
2 - File Names

ged

k

Java Code Conventions

1 - Introduction

 1.1 Why Have Code Conventions

Code conventions are important to programmers for a number of reasons:

• 80% of the lifetime cost of a piece of software goes to maintenance.

• Hardly any software is maintained for its whole life by the original author.

• Code conventions improve the readability of the software, allowing engineers to
understand new code more quickly and thoroughly.

• If you ship your source code as a product, you need to make sure it is as well packa
and clean as any other product you create.

For the conventions to work, every person writing software must conform to the code
conventions. Everyone.

 1.2 Acknowledgments

This document reflects the Java language coding standards presented in theJava Language
Specification,from Sun Microsystems, Inc. Major contributions are from Peter King, Patric
Naughton, Mike DeMoney, Jonni Kanerva, Kathy Walrath, and Scott Hommel.

This document is maintained by Scott Hommel. Comments should be sent to
shommel@eng.sun.com

2 - File Names

This section lists commonly used file suffixes and names.

 2.1 File Suffixes

Java Software uses the following file suffixes:

File Type Suffix
Java source .java

Java bytecode .class
1

3 - File Organization

ent

page

nd
s the
 2.2 Common File Names

Frequently used file names include:

3 - File Organization

A file consists of sections that should be separated by blank lines and an optional comm
identifying each section.

Files longer than 2000 lines are cumbersome and should be avoided.

For an example of a Java program properly formatted, see “Java Source File Example” on
18.

 3.1 Java Source Files

Each Java source file contains a single public class or interface. When private classes a
interfaces are associated with a public class, you can put them in the same source file a
public class. The public class should be the first class or interface in the file.

Java source files have the following ordering:

• Beginning comments (see “Beginning Comments” on page 2)

• Package and Import statements

• Class and interface declarations (see “Class and Interface Declarations” on page 3)

3.1.1 Beginning Comments

All source files should begin with a c-style comment that lists the class name, version
information, date, and copyright notice:

/*
 * Classname
 *
 * Version information
 *
 * Date
 *
 * Copyright notice
 */

File Name Use
GNUmakefile The preferred name for makefiles.

We usegnumake to build our software.

README The preferred name for the file that summarizes the
contents of a particular directory.
2

3 - File Organization

they

l-

-

3.1.2 Package and Import Statements

The first non-comment line of most Java source files is apackage statement. After that,
import statements can follow. For example:

package java.awt;

import java.awt.peer.CanvasPeer;

3.1.3 Class and Interface Declarations

The following table describes the parts of a class or interface declaration, in the order that
should appear. See “Java Source File Example” on page 18 for an example that includes
comments.

Part of Class/Interface
Declaration Notes

1 Class/interface documentation
comment (/**...*/)

See “Documentation Comments” on page 8 for
information on what should be in this comment.

2 class or interface statement

3 Class/interface implementation
comment (/*...*/), if necessary

This comment should contain any class-wide or
interface-wide information that wasn’t appropri-
ate for the class/interface documentation com-
ment.

4 Class (static) variables First thepublic class variables, then thepro-
tected , then package level (no access modifier),
and then theprivate .

5 Instance variables Firstpublic , thenprotected , then package
level (no access modifier), and thenprivate .

6 Constructors

7 Methods These methods should be grouped by functiona
ity rather than by scope or accessibility. For
example, a private class method can be in
between two public instance methods. The goal is
to make reading and understanding the code eas
ier.
3

4 - Indentation

tation

nd

o

iples:

ious

ght

ince

al
ional
4 - Indentation

Four spaces should be used as the unit of indentation. The exact construction of the inden
(spaces vs. tabs) is unspecified. Tabs must be set exactly every 8 spaces (not 4).

 4.1 Line Length

Avoid lines longer than 80 characters, since they’re not handled well by many terminals a
tools.

Note: Examples for use in documentation should have a shorter line length—generally n
more than 70 characters.

 4.2 Wrapping Lines

When an expression will not fit on a single line, break it according to these general princ

• Break after a comma.

• Break before an operator.

• Prefer higher-level breaks to lower-level breaks.

• Align the new line with the beginning of the expression at the same level on the prev
line.

