructor declaration ident declares the local name ident (in the module being compiled) as a
constant constructor.

Record types

The type definition typeparams ident = { label-decly ;... ; label-decl, } defines a record type. The
label declarations label-decly, ..., label-decl, describe the labels associated to this record type. The
label declaration ident : typexpr declares the local name ident in the module being compiled as a
label, whose argument has type typexpr. The label declaration mutable ident : typexpr behaves
similarly; in addition, it allows physical modification over the argument to this label.

Chapter 2. The core Caml Light language 31

Type abbreviations

The type definition typeparams ident == typexpr defines the type constructor ident as an abbrevi-
ation for the type expression typexpr.

Abstract types

The type definition typeparams ident defines ident as an abstract type. When appearing in a mod-
ule interface, this definition allows exporting a type constructor while hiding how it is represented
in the module implementation.

2.8.2 Exception definitions

exception-definition ::= exception constr-decl {and constr-decl}

Exception definitions add new constructors to the built-in variant type exn of exception values.
The constructors are declared as for a definition of a variant type.

2.9 Directives

directive ::= # open string
| # close string
|

ident string

Directives control the behavior of the compiler. They apply to the remainder of the current
compilation unit.

The two directives #open and #close modify the list of opened modules, that the compiler uses
to complete unqualified identifiers, as described in section 2.2. The directive #open string adds the
module whose name is given by the string constant string to the list of opened modules, in first
position. The directive #close string removes the first occurrence of the module whose name is
given by the string constant string from the list of opened modules.

Implementations can provide other directives, provided they follow the syntax # ident string,
where ident is the name of the directive, and the string constant string is the argument to the
directive. The behavior of these additional directives is implementation-dependent.

2.10 Module implementations

implementation := {impl-phrase ;;}

impl-phrase expr

value-definition

exception-definition

|
| type-definition
|
| directive

value-definition ::= let [rec] let-binding {and let-binding }

32

A module implementation consists in a sequence of implementation phrases, terminated by
double semicolons. An implementation phrase is either an expression, a value definition, a type or
exception definition, or a directive. At run-time, implementation phrases are evaluated sequentially,
in the order in which they appear in the module implementation.

Implementation phrases consisting in an expression are evaluated for their side-effects.

Value definitions bind global value variables in the same way as a let...in... expression binds
local variables. The expressions are evaluated, and their values are matched against the left-hand
sides of the = sides, as explained in section 2.7.1. If the matching succeeds, the bindings of identifiers
to values performed during matching are interpreted as bindings to the global value variables whose
local name is the identifier, and whose module name is the name of the module. If the matching
fails, the exception Match_failure is raised. The scope of these bindings is the phrases that follow
the value definition in the module implementation.

Type and exception definitions introduce type constructors, variant constructors and record
labels as described in sections 2.8.1 and 2.8.2. The scope of these definitions is the phrases that
follow the value definition in the module implementation. The evaluation of an implementation
phrase consisting in a type or exception definition produces no effect at run-time.

Directives modify the behavior of the compiler on the subsequent phrases of the module im-
plementation, as described in section 2.9. The evaluation of an implementation phrase consisting
in a directive produces no effect at run-time. Directives apply only to the module currently being
compiled; in particular, they have no effect on other modules that refer to globals exported by the
module being compiled.

2.11 Module interfaces
interface ::= {intf-phrase ;;}

intf-phrase ::= value-declaration
| type-definition
| exception-definition
|

directive

value-declaration ::= value ident : typexpr {and ident : typexpr}

Module interfaces declare the global objects (value variables, type constructors, variant con-
structors, record labels) that a module exports, that is, makes available to other modules. Other
modules can refer to these globals using qualified identifiers or the #open directive, as explained in
section 2.2.

A module interface consists in a sequence of interface phrases, terminated by double semicolons.
An interface phrase is either a value declaration, a type definition, an exception definition, or a
directive.

Value declarations declare global value variables that are exported by the module implementa-
tion, and the types with which they are exported. The module implementation must define these
variables, with types at least as general as the types declared in the interface. The scope of the
bindings for these global variables extends from the module implementation itself to all modules
that refer to those variables.

Chapter 2. The core Caml Light language 33

Type or exception definitions introduce type constructors, variant constructors and record la-
bels as described in sections 2.8.1 and 2.8.2. Exception definitions and type definitions that are not
abstract type declarations also take effect in the module implementation; that is, the type construc-
tors, variant constructors and record labels they define are considered bound on entrance to the
module implementation, and can be referred to by the implementation phrases. Type definitions
that are not abstract type declarations must not be redefined in the module implementation. In
contrast, the type constructors that are declared abstract in a module interface must be defined in
the module implementation, with the same names.

Directives modify the behavior of the compiler on the subsequent phrases of the module inter-
face, as described in section 2.9. Directives apply only to the interface currently being compiled;
in particular, they have no effect on other modules that refer to globals exported by the interface
being compiled.

34

Chapter 3

Language extensions

This chapter describes the language features that are implemented in Caml Light, but not described
in the Caml Light reference manual. In contrast with the fairly stable kernel language that is
described in the reference manual, the extensions presented here are still experimental, and may
be removed or changed in the future.

3.1 Streams, parsers, and printers

Caml Light comprises a built-in type for streams (possibly infinite sequences of elements, that are
evaluated on demand), and associated stream expressions, to build streams, and stream patterns,
to destructure streams. Streams and stream patterns provide a natural approach to the writing of
recursive-descent parsers.

Streams are presented by the following extensions to the syntactic classes of expressions:

expr = ...
| [<>]
| [< stream-component {; stream-component} >]
| function stream-matching
| match expr with stream-matching
stream-component = ’ expr
| expr
stream-matching = stream-pattern -> expr {| stream-pattern -> expr}
stream-pattern [<>]

[< stream-comp-pat {; stream-comp-pat} >]

stream-comp-pat > pattern
expr pattern

ident

Stream expressions are bracketed by [< and >]. They represent the concatenation of their
components. The component ’ expr represents the one-element stream whose element is the value

35

36

of expr. The component expr represents a sub-stream. For instance, if both s and t are streams
of integers, then [<’1; s; t; ’2>] is a stream of integers containing the element 1, then the
elements of s, then those of t, and finally 2. The empty stream is denoted by [< >].

Unlike any other kind of expressions in the language, stream expressions are submitted to lazy
evaluation: the components are not evaluated when the stream is built, but only when they are
accessed during stream matching. The components are evaluated once, the first time they are
accessed; the following accesses reuse the value computed the first time.

Stream patterns, also bracketed by [< and >], describe initial segments of streams. In particular,
the stream pattern [< >] matches all streams. Stream pattern components are matched against the
corresponding elements of a stream. The component ’ pattern matches the corresponding stream
element against the pattern. The component expr pattern applies the function denoted by expr to
the current stream, then matches the result of the function against pattern. Finally, the component
ident simply binds the identifier to the stream being matched. (The current implementation limits
ident to appear last in a stream pattern.)

Stream matching proceeds destructively: once a component has been matched, it is discarded
from the stream (by in-place modification).

Stream matching proceeds in two steps: first, a pattern is selected by matching the stream
against the first components of the stream patterns; then, the following components of the selected
pattern are checked against the stream. If the following components do not match, the exception
Parse_error is raised. There is no backtracking here: stream matching commits to the pattern
selected according to the first element. If none of the first components of the stream patterns match,
the exception Parse_failure is raised. The Parse_failure exception causes the next alternative
to be tried, if it occurs during the matching of the first element of a stream, before matching has
committed to one pattern.

See Functional programming using Caml Light for a more gentle introductions to streams, and
for some examples of their use in writing parsers. A more formal presentation of streams, and a
discussion of alternate semantics, can be found in Parsers in ML by Michel Mauny and Daniel de
Rauglaudre, in the proceedings of the 1992 ACM conference on Lisp and Functional Programming.

3.2 GGuards

Cases of a pattern matching can include guard expressions, which are arbitrary boolean expressions
that must evaluate to true for the match case to be selected. Guards occur just before the -> token
and are introduced by the when keyword:

match expr
with pattern[whencond,] -> expr,
I

| pattern,[whencond,] -> expr,

(Same syntax for the fun, function, and try ...with constructs.) During matching, if the value of
expr matches some pattern pattern; which has a guard cond;, then the expression cond; is evaluated
(in an environment enriched by the bindings performed during matching). If cond; evaluates to
true, then expr; is evaluated and its value returned as the result of the matching, as usual. But if
cond; evaluates to false, the matching is resumed against the patterns following pattern,.

Chapter 3. Language extensions 37

3.3 Range patterns

In patterns, Caml Light recognizes the form ¢ ¢ ¢ .. ¢ d ‘ (two character constants separated

by ..) as a shorthand for the pattern

‘C‘l‘Cl‘|‘C2‘|...|‘Cn‘|‘d‘
where ¢q,¢3, ..., ¢, are the characters that occur between ¢ and d in the ASCII character set. For
instance, the pattern ‘0°..“9¢ matches all characters that are digits.

3.4 Recursive definitions of values

Besides 1et rec definitions of functional values, as described in the reference manual, Caml Light
supports a certain class of recursive definitions of non-functional values. For instance, the following
definition is accepted:

let rec x =1 :: yand y =2 :: x;;

and correctly binds x to the cyclic list 1::2::1::2::..., and y to the cyclic list
2::1::2::1::...Informally, the class of accepted definitions consists of those definitions
where the defined variables occur only inside function bodies or as a field of a data structure.
Moreover, the patterns in the left-hand sides must be identifiers, nothing more complex.

3.5 Local definitions using where
A postfix syntax for local definitions is provided:

expr =
| expr where [rec]| let-binding

The expression expr where let-binding behaves exactly as let let-binding in expr, and similarly
for where rec and let rec.

3.6 Mutable variant types
The argument of a value constructor can be declared “mutable” when the variant type is defined:

type foo = A of mutable int
| B of mutable int * int

This allows in-place modification of the argument part of a constructed value. Modification is
performed by a new kind of expressions, written ident <- expr, where ident is an identifier bound
by pattern-matching to the argument of a mutable constructor, and expr denotes the value that
must be stored in place of that argument. Continuing the example above:

38

let x = A1 in
begin match x with A y -> y <- 2 |
X

-> () end;

returns the value A 2. The notation ident <- expr works also if ident is an identifier bound by
pattern-matching to the value of a mutable field in a record. For instance,

type bar = {mutable 1bl : int};;

let x = {1bl = 1} in
begin match x with {1bl = y} -> y <- 2 end;
X

returns the value {1b1 = 2%}.

3.7 String access
Extra syntactic constructs are provided to access and modify characters in strings:

expr u= ...
| expr .[expr]
| expr .[expr] <- expr

The expression expry . [expry] is equivalent to the application nth_char expry expr,. In the
initial environment, the identifier nth_char resolves to a built-in function that returns the character
number expry in the string denoted by expry. The first element has number 0; the last element
has number n — 1, where n is the length of the string. The exception Invalid_argument is raised
if the access is out of bounds.

The expression expry . [expry] <- exprs is equivalent to set_nth_char expr; expry exprs. In
the initial environment, the identifier set_nth_char resolves to a built-in function that modifies
in-place the string denoted by expry, replacing character number expr, by the value of exprs. The
exception Invalid_argument is raised if the access is out of bounds. The built-in function returns

0.

3.8 Alternate syntax
The syntax of some constructs has been slightly relaxed:

e An optional ; may terminate a sequence, list expression, or record expression. For instance,
begin e; ; ey ; end is syntactically correct and synonymous with begin e ; ey end.

e Similarly, an optional | may begin a pattern-matching expression. For instance,
function | pat; -> expr; |... is syntactically correct and synonymous with
function pat; -> expry | ...

o The tokens && and | | are recognized as synonymous for & (sequential “and”) and or (sequen-
tial “or”), respectively.

Chapter 3. Language extensions 39

3.9 Infix symbols

Sequences of “operator characters”, such as <=> or !! are read as a single token from the
infix-symbol or prefix-symbol class:

infix-symbol == (=|<|>]@ |~ || |&]|~|+|-|*|/|$|%) {operator-char}
prefix-symbol = (! |7?) {operator-char}
operator-char = V|$|%h|&|*|+|-].|/]:|;|<|=]|>|2]e|~|I]|~

Tokens from these two classes generalize the built-in infix and prefix operators described in chap-

ter 2:
expr = ...
| prefix-symbol expr
| expr infix-symbol expr

variable = ...
| prefix prefix-symbol
| prefix infix-symbol

No #infix directive (section 3.10) is needed to give infix symbols their infix status. The precedences
and associativities of infix symbols in expressions are determined by their first character(s): symbols
beginning with ** have highest precedence (exponentiation), followed by symbols beginning with
*, / or % (multiplication), then + and - (addition), then @ and ~ (concatenation), then all others
symbols (comparisons). The updated precedence table for expressions is shown below. We write
“x...”7 to mean “any infix symbol starting with *”.

40

Construction or operator Associativity
LR 7., -

(L -
function application left
constructor application -

- -. (prefix) -
*k L. right
/... h... mod left
- left
s right
Q.. “... right
comparisons (= == < etc.), all other infix symbols | left
not -
& && left
or |l left
<- = right
if -
; right
let match fun function try -

Some infix and prefix symbols are predefined in the default environment (see chapters 2 and 13 for
a description of their behavior). The others are initially unbound and must be bound before use,

with a let prefix infix-symbol = expr or let prefix prefix-symbol = expr binding.

3.10 Directives

In addition to the standard #open and #close directives, Caml Light provides three additional

directives.

#infix " id "

Change the lexical status of the identifier id: in the remainder of the compilation unit, id is
recognized as an infix operator, just like +. The notation prefix id can be used to refer to
the identifier id itself. Expressions of the form expry id expr, are parsed as the application
prefix id expry expry. The argument to the #infix directive must be an identifier, that
is, a sequence of letters, digits and underscores starting with a letter; otherwise, the #infix

declaration has no effect. Example:

#infix "union";;

let prefix union = fun x y -> ...

[1,2] union [3,4];;

#uninfix " id "

Remove the infix status attached to the identifier id by a previous #infix " id " directive.

Chapter 3. Language extensions 41

#directory " dir-name "
Add the named directory to the path of directories searched for compiled module interface
files. This is equivalent to the -I command-line option to the batch compiler and the toplevel
system.

42

Part 111

The Caml Light commands

43

Chapter 4

Batch compilation (camlc)

This chapter describes how Caml Light programs can be compiled non-interactively, and turned
into standalone executable files. This is achieved by the command camlc, which compiles and links
Caml Light source files.

Mac: This command is not a standalone Macintosh application. To run camlec, you need the
Macintosh Programmer’s Workshop (MPW) programming environment. The programs
generated by camlc are also MPW tools, not standalone Macintosh applications.

4.1 Overview of the compiler

The camlc command has a command-line interface similar to the one of most C compilers. It
accepts several types of arguments: source files for module implementations; source files for module
interfaces; and compiled module implementations.

¢ Arguments ending in .mli are taken to be source files for module interfaces. Module interfaces
declare exported global identifiers, define public data types, and so on. From the file z.m11,
the camlc compiler produces a compiled interface in the file x.z1i.

¢ Arguments ending in .ml are taken to be source files for module implementation. Mod-
ule implementations bind global identifiers to values, define private data types, and contain
expressions to be evaluated for their side-effects. From the file #.ml, the camlc compiler
produces compiled object code in the file z.zo. If the interface file x.mli exists, the module
implementation z.ml is checked against the corresponding compiled interface z.zi, which
is assumed to exist. If no interface x.mli is provided, the compilation of z.ml produces a
compiled interface file z.zi in addition to the compiled object code file x.zo. The file z.z1
produced corresponds to an interface that exports everything that is defined in the imple-
mentation z.ml.

¢ Arguments ending in .zo are taken to be compiled object code. These files are linked together,
along with the object code files obtained by compiling .ml arguments (if any), and the Caml
Light standard library, to produce a standalone executable program. The order in which
.zo and .ml arguments are presented on the command line is relevant: global identifiers are
initialized in that order at run-time, and it is a link-time error to use a global identifier before

45

46

having initialized it. Hence, a given z.zo file must come before all .zo files that refer to
identifiers defined in the file z.zo.

The output of the linking phase is a file containing compiled code that can be executed by the
Caml Light runtime system: the command named camlrun. If caml.out is the name of the file
produced by the linking phase, the command

camlrun caml.out arg, arg, ... arqg,

executes the compiled code contained in caml.out, passing it as arguments the character strings
arg, to arg,. (See chapter 6 for more details.)

Unix: On most Unix systems, the file produced by the linking phase can be run directly, as in:
./caml.out arg, argy, ... arg,

The produced file has the executable bit set, and it manages to launch the bytecode inter-
preter by itself.

PC: The output file produced by the linking phase is directly executable, provided it is given
extension .EXE. Hence, if the output file is named caml_out.exe, you can execute it with
the command

caml_out arg, arg, ... arg,

Actually, the produced file caml_out.exeis a tiny executable file prepended to the bytecode
file. The executable simply runs the camlrun runtime system on the remainder of the file.
(As a consequence, this is not a standalone executable: it still requires camlrun.exe to
reside in one of the directories in the path.)

4.2 Options

The following command-line options are recognized by camlc.

-c Compile only. Suppress the linking phase of the compilation. Source code files are turned into
compiled files, but no executable file is produced. This option is useful to compile modules
separately.

-ccopt option
Pass the given option to the C compiler and linker, when linking in “custom runtime” mode
(see the -custom option). For instance, -ccopt -Ldir causes the C linker to search for C
libraries in directory dir.

-custom
Link in “custom runtime” mode. In the default linking mode, the linker produces bytecode
that is intended to be executed with the shared runtime system, camlrun. In the custom
runtime mode, the linker produces an output file that contains both the runtime system and
the bytecode for the program. The resulting file is considerably larger, but it can be executed
directly, even if the camlrun command is not installed. Moreover, the “custom runtime” mode
enables linking Caml Light code with user-defined C functions, as described in chapter 12.

Chapter 4. Batch compilation (camlc) 47

Unix: Never strip an executable produced with the -custom option.
PC: This option requires the DIGPP port of the GNU C compiler to be installed.

Cause the compiler to produce additional debugging information. During the linking phase,
this option add information at the end of the executable bytecode file produced. This infor-
mation is required by the debugger camldebug and also by the catch-all exception handler
from the standard library module printexc.

During the compilation of an implementation file (.ml file), when the -g option is set, the
compiler adds debugging information to the .zo file. It also writes a .zix file that describes
the full interface of the .ml file, that is, all types and values defined in the .ml file, including
those that are local to the .ml file (i.e. not declared in the .mli interface file). Used in
conjunction with the -g option to the toplevel system (chapter 5), the .zix file gives access
to the local values of the module, making it possible to print or “trace” them. The .zix file
is not produced if the implementation file has no explicit interface, since, in this case, the
module has no local values.

Cause the compiler to print the declared types, exceptions, and global variables (with their
inferred types) when compiling an implementation (.ml file). This can be useful to check
the types inferred by the compiler. Also, since the output follows the syntax of module
interfaces, it can help in writing an explicit interface (.mli file) for a file: just redirect the
standard output of the compiler to a .mli file, and edit that file to remove all declarations
of unexported globals.

-1 directory

Add the given directory to the list of directories searched for compiled interface files (.zi) and
compiled object code files (.zo). By default, the current directory is searched first, then the
standard library directory. Directories added with -I are searched after the current directory,
but before the standard library directory. When several directories are added with several -I
options on the command line, these directories are searched from right to left (the rightmost
directory is searched first, the leftmost is searched last). (Directories can also be added to
the search path from inside the programs with the #directory directive; see chapter 3.)

-lang language-code

Translate the compiler messages to the specified language. The language-code is £r for French,
es for Spanish, de for German, ... (See the file camlmsgs.txt in the Caml Light standard
library directory for a list of available languages.) When an unknown language is specified,
or no translation is available for a message, American English is used by default.

-o exec-file

Specify the name of the output file produced by the linker.
Unix: The default output name is a.out, in keeping with the tradition.
PC: The default output name is caml_out.exe.

Mac: The default output name is Caml.Out.

48

-0 module-set
Specify which set of standard modules is to be implicitly “opened” at the beginning of a
compilation. There are three module sets currently available:

cautious
provides the standard operations on integers, floating-point numbers, characters, strings,
arrays, ..., as well as exception handling, basic input/output, etc. Operations from the
cautious set perform range and bound checking on string and array operations, as well
as various sanity checks on their arguments.
fast
provides the same operations as the cautious set, but without sanity checks on their
arguments. Programs compiled with -0 fast are therefore slightly faster, but unsafe.
none
suppresses all automatic opening of modules. Compilation starts in an almost empty

environment. This option is not of general use, except to compile the standard library
itself.

The default compilation mode is -0 cautious. See chapter 13 for a complete listing of the
modules in the cautious and fast sets.

-p Compile and link in profiling mode. See the description of the profiler camlpro in chapter 10.
-v Print the version number of the compiler.
-W Print extra warning messages for the following events:

e A #open directive is useless (no identifier in the opened module is ever referenced).

e A variable name in a pattern matching is capitalized (often corresponds to a misspelled
constant constructor).

Unix: The following environment variable is also consulted:

LANG
When set, control which language is used to print the compiler messages (see the -lang
command-line option).

PC: The following option is also supported:

@response-file
Process the files whose names are listed in file response-file, just as if these names
appeared on the command line. File names in response-file are separated by blanks
(spaces, tabs, newlines). This option allows to overcome silly limitations on the length
of the command line.

The following environment variables are also consulted:

CAMLLIB
Contain the path to the standard library directory.

Chapter 4. Batch compilation (camlc) 49

LANG
When set, control which language is used to print the compiler messages (see the -lang
command-line option).

4.3 Modules and the file system

This short section is intended to clarify the relationship between the names of the modules and the
names of the files that contain their compiled interface and compiled implementation.

The compiler always derives the name of the compiled module by taking the base name of the
source file (.ml or .mli file). That is, it strips the leading directory name, if any, as well as the .ml
or .mli suffix. The produced .zi and .zo files have the same base name as the source file; hence,
the compiled files produced by the compiler always have their base name equal to the name of the
module they describe (for .zi files) or implement (for .zo files).

For compiled interface files (.zi files), this invariant must be preserved at all times, since the
compiler relies on it to load the compiled interface file for the modules that are used from the module
being compiled. Hence, it is risky and generally incorrect to rename .zi files. It is admissible to
move them to another directory, if their base name is preserved, and the correct -I options are
given to the compiler.

Compiled bytecode files (.zo files), on the other hand, can be freely renamed once created.
That’s because 1- .zo files contain the true name of the module they define, so there is no need to
derive that name from the file name; 2- the linker never attempts to find by itself the .zo file that
implements a module of a given name: it relies on the user providing the list of .zo files by hand.

4.4 Common errors
This section describes and explains the most frequently encountered error messages.

Cannot find file filename
The named file could not be found in the current directory, nor in the directories of the search
path. The filename is either a compiled interface file (.zi file), or a compiled bytecode file
(.zo file). If filename has the format mod.z1i, this means you are trying to compile a file that
references identifiers from module mod, but you have not yet compiled an interface for module
mod. Fix: compile mod.mli or mod.ml first, to create the compiled interface mod.z1i.

If filename has the format mod.zo, this means you are trying to link a bytecode object file
that does not exist yet. Fix: compile mod.ml first.

If your program spans several directories, this error can also appear because you haven’t
specified the directories to look into. Fix: add the correct -I options to the command line.

Corrupted compiled interface file filename
The compiler produces this error when it tries to read a compiled interface file (.z1i file) that
has the wrong structure. This means something went wrong when this .zi file was written:
the disk was full, the compiler was interrupted in the middle of the file creation, and so on.
This error can also appear if a .zi file is modified after its creation by the compiler. Fix:
remove the corrupted .zi file, and rebuild it.

50

This expression has type t;, but is used with type

This is by far the most common type error in programs. Type #; is the type inferred for the
expression (the part of the program that is displayed in the error message), by looking at the
expression itself. Type {5 is the type expected by the context of the expression; it is deduced
by looking at how the value of this expression is used in the rest of the program. If the two
types t; and ty are not compatible, then the error above is produced.

In some cases, it is hard to understand why the two types #; and & are incompatible. For
instance, the compiler can report that “expression of type foo cannot be used with type foo”,
and it really seems that the two types foo are compatible. This is not always true. Two
type constructors can have the same name, but actually represent different types. This can
happen if a type constructor is redefined. Example:

type foo = A | B;;

let £ = function A -> 0 | B -> 1;;
type foo = C | D;;

£ C;;

This result in the error message “expression C of type foo cannot be used with type foo”.

Incompatible types with the same names can also appear when a module is changed and
recompiled, but some of its clients are not recompiled. That’s because type constructors in
.zi files are not represented by their name (that would not suffice to identify them, because
of type redefinitions), but by unique stamps that are assigned when the type declaration is
compiled. Consider the three modules:

modl.ml: type t = A | B;;
let £ = function A -> 0 | B -> 1;;

mod2.ml: let g x = 1 + modl__f(x);;
mod3.ml: mod2__g modl__A;;

Now, assume mod1.ml is changed and recompiled, but mod2.ml is not recompiled. The recom-
pilation of mod1.ml can change the stamp assigned to type t. But the interface mod2.zi will
still use the old stamp for mod1__t in the type of mod2__g. Hence, when compiling mod3.m1,
the system complains that the argument type of mod2__g (that is, mod1__t with the old
stamp) is not compatible with the type of mod1__A (that is, mod1__t with the new stamp).
Fix: use make or a similar tool to ensure that all clients of a module mod are recompiled when
the interface mod.zi changes. To check that the Makefile contains the right dependencies,
remove all .zi files and rebuild the whole program; if no “Cannot find file” error appears,
you’re all set.

The type inferred for name, that is, ¢, contains non-generalizable type variables

Type variables (’a, ’b, ...) in a type ¢ can be in either of two states: generalized (which
means that the type tis valid for all possible instantiations of the variables) and not gener-
alized (which means that the type ¢ is valid only for one instantiation of the variables). In a

Chapter 4. Batch compilation (camlc) 51

let binding let name = expr, the type-checker normally generalizes as many type variables
as possible in the type of expr. However, this leads to unsoundness (a well-typed program
can crash) in conjunction with polymorphic mutable data structures. To avoid this, general-
ization is performed at let bindings only if the bound expression expr belongs to the class of
“syntactic values”, which includes constants, identifiers, functions, tuples of syntactic values,
etc. In all other cases (for instance, expr is a function application), a polymorphic mutable
could have been created and generalization is therefore turned off.

Non-generalized type variables in a type cause no difficulties inside a given compilation unit
(the contents of a .ml file, or an interactive session), but they cannot be allowed in types
written in a .zi compiled interface file, because they could be used inconsistently in other
compilation units. Therefore, the compiler flags an error when a .ml implementation without
a .mli interface defines a global variable name whose type contains non-generalized type
variables. There are two solutions to this problem:

e Add a type constraint or a .mli interface to give a monomorphic type (without type
variables) to name. For instance, instead of writing

let sort_int_list sort (prefix <);;
(* inferred type ’a list -> ’a list, with ’a not generalized *)

write

let sort_int_list (sort (prefix <) : int list -> int list);;

e If you really need name to have a polymorphic type, turn its defining expression into a
function by adding an extra parameter. For instance, instead of writing

let map_length = map vect_length;;
(* inferred type ’a vect list -> int list, with ’a not generalized *)

write

let map_length 1v = map vect_length 1v;;

mod__name is referenced before being defined

This error appears when trying to link an incomplete or incorrectly ordered set of files. Either
you have forgotten to provide an implementation for the module named mod on the command
line (typically, the file named mod.zo, or a library containing that file). Fix: add the missing
.ml or .zo file to the command line. Or, you have provided an implementation for the module
named mod, but it comes too late on the command line: the implementation of mod must
come before all bytecode object files that reference one of the global variables defined in
module mod. Fix: change the order of .m1 and .zo files on the command line.

Of course, you will always encounter this error if you have mutually recursive functions across
modules. That is, function mod1__f calls function mod2__g, and function mod2__g calls
function mod1__f. In this case, no matter what permutations you perform on the command
line, the program will be rejected at link-time. Fixes:

e Put £ and g in the same module.

e Parameterize one function by the other. That is, instead of having

52

modl.ml: let £ x = . mod2__g ... ;;
mod2.ml: let gy = .modli__f ... ;;
define

modl.ml: letfgx=...8 ... 3;;

mod2.ml: let recgy=...modl__f g ... ;;

and link mod1 before mod2.

e Use a reference to hold one of the two functions, as in :

modl.ml: let forward_g =
ref ((fun x -> failwith "forward_g") : <type>);;
let £ x = ... 'forward_g ... ;;
mod2.ml: let gy = ... modl__f M

modl__forward_g := g;;

Unavailable C primitive f
This error appears when trying to link code that calls external functions written in C in
“default runtime” mode. As explained in chapter 12, such code must be linked in “custom
runtime” mode. Fix: add the -custom option, as well as the (native code) libraries and
(native code) object files that implement the required external functions.

Chapter 5

The toplevel system (camllight)

This chapter describes the toplevel system for Caml Light, that permits interactive use of the Caml
Light system, through a read-eval-print loop. In this mode, the system repeatedly reads Caml
Light phrases from the input, then typechecks, compile and evaluate them, then prints the inferred

type and result value, if any. The system prints a # (sharp) prompt before reading each phrase. A

phrase can span several lines. Phrases are delimited by ;; (the final double-semicolon).
From the standpoint of the module system, all phrases entered at toplevel are treated as the
implementation of a module named top. Hence, all toplevel definitions are entered in the module

top.

Unix: The toplevel system is started by the command camllight. Phrases are read on standard

Mac:

input, results are printed on standard output, errors on standard error. End-of-file on
standard input terminates camllight (see also the quit system function below).

The toplevel system does not perform line editing, but it can easily be used in conjunction
with an external line editor such as fep; just run fep -emacs camllight or fep -vi
camllight. Another option is to use camllight under Gnu Emacs, which gives the full
editing power of Emacs (see the directory contrib/camlmode in the distribution).

At any point, the parsing, compilation or evaluation of the current phrase can be inter-
rupted by pressing ctrl-C (or, more precisely, by sending the intr signal to the camllight
process). This goes back to the # prompt.

The toplevel system is presented as the standalone Macintosh application Caml Light. This
application does not require the Macintosh Programmer’s Workshop to run.

Once launched from the Finder, the application opens two windows, “Caml Light Input”
and “Caml Light Output”. Phrases are entered in the “Caml Light Input” window. The
“Caml Light Output” window displays a copy of the input phrases as they are processed by
the Caml Light toplevel, interspersed with the toplevel responses. The “Return” key sends
the contents of the Input window to the Caml Light toplevel. The “Enter” key inserts a
newline without sending the contents of the Input window. (This can be configured with
the “Preferences” menu item.)

The contents of the input window can be edited at all times, with the standard Macintosh
interface. An history of previously entered phrases is maintained, and can be accessed with
the “Previous entry” (command-P) and “Next entry” (command-N) menu items.

53

54

PC:

5.1

To quit the Caml Light application, either select “Quit” from the “Files” menu, or use the
quit function described below.

At any point, the parsing, compilation or evaluation of the current phrase can be interrupted
by pressing “command-period”, or by selecting the item “Interrupt Caml Light” in the
“Caml Light” menu. This goes back to the # prompt.

