
This is a draft specification of the Enterprise JavaBeans architecture for public review. We ex-
pect to finalize this specification after 60 - 90 days of public review.

Enterprise JavaBeans is a component architecture for development and deployment of object-
oriented distributed enterprise-level Java applications. Applications written using Enterprise
JavaBeans are scalable, transactional, and multi-user secure. These applications can be written
once, and then deployed on any Java enabled server platform.

Sun Microsystems Inc. Proprietary and Confidential document

Please send technical comments on this specification to:

ejb-spec-comments@sun.com

Please send product and business questions to:

ejb-marketing@sun.com

Copyright 1997 by Sun Microsystems Inc.

901 San Antonio Road, Palo Alto, CA 94303.

All rights reserved.

Sun Microsystems

Enterprise JavaBeansTM

microsystems

Vlada Matena & Mark Hapner

December 9, 1997 2:09 pm
Version 0.8

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 2 December 9, 1997

RESTRICTED RIGHTS: Use, duplication or disclosure by the government is subject
to the restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data
and Computer Software Clause as DFARS 252.227-7013 and FAR 52.227-19.

Sun, Sun Microsystems, the Sun logo, Java, and all Java-based trademarks and logos
are trademarks or registered trademarks of Sun Microsystems, Inc. in the Unites States
and other countries.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MECHANTABILITY, FITNESS FOR A PAR-
TICULAR USE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TY-
POGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE
INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN
NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC., MAY
MAKE NEW IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/
OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 3 December 9, 1997

Contents

1. Introduction . 6

1.1 Target audience . 6
1.2 Acknowledgments. 6
1.3 Organization. 6

2. Goals . 7

2.1 Overall goals . 7
2.2 Goals for Release 1.0 . 7

3. Roles and scenarios . 8

3.1 Roles . 8
3.2 Scenario 1: Development, deployment, assembly 9

4. Fundamentals . 11

4.1 Enterprise beans as components . 11
4.2 Enterprise JavaBeans contracts . 12
4.3 Session and entity objects . 14
4.4 Standard CORBA mapping . 15

5. Client view of a session bean. 17

5.1 Overview . 17
5.2 EJB container . 17
5.3 EJB Object . 19
5.4 Session object identity. 19
5.5 Client’s view of session bean’s lifecycle . 20
5.6 Creating and using a session bean. 21

6. Session bean state management . 22

6.1 Overview . 22
6.2 Goals . 22
6.3 A container’s management of its working set 22
6.4 Conversational state . 23
6.5 The protocol between a session bean and its container 23
6.6 Non-transactional session bean state diagram. 26
6.7 Transactional session bean state diagram. 28
6.8 Sequence diagrams . 30

7. Example session scenario . 35

7.1 Overview . 35
7.2 Inheritance relationship . 36

8. Client view of an entity . 39

8.1 Overview . 39
8.2 EJB container . 39
8.3 Entity EJB object lifecycle . 41

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 4 December 9, 1997

8.4 Primary key and object identity. 43
8.5 Enterprise bean’s remote interface . 44
8.6 Enterprise bean’s handle . 45

9. Entity container protocol . 46

9.1 The runtime execution model . 46
9.2 Entity persistence. 47
9.3 Instance lifecycle . 48
9.4 The entity container contract . 49
9.5 The design pattern for business method delegation 54
9.6 The design pattern for the factory interface 54
9.7 The design pattern for the finder interface. 57
9.8 Sequence diagrams . 57

10. Example entity scenario. 67

10.1 Overview . 67
10.2 Inheritance relationship . 68

11. Support for transactions . 71

11.1 Transaction model . 71
11.2 Relationship to JTS. 71
11.3 Scenarios . 71
11.4 Declarative transaction management . 76
11.5 Bean-managed demarcation . 79
11.6 Transaction management exceptions. 79

12. Support for distribution . 80

12.1 Overview . 80
12.2 Client-side objects . 80
12.3 Interoperability via network protocol . 80

13. Support for security . 82

13.1 Package java.security . 82
13.2 Security-related methods in InstanceContext 82
13.3 Security-related deployment descriptor properties 82
13.4 Examples. 82