• If the above rules lead to confusing code or to code that’s squished up against the ri
margin, just indent 8 spaces instead.

Here are some examples of breaking method calls:

someMethod(longExpression1, longExpression2, longExpression3,
 longExpression4, longExpression5);

var = someMethod1(longExpression1,
 someMethod2(longExpression2,
 longExpression3));

Following are two examples of breaking an arithmetic expression. The first is preferred, s
the break occurs outside the parenthesized expression, which is at a higher level.

longName1 = longName2 * (longName3 + longName4 - longName5)
 + 4 * longname6; // PREFER

longName1 = longName2 * (longName3 + longName4
 - longName5) + 4 * longname6; // AVOID

Following are two examples of indenting method declarations. The first is the convention
case. The second would shift the second and third lines to the far right if it used convent
indentation, so instead it indents only 8 spaces.
4

5 - Comments

l (4

e

//CONVENTIONAL INDENTATION
someMethod(int anArg, Object anotherArg, String yetAnotherArg,
 Object andStillAnother) {
 ...
}

//INDENT 8 SPACES TO AVOID VERY DEEP INDENTS
private static synchronized horkingLongMethodName(int anArg,
 Object anotherArg, String yetAnotherArg,
 Object andStillAnother) {
 ...
}

Line wrapping forif statements should generally use the 8-space rule, since conventiona
space) indentation makes seeing the body difficult. For example:

//DON’T USE THIS INDENTATION
if ((condition1 && condition2)
 || (condition3 && condition4)
 ||!(condition5 && condition6)) { //BAD WRAPS
 doSomethingAboutIt(); //MAKE THIS LINE EASY TO MISS
}

//USE THIS INDENTATION INSTEAD
if ((condition1 && condition2)
 || (condition3 && condition4)
 ||!(condition5 && condition6)) {
 doSomethingAboutIt();
}

//OR USE THIS
if ((condition1 && condition2) || (condition3 && condition4)
 ||!(condition5 && condition6)) {
 doSomethingAboutIt();
}

Here are three acceptable ways to format ternary expressions:

alpha = (aLongBooleanExpression) ? beta : gamma;

alpha = (aLongBooleanExpression) ? beta
 : gamma;

alpha = (aLongBooleanExpression)
 ? beta
 : gamma;

5 - Comments

Java programs can have two kinds of comments: implementation comments and
documentation comments. Implementation comments are those found in C++, which ar
delimited by/*...*/ , and// . Documentation comments (known as “doc comments”) are
Java-only, and are delimited by/**...*/ . Doc comments can be extracted to HTML files
using the javadoc tool.
5

5 - Comments

he
ode,
arily

at is

 the

ting
ents

 code

el

rs.

nd

inside

ode.
Implementation comments are means for commenting out code or for comments about t
particular implementation. Doc comments are meant to describe the specification of the c
from an implementation-free perspective to be read by developers who might not necess
have the source code at hand.

Comments should be used to give overviews of code and provide additional information th
not readily available in the code itself. Comments should contain only information that is
relevant to reading and understanding the program. For example, information about how
corresponding package is built or in what directory it resides should not be included as a
comment.

Discussion of nontrivial or nonobvious design decisions is appropriate, but avoid duplica
information that is present in (and clear from) the code. It is too easy for redundant comm
to get out of date. In general, avoid any comments that are likely to get out of date as the
evolves.

Note: The frequency of comments sometimes reflects poor quality of code. When you fe
compelled to add a comment, consider rewriting the code to make it clearer.

Comments should not be enclosed in large boxes drawn with asterisks or other characte
Comments should never include special characters such as form-feed and backspace.

 5.1 Implementation Comment Formats

Programs can have four styles of implementation comments: block, single-line, trailing a
end-of-line.

5.1.1 Block Comments

Block comments are used to provide descriptions of files, methods, data structures and
algorithms. Block comments may be used at the beginning of each file and before each
method. They can also be used in other places, such as within methods. Block comments
a function or method should be indented to the same level as the code they describe.