The toplevel system is presented as a Windows application named Camlwin.exe. It should
be launched from the Windows file manager or program manager.

The “Terminal” windows is split in two panes. Phrases are entered and edited in the
bottom pane. The top pane displays a copy of the input phrases as they are processed by
the Caml Light toplevel, interspersed with the toplevel responses. The “Return” key sends
the contents of the bottom pane to the Caml Light toplevel. The “Enter” key inserts a
newline without sending the contents of the Input window. (This can be configured with
the “Preferences” menu item.)

The contents of the input window can be edited at all times, with the standard Windows
interface. An history of previously entered phrases is maintained and displayed in a separate
window.

To quit the Camlwin application, either select “Quit” from the “File” menu, or use the quit
function described below.

At any point, the parsing, compilation or evaluation of the current phrase can be interrupted
by selecting the “Interrupt Caml Light” menu item. This goes back to the # prompt.

A text-only version of the toplevel system is available under the name caml.exe. It runs
under MSDOS as well as under Windows in a DOS window. No editing facilities are
provided.

Options

The following command-line options are recognized by the caml or camllight commands.

)

Start the toplevel system in debugging mode. This mode gives access to values and types
that are local to a module, that is, not exported by the interface of the module. When
debugging mode is off, these local objects are not accessible (attempts to access them produce
an “Unbound identifier” error). When debugging mode is on, these objects become visible,
just like the objects that are exported in the module interface. In particular, values of abstract
types are printed using their concrete representations, and the functions local to a module
can be “traced” (see the trace function in section 5.2). This applies only to the modules that
have been compiled in debugging mode (either by the batch compiler with the -g option, or
by the toplevel system in debugging mode), that is, those modules that have an associated
.zix file.

-1 directory

Add the given directory to the list of directories searched for compiled interface files (.zi) and
compiled object code files (.zo). By default, the current directory is searched first, then the
standard library directory. Directories added with -I are searched after the current directory,

Chapter 5. The toplevel system (camllight) 55

but before the standard library directory. When several directories are added with several -I
options on the command line, these directories are searched from right to left (the rightmost
directory is searched first, the leftmost is searched last). Directories can also be added to the
search path once the toplevel is running with the #directory directive; see chapter 3.

-lang language-code
Translate the toplevel messages to the specified language. The language-code is £r for French,
es for Spanish, de for German, ... (See the file camlmsgs.txt in the Caml Light standard
library directory for a list of available languages.) When an unknown language is specified,
or no translation is available for a message, American English is used by default.

-0 module-set
Specify which set of standard modules is to be implicitly “opened” when the toplevel starts.
There are three module sets currently available:

cautious
provides the standard operations on integers, floating-point numbers, characters, strings,
arrays, ..., as well as exception handling, basic input/output, ...Operations from the
cautious set perform range and bound checking on string and vector operations, as well
as various sanity checks on their arguments.

fast
provides the same operations as the cautious set, but without sanity checks on their
arguments. Programs compiled with -0 fast are therefore slightly faster, but unsafe.

none
suppresses all automatic opening of modules. Compilation starts in an almost empty
environment. This option is not of general use.

The default compilation mode is -0 cautious. See chapter 13 for a complete listing of the
modules in the cautious and fast sets.

Unix: The following environment variables are also consulted:

LANG
When set, control which language is used to print the compiler messages (see the -lang
command-line option).

LC_CTYPE
If set to iso_8859_1, accented characters (from the ISO Latin-1 character set) in string
and character literals are printed as is; otherwise, they are printed as decimal escape

sequences (\ddd).

5.2 Toplevel control functions

The standard library module toplevel, opened by default when the toplevel system is launched,
provides a number of functions that control the toplevel behavior, load files in memory, and trace
program execution.

56

value quit : unit -> unit
Exit the toplevel loop and terminate the camllight command.
value include : string -> unit

Read, compile and execute source phrases from the given file. The .ml extension is
automatically added to the file name, if not present. This is textual inclusion: phrases are
processed just as if they were typed on standard input. In particular, global identifiers
defined by these phrases are entered in the module named top, not in a new module.

value load : string -> unit

Load in memory the source code for a module implementation. Read, compile and execute
source phrases from the given file. The .ml extension is automatically added if not present.
The load function behaves much like include, except that a new module is created, with
name the base name of the source file name. Global identifiers defined in the source file are
entered in this module, instead of the top module as in the case of include. For instance,
assuming file foo.ml contains the single phrase

let bar = 1;;

executing load "foo" defines the identifier foo__bar with value 1. Caveat: the loaded
module is not automatically opened: the identifier bar does not automatically complete to
foo__bar. To achieve this, you must execute the directive #open "foo" afterwards.

value compile : string -> unit

Compile the source code for a module implementation or interface (.ml or .mli file).
Compilation proceeds as with the batch compiler, and produces the same results as

camlc -c. If the toplevel system is in debugging mode (option -g or function debug_mode
below), the compilation is also performed in debugging mode, as when giving the -g option
to the batch compiler. The result of the compilation is left in files (.zo, .zi, .zix). The
compiled code is not loaded in memory. Use load_object to load a .zo file produced by
compile.

value load_object : string -> unit

Load in memory the compiled bytecode contained in the given file. The .zo extension is
automatically added to the file name, if not present. The bytecode file has been produced
either by the standalone compiler camlc or by the compile function. Global identifiers
defined in the file being loaded are entered in their own module, not in the top module, just
as with the load function.

value trace : string -> unit

After the execution of trace "foo", all calls to the global function named foo will be
“traced”. That is, the argument and the result are displayed for each call, as well as the
exceptions escaping out of foo, either raised by foo itself, or raised by one of the functions
called from foo. If foo is a curried function, each argument is printed as it is passed to the
function. Only functions implemented in ML can be traced; system primitives such as
string_length or user-supplied C functions cannot.

Chapter 5. The toplevel system (camllight) 57

value untrace : string -> unit
Executing untrace "foo" stops all tracing over the global function named foo.
value verbose_mode: bool -> unit

verbose_mode true causes the compile function to print the inferred types and other
information. verbose_mode false reverts to the default silent behavior.

value install_printer : string -> unit

install_printer "printername" registers the function named printername as a printer
for objects whose types match its argument type. That is, the toplevel loop will call
printername when it has such an object to print. The printing function printername must
use the format library module to produce its output, otherwise the output of printername
will not be correctly located in the values printed by the toplevel loop.

value remove_printer : string -> unit

remove_printer "printername" removes the function named printername from the table
of toplevel printers.

value set_print_depth : int -> unit

set_print_depth n limits the printing of values to a maximal depth of n. The parts of
values whose depth exceeds n are printed as ... (ellipsis).

value set_print_length : int -> unit

set_print_length n limits the number of value nodes printed to at most n. Remaining
parts of values are printed as ... (ellipsis).

value debug_mode: bool -> unit

Set whether extended module interfaces must be used debug_mode true or not

debug_mode false. Iixtended module interfaces are .zix files that describe the actual
implementation of a module, including private types and variables. They are generated
when compiling with camlc -g, or with the compile function above when debug_mode is
true. When debug_mode is true, toplevel phrases can refer to private types and variables of
modules, and private functions can be traced with trace. Setting debug_mode true is
equivalent to starting the toplevel with the -g option.

value cd : string -> unit
Change the current working directory.
value directory : string -> unit

Add the given directory to the search path for files. Same behavior as the -I option or the
#directory directive.

58

5.3 The toplevel and the module system

Toplevel phrases can refer to identifiers defined in modules other than the top module with
the same mechanisms as for separately compiled modules: either by using qualified identifiers
(modulename__localname), or by using unqualified identifiers that are automatically completed
by searching the list of opened modules. (See section 2.2.) The modules opened at startup are
given in the documentation for the standard library. Other modules can be opened with the #open
directive.

However, before referencing a global variable from a module other than the top module, a
definition of that global variable must have been entered in memory. At start-up, the toplevel
system contains the definitions for all the identifiers in the standard library. The definitions for
user modules can be entered with the load or load_object functions described above. Referencing
a global variable for which no definition has been provided by load or load_object results in
the error “Identifier foo__bar is referenced before being defined”. Since thisis a tricky
point, let us consider some examples.

1. The library function sub_string is defined in module string. This module is part of the
standard library, and is one of the modules automatically opened at start-up. Hence, both
phrases

sub_string "qwerty" 1 3;;
string__sub_string "qwerty" 1 3;;

are correct, without having to use #open, load, or load_object.

2. The library function printf is defined in module printf. This module is part of the standard
library, but it is not automatically opened at start-up. Hence, the phrase

printf__printf "¥s %s" "hello'" "world";;
is correctly executed, while
printf "%s %s" "hello" "world";;

causes the error “Variable printf is unbound”, since none of the currently opened mod-
ules define a global with local name printf. However,

#open "printf";;
printf "%s %s" "hello" "world";;

executes correctly.

3. Assume the file foo.ml resides in the current directory, and contains the single phrase

let x = 1;;

Chapter 5. The toplevel system (camllight) 59

When the toplevel starts, references to x will cause the error “Variable x is unbound”.
References to foo__x will cause the error “Cannot find file foo.zi”, since the typechecker
is attempting to load the compiled interface for module foo in order to find the type of x. To
load in memory the module foo, just do:

load "foo";;

Then, references to foo__x typecheck and evaluate correctly. Since load does not open the
module it loads, references to x will still fail with the error “Variable x is unbound”. You
will have to do

#open "foo";;

explicitly, for x to complete automatically into foo__x.

4. Finally, assume the file foo.ml above has been previously compiled with the camlc -¢ com-
mand. The current directory therefore contains a compiled interface foo.zi, claiming that
foo__x is a global variable with type int, and a compiled bytecode file foo.zo, defining
foo__x to have the value 1. When the toplevel starts, references to foo__x will cause the
error “foo__x is referenced before being defined”. In contrast with case 3 above, the
typechecker has succeeded in finding the compiled interface for module foo. But execution
cannot proceed, because no definition for foo__x has been entered in memory. To do so,
execute:

load_object "foo";;

This loads the file foo.zo in memory, therefore defining foo__x. Then, references to foo__x
evaluate correctly. As in case 3 above, references to x still fail, because load_object does
not open the module it loads. Again, you will have to do

#open "foo";;

explicitly, for x to complete automatically into foo__x.

5.4 Common errors
This section describes and explains the most frequently encountered error messages.

Cannot find file filename
The named file could not be found in the current directory, nor in the directories of the search
path.

If filename has the format mod.zi, this means the current phrase references identifiers from
module mod, but you have not yet compiled an interface for module mod. Fix: either load
the file mod.ml, which will also create in memory the compiled interface for module mod; or
use camlc to compile mod.mli or mod.ml, creating the compiled interface mod.zi, before
you start the toplevel.

60

If filename has the format mod.zo, this means you are trying to load with load_object a
bytecode object file that does not exist yet. Fix: compile mod.ml with camlc before you
start the toplevel. Or, use load instead of load_object to load the source code instead of a
compiled object file.

If filename has the format mod.ml, this means load or include could not find the specified
source file. Fix: check the spelling of the file name, or write it if it does not exist.

mod__name is referenced before being defined
You have neglected to load in memory an implementation for a module, with load or
load_object. This is explained in full detail in section 5.3 above.

Corrupted compiled interface file filename
See section 4.4.

Expression of type #; cannot be used with type &,
See section 4.4.

The type inferred for the value name, that is, ¢, contains type variables that cannot be generali:

See section 4.4.

5.5 Building custom toplevel systems: camlmktop
The camlmktop command builds Caml Light toplevels that contain user code preloaded at start-up.
Mac: This command is not available in the Macintosh version.

The camlmktop command takes as argument a set of .zo files, and links them with the object
files that implement the Caml Light toplevel. The typical use is:

camlmktop -o mytoplevel foo.zo bar.zo gee.zo

This creates the bytecode file mytoplevel, containing the Caml Light toplevel system, plus the
code from the three .zo files. To run this toplevel, give it as argument to the camllight command:

camllight mytoplevel

This starts a regular toplevel loop, except that the code from foo.zo, bar.zo and gee.zo is already
loaded in memory, just as if you had typed:

load_object "foo";;
load_object "bar";;
load_object ''gee';;

on entrance to the toplevel. The modules foo, bar and gee are not opened, though; you still have
to do

#open "foo";;

yourself, if this is what you wish.

Chapter 5. The toplevel system (camllight) 61

5.6 Options

The following command-line options are recognized by camlmktop.

-ccopt option
Pass the given option to the C compiler and linker, when linking in “custom runtime” mode.
See the corresponding option for camlc, in chapter 4.

-custom
Link in “custom runtime” mode. See the corresponding option for camlc, in chapter 4.

-g Add debugging information to the toplevel file produced, which can then be debugged with
camldebug (chapter 9).

-1 directory
Add the given directory to the list of directories searched for compiled object code files (.zo).

-o exec-file
Specify the name of the toplevel file produced by the linker.

Unix: The default is camltop.out.

PC: The default is camltop.exe. The name must have .exe extension.

62

Chapter 6

The runtime system (camlrun)

The camlrun command executes bytecode files produced by the linking phase of the camlc com-
mand.

Mac: This command is a MPW tool, not a standalone Macintosh application.

6.1 Overview

The camlrun command comprises three main parts: the bytecode interpreter, that actually executes
bytecode files; the memory allocator and garbage collector; and a set of C functions that implement
primitive operations such as input/output.

The usage for camlrun is:

camlrun options bytecode-executable arg, ... arg,

The first non-option argument is taken to be the name of the file containing the executable bytecode.
(That file is searched in the executable path as well as in the current directory.) The remaining
arguments are passed to the Caml Light program, in the string array sys__command_line. Element
0 of this array is the name of the bytecode executable file; elements 1 to n are the remaining
arguments arg; to arg,.

As mentioned in chapter 4, in most cases, the bytecode executable files produced by the camlc
command are self-executable, and manage to launch the camlrun command on themselves auto-
matically. That is, assuming caml.out is a bytecode executable file,

caml.out arg; ... arg,
works exactly as
camlrun caml.out arg, ... arg,

Notice that it is not possible to pass options to camlrun when invoking caml.out directly.

63

64

6.2 Options
The following command-line option is recognized by camlrun.

-V Print out the camlrun version number. Exit immediately without executing any byte-code

file.
The following environment variable are also consulted:

CAMLRUNPARAM
Set the garbage collection parameters. This variable must be a sequence of parameter spec-
ifications. A parameter specification is an option letter followed by an = sign and a decimal
number. There are four options, corresponding to the four fields of the control record
documented in section 14.5:

s (minor_heap_size) Size of the minor heap.

i (major_heap_increment) Minimum size increment for the major heap.
(space_overhead) The major GC speed setting.

v (verbose) Whether to print GC messages or not. 0 is false; 1 is true; other values may

give unexpected results.

For example, under csh the command
setenv CAMLRUNPARAM ’s=250000 v=1’

tells a subsequent camlrun to set its initial minor heap size to about 1 megabyte (on a 32-bit
machine) and to print its GC messages.

PATH
List of directories searched to find the bytecode executable file.

6.3 Common errors
This section describes and explains the most frequently encountered error messages.

filename: no such file or directory
If filename is the name of a self-executable bytecode file, this means that either that file does
not exist, or that it failed to run the camlrun bytecode interpreter on itself. The second
possibility indicates that Caml Light has not been properly installed on your system.

Cannot exec camlrun
(When launching a self-executable bytecode file.) The camlrun command could not be found
in the executable path. Check that Caml Light has been properly installed on your system.

Cannot find the bytecode file
The file that camlrun is trying to execute (e.g. the file given as first non-option argument to
camlrun) either does not exist, or is not a valid executable bytecode file.

Chapter 6. The runtime system (camlrun) 65

Truncated bytecode file
The file that camlrun is trying to execute is not a valid executable bytecode file. Probably it
has been truncated or mangled since created. Erase and rebuild it.

Uncaught exception
The program being executed contains a “stray” exception. That is, it raises an exception at
some point, and this exception is never caught. This causes immediate termination of the
program. If you wish to know which exception thus escapes, use the printexc__f function
from the standard library (and don’t forget to link your program with the -g option).

Out of memory

The program being executed requires more memory than available. Either the program builds
too large data structures; or the program contains too many nested function calls, and the
stack overflows. In some cases, your program is perfectly correct, it just requires more memory
than your machine provides. (This happens quite frequently on small microcomputers, but
is unlikely on Unix machines.) In other cases, the “out of memory” message reveals an error
in your program: non-terminating recursive function, allocation of an excessively large array
or string, attempts to build an infinite list or other data structure, ...

To help you diagnose this error, run your program with the -v option to camlrun. If it
displays lots of “Growing stack...” messages, this is probably a looping recursive function.
If it displays lots of “Growing heap...”
probably an attempt to construct a data structure with too many (infinitely many?) cells.
If it displays few “Growing heap...” messages, but with a huge increment in the heap size,
this is probably an attempt to build an excessively large array or string.

messages, with the heap size growing slowly, this is

66

Chapter 7

The librarian (camllibr)

Mac: This command is a MPW tool, not a standalone Macintosh application.

7.1 Overview

The camllibr program packs in one single file a set of bytecode object files (. zo files). The resulting
file is also a bytecode object file and also has the .zo extension. It can be passed to the link phase
of the camlc compiler in replacement of the original set of bytecode object files. That is, after
running

camllibr -o library.zo modl.zo mod2.zo mod3.zi mod4.zo
all calls to the linker with the form

camlc ... library.zo ...
are exactly equivalent to

camlc ... modl.zo mod2.zo mod3.zi mod4.zo ...

The typical use of camllibr is to build a library composed of several modules: this way, users
of the library have only one .zo file to specify on the command line to camlc, instead of a bunch
of .zo files, one per module contained in the library.

The linking phase of camlc is clever enough to discard the code corresponding to useless phrases:
in particular, definitions for global variables that are never used after their definitions. Hence, there
is no problem with putting many modules, even rarely used ones, into one single library: this will
not result in bigger executables.

The usage for camllibr is:

camllibr options file;.zo ... file, .zo

where file;.zo through file, .zo are the object files to pack together. The order in which these file
names are presented on the command line is relevant: the compiled phrases contained in the library
will be executed in that order. (Remember that it is a link-time error to refer to a global variable
that has not yet been defined.)

67

68

7.2 Options
The following command-line options are recognized by camllibr.

-1 directory
Add the given directory to the list of directories searched for the input .zo files. By default,
the current directory is searched first, then the standard library directory. Directories added
with -I are searched after the current directory, but before the standard library directory.
When several directories are added with several -I options on the command line, these direc-
tories are searched from right to left (the rightmost directory is searched first, the leftmost is
searched last).

-o library-name
Specify the name of the output file. The default is 1ibrary.zo.

PC: The following option is also supported:

@response-file
Process the files whose names are listed in file response-file, just as if these names
appeared on the command line. File names in response-file are separated by blanks
(spaces, tabs, newlines). This option allows to overcome silly limitations on the length
of the command line.

7.3 Turning code into a library

To develop a library, it is usually more convenient to split it into several modules, that reflect the
internal structure of the library. From the standpoint of the library users, however, it is preferable
to view the library as a single module, with only one interface file (.zi file) and one implementation
file (.zo file): linking is easier, and there is no need to put a bunch of #open directives, nor to have
to remember the internal structure of the library.

The camllibr command allows having a single .zo file for the whole library. Here is how the
Caml Light module system can be used (some say “abused”) to have a single .zi file for the whole
library. To be more concrete, assume that the library comprises three modules, windows, images
and buttons. The idea is to add a fourth module, mylib, that re-exports the public parts of
windows, images and buttons. The interface mylib.mli contains definitions for those types that
are public (exported with their definitions), declarations for those types that are abstract (exported
without their definitions), and declarations for the functions that can be called from the user’s code:

(* File mylib.mli *)
type ’a option = None | Some of ’a;; (* a public type *)
type window and image and button;; (* three abstract types *)
value new_window : int -> int -> window (* the public functions *)
and draw_image : image -> window -> int -> int -> unit
and ...

The implementation of the mylib module simply equates the abstract types and the public functions
to the corresponding types and functions in the modules windows, images and buttons:

Chapter 7. The librarian (camllibr) 69

(* File mylib.ml *)

type window == windows__win
and image == images__pixmap
and button == buttons__t;;

let new_window = windows__open_window

and draw_

and ...

image = images__draw

The files windows .m1, images.ml and buttons.ml can open the mylib module, to access the public
types defined in the interface mylib.mli, such as the option type. Of course, these modules must
not reference the abstract types nor the public functions, to avoid circularities.

Types such as windows__win in the example above can be exported by the windows module
either abstractly or concretely (with their definition). Often, it is necessary to export them con-
cretely, because the other modules in the library (images, buttons) need to build or destructure
directly values of that type. Even if windows__win is exported concretely by the windows module,
that type will remain abstract to the library user, since it is abstracted by the public interface

The actual building of the library mylib proceeds as follows:

mylib.

camlc -c
camlc -c
camlc -c
camlc -c
mv mylib.
camllibr

mylib.mli # create mylib.zi
windows.mli windows.ml images.mli images.ml

buttons.mli buttons.ml

mylib.ml # create mylib.zo

zo tmplib.zo # renaming to avoid overwriting mylib.zo
-o mylib.zo windows.zo images.zo buttons.zo tmplib.zo

Then, copy mylib.zi and mylib.zo to a place accessible to the library users. The other .zi and
.zo files need not be copied.

70

Chapter 8

Lexer and parser generators
(camllex, camlyacc)

This chapter describes two program generators: camllex, that produces a lexical analyzer from a
set of regular expressions with associated semantic actions, and camlyacc, that produces a parser
from a grammar with associated semantic actions.

These program generators are very close to the well-known lex and yacc commands that can
be found in most C programming environments. This chapter assumes a working knowledge of lex
and yacc: while it describes the input syntax for camllex and camlyacc and the main differences
with 1lex and yacc, it does not explain the basics of writing a lexer or parser description in lex and
yacc. Readers unfamiliar with lex and yacc are referred to “Compilers: principles, techniques,
and tools” by Aho, Sethi and Ullman (Addison-Wesley, 1986), “Compiler design in C” by Holub
(Prentice-Hall, 1990), or “Lex & Yacc”, by Mason and Brown (O’Reilly, 1990).

Streams and stream matching, as described in section 3.1, provide an alternative way to write
lexers and parsers. The stream matching technique is more powerful than the combination of
camllex and camlyacc in some cases (higher-order parsers), but less powerful in other cases (prece-
dences). Choose whichever approach is more adapted to your parsing problem.

Mac: These commands are MPW tool, not standalone Macintosh applications.

8.1 Overview of camllex

The camllex command produces a lexical analyzer from a set of regular expressions with attached
semantic actions, in the style of 1lex. Assuming the input file is lexer.m11, executing

camllex lezer.mll

produces Caml Light code for a lexical analyzer in file lexer.ml. This file defines one lexing func-
tion per entry point in the lexer definition. These functions have the same names as the entry
points. Lexing functions take as argument a lexer buffer, and return the semantic attribute of the
corresponding entry point.

Lexer buffers are an abstract data type implemented in the standard library module lexing.
The functions create_lexer_channel, create_lexer_string and create_lexer from module

71

72

lexing create lexer buffers that read from an input channel, a character string, or any reading
function, respectively. (See the description of module lexing in chapter 13.)

When used in conjunction with a parser generated by camlyacc, the semantic actions compute
a value belonging to the type token defined by the generated parsing module. (See the description
of camlyacc below.)

8.2 Syntax of lexer definitions

The format of lexer definitions is as follows:

{ header }
rule entrypoint =
parse regexp { action }

...
| regexp { action }
and entrypoint =

parse ...
and ...

)

Comments are delimited by (* and *), as in Caml Light.

8.2.1 Header

The header section is arbitrary Caml Light text enclosed in curly braces. It can be omitted. If it is
present, the enclosed text is copied as is at the beginning of the output file. Typically, the header
section contains the #open directives required by the actions, and possibly some auxiliary functions
used in the actions.

8.2.2 Entry points

The names of the entry points must be valid Caml Light identifiers.

8.2.3 Regular expressions
The regular expressions are in the style of lex, with a more Caml-like syntax.

¢ char ¢

A character constant, with the same syntax as Caml Light character constants. Match the
denoted character.

Match any character.

eof Match the end of the lexer input.

" string "
A string constant, with the same syntax as Caml Light string constants. Match the corre-
sponding sequence of characters.

Chapter 8. Lexer and parser generators (camllex, camlyacc) 73

[character-set]
Match any single character belonging to the given character set. Valid character sets are:
single character constants ¢ ¢ ¢; ranges of characters ¢ ¢; ¢ = ¢ ¢ ¢ (all characters between
¢1 and cg, inclusive); and the union of two or more character sets, denoted by concatenation.

¢

[= character-set]
Match any single character not belonging to the given character set.

regexp
(Repetition.) Match the concatenation of zero or more strings that match regexp.

regexp +
(Strict repetition.) Match the concatenation of one or more strings that match regexp.

regexp 7
(Option.) Match either the empty string, or a string matching regexp.

regexpy | regexp,
(Alternative.) Match any string that matches either regexp, or regexp,

regexp, regexpy
(Concatenation.) Match the concatenation of two strings, the first matching regexp,, the
second matching regexp,.

(regexp)
Match the same strings as regexp.

Concerning the precedences of operators, * and + have highest precedence, followed by 7, then
concatenation, then | (alternation).

8.2.4 Actions

The actions are arbitrary Caml Light expressions. They are evaluated in a context where the
identifier 1lexbuf is bound to the current lexer buffer. Some typical uses for Lexbuf, in conjunction
with the operations on lexer buffers provided by the lexing standard library module, are listed
below.

lexing__get_lexeme lexbuf
Return the matched string.

lexing__get_lexeme_char lexbuf n
Return the n'Pcharacter in the matched string. The first character corresponds to n = 0.

lexing__get_lexeme_start lexbuf
Return the absolute position in the input text of the beginning of the matched string. The
first character read from the input text has position 0.

lexing__get_lexeme_end lexbuf
Return the absolute position in the input text of the end of the matched string. The first
character read from the input text has position 0.

74

entrypoint lexbuf
(Where entrypointis the name of another entry point in the same lexer definition.) Recursively
call the lexer on the given entry point. Useful for lexing nested comments, for example.

8.3 Overview of camlyacc

The camlyacc command produces a parser from a context-free grammar specification with attached
semantic actions, in the style of yacc. Assuming the input file is grammar.mly, executing

camlyacc options grammar.mly

produces Caml Light code for a parser in the file grammar.ml, and its interface in file grammar.mli.

The generated module defines one parsing function per entry point in the grammar. These
functions have the same names as the entry points. Parsing functions take as arguments a lexical
analyzer (a function from lexer buffers to tokens) and a lexer buffer, and return the semantic
attribute of the corresponding entry point. Lexical analyzer functions are usually generated from a
lexer specification by the camllex program. Lexer buffers are an abstract data type implemented
in the standard library module lexing. Tokens are values from the concrete type token, defined
in the interface file grammar.mli produced by camlyacc.

8.4 Syntax of grammar definitions

Grammar definitions have the following format:

i

header

3
declarations
i
rules
i

trailer
Comments are enclosed between /* and */ (asin C) in the “declarations” and “rules” sections,
and between (% and *) (as in Caml) in the “header” and “trailer” sections.
8.4.1 Header and trailer

The header and the trailer sections are Caml Light code that is copied as is into file grammar.ml.
Both sections are optional. The header goes at the beginning of the output file; it usually contains
#open directives required by the semantic actions of the rules. The trailer goes at the end of the
output file.

8.4.2 Declarations

Declarations are given one per line. They all start with a % sign.

Chapter 8. Lexer and parser generators (camllex, camlyacc) 75

htoken symbol...symbol
Declare the given symbols as tokens (terminal symbols). These symbols are added as constant
constructors for the token concrete type.

htoken < type > symbol .. .symbol

Declare the given symbols as tokens with an attached attribute of the given type. These sym-
bols are added as constructors with arguments of the given type for the token concrete type.
The type part is an arbitrary Caml Light type expression, except that all type constructor
names must be fully qualified (e.g. modname__typename) for all types except standard built-in
types, even if the proper #open directives (e.g. #open "modname") were given in the header
section. That’s because the header is copied only to the .ml output file, but not to the .mli
output file, while the type part of a itoken declaration is copied to both.

hstart symbol...symbol
Declare the given symbols as entry points for the grammar. For each entry point, a parsing
function with the same name is defined in the output module. Non-terminals that are not
declared as entry points have no such parsing function. Start symbols must be given a type
with the % type directive below.

htype < type > symbol .. .symbol

Specify the type of the semantic attributes for the given symbols. This is mandatory for start
symbols only. Other nonterminal symbols need not be given types by hand: these types will
be inferred when running the output files through the Caml Light compiler (unless the -s
option is in effect). The type part is an arbitrary Caml Light type expression, except that
all type constructor names must be fully qualified (e.g. modname__typename) for all types
except standard built-in types, even if the proper #open directives (e.g. #open "modname")
were given in the header section. That’s because the header is copied only to the .ml output
file, but not to the .mli output file, while the type part of a %token declaration is copied to
both.

hleft symbol...symbol

hright symbol...symbol

hnonassoc symbol . ..symbol

Associate precedences and associativities to the given symbols. All symbols on the same line
are given the same precedence. They have higher precedence than symbols declared before
in a §left, right or Jnonassoc line. They have lower precedence than symbols declared
after in a }left, %right or Jnonassoc line. The symbols are declared to associate to the
left (%1left), to the right (%right), or to be non-associative (¥%nonassoc). The symbols are
usually tokens. They can also be dummy nonterminals, for use with the %prec directive inside
the rules.

76

8.4.3 Rules

The syntax for rules is as usual:

nonterminal :
symbol ... symbol { semantic-action }
|
| symbol ... symbol { semantic-action }

b

Rules can also contain the Yprec symbol directive in the right-hand side part, to override the
default precedence and associativity of the rule with the precedence and associativity of the given
symbol.

Semantic actions are arbitrary Caml Light expressions, that are evaluated to produce the se-
mantic attribute attached to the defined nonterminal. The semantic actions can access the semantic
attributes of the symbols in the right-hand side of the rule with the $ notation: $1 is the attribute
for the first (leftmost) symbol, $2 is the attribute for the second symbol, etc.

Actions occurring in the middle of rules are not supported. Error recovery is not implemented.

8.5 Options
The camlyacc command recognizes the following options:

-v Generate a description of the parsing tables and a report on conflicts resulting from ambigu-
ities in the grammar. The description is put in file grammar.output.

-s Generate a grammar.ml file with smaller phrases. Semantic actions are presented in the
grammar.ml output file as one large vector of functions. By default, this vector is built by
a single phrase. When the grammar is large, or contains complicated semantic actions, the
resulting phrase may require large amounts of memory to be compiled by Caml Light. With
the -s option, the vector of actions is constructed incrementally, one phrase per action. This
lowers the memory requirements for the compiler, but it is no longer possible to infer the
types of nonterminal symbols: typechecking is turned off on symbols that do not have a type
specified by a %type directive.

-bprefix
Name the output files prefiz.ml, prefiz.mli, prefiz.output, instead of the default naming
convention.