14. Ejb-jar file . 84

14.1 ejb-jar file . 84
14.2 Deployment descriptor . 84
14.3 ejb-jar Manifest. 84

15. Enterprise bean provider responsibilities. 85

15.1 Classes and interfaces . 85
15.2 Environment properties . 86
15.3 Deployment descriptor . 87
15.4 Programming restrictions . 87
15.5 Component packaging responsibilities. 87

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 5 December 9, 1997

16. Container provider responsibilities . 88

17. Enterprise JavaBeans API Reference. 89

18. Related documents . 134

Appendix A. Glossary of terms . 135

Appendix B. Example application . 136

Appendix C. Features deferred to future releases 137

C.1 Programmatic access to security . 137
C.2 Enterprise beans with extended transactional semantics . . . 137

Appendix D. Issues and dependencies. 138

D.1 Pending issues . 138

Appendix E. package java.jts. 140

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 6 December 9, 1997

1 Introduction

1.1 Target audience

The target audience for this specification are the vendors of transaction processing plat-
forms, vendors of enterprise application tools, and other vendors who want to provide
support for Enterprise JavaBeans in their products.

Many concepts described in this document are system-level issues that the application
programmer using Enterprise JavaBeans will not have to deal with. Since the main goal
of Enterprise JavaBeans is to hide these complex system level issues from the applica-
tion programmer, we plan to provide a separate Enterprise JavaBean programmer’s
primer.

We thank the reviewers for their time and effort in helping us to improve the specifica-
tion.

1.2 Acknowledgments

Rick Cattell, Shel Finkelstein, Graham Hamilton, Li Gong, Rohit Garg, Susan Cheung,
and Anil Vijendran have provided invaluable input to the design of Enterprise Java-
Beans.

Enterprise JavaBeans is a broad effort that includes contribution from numerous groups
at Sun and at partner companies. The ongoing specification review process has been ex-
tremely valuable, and the many comments that we have received helped us to define the
specification.

1.3 Organization

 TODO - describe document organization

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 7 December 9, 1997

2 Goals

2.1 Overall goals

We have set the following goals for the Enterprise JavaBeans (EJB) architecture:

• Enterprise JavaBeans will be the standard component architecture for building
distributed object-oriented business applications in Java. Enterprise JavaBeans
will make it possible to build distributed applications by combining components
developed using tools from different vendors.

• Enterprise JavaBeans will make it easy to write applications: Application
developers will not have to deal with low-level details of transaction and state
management; multi-threading; resource pooling; and other complex low-level
APIs. However, an expert-level programmer will be allowed to gain direct
access to the low-level APIs.

• Enterprise JavaBeans applications will follow the “write-once, run anywhere”
philosophy of Java. An enterprise bean can be developed once, and then
deployed on multiple platforms without recompilation or source code
modification.

• The Enterprise JavaBeans architecture will address the development,
deployment, and runtime aspects of an enterprise application’s lifecycle.

• The Enterprise JavaBeans architecture will define the contracts that enable tools
from multiple vendors to develop and deploy components that can interoperate
at runtime.

• The Enterprise JavaBeans architecture will be compatible with existing server
platforms. Vendors will be able to extend their existing products to support
Enterprise JavaBeans.

• The Enterprise JavaBeans architecture will be compatible with other Java APIs.

• The Enterprise JavaBeans architecture will provide interoperability between
enterprise beans and non-Java applications.

• The Enterprise JavaBeans architecture will be compatible with CORBA.

2.2 Goals for Release 1.0

In Release 1.0, we want to focus on the following aspects:

• Define the distinct “roles” that are assumed by the component architecture.

• Define the client’s view of enterprise beans.

• Define the enterprise bean developer’s view.

• Define the responsibilities of anEJB container providerand server provider;
together these make up a system that supports the deployment and execution of
enterprise beans.

• Define the format of theejb-jar file, EJB’s unit of deployment.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 8 December 9, 1997

3 Roles and scenarios

3.1 Roles

The Enterprise JavaBeans architecture defines five distinct roles in the application de-
velopment and deployment workflow. Each role may be performed by a different party.
Enterprise JavaBeans specifies the contracts that ensure that the product of each role is
compatible with the product of the other roles.

 In some scenarios, a single party may perform several roles. For example, the
container provider and the EJB server provider may be the same vendor. Or a
single programmer may perform the role of the enterprise bean provider and
the role of the application assembler.

The following sections define the five EJB roles.

3.1.1 Enterprise bean provider

An enterprise bean provider is typically an application domain expert. An enterprise
bean provider develops reusable components called enterprise beans. An enterprise
bean implements a business task.