A block comment should be preceded by a blank line to set it apart from the rest of the c

/*
 * Here is a block comment.
 */

Block comments can start with/*- , which is recognized byindent(1) as the beginning of a
block comment that should not be reformatted. Example:

/*-
 * Here is a block comment with some very special
 * formatting that I want indent(1) to ignore.
 *
 * one
 * two
 * three
 */
6

5 - Comments

. If a

mple

 be
nt

n’t

yles
Note: If you don’t useindent(1), you don’t have to use/*- in your code or make any other
concessions to the possibility that someone else might runindent(1) on your code.

See also “Documentation Comments” on page 8.

5.1.2 Single-Line Comments

Short comments can appear on a single line indented to the level of the code that follows
comment can’t be written in a single line, it should follow the block comment format (see
section 5.1.1). A single-line comment should be preceded by a blank line. Here’s an exa
of a single-line comment in Java code:

if (condition) {

 /* Handle the condition. */
 ...
}

5.1.3 Trailing Comments

Very short comments can appear on the same line as the code they describe, but should
shifted far enough to separate them from the statements. If more than one short comme
appears in a chunk of code, they should all be indented to the same tab setting.

Here’s an example of a trailing comment in Java code:

if (a == 2) {
 return TRUE; /* special case */
} else {
 return isPrime(a); /* works only for odd a */
}

5.1.4 End-Of-Line Comments

The// comment delimiter can comment out a complete line or only a partial line. It should
be used on consecutive multiple lines for text comments; however, it can be used in
consecutive multiple lines for commenting out sections of code. Examples of all three st
follow:

if (foo > 1) {

 // Do a double-flip.
 ...
}
else{
 return false; // Explain why here.
}

7

5 - Comments

ch doc

e first
ent

ding

) or

ent
//if (bar > 1) {
//
// // Do a triple-flip.
// ...
//}
//else{
// return false;
//}

 5.2 Documentation Comments

Note: See “Java Source File Example” on page 18 for examples of the comment formats
described here.

For further details, see “How to Write Doc Comments for Javadoc” which includes
information on the doc comment tags (@return , @param, @see):

http://java.sun.com/products/jdk/javadoc/writingdoccomments.html

For further details about doc comments and javadoc, see the javadoc home page at:

http://java.sun.com/products/jdk/javadoc/

Doc comments describe Java classes, interfaces, constructors, methods, and fields. Ea
comment is set inside the comment delimiters/**...*/ , with one comment per class,
interface, or member. This comment should appear just before the declaration:

/**
 * The Example class provides ...
 */
public class Example { ...

Notice that top-level classes and interfaces are not indented, while their members are. Th
line of doc comment (/**) for classes and interfaces is not indented; subsequent doc comm
lines each have 1 space of indentation (to vertically align the asterisks). Members, inclu
constructors, have 4 spaces for the first doc comment line and 5 spaces thereafter.

If you need to give information about a class, interface, variable, or method that isn’t
appropriate for documentation, use an implementation block comment (see section 5.1.1
single-line (see section 5.1.2) comment immediatelyafter the declaration. For example, details
about the implementation of a class should go in in such an implementation block comm
following the class statement, not in the class doc comment.

Doc comments should not be positioned inside a method or constructor definition block,
because Java associates documentation comments with the first declarationafter the comment.
8

6 - Declarations

ds,

 first.

ly
6 - Declarations

 6.1 Number Per Line

One declaration per line is recommended since it encourages commenting. In other wor

int level; // indentation level
int size; // size of table

is preferred over

int level, size;

Do not put different types on the same line. Example:

int foo, fooarray[]; //WRONG!

Note: The examples above use one space between the type and the identifier. Another
acceptable alternative is to use tabs, e.g.:

int level; // indentation level
int size; // size of table
Object currentEntry; // currently selected table entry

 6.2 Initialization

Try to initialize local variables where they’re declared. The only reason not to initialize a
variable where it’s declared is if the initial value depends on some computation occurring

 6.3 Placement

Put declarations only at the beginning of blocks. (A block is any code surrounded by cur
braces “{” and “}”.) Don’t wait to declare variables until their first use; it can confuse the
unwary programmer and hamper code portability within the scope.