8.6 A complete example

The all-time favorite: a desk calculator. This program reads arithmetic expressions on standard
input, one per line, and prints their values. Here is the grammar definition:

/* File parser.mly */
%token <int> INT
%token PLUS MINUS TIMES DIV

Chapter 8. Lexer and parser generators (camllex, camlyacc)

htoken LPAREN RPAREN

htoken EOL
%left PLUS MINUS
%left TIMES DIV
hnonassoc UMINUS
hstart Main
%type <int> Main
hh
Main:

Expr EOL
Expr:

INT

LPAREN Expr RPAREN

I

| Expr PLUS Expr
| Expr MINUS Expr
| Expr TIMES Expr
| Expr DIV Expr

I

MINUS Expr %prec UMINUS

b

/* lowest precedence */
/* medium precedence */
/* highest precedence */
/* the entry point */

{813}

{$1 %
{$27%

{ %1+ %31}
{$1-$3 %}
{ %1 % $3 }
{$17/ %3}
{-%27%

Here is the definition for the corresponding lexer:

(* File lexer.mll *

{

#open 'parser';;

exception Eof;;

b

rule Token = parse
[(< (\t(]
[\n‘]
[coc_cgc:|+
(+(

¢ ¢

(/(
(((
()(
eof

I
I
I
I
(I
I
I
I
I

)

)

N N e

(* The type token is defined in parser.mli *)

Token lexbuf } (* skip blanks *)

EOL }

INT(int_of_string (get_lexeme lexbuf)) }
PLUS }

MINUS }

TIMES }

DIV }

LPAREN }

RPAREN }

raise Eof }

Here is the main program, that combines the parser with the lexer:

(% File calc.ml *)
try

let lexbuf = lexing__create_lexer_channel std_in in

while true do

7

78

let result = parser__Main lexer__Token lexbuf in
print_int result; print_newline(); flush std_out
done
with Eof ->
O

To compile everything, execute:

camllex lexer.mll # generates lexer.ml

camlyacc parser.mly # generates parser.ml and parser.mli
camlc -c parser.mli

camlc -c lexer.ml

camlc -c parser.ml

camlc -c calc.ml

camlc -o calc lexer.zo parser.zo calc.zo

Chapter 9

The debugger (camldebug)

This chapter describes the Caml Light source-level replay debugger camldebug.

Unix: The debugger resides in the directory contrib/debugger in the distribution. It requires a
Unix system that provides BSD sockets.

Mac: The debugger is not available.

PC: The debugger is not available.

9.1 Compiling for debugging

Before the debugger can be used, the program must be compiled and linked with the -g option: all
.zo files that are part of the program should have been created with camlc -g, and they must be
linked together with camlc -g.

Compiling with -g entails no penalty on the running time of programs: .zo files and bytecode
executable files are bigger and take slightly longer to produce, but the executable files run at exactly
the same speed as if they had been compiled without -g. It is therefore perfectly acceptable to
compile always in -g mode.

9.2 Invocation

9.2.1 Starting the debugger

The Caml Light debugger is invoked by running the program camldebug with the name of the
bytecode executable file as argument:

camldebug program
The following command-line options are recognized:

-stdlib directory
Look for the standard library files in directory instead of in the default directory.

79

80

-8 socket
Use socket for communicating with the debugged program. See the description of the com-
mand set socket (section 9.8.7) for the format of socket.

-c count
Set the maximum number of checkpoints to count.

-cd directory
Run the debugger program from the working directory directory, instead of the current di-
rectory.

-emacs
Tell the debugger it is executing under Emacs. (See section 11.4 for information on how to
run the debugger under Emacs.)

9.2.2 Quitting the debugger

The command quit exits the debugger. You can also exit the debugger by typing an end-of-file
character (usually ctrl-D).

Typing an interrupt character (usually ctrl-C) will not exit the debugger, but will terminate
the action of any debugger command that is in progress and return to the debugger command level.

9.3 Commands

A debugger command is a single line of input. It starts with a command name, which is followed
by arguments depending on this name. Examples:

run
goto 1000
set arguments argl arg2

A command name can be truncated as long as there is no ambiguity. For instance, go 1000
is understood as goto 1000, since there are no other commands whose name starts with go. For
the most frequently used commands, ambiguous abbreviations are allowed. For instance, r stands
for run even though there are others commands starting with r. You can test the validity of an
abbreviation using the help command.

If the previous command has been successful, a blank line (typing just RET) will repeat it.

9.3.1 Getting help

The Caml Light debugger has a simple on-line help system, which gives a brief description of each
command and variable.

help
Print the list of commands.

help command
Give help about the command command.

Chapter 9. The debugger (camldebug) 81

help set wvariable, help show wvariable
Give help about the variable variable. The list of all debugger variables can be obtained with
help set.

help info topic
Give help about topic. Use help info to get a list of known topics.

9.3.2 Accessing the debugger state

set wvariable value
Set the debugger variable variable to the value value.

show wvariable
Print the value of the debugger variable variable.

info subject
Give information about the given subject. For instance, info breakpoints will print the list
of all breakpoints.

9.4 Executing a program

9.4.1 Events

Events are “interesting” locations in the source code, corresponding to the beginning or end of
evaluation of “interesting” sub-expressions. Events are the unit of single-stepping (stepping goes to
the next or previous event encountered in the program execution). Also, breakpoints can only be
set at events. Thus, events play the role of line numbers in debuggers for conventional languages.

During program execution, a counter is incremented at each event encountered. The value of
this counter is referred as the current time. Thanks to reverse execution, it is possible to jump
back and forth to any time of the execution.

Here is where the debugger events (written o<) are located in the source code:

¢ Following a function application:
(f arg)e«
o After receiving an argument to a function:
fun x< ypa z => > L.
If a curried function is defined by pattern-matching with several cases, events corresponding
to the passing of arguments are displayed on the first case of the function, because pattern-

matching has not yet determined which case to select:

fun patimd pat2m< pat3 -=> pa ...
I

82

e On each case of a pattern-matching definition (function, match...with construct, try...with
construct):

function patl -> < expril

I ...
| patl -> o< exprN

o Between subexpressions of a sequence:
exprl; I expr2; pd ...; < exprl

e In the two branches of a conditional expression:
if cond then < exprl else < expr2

o At the beginning of each iteration of a loop:

while cond do < body done
for i = a to b do pa body done

Exceptions: A function application followed by a function return is replaced by the compiler by
a jump (tail-call optimization). In this case, no event is put after the function application. Also,
no event is put after a function application when the function is a primitive function (written in
C). Finally, several events may correspond to the same location in the compiled program. Then,
the debugger cannot distinguish them, and selects one of the events to associate with the given
code location. The event chosen is a “function application” event if there is one at that location,
or otherwise the event which appears last in the source. This heuristic generally picks the “most
interesting” event associated with the code location.

9.4.2 Starting the debugged program

The debugger starts executing the debugged program only when needed. This allows setting brea-
points or assigning debugger variables before execution starts. There are several ways to start
execution:

run Run the program until a breakpoint is hit, or the program terminates.

step O
Load the program and stop on the first event.

goto time
Load the program and execute it until the given time. Useful when you already know ap-
proximately at what time the problem appears. Also useful to set breakpoints on function
values that have not been computed at time 0 (see section 9.5).

The execution of a program is affected by certain information it receives when the debugger
starts it, such as the command-line arguments to the program and its working directory. The
debugger provides commands to specify this information (set arguments and cd). These com-
mands must be used before program execution starts. If you try to change the arguments or the
working directory after starting your program, the debugger will kill the program (after asking for
confirmation).

Chapter 9. The debugger (camldebug) 83

9.4.3 Running the program

The following commands execute the program forward or backward, starting at the current time.
The execution will stop either when specified by the command or when a breakpoint is encountered.

run FExecute the program forward from current time. Stops at next breakpoint or when the
program terminates.

reverse
Execute the program backward from current time. Mostly useful to go to the last breakpoint
encountered before the current time.

step [count]
Run the program and stop at the next event. With an argument, do it count times.

backstep [count]
Run the program backward and stop at the previous event. With an argument, do it count
times.

next [count]
Run the program and stop at the next event, skipping over function calls. With an argument,
do it count times.

finish
Run the program until the current function returns.

9.4.4 Time travel

You can jump directly to a given time, without stopping on breakpoints, using the goto command.
As you move through the program, the debugger maintains an history of the successive times

you stop at. The last command can be used to revisit these times: each last command moves one

step back through the history. That is useful mainly to undo commands such as step and next.

goto time
Jump to the given time.

last [count]
Go back to the latest time recorded in the execution history. With an argument, do it count
times.

set history size
Set the size of the execution history.

9.4.5 Killing the program

kill
Kill the program being executed. This command is mainly useful if you wish to recompile
the program without leaving the debugger.

84

9.5 Breakpoints

A breakpoint causes the program to stop whenever a certain point in the program is reached. It
can be set in several ways using the break command. Breakpoints are assigned numbers when set,
for further reference.

break
Set a breakpoint at the current position in the program execution. The current position must
be on an event (i.e., neither at the beginning, nor at the end of the program).

break function
Set a breakpoint at the beginning of function. This works only when the functional value of
the identifier function has been computed and assigned to the identifier. Hence this command
cannot be used at the very beginning of the program execution, when all identifiers are still
undefined. Moreover, C functions are not recognized by the debugger.

break @ [module] line
Set a breakpoint in module module (or in the current module if module is not given), at the
first event of line line.

break @ [module] line column
Set a breakpoint in module module (or in the current module if module is not given), at the
event closest to line line, column column.

break @ [module] # character
Set a breakpoint in module module at the event closest to character number character.

break address
Set a breakpoint at the code address address.

delete [breakpoint-numbers]
Delete the specified breakpoints. Without argument, all breakpoints are deleted (after asking
for confirmation).

info breakpoints
Print the list of all breakpoints.

9.6 The call stack

Fach time the program performs a function application, it saves the location of the application (the
return address) in a block of data called a stack frame. The frame also contains the local variables
of the caller function. All the frames are allocated in a region of memory called the call stack. The
command backtrace (or bt) displays parts of the call stack.

At any time, one of the stack frames is “selected” by the debugger; several debugger commands
refer implicitly to the selected frame. In particular, whenever you ask the debugger for the value
of a local variable, the value is found in the selected frame. The commands frame, up and down
select whichever frame you are interested in.

When the program stops, the debugger automatically selects the currently executing frame and
describes it briefly as the frame command does.

Chapter 9. The debugger (camldebug) 85

frame
Describe the currently selected stack frame.

frame frame-number
Select a stack frame by number and describe it. The frame currently executing when the
program stopped has number 0; its caller has number 1; and so on up the call stack.

backtrace [count], bt [count]
Print the call stack. This is useful to see which sequence of function calls led to the currently
executing frame. With a positive argument, print only the innermost count frames. With a
negative argument, print only the outermost -count frames.

up [count]
Select and display the stack frame just “above” the selected frame, that is, the frame that
called the selected frame. An argument says how many frames to go up.

down [count]
Select and display the stack frame just “below” the selected frame, that is, the frame that
was called by the selected frame. An argument says how many frames to go down.

9.7 Examining variable values

The debugger can print the current value of a program variable (either a global variable or a local
variable relative to the selected stack frame). It can also print selected parts of a value by matching
it against a pattern.

Variable names can be specified either fully qualified (module-name__var-name) or unqualified
(var-name). Unqualified names either correspond to local variables, or are completed into fully
qualified global names by looking at a list of “opened” modules that define the same name (see
section 9.8.5 for how to open modules in the debugger.) The completion follows the same rules as
in the Caml Light language (see section 2.2).

print wvariables
Print the values of the given variables.

match variable pattern
Match the value of the given variable against a pattern, and print the values bound to the
identifiers in the pattern.

The syntax of patterns for the match command extends the one for Caml Light patterns:

86

pattern ::= Iident

| -

| (pattern)

| ncconstr pattern

| pattern , pattern {, pattern}

| { label = pattern {; label = pattern} }
| [1

| [pattern {; pattern}]

| pattern :: pattern

| # integer-literal pattern

| > pattern

The pattern ident, where ident is an identifier, matches any value, and binds the identifier to
this value. The pattern # n pattern matches a list, a vector or a tuple whose n-th element matches
pattern. The pattern > pattern matches any constructed value whose argument matches pattern,
regardless of the constructor; it is a shortcut for skipping a constructor.

Example: assuming the value of a is Constr{x = [1;2;3;4]}, the command match a > {x =
2 kF prints k = 3.

set print_depth d
Limit the printing of values to a maximal depth of d.

set print_length [
Limit the printing of values to at most [nodes printed.

9.8 Controlling the debugger

9.8.1 Setting the program name and arguments

set program file
Set the program name to file.

set arguments arguments
Give arguments as command-line arguments for the program.

A shell is used to pass the arguments to the debugged program. You can therefore use wildcards,
shell variables, and file redirections inside the arguments. To debug programs that read from
standard input, it is recommended to redirect their input from a file (using set arguments <
input-file), otherwise input to the program and input to the debugger are not properly separated.

9.8.2 How programs are loaded

The loadingmode variable controls how the program is executed.

set loadingmode direct
The program is run directly by the debugger. This is the default mode.

Chapter 9. The debugger (camldebug) 87

set loadingmode runtime
The debugger execute the Caml Light runtime camlrun on the program. Rarely useful;
moreover it prevents the debugging of programs compiled in “custom runtime” mode.

set loadingmode manual
The user starts manually the program, when asked by the debugger. Allows remote debugging
(see section 9.8.7).

9.8.3 Search path for files

The debugger searches for source files and compiled interface files in a list of directories, the search
path. The search path initially contains the current directory . and the standard library directory.
The directory command adds directories to the path.

Whenever the search path is modified, the debugger will clear any information it may have
cached about the files.

directory directorynames
Add the given directories to the search path. These directories are added at the front, and
will therefore be searched first.

directory
Reset the search path. This requires confirmation.

9.8.4 Working directory

Each time a program is started in the debugger, it inherits its working directory from the current
working directory of the debugger. This working directory is initially whatever it inherited from its
parent process (typically the shell), but you can specify a new working directory in the debugger
with the ¢d command or the -cd command-line option.

cd directory
Set the working directory for camldebug to directory.

pwd Print the working directory for camldebug.

9.8.5 Module management

Like the Caml Light compiler, the debugger maintains a list of opened modules in order to resolves
variable name ambiguities. The opened modules also affect the printing of values: whether fully
qualified names or short names are used for constructors and record labels.

When a program is executed, the debugger automatically opens the modules of the standard
library it uses.

open modules
Open the given modules.

close modules
Close the given modules.

88

info modules
List the modules used by the program, and the open modules.

9.8.6 Turning reverse execution on and off

In some cases, you may want to turn reverse execution off. This speeds up the program execution,
and is also sometimes useful for interactive programs.

Normally, the debugger takes checkpoints of the program state from time to time. That is, it
makes a copy of the current state of the program (using the Unix system call fork). If the variable
checkpoints is set to off, the debugger will not take any checkpoints.

set checkpoints on/off
Select whether the debugger makes checkpoints or not.

9.8.7 Communication between the debugger and the program

The debugger communicate with the program being debugged through a Unix socket. You may
need to change the socket name, for example if you need to run the debugger on a machine and
your program on another.

set socket socket
Use socket for communication with the program. socket can be either a file name, or an
Internet port specification host:port, where host is a host name or an Internet address in dot
notation, and port is a port number on the host.

On the debugged program side, the socket name is passed either by the -D command line option
to camlrun, or through the CAML_DEBUG_SOCKET environment variable.

9.8.8 Fine-tuning the debugger

Several variables enables to fine-tune the debugger. Reasonable defaults are provided, and you
should normally not have to change them.

set processcount count
Set the maximum number of checkpoints to count. More checkpoints facilitate going far back
in time, but use more memory and create more Unix processes.

As checkpointing is quite expensive, it must not be done too often. On the other hand, backward
execution is faster when checkpoints are taken more often. In particular, backward single-stepping
is more responsive when many checkpoints have been taken just before the current time. To fine-
tune the checkpointing strategy, the debugger does not take checkpoints at the same frequency
for long displacements (e.g. run) and small ones (e.g. step). The two variables bigstep and
smallstep contain the number of events between two checkpoints in each case.

set bigstep count
Set the number of events between two checkpoints for long displacements.

Chapter 9. The debugger (camldebug) 89

set smallstep count
Set the number of events between two checkpoints for small displacements.

The following commands display information on checkpoints and events:

info checkpoints
Print a list of checkpoints.

info events [module]
Print the list of events in the given module (the current module, by default).

9.9 Miscellaneous commands

list [module] [beginning] [end]
List the source of module module, from line number beginning to line number end. By default,
20 lines of the current module are displayed, starting 10 lines before the current position.

source filename
Read debugger commands from the script filename.

90

Chapter 10

Profiling (camlpro)

This chapter describes how the execution of Caml Light programs can be profiled, by recording
how many times functions are called, branches of conditionals are taken, ...

Mac: This command is not available.

PC: This command is not available.

10.1 Compiling for profiling

Before profiling an execution, the program must be compiled in profiling mode, using the -p option
to the batch compiler camlc (see chapter 4). When compiling modules separately, the -p option
must be given both when compiling the modules (production of .zo files) and when linking them
together.

The amount of profiling information can be controlled by adding one or several letters after the
-p option, indicating which parts of the program should be profiled:

a all options
f function calls : a count point is set at the beginning of function bodies
i if ...then ...else ... : count points are set in both then branch and else branch

1 while, for loops: a count point is set at the beginning of the loop body
m match branches: a count point is set at the beginning of the body of each branch

t try ...with ... branches: a count point is set at the beginning of the body of each branch

For instance, compiling with -pfilm profiles function calls, if...then ...else..., loops and
pattern matching.

The -p option without additional letters defaults to -pfm, meaning that only function calls and
pattern matching are profiled.

91

92

10.2 Profiling an execution

Running a bytecode executable file that has been compiled and linked with -p records the execution
counts for the specified parts of the program and saves them in a file called camlpro.dump in the
current directory.

More precisely, the dump file camlpro.dump is written when the io__exit function is called.
The linker, called with the -p option, adds io__exit 0 as the last phrase of the bytecode executable,
in case the original program never calls io__exit. However, if the program terminates with an
uncaught exception, the dump file will not be produced.

If a compatible dump file already exists in the current directory, then the profiling information
is accumulated in this dump file. This allows, for instance, the profiling of several executions of a
program on different inputs.

10.3 Printing profiling information

The camlpro command produces a source listing of the program modules where execution counts
have been inserted as comments. For instance,

camlpro foo.ml

prints the source code for the foo module, with comments indicating how many times the functions
in this module have been called. Naturally, this information is accurate only if the source file has
not been modified since the profiling execution took place.

The following options are recognized by camlpro:

compiler options -stdlib, -I, -include, -0, -open, -i, -lang
See chapter 4 for the detailed usage.

-t dumpfile
Specifies an alternate dump file of profiling information

-F string
Specifies an additional string to be output with profiling information. By default, camlpro
will annotate progams with comments of the form (* n *) where n is the counter value for
a profiling point. With option -F s, the annotation will be (* sn *).

An additional argument specifies the output file. For instance
camlpro -f ../test/camlpro.dump foo.ml foo_profiled.ml
will save the annotated program in file foo_profiled.ml. Otherwise, the annotated program is
written on the standard output.
10.4 Known bugs

The following situation (file x.m1)

Chapter 10. Profiling (camlpro) 93

let a = 1;;
X__a ;;

will break the profiler. More precisely, one should avoid to refer to symbols of the current module

with the qualified symbol syntax.

94

Chapter 11

Using Caml Light under Emacs

This chapter describes how Caml Light can be used in conjunction with Gnu Emacs version 19
(version 18 is also partially supported).

Unix: The Emacs Lisp files implementing the Caml/Emacs interface are in contrib/camlmode in
the distribution.

Mac: The Caml/Emacs interface is not available.

PC: The Caml/Emacs interface is not available.

11.1 Updating your .emacs

The following initializations must be added to your .emacs file:

(setq auto-mode-alist (cons ’("\\.ml[iylp]?" . caml-mode) auto-mode-alist))
(autoload ’caml-mode "caml" "Major mode for editing Caml code." t)
(autoload ’run-caml "inf-caml" "Run an inferior Caml process.' t)

(autoload ’camldebug "camldebug" "Run the Caml debugger.' t)

11.2 The caml editing mode

The caml-mode function is a major editing mode for Caml source files. It provides the correct
syntax tables, comment syntax, ... for the Caml language. An extremely crude indentation facility
is provided, as well as a slightly enhanced next-error command (to display the location of a
compilation error). The following key bindings are performed:

TAB (function caml-indent-command)
At the beginning of a line, indent that line like the line above. Successive TABs increase
the indentation level by 2 spaces (by default; can be set with the caml-mode-indentation
variable).

M-TAB (function caml-unindent-command)
Decrease the indentation level of the current phrase.

95

96

C-x ¢ (function caml-next-error)
Display the next compilation error, just as next-error does. In addition, it puts the point
and the mark around the exact location of the error (the subexpression that caused the error).
Under Emacs 19, that subexpression is also highlighted.

M-C-h (function caml-mark-phrase)
Mark the Caml phrase that contains the point: the point is put at the beginning of the
phrase and the mark at the end. Phrases are delimited by ;; (the final double-semicolon).
This function does not properly ignore ;; inside string literals or comments.

C-x SPC
When the Caml debugger is running as an inferior process (section 11.4 below), set a break-
point at the current position of the point.

M-C-x or C-c C-e (function caml-eval-phrase)
When a Caml toplevel is running as an inferior process (section 11.3 below), send it the
the Caml phrase that contains the point. The phrase will then be evaluated by the inferior
toplevel as usual. The phrase is delimited by ;; as described for the caml-mark-phrase
command.

C-c C-r (function caml-eval-region)
Send the region to a Caml toplevel running in an inferior process.

11.3 Running the toplevel as an inferior process

M-x run-caml starts a Caml toplevel with input and output in an Emacs buffer named
xinferior-caml*. This gives you the full power of Emacs to edit the input to the Caml toplevel.
An history of input lines is maintained, as in Shell mode. This includes the following commands
(see the function comint-mode for a complete description):

RET Send the current line to the toplevel.

M-n and M-p
Move to the next or previous line in the history.

M-r and M-s
Regexp search in the history.

C-c C-c
Send a break (interrupt signal) to the Caml toplevel.

Phrases can also be sent to the Caml toplevel for evaluation from any buffer in Caml mode,
using M-C-x, C-¢ C-e or C-c C-r.

Chapter 11. Using Caml Light under Emacs 97

11.4 Running the debugger as an inferior process

The Caml debugger is started by the command M-x camldebug, with argument the name of the
executable file progname to debug. Communication with the debugger takes place in an Emacs
buffer named *camldebug-prognamex. The editing and history facilities of Shell mode are available
for interacting with the debugger.

In addition, Emacs displays the source files containing the current event (the current posi-
tion in the program execution) and highlights the location of the event. This display is updated
synchronously with the debugger action.

The following bindings for the most common debugger commands are available in the
camldebug-prognamex buffer (see section 9.3 for a full explanation of the commands):

M-r run command: execute the program forward.

M-s step command: execute the program one step forward.
M-b back command: execute the program one step backward.
M-1 1last command: go back one step in the command history.

C-c >
down command: select the stack frame below the current frame.

C-c <
up command: select the stack frame above the current frame.

C-c C-f
finish command: run till the current function returns.

In a buffer in Caml editing mode, C-x SPC sets a breakpoint at the current position of the
point.

98

Chapter 12

Interfacing C with Caml Light

This chapter describes how user-defined primitives, written in C, can be added to the Caml Light
runtime system and called from Caml Light code.

12.1 Overview and compilation information

12.1.1 Declaring primitives

User primitives are declared in a module interface (a .mli file), in the same way as a regular
ML value, except that the declaration is followed by the = sign, the function arity (number of
arguments), and the name of the corresponding C function. For instance, here is how the input
primitive is declared in the interface for the standard library module io:

value input : in_channel -> string -> int -> int -> int
= 4 "input"

Primitives with several arguments are always curried. The C function does not necessarily have
the same name as the ML function.

Values thus declared primitive in a module interface must not be implemented in the module
implementation (the .ml file). They can be used inside the module implementation.

12.1.2 Implementing primitives

User primitives with arity n < 5 are implemented by C functions that take n arguments of type
value, and return a result of type value. The type value is the type of the representations
for Caml Light values. It encodes objects of several base types (integers, floating-point numbers,
strings, ...), as well as Caml Light data structures. The type value and the associated conversion
functions and macros are described in details below. For instance, here is the declaration for the C
function implementing the input primitive:

value input(channel, buffer, offset, length)
value channel, buffer, offset, length;

{

99

100

When the primitive function is applied in a Caml Light program, the C function is called with
the values of the expressions to which the primitive is applied as arguments. The value returned
by the function is passed back to the Caml Light program as the result of the function application.

User primitives with arity greater than 5 are implemented by C functions that receive two
arguments: a pointer to an array of Caml Light values (the values for the arguments), and an
integer which is the number of arguments provided:

value prim_with_lots_of_args(argv, argn)
value * argv,

int argn;
{
. argv[0] ...; /* The first argument */
. argv[e]l ...; /* The seventh argument */
+

Implementing a user primitive is actually two separate tasks: on the one hand, decoding the
arguments to extract C values from the given Caml Light values, and encoding the return value as
a Caml Light value; on the other hand, actually computing the result from the arguments. Except
for very simple primitives, it is often preferable to have two distinct C functions to implement
these two tasks. The first function actually implements the primitive, taking native C values as
arguments and returning a native C value. The second function, often called the “stub code”, is a
simple wrapper around the first function that converts its arguments from Caml Light values to C
values, call the first function, and convert the returned C value to Caml Light value. For instance,
here is the stub code for the input primitive:

value input(channel, buffer, offset, length)
value channel, buffer, offset, length;
{
return Val_long(getblock((struct channel *) channel,
&Byte(buffer, Long_val(offset)),
Long_val(length)));
}

(Here, Val_long, Long_val and so on are conversion macros for the type value, that will be
described later.) The hard work is performed by the function getblock, which is declared as:

long getblock(channel, p, n)
struct channel * channel;
char * p;
long n;

{

¥

To write C code that operates on Caml Light values, the following include files are provided:

Chapter 12. Interfacing C with Caml Light 101

Include file | Provides

mlvalues.h | definition of the value type, and conversion macros

alloc.h allocation functions (to create structured Caml Light objects)

memory .h miscellaneous memory-related functions (for in-place modification of
structures, etc).

These files reside in the Caml Light standard library directory (usually /usr/local/lib/caml-1light).

12.1.3 Linking C code with Caml Light code

The Caml Light runtime system comprises three main parts: the bytecode interpreter, the mem-
ory manager, and a set of C functions that implement the primitive operations. Some bytecode
instructions are provided to call these C functions, designated by their offset in a table of functions
(the table of primitives).

In the default mode, the Caml Light linker produces bytecode for the standard runtime system,
with a standard set of primitives. References to primitives that are not in this standard set result
in the “unavailable C primitive” error.

In the “custom runtime” mode, the Caml Light linker scans the bytecode object files (. zo files)
and determines the set of required primitives. Then, it builds a suitable runtime system, by calling
the native code linker with:

e the table of the required primitives

e a library that provides the bytecode interpreter, the memory manager, and the standard
primitives

o libraries and object code files (.o files) mentioned on the command line for the Caml Light
linker, that provide implementations for the user’s primitives.

This builds a runtime system with the required primitives. The Caml Light linker generates byte-
code for this custom runtime system. The bytecode is appended to the end of the custom runtime
system, so that it will be automatically executed when the output file (custom runtime 4+ bytecode)
is launched.

To link in “custom runtime” mode, execute the camlc command with:

e the -custom option
o the names of the desired Caml Light object files (.zo files)

e the names of the C object files and libraries (.o and .a files) that implement the required
primitives. (Libraries can also be specified with the usual -1 syntax.)

12.2 The value type

All Caml Light objects are represented by the C type value, defined in the include file mlvalues.h,
along with macros to manipulate values of that type. An object of type value is either:

e an unboxed integer

102

e a pointer to a block inside the heap (such as the blocks allocated through one of the alloc_x
functions below)

e a pointer to an object outside the heap (e.g., a pointer to a block allocated by malloc, or to
a C variable).

12.2.1 Integer values

Integer values encode 31-bit signed integers. They are unboxed (unallocated).

12.2.2 Blocks

Blocks in the heap are garbage-collected, and therefore have strict structure constraints. Fach
block includes a header containing the size of the block (in words), and the tag of the block. The
tag governs how the contents of the blocks are structured. A taglower than No_scan_tag indicates
a structured block, containing well-formed values, which is recursively traversed by the garbage
collector. A tag greater than or equal to No_scan_tag indicates a raw block, whose contents are
not scanned by the garbage collector. For the benefits of ad-hoc polymorphic primitives such as
equality and structured input-output, structured and raw blocks are further classified according to
their tags as follows:

Tag Contents of the block

0 to No_scan_tag — 1 | A structured block (an array of Caml Light objects). Each
field is a value.

Closure_tag A closure representing a functional value. The first word is
a pointer to a piece of bytecode, the second word is a value

containing the environment.

String_tag A character string.

Double_tag A double-precision floating-point number.

Abstract_tag A block representing an abstract datatype.

Final_tag A block representing an abstract datatype with a “finaliza-

tion” function, to be called when the block is deallocated.

12.2.3 Pointers to outside the heap

Any pointer to outside the heap can be safely cast to and from the type value. This includes
pointers returned by malloc, and pointers to C variables obtained with the & operator.

12.3 Representation of Caml Light data types

This section describes how Caml Light data types are encoded in the value type.

Chapter 12. Interfacing C with Caml Light 103

12.3.1 Atomic types

Caml type | Encoding

int Unboxed integer values.

char Unboxed integer values (ASCII code).
float Blocks with tag Double_tag.

string Blocks with tag String_tag.

12.3.2 Product types

Tuples and arrays are represented by pointers to blocks, with tag 0.

Records are also represented by zero-tagged blocks. The ordering of labels in the record type
declaration determines the layout of the record fields: the value associated to the label declared
first is stored in field 0 of the block, the value associated to the label declared next goes in field 1,
and so on.

12.3.3 Concrete types

Constructed terms are represented by blocks whose tag encode the constructor. The constructors for
a given concrete type are numbered from 0 to the number of constructors minus one, following the
order in which they appear in the concrete type declaration. Constant constructors are represented
by zero-sized blocks (atoms), tagged with the constructor number. Non-constant constructors
declared with a n-tuple as argument are represented by a block of size n, tagged with the constructor
number; the n fields contain the components of its tuple argument. Other non-constant constructors
are represented by a block of size 1, tagged with the constructor number; the field 0 contains the
value of the constructor argument. Example:

Constructed term | Representation

O Size = 0, tag = 0

false Size = 0, tag = 0

true Size = 0, tag = 1

(] Size = 0, tag = 0

h::t Size = 2, tag = 1, first field = h, second field = ¢

12.4 Operations on values
12.4.1 Kind tests
e Is_int(v) is true if value v is an immediate integer, false otherwise

e Is_block(v) is true if value v is a pointer to a block, and false if it is an immediate integer.

