
This is the specification of the standard mapping of Enterprise JavaBeansTM 1.0 architecture
to CORBA.

Please send technical comments on this specification to:

ejb-spec-comments@sun.com

Please send product and business questions to:

ejb-marketing@sun.com

Copyright 1998 by Sun Microsystems Inc.

901 San Antonio Road, Palo Alto, CA 94303

All rights reserved.

Sun Microsystems

Enterprise JavaBeansTM to CORBA
Mapping

microsystems

Rohit Garg

March 23, 1998 3:32 pm
Version 1.0

Enterprise JavaBeans to CORBA

Sun Microsystems Inc. 2 March 23, 1998

RESTRICTED RIGHTS: Use, duplication or disclosure by the government is subject
to the restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data
and Computer Software Clause as DFARS 252.227-7013 and FAR 52.227-19.

Sun, Sun Microsystems, the Sun logo, Java, and all Java-based trademarks and logos
are trademarks or registered trademarks of Sun Microsystems, Inc. in the Unites States
and other countries.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MECHANTABILITY, FITNESS FOR A PAR-
TICULAR USE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TY-
POGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE
INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN
NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC., MAY
MAKE NEW IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/
OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Enterprise JavaBeans to CORBA

Sun Microsystems Inc. 3 March 23, 1998

Contents

1 Introduction 4

2 Goals 5

3 Mapping of Distribution 7

4 Mapping of Naming 10

5 Mapping of Transactions 12

6 Mapping of Security 15

AppendixA:References 16

AppendixB:Enterprise JavaBeans IDL 17

AppendixC:Example Application 19

Enterprise JavaBeans to CORBA

Sun Microsystems Inc. 4 March 23, 1998

1 Introduction

Enterprise JavaBeansTM (EJB) [1] is a component architecture for development and de-
ployment of object-oriented distributed enterprise-level Java applications. Applications
written using Enterprise JavaBeans are scalable, transactional, and multi-user secure.
These applications can be written once, and then deployed on any EJB-enabled server
platform.

We expect that many EJB servers will be based on the CORBA/IIOP [2] industry stan-
dard. To ensure interoperability among the CORBA-based implementations from mul-
tiple-vendors, we have defined a standard mapping of EJB to CORBA. This document
corresponds to the EJB specification version 1.0.

1.1 Target Audience

The target audience for this specification are the vendors of transaction processing plat-
forms, vendors of enterprise application tools, and other vendors who want to use the
CORBA/IIOP standard to provide support for Enterprise JavaBeans in their products.

1.2 Mapping Overview

The EJB to CORBA mapping is divided into four areas:

• Mapping of Distribution - defines the relationship between an Enterprise
JavaBean and a CORBA object, and the mapping of the Java RMI remote
interfaces defined in the EJB specification to OMG IDL.

• Mapping of Naming- specifies how COS Naming is used to locate the
EJBHome objects

• Mapping of Transactions- defines the mapping of the EJB transaction support
to the OMG Object Transaction Service (OTS) v1.1 [6]

• Mapping of Security- defines the mapping of the security features in EJB to
CORBA security

1.3 Acknowledgments

Vlada Matena, Graham Hamilton, Anil Vijendran, Sanjeev Krishnan, Shel Finkelstein,
and David Heisser have provided invaluable input to this specification.

Enterprise JavaBeans to CORBA

Sun Microsystems Inc. 5 March 23, 1998

2 Goals

The primary goal of this specification is to define “on-the-wire” interoperability so that
multiple CORBA based implementations of the EJB specification can interoperate on
the network.

That is, this specification makes it possible to provide the following EJB/CORBA in-
teroperability:

• A CORBA client (written in any CORBA supported language) can access
Enterprise JavaBeans deployed in a CORBA based EJB server.

• A client program can mix calls to CORBA and EJB objects within a transaction.

• A transaction can span multiple EJB objects that are located on multiple
CORBA-based EJB servers, provided by different vendors.

2.1 Types of CORBA Clients

From the discussion above, there are two types of CORBA clients to an EJB Server:

• EJB/CORBA Client - A Java client that uses the EJB APIs. The client uses
JNDI to locate objects, Java RMI over IIOP to invoke remote methods, and the
javax.jts.CurrentTransactioninterface to demarcate transaction boundaries.
The use of CORBA IDL is implicit (i.e. the programmer writes only Java code
and the corresponding CORBA IDL is used implicitly by the runtime).

CORBA

EJB

CORBA

EJB

vendor 1 vendor 2

(client)

CORBA

EJB

vendor 3

(server 1) (server 2)

Enterprise JavaBeans to CORBA

Sun Microsystems Inc. 6 March 23, 1998

An Enterprise JavaBean running in a CORBA based EJB server is also an EJB/
CORBA client to other EJBs.