void myMethod() {
 int int1 = 0; // beginning of method block

 if (condition) {
 int int2 = 0; // beginning of "if" block
 ...
 }
}

The one exception to the rule is indexes offor loops, which in Java can be declared in thefor
statement:

for (int i = 0; i < maxLoops; i++) { ... }
9

7 - Statements

e the

ed:

 the
Avoid local declarations that hide declarations at higher levels. For example, do not declar
same variable name in an inner block:

int count;
...
myMethod() {
 if (condition) {
 int count; // AVOID!
 ...
 }
 ...
}

 6.4 Class and Interface Declarations

When coding Java classes and interfaces, the following formatting rules should be follow

• No space between a method name and the parenthesis “(“ starting its parameter list

• Open brace “{” appears at the end of the same line as the declaration statement

• Closing brace “}” starts a line by itself indented to match its corresponding opening
statement, except when it is a null statement the “}” should appear immediately after
“{“

class Sample extends Object {
 int ivar1;
 int ivar2;

 Sample(int i, int j) {
 ivar1 = i;
 ivar2 = j;
 }

 int emptyMethod() {}

 ...
}

• Methods are separated by a blank line

7 - Statements

 7.1 Simple Statements

Each line should contain at most one statement. Example:

argv++; // Correct
argc++; // Correct
argv++; argc--; // AVOID!
10

7 - Statements

s

tement.

nt; the

of a

value
 7.2 Compound Statements

Compound statements are statements that contain lists of statements enclosed in brace
“ { statements } ”. See the following sections for examples.

• The enclosed statements should be indented one more level than the compound sta

• The opening brace should be at the end of the line that begins the compound stateme
closing brace should begin a line and be indented to the beginning of the compound
statement.

• Braces are used around all statements, even single statements, when they are part
control structure, such as aif-else or for statement. This makes it easier to add
statements without accidentally introducing bugs due to forgetting to add braces.

 7.3 return Statements

A return statement with a value should not use parentheses unless they make the return
more obvious in some way. Example:

return;

return myDisk.size();

return (size ? size : defaultSize);

 7.4 if, if-else, if else-if else Statements

The if-else class of statements should have the following form:

if (condition) {
statements ;

}

if (condition) {
statements ;

} else {
statements ;

}

if (condition) {
statements ;

} else if (condition) {
statements ;

} else {
statements ;

}

Note: if statements always use braces {}. Avoid the following error-prone form:

if (condition) //AVOID! THIS OMITS THE BRACES {}!
statement ;
11

7 - Statements

d

efore
.

 7.5 for Statements

A for statement should have the following form:

for (initialization ; condition ; update) {
statements ;

}

An emptyfor statement (one in which all the work is done in the initialization, condition, an
update clauses) should have the following form:

for (initialization ; condition ; update);

When using the comma operator in the initialization or update clause of afor statement, avoid
the complexity of using more than three variables. If needed, use separate statements b
thefor loop (for the initialization clause) or at the end of the loop (for the update clause)

 7.6 while Statements

A while statement should have the following form:

while (condition) {
statements ;

}

An emptywhile statement should have the following form:

while (condition);

 7.7 do-while Statements

A do-while statement should have the following form:

do {
statements ;

} while (condition);

 7.8 switch Statements

A switch statement should have the following form:
12

8 - White Space

e
e

switch (condition) {
case ABC:

statements ;
 /* falls through */
case DEF:

statements ;
 break;

case XYZ:
statements ;

 break;

default:
statements ;

 break;
}

Every time a case falls through (doesn’t include abreak statement), add a comment where th
break statement would normally be. This is shown in the preceding code example with th
/* falls through */ comment.

Everyswitch statement should include a default case. Thebreak in the default case is
redundant, but it prevents a fall-through error if later anothercase is added.