12.4.2 Operations on integers

e Val_long(/) returns the value encoding the long int !

e Long_val(v) returns the long int encoded in value v

104

e Val_int(¢) returns the value encoding the int ¢

e Int_val(v) returns the int encoded in value v

12.4.3 Accessing blocks
e Wosize_val(v) returns the size of value v, in words, excluding the header.
e Tag_val(v) returns the tag of value v.

e Field(v,n) returns the value contained in the n'® field of the structured block v. Fields are
numbered from 0 to Wosize_val(v) — 1.

e Code_val(v) returns the code part of the closure v.
e Env_val(v) returns the environment part of the closure v.
e string_length(v) returns the length (number of characters) of the string v.

e Byte(v,n) returns the ntt character of the string v, with type char. Characters are numbered
from 0 to string_length(v) — 1.

e Byte_u(v,n) returns the n'h character of the string v, with type unsigned char. Characters
are numbered from 0 to string_length(v) — 1.

e String_val(v) returns a pointer to the first byte of the string v, with type char *. This
pointer is a valid C string: there is a null character after the last character in the string.
However, Caml Light strings can contain embedded null characters, that will confuse the
usual C functions over strings.

e Double_val(v) returns the floating-point number contained in value v, with type double.

The expressions Field(v,n), Code_val(v), Env_val(v), Byte(v,n), Byte_u(v,n) and
Double_val(v) are valid l-values. Hence, they can be assigned to, resulting in an in-place
modification of value v. Assigning directly to Field(v,n) must be done with care to avoid
confusing the garbage collector (see below).

12.4.4 Allocating blocks

From the standpoint of the allocation functions, blocks are divided according to their size as zero-
sized blocks, small blocks (with size less than or equal to Max_young_wosize), and large blocks
(with size greater than to Max_young_wosize). The constant Max_young_wosize is declared in the
include file mlvalues.h. It is guaranteed to be at least 64 (words), so that any block with constant
size less than or equal to 64 can be assumed to be small. For blocks whose size is computed at
run-time, the size must be compared against Max_young_wosize to determine the correct allocation
procedure.

e Atom(?) returns an “atom” (zero-sized block) with tag ¢t. Zero-sized blocks are preallocated
outside of the heap. It is incorrect to try and allocate a zero-sized block using the functions
below. For instance, Atom(0) represents (), false and []; Atom(1) represents true. (As a
convenience, mlvalues.h defines the macros Val_unit, Val_false and Val_true.)

Chapter 12. Interfacing C with Caml Light 105

e alloc(n,t) returns a fresh small block of size n < Max_young_wosize words, with tag ¢. If
this block is a structured block (i.e. if ¢ < No_scan_tag), then the fields of the block (initially
containing garbage) must be initialized with legal values (using direct assignment to the fields
of the block) before the next allocation.

e alloc_tuple(n) returns a fresh small block of size n < Max_young_wosize words, with tag
0. The fields of this block must be filled with legal values before the next allocation or
modification.

e alloc_shr(n,?) returns a fresh block of size n, with tag ¢. The size of the block can be greater
than Max_young_wosize. (It can also be smaller, but in this case it is more efficient to call
alloc instead of alloc_shr.) If this block is a structured block (i.e. if ¢ < No_scan_tag),
then the fields of the block (initially containing garbage) must be initialized with legal values
(using the initialize function described below) before the next allocation.

e alloc_string(n) returns a string value of length n characters. The string initially contains
garbage.

e copy_string(s) returns a string value containing a copy of the null-terminated C string s (a
char *).

e copy_double(d) returns a floating-point value initialized with the double d.

e alloc_array(f,a) allocates an array of values, calling function f over each element of the
input array a to transform it into a value. The array a is an array of pointers terminated
by the null pointer. The function f receives each pointer as argument, and returns a value.
The zero-tagged block returned by alloc_array(f,a) is filled with the values returned by
the successive calls to f.

e copy_string_array(p) allocates an array of strings, copied from the pointer to a string array
p (a char *x).

12.4.5 Raising exceptions

C functions cannot raise arbitrary exceptions. However, two functions are provided to raise two
standard exceptions:

e failwith(s), where s is a null-terminated C string (with type char *), raises exception
Failure with argument s.

e invalid_argument(s), where s is a null-terminated C string (with type char *), raises ex-
ception Invalid_argument with argument s.

12.5 Living in harmony with the garbage collector

Unused blocks in the heap are automatically reclaimed by the garbage collector. This requires some
cooperation from C code that manipulates heap-allocated blocks.

106

Rule 1 After a structured block (a block with tag less than No_scan_tag) is allocated, all fields of
this block must be filled with well-formed values before the next allocation operation. If the block has

been allocated with alloc or alloc_tuple, filling is performed by direct assignment to the fields of
the block:

Field(v, n) = wv,;
If the block has been allocated with alloc_shr, filling is performed through the initialize function:

initialize(&Field{v, n), wv,);

The next allocation can trigger a garbage collection. The garbage collector assumes that all
structured blocks contain well-formed values. Newly created blocks contain random data, which
generally do not represent well-formed values.

If you really need to allocate before the fields can receive their final value, first initialize with
a constant value (e.g. Val_long(0)), then allocate, then modify the fields with the correct value
(see rule 3).

Rule 2 Local variables containing values must be registered with the garbage collector (using the
Push_roots and Pop_roots macros), if they are to survive a call to an allocation function.

Registration is performed with the Push_roots and Pop_roots macros. Push_roots(r,n)
declares an array r of n values and registers them with the garbage collector. The values contained
in r[0] to r[n-1] are treated like roots by the garbage collector. A root value has the following
properties: if it points to a heap-allocated block, this block (and its contents) will not be reclaimed;
moreover, if this block is relocated by the garbage collector, the root value is updated to point to the
new location for the block. Push_roots(r,n) must occur in a C block exactly between the last local
variable declaration and the first statement in the block. To un-register the roots, Pop_roots()
must be called before the C block containing Push_roots(r,n) is exited. (Roots are automatically
un-registered if a Caml exception is raised.)

Rule 3 Direct assignment to a field of a block, as in
Field(v, n) = w;

s safe only if v is a block newly allocated by alloc or alloc_tuple; that is, if no allocation took
place between the allocation of v and the assignment to the field. In all other cases, never assign
directly. If the block has just been allocated by alloc_shr, use initialize to assign a value to a

field for the first time:
initialize(&Field(v, n), w);

Otherwise, you are updating a field that previously contained a well-formed value; then, call the
modify function:

modify(&Field(v, n), w);

To illustrate the rules above, here is a C function that builds and returns a list containing the
two integers given as parameters:

Chapter 12. Interfacing C with Caml Light 107

value alloc_list_int(il, i2)
int i1, 1i2;

{
value result;
Push_roots(r, 1);
r[0] = alloc(2, 1); /* Allocate a cons cell */
Field(r[0], 0) = Val_int(i2); /* car = the integer i2 */
Field(r[0], 1) = Atom(0); /* cdr = the empty list [] */
result = alloc(2, 1); /* Allocate the other cons cell */
Field(result, 0) = Val_int(il); /* car = the integer il */
Field(result, 1) = r[0]; /* cdr = the first cons cell */
Pop_roots();
return result;

}

The “cons” cell allocated first needs to survive the allocation of the other cons cell; hence, the value
returned by the first call to alloc must be stored in a registered root. The value returned by the
second call to alloc can reside in the un-registered local variable result, since we won’t do any
further allocation in this function.

In the example above, the list is built bottom-up. Here is an alternate way, that proceeds
top-down. It is less efficient, but illustrates the use of modify.

value alloc_list_int(il, i2)
int i1, 1i2;

{
value tail;
Push_roots(r, 1);
r[0] = alloc(2, 1); /* Allocate a cons cell */
Field(r[0], 0) = Val_int(il); /* car = the integer il */
Field(r[0], 1) = Val_int(0); /* A dummy value
tail = alloc(2, 1); /* Allocate the other cons cell */
Field(tail, 0) = Val_int(i2); /* car = the integer i2 */
Field(tail, 1) = Atom(0); /* cdr = the empty list [] */
modify(&Field(r[0], 1), tail); /* cdr of the result = tail */
Pop_roots();
return r[0];

}

It would be incorrect to perform Field(r[0], 1) = tail directly, because the allocation of tail
has taken place since r[0] was allocated.

12.6 A complete example

This section outlines how the functions from the Unix curses library can be made available to Caml
Light programs. First of all, here is the interface curses.mli that declares the curses primitives
and data types:

108

type window;; (* The type "window'" remains abstract *)
value initscr: unit -> window = 1 "curses_initscr"

and endwin: unit -> unit = 1 "curses_endwin"

and refresh: unit -> unit = 1 "curses_refresh"

and wrefresh : window -> unit = 1 "curses_wrefresh"

and newwin: int -> int -> int -> int -> window = 4 "curses_newwin"

and mvwin: window -> int -> int -> unit = 3 "curses_mvwin"

and addch: char -> unit = 1 "curses_addch"

and mvwaddch: window -> int -> int -> char -> unit = 4 "curses_mvwaddch"

and addstr: string -> unit = 1 "curses_addstr"

and mvwaddstr: window -> int -> int -> string -> unit = 4 "curses_mvwaddstr"
;3 (x lots more omitted *)

To compile this interface:
camlc -c curses.mli

To implement these functions, we just have to provide the stub code; the core functions are
already implemented in the curses library. The stub code file, curses.o, looks like

#include <curses.h>
#include <mlvalues.h>

value curses_initscr(unit)
value unit;
{
return (value) initscr(); /* 0K to coerce directly from WINDOW * to value
since that’s a block created by malloc() */

value curses_wrefresh(win)
value win;
{
wrefresh((WINDOW *) win);
return Val_unit;

¥

value curses_newwin(nlines, ncols, x0, y0)
value nlines, ncols, x0, yO;
{
return (value) newwin(Int_val(nlines), Int_val(ncols),
Int_val(x0), Int_val(y0));

value curses_addch(c)
value c;

Chapter 12. Interfacing C with Caml Light 109

addch(Int_val(c)); /* Characters are encoded like integers */
return Val_unit;

¥

value curses_addstr(s)
value s;

{
addstr(String_val(s));
return Val_unit;

¥

/* This goes on for pages. */

(Actually, it would be better to create a library for the stub code, with each stub code function
in a separate file, so that linking would pick only those functions from the curses library that are
actually used.)

The file curses.c can be compiled with:

cc -¢ -I/usr/local/lib/caml-1light curses.c
or, even simpler,
camlc -c curses.c

When passed a .c file, the camlc command simply calls cc on that file, with the right -I option.
g
Now, here is a sample Caml Light program test.ml that uses the curses module:

#open 'curses';;

let main_window = initscr () in

let small_window = newwin 10 5 20 10 in
mvwaddstr main_window 10 2 "Hello";
mvwaddstr small_window 4 3 "world";
refresh();
for i = 1 to 100000 do () done;
endwin()

To compile this program, run:
camlc -c test.ml
Finally, to link everything together:

camlc -custom -o test test.zo curses.o -lcurses

110

Part IV

The Caml Light library

111

Chapter 13

The core library

This chapter describes the functions provided by the Caml Light core library. This library is special
in two ways:

e It is automatically linked with the user’s object code files by the camlc command (chapter 4).
Hence, the globals defined by these libraries can be used in standalone programs without
having to add any .zo file on the command line for the linking phase. Similarly, in interactive
use, these globals can be used in toplevel phrases without having to load any .zo file in
memory.

e The interfaces for the modules below are automatically “opened” when a compilation starts,
or when the toplevel system is launched. Hence, it is possible to use unqualified identifiers to
refer to the functions provided by these modules, without adding #open directives. Actually,
the list of automatically opened modules depend on the -0 option given to the compiler or
to the toplevel system:

-0 option Opened modules (reverse opening order)

-0 cautious (default) | io, eq, int, float, ref, pair, list, vect, char,
string, bool, exc, stream, builtin

-0 fast io, eq, int, float, ref, pair, list, fvect,
fchar, fstring, bool, exc, stream, builtin

-0 none builtin

Conventions

For easy reference, the modules are listed below in alphabetical order of module names. For each
module, the declarations from its interface file are printed one by one in typewriter font, followed
by a short comment. All modules and the identifiers they export are indexed at the end of this
report.

13.1 Dbool: boolean operations

value prefix & : bool -> bool -> bool

113

114

value prefix &% : bool -> bool -> bool
value prefix or : bool -> bool -> bool
value prefix || : bool -> bool -> bool

The boolean and is written el & e2 or el && e2. The boolean or is written el or e2 or
el || e2. Both constructs are sequential, left-to-right: e2 is evaluated only if needed.

Actually, el & e2is equivalent to if el then e2
to if el then true else e2.

value prefix not : bool -> bool
The boolean negation.
value string_of_bool : bool -> string

Return a string representing the given boolean.

else false, and el or e2is equivalent

13.2 builtin: base types and constructors

This module defines some types and exceptions for

which the language provides special

syntax, and are therefore treated specially by the compiler.

type int
type float
type string
type char

The types of integers, floating-point numbers, character strings, and characters, respectively.

type exn
The type of exception values.
type bool = false | true
The type of boolean values.
type ’a vect
The type of arrays whose elements have type ’a.
type unit = (O
The type of the unit value.
type ’a list = [] | prefix :: of ’a * ’a list
The type of lists.
type ’a option = None | Some of ’a
The type of optional values.
exception Match_failure of string * int * int

The exception raised when a pattern-matching fails

. The argument indicates the position in

the source code of the pattern-matching (source file name, position of the first character of

the matching, position of the last character.

Chapter 13. The core library 115

13.3 char: character operations

value int_of_char : char -> int
Return the ASCII code of the argument.
value char_of_int : int -> char

Return the character with the given ASCII code. Raise Invalid_argument "char_of_int"
if the argument is outside the range 0-255.

value string_of_char : char -> string
Return a string representing the given character.
value char_for_read : char -> string

Return a string representing the given character, with special characters escaped following
the lexical conventions of Caml Light.

13.4 eq: generic comparisons
value prefix = : ’a -> ’a -> bool

el = e2 tests for structural equality of el and e2. Mutable structures (e.g. references and
arrays) are equal if and only if their current contents are structurally equal, even if the two
mutable objects are not the same physical object. Equality between functional values raises
Invalid_argument. Equality between cyclic data structures may not terminate.

value prefix <> : ’a -> ’a -> bool

Negation of prefix =.

value prefix < : ’a -> ’a -> bool
value prefix <= : ’a -> ’a -> bool
value prefix > : ’a -> ’a -> bool
value prefix >= : ’a -> ’a -> bool

Structural ordering functions. These functions coincide with the usual orderings over
integer, string and floating-point numbers, and extend them to a total ordering over all
types. The ordering is compatible with prefix =. As in the case of prefix =, mutable
structures are compared by contents. Comparison between functional values raises
Invalid_argument. Comparison between cyclic structures may not terminate.

value compare: ’a -> ’a -> int

compare x y returns O if x=y, a negative integer if x<y, and a positive integer if x>y. The
same restrictions as for = apply. compare can be used as the comparison function required
by the set and map modules.

116

value min: ’a -> ’a -> ’a
Return the smaller of the two arguments.
value max: ’a -> ’a -> ’a

Return the greater of the two arguments.

value prefix == : ’a -> ’a -> bool
el == e2 tests for physical equality of el and e2. On integers and characters, it is the same
as structural equality. On mutable structures, el == e2 is true if and only if physical
modification of el also affects e2. On non-mutable structures, the behavior of prefix ==is
implementation-dependent, except that el == e2 implies el = e2.

value prefix != : ’a -> ’a -> bool

Negation of prefix ==.

13.5 exc: exceptions

value raise : exn -> ’a

Raise the given exception value.

A few general-purpose predefined exceptions.
exception Out_of_memory

Raised by the garbage collector, when there is insufficient memory to complete the
computation.

exception Invalid_argument of string

Raised by library functions to signal that the given arguments do not make sense.
exception Failure of string

Raised by library functions to signal that they are undefined on the given arguments.
exception Not_found

Raised by search functions when the desired object could not be found.
exception Exit

This exception is not raised by any library function. It is provided for use in your programs.
value failwith : string -> ’a

Raise exception Failure with the given string.
value invalid_arg : string -> ’a

Raise exception Invalid_argument with the given string.

Chapter 13. The core library

13.6 fchar: character operations, without sanity checks

This module implements the same functions as the char module, but does not perform
bound checks on the arguments of the functions. The functions are therefore faster than
those in the char module, but calling these functions with incorrect parameters (that is,
parameters that would cause the Invalid_argument exception to be raised by the
corresponding functions in the char module) can crash the program.

13.7 float: operations on floating-point numbers

value int_of_float : float -> int

117

Truncate the given float to an integer value. The result is unspecified if it falls outside the

range of representable integers.
value float_of_int : int -> float
Convert an integer to floating-point.

value minus : float -> float
value minus_float : float -> float

Unary negation.

value prefix + : float -> float -> float
value prefix +. : float -> float -> float
value add_float : float -> float -> float

Addition.
value prefix - : float -> float -> float
value prefix -. : float -> float -> float

value sub_float : float -> float -> float
Subtraction.

value prefix * : float -> float -> float
value prefix *. : float -> float -> float
value mult_float : float -> float -> float

Product.

value prefix / : float -> float -> float
value prefix /. : float -> float -> float
value div_float : float -> float -> float

Division.

118

value prefix **x : float -> float -> float
value prefix **x. : float -> float -> float
value power : float -> float -> float

Exponentiation.

value eq_float : float -> float -> bool
value prefix =. : float -> float -> bool

Floating-point equality. Equivalent to generic equality, just faster.

value neq_float : float -> float -> bool
value prefix <>. : float -> float -> bool

Negation of eq_float.

value prefix <. : float -> float -> bool
value 1t_float : float -> float -> bool
value prefix >. : float -> float -> bool
value gt_float : float -> float -> bool
value prefix <=. : float -> float -> bool
value le_float : float -> float -> bool
value prefix >=. : float -> float -> bool

value ge_float : float -> float -> bool
Usual comparisons between floating-point numbers.

value acos : float -> float
value asin : float -> float
value atan : float -> float
value atan2 : float -> float -> float
value cos : float -> float
value cosh : float -> float
value exp : float -> float
value log : float -> float
value loglO : float -> float
value sin : float -> float
value sinh : float -> float
value sqrt : float -> float
value tan : float -> float
value tanh : float -> float

Usual transcendental functions on floating-point numbers.

value ceil : float -> float
value floor : float -> float

Round the given float to an integer value. floor f returns the greatest integer value less
than or equal to £. ceil f returns the least integer value greater than or equal to f.

Chapter 13. The core library 119

value abs_float : float -> float

Return the absolute value of the argument.
value mod_float : float -> float -> float

fmod a b returns the remainder of a with respect to b.
value frexp : float -> float * int

frexp f returns the pair of the significant and the exponent of £ (when £ is zero, the
significant x and the exponent n of £ are equal to zero; when f is non-zero, they are defined
by £ = x *. 2 ** n).

value ldexp : float -> int -> float
ldexp x nreturns x *. 2 %% n.
value modf : float -> float * float
modf f returns the pair of the fractional and integral part of f.
value string_of_float : float -> string
Convert the given float to its decimal representation.
value float_of_string : string -> float

Convert the given string to a float, in decimal. The result is unspecified if the given string is
not a valid representation of a float.

13.8 fstring: string operations, without sanity checks

This module implements the same functions as the string module, but does not perform
bound checks on the arguments of the functions. The functions are therefore faster than
those in the string module, but calling these functions with incorrect parameters (that is,
parameters that would cause the Invalid_argument exception to be raised by the
corresponding functions in the string module) can crash the program.

13.9 fvect: operations on vectors, without sanity checks

This module implements the same functions as the vect module, but does not perform
bound checks on the arguments of the functions. The functions are therefore faster than
those in the vect module, but calling these functions with incorrect parameters (that is,
parameters that would cause the Invalid_argument exception to be raised by the
corresponding functions in the vect module) can crash the program.

120

13.10 int: operations on integers

Integers are 31 bits wide (or 63 bits on 64-bit processors). All operations are taken modulo
231 (or 2°%). They do not fail on overflow.

exception Division_by_zero
value minus : int -> int
value minus_int : int -> int

Unary negation. You can write -e instead of minus e.
value succ : int -> int

succ x is x+1.
value pred : int -> int

pred x is x-1.

value prefix + : int -> int -> int
value add_int : int -> int -> int

Addition.

value prefix - : int -> int -> int
value sub_int : int -> int -> int

Subtraction.

value prefix * : int -> int -> int
value mult_int : int -> int -> int

Multiplication.

value prefix / : int -> int -> int
value div_int : int -> int -> int
value prefix quo : int -> int -> int

Integer division. Raise Division_by_zero if the second argument is 0. Give unpredictable
results if either argument is negative.

value prefix mod : int -> int -> int

Remainder. Raise Division_by_zero if the second argument is 0. Give unpredictable
results if either argument is negative.

value eq_int : int -> int -> bool
Integer equality. Equivalent to generic equality, just faster.
value neq_int : int -> int -> bool

Negation of eq_int.

Chapter 13. The core library

value 1lt_int : int -> int -> bool
value gt_int : int -> int -> bool
value le_int : int -> int -> bool
value ge_int : int -> int -> bool

Usual comparisons between integers.
value abs : int -> int
Return the absolute value of the argument.

value max_int : int
value min_int : int

The greatest and smallest integer values.

Bitwise operations

value prefix land : int -> int -> int
Bitwise logical and.

value prefix lor : int -> int -> int
Bitwise logical or.

value prefix lxor : int -> int -> int
Bitwise logical exclusive or.

value lnot : int -> int
Bitwise complement

value prefix 1sl : int -> int -> int
value lshift_left : int -> int -> int

n 1sl m, or equivalently 1shift_left n m, shifts n to the left by m bits.

value prefix lsr : int -> int -> int

121

n lsr mshifts n to the right by m bits. This is a logical shift: zeroes are inserted regardless

of sign.

value prefix asr : int -> int -> int
value lshift_right : int -> int -> int

n asr m, or equivalently 1shift_right n m, shifts n to the right by m bits. This is an

arithmetic shift: the sign bit is replicated.

122

Conversion functions
value string_of_int : int -> string

Convert the given integer to its decimal representation.
value int_of_string : string -> int

Convert the given string to an integer, in decimal (by default) or in hexadecimal, octal or
binary if the string begins with Ox, Oo or Ob. Raise Failure "int_of_string" if the given
string is not a valid representation of an integer.

13.11 io: buffered input and output

type in_channel
type out_channel

The abstract types of input channels and output channels.
exception End_of_file
Raised when an operation cannot complete, because the end of the file has been reached.

value stdin : in_channel
value std_in : in_channel
value stdout : out_channel
value std_out : out_channel
value stderr : out_channel
value std_err : out_channel

The standard input, standard output, and standard error output for the process. std_in,
std_out and std_err are respectively synonymous with stdin, stdout and stderr.

value exit : int -> ’a

Flush all pending writes on std_out and std_err, and terminate the process, returning the
given status code to the operating system (usually 0 to indicate no errors, and a small
positive integer to indicate failure.) This function should be called at the end of all
standalone programs that output results on std_out or std_err; otherwise, the program
may appear to produce no output, or its output may be truncated.

Output functions on standard output

value print_char : char -> unit

Print the character on standard output.

Chapter 13. The core library 123

value print_string : string -> unit

Print the string on standard output.
value print_int : int -> unit

Print the integer, in decimal, on standard output.
value print_float : float -> unit

Print the floating-point number, in decimal, on standard output.
value print_endline : string -> unit

Print the string, followed by a newline character, on standard output.
value print_newline : unit -> unit

Print a newline character on standard output, and flush standard output. This can be used
to simulate line buffering of standard output.

Output functions on standard error

value prerr_char : char -> unit
Print the character on standard error.
value prerr_string : string -> unit
Print the string on standard error.
value prerr_int : int -> unit
Print the integer, in decimal, on standard error.
value prerr_float : float -> unit
Print the floating-point number, in decimal, on standard error.
value prerr_endline : string -> unit

Print the string, followed by a newline character on standard error and flush standard error.

124

Input functions on standard input
value read_line : unit -> string

Flush standard output, then read characters from standard input until a newline character
is encountered. Return the string of all characters read, without the newline character at
the end.

value read_int : unit -> int

Flush standard output, then read one line from standard input and convert it to an integer.
Raise Failure "int_of_string" if the line read is not a valid representation of an integer.

value read_float : unit -> float

Flush standard output, then read one line from standard input and convert it to a
floating-point number. The result is unspecified if the line read is not a valid representation
of a floating-point number.

General output functions
value open_out : string -> out_channel

Open the named file for writing, and return a new output channel on that file, positionned
at the beginning of the file. The file is truncated to zero length if it already exists. It is
created if it does not already exists. Raise sys__Sys_error if the file could not be opened.

value open_out_bin : string -> out_channel

Same as open_out, but the file is opened in binary mode, so that no translation takes place
during writes. On operating systems that do not distinguish between text mode and binary
mode, this function behaves like open_out.

value open_out_gen : sys__open_flag list -> int -> string -> out_channel

open_out_gen mode rights filename opens the file named filename for writing, as
above. The extra argument mode specify the opening mode (see sys__open). The extra
argument rights specifies the file permissions, in case the file must be created (see
sys__open). open_out and open_out_bin are special cases of this function.

value open_descriptor_out : int -> out_channel

open_descriptor_out fd returns a buffered output channel writing to the file descriptor
fd. The file descriptor £d must have been previously opened for writing, else the behavior is

undefined.
value flush : out_channel -> unit

Flush the buffer associated with the given output channel, performing all pending writes on
that channel. Interactive programs must be careful about flushing std_out and std_err at
the right time.

Chapter 13. The core library 125

value output_char : out_channel -> char -> unit
Write the character on the given output channel.
value output_string : out_channel -> string -> unit
Write the string on the given output channel.
value output : out_channel -> string -> int -> int -> unit

output chan buff ofs len writes len characters from string buff, starting at offset ofs,
to the output channel chan. Raise Invalid_argument "output" if ofs and len do not
designate a valid substring of buff.

value output_byte : out_channel -> int -> unit

Write one 8-bit integer (as the single character with that code) on the given output channel.
The given integer is taken modulo 256.

value output_binary_int : out_channel -> int -> unit

Write one integer in binary format on the given output channel. The only reliable way to
read it back is through the input_binary_int function. The format is compatible across all
machines for a given version of Caml Light.

value output_value : out_channel -> ’a -> unit

Write the representation of a structured value of any type to a channel. Circularities and
sharing inside the value are detected and preserved. The object can be read back, by the
function input_value. The format is compatible across all machines for a given version of

Caml Light.
value output_compact_value : out_channel -> ’a -> unit

Same as output_value, but uses a different format, which occupies less space on the file,
but takes more time to generate and read back.

value seek_out : out_channel -> int -> unit

seek_out chan pos sets the current writing position to pos for channel chan. This works
only for regular files. On files of other kinds (such as terminals, pipes and sockets), the
behavior is unspecified.

value pos_out : out_channel -> int
Return the current writing position for the given channel.
value out_channel_length : out_channel -> int

Return the total length (number of characters) of the given channel. This works only for
regular files. On files of other kinds, the result is meaningless.

value close_out : out_channel -> unit

Close the given channel, flushing all buffered write operations. The behavior is unspecified if
any of the functions above is called on a closed channel.

126

General input functions
value open_in : string -> in_channel

Open the named file for reading, and return a new input channel on that file, positionned at
the beginning of the file. Raise sys__Sys_error if the file could not be opened.

value open_in_bin : string -> in_channel

Same as open_in, but the file is opened in binary mode, so that no translation takes place
during reads. On operating systems that do not distinguish between text mode and binary
mode, this function behaves like open_in.

value open_in_gen : sys__open_flag list -> int -> string -> in_channel

open_in_gen mode rights filename opens the file named filename for reading, as above.
The extra arguments mode and rights specify the opening mode and file permissions (see
sys__open). open_in and open_in_bin are special cases of this function.

value open_descriptor_in : int -> in_channel

open_descriptor_in fd returns a buffered input channel reading from the file descriptor
fd. The file descriptor £d must have been previously opened for reading, else the behavior is
undefined.

value input_char : in_channel -> char

Read one character from the given input channel. Raise End_of_file if there are no more
characters to read.

value input_line : in_channel -> string

Read characters from the given input channel, until a newline character is encountered.
Return the string of all characters read, without the newline character at the end. Raise
End_of_file if the end of the file is reached at the beginning of line.

value input : in_channel -> string -> int -> int -> int

input chan buff ofs len attempts to read len characters from channel chan, storing
them in string buff, starting at character number ofs. It returns the actual number of
characters read, between 0 and len (inclusive). A return value of 0 means that the end of
file was reached. A return value between 0 and len exclusive means that no more characters
were available at that time; input must be called again to read the remaining characters, if
desired. Ixception Invalid_argument "input" is raised if ofs and len do not designate a
valid substring of buff.

value really_input : in_channel -> string -> int -> int -> unit

really_input chan buff ofs len reads len characters from channel chan, storing them
in string buff, starting at character number ofs. Raise End_of_file if the end of file is
reached before len characters have been read. Raise Invalid_argument "really_input" if
ofs and len do not designate a valid substring of buff.

Chapter 13. The core library 127

value input_byte : in_channel -> int

Same as input_char, but return the 8-bit integer representing the character. Raise
End_of_file if an end of file was reached.

value input_binary_int : in_channel -> int

Read an integer encoded in binary format from the given input channel. See
output_binary_int. Raise End_of_file if an end of file was reached while reading the
integer.

value input_value : in_channel -> ’a

Read the representation of a structured value, as produced by output_value or
output_compact_value, and return the corresponding value. This is not type-safe. The
type of the returned object is not >a properly speaking: the returned object has one unique
type, which cannot be determined at compile-time. The programmer should explicitly give
the expected type of the returned value, using the following syntax:

(input_value chan : type). The behavior is unspecified if the object in the file does not
belong to the given type.

value seek_in : in_channel -> int -> unit

seek_in chan pos sets the current reading position to pos for channel chan. This works
only for regular files. On files of other kinds, the behavior is unspecified.

value pos_in : in_channel -> int
Return the current reading position for the given channel.
value in_channel_length : in_channel -> int

Return the total length (number of characters) of the given channel. This works only for
regular files. On files of other kinds, the result is meaningless.

value close_in : in_channel -> unit

Close the given channel. Anything can happen if any of the functions above is called on a
closed channel.

13.12 1list: operations on lists
value list_length : ’a list -> int

Return the length (number of elements) of the given list.
value prefix @ : ’a list -> ’a list -> ’a list

List concatenation.

128

value hd : ’a list -> ’a

Return the first element of the given list. Raise Failure "hd" if the list is empty.
value tl : ’a list -> ’a list

Return the given list without its first element. Raise Failure "t1" if the list is empty.
value rev : ’a list -> ’a list

List reversal.
value map : (’a -> ’b) -> ’a list -> ’b list

map £ [al; ...; an] applies function f to al, ..., an, and builds the list
[f al; ...; £ an] with the results returned by f£.

value do_list : (’a -> unit) -> ’a list -> unit

do_list £ [al; ...; an] applies function £ in turn to al; ...; an, discarding all the
results. It is equivalent to begin f al; £ a2; ...; f an; () end.

value it_list : (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a
it_list f a [bl; ...; bnlisf (... (f (f a b1l) b2) ...) bn.

value list_it : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b
list_it £ [al; ...; an] bisf al (f a2 (... (f an b) ...))

value map2 : (’a => ’b -> ’¢c) -> ’a list -> ’b list -> ’c list

map2 £ [al; ...; an] [bl; ...; bnlis [f al bl; ...; £ an bn]. Raise
Invalid_argument "map2" if the two lists have different lengths.

value do_list2 : (’a -> ’b -> unit) -> ’a list -> ’b list -> unit

do_list2 f [al; ...; an] [bl; ...; bn] callsin turn £ a1 bl; ...; f an bn,
discarding the results. Raise Invalid_argument "do_list2" if the two lists have different
lengths.

value it_list2 : (’a -> ’b -> ’c -> ’a) -> ’a -> ’b list -> ’c list -> ’a

it_1list2 f a [bl; ...; bn] [cl; ...; cn]is
f (... (f (f a bl cl) b2 c2) ...) bn cn. Raise Invalid_argument "it_list2" if
the two lists have different lengths.

value list_it2 : (’a -> ’b -> ’c -> ’c¢c) -> ’a list -> ’b list -> ’c -> ’c

list_it2 £ [al; ...; an] [bl; ...; bn] cis
f al bl (f a2 b2 (... (f an bn c) ...)). Raise Invalid_argument "list_it2" if
the two lists have different lengths.