• Plain CORBA Client - A client written in any language that uses a language
specific bindings of the CORBA IDL. Such a client uses COS Naming to locate
objects, CORBA IDL to invoke remote methods, and OTS to demarcate
transactions. The use of CORBA IDL is explicit (i.e. the programmer creates an
IDL file and runs an IDL compiler to generate stubs for a given language).

The mapping ensures that both types of clients interoperate with a CORBA-based EJB
server by producing the same bits on the wire.

Enterprise
JavaBeans

EJB
server

Enterprise
JavaBeans

EJB
server

Enterprise
JavaBeans
client

Java IDL
client

CORBA
C++ client

vendor 4 vendor 5

vendor 3

vendor1

vendor 2

IIOP
IIOP

IIOP

IIOP

Enterprise JavaBeans to CORBA

Sun Microsystems Inc. 7 March 23, 1998

3 Mapping of Distribution

Even though CORBA does not mandate using IIOP, lately, CORBA and IIOP have be-
come synonymous. This document assumes that the EJB/CORBA compliant imple-

mentations are using IIOP1 as the communication protocol.

3.1 Mapping Java Remote Interfaces to IDL

For each Enterprise JavaBean, that is deployed in the EJB Server, there are two remote
interfaces - the bean’s EJBHome interface, and the bean’s EJBObject interface. The
Java Language to IDL Mapping [11] and the Objects by Value [13] OMG specifications
describe precisely how these remote interfaces are mapped to IDL. This mapping to
IDL is typically implicit when Java RMI over IIOP is used to access the EJBs.

3.1.1 Mapping of Handle

The Handle object is a value object. Its standard mapping is defined in terms of an In-
teroperable Object Refernce (IOR).

// Handle
value Handle {};
value StandardHandle : Handle {
 public string EJBObjectIOR;
};

3.1.2 Mapping of EJBMetaObject

The EJBMetaData is a value object. Its standard mapping is defined as follows:

// EJBMetaData
value EJBMetaData {};
value StandardEJBMetaData : EJBMetaData {
 public string EJBHomeIOR;
 public string homeClassName;
 public string remoteClassName;
 public string keyClassName;
 public boolean isSession;
};

3.1.3 Marking of transaction-enabled enterprise bean objects

An enterprise bean whose transaction attribute is set toBEAN_MANAGED, SUP-
PORTS, REQUIRED, REQUIRES_NEW, or MANDATORYis said to betransaction-
enabled.

The CORBA mapping of a transaction-enabled enterprise bean must follow these rules:

• The IDL interface for the enterprise bean’s remote interface must inherit from

theCosTransactions::TransactionalObjectIDL interface2.

1.plain insecure IIOP, SECIOP, or IIOP over SSL

Enterprise JavaBeans to CORBA

Sun Microsystems Inc. 8 March 23, 1998

• For an entity enterprise bean, the IDL interface for the enterprise bean’s home
interface must inherit from theCosTransactions::TransactionalObjectIDL
interface.

The IDL interface for an enterprise bean whose transaction attribute is set to
NOT_SUPPORTEDmust not inherit from theCosTransactions::TransactionalObject
IDL interface.

See “Generated IDL” on page 20 for an example of mapping the Java Remote interfac-
es in EJB to IDL using the above rules.

3.2 Client Side Stubs

The following figure illustrates the runtime objects used in a typical distributed EJB-
enabled CORBA environment.

Depending on the client type, the client stubs are either RMI/IIOP stubs, or plain IDL
stubs defined by the language-specific CORBA mappings.

An example of the complete IDL for the remote interfaces in the Enterprise JavaBeans
is listed in “Enterprise JavaBeans IDL” on page 17.

3.3 CORBA Object and Enterprise JavaBean Relationship

 As a server-side implementation technique, the CORBA runtime may use a
servant implementing the enterprise bean’s CORBA IDL to field a method
invocation, and delegate the method invocation to the appropriate enterprise
bean. One way to achieve this is use TIE based skeletons (as defined in the

2.This is necessary to ensure the implicit propagation of the transaction context from the client to the enter-
prise bean.

enterprise Bean

container ‘s address space

EJB home object

EJB object

remote

client address space

client

EJB object stub

EJB home stub containerIIOP

Enterprise JavaBeans to CORBA

Sun Microsystems Inc. 9 March 23, 1998

CORBA v2.x) that are initialized with the enterprise bean instance. Since the
architecture of the stubs and skeletons does not relate to on-the-wire
interoperability, it is not specified in this document.

client EJB Server

object
reference servant EJB

instance

IIOP

Enterprise JavaBeans to CORBA

Sun Microsystems Inc. 10 March 23, 1998

4 Mapping of Naming

A CORBA based EJB runtime is required to use the OMG COS NameService for pub-
lishing and resolving the EJBHome interface objects. The COS NameService can either
be accessed directly using the COS Naming API or using the JNDI API with the stan-
dard COS Naming service provider [12].