 7.9 try-catch Statements

A try-catch statement should have the following format:

try {
statements ;

} catch (ExceptionClass e) {
statements ;

}

A try-catch statement may also be followed byfinally ,
which executes regardless of whether or not thetry block has completed successfully.

try {
statements ;

} catch (ExceptionClass e) {
statements ;

} finally {
statements;

}

8 - White Space

 8.1 Blank Lines

Blank lines improve readability by setting off sections of code that are logically related.
13

8 - White Space

g

k
”), and
Two blank lines should always be used in the following circumstances:

• Between sections of a source file

• Between class and interface definitions

One blank line should always be used in the following circumstances:

• Between methods

• Between the local variables in a method and its first statement

• Before a block (see section 5.1.1) or single-line (see section 5.1.2) comment

• Between logical sections inside a method to improve readability

 8.2 Blank Spaces

Blank spaces should be used in the following circumstances:

• A keyword followed by a parenthesis should be separated by a space. Example:

 while (true) {
 ...
 }

Note that a blank space should not be used between a method name and its openin
parenthesis. This helps to distinguish keywords from method calls.

• A blank space should appear after commas in argument lists.

• All binary operators except. should be separated from their operands by spaces. Blan
spaces should never separate unary operators such as unary minus, increment (“++
decrement (“--”) from their operands. Example:

 a += c + d;
 a = (a + b) / (c * d);

 while (d++ = s++) {
 n++;
 }
 prints("size is " + foo + "\n");

• The expressions in afor statement should be separated by blank spaces. Example:

for (expr1; expr2; expr3)

• Casts should be followed by a blank space. Examples:

 myMethod((byte) aNum, (Object) x);
 myMethod((int) (cp + 5), ((int) (i + 3))
 + 1);
14

9 - Naming Conventions

d.
’s a
9 - Naming Conventions

Naming conventions make programs more understandable by making them easier to rea
They can also give information about the function of the identifier—for example, whether it
constant, package, or class—which can be helpful in understanding the code.

Identifier Type Rules for Naming Examples

Packages The prefix of a unique package name is
always written in all-lowercase ASCII letters
and should be one of the top-level domain
names, currently com, edu, gov, mil, net, org,
or one of the English two-letter codes identify-
ing countries as specified in ISO Standard
3166, 1981.

Subsequent components of the package name
vary according to an organization’s own inter-
nal naming conventions. Such conventions
might specify that certain directory name com-
ponents be division, department, project,
machine, or login names.

com.sun.eng

com.apple.quicktime.v2

edu.cmu.cs.bovik.cheese

Classes Class names should be nouns, in mixed case
with the first letter of each internal word capi-
talized. Try to keep your class names simple
and descriptive. Use whole words—avoid
acronyms and abbreviations (unless the abbre-
viation is much more widely used than the
long form, such as URL or HTML).

class Raster;
class ImageSprite;

Interfaces Interface names should be capitalized like
class names.

interface RasterDelegate;
interface Storing;

Methods Methods should be verbs, in mixed case with
the first letter lowercase, with the first letter of
each internal word capitalized.

run();
runFast();
getBackground();
15

10 - Programming Practices

tially a

s

tead.
10 - Programming Practices

 10.1 Providing Access to Instance and Class Variables

Don’t make any instance or class variable public without good reason. Often, instance
variables don’t need to be explicitly set or gotten—often that happens as a side effect of
method calls.

One example of appropriate public instance variables is the case where the class is essen
data structure, with no behavior. In other words, if you would have used astruct instead of a
class (if Java supportedstruct) , then it’s appropriate to make the class’s instance variable
public.

 10.2 Referring to Class Variables and Methods

Avoid using an object to access a class (static) variable or method. Use a class name ins
For example:

classMethod(); //OK
AClass.classMethod(); //OK

Variables Except for variables, all instance, class, and
class constants are in mixed case with a lower-
case first letter. Internal words start with capi-
tal letters. Variable names should not start with
underscore _ or dollar sign $ characters, even
though both are allowed.

Variable names should be short yet meaning-
ful. The choice of a variable name should be
mnemonic— that is, designed to indicate to the
casual observer the intent of its use. One-char-
acter variable names should be avoided except
for temporary “throwaway” variables. Com-
mon names for temporary variables arei , j , k,
m, andn for integers;c, d, ande for characters.

int i;
char c;
float myWidth;

Constants The names of variables declared class con-
stants and of ANSI constants should be all
uppercase with words separated by under-
scores (“_”). (ANSI constants should be
avoided, for ease of debugging.)

static final int MIN_WIDTH = 4;

static final int MAX_WIDTH = 999;

static final int GET_THE_CPU = 1;

Identifier Type Rules for Naming Examples
16

10 - Programming Practices

 can

ad.

uality

 is the

ators
 you, it
 as
anObject.classMethod(); //AVOID!