Chapter 13. The core library 129

value flat_map : (’a -> ’b list) -> ’a list -> ’b list

flat_map £ [11; ...; 1nlis (f 11) @ (f 12) @ ... @ (f 1n).
value for_all : (’a -> bool) -> ’a list -> bool

for_all p [al; ...; an]is (p al) & (p a2) & ... & (p an).
value exists : (’a -> bool) -> ’a list -> bool

exists p [al; ...; an] is (p al) or (p a2) or ... or (p an).
value mem : ’a -> ’a list -> bool

mem a 1 is true if and only if a is structurally equal (see module eq) to an element of 1.
value memq : ’a -> ’a list -> bool

memq a 1 is true if and only if a is physically equal (see module eq) to an element of 1.
value except : ’a -> ’a list -> ’a list

except a 1 returns the list 1 where the first element structurally equal to a has been
removed. The list 1 is returned unchanged if it does not contain a.

value exceptq : ’a -> ’a list -> ’a list
Same as except, with physical equality instead of structural equality
value subtract : ’a list -> ’a list -> ’a list

subtract 11 12 returns the list 11 where all elements structurally equal to one of the
elements of 12 have been removed.

value union : ’a list -> ’a list -> ’a list

union 11 12 appends before list 12 all the elements of list 11 that are not structurally
equal to an element of 12.

value intersect : ’a list -> ’a list -> ’a list

intersect 11 12 returns the list of the elements of 11 that are structurally equal to an
element of 12.

value index : ’a -> ’a list -> int

index a 1 returns the position of the first element of list 1 that is structurally equal to a.
The head of the list has position 0. Raise Not_found if a is not present in 1.

value assoc : ’a -> (’a * ’b) list -> ’b

assoc a 1 returns the value associated with key a in the list of pairs 1. That is,
assoc a [...; (a,b); ...] = bif (a,b) is the leftmost binding of a in list 1. Raise
Not_found if there is no value associated with a in the list 1.

value assq : ’a -> (Pa * ’b) list -> ’b
Same as assoc, but use physical equality instead of structural equality to compare keys.
value mem_assoc : ’a -> (Ya * ’b) list -> bool

Same as assoc, but simply return true if a binding exists, and false if no bindings exist for
the given key.

130

13.13 pair: operations on pairs

value fst : ’a * ’b -> ’a

Return the first component of a pair.
value snd : ’a * ’b -> ’b

Return the second component of a pair.

value split : (’a * ’b) list -> ’a list * ’b list

Transform a list of pairs into a pair of lists: split [(al,b1); ...; (an,bn)] is
(fal; ...; an], [b1l; ...; bnl)
value combine : ’a list * b list -> (’a * ’b) list
Transform a pair of lists into a list of pairs: combine ([al; ...; an], [bl; ...; bnl)is
[(a1l,b1); ...; (an,bn)]. Raise Invalid_argument "combine" if the two lists have

different lengths.
value map_combine : (’a * ’b -> ’c) -> ’a list * ’b list -> ’c list

map_combine £ ([al; ...; an], [bl; ...; bnl])is [£ (al, bl); ...; £ (an, bn)].
Raise invalid_argument "map_combine' if the two lists have different lengths.

value do_list_combine : (’a * ’b -> unit) -> ’a list * ’b list -> unit

do_list_combine f ([al; ...; an], [bl; ...; bn]) callsin turn
f (a1, bl); ...; £ (an, bn), discarding the results. Raise
Invalid_argument "do_list_combine" if the two lists have different lengths.

13.14 ref: operations on references

type ’a ref = ref of mutable ’a
The type of references (mutable indirection cells) containing a value of type *a.
value prefix ! : ’a ref -> ’a
't returns the current contents of reference r. Could be defined as fun (ref x) -> x.
value prefix := : ’a ref -> ’a -> unit
r := a stores the value of a in reference r.
value incr : int ref -> unit

Increment the integer contained in the given reference. Could be defined as
fun r -> r := succ !r.

value decr : int ref -> unit

Decrement the integer contained in the given reference. Could be defined as
fun r -> r := pred !r.

Chapter 13. The core library 131

13.15 stream: operations on streams

type ’a stream

The type of streams containing values of type ’a.
exception Parse_failure

Raised by parsers when none of the first component of the stream patterns is accepted
exception Parse_error

Raised by parsers when the first component of a stream pattern is accepted, but one of the
following components is rejected

value stream_next : ’a stream -> ’a

stream_next s returns the first element of stream s, and removes it from the stream. Raise
Parse_failure if the stream is empty.

value stream_from : (unit -> ’a) -> ’a stream

stream_from f returns the stream which fetches its terminals using the function £. This
function could be defined as:

let rec stream_from f = [< ’f(); stream_from f >]

but is implemented more efficiently.
value stream_of_string : string -> char stream

stream_of_string s returns the stream of the characters in string s.
value stream_of_channel : in_channel -> char stream

stream_of _channel ic returns the stream of characters read on channel ic.
value do_stream : (’a -> unit) -> ’a stream -> unit

do_stream f s scans the whole stream s, applying the function £ in turn to each terminal
encountered

value stream_check : (’a -> bool) -> ’a stream -> ’a

stream_check p returns the parser which returns the first terminal of the stream if the
predicate p returns true on this terminal, and raises Parse_failure otherwise.

value end_of_stream : ’a stream -> unit
Return () iff the stream is empty, and raise Parse_failure otherwise.
value stream_get : ’a stream -> ’a * ’a stream

stream_get s return the first element of the stream s, and a stream containing the
remaining elements of s. Raise Parse_failure if the stream is empty. The stream s is not
modified. This function makes it possible to access a stream non-destructively.

132

13.16 string: string operations
value string_length : string -> int

Return the length (number of characters) of the given string.
value nth_char : string -> int -> char

nth_char s n returns character number n in string s. The first character is character
number 0. The last character is character number string_length s - 1. Raise
Invalid_argument "nth_char" if n is ouside the range 0 to (string_length s - 1). You
can also write s. [n] instead of nth_char s n.

value set_nth_char : string -> int -> char -> unit

set_nth_char s n c¢ modifies string s in place, replacing the character number n by c.
Raise Invalid_argument "set_nth_char" if n is ouside the range 0 to
(string_length s - 1). You can also write s.[n] <- c instead of set_nth_char s n c.

value prefix string -> string -> string

s1 = s2 returns a fresh string containing the concatenation of the strings s1 and s2.
value concat : string list -> string

Return a fresh string containing the concatenation of all the strings in the argument list.

value sub_string : string -> int -> int -> string

sub_string s start len returns a fresh string of length len, containing the characters
number start to start + len - 1 of string s. Raise Invalid_argument "sub_string" if
start and len do not designate a valid substring of s; that is, if start < 0, or len < 0, or
start + len > string_length s.

value create_string : int -> string

create_string n returns a fresh string of length n. The string initially contains arbitrary
characters.

value make_string : int -> char -> string
make_string n c returns a fresh string of length n, filled with the character c.
value fill_string : string -> int -> int -> char -> unit

fill_string s start len c modifies string s in place, replacing the characters number
start to start + len - 1 by c. Raise Invalid_argument "fill_string" if start and
len do not designate a valid substring of s.

Chapter 13. The core library 133

value blit_string : string -> int -> string -> int -> int -> unit

blit_string s1 ol s2 o2 len copies len characters from string s1, starting at character
number o1, to string s2, starting at character number 02. It works correctly even if s1 and
s2 are the same string, and the source and destination chunks overlap. Raise
Invalid_argument "blit_string" if ol and len do not designate a valid substring of s1,
or if 02 and len do not designate a valid substring of s2.

value replace_string : string -> string -> int -> unit

replace_string dest src start copies all characters from the string src into the string
dst, starting at character number start in dst. Raise
Invalid_argument "replace_string" if copying would overflow string dest.

value eq_string : string -> string -> bool
value neq_string : string -> string -> bool
value le_string : string -> string -> bool
value lt_string : string -> string -> bool
value ge_string : string -> string -> bool
value gt_string : string -> string -> bool

Comparison functions (lexicographic ordering) between strings.
value compare_strings : string -> string -> int

General comparison between strings. compare_strings sl s2 returns 0 if s1 and s2 are
equal, or else -2 if s1 is a prefix of 82, or 2 if 82 is a prefix of s1, or else -1 if 81 is
lexicographically before s2, or 1 if s2 is lexicographically before s1.

value string_for_read : string -> string

Return a copy of the argument, with special characters represented by escape sequences,
following the lexical conventions of Caml Light.

value index_char: string -> char -> int

index_char s c returns the position of the leftmost occurrence of character c in string s.
Raise Not_found if ¢ does not occur in s.

value rindex_char: string -> char -> int

rindex_char s c returns the position of the rightmost occurrence of character ¢ in string
s. Raise Not_found if ¢ does not occur in s.

value index_char_from: string -> int -> char -> int
value rindex_char_from: string -> int -> char -> int

Same as index_char and rindex_char, but start searching at the character position given
as second argument. index_char s c is equivalent to index_char_from s 0 ¢, and
rindex_char s c to rindex_char_from s (string_length s - 1) c.

134

13.17 vect: operations on vectors

value vect_length : ’a vect -> int
Return the length (number of elements) of the given vector.
value vect_item : ’a vect -> int -> ’a

vect_item v n returns the element number n of vector v. The first element has number 0.
The last element has number vect_length v - 1. Raise Invalid_argument "vect_item"
if n is outside the range 0 to (vect_length v - 1). You can also write v. (n) instead of
vect_item v n.

value vect_assign : ’a vect -> int -> ’a -> unit

vect_assign v n x modifies vector v in place, replacing element number n with x. Raise
Invalid_argument "vect_assign" if n is outside the range 0 to vect_length v - 1. You
can also write v.(n) <- x instead of vect_assign v n x.

value make_vect : int -> ’a -> ’a vect

make_vect n x returns a fresh vector of length n, initialized with x. All the elements of this
new vector are initially physically equal to x (see module eq). Consequently, if x is mutable,
it is shared among all elements of the vector, and modifying x through one of the vector
entries will modify all other entries at the same time.

value make_matrix : int -> int -> ’a -> ’a vect vect

make_matrix dimx dimy e returns a two-dimensional array (a vector of vectors) with first
dimension dimx and second dimension dimy. All the elements of this new matrix are
initially physically equal to e. The element (x,y) of a matrix m is accessed with the notation

m. (x).(y).
value init_vect : int -> (int -> ’a) -> ’a vect

init_vect n f returns a fresh array of length n, with element number i equal to £ i.
value concat_vect : ’a vect -> ’a vect -> ’a vect

concat_vect vl v2 returns a fresh vector containing the concatenation of vectors v1 and
V2.

value sub_vect : ’a vect -> int -> int -> ’a vect

sub_vect v start len returns a fresh vector of length len, containing the elements
number start to start + len - 1 of vector v. Raise Invalid_argument "sub_vect" if
start and len do not designate a valid subvector of v; that is, if start < 0, or len < 0, or
start + len > vect_length v.

value copy_vect : ’a vect -> ’a vect

copy_vect v returns a copy of v, that is, a fresh vector containing the same elements as v.

Chapter 13. The core library 135

value fill_vect : ’a vect -> int -> int -> ’a -> unit

fill_vect v ofs len x modifies the vector v in place, storing x in elements number ofs
to ofs + len - 1. Raise Invalid_argument "fill_vect" if ofs and len do not designate
a valid subvector of v.

value blit_vect : ’a vect -> int -> ’a vect -> int -> int -> unit

blit_vect vl ol v2 02 len copies len elements from vector vi, starting at element
number o1, to vector v2, starting at element number o2. It works correctly even if v1 and
v2 are the same vector, and the source and destination chunks overlap. Raise
Invalid_argument "blit_vect" if ol and len do not designate a valid subvector of v1, or
if 02 and len do not designate a valid subvector of v2.

value list_of_vect : ’a vect -> ’a list

list_of_vect v returns the list of all the elements of v, that is:
[v.(0); v.(1); ...; v.(vect_length v - 1)].

value vect_of_list : ’a list -> ’a vect
vect_of_list 1 returns a fresh vector containing the elements of 1.
value map_vect : (’a -> ’b) -> ’a vect -> ’b vect

map_vect f v applies function £ to all the elements of v, and builds a vector with the
results returned by £: [| £ v.(0); £ v.(1); ...; f v.(vect_length v - 1) I|].

value map_vect_list : (’a -> ’b) -> ’a vect -> ’b list

map_vect_list f v applies function £ to all the elements of v, and builds a list with the
results returned by £: [£ v.(0); £ v.(1); ...; £ v.(vect_length v - 1)].

value do_vect : (Pa -> unit) -> ’a vect -> unit

do_vect f v applies function £ in turn to all the elements of v, discarding all the results:
fv.(0); £v.(1); ...; £ v.(vect_length v - 1); Q.

136

Chapter 14

The standard library

This chapter describes the functions provided by the Caml Light standard library. Just as the
modules from the core library, the modules from the standard library are automatically linked with
the user’s object code files by the camlc command. Hence, the globals defined by these libraries
can be used in standalone programs without having to add any .zo file on the command line for the
linking phase. Similarly, in interactive use, these globals can be used in toplevel phrases without
having to load any .zo file in memory.

Unlike the modules from the core library, the modules from the standard library are not auto-
matically “opened” when a compilation starts, or when the toplevel system is launched. Hence it
is necessary to use qualified identifiers to refer to the functions provided by these modules, or to
add #open directives.

Conventions

For easy reference, the modules are listed below in alphabetical order of module names. For each
module, the declarations from its interface file are printed one by one in typewriter font, followed
by a short comment. All modules and the identifiers they export are indexed at the end of this
report.

14.1 arg: parsing of command line arguments

This module provides a general mechanism for extracting options and arguments from the
command line to the program.

Syntax of command lines: A keyword is a character string starting with a -. An option is a
keyword alone or followed by an argument. There are four types of keywords: Unit, String,
Int, and Float. Unit keywords do not take an argument. String, Int, and Float keywords
take the following word on the command line as an argument. Arguments not preceded by a
keyword are called anonymous arguments.

Examples (cmd is assumed to be the command name):

cmd -flag (a unit option)

137

138

type

cmd -int 1 (an int option with argument 1)
cmd -string foobar (a string option with argument "foobar")
cmd -float 12.34 (a float option with argument 12.34)
cmd 1 2 3 (three anonymous arguments: "1", "2" and "3")
cmd 1 2 -flag 3 -string bar 4
(four anonymous arguments, a unit option, and

a string option with argument "bar")

spec =

String of (string -> unit)
| Int of (int -> unit)
| Unit of (unit -> unit)
| Float of (float -> unit)

The concrete type describing the behavior associated with a keyword.

value parse : (string * spec) list -> (string -> unit) -> unit

parse speclist anonfun parses the command line, calling the functions in speclist
whenever appropriate, and anonfun on anonymous arguments. The functions are called in
the same order as they appear on the command line. The strings in the

(string * spec) list are keywords and must start with a -, else they are ignored. For
the user to be able to specify anonymous arguments starting with a -, include for example
("--", String anonfun) in speclist.

exception Bad of string

Functions in speclist or anonfun can raise Bad with an error message to reject invalid
arguments.

14.2 Dbaltree: basic balanced binary trees

type

type

This module implements balanced ordered binary trees. All operations over binary trees are
applicative (no side-effects). The set and map modules are based on this module. This
modules gives a more direct access to the internals of the binary tree implementation than
the set and map abstractions, but is more delicate to use and not as safe. For advanced
users only.

’a t = Empty | Node of ’a t * ’a * ’a t * int

The type of trees containing elements of type ’a. Empty is the empty tree (containing no
elements).

’a contents = Nothing | Something of ’a

Used with the functions modify and split, to represent the presence or the absence of an
element in a tree.

Chapter 14. The standard library 139

value add: (’a -> int) -> ’a -> ’a t -> ’a t

add £ x t inserts the element x into the tree t. £ is an ordering function: £ y must return
0 if x and y are equal (or equivalent), a negative integer if x is smaller than y, and a positive
integer if x is greater than y. The tree t is returned unchanged if it already contains an
element equivalent to x (that is, an element y such that £ y is 0). The ordering £ must be
consistent with the orderings used to build t with add, remove, modify or split operations.

value contains: (’a -> int) -> ’a t -> bool

contains f t checks whether t contains an element satisfying £, that is, an element x such
that £ xis 0. f is an ordering function with the same constraints as for add. It can be
coarser (identify more elements) than the orderings used to build t, but must be consistent
with them.

value find: (’a -> int) -> ’a t -> ’a

Same as contains, except that find f t returns the element x such that £ x is 0, or raises
Not_found if none has been found.

value remove: (’a -> int) -> ’a t -> ’a t

remove f t removes one element x of t such that £ x is 0. £ is an ordering function with
the same constraints as for add. t is returned unchanged if it does not contain any element
satisfying £. If several elements of t satisfy £, only one is removed.

value modify: (’a -> int) -> (’a contents -> ’a contents) -> ’a t -> ’a t

General insertion/modification/deletion function. modify £ g t searchs t for an element x
satisfying the ordering function £. If one is found, g is applied to Something x; if g returns
Nothing, the element x is removed; if g returns Something y, the element y replaces x in
the tree. (It is assumed that x and y are equivalent, in particular, that £ y is 0.) If the tree
does not contain any x satisfying £, g is applied to Nothing; if it returns Nothing, the tree
is returned unchanged; if it returns Something x, the element x is inserted in the tree. (It is
assumed that £ x is 0.) The functions add and remove are special cases of modify, slightly
more efficient.

value split: (’a -> int) -> ’a t -> ’a t * ’a contents * ’a t

split f t returns a triple (less, elt, greater) where less is a tree containing all
elements x of t such that £ x is negative, greater is a tree containing all elements x of t
such that £ x is positive, and elt is Something x if t contains an element x such that £ x
is 0, and Nothing otherwise.

value compare: (’a -> ’a -> int) -> ’a t -> ’a t -> int

Compare two trees. The first argument £ is a comparison function over the tree elements:
f el e2is zero if the elements el and e2 are equal, negative if el is smaller than e2, and
positive if el is greater than e2. compare f t1 t2 compares the fringes of t1 and t2 by

lexicographic extension of £.

140

14.3 filename: operations on file names

value current_dir_name : string

The conventional name for the current directory (e.g. . in Unix).
value concat : string -> string -> string

concat dir file returns a file name that designates file file in directory dir.
value is_absolute : string -> bool

Return true if the file name is absolute or starts with an explicit reference to the current
directory (./ or ../ in Unix), and false if it is relative to the current directory.

value check_suffix : string -> string -> bool
check_suffix name suff returns true if the filename name ends with the suffix suff.
value chop_suffix : string -> string -> string

chop_suffix name suff removes the suflix suff from the filename name. The behavior is
undefined if name does not end with the suffix suff.

value basename : string -> string
value dirname : string -> string

Split a file name into directory name / base file name.

concat (dirname name) (basename name) returns a file name which is equivalent to name.
Moreover, after setting the current directory to dirname name (with sys__chdir),
references to basename name (which is a relative file name) designate the same file as name
before the call to chdir.

14.4 format: pretty printing

This module implements a pretty-printing facility to format text within “pretty-printing
boxes”. The pretty-printer breaks lines at specified break hints, and indents lines according
to the box structure.

Rule of thumb for casual users:
use simple boxes (as obtained by open_box 0);

use simple break hints (as obtained by print_cut () that outputs a simple break hint, or
by print_space () that ouputs a space indicating a break hint);

once a box is opened, display its material with basic printing functions (e. g. print_int
and print_string);
when the material for a box has been printed, call close_box () to close the box;

at the end of your routine, evaluate print_newline () to close all remaining boxes and
flush the pretty-printer.

Chapter 14. The standard library 141

You may alternatively consider this module as providing an extension to the printf facility:
you can simply add pretty-printing annotations to your regular printf formats, as explained
below in the documentation of the function fprintf.

The behaviour of pretty-printing commands is unspecified if there is no opened
pretty-printing box. Each box opened via one of the open_ functions below must be closed
using close_box for proper formatting. Otherwise, some of the material printed in the
boxes may not be output, or may be formatted incorrectly.

In case of interactive use, the system closes all opened boxes and flushes all pending text (as
with the print_newline function) after each phrase. Fach phrase is therefore executed in
the initial state of the pretty-printer.

Boxes

value open_box : int -> unit

open_box d opens a new pretty-printing box with offset d. This box is the general purpose
pretty-printing box. Material in this box is displayed “horizontal or vertical”: break hints
inside the box may lead to a new line, if there is no more room on the line to print the
remainder of the box, or if a new line may lead to a new indentation (demonstrating the
indentation of the box). When a new line is printed in the box, d is added to the current
indentation.

value close_box : unit -> unit

Close the most recently opened pretty-printing box.

Formatting functions

value print_string : string -> unit
print_string str prints str in the current box.

value print_as : int -> string -> unit

print_as len str prints str in the current box. The pretty-printer formats str as if it
were of length len.

value print_int : int -> unit
Print an integer in the current box.
value print_float : float -> unit
Print a floating point number in the current box.
value print_char : char -> unit
Print a character in the current box.
value print_bool : bool -> unit

Print an boolean in the current box.

142

Break hints
value print_space : unit -> unit

print_space () is used to separate items (typically to print a space between two words). It
indicates that the line may be split at this point. It either prints one space or splits the line.
It is equivalent to print_break 1 O.

value print_cut : unit -> unit

print_cut () is used to mark a good break position. It indicates that the line may be split
at this point. It either prints nothing or splits the line. This allows line splitting at the
current point, without printing spaces or adding indentation. It is equivalent to
print_break 0 O.

value print_break : int -> int -> unit

Insert a break hint in a pretty-printing box. print_break nspaces offset indicates that
the line may be split (a newline character is printed) at this point, if the contents of the
current box does not fit on one line. If the line is split at that point, offset is added to the
current indentation. If the line is not split, nspaces spaces are printed.

value print_flush : unit -> unit

Flush the pretty printer: all opened boxes are closed, and all pending text is displayed.
value print_newline : unit -> unit

Equivalent to print_flush followed by a new line
value force_newline : unit -> unit

Force a newline in the current box. Not the normal way of pretty-printing, you should
prefer break hints.

value print_if_newline : unit -> unit

Execute the next formatting command if the preceding line has just been split. Otherwise,
ignore the next formatting command.

Margin
value set_margin : int -> unit

set_margin d sets the value of the right margin to d (in characters): this value is used to
detect line overflows that leads to split lines. Nothing happens if d is smaller than 2 or
bigger than 999999999.

value get_margin : unit -> int

Return the position of the right margin.

Chapter 14. The standard library 143

Maximum indentation limit
value set_max_indent : int -> unit

set_max_indent d sets the value of the maximum indentation limit to d (in characters):
once this limit is reached, boxes are rejected to the left, if they do not fit on the current line.
Nothing happens if d is smaller than 2 or bigger than 999999999.

value get_max_indent : unit -> int

Return the value of the maximum indentation limit (in characters).

Formatting depth: maximum number of boxes allowed before ellipsis

value set_max_boxes : int -> unit

set_max_boxes max sets the maximum number of boxes simultaneously opened. Material
inside boxes nested deeper is printed as an ellipsis (more precisely as the text returned by
get_ellipsis_text ()). Nothing happens if max is not greater than 1.

value get_max_boxes : unit -> int
Return the maximum number of boxes allowed before ellipsis.
value over_max_boxes : unit -> bool

Test the maximum number of boxes allowed have already been opened.

Advanced formatting
value open_hbox : unit -> unit

open_hbox () opens a new pretty-printing box. This box is “horizontal”: the line is not
split in this box (new lines may still occur inside boxes nested deeper).

value open_vbox : int -> unit

open_vbox d opens a new pretty-printing box with offset d. This box is “vertical”: every
break hint inside this box leads to a new line. When a new line is printed in the box, d is
added to the current indentation.

value open_hvbox : int -> unit

open_hvbox d opens a new pretty-printing box with offset d. This box is
“horizontal-vertical”: it behaves as an “horizontal” box if it fits on a single line, otherwise it
behaves as a “vertical” box. When a new line is printed in the box, d is added to the
current indentation.

value open_hovbox : int -> unit

open_hovbox d opens a new pretty-printing box with offset d. This box is “horizontal or
vertical”: break hints inside this box may lead to a new line, if there is no more room on the
line to print the remainder of the box. When a new line is printed in the box, d is added to
the current indentation.

144

Tabulations

value open_tbox : unit -> unit

Open a tabulation box.
value close_tbox : unit -> unit

Close the most recently opened tabulation box.
value print_tbreak : int -> int -> unit

Break hint in a tabulation box. print_tbreak spaces offset moves the insertion point to
the next tabulation (spaces being added to this position). Nothing occurs if insertion point
is already on a tabulation mark. If there is no next tabulation on the line, then a newline is
printed and the insertion point moves to the first tabulation of the box. If a new line is
printed, offset is added to the current indentation.

value set_tab : unit -> unit
Set a tabulation mark at the current insertion point.
value print_tab : unit -> unit

print_tab () is equivalent to print_tbreak (0,0)

Ellipsis
value set_ellipsis_text : string -> unit

Set the text of the ellipsis printed when too many boxes are opened (a single dot, ., by
default).

value get_ellipsis_text : unit -> string

Return the text of the ellipsis.

Redirecting formatter output

value set_formatter_out_channel : out_channel -> unit
Redirect the pretty-printer output to the given channel.
value set_formatter_output_functions :
(string -> int -> int -> unit) -> (unit -> unit) -> unit

set_formatter_output_functions out flush redirects the pretty-printer output to the
functions out and flush. The out function performs the pretty-printer output. It is called
with a string s, a start position p, and a number of characters n; it is supposed to output
characters p to p+n-1 of s. The flush function is called whenever the pretty-printer is
flushed using print_flush or print_newline.

value get_formatter_output_functions :
unit -> (string -> int -> int -> unit) * (unit -> unit)

Return the current output functions of the pretty-printer.

Chapter 14. The standard library 145

Multiple formatted output
type formatter

Abstract data type corresponding to a pretty-printer and all its machinery. Defining new
pretty-printers permits the output of material in parallel on several channels. Parameters of
the pretty-printer are local to the pretty-printer: margin, maximum indentation limit,
maximum number of boxes simultaneously opened, ellipsis, and so on, are specific to each
pretty-printer and may be fixed independently. A new formatter is obtained by calling the
make_formatter function.

value std_formatter : formatter

The standard formatter used by the formatting functions above. It is defined using
make_formatter with output function output stdout and flushing function
fun () -> flush stdout.

value err_formatter : formatter

A formatter to use with formatting functions below for output to standard error. It is
defined using make_formatter with output function output stderr and flushing function
fun () -> flush stderr.

value make_formatter :
(string -> int -> int -> unit) -> (unit -> unit) -> formatter

make_formatter out flush returns a new formatter that writes according to the output
function out, and flushing function flush. Hence, a formatter to out channel oc is returned
by make_formatter (output oc) (fun () -> flush oc).

value pp_open_hbox : formatter -> unit -> unit

value pp_open_vbox : formatter -> int -> unit

value pp_open_hvbox : formatter -> int -> unit

value pp_open_hovbox : formatter -> int -> unit

value pp_open_box : formatter -> int -> unit

value pp_close_box : formatter -> unit -> unit

value pp_print_string : formatter -> string -> unit
value pp_print_as : formatter -> int -> string -> unit
value pp_print_int : formatter -> int -> unit

value pp_print_float : formatter -> float -> unit
value pp_print_char : formatter -> char -> unit

value pp_print_bool : formatter -> bool -> unit

value pp_print_break : formatter -> int -> int -> unit
value pp_print_cut : formatter -> unit -> unit

value pp_print_space : formatter -> unit -> unit

value pp_force_newline : formatter -> unit -> unit
value pp_print_flush : formatter -> unit -> unit

value pp_print_newline : formatter -> unit -> unit
value pp_print_if_newline : formatter -> unit -> unit

146

value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value

value

pp-open_tbox : formatter -> unit -> unit
pp-close_tbox : formatter -> unit -> unit
pp-print_tbreak : formatter -> int -> int -> unit
pp-set_tab : formatter -> unit -> unit
pp-_print_tab : formatter -> unit -> unit
pp-set_margin : formatter -> int -> unit
pp-get_margin : formatter -> unit -> int
pp-set_max_indent : formatter -> int -> unit
pp-get_max_indent : formatter -> unit -> int
pp-set_max_boxes : formatter -> int -> unit
pp-get_max_boxes : formatter -> unit -> int
pp-over_max_boxes : formatter -> unit -> bool
pp-_set_ellipsis_text : formatter -> string -> unit
pp-_get_ellipsis_text : formatter -> unit -> string
pp-set_formatter_out_channel : formatter -> out_channel -> unit
pp-set_formatter_output_functions : formatter ->
(string -> int -> int -> unit) -> (unit -> unit) -> unit
pp-_get_formatter_output_functions :
formatter -> unit -> (string -> int -> int -> unit) * (unit -> unit)

The basic functions to use with formatters. These functions are the basic ones: usual
functions operating on the standard formatter are defined via partial evaluation of these
primitives. For instance, print_string is equal to pp_print_string std_formatter.

value

fprintf : formatter -> (’a, formatter, unit) format -> ’a

fprintf ff format argl ... arglN formats the arguments argl to argll according to the
format string format, and outputs the resulting string on the formatter ££f. The format is a
character string which contains three types of objects: plain characters and conversion
specifications as specified in the printf module, and pretty-printing indications. The
pretty-printing indication characters are introduced by a @ character, and their meanings
are:

[: open a pretty-printing box. The type and offset of the box may be optionally specified
with the following syntax: the < character, followed by an optional box type indication, then
an optional integer offset, and the closing > character. Box type is one of h, v, hv, or hov,
which stand respectively for an horizontal, vertical, “horizontal-vertical” and “horizontal or
vertical” box.

1: close the most recently opened pretty-printing box.
,: output a good break as with print_cut ().

: output a space, as with print_space ()

\n: force a newline, as with force_newline ().

;0 output a good break as with print_break. The nspaces and offset parameters of the
break may be optionally specified with the following syntax: the < character, followed by an
integer nspaces value, then an integer offset, and a closing > character.

.: flush the pretty printer as with print_newline ().

@: a plain @ character.

Chapter 14. The standard library 147

value printf : (’a, formatter, unit) format -> ’a
Same as fprintf, but output on std_formatter.
value eprintf: (’a, formatter, unit) format -> ’a

Same as fprintf, but output on err_formatter.