4.1 COS Namespace Layout

Each bean’s deployment descriptor contains a property called theBeanHomeName
that specifies the pathname in the name space at which to bind the enterprise bean’s
container object.

For example, if an ejb-jar contains four enterprise beans with container names:bank/
account/checking, bank/account/saving, bank/teller/ATM, andbank/managerthen the
COS namespace may look as shown in the following figure:

In the figure above, there are 5 naming contexts:

• naming context 0 is the root of the COS name space. It is obtained using ORB’s
resolve_initial_references method with “NameService” as the argument

• naming context 1 is where the ejb-jar is “installed”. Note that we do not mandate
any relationship between naming contexts 0 and 1. If they are not the same, then
the client pretty much has to be configured with a path between them.

• naming context 2 is bound to context1 with namebank ; naming contexts 3, and
4 are bound to context 2 with namesaccount andteller respectively

The following rules should be used to construct a CosNaming::Name (to use in Cos-
Naming APIs) from a container path.

• the container path is parsed from left to right

• each ‘/’ separated name is theid field of a CosNaming::NameComponent, and

Namespace
Root

bank

account manager

checking

Naming Context

saving ATM

teller

0

1

2

3 4

EJBHome

Enterprise JavaBeans to CORBA

Sun Microsystems Inc. 11 March 23, 1998

• thekind field of the NameComponent is always an empty string (““)

Enterprise JavaBeans to CORBA

Sun Microsystems Inc. 12 March 23, 1998

5 Mapping of Transactions

A CORBA based EJB runtime is required to use OMG Object Transaction Service
(OTS) [6] for transaction support. The following sections describe the mapping of the
transaction concepts in EJB to OMG (OTS).

5.1 Transaction Propagation

The rules for the mapping of enterprise bean’s remote interfaces to CORBA IDL (See
Subsection 3.1.3) ensure that the IDL interface of the remote interface for a transaction-
enabled enterprise bean inherits from theCosTransactions::TransactionalObjectIDL
interface.

Inheritence from theCosTransactions::TransactionalObjectinheritence ensures that
the ORB and OTS will propagate the client’s transaction context (if the client is asso-
ciated with any transaction context) to the enterprise bean object.

5.2 Container support for transactions

Every client method invocation on an enterprise bean object is interposed by the bean’s
container. The interposition allows the container to perform declarative transaction
management.

The following table shows what actions are taken by the EJB server runtime for differ-
ent values of the enterprise bean’s transaction attribute:

Table 1: Declarative Transaction Attribute Management

Transaction Attribute Client’s transaction
operation on

TransactionCurrent
on the Server

TX_NOT_SUPPORTED
- -

T1 suspend T1
invoke bean
resume T1

TX_BEAN_MANAGED
- resume bean’s transaction

invoke bean
suspend bean’s transaction

T1 suspend T1
resume bean’s transaction

invoke bean
suspend bean’s transaction

resume T1

TX_REQUIRED
- begin T2

invoke bean

enda T2

T1 inherits T1

Enterprise JavaBeans to CORBA

Sun Microsystems Inc. 13 March 23, 1998

The following pseudo-code illustrates how a CORBA-based container should implement
the required semantics of the enterprise bean’s transaction attribute (the pseudo-code
does not show exception handling):

• TX_NOT_SUPPORTED

clientTransaction = Current.suspend();
result = instance.method(args);
Current.resume(clientTransaction);
return result;

• TX_BEAN_MANAGED

clientTransaction = Current.suspend();
Current.resume(instanceTx);
result = instance.method(args);
Current.suspend();
Current.resume(clientTransaction);
return result;

• TX_REQUIRED

if (Current.getStatus() == StatusActive) {
return instance.method(args);

} else {
Current.begin();

TX_SUPPORTS
- -

T1 inherits T1

TX_REQUIRES_NEW
- begin T2

invoke bean
end T2

T1 suspend T1
begin T2

invoke bean
end T2

resume T1

TX_MANDATORY
- throw

TRANSACTION_REQUIR
ED

T1 inherit T1

a.end transaction refers to either commit or abort based on the outcome from the method
invocation on the bean.