 10.3 Constants

Numerical constants (literals) should not be coded directly, except for -1, 0, and 1, which
appear in afor loop as counter values.

 10.4 Variable Assignments

Avoid assigning several variables to the same value in a single statement. It is hard to re
Example:

fooBar.fChar = barFoo.lchar = 'c'; // AVOID!

Do not use the assignment operator in a place where it can be easily confused with the eq
operator. Example:

if (c++ = d++) { // AVOID! (Java disallows)
 ...
}

should be written as

if ((c++ = d++) != 0) {
 ...
}

Do not use embedded assignments in an attempt to improve run-time performance. This
job of the compiler. Example:

d = (a = b + c) + r; // AVOID!

should be written as

a = b + c;
d = a + r;

 10.5 Miscellaneous Practices

10.5.1 Parentheses

It is generally a good idea to use parentheses liberally in expressions involving mixed oper
to avoid operator precedence problems. Even if the operator precedence seems clear to
might not be to others—you shouldn’t assume that other programmers know precedence
well as you do.

if (a == b && c == d) // AVOID!

if ((a == b) && (c == d)) // USE
17

11 - Code Examples

lass.
10.5.2 Returning Values

Try to make the structure of your program match the intent. Example:

if (booleanExpression) {
 return true;
} else {
 return false;
}

should instead be written as

return booleanExpression ;

Similarly,

if (condition) {
 return x;
}
return y;

should be written as

return (condition ? x : y);

10.5.3 Expressions before ‘?’ in the Conditional Operator

If an expression containing a binary operator appears before the? in the ternary?: operator, it
should be parenthesized. Example:

(x >= 0) ? x : -x;

10.5.4 Special Comments

UseXXXin a comment to flag something that is bogus but works. UseFIXME to flag something
that is bogus and broken.

11 - Code Examples

 11.1 Java Source File Example

The following example shows how to format a Java source file containing a single public c
Interfaces are formatted similarly. For more information, see “Class and Interface
Declarations” on page 3 and “Documentation Comments” on page 8
18

11 - Code Examples
/*
 * @(#)Blah.java 1.82 99/03/18
 *
 * Copyright (c) 1994-1999 Sun Microsystems, Inc.
 * 901 San Antonio Road, Palo Alto, California, 94303, U.S.A.
 * All Rights Reserved.
 *
 * This software is the confidential and proprietary information of Sun
 * Microsystems, Inc. ("Confidential Information"). You shall not
 * disclose such Confidential Information and shall use it only in
 * accordance with the terms of the license agreement you entered into
 * with Sun.
 */

package java.blah;

import java.blah.blahdy.BlahBlah;

/**
 * Class description goes here .
 *
 * @version 1.82 18 Mar 1999
 * @author Firstname Lastname
 */
public class Blah extends SomeClass {
 /* A class implementation comment can go here. */

 /** classVar1 documentation comment */
 public static int classVar1;

 /**
* classVar2 documentation comment that happens to be

 * more than one line long
 */
 private static Object classVar2;

 /** instanceVar1 documentation comment */
 public Object instanceVar1;

 /** instanceVar2 documentation comment */
 protected int instanceVar2;

 /** instanceVar3 documentation comment */
 private Object[] instanceVar3;

 /**
 * ... constructor Blah documentation comment...
 */
 public Blah() {

 // ...implementation goes here...
 }

 /**
 * ... method doSomething documentation comment...
 */
 public void doSomething() {
 // ...implementation goes here...
 }
19

11 - Code Examples
 /**
 * ...method doSomethingElse documentation comment...
 * @param someParam description
 */
 public void doSomethingElse(Object someParam) {
 // ...implementation goes here...
 }
}

20

	1 - Introduction
	2 - File Names
	3 - File Organization
	4 - Indentation
	5 - Comments
	6 - Declarations
	7 - Statements
	8 - White Space
	9 - Naming Conventions
	10 - Programming Practices
	11 - Code Examples