14.5 gc: memory management control and statistics

type stat = {
minor_words : int;
promoted_words : int;
major_words : int;
minor_collections : int;
major_collections : int;
heap_words : int;
heap_chunks : int;
live_words : int;
live_blocks : int;
free_words : int;
free_blocks : int;
largest_words : int;
fragments : int

The memory management counters are returned in a stat record. All the numbers are
computed since the start of the program. The fields of this record are:

minor_words Number of words allocated in the minor heap.

promoted_words Number of words allocated in the minor heap that survived a minor
collection and were moved to the major heap.

major_words Number of words allocated in the major heap, including the promoted words.
minor_collections Number of minor collections.
major_collections Number of major collection cycles, not counting the current cycle.
heap_words Total size of the major heap, in words.

heap_chunks Number of times the major heap size was increased.

live_words Number of words of live data in the major heap, including the header words.
live_blocks Number of live objects in the major heap.

free_words Number of words in the free list.

free_blocks Number of objects in the free list.

largest_words Size (in words) of the largest object in the free list.

fragments Number of wasted words due to fragmentation. These are 1-words free blocks
placed between two live objects. They cannot be inserted in the free list, thus they are not
available for allocation.

148

The total amount of memory allocated by the program is (in words)
minor_words + major_words - promoted_words. Multiply by the word size (4 on a 32-bit
machine, 8 on a 64-bit machine) to get the number of bytes.

type control = {
mutable minor_heap_size : int;
mutable major_heap_increment : int;
mutable space_overhead : int;
mutable verbose : bool

The GC parameters are given as a control record. The fields are:

minor_heap_size The size (in words) of the minor heap. Changing this parameter will
trigger a minor collection.

major_heap_increment The minimum number of words to add to the major heap when
increasing it.

space_overhead The major GC speed is computed from this parameter. This is the
percentage of heap space that will be "wasted” because the GC does not immediatly collect
unreachable objects. The GC will work more (use more CPU time and collect objects more
eagerly) if space_overhead is smaller. The computation of the GC speed assumes that the
amount of live data is constant.

verbose This flag controls the GC messages on standard error output.
value stat : unit -> stat

Return the current values of the memory management counters in a stat record.
value print_stat : ilo__out_channel -> unit

Print the current values of the memory management counters (in human-readable form)
into the channel argument.

value get : unit -> control
Return the current values of the GC parameters in a control record.
value set : control -> unit

set r changes the GC parameters according to the control record r. The normal usage is:

let r = gc__get () in (* Get the current parameters. *)
r.verbose <- true; (* Change some of them. *)
gc__set T (* Set the new values. *)

value minor : unit -> unit

Trigger a minor collection.

Chapter 14. The standard library 149

value major : unit -> unit
Finish the current major collection cycle.
value full_major : unit -> unit

Finish the current major collection cycle and perform a complete new cycle. This will
collect all currently unreachable objects.

14.6 genlex: a generic lexical analyzer

This module implements a simple “standard” lexical analyzer, presented as a function from
character streams to token streams. It implements roughly the lexical conventions of Caml,
but is parameterized by the set of keywords of your language.

type token =

Kwd of string
Ident of string
Int of int

Float of float
String of string
Char of char

The type of tokens. The lexical classes are: Int and Float for integer and floating-point
numbers; String for string literals, enclosed in double quotes; Char for character literals,
enclosed in backquotes; Ident for identifiers (either sequences of letters, digits, underscores
and quotes, or sequences of “operator characters” such as +, *, etc); and Kwd for keywords
(either identifiers or single “special characters” such as (, }, etc).

value make_lexer: string list -> (char stream -> token stream)

Construct the lexer function. The first argument is the list of keywords. An identifier s is
returned as Kwd s if s belongs to this list, and as Ident s otherwise. A special character s
is returned as Kwd s if s belongs to this list, and cause a lexical error (exception
Parse_error) otherwise. Blanks and newlines are skipped. Comments delimited by (* and
*) are skipped as well, and can be nested.

Example: a lexer suitable for a desk calculator is obtained by
let leXer = make leXer [I|+II;II_II;II*II;II/II;IIletII;“:II; II(II; II)II]

The associated parser would be a function from token stream to, for instance, int, and
would have rules such as:

150

let parse_expr = function
[< ’Int n>] ->n
| [< ’Kwd "("; parse_expr n; ’Kwd ")" >] ->n
| [< parse_expr nl; (parse_remainder nl) n2 >] -> n2
and parse_remainder nl = function
[< ’Kwd "+"; parse_expr n2 >] -> ni+n2

14.7 hashtbl: hash tables and hash functions

Hash tables are hashed association tables, with in-place modification.
type (Ca, ’b) t

The type of hash tables from type ’a to type ’b.
value new : int -> (’a,’b) t

new n creates a new, empty hash table, with initial size n. The table grows as needed, so n
is just an initial guess. Better results are said to be achieved when n is a prime number.
Raise Invalid_argument "hashtbl__new" if n is less than 1.

value clear : (’a, ’b) t -> unit
Empty a hash table.
value add : (’a, ’b) t -> ’a -> ’b -> unit

add tbl x y adds a binding of x to y in table tbl. Previous bindings for x are not
removed, but simply hidden. That is, after performing remove tbl x, the previous binding
for x, if any, is restored. (This is the semantics of association lists.)

value find : (’a, ’b) t -> ’a -> ’b

find tbl x returns the current binding of x in tbl, or raises Not_found if no such binding
exists.

value find_all : (’a, ’b) t -> ’a -> ’b list

find_all tbl x returns the list of all data associated with x in tbl. The current binding is
returned first, then the previous bindings, in reverse order of introduction in the table.

value remove : (’a, ’b) t -> ’a -> unit

remove tbl x removes the current binding of x in tbl, restoring the previous binding if it
exists. It does nothing if x is not bound in tbl.

Chapter 14. The standard library 151

value do_table : (’a -> ’b -> unit) -> (’a, ’b) t -> unit

do_table f tbl applies f to all bindings in table tbl, discarding all the results. £ receives
the key as first argument, and the associated value as second argument. Fach binding is
presented exactly once to £. The order in which the bindings are passed to £ is
unpredictable, except that successive bindings for the same key are presented in reverse
chronological order (most recent first).

value do_table_rev : (’a -> ’b -> unit) -> (Pa, ’b) t -> unit

Same as do_table, except that successive bindings for the same key are presented in
chronological order (oldest first).

The polymorphic hash primitive
value hash : ’a -> int

hash x associates a positive integer to any value of any type. It is guaranteed that if x = y,
then hash x = hash y. Moreover, hash always terminates, even on cyclic structures.

value hash_param : int -> int -> ’a -> int

hash_param n m x computes a hash value for x, with the same properties as for hash. The
two extra parameters n and m give more precise control over hashing. Hashing performs a
depth-first, right-to-left traversal of the structure x, stopping after n meaningful nodes were
encountered, or m nodes, meaningful or not, were encountered. Meaningful nodes are:
integers; floating-point numbers; strings; characters; booleans; and constant constructors.
Larger values of m and n means that more nodes are taken into account to compute the final
hash value, and therefore collisions are less likely to happen. However, hashing takes longer
The parameters m and n govern the tradeoff between accuracy and speed.

14.8 1lexing: the run-time library for lexers generated by
camllex

Lexer buffers

type lexbuf =

{ refill_buff : lexbuf -> unit;
lex_buffer : string;
mutable lex_abs_pos : int;
mutable lex_start_pos : int;
mutable lex_curr_pos : int;
mutable lex_last_pos : int;
mutable lex_last_action : lexbuf -> obj }

The type of lexer buffers. A lexer buffer is the argument passed to the scanning functions
defined by the generated scanners. The lexer buffer holds the current state of the scanner,
plus a function to refill the buffer from the input.

152

value create_lexer_channel : in_channel -> lexbuf

Create a lexer buffer on the given input channel. create_lexer_channel inchan returns a
lexer buffer which reads from the input channel inchan, at the current reading position.

value create_lexer_string : string -> lexbuf

Create a lexer buffer which reads from the given string. Reading starts from the first
character in the string. An end-of-input condition is generated when the end of the string is
reached.

value create_lexer : (string -> int -> int) -> lexbuf

Create a lexer buffer with the given function as its reading method. When the scanner needs
more characters, it will call the given function, giving it a character string s and a character
count n. The function should put n characters or less in s, starting at character number 0,
and return the number of characters provided. A return value of 0 means end of input.

Functions for lexer semantic actions

The following functions can be called from the semantic actions of lexer definitions (the ML
code enclosed in braces that computes the value returned by lexing functions). They give
access to the character string matched by the regular expression associated with the
semantic action. These functions must be applied to the argument lexbuf, which, in the
code generated by camllex, is bound to the lexer buffer passed to the parsing function.

value get_lexeme : lexbuf -> string

get_lexeme lexbuf returns the string matched by the regular expression.
value get_lexeme_char : lexbuf -> int -> char

get_lexeme_char lexbuf i returns character number i in the matched string.
value get_lexeme_start : lexbuf -> int

get_lexeme_start lexbuf returns the position in the input stream of the first character of
the matched string. The first character of the stream has position 0.

value get_lexeme_end : lexbuf -> int

get_lexeme_end lexbuf returns the position in the input stream of the character following
the last character of the matched string. The first character of the stream has position 0.

Chapter 14. The standard library 153

14.9 map: association tables over ordered types

This module implements applicative association tables, also known as finite maps or
dictionaries, given a total ordering function over the keys. All operations over maps are
purely applicative (no side-effects). The implementation uses balanced binary trees, and
therefore searching and insertion take time logarithmic in the size of the map.

type (’a, ’b) t
The type of maps from type ’a to type ’b.
value empty: (’a -> ’a -> int) -> (’a, ’b) t

The empty map. The argument is a total ordering function over the set elements. This is a
two-argument function £ such that £ el e2is zero if the elements el and e2 are equal,

f el e2is strictly negative if el is smaller than €2, and £ el e2 is strictly positive if el is
greater than e2. Examples: a suitable ordering function for type int is prefix -. You can
also use the generic structural comparison function eq__compare.

value add: ’a -> ’b -> (’a, ’b) t -> (’a, ’b) t
add x y mreturns a map containing the same bindings as m, plus a binding of x to y.

Previous bindings for x in m are not removed, but simply hidden: they reappear after
performing a remove operation. (This is the semantics of association lists.)

value find:’a -> (’a, ’b) t -> ’b
find x mreturns the current binding of x in m, or raises Not_found if no such binding exists.
value remove: ’a -> (’a, ’b) t -> (Pa, ’b) t

remove x m returns a map containing the same bindings as m except the current binding for
x. The previous binding for x is restored if it exists. m is returned unchanged if x is not
bound in m.

value iter: (’a -> ’b -> unit) -> (Pa, ’b) t -> unit

iter £ m applies £ to all bindings in map m, discarding the results. f receives the key as
first argument, and the associated value as second argument. The order in which the
bindings are passed to f is unspecified. Only current bindings are presented to f: bindings
hidden by more recent bindings are not passed to f.

14.10 parsing: the run-time library for parsers generated by
camlyacc

value symbol_start : unit -> int
value symbol_end : unit -> int

symbol_start and symbol_end are to be called in the action part of a grammar rule only.
They return the position of the string that matches the left-hand side of the rule:
symbol_start() returns the position of the first character; symbol_end () returns the
position of the last character, plus one. The first character in a file is at position 0.

154

value rhs_start: int -> int
value rhs_end: int -> int

Same as symbol_start and symbol_end above, but return the position of the string
matching the nth item on the right-hand side of the rule, where n is the integer parameter
to lhs_start and lhs_end. nis 1 for the leftmost item.

value clear_parser : unit -> unit

Empty the parser stack. Call it just after a parsing function has returned, to remove all
pointers from the parser stack to structures that were built by semantic actions during
parsing. This is optional, but lowers the memory requirements of the programs.

exception Parse_error

Raised when a parser encounters a syntax error.

14.11 printexc: a catch-all exception handler
value f: (’a -> ’b) -> ’a -> ’b

printexc__f fn x applies fn to x and returns the result. If the evaluation of fn x raises
any exception, the name of the exception is printed on standard error output, and the
programs aborts with exit code 2. Typical use is printexc__f main (), where main, with
type unit->unit, is the entry point of a standalone program, to catch and print stray
exceptions. For printexc__f to work properly, the program must have been linked with the
-g option.

14.12 printf: formatting printing functions
type (’a, ’b, ’c) format

The type of format strings. ’a is the type of the parameters of the string, ’c is the result
type for the printf-style function, and ’b is the type of the first argument given to %a and
ht printing functions.

value fprintf: out_channel -> (’a, out_channel, unit) format -> ’a

fprintf outchan format argl ... arglN formats the arguments argl to arglN according
to the format string format, and outputs the resulting string on the channel outchan. The
format is a character string which contains two types of objects: plain characters, which are
simply copied to the output channel, and conversion specifications, each of which causes
conversion and printing of one argument. Conversion specifications consist in the %
character, followed by optional flags and field widths, followed by one conversion character.
The conversion characters and their meanings are:

d or i: convert an integer argument to signed decimal

Chapter 14. The standard library 155

: convert an integer argument to unsigned decimal

: convert an integer argument to unsigned hexadecimal, using lowercase letters.

< oHWoe

: convert an integer argument to unsigned hexadecimal, using uppercase letters.

0]

: insert a string argument

c: insert a character argument

f: convert a floating-point argument to decimal notation, in the style dddd.ddd
e

or E: convert a floating-point argument to decimal notation, in the style d.ddd e+-dd
(mantissa and exponent)

g or G: convert a floating-point argument to decimal notation, in style £ or e, E (whichever
is more compact)

b: convert a boolean argument to the string true or false

a: user-defined printer. Takes two arguments and apply the first one to outchan (the
current output channel) and to the second argument. The first argument must therefore
have type out_channel -> ’b -> unit and the second ’b. The output produced by the
function is therefore inserted in the output of fprintf at the current point.

t: same as %a, but takes only one argument (with type out_channel -> unit) and apply it
to outchan.

Refer to the C library printf function for the meaning of flags and field width specifiers. If
too few arguments are provided, printing stops just before converting the first missing
argument.

value printf: (’a, out_channel, unit) format -> ’a
Same as fprintf, but output on std_out.

value eprintf: (’a, out_channel, unit) format -> ’a
Same as fprintf, but output on std_err.

value sprintf: (’a, unit, string) format -> ’a

Same as fprintf, except that the result of the formatting is returned as a string instead of
being written on a channel.

value fprint: out_channel -> string -> unit

Print the given string on the given output channel, without any formatting. This is the
same function as output_string of module io.

value print: string -> unit

Print the given string on std_out, without any formatting. This is the same function as
print_string of module io.

value eprint: string -> unit

Print the given string on std_err, without any formatting. This is the same function as
prerr_string of module io.

156

14.13 queue: queues

This module implements queues (FIFOs), with in-place modification.
type ’a t

The type of queues containing elements of type ’a.
exception Empty

Raised when take is applied to an empty queue.
value new: unit -> ’a t

Return a new queue, initially empty.
value add: ’a -> ’a t -> unit

add x q adds the element x at the end of the queue q.
value take: ’a t -> ’a

take q removes and returns the first element in queue q, or raises Empty if the queue is
empty.

value peek: ’a t -> ’a

peek q returns the first element in queue q, without removing it from the queue, or raises
Empty if the queue is empty.

value clear : ’a t -> unit

Discard all elements from a queue.
value length: ’a t -> int

Return the number of elements in a queue.
value iter: (’a -> unit) -> ’a t -> unit

iter £ q applies f in turn to all elements of q, from the least recently entered to the most
recently entered. The queue itself is unchanged.

Chapter 14. The standard library 157

14.14 random: pseudo-random number generator
value init : int -> unit

Initialize the generator, using the argument as a seed. The same seed will always yield the
same sequence of numbers.

value full_init : int vect -> unit
Same as init but takes more data as seed. It is not useful to give more than 55 integers.
value int : int -> int

random__int bound returns a random number between 0 (inclusive) and bound (exclusive).
bound must be positive and smaller than 23°.

value float : float -> float

random__float bound returns a random number between 0 (inclusive) and bound
(exclusive).

14.15 set: sets over ordered types

This module implements the set data structure, given a total ordering function over the set
elements. All operations over sets are purely applicative (no side-effects). The
implementation uses balanced binary trees, and is therefore reasonably efficient: insertion
and membership take time logarithmic in the size of the set, for instance.

type ’a t
The type of sets containing elements of type ’a.
value empty: (’a -> ’a -> int) -> ’a t

The empty set. The argument is a total ordering function over the set elements. This is a
two-argument function £ such that £ el e2is zero if the elements el and e2 are equal,

f el e2is strictly negative if el is smaller than €2, and £ el e2 is strictly positive if el is
greater than e2. Examples: a suitable ordering function for type int is prefix -. You can
also use the generic structural comparison function eq__compare.

value is_empty: ’a t -> bool
Test whether a set is empty or not.
value mem: ’a -> ’a t -> bool

mem x s tests whether x belongs to the set s.

158

value add: ’a -> ’a t -> ’a t

add x s returns a set containing all elements of s, plus x. If x was already in s, s is
returned unchanged.

value remove: ’a -> ’a t -> ’a t

remove x s returns a set containing all elements of s, except x. If x was not in s, s is
returned unchanged.

value union: ’a t -> ’a t -> ’a t
value inter: ’a t -> ’a t -> ’a t
value diff: ’a t -> ’a t -> ’a t

Union, intersection and set difference.
value equal: ’a t -> ’a t -> bool

equal sl s2 tests whether the sets s1 and s2 are equal, that is, contain the same elements.
value compare: ’a t -> ’a t -> int

Total ordering between sets. Can be used as the ordering function for doing sets of sets.
value elements: ’a t -> ’a list

Return the list of all elements of the given set. The elements appear in the list in some
non-specified order.

value iter: (’a -> unit) -> ’a t -> unit

iter £ s applies £ in turn to all elements of s, and discards the results. The elements of s
are presented to £ in a non-specified order.

value fold: (’a -> ’b -> ’b) -> ’a t -> ’b -> ’b

fold £ s a computes (f xN ... (f x2 (£ x1 a))...), where x1 ... xN are the
elements of s. The order in which elements of s are presented to £ is not specified.

value choose: ’a t -> ’a

Return one element of the given set, or raise Not_found if the set is empty. Which element
is chosen is not specified, but equal elements will be chosen for equal sets.

14.16 sort: sorting and merging lists

value sort : (’a -> ’a -> bool) -> ’a list -> ’a list
Sort a list in increasing order according to an ordering predicate. The predicate should
return true if its first argument is less than or equal to its second argument.

value merge : (’a -> ’a -> bool) -> ’a list -> ’a list -> ’a list

Merge two lists according to the given predicate. Assuming the two argument lists are
sorted according to the predicate, merge returns a sorted list containing the elements from
the two lists. The behavior is undefined if the two argument lists were not sorted.

Chapter 14. The standard library 159

14.17 stack: stacks

This module implements stacks (LIFOs), with in-place modification.
type ’a t
The type of stacks containing elements of type ’a.
exception Empty
Raised when pop is applied to an empty stack.
value new: unit -> ’a t
Return a new stack, initially empty.
value push: ’a -> ’a t -> unit
push x s adds the element x at the top of stack s.
value pop: ’a t -> ’a

pop s removes and returns the topmost element in stack s, or raises Empty if the stack is
empty.

value clear : ’a t -> unit
Discard all elements from a stack.
value length: ’a t -> int
Return the number of elements in a stack.
value iter: (’a -> unit) -> ’a t -> unit

iter £ s applies £ in turn to all elements of s, from the element at the top of the stack to
the element at the bottom of the stack. The stack itself is unchanged.

14.18 sys: system interface

This module provides a simple interface to the operating system.
exception Sys_error of string

Raised by some functions in the sys and io modules, when the underlying system calls fail.
The argument to Sys_error is a string describing the error. The texts of the error messages
are implementation-dependent, and should not be relied upon to catch specific system
errors.

160

value command_line : string vect

The command line arguments given to the process. The first element is the command name
used to invoke the program.

value interactive: bool

True if we’re running under the toplevel system. False if we're running as a standalone
program.

type file_perm == int

value s_irusr : file_perm
value s_iwusr : file_perm
value s_ixusr : file_perm
value s_irgrp : file_perm
value s_iwgrp : file_perm
value s_ixgrp : file_perm
value s_iroth : file_perm
value s_iwoth : file_perm
value s_ixoth : file_perm
value s_isuid : file_perm
value s_isgid : file_perm
value s_irall : file_perm
value s_iwall : file_perm
value s_ixall : file_perm

Access permissions for files. r is reading permission, w is writing permission, x is execution
permission. usr means permissions for the user owning the file, grp for the group owning
the file, oth for others. isuid and isgid are for set-user-id and set-group-id files,
respectively. The remaining are combinations of the permissions above.

type open_flag =

O_RDONLY (* open read-only *)
| O_WRONLY (* open write-only *)
| O_RDWR (* open for reading and writing *)
| O_APPEND (* open for appending *)
| O_CREAT (* create the file if nonexistent *)
| O_TRUNC (* truncate the file to 0 if it exists %)
| 0_EXCL (* fails if the file exists *)
| O_BINARY (* open in binary mode *)
| O_TEXT (* open in text mode *)

The commands for open.
value exit : int -> ’a

Terminate the program and return the given status code to the operating system. In
contrast with the function exit from module io, this exit function does not flush the
standard output and standard error channels.

Chapter 14. The standard library 161

value open : string -> open_flag list -> file_perm -> int

Open a file. The second argument is the opening mode. The third argument is the
permissions to use if the file must be created. The result is a file descriptor opened on the

file.
value close : int -> unit
Close a file descriptor.
value remove : string -> unit
Remove the given file name from the file system.
value rename : string -> string -> unit
Rename a file. The first argument is the old name and the second is the new name.
value getenv : string -> string

Return the value associated to a variable in the process environment. Raise Not_found if
the variable is unbound.

value chdir : string -> unit

Change the current working directory of the process. Note that there is no easy way of
getting the current working directory from the operating system.

value system_command : string -> int
Execute the given shell command and return its exit code.
value time : unit -> float
Return the processor time, in seconds, used by the program since the beginning of execution.
exception Break
Exception Break is raised on user interrupt if catch_break is on.
value catch_break : bool -> unit

catch_break governs whether user interrupt terminates the program or raises the Break
exception. Call catch_break true to enable raising Break, and catch_break false to let
the system terminate the program on user interrupt.

162

Chapter 15

The graphics library

This chapter describes the portable graphics primitives that come standard in the implementation

of Caml Light on micro-computers.

Unix: On Unix workstations running the X11 windows system, an implementation of the graphics

Mac:

PC:

primitives is available in the directory contrib/libgraph in the distribution. See the file
README in this directory for information on building and using camlgraph, a toplevel system
that includes the graphics primitives, and linking standalone programs with the library.
Drawing takes place in a separate window that is created when open_graph is called.

The graphics primitive are available from the standalone application that runs the toplevel
system. They are not available from programs compiled by camlc and run under the MPW
shell. Drawing takes place in a separate window, that can be made visible with the “Show
graphics window” menu entry.

The graphics primitive are available from the Windows application that runs the toplevel
system. They are not available from programs compiled by camlc and run in a DOS
command window. Drawing takes place in a separate window.

The screen coordinates are interpreted as shown in the figure below. Notice that the coordinate
system used is the same as in mathematics: y increases from the bottom of the screen to the top
of the screen, and angles are measured counterclockwise (in degrees). Drawing is clipped to the

screen.

Y

A

size_y ()
Screen

Y pixel at (z,y)

x size_x()

163

164

Here are the graphics mode specifications supported by open_graph on the various implementations
of this library.

Unix: The argument to open_graph has the format " display-name geometry", where display-name
is the name of the X-windows display to connect to, and geometry is a standard X-windows
geometry specification. The two components are separated by a space. Either can be
omitted, or both. Examples:

open_graph "foo:0"
connects to the display foo:0 and creates a window with the default geometry

open_graph "foo:0 300x100+50-0"
connects to the display foo:0 and creates a window 300 pixels wide by 100 pixels tall,
at location (50,0)

open_graph " 300x100+50-0"
connects to the default display and creates a window 300 pixels wide by 100 pixels tall,
at location (50,0)

open_graph ""
connects to the default display and creates a window with the default geometry.

Mac: The argument to open_graph is ignored.

PC: The argument to open_graph has the format "widthxheight" or "widthxheight+x+y", where
width and height are the initial dimensions of the graphics windows, and z and y are the
position of the upper-left corner of the graphics window. If omitted, (width,height) default
to (600,400) and (z,y) default to (10, 10).

15.1 graphics: machine-independent graphics primitives
exception Graphic_failure of string

Raised by the functions below when they encounter an error.

Initializations
value open_graph: string -> unit

Show the graphics window or switch the screen to graphic mode. The graphics window is
cleared. The string argument is used to pass optional information on the desired graphics
mode, the graphics window size, and so on. Its interpretation is implementation-dependent.
If the empty string is given, a sensible default is selected.

value close_graph: unit -> unit

Delete the graphics window or switch the screen back to text mode.

Chapter 15. The graphics library 165

value clear_graph : unit -> unit
Erase the graphics window.

value size_x : unit -> int
value size_y : unit -> int

Return the size of the graphics window. Coordinates of the screen pixels range over
0 .. size_x(D-1and 0 .. size_y()-1. Drawings outside of this rectangle are clipped,
without causing an error. The origin (0,0) is at the lower left corner.

Colors
type color == int

A color is specified by its R, G, B components. Each component is in the range 0..255.
The three components are packed in an int: OxRRGGBB, where RR are the two hexadecimal
digits for the red component, GG for the green component, BB for the blue component.

value rgb: int -> int -> int -> color

rgb r g b returns the integer encoding the color with red component r, green component
g, and blue component b. r, g and b are in the range 0..255.

value set_color : color -> unit
Set the current drawing color.

value black : color
value white : color
value red : color
value green : color
value blue : color
value yellow : color
value cyan : color
value magenta : color

Some predefined colors.

value background: color
value foreground: color

Default background and foreground colors (usually, either black foreground on a white
background or white foreground on a black background). clear_graph fills the screen with
the background color. The initial drawing color is foreground.

166

Point and line drawing
value plot : int -> int -> unit
Plot the given point with the current drawing color.
value point_color : int -> int -> color
Return the color of the given point.
value moveto : int -> int -> unit
Position the current point.
value current_point : unit -> int * int
Return the position of the current point.
value lineto : int -> int -> unit

Draw a line with endpoints the current point and the given point, and move the current
point to the given point.

value draw_arc : int -> int -> int -> int -> int -> int -> unit
draw_arc x y rx ry al a2 draws an elliptical arc with center x,y, horizontal radius rx,
vertical radius ry, from angle al to angle a2 (in degrees). The current point is unchanged.
value draw_ellipse : int -> int -> int -> int -> unit

draw_ellipse x y rx ry draws an ellipse with center x,y, horizontal radius rx and
vertical radius ry. The current point is unchanged.

value draw_circle : int -> int -> int -> unit

draw_circle x y r draws a circle with center x,y and radius r. The current point is
unchanged.

value set_line_width : int -> unit

Set the width of points and lines drawn with the functions above. Under X Windows,
set_line_width O selects a width of 1 pixel and a faster, but less precise drawing
algorithm than the one used when set_line_width 1 is specified.

Text drawing
value draw_char : char -> unit
value draw_string : string -> unit

Draw a character or a character string with lower left corner at current position. After
drawing, the current position is set to the lower right corner of the text drawn.

value set_font : string -> unit
value set_text_size : int -> unit

Set the font and character size used for drawing text. The interpretation of the arguments
to set_font and set_text_size is implementation-dependent.

value text_size : string -> int * int

Return the dimensions of the given text, if it were drawn with the current font and size.

Chapter 15. The graphics library 167
Filling
value fill_rect : int -> int -> int -> int -> unit

fill_rect x y w h fills the rectangle with lower left corner at x,y, width w and heigth h,
with the current color.

value fill_poly : (int * int) vect -> unit

Fill the given polygon with the current color. The array contains the coordinates of the
vertices of the polygon.

value fill_arc : int -> int -> int -> int -> int -> int -> unit

Fill an elliptical pie slice with the current color. The parameters are the same as for
draw_arc.

value fill_ellipse : int -> int -> int -> int -> unit
Fill an ellipse with the current color. The parameters are the same as for draw_ellipse.
value fill_circle : int -> int -> int -> unit

Fill a circle with the current color. The parameters are the same as for draw_circle.

Images
type image

The abstract type for images, in internal representation. Externally, images are represented
as matrices of colors.

value transp : color

In matrices of colors, this color represent a “transparent” point: when drawing the
corresponding image, all pixels on the screen corresponding to a transparent pixel in the
image will not be modified, while other points will be set to the color of the corresponding
point in the image. This allows superimposing an image over an existing background.

value make_image : color vect vect -> image

Convert the given color matrix to an image. Ilach sub-array represents one horizontal line.
All sub-arrays must have the same length; otherwise, exception Graphic_failure is raised.

value dump_image : image -> color vect vect
Convert an image to a color matrix.
value draw_image : image -> int -> int -> unit

Draw the given image with lower left corner at the given point.

168

value get_image : int -> int -> int -> int -> image

Capture the contents of a rectangle on the screen as an image. The parameters are the same
as for £i1l_rect.

value create_image : int -> int -> image

create_image w h returns a new image w pixels wide and h pixels tall, to be used in
conjunction with blit_image. The initial image contents are random.

value blit_image : image -> int -> int -> unit

blit_image img x y copies screen pixels into the image img, modifying img in-place. The
pixels copied are those inside the rectangle with lower left corner at x,y, and width and
height equal to those of the image.

Mouse and keyboard events

type status =

{ mouse_x : int; (¥ X coordinate of the mouse *)
mouse_y : int; (* Y coordinate of the mouse *)
button : bool; (* true if a mouse button is pressed *)
keypressed : bool; (* true if a key has been pressed *)
key : char } (* the character for the key pressed *)

To report events.

type event =
Button_down (* A mouse button is pressed *)
| Button_up (* A mouse button is released *)
| Key_pressed (* A key is pressed *)
| Mouse_motion (* The mouse is moved *)
| Poll (* Don’t wait; return immediately *)

To specify events to wait for.
value walt_next_event : event list -> status

Wait until one of the events specified in the given event list occurs, and return the status of
the mouse and keyboard at that time. If Poll is given in the event list, return immediately
with the current status. If the mouse cursor is outside of the graphics window, the mouse_x
and mouse_y fields of the event are outside the range 0..size_x()-1, 0..size_y()-1.
Keypresses are queued, and dequeued one by one when the Key_pressed event is specified.

Chapter 15. The graphics library 169

Mouse and keyboard polling
value mouse_pos : unit -> int * int

Return the position of the mouse cursor, relative to the graphics window. If the mouse
cursor is outside of the graphics window, mouse_pos () returns a point outside of the range
0..size_x()-1, 0..size_y()-1.

value button_down : unit -> bool
Return true if the mouse button is pressed, false otherwise.
value read_key : unit -> char

Wait for a key to be pressed, and return the corresponding character. Keypresses are
queued.

value key_pressed : unit -> bool

Return true if a keypress is available; that is, if read_key would not block.