Transaction Attribute Client’s transaction
operation on

TransactionCurrent
on the Server

Enterprise JavaBeans to CORBA

Sun Microsystems Inc. 14 March 23, 1998

result = instance.method(args);
Current.commit();
return result;

}

• TX_SUPPORTS

return instance.method(args);

• TX_REQUIRES_NEW

clientTransaction = Current.suspend();
Current.begin();
result = instance.method(args);
Current.commit();
Current.resume(clientTransaction);
return result;

• TX_MANDATORY

if (Current.getStatus() == StatusActive) {
return instance.method(args);

} else {
throw org.omg.CORBA.TRANSACTION_REQUIRED(...);

}

5.3 Client-side Demarcation

A CORBA client will typically use the OTS Current interface to demarcate transaction
boundaries. An EJB CORBA-based infrastructure must propagate the client’s transac-
tion context to the transaction-enabled enterprise beans.

Enterprise JavaBeans to CORBA

Sun Microsystems Inc. 15 March 23, 1998

6 Mapping of Security

The main security concern in the EJB specification isaccess control, which requires
the server ORB to determine the client’s identity. Each bean also has an identity (spec-
ified in the bean’s deployment descriptor,) which is used for ACL checking when the
bean itself acts as a client to another bean, or when the bean invokes protected resourc-
es.

The client identity is based on the actual security/communication protocols used by the
ORBs:

• plain IIOP - The client identity is theCORBA::Principal that comes over the
wire as part of the IIOP Request Message. The Principal can be mapped by the
ORB to the underlying operating system userid.

• Common Secure IIOP(CSI)[7] - The client identity is defined by the specific
mechanism (GSSKerberos, SPKM, CSI-ECMA) used with SECIOP (Secure
IIOP.)

• IIOP over SSL[8] - The client’s identity is the X.500 distinguished name
obtained using SSL client authentication.

 Note that when CSI or IIOP/SSL are used, then the CORBA::principal is
deprecated. For real secure interoperability the ORB should implement CSI
specification, or the CORBAsecurity/SSL specification.

Enterprise JavaBeans to CORBA

Sun Microsystems Inc. 16 March 23, 1998

Appendix A: References

[1] Enterprise JavaBeans Specification.

[2] CORBA/IIOP version 2.1 Specification (http://www.omg.org/corba/corbaiiop.htm)

[3] CORBA COS Security Service (http://www.omg.org/corba/sectrans.htm#sec)

[4] CORBA Interoperability (http://www.omg.org/docs/interop/96-05-01.ps)

[5] Naming Service (http://www.omg.org/corba/sectrans.htm#nam)

[6] Transaction Service (http://www.omg.org/corba/sectrans.htm#trans)

[7] Common Secure IIOP (CSI) (http://www.omg.org/docs/orbos/96-06-20.ps)

[8] CORBAsecurity/SSL Interoperability (http://www.omg.org/docs/orbos/97-02-
04.ps)

[9] IDL Java Mapping 1.0 (http://www.omg.org/docs/orbos/97-03-01.ps)

[10] Java to IDL Mapping RFP (http://www.omg.org/docs/orbos/orbos/97-03-08.ps)

[11] Java to IDL Mapping, Joint Initial Submission, IBM, Netscape, Oracle, Sun, and
Visigenic (http://www.omg.org/docs/orbos/97-03-08.pdf)

[12] Java Naming and Directory Service Providers (http://java.sun.com/products/jndi/
serviceproviders.html)

[13] CORBA Objects by Value (http://www.omg.org/docs/orbos/98-01-18.pdf)

Enterprise JavaBeans to CORBA

Sun Microsystems Inc. 17 March 23, 1998

Appendix B: Enterprise JavaBeans IDL

B.1 ejb.idl
// ejb.idl

#include “java.lang.ExceptionValue.idl”

module javax {

 module ejb {

 // CreateException
 value CreateException : ::java:lang:Exception {};
 exception CreateEx {
 CreateException the_value;
 };

 // DuplicateKeyException
 value DuplicateKeyException : ::java:lang:Exception {};
 exception DuplicateKeyEx {
 DuplicateKeyException the_value;
 };

 // EJBException
 value EJBException : ::java:lang:Exception {};
 exception EJBEx {
 EJBException the_value;
 };

 // FinderException
 value FinderException : ::java:lang:Exception {};
 exception FinderEx {
 FinderException the_value;
 };

 // ObjectNotFoundException
value ObjectNotFoundException : ::java:lang:Exception {};

 exception ObjectNotFoundEx {
 ObjectNotFoundException the_value;
 };

 // RemoveException
 value RemoveException : ::java:lang:Exception {};
 exception RemoveEx {
 RemoveException the_value;
 };