An enterprise bean provider is not an expert at system-level programming. Therefore,
an enterprise bean provider usually does not program transactions, concurrency, secu-
rity, distribution and other services into the enterprise beans. An enterprise bean pro-
vider relies on an EJB container provider for these services.

The output of an enterprise bean provider is an ejb-jar file that contains enterprise
beans. Each bean includes its Java classes, its deployment descriptor, and its environ-
ment properties.

3.1.2 Application assembler

An application assembler is a domain expert who composes applications out of enter-
prise beans. An application assembler produces an ejb-jar file that contains enterprise
beans with their deployment descriptors and environment properties. The ejb-jar file
might include additional files that are part of the assembled application but whose def-
inition is outside of Enterprise JavaBeans.

The assembler may also write a GUI client-side for the applications.

3.1.3 Deployer

A deployer is an expert at a specific operational environment, and is responsible for the
deployment of enterprise beans and their containers. A deployer typically uses tools
provided by the container provider to adapt enterprise beans to an operational environ-
ment.

For example, a deployer is responsible for mapping the security roles assumed by the
enterprise beans to those required by the organization that will be using the enterprise
beans. A deployer typically reads the attribute settings in the enterprise beans’ deploy-

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 9 December 9, 1997

ment descriptors and modifies the values of the enterprise beans’ environment proper-
ties.

3.1.4 EJB container provider

The expertise of a container provider is system-level programming, possibly combined
with some application-domain expertise. The focus of a container provider is on the de-
velopment of a scalable, secure, transaction-enabled container system. The container
provider insulates the enterprise bean from the specifics of an underlying EJB server by
providing a simple, standard API between the enterprise bean and the container.

An entity[4.3.2] container is typically responsible for persistence of its entity enterprise
beans. The container provider’s tools are used to generate code that moves data be-
tween the enterprise bean’s instance variables and a database. The container provider
may be an expert in the area of providing access to legacy data sources.

A container provider is responsible for the evolution of enterprise beans. For example,
the container provider should allow enterprise bean classes to be upgraded without in-
validating existing clients or losing existing enterprise bean objects.

Enterprise JavaBeans defines the container contract that must be supported by every
compliant EJB container. Enterprise JavaBeans allows container vendors to develop
specialized containers that extend this contract. Examples of specialized containers in-
clude a container that supports an application-domain specific framework, a container
that implements an Object/Relational mapping, or a container that is built on top of an
object-oriented database system.

3.1.5 EJB server provider

An EJB server provider is a specialist in the area of distributed transaction manage-
ment, distributed objects, and other lower-level system-level services. A typical EJB
server provider is an OS vendor, middleware vendor, or database vendor.

Typically, the EJB server provider will provide a container that implements the EJB
session container[4.2.2] contract, and may also provide anentity container[4.2.2] for
one or more data sources supported on the EJB server.

An EJB server provider will typically publish its lower-level interfaces to allow third
parties to develop containers.

 A later release of Enterprise JavaBeans may standardize the interfaces
between a container and an EJB server.

3.2 Scenario 1: Development, deployment, assembly

Wombat Inc. is an enterprise bean provider that specializes in the development of soft-
ware components for the banking sector. Wombat Inc. has developed theAccountBean
andTellerBean enterprise beans, and packages them in anejb-jar file.

Wombat sells the enterprise beans to banks that may use containers and EJB servers
from multiple vendors. One of the banks uses a container from the Acme Corporation.
Acme’s tools that are part of Acme’s container product facilitate the deployment of en-

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 10 December 9, 1997

terprise beans from any provider, including Wombat Inc. The deployment process re-
sults in generating additional classes used internally by Acme containers. The
additional classes allow Acme containers to manage enterprise bean objects at runtime,
as defined by the EJB container contract.

Since theAccountBean andTellerBeanenterprise beans by themselves are not a com-
plete application, the bank MIS department may use Acme’s tools to assemble theAc-
countBean andTellerBean enterprise beans with other enterprise beans (possibly from
another vendor) and possibly with some non-EJB existing software, into a complete ap-
plication. The MIS department takes on both the EJB deployer and application assem-
bler roles.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 11 December 9, 1997

4 Fundamentals

This chapter defines the scope of the Enterprise JavaBeans specification.