Sound

value sound : int -> int -> unit

sound freq dur plays a sound at frequency freq (in hertz) for a duration dur (in
milliseconds). On the Macintosh, the frequency is rounded to the nearest note in the
equal-tempered scale.

170

Chapter 16

The unix library: Unix system calls

The unix library (distributed in contrib/libunix) makes many Unix system calls and system-
related library functions available to Caml Light programs. This chapter describes briefly the
functions provided. Refer to sections 2 and 3 of the Unix manual for more details on the behavior
of these functions.

Not all functions are provided by all Unix variants. If some functions are not available, they
will raise Invalid_arg when called.

Programs that use the unix library must be linked in “custom runtime” mode, as follows:

camlc -custom other options unix.zo other files -lunix

For interactive use of the unix library, run camllight camlunix.
Mac: This library is not available.

PC: This library is not available.

16.1 wunix: interface to the Unix system

Error report

type error =

ENOERR
| EPERM (* Not owner *)
| ENOENT (* No such file or directory *)
| ESRCH (* No such process *)
| EINTR (* Interrupted system call *)
| EIO (* I/0 error *)
| ENXIO (* No such device or address *)
| E2BIG (* Arg list too long *)
| ENOEXEC (* Exec format error *)
| EBADF (* Bad file number *)
| ECHILD (* No children *)
| EAGAIN (* No more processes *)

171

172

ENOMEM
EACCES
EFAULT
ENOTBLK
EBUSY

EEXIST

EXDEV

ENODEV
ENOTDIR
EISDIR
EINVAL
ENFILE
EMFILE
ENOTTY
ETXTBSY
EFBIG

ENOSPC
ESPIPE

EROFS

EMLINK

EPIPE

EDOM

ERANGE
EWOULDBLOCK
EINPROGRESS
EALREADY
ENOTSOCK
EDESTADDRREQ
EMSGSIZE
EPROTOTYPE
ENOPROTOOPT
EPROTONOSUPPORT
ESOCKTNOSUPPORT
EOPNOTSUPP
EPFNOSUPPORT
EAFNOSUPPORT
EADDRINUSE
EADDRNOTAVAIL
ENETDOWN
ENETUNREACH
ENETRESET
ECONNABORTED
ECONNRESET
ENOBUFS
EISCONN

(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*

Not enough core *)

Permission denied *)

Bad address *)

Block device required *)

Mount device busy *)

File exists *)

Cross-device link %)

No such device *)

Not a directory*)

Is a directory *)

Invalid argument *)

File table overflow *)

Too many open files *)

Not a typewriter x*)

Text file busy *)

File too large *)

No space left on device *)
Illegal seek *)

Read-only file system *)

Too many links *)

Broken pipe *)

Argument too large *)

Result too large *)

Operation would block *)
Operation now in progress *)
Operation already in progress *)
Socket operation on non-socket *)
Destination address required *)
Message too long *)

Protocol wrong type for socket *)
Protocol not available *)
Protocol not supported *)

Socket type not supported *)
Operation not supported on socket *)
Protocol family not supported *)
Address family not supported by protocol family *)
Address already in use *)

Can’t assign requested address *)
Network is down *)

Network is unreachable *)

Network dropped connection on reset *)
Software caused connection abort *)
Connection reset by peer *)

No buffer space available *)
Socket is already connected *)

Chapter 16. The unix library: Unix system calls 173

| ENOTCONN (* Socket is not connected *)

| ESHUTDOWN (* Can’t send after socket shutdown *)
| ETOOMANYREFS (* Too many references: can’t splice *)
| ETIMEDOUT (* Connection timed out *)

| ECONNREFUSED (* Connection refused *)

| ELOOP (* Too many levels of symbolic links *)
| ENAMETOOLONG (* File name too long *)

| EHOSTDOWN (* Host is down *)

| EHOSTUNREACH (* No route to host *)

| ENOTEMPTY (* Directory not empty *)

| EPROCLIM (* Too many processes *)

| EUSERS (* Too many users *)

| EDQUOT (* Disc quota exceeded *)

| ESTALE (* Stale NFS file handle *)

| EREMOTE (* Too many levels of remote in path *)
| EIDRM (* Identifier removed *)

| EDEADLK (* Deadlock condition. *)

| ENOLCK (* No record locks available. *)

| ENOSYS (* Function not implemented *)

| EUNKNOWNERR

The type of error codes.
exception Unix_error of error * string * string

Raised by the system calls below when an error is encountered. The first component is the
error code; the second component is the function name; the third component is the string
parameter to the function, if it has one, or the empty string otherwise.

value error_message : error -> string
Return a string describing the given error code.
value handle_unix_error : (’a -> ’b) -> ’a -> ’b

handle_unix_error f x applies £ to x and returns the result. If the exception Unix_error
is raised, it prints a message describing the error and exits with code 2.

Interface with the parent process

value environment : unit -> string vect

Return the process environment, as an array of strings with the format “variable=value”.
See also sys__getenv.

174

Process handling

type process_status =
WEXITED of int
| WSIGNALED of int * bool
| WSTOPPED of int

The termination status of a process. WEXITED means that the process terminated normally

by exit; the argument is the return code. WSIGNALED means that the process was killed by
a signal; the first argument is the signal number, the second argument indicates whether a

“core dump” was performed. WSTOPPED means that the process was stopped by a signal; the
argument is the signal number.

type wait_flag =
WNOHANG
| WUNTRACED

Flags for waitopt and waitpid. WNOHANG means do not block if no child has died yet, but
immediately return with a pid equal to 0. WUNTRACED means report also the children that
receive stop signals.

value execv : string -> string vect -> unit

execv prog args execute the program in file prog, with the arguments args, and the
current process environment.

value execve : string -> string vect -> string vect -> unit

Same as execv, except that the third argument provides the environment to the program
executed.

value execvp : string -> string vect -> unit
Same as execv, except that the program is searched in the path.
value fork : unit -> int

Fork a new process. The returned integer is 0 for the child process, the pid of the child
process for the parent process.

value wait : unit -> int * process_status
Wait until one of the children processes die, and return its pid and termination status.
value waitopt : wait_flag list -> int * process_status

Same as wait, but takes a list of options to avoid blocking, or also report stopped children.
The pid returned is 0 if no child has changed status.

value waitpid : wait_flag list -> int -> int * process_status

Same as waitopt, but waits for the process whose pid is given. Negative pid arguments
represent process groups.

Chapter 16. The unix library: Unix system calls 175

value system : string -> process_status

Execute the given command, wait until it terminates, and return its termination status.
The string is interpreted by the shell /bin/sh and therefore can contain redirections,
quotes, variables, etc. The result WEXITED 127 indicates that the shell couldn’t be executed.

value getpid : unit -> int

Return the pid of the process.
value getppid : unit -> int

Return the pid of the parent process.
value nice : int -> int

Change the process priority. The integer argument is added to the “nice” value. (Higher
values of the “nice” value mean lower priorities.) Return the new nice value.

Basic file input/output
type file_descr
The abstract type of file descriptors.

value stdin : file_descr
value stdout : file_descr
value stderr : file_descr

File descriptors for standard input, standard output and standard error.

type open_flag =

O_RDONLY (* Open for reading *)
| O_WRONLY (* Open for writing *)
| O_RDWR (* Open for reading and writing *)
| O_NDELAY (* Open in non-blocking mode *)
| O_APPEND (* Open for append *)
| O_CREAT (* Create if nonexistent *)
| O_TRUNC (* Truncate to O length if existing *)
| 0_EXCL (* Fail if existing *)

The flags to open.
type file_perm == int
The type of file access rights.
value open : string -> open_flag list -> file_perm -> file_descr

Open the named file with the given flags. Third argument is the permissions to give to the
file if it is created. Return a file descriptor on the named file.

176

value close : file_descr -> unit
Close a file descriptor.
value read : file_descr -> string -> int -> int -> int

read fd buff start len reads len characters from descriptor £d, storing them in string
buff, starting at position ofs in string buff. Return the number of characters actually read.

value write : file_descr -> string -> int -> int -> int

write fd buff start len writes len characters to descriptor £d, taking them from string
buff, starting at position ofs in string buff. Return the number of characters actually
written.

Interfacing with the standard input/output library (module io).
value in_channel_of_descr : file_descr -> in_channel
Create an input channel reading from the given descriptor.
value out_channel_of_descr : file_descr -> out_channel
Create an output channel writing on the given descriptor.
value descr_of_in_channel : in_channel -> file_descr
Return the descriptor corresponding to an input channel.
value descr_of_out_channel : out_channel -> file_descr

Return the descriptor corresponding to an output channel.

Seeking and truncating

type seek_command =
SEEK_SET
| SEEK_CUR
| SEEK_END

Positioning modes for 1seek. SEEK_SET indicates positions relative to the beginning of the
file, SEEK_CUR relative to the current position, SEEK_END relative to the end of the file.

value lseek : file_descr -> int -> seek_command -> int
Set the current position for a file descriptor

value truncate : string -> int -> unit
Truncates the named file to the given size.

value ftruncate : file_descr -> int -> unit

Truncates the file corresponding to the given descriptor to the given size.

Chapter 16. The unix library: Unix system calls

File statistics

type file_kind =

S_REG
S_DIR
S_CHR
S_BLK
S_LNK
S_FIFO
S_SOCK

type stats =
{ st_dev :

st_ino :

st_kind :
st_perm :
st_nlink :

st_uid :
st_gid :

st_rdev :
st_size :
st_atime :
st_mtime :
st_ctime :

The informations returned by the stat calls.

value stat

Return the information for the named file

value lstat

int;
int;
file_kind;
file_perm;
int;
int;
int;
int;
int;

int;

int;

int }

string -> stats

string -> stats

(*
(*
(*
(*
(*
(*
(*

(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*

177

Regular file %)
Directory *)
Character device *)
Block device *)
Symbolic link *)
Named pipe *)
Socket *)

Device number *)

Inode number *)

Kind of the file %)
Access rights *)

Number of links *)

User id of the owner *)
Group id of the owner *)
Device minor number *)
Size in bytes *)

Last access time %)

Last modification time *)
Last status change time *)

Same as stat, but in case the file is a symbolic link, return the information for the link itself.

value fstat

Operations on file names

value unlink :

value rename :

: file_descr -> stats

Return the information for the file associated with the given descriptor.

Removes the named file

string -> unit

string -> string -> unit

rename old new changes the name of a file from old to new.

value link :

string -> string -> unit

link source dest creates a hard link named dest to the file named new.

178

File permissions and ownership

type access_permission =

R_OK (* Read permission *)
p
| W_0K (* Write permission *)
| X_0K (* Execution permission *)
| F_OK (* File exists *)

Flags for the access call.
value chmod : string -> file_perm -> unit

Change the permissions of the named file.
value fchmod : file_descr -> file_perm -> unit

Change the permissions of an opened file.
value chown : string -> int -> int -> unit

Change the owner uid and owner gid of the named file.
value fchown : file_descr -> int -> int -> unit

Change the owner uid and owner gid of an opened file.
value umask : int -> int

Set the process creation mask, and return the previous mask.
value access : string -> access_permission list -> unit

Check that the process has the given permissions over the named file. Raise Unix_error
otherwise.

File descriptor hacking

value fcntl_int : file_descr -> int -> int -> int

Interface to fcntl in the case where the argument is an integer. The first integer argument
is the command code; the second is the integer parameter.

value fcntl_ptr : file_descr -> int -> string -> int

Interface to fcntl in the case where the argument is a pointer. The integer argument is the
command code. A pointer to the string argument is passed as argument to the command.

Chapter 16. The unix library: Unix system calls 179

Directories
value mkdir : string -> file_perm -> unit
Create a directory with the given permissions.
value rmdir : string -> unit
Remove an empty directory.
value chdir : string -> unit
Change the process working directory.
value getcwd : unit -> string
Return the name of the current working directory.
type dir_handle
The type of descriptors over opened directories.
value opendir : string -> dir_handle
Open a descriptor on a directory
value readdir : dir_handle -> string

Return the next entry in a directory. Raise End_of_file when the end of the directory has
been reached.

value rewinddir : dir_handle -> unit
Reposition the descriptor to the beginning of the directory
value closedir : dir_handle -> unit

Close a directory descriptor.

Pipes and redirections
value pipe : unit -> file_descr * file_descr

Create a pipe. The first component of the result is opened for reading, that’s the exit to the
pipe. The second component is opened for writing, that’s the entrace to the pipe.

value dup : file_descr -> file_descr
Duplicate a descriptor.
value dup2 : file_descr -> file_descr -> unit

dup2 f£d1 £d42 duplicates £d1 to £d2, closing £d2 if already opened.

180

value open_process_in: string -> in_channel
value open_process_out: string -> out_channel
value open_process: string -> in_channel * out_channel

High-level pipe and process management. These functions run the given command in
parallel with the program, and return channels connected to the standard input and/or the
standard output of the command. The command is interpreted by the shell /bin/sh (cf.
system). Warning: writes on channels are buffered, hence be careful to call £lush at the
right times to ensure correct synchronization.

value close_process_in: in_channel -> process_status
value close_process_out: out_channel -> process_status
value close_process: in_channel * out_channel -> process_status

Close channels opened by open_process_in, open_process_out and open_process,
respectively, wait for the associated command to terminate, and return its termination
status.

Symbolic links
value symlink : string -> string -> unit

symlink source dest creates the file dest as a symbolic link to the file source.
value readlink : string -> string

Read the contents of a link.

Named pipes
value mkfifo : string -> file_perm -> unit

Create a named pipe with the given permissions.

Special files

value ioctl_int : file_descr -> int -> int -> int

Interface to ioctl in the case where the argument is an integer. The first integer argument
is the command code; the second is the integer parameter.

value ioctl_ptr : file_descr -> int -> string -> int

Interface to ioctl in the case where the argument is a pointer. The integer argument is the
command code. A pointer to the string argument is passed as argument to the command.

Chapter 16. The unix library: Unix system calls 181

Polling

value select

file_descr list -> file_descr list -> file_descr list -> float ->
file_descr list * file_descr list * file_descr list

Wait until some input/output operations become possible on some channels. The three list
arguments are, respectively, a set of descriptors to check for reading (first argument), for
writing (second argument), or for exceptional conditions (third argument). The fourth
argument is the maximal timeout, in seconds; a negative fourth argument means no timeout
(unbounded wait). The result is composed of three sets of descriptors: those ready for
reading (first component), ready for writing (second component), and over which an
exceptional condition is pending (third component).

Locking

type lock_command =

F_ULOCK
F_LOCK
F_TLOCK
F_TEST

Commands for lockf.

value lockf

(*
(*
(*
(*

Unlock
Lock a
Lock a
Test a

a region *)

region, and block if already locked *)
region, or fail if already locked *)
region for other process’ locks *)

: file_descr -> lock_command -> int -> unit

lockf fd cmd size puts alock on a region of the file opened as £d. The region starts at the
current read/write position for £d (as set by 1seek), and extends size bytes forward if size
is positive, size bytes backwards if size is negative, or to the end of the file if size is zero.

Signals

type signal

SIGHUP
SIGINT
SIGQUIT
SIGILL
SIGTRAP
SIGABRT
SIGEMT
SIGFPE
SIGKILL
SIGBUS
SIGSEGV
SIGSYS
SIGPIPE

(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*

hangup *)

interrupt *)
quit *)
illegal instruction (not reset when caught) *)
trace trap (not reset when caught) *)

used by abort *)

EMT instruction *)

floating point exception *)

kill (cannot be caught or ignored) *)

bus error *)

segmentation violation *)

bad argument to system call *)

write on a pipe with no one to read it *)

182

SIGALRM
SIGTERM
SIGURG
SIGSTOP
SIGTSTP
SIGCONT
SIGCHLD
SIGIO
SIGXCPU
SIGXFSZ
SIGVTALRM
SIGPROF
SIGWINCH
SIGLOST
SIGUSR1
SIGUSR2

The type of signals.

type signal_handler =

Signal_default
| Signal_ignore

(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*

| Signal_handle of (unit

alarm clock *)

software termination signal from kill *)
urgent condition on IO channel *)
sendable stop signal not from tty *)
stop signal from tty *)

continue a stopped process *)

to parent on child stop or exit *)
input/output possible signal *)

exceeded CPU time limit *)

exceeded file size limit *)

virtual

time alarm *)

profiling time alarm *)

window changed *)

resource lost (eg, record-lock lost) *)
user defined signal 1 %)

user defined signal 2 %)

-> unit)

The behavior on receipt of a signal

value kill : int -> signal -> unit

(* Default behavior for the signal *)
(* Ignore the signal *)
(* Call the given function

when the signal occurs. %)

Send a signal to the process with the given process id.

value signal : signal -> signal_handler -> unit

Set the behavior to be taken on receipt of the given signal.

value pause : unit -> unit

Wait until a non-ignored signal is delivered.

Time functions

type process_times =

{ tms_utime : float;
tms_stime : float;
tms_cutime : float;
tms_cstime : float }

(*
(*
(*
(*

User time for the process *)

System time for the process *)

User time for the children processes *)
System time for the children processes *)

The execution times (CPU times) of a process.

Chapter 16. The unix library: Unix system calls 183

type tm =

{ tm_sec : int; (* Seconds 0..59 x)
tm_min : int; (* Minutes 0..59 x)
tm_hour : int; (* Hours 0..23 %)
tm_mday : int; (* Day of month 1..31 %)
tm_mon : int; (* Month of year 0..11 *)
tm_year : int; (* Year - 1900 *)
tm_wday : int; (* Day of week (Sunday is 0) *)
tm_yday : int; (* Day of year 0..365 %)
tm_isdst : bool } (* Daylight time savings in effect *)

The type representing wallclock time and calendar date.
value time : unit -> int

Return the current time since 00:00:00 GMT, Jan. 1, 1970, in seconds.
value gettimeofday : unit -> float

Same as time, but with resolution better than 1 second.
value gmtime : int -> tm

Convert a time in seconds, as returned by time, into a date and a time. Assumes Greenwich
meridian time zone.

value localtime : int -> tm

Convert a time in seconds, as returned by time, into a date and a time. Assumes the local
time zone.

value alarm : int -> int
Schedule a SIGALRM signals after the given number of seconds.
value sleep : int -> unit
Stop execution for the given number of seconds.
value times : unit -> process_times
Return the execution times of the process.
value utimes : string -> int -> int -> unit

Set the last access time (second arg) and last modification time (third arg) for a file. Times
are expressed in seconds from 00:00:00 GMT, Jan. 1, 1970.

184

User id, group id
value getuid : unit -> int

Return the user id of the user executing the process.
value geteuid : unit -> int

Return the effective user id under which the process runs.
value setuid : int -> unit

Set the real user id and effective user id for the process.
value getgid : unit -> int

Return the group id of the user executing the process.
value getegid : unit -> int

Return the effective group id under which the process runs.
value setgid : int -> unit

Set the real group id and effective group id for the process.
value getgroups : unit -> int vect

Return the list of groups to which the user executing the process belongs.

type passwd_entry =
{ pw_name : string;

pw_passwd : string;
pw_uid : int;
pw_gid : int;
pw_gecos : string;
pw_dir : string;
pw_shell : string }

Structure of entries in the passwd database

type group_entry =
{ gr_name : string;
gr_passwd : string;
gr_gid : int;
gr_mem : string vect }

Structure of entries in the groups database
value getlogin : unit -> string

Return the login name of the user executing the process.

Chapter 16. The unix library: Unix system calls 185

value getpwnam : string -> passwd_entry

Find an entry in passwd with the given name, or raise Not_found.
value getgrnam : string -> group_entry

Find an entry in group with the given name, or raise Not_found.
value getpwuid : int -> passwd_entry

Find an entry in passwd with the given user id, or raise Not_found.
value getgrgid : int -> group_entry

Find an entry in group with the given group id, or raise Not_found.

Internet addresses
type inet_addr
The abstract type of Internet addresses.

value inet_addr_of_string : string -> inet_addr
value string_of_inet_addr : inet_addr -> string

Conversions between string with the format XXX.YYY.ZZZ.TTT and Internet addresses.
inet_addr_of_string raises Failure when given a string that does not match this format.

Sockets
type socket_domain =
PF_UNIX (* Unix domain *)
| PF_INET (¥ Internet domain *)

The type of socket domains.

type socket_type =

SOCK_STREAM (* Stream socket *)
| SOCK_DGRAM (* Datagram socket *)
| SOCK_RAW (* Raw socket *)
| SOCK_SEQPACKET (* Sequenced packets socket *)

The type of socket kinds, specifying the semantics of communications.

type sockaddr =
ADDR_UNIX of string
| ADDR_INET of inet_addr * int

The type of socket addresses. ADDR_UNIX name is a socket address in the Unix domain; name
is a file name in the file system. ADDR_INET (addr,port) is a socket address in the Internet
domain; addr is the Internet address of the machine, and port is the port number.

186

type shutdown_command =

SHUTDOWN_RECEIVE (* Close for receiving *)
| SHUTDOWN_SEND (* Close for sending *)
| SHUTDOWN_ALL (* Close both *)

The type of commands for shutdown.

type msg_flag =
MSG_00B
| MSG_DONTROUTE
| MSG_PEEK

The flags for recv, recvfrom, send and sendto.
value socket : socket_domain -> socket_type -> int -> file_descr

Create a new socket in the given domain, and with the given kind. The third argument is
the protocol type; 0 selects the default protocol for that kind of sockets.

value socketpair :
socket_domain -> socket_type -> int -> file_descr * file_descr

Create a pair of unnamed sockets, connected together.
value accept : file_descr -> file_descr * sockaddr

Accept connections on the given socket. The returned descriptor is a socket connected to
the client; the returned address is the address of the connecting client.

value bind : file_descr -> sockaddr -> unit
Bind a socket to an address.

value connect : file_descr -> sockaddr -> unit
Connect a socket to an address.

value listen : file_descr -> int -> unit

Set up a socket for receiving connection requests. The integer argument is the maximal
number of pending requests.

value shutdown : file_descr -> shutdown_command -> unit

Shutdown a socket connection. SHUTDOWN_SEND as second argument causes reads on the
other end of the connection to return an end-of-file condition. SHUTDOWN_RECEIVE causes
writes on the other end of the connection to return a closed pipe condition (SIGPIPE signal).

value getsockname : file_descr -> sockaddr

Return the address of the given socket.

Chapter 16. The unix library: Unix system calls 187

value getpeername : file_descr -> sockaddr
Return the address of the host connected to the given socket.

value recv : file_descr -> string -> int -> int -> msg_flag list -> int
value recvfrom :
file_descr -> string -> int -> int -> msg_flag list -> int * sockaddr

Receive data from an unconnected socket.

value send : file_descr -> string -> int -> int -> msg_flag list -> int
value sendto :
file_descr -> string -> int -> int -> msg_flag list -> sockaddr -> int

Send data over an unconnected socket

High-level network connection functions
value open_connection : sockaddr -> in_channel * out_channel

Connect to a server at the given address. Return a pair of buffered channels connected to
the server. Remember to call £lush on the output channel at the right times to ensure
correct synchronization.

value shutdown_connection : in_channel -> unit

“Shut down” a connection established with open_connection; that is, transmit an
end-of-file condition to the server reading on the other side of the connection.

value establish_server : (in_channel -> out_channel -> unit) -> sockaddr -> unit

Establish a server on the given address. The function given as first argument is called for
each connection with two buffered channels connected to the client. A new process is
created for each connection. The function establish_server never returns normally.

Host and protocol databases

type host_entry =
{ h_name : string;
h_aliases : string vect;
h_addrtype : socket_domain;
h_addr_list : inet_addr vect }

Structure of entries in the hosts database

type protocol_entry =
{ p_name : string;
p-aliases : string vect;
p_proto : int }

Structure of entries in the protocols database

188

type service_entry =
{ s_name : string;
s_aliases : string vect;
s_port : int;
s_proto : string }

Structure of entries in the services database
value gethostname : unit -> string

Return the name of the local host.
value gethostbyname : string -> host_entry

Find an entry in hosts with the given name, or raise Not_found.
value gethostbyaddr : inet_addr -> host_entry

Find an entry in hosts with the given address, or raise Not_found.
value getprotobyname : string -> protocol_entry

Find an entry in protocols with the given name, or raise Not_found.
value getprotobynumber : int -> protocol_entry

Find an entry in protocols with the given protocol number, or raise Not_found.
value getservbyname : string -> string -> service_entry

Find an entry in services with the given name, or raise Not_found.
value getservbyport : int -> string -> service_entry

Find an entry in services with the given service number, or raise Not_found.

Terminal interface

The following functions implement the POSIX standard terminal interface. They provide
control over asynchronous communication ports and pseudo-terminals. Refer to the
termios man page for a complete description.

type terminal_io = {

Input modes:

Chapter 16. The unix library: Unix system calls

mutable
mutable
mutable
mutable
mutable
mutable
mutable
mutable
mutable
mutable
mutable

Output

mutable

Control modes:

mutable
mutable
mutable
mutable
mutable
mutable
mutable
mutable
mutable

c_ignbrk: bool;
c_brkint: bool;
c_ignpar: bool;
c_parmrk: bool;
c_inpck: bool;
c_istrip: bool;
c_inlcr: bool;
c_igncr: bool;
c_icrnl: bool;
c_ixon: bool;
c_ixoff: bool;
modes:

c_opost: bool;
c_obaud: int;
c_ibaud: int;
c_csize: int;
c_cstopb: int;
c_cread: bool;
c_parenb: bool;
c_parodd: bool;
c_hupcl: bool;
c_clocal: bool;

Local modes:

mutable
mutable

mutable
mutable
mutable
mutable
mutable

c_isig: bool;

c_icanon: bool;
c_noflsh: bool;
c_echo: bool;

c_echoe: bool;
c_echok: bool;
c_echonl: bool;

Control characters:

mutable
mutable
mutable
mutable
mutable
mutable
mutable

c_vintr:
c_vquit:
Cc_verase:
c_vkill:

char;

char;
char;

char;

c_veof: char;
c_veol: char;
c_vmin: int;

(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*

(*

(*
(*
(*
(*
(*
(*
(*
(*
(*

(*
(*

(*
(*
(*
(*
(*

(*
(*
(*
(*
(*
(*
(*

Ignore the break condition. *)

Signal interrupt on break condition. *)
Ignore characters with parity errors. *)
Mark parity errors. *)

Enable parity check on input. *)

Strip 8th bit on input characters. *)

Map NL to CR on input. *)

Ignore CR on input. *)

Map CR to NL on input. *)

Recognize XON/XOFF characters on input. *)
Emit XON/XOFF chars to control input flow. *)

Enable output processing. *)

Output baud rate (0 means close connection).*)
Input baud rate. *)

Number of bits per character (5-8). *)

Number of stop bits (1-2). *)

Reception is enabled. *)

Enable parity generation and detection. *)
Specify odd parity instead of even. *)

Hang up on last close. %)

Ignore modem status lines. %)

Generate signal on INTR, QUIT, SUSP. *)
Enable canonical processing

(1ine buffering and editing) *)

Disable flush after INTR, QUIT, SUSP. x)
Echo input characters. *)

Echo ERASE (to erase previous character). *)
Echo KILL (to erase the current line). *)
Echo NL even if c_echo is not set. *)

Interrupt character (usually ctrl-C). *)

Quit character (usually ctrl-\). *)

Erase character (usually DEL or ctrl-H). *)
Kill line character (usually ctrl-U). *)
End-of-file character (usually ctrl-D). *)
Alternate end-of-line char. (usually none). *)
Minimum number of characters to read

189

190

before the read request is satisfied. *)

mutable c_vtime: int; (* Maximum read wait (in 0.1s units). *)
mutable c_vstart: char; (* Start character (usually ctrl-Q). *)
mutable c_vstop: char (* Stop character (usually ctrl-S). *)

¥

value tcgetattr: file_descr -> terminal_io
Return the status of the terminal referred to by the given file descriptor.

type setattr_when = TCSANOW | TCSADRAIN | TCSAFLUSH
value tcsetattr: file_descr -> setattr_when -> terminal_io -> unit

Set the status of the terminal referred to by the given file descriptor. The second argument
indicates when the status change takes place: immediately (TCSANOW), when all pending
output has been transmitted (TCSADRAIN), or after flushing all input that has been received
but not read (TCSAFLUSH). TCSADRAIN is recommended when changing the output
parameters; TCSAFLUSH, when changing the input parameters.

value tcsendbreak: file_descr -> int -> unit

Send a break condition on the given file descriptor. The second argument is the duration of
the break, in 0.1s units; 0 means standard duration (0.25s).

value tcdrain: file_descr -> unit
Waits until all output written on the given file descriptor has been transmitted.

type flush_queue = TCIFLUSH | TCOFLUSH | TCIOFLUSH
value tcflush: file_descr -> flush_queue -> unit

Discard data written on the given file descriptor but not yet transmitted, or data received
but not yet read, depending on the second argument: TCIFLUSH flushes data received but
not read, TCOFLUSH flushes data written but not transmitted, and TCIOFLUSH flushes both.

type flow_action = TCOOFF | TCOON | TCIOFF | TCION
value tcflow: file_descr -> flow_action -> unit

Suspend or restart reception or transmission of data on the given file descriptor, depending
on the second argument: TCOOFF suspends output, TCOON restarts output, TCIOFF transmits
a STOP character to suspend input, and TCION transmits a START character to restart
input.

Chapter 17

The num library: arbitrary-precision
rational arithmetic

The num library (distributed in contrib/libnum) implements exact-precision rational arithmetic.
It is built upon the state-of-the-art BigNum arbitrary-precision integer arithmetic package, and
therefore achieves very high performance.

The functions provided in this library are fully documented in The CAML Numbers Refer-
ence Manual by Valérie Ménissier-Morain, technical report 141, INRIA, july 1992 (available by
anonymous FTP from ftp.inria.fr, directory INRIA/publications/RT, file RT-0141.ps.Z). A
summary of the functions is given below.

Programs that use the num library must be linked in “custom runtime” mode, as follows:

camlc -custom other options nums.zo other files -1nums

For interactive use of the num library, run camllight camlnum.
Mac: This library is not available.

PC: This library is available by default in the standard runtime system and in the toplevel
system. Programs that use this library can be linked normally, without the -custom option.

17.1 num: operations on numbers

Numbers (type num) are arbitrary-precision rational numbers, plus the special elements 1/0
(infinity) and 0/0 (undefined).

type num = Int of int | Big_int of big_int | Ratio of ratio
The type of numbers.

value normalize_num : num -> num
value numerator_num : num -> num
value denominator_num : num -> num

191

192

Arithmetic operations

value prefix +/ : num -> num -> num
value add_num : num -> num -> num

Addition
value minus_num : num -> num
Unary negation.

value prefix -/ : num -> num -> num
value sub_num : num -> num -> num

Subtraction

value prefix */ : num -> num -> num
value mult_num : num -> num -> num

Multiplication
value square_num : num -> num
Squaring

value prefix // : num -> num -> num
value div_num : num -> num -> num

Division
value quo_num : num -> num -> num
value mod_num : num -> num -> num

Fuclidean division: quotient and remainder

value prefix **/ : num -> num -> num
value power_num : num -> num -> num

FExponentiation
value is_integer_num : num -> bool
Test if a number is an integer

value integer_num : num -> num
value floor_num : num -> num
value round_num : num -> num
value ceiling_num : num -> num

Approximate a number by an integer. floor_num n returns the largest integer smaller or
equal to n. ceiling_num n returns the smallest integer bigger or equal to n.
integer_num n returns the integer closest to n. In case of ties, rounds towards zero.
round_num n returns the integer closest to n. In case of ties, rounds off zero.