 // Handle
 value Handle {};
 value StandardHandle : Handle {
 public string EJBObjectIOR;
 };

Enterprise JavaBeans to CORBA

Sun Microsystems Inc. 18 March 23, 1998

 // EJBMetaData
 value EJBMetaData {};
 value StandardEJBMetaData : EJBMetaData {
 public string EJBHomeIOR;
 public string homeClassName;
 public string remoteClassName;
 public string keyClassName;
 public boolean isSession;
 };

 interface EJBHome;

 // EJBObject
 interface EJBObject {

 EJBHome getEJBHome();

 Any getPrimaryKey();

 void remove() raises (RemoveEx);

 Handle getHandle();

 boolean isIdentical(in EJBObject object);
 };

 // EJBHome
 interface EJBHome {

 EJBMetaData getEJBMetaData();

 void remove(Any primaryKey) raises (RemoveEx);

 void remove(Handle handle) raises (RemoveEx);
 };
 };
};

B.2 java.lang.Exception.idl
// java.lang.Exception.idl

module java {
 module lang {
 value Exception {
 public ::CORBA::WStringValue detailMessage;
 };
 };
};

Enterprise JavaBeans to CORBA

Sun Microsystems Inc. 19 March 23, 1998

Appendix C: Example Application

This sections shows the IDL that is generated from the remote interface of a session
bean and the pseudocode for a C++ client that invokes methods on it in the context of
a client initiated transaction. The bean is deployed as TX_REQUIRED.

C.1 Bean Home Interface
package trading;

import javax.ejb.EJBHome;
import javax.ejb.CreateException;
import java.rmi.RemoteException;

/**
 * TraderHome is a remote interface for the Trader Home.
 */
public interface TraderHome extends EJBOHome {

 Trader create(String user)
 throws RemoteException, CreateException;
}

C.2 Bean Remote Interface
package trading;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

/**
 * Trader is a remote interface for the Trader server bean.
 */
public interface Trader extends EJBObject{

 /* Buy shares of specified stock. */
public void buy(String stockSymbol, int shares, double price)

 throws RemoteException, TooManySharesException;

 /* Sell shared of specified stock. */
public void sell(String stockSymbol, int shares, double price)

 throws RemoteException, TooManySharesException;
}

C.3 Bean’s Remote Exceptions
package trading;

/**
* TooManySharesException is thrown if a client attempts to trade

 * more shares than the Trader server bean permits.

Enterprise JavaBeans to CORBA

Sun Microsystems Inc. 20 March 23, 1998

 */
public class TooManySharesException extends Exception {

 public TooManySharesException() { super(); }

 public TooManySharesException(String s) { super(s); }

 int getMaxAllowed();

 private int maxAllowed;
}

C.4 Generated IDL
#include “ejb.idl”
#include “java.lang.ExceptionValue.idl”

module trading {

 value TooManySharesException: ::java::lang::ExceptionValue {
 int maxAllowed;
 };

 exception TooManySharesEx {
 TooManySharesException the_value;
 };

 interface TraderHome : ::javax::ejb::EJBHome {
Trader create(in string user)
 raises(::javax.ejb.CreateEx);

 };

 interface Trader : ::javax::ejb::EJBObject,
 ::org::omg::CosTransactions::TransactionalObject {

 void buy(in string stockSymbol, in long shares,
 in double price)
 raises (TooManySharesException);

 void sell(in string stockSymbol, in long shares,
 in double price)
 raises (TooManySharesException);
 };
};

C.5 C++ CORBA Client Pseudocode
...

// initialize the ORB
CORBA_ORB_ptr orb = CORBA_ORB_init(argc, argv, NULL);

Enterprise JavaBeans to CORBA

Sun Microsystems Inc. 21 March 23, 1998

// get initial reference for the Name Service
CORBA_Object_ptr iobj =

orb->resolve_initial_reference(“NameService”);
CosNaming_NamingContext_ptr initial =

CosNaming_NamingContext::_narrow(iobj);

// construct the CosNaming::Name for the Bean Home Interface
CosName home_name(...);

// locate the Trader Home
CORBA_Object_var obj = initial->resolve(home_name);
trading_TraderHome_ptr home = trading_TraderHome::_narrow(obj);

// create a session bean
trading_Trader_ptr trader = home->create(“user1”);

// invoke on the trader bean under a client initiated transaction
try {
 txn_crt.begin();

 trader->buy(“SUNW”, 100, 52.00);
 trader->sell(“ABCC”, 50, 35.90);

 txn_crt.commit(FALSE);
} catch (...) {
 txn_crt.rollback();
}

...