4.1 Enterprise beans as components

Enterprise JavaBeans is an architecture for component based distributed computing.
Enterprise beans are components of distributed transaction-oriented enterprise applica-
tions.

4.1.1 Component characteristics

The essential characteristics of an enterprise bean are:

• An enterprise bean is contained and managed at runtime by a container.

• An enterprise bean can be customized at deployment time by editing its
environment properties.

• Various metadata, such as a transaction mode and security attributes, are
separated out from the enterprise bean class. This allows the metadata to be
manipulated using container’s tools at design and deployment time.

• Client access is mediated by the container and the EJB server on which the
enterprise bean is deployed.

• If an enterprise bean uses only the standard container services defined by the
EJB specification, the enterprise bean can be deployed in any compliant EJB
container.

• Specialized containers can provide additional services beyond those defined by
the EJB specification. An enterprise bean that depends on such a service must
be deployed only in a container that supports the service.

• An enterprise bean can be included in a composite application without requiring
source code changes or recompilation of the enterprise bean.

• A client’s view of an enterprise bean is defined by the bean developer. Its view
is unaffected by the container and server the bean is deployed in. This ensures

that both beans and their 100% Pure JavaTM clients are write-once-run-
anywhere.

4.1.2 Flexible component model

The enterprise bean architecture is flexible enough to implement components such as
the following:

• An object that represents a stateless service.

• An object that represents a conversational session with a particular client. Such
session objects automatically maintain their conversational state across multiple
client-invoked methods.

• A persistent entity object that is shared among multiple clients.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 12 December 9, 1997

Although the state management protocol defined by the Enterprise JavaBeans architec-
ture is simple, it provides an enterprise bean developer great flexibility in managing a
bean’s state.

A client always uses the same API for object creation, lookup, method invocation, and
destruction, regardless of how an enterprise bean is implemented, and what function it
provides to the client.

4.2 Enterprise JavaBeans contracts

This section describes the Enterprise JavaBeans Release 1.0 contracts.

4.2.1 Client’s view contract

This is a contract between a client and a container. The client’s view contract provides
a uniform development model for applications using enterprise beans as components.
This uniform model enables using higher level development tools, and will allow great-
er reuse of components.

Both the enterprise bean provider and the container provider have obligations to fulfill
the contract. This contract includes:

• Object identity.

• Lifecycle operations.

• Method invocation.

• Factory interface.

• Finder interface.

A client expects that an enterprise bean object has a unique identifier. The container
provider is responsible for generating a unique identifier for each EJB object. For enti-
ty[4.3.2] enterprise beans, the EJB provider is responsible for supplying a unique pri-
mary key that the container embeds into the EJB object’s identifier.

A client locates an enterprise bean container through the standard Java Naming and Di-

rectory InterfaceTM (JNDI). Within a container, the primary key is used to identify each
EJB object.

An enterprise bean and its container cooperate to implement the create, find, and de-
stroy operations callable by clients.

An enterprise bean provider defines a remote interface that defines the business meth-
ods callable by a client. The enterprise bean provider is also responsible for writing the
implementation of the business methods in the enterprise bean class. The container is
responsible for allowing the clients to invoke an enterprise bean through its associated
remote interface. The container delegates the invocation of a business method to its im-
plementation in the enterprise bean class.

An enterprise bean provider is responsible for supplying an enterprise bean’s factory
interface. The factory interface defines one or morecreate(...) methods, one for each
way to create the EJB object. The enterprise bean provider is responsible for the imple-

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 13 December 9, 1997

mentation of theejbCreate(...) methods in the enterprise bean class, whose signature
must match those of the factorycreate(...) methods. The container provider tools are
responsible for generating a class that implements the factory interface and for making
the interface available to the enterprise bean’s clients through thegetFactory() method
on theContainer interface. The implementation of the create(...) methods generated by
the container provider tools must invoke the matchingejbCreate(...) method.

 TODO: describe finder

4.2.2 Container contract

This is a contract between an enterprise bean and its container. This contract includes:

• An enterprise bean class instance’s view of its lifecycle. For a session enterprise
bean, this includes the state management callbacks defined by the
java.ejb.SessionBeanand java.ejb.SessionSynchronizationinterfaces. For an
entity enterprise bean, this includes the state management callbacks defined by
the java.ejb.EntityBeaninterface. The container invokes the callback methods
defined by these interfaces at the appropriate times to notify the instance of the
important events in its lifecycle.