Chapter 17. The num library: arbitrary-precision rational arithmetic

value sign_num

num -> int

Return -1, 0 or 1 according to the sign of the argument.

value
value
value
value
value
value
value
value
value
value
value

prefix
prefix
prefix
prefix
prefix
prefix
eq_num
1t_num
le_num
gt_num
ge_num

=/ : num -> num -> bool
</ : num -> num -> bool
>/ : num -> num -> bool
num -> bool
num -> bool
num -> bool

<=/

>=/

<>/
num
num
num
num
num

num ->

num ->

num ->

->
->
->
->
->

num
num
num
num
num

->
->
->
->
->

bool
bool
bool
bool
bool

Usual comparisons between numbers

value compare_num

Return -1, 0 or 1 if the first argument is less than, equal to, or greater than the second

argument.

value max_num
value min_num

num -> num -> int

num -> num -> num

num -> num -> num

Return the greater (resp. the smaller) of the two arguments.

value abs_num

num -> num

Absolute value.

value succ_num: num -> num

succ nis n+1

value pred_num: num -> num

pred nis n-1

value incr_num: num ref -> unit

incr ris r:=!r+1, where r is a reference to a number.

value decr_num: num ref -> unit

decr ris r:='r-1, where r is a reference to a number.

193

194

Coercions with strings

value string_of_num : num -> string
Convert a number to a string, using fractional notation.

value approx_num_fix : int -> num -> string
value approx_num_exp : int -> num -> string

Approximate a number by a decimal. The first argument is the required precision. The
second argument is the number to approximate. approx_fix uses decimal notation; the first
argument is the number of digits after the decimal point. approx_exp uses scientific
(exponential) notation; the first argument is the number of digits in the mantissa.

value num_of_string : string -> num

Convert a string to a number.

Coercions between numerical types

value int_of_num : num -> int

value num_of_int : int -> num

value nat_of_num : num -> nat__nat
value num_of_nat : nat__nat -> num
value num_of_big_int : big_int -> num
value big_int_of_num : num -> big_int
value ratio_of_num : num -> ratio
value num_of_ratio : ratio -> num
value float_of_num : num -> float
value num_of_float : float -> num
value sys_print_num : int -> string -> num -> string -> unit
value print_num : num -> unit

17.2 arith_status: flags that control rational arithmetic

value arith_status: unit -> unit
Print the current status of the arithmetic flags.

value get_error_when_null_denominator : unit -> bool
value set_error_when_null_denominator : bool -> unit

Get or set the flag null_denominator. When on, attempting to create a rational with a
null denominator raises an exception. When off, rationals with null denominators are
accepted. Initially: on.

Chapter 17. The num library: arbitrary-precision rational arithmetic 195

value get_normalize_ratio : unit -> bool
value set_normalize_ratio : bool -> unit

Get or set the flag normalize_ratio. When on, rational numbers are normalized after each
operation. When off, rational numbers are not normalized until printed. Initially: off.

value get_normalize_ratio_when_printing : unit -> bool
value set_normalize_ratio_when_printing : bool -> unit

Get or set the flag normalize_ratio_when_printing. When on, rational numbers are
normalized before being printed. When off, rational numbers are printed as is, without
normalization. Initially: on.

value get_approx_printing : unit -> bool
value set_approx_printing : bool -> unit

Get or set the flag approx_printing. When on, rational numbers are printed as a decimal
approximation. When off, rational numbers are printed as a fraction. Initially: off.

value get_floating_precision : unit -> int
value set_floating_precision : int -> unit

Get or set the parameter floating_precision. This parameter is the number of digits
displayed when approx_printing is on. Initially: 12.

196

Chapter 18

The str library: regular expressions
and string processing

The str library (distributed in contrib/libstr) provides high-level string processing functions,
some based on regular expressions. It is intended to support the kind of file processing that is
usually performed with scripting languages such as awk, perl or sed.

Programs that use the str library must be linked in “custom runtime” mode, as follows:

camlc -custom other options str.zo other files -1lstr

For interactive use of the str library, run camllight camlstr.
Mac: This library is not available.

PC: This library is not available.

18.1 str: regular expressions and high-level string processing

Regular expressions
type regexp

The type of compiled regular expressions.
value regexp: string -> regexp

Compile a regular expression. The syntax for regular expressions is the same as in Gnu
Emacs. The special characters are \$~.*+7[]. The following constructs are recognized:

matches any character except newline

* (postfix) matches the previous expression zero, one or several times
+ (postfix) matches the previous expression one or several times
? (postfix) matches the previous expression once or not at all

[..1 character set; ranges are denoted with -, as in a-z; an initial =, as in ~0-9,
complements the set

197

198

matches at beginning of line
$ matches at end of line
\ (infix) alternative between two expressions

\ (. .\) grouping and naming of the enclosed expression

\1 the text matched by the first \(...\) expression (\2 for the second expression, etc)
\b matches word boundaries
\ quotes special characters.

value regexp_case_fold: string -> regexp

Same as regexp, but the compiled expression will match text in a case-insensitive way:
uppercase and lowercase letters will be considered equivalent.

String matching and searching
value string_match: regexp -> string -> int -> bool

string_match r s start tests whether the characters in s starting at position start
match the regular expression r. The first character of a string has position 0, as usual.

value search_forward: regexp -> string -> int -> int

search_forward r s start searchs the string s for a substring matching the regular
expression r. The search starts at position start and proceeds towards the end of the
string. Return the position of the first character of the matched substring, or raise
Not_found if no substring matches.

value search_backward: regexp -> string -> int -> int
Same as search_forward, but the search proceeds towards the beginning of the string.
value matched_string: string -> string

matched_string s returns the substring of s that was matched by the latest
string_match, search_forward or search_backward. The user must make sure that the
parameter s is the same string that was passed to the matching or searching function.

value match_beginning: unit -> int
value match_end: unit -> int

match_beginning() returns the position of the first character of the substring that was
matched by string_match, search_forward or search_backward. match_end() returns
the position of the character following the last character of the matched substring.

value matched_group: int -> string -> string

matched_group n s returns the substring of s that was matched by the nth group \(...\)
of the regular expression during the latest string_match, search_forward or
search_backward. The user must make sure that the parameter s is the same string that
was passed to the matching or searching function.

Chapter 18. The str library: regular expressions and string processing 199
value group_beginning: int -> int
value group_end: int -> int

group_beginning n returns the position of the first character of the substring that was
matched by the nth group of the regular expression. group_end n returns the position of
the character following the last character of the matched substring.

Replacement
value global_replace: regexp -> string -> string -> string

global_replace regexp repl s returns a string identical to s, except that all substrings
of s that match regexp have been replaced by repl. The replacement text repl can contain
\1,\2, etc; these sequences will be replaced by the text matched by the corresponding group
in the regular expression. \0 stands for the text matched by the whole regular expression.

value replace_first: regexp -> string -> string -> string

Same as global_replace, except that only the first substring matching the regular
expression is replaced.

value global_substitute: regexp -> (string -> string) -> string -> string

global_substitute regexp subst s returns a string identical to s, except that all
substrings of s that match regexp have been replaced by the result of function subst. The
function subst is called once for each matching substring, and receives s (the whole text) as
argument.

value substitute_first: regexp -> (string -> string) -> string -> string

Same as global_substitute, except that only the first substring matching the regular
expression is replaced.

Splitting
value split: regexp -> string -> string list

split r s splits s into substrings, taking as delimiters the substrings that match r, and
returns the list of substrings. For instance, split (regexp "[\tl+") s splits s into
blank-separated words.

value bounded_split: regexp -> string -> int -> string list

Same as split, but splits into at most n substrings, where n is the extra integer parameter.

200

Joining
value concat: string list -> string

Same as string__concat: catenate a list of string.
value join: string -> string list -> string

Catenate a list of string. The first argument is a separator, which is inserted between the
strings.

Extracting substrings

value string_before: string -> int -> string

string_before s n returns the substring of all characters of s that precede position n
(excluding the character at position n).

value string_after: string -> int -> string

string_after s n returns the substring of all characters of s that follow position n
(including the character at position n).

value first_chars: string -> int -> string

first_chars s n returns the first n characters of s. This is the same function as
string_before.

value last_chars: string -> int -> string

last_chars s n returns the last n characters of s.

Formatting

value format: (’a, unit, string) printf__format -> ’a

Same as printf__sprintf.

Part V

Appendix

201

Chapter 19

Further reading

For the interested reader, we list below some references to books and reports related (sometimes
loosely) to Caml Light.

19.1 Programming in ML

The books below are programming courses taught in ML. Their main goal is to teach programming,
not to describe ML in full details — though most contain fairly good introductions to the ML
language. Some of those books use the Standard ML dialect instead of the Caml dialect, so you
will have to keep in mind the differences in syntax and in semantics.

e Pierre Weis and Xavier Leroy. Le langage Caml. InterEditions, 1993.

The natural companion to this manual, provided you read French. This book is a step-by-
step introduction to programming in Caml, and presents many realistic examples of Caml
programs.

¢ Guy Cousineau and Michel Mauny. Approche fonctionnelle de la programmation. Ediscience,
1995.

Another Caml programming course written in French, with many original examples.

o Lawrence C. Paulson. ML for the working programmer. Cambridge University Press, 1991.

A good introduction to programming in Standard ML. Develops a theorem prover as a com-
plete example. Contains a presentation of the module system of Standard ML.

o Jeffrey D. Ullman. Elements of ML programming. Prentice Hall, 1993.

Another good introduction to programming in Standard ML. No realistic examples, but a
very detailed presentation of the language constructs.

e Ryan Stansifer. ML primer. Prentice-Hall, 1992.

A short, but nice introduction to programming in Standard ML.

o Thérese Accart Hardin and Véronique Donzeau-Gouge Viguié. Concepts et outils de la pro-
grammation. Du fonctionnel a Uimpératif avec Caml et Ada. InterEditions, 1992.

203

204

A first course in programming, that first introduces the main programming notions in Caml,
then shows them underlying Ada. Intended for beginners; slow-paced for the others.

e Rachel Harrison. Abstract Data Types in Standard ML. John Wiley & Sons, 1993.
A presentation of Standard ML from the standpoint of abstract data types. Uses intensively
the Standard ML module system.

e Harold Abelson and Gerald Jay Sussman. Structure and Interpretation of Computer Pro-
grams. The MIT press, 1985. (French translation: Structure et interprétation des programmes
informatiques, InterEditions, 1989.)

An outstanding course on programming, taught in Scheme, the modern dialect of Lisp. Well
worth reading, even if you are more interested in ML than in Lisp.

19.2 Descriptions of ML dialects

The books and reports below are descriptions of various programming languages from the ML
family. They assume some familiarity with ML.

e Xavier Leroy and Pierre Weis. Manuel de référence du langage Caml. InterEditions, 1993.
The French edition of the present reference manual and user’s manual.

¢ Robert Harper. Introduction to Standard ML. Technical report ECS-LFCS-86-14, University
of Edinburgh, 1986.
An overview of Standard ML, including the module system. Terse, but still readable.

¢ Robin Milner, Mads Tofte and Robert Harper. The definition of Standard ML. The MIT
press, 1990.

A complete formal definition of Standard ML, in the framework of structured operational se-
mantics. This book is probably the most mathematically precise definition of a programming
language ever written. It is heavy on formalism and extremely terse, so even readers who are
thoroughly familiar with ML will have major difficulties with it.

¢ Robin Milner and Mads Tofte. Commentary on Standard ML. The MIT Press, 1991.

A commentary on the book above, that attempts to explain the most delicate parts and
motivate the design choices. Fasier to read than the Definition, but still rather involving.

e Guy Cousineau and Gérard Huet. The CAML primer. Technical report 122, INRIA, 1990.

A short description of the original Caml system, from which Caml Light has evolved. Some
familiarity with Lisp is assumed.

o Pierre Weis et al. The CAML reference manual, version 2.6.1. Technical report 121, INRIA,
1990.

The manual for the original Caml system, from which Caml Light has evolved.

Chapter 19. Further reading 205

e Michael J. Gordon, Arthur J. Milner and Christopher P. Wadsworth. FEdinburgh LCF. Lecture
Notes in Computer Science volume 78, Springer-Verlag, 1979.

This is the first published description of the ML language, at the time when it was nothing
more than the control language for the LCF system, a theorem prover. This book is now
obsolete, since the ML language has much evolved since then; but it is still of historical
interest.

e Paul Hudak, Simon Peyton-Jones and Philip Wadler. Report on the programming language
Haskell, version 1.1. Technical report, Yale University, 1991.

Haskell is a purely functional language with lazy semantics that shares many important
points with ML (full functionality, polymorphic typing), but has interesting features of its
own (dynamic overloading, also called type classes).

19.3 Implementing functional programming languages

The references below are intended for those who are curious to learn how a language like Caml
Light is compiled and implemented.

o Xavier Leroy. The ZINC experiment: an economical implementation of the ML language.
Technical report 117, INRIA, 1990. (Available by anonymous FTP on ftp.inria.fr.)

A description of the ZINC implementation, the prototype ML implementation that has
evolved into Caml Light. Large parts of this report still apply to the current Caml Light
system, in particular the description of the execution model and abstract machine. Other
parts are now obsolete. Yet this report still gives a complete overview of the implementation
techniques used in Caml Light.

e Simon Peyton-Jones. The implementation of functional programming languages. Prentice-
Hall, 1987. (French translation: Mise en cuvre des langages fonctionnels de programmation,
Masson, 1990.)

An excellent description of the implementation of purely functional languages with lazy se-
mantics, using the technique known as graph reduction. The part of the book that deals with
the transformation from ML to enriched lambda-calculus directly applies to Caml Light. You
will find a good description of how pattern-matching is compiled and how types are inferred.
The remainder of the book does not apply directly to Caml Light, since Caml Light is not
purely functional (it has side-effects), has strict semantics, and does not use graph reduction
at all.

o Andrew W. Appel. Compiling with continuations. Cambridge University Press, 1992.

A complete description of an optimizing compiler for Standard ML, based on an intermediate
representation called continuation-passing style. Shows how many advanced program opti-
mizations can be applied to ML. Not directly relevant to the Caml Light system, since Caml
Light does not use continuation-passing style at all, and makes little attempts at optimizing
programs.

206

19.4 Applications of ML

The following reports show ML at work in various, sometimes unexpected, areas.

Emmanuel Chailloux and Guy Cousineau. The MLgraph primer. Technical report 92-15,
Ecole Normale Supérieure, 1992. (Available by anonymous FTP on ftp.ens.fr.)

Describes a Caml Light library that produces Postscript pictures through high-level drawing
functions.

Xavier Leroy. Programmation du systéme Uniz en Caml Light. Technical report 147, INRIA,
1992. (Available by anonymous FTP on ftp.inria.fr.)

A Unix systems programming course, demonstrating the use of the Caml Light library that
gives access to Unix system calls.

John H. Reppy. Concurrent programming with events — The concurrent ML manual. Cornell
University, 1990. (Available by anonymous FTP on research.att.com.)

Concurrent ML extends Standard ML of New Jersey with concurrent processes that commu-

nicate through channels and events.

Jeannette M. Wing, Manuel Faehndrich, J. Gregory Morrisett and Scottt Nettles. Fatensions
to Standard ML to support transactions. Technical report CMU-CS-92-132, Carnegie-Mellon
University, 1992. (Available by anonymous FTP on reports.adm.cs.cmu.edu.)

How to integrate the basic database operations to Standard ML.
Emden R. Gansner and John H. Reppy. eXene. Bell Labs, 1991. (Available by anonymous
FTP on research.att.com.)

An interface between Standard ML of New Jersey and the X Windows windowing system.

Index to the library

! (infix), 130
I= (infix), 116
& (infix), 114
&& (infix), 114
* (infix), 117, 120
** (infix), 118
** . (infix), 118
**x/ (infix), 192
*. (infix), 117
*/ (infix), 192
+ (infix), 117, 120
+. (infix), 117
+/ (infix), 192
- (infix), 117, 120
-. (infix), 117
-/ (infix), 192
/ (infix), 117, 120
/. (infix), 117
// (infix), 192
ﬁnﬁx) 115
<. (infix), 118
</ (infix), 193
<= @nﬁx) 115
=. (infix), 118
<=/ (infix), 193
<> (infix), 115
<>. (infix), 118
<>/ (infix), 193
(infix), 115
. (infix), 118

>=. (infix), 118

207

>=/ (infix), 193
@ (infix), 127
" (infix), 132
Il (infix), 114

abs, 121
abs_float, 119
abs_num, 193
accept, 186

access, 178

acos, 118

add, 139, 150, 153, 156, 158
add_float, 117
add_int, 120
add_num, 192

alarm, 183
approx_num_exp, 194
approx_num_fix, 194
arg (module), 137
arith_status, 194
arith_status (module), 194
asin, 118

asr (infix), 121
assoc, 129

assq, 129

atan, 118

atan2, 118

background, 165

Bad (exception), 138
baltree (module), 138
basename, 140
big_int_of_num, 194
bind, 186

black, 165
blit_image, 168
blit_string, 133

208

blit_vect, 135

blue, 165

bool (module), 113
bounded_split, 199
Break (exception), 161
builtin (module), 114
button_down, 169

catch_break, 161

cd, 57

ceil, 118
ceiling_num, 192
char (module), 115
char_for_read, 115
char_of_int, 115
chdir, 161, 179
check_suffix, 140
chmod, 178

choose, 158
chop_suffix, 140
chown, 178
clear, 150, 156, 159
clear_graph, 165
clear_parser, 154
close, 161, 176
close_box, 141
close_graph, 164
close_in, 127
close_out, 125
close_process, 180
close_process_in, 180
close_process_out, 180
close_tbox, 144
closedir, 179
combine, 130
command_line, 160
compare, 115, 139, 158
compare_num, 193
compare_strings, 133
compile, 56
concat, 132, 140, 200
concat_vect, 134
connect, 186
contains, 139
copy_vect, 134

cos, 118

cosh, 118
create_image, 168
create_lexer, 152
create_lexer_channel, 152
create_lexer_string, 152
create_string, 132
current_dir_name, 140
current_point, 166

cyan, 165

debug_mode, 57

decr, 130

decr_num, 193
denominator_num, 191
descr_of_in_channel, 176
descr_of_out_channel, 176
diff, 158

directory, 57
dirname, 140
div_float, 117
div_int, 120

div_num, 192

Division_by_zero (exception), 120

do_list, 128
do_list2, 128
do_list_combine, 130
do_stream, 131
do_table, 151
do_table_rev, 151
do_vect, 135
draw_arc, 166
draw_char, 166
draw_circle, 166
draw_ellipse, 166
draw_image, 167
draw_string, 166
dump_image, 167
dup, 179

dup2, 179

elements, 158

empty, 153, 157

Empty (exception), 156, 159
End_of_file (exception), 122
end_of_stream, 131

Index to the library

environment, 173
eprint, 155
eprintf, 147, 155
eq (module), 115
eq_float, 118
eq_int, 120
eq_num, 193
eq_string, 133
equal, 158
err_formatter, 145
error_message, 173
establish_server, 187
exc (module), 116
except, 129
exceptq, 129
execv, 174

execve, 174
execvp, 174
exists, 129

exit, 122, 160

Exit (exception), 116
exp, 118

Failure (exception), 116
failwith, 116
fchar (module), 117
fchmod, 178
fchown, 178
fcntl_int, 178
fentl_ptr, 178
filename (module), 140
£ill_arc, 167
£ill_circle, 167
£ill_ellipse, 167
£ill_poly, 167
£fill_rect, 167
fill_string, 132
£ill_vect, 135
find, 139, 150, 153
find_all, 150
first_chars, 200
flat_map, 129
float, 157

float (module), 117
float_of_int, 117

209

float_of_num, 194
float_of_string, 119
floor, 118
floor_num, 192
flush, 124

fold, 158
for_all, 129
force_newline, 142
foreground, 165
fork, 174

format, 200

format (module), 140
fprint, 155
fprintf, 146, 154
frexp, 119

fst, 130

fstat, 177

fstring (module), 119
ftruncate, 176
full_init, 157
full_major, 149
fvect (module), 119

gc (module), 147

ge_float, 118

ge_int, 121

ge_num, 193

ge_string, 133

genlex (module), 149

get, 148

get_approx_printing, 195
get_ellipsis_text, 144
get_error_when_null_denominator, 194
get_floating_precision, 195
get_formatter_output_functions, 144
get_image, 168

get_lexeme, 152

get_lexeme_char, 152
get_lexeme_end, 152
get_lexeme_start, 152
get_margin, 142

get_max_boxes, 143
get_max_indent, 143
get_normalize_ratio, 195
get_normalize_ratio_when_printing, 195

210

getcwd, 179 incr, 130

getegid, 184 incr_num, 193
getenv, 161 index, 129

geteuid, 184 index_char, 133
getgid, 184 index_char_from, 133
getgrgid, 185 inet_addr_of_string, 185
getgrnam, 185 init, 157

getgroups, 184 init_vect, 134
gethostbyaddr, 188 input, 126
gethostbyname, 188 input_binary_int, 127
gethostname, 188 input_byte, 127
getlogin, 184 input_char, 126
getpeername, 187 input_line, 126
getpid, 175 input_value, 127
getppid, 175 install_printer, 57
getprotobyname, 188 int, 157
getprotobynumber, 188 int (module), 120
getpwnam, 185 int_of_char, 115
getpwuid, 185 int_of _float, 117
getservbyname, 188 int_of_num, 194
getservbyport, 188 int_of_string, 122
getsockname, 186 integer_num, 192
gettimeofday, 183 inter, 158

getuid, 184 interactive, 160
global_replace, 199 intersect, 129
global_substitute, 199 invalid_arg, 116
gmtime, 183 Invalid_argument (exception), 116
Graphic_failure (exception), 164 io (module), 122
graphics (module), 164 ioctl_int, 180
green, 165 ioctl_ptr, 180
group_beginning, 199 is_absolute, 140
group_end, 199 is_empty, 157
gt_float, 118 is_integer_num, 192
gt_int, 121 it_list, 128

gt_num, 193 it_list2, 128
gt_string, 133 iter, 153, 156, 158, 159
handle_unix_error, 173 join, 200

hash, 151

hash_param, 151 key_pressed, 169
hashtbl (module), 150 kill, 182

hd, 128 land (infix), 121
in_channel_length, 127 last_chars, 200
in_channel_of_descr, 176 ldexp, 119

include, 56 le_float, 118

Index to the library 211

le_int, 121 map_vect, 135
le_num, 193 map_vect_list, 135
le_string, 133 match_beginning, 198
length, 156, 159 match_end, 198
lexing (module), 151 Match_failure (exception), 24-26, 114
lineto, 166 matched_group, 198
link, 177 matched_string, 198
list (module), 127 max, 116
list_it, 128 max_int, 121
list_it2, 128 max_num, 193
list_length, 127 mem, 129, 157
list_of_vect, 135 mem_assoc, 129
listen, 186 memq, 129
I1not, 121 merge, 158
load, 56 min, 116
load_object, 56 min_int, 121
localtime, 183 min_num, 193
lockf, 181 minor, 148
log, 118 minus, 117, 120
log10, 118 minus_float, 117
lor (infix), 121 minus_int, 120
lseek, 176 minus_num, 192
1shift_left, 121 mkdir, 179
lshift_right, 121 mkfifo, 180
1s1 (infix), 121 mod (infix), 120
1sr (infix), 121 mod_float, 119
lstat, 177 mod_num, 192
1t_float, 118 modf, 119
1t_int, 121 modify, 139
1t_num, 193 mouse_pos, 169
lt_string, 133 moveto, 166
lxor (infix), 121 mult_float, 117
mult_int, 120
magenta, 165 mult_num, 192
major, 149
make_formatter, 145 nat_of _num, 194
make_image, 167 neq_float, 118
make_lexer, 149 neq_int, 120
make_matrix, 134 neq_string, 133
make_string, 132 new, 150, 156, 159
make_vect, 134 nice, 175
map, 128 normalize_num, 191
map (module), 153 not (infix), 114
map2, 128 Not_found (exception), 116

map_combine, 130 nth_char, 132

212

num (module), 191
num_of _big_int, 194
num_of _float, 194
num_of_int, 194
num_of _nat, 194
num_of _ratio, 194
num_of_string, 194
numerator_num, 191

open, 161, 175
open_box, 141
open_connection, 187
open_descriptor_in, 126
open_descriptor_out, 124
open_graph, 164
open_hbox, 143
open_hovbox, 143
open_hvbox, 143
open_in, 126
open_in_bin, 126
open_in_gen, 126
open_out, 124
open_out_bin, 124
open_out_gen, 124
open_process, 180
open_process_in, 180
open_process_out, 180
open_tbox, 144
open_vbox, 143
opendir, 179

or (infix), 114
out_channel_length, 125
out_channel_of_descr, 176
Out_of _memory (exception), 116
output, 125
output_binary_int, 125
output_byte, 125
output_char, 125
output_compact_value, 125
output_string, 125
output_value, 125

Parse_failure (exception), 131

parsing (module), 153
pause, 182

peek, 156

pipe, 179

plot, 166
point_color, 166
pop, 159

pos_in, 127
pos_out, 125

power, 118
power_num, 192
pp_close_box, 146
pp_close_tbox, 146
pp_force_newline, 146

pp_get_ellipsis_text, 146
pp_get_formatter_output_functions, 146

pp_get_margin, 146
pp_get_max_boxes, 146
pp_get_max_indent, 146
pp_open_box, 146
pp_open_hbox, 146
pp_open_hovbox, 146
pp_open_hvbox, 146
pp_open_tbox, 146
pp_open_vbox, 146
pp_over_max_boxes, 146
pp_print_as, 146
pp_print_bool, 146
pp_print_break, 146
pp_print_char, 146
pp_print_cut, 146
pp_print_float, 146
pp_print_flush, 146

pp-print_if_newline, 146

pp_print_int, 146
pp_print_newline, 146
pp_print_space, 146
pp_print_string, 146
pp_print_tab, 146
pp_print_tbreak, 146

over_max_boxes, 143 pp_set_ellipsis_text, 146

pp_set_formatter_out_channel, 146
pp_set_formatter_output_functions, 146
pp_set_margin, 146

pair (module), 130
parse, 138
Parse_error (exception), 131, 154

Index to the library 213

pp_set_max_boxes, 146 readdir, 179
pp_set_max_indent, 146 readlink, 180
pp_set_tab, 146 really_input, 126
pred, 120 recv, 187
pred_num, 193 recvfrom, 187
prerr_char, 123 red, 165
prerr_endline, 123 ref (module), 130
prerr_float, 123 regexp, 197
prerr_int, 123 regexp_case_fold, 198
prerr_string, 123 remove, 139, 150, 153, 158, 161
print, 155 remove_printer, 57
print_as, 141 rename, 161, 177
print_bool, 141 replace_first, 199
print_break, 142 replace_string, 133
print_char, 122, 141 rev, 128
print_cut, 142 rewinddir, 179
print_endline, 123 rgb, 165
print_float, 123, 141 rhs_end, 154
print_flush, 142 rhs_start, 154
print_if_newline, 142 rindex_char, 133
print_int, 123, 141 rindex_char_from, 133
print_newline, 123, 142 rmdir, 179
print_num, 194 round_num, 192
print_space, 142
print_stat, 148 s_irall, 160
print_string, 123, 141 s_irgrp, 160
print_tab, 144 s_iroth, 160
print_tbreak, 144 s_irusr, 160
printexc (module), 154 s_isgid, 160
printf, 147, 155 s_isuid, 160
printf (module), 154 s_iwall, 160
push, 159 s_iwgrp, 160
s_iwoth, 160
queue (module), 156 s_iwusr, 160
quit, 56 s_ixall, 160
quo (infix), 120 s_ixgrp, 160
quo_num, 192 s_ixoth, 160

raise, 116
random (module), 157
ratio_of_num, 194

s_ixusr, 160

search_backward, 198
search_forward, 198

seek_in, 127
read, 176 seek_out, 125
read_float, 124 select, 181
read_int, 124 send, 187
read_key, 169 sendto, 187

read_line, 124

214

set, 148

set (module), 157
set_approx_printing, 195
set_color, 165
set_ellipsis_text, 144
set_error_when_null_denominator, 194
set_floating_precision, 195
set_font, 166
set_formatter_out_channel, 144
set_formatter_output_functions, 144
set_line_width, 166
set_margin, 142
set_max_boxes, 143
set_max_indent, 143
set_normalize_ratio, 195
set_normalize_ratio_when_printing, 195
set_nth_char, 132
set_print_depth, 57
set_print_length, 57
set_tab, 144
set_text_size, 166

setgid, 184

setuid, 184

shutdown, 186
shutdown_connection, 187
sign_num, 193

signal, 182

sin, 118

sinh, 118

size_x, 165

size_y, 165

sleep, 183

snd, 130

socket, 186

socketpair, 186

sort, 158

sort (module), 158

sound, 169
split, 130, 139, 199
sprintf, 155

sqrt, 118

square_num, 192

stack (module), 159

stat, 148, 177

std_err, 122

std_formatter, 145
std_in, 122
std_out, 122
stderr, 122, 175
stdin, 122, 175
stdout, 122, 175

str (module), 197
stream (module), 131
stream_check, 131
stream_from, 131
stream_get, 131
stream_next, 131
stream_of_channel, 131
stream_of_string, 131
string (module), 132
string_after, 200
string_before, 200
string_for_read, 133
string_length, 132
string_match, 198
string_of_bool, 114
string_of_char, 115
string_of_float, 119
string_of_inet_addr, 185
string_of_int, 122
string_of_num, 194
sub_float, 117
sub_int, 120
sub_num, 192
sub_string, 132
sub_vect, 134
substitute_first, 199
subtract, 129

succ, 120
succ_num, 193
symbol_end, 153
symbol_start, 153
symlink, 180

sys (module), 159
Sys_error (exception), 159
sys_print_num, 194
system, 175
system_command, 161

take, 156

Index to the library 215

tan, 118

tanh, 118
tcdrain, 190
tcflow, 190
tcflush, 190
tcgetattr, 190
tcsendbreak, 190
tcsetattr, 190
text_size, 166
time, 161, 183
times, 183

tl, 128

toplevel (module), 55
trace, 56
transp, 167
truncate, 176

umask, 178

union, 129, 158

unix (module), 171
Unix_error (exception), 173
unlink, 177

untrace, 57

utimes, 183

vect (module), 134
vect_assign, 134
vect_item, 134
vect_length, 134
vect_of_list, 135
verbose_mode, 57

wait, 174
wait_next_event, 168
waitopt, 174
waitpid, 174

white, 165

write, 176

yellow, 165

Index of keywords

and, see let, type, exception, value, where

as, 21
begin, 22, 23

do, see while, for
done, see while, for
downto, see for

else, see if
end, 22, 23
exception, 31, 32

for, 22, 26
fun, 22
function, 22, 35

if, 22,25
in, see let

let, 22, 24

match, 22, 26, 35
mutable, 30, 37

not, 22

of, see type, exception
or, 22, 26

prefix, 22, 28, 39
rec, see let, where

then, see if
to, see for
try, 22, 27
type, 30, 32

value, 32

216

when, 36

where, 37

while, 26
with, see match, try