• The java.ejb.SessionContext interface that a container passes to a session
enterprise bean instance at instance creation. The instance uses the
SessionContextinterface to obtain various information and services from its
container. Similarly, an entity instance uses thejava.ejb.EntityContext interface
to communicate with its container.

• The environmentjava.util.Properties that a container makes available to an
enterprise bean.
See http://java.sun.com/products/jdk/1.1/docs/api/java.util.Properties.html.

• A list of services that every container must provide for its enterprise beans.

4.2.3 Ejb-jar file

An ejb-jar file is a standard format used by EJB tools for packaging enterprise beans
with their declarative deployment information. All EJB tools must support ejb-jar files.

The ejb-jar contract includes:

• JAR file manifest entries that describe the content of the ejb-jar file.

• Java class files for the enterprise beans.

• Enterprise beans’ deployment descriptors. A deployment descriptor includes
the declarative attributes associated with an enterprise bean. The attributes
instruct the container how to manage the enterprise bean objects.

• Enterprise beans’ environment properties that the enterprise bean requires at
runtime.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 14 December 9, 1997

The following figure illustrates the Enterprise JavaBeans contracts that are defined in
Release 1.0.

Note that while the figure illustrates only a remote client running outside of the contain-
er, the client-side API is also applicable to clients who themselves are enterprise beans
installed in the same container.

4.3 Session and entity objects

Enterprise JavaBeans 1.0 defines two types of enterprise beans:

• A session object type.

• An entity object type.

The support for session objects is mandatory for an EJB 1.0 compliant container. The
support for entity objects is optional for an EJB 1.0 compliant container, but it will be-
come mandatory for EJB 2.0 compliant containers.

4.3.1 Session objects

A typical session object has the following characteristics:

• Executes on behalf of a single client.

• Can be transaction-aware.

• Updates data in an underlying database.

• Relatively short-lived.

client EnterpriseBean

 ejb-jar file

container

container
contract

client’s view

EJB server

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 15 December 9, 1997

• Is destroyed when the EJB server crashes. The client has to re-establish a new
session object to continue computation.

• Does not represent data that should be stored in a database.

A typical EJB server and container provide a scalable runtime environment to execute
a large number of session objects concurrently.

4.3.2 Entity objects

A typical entity object has the following characteristics:

• Represents data in the database.

• Transactional.

• Shared access from multiple users.

• Can be long-lived (lives as long as the data in the database).

• Survives crashes of the EJB server. A crash is transparent to the client.

A typical EJB server and container provide a scalable runtime environment for a large
number of concurrently active entity objects.

4.4 Standard CORBA mapping

To ensure interoperability for multi-vendor EJB environments, we define a standard
mapping of the Enterprise JavaBeans client’s view contract to CORBA.

The mapping to CORBA covers:

1. Mapping of the EJB client interfaces to CORBA IDL.

2. Propagation of transaction context.

3. Propagation of security context.

The Enterprise JavaBeans to CORBA mapping not only enables on-the-wire interoper-
ability among multiple vendors’ implementations of an EJB server, but it also enables
non-Java clients to access server-side applications written as enterprise beans through
standard CORBA APIs.

The CORBA mapping is defined in an accompanying document [6].

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 16 December 9, 1997

The following figure illustrates a heterogeneous environment that includes systems
from five different vendors.

Enterprise
JavaBeans

EJB
server

Enterprise
JavaBeans

EJB
server

Enterprise
JavaBeans
client

Java IDL
client

CORBA
client

vendor 4 vendor 5

vendor 3

vendor1

vendor 2

IIOP
IIOP

IIOP

IIOP

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 17 December 9, 1997

5 Client view of a session bean

This chapter describes the client’s view of a session enterprise bean. The session bean
itself implements the bean’s business logic. All the functionality for remote access, se-
curity, concurrency, transactions, etc. is provided by the bean’s container.

5.1 Overview

A client-side programmer accesses an enterprise bean through an EJB object. An EJB
object is a remote Java object accessible from a client through the standard Java APIs
for remote object invocation [3, 5].

From its creation until destruction, an EJB object lives in a container. Transparently to
the client, the container provides security, concurrency, transactions, persistence, and
other services for the EJB object.

Each session EJB object has an identity which, in general,does not survive a crash and
restart of the container.

The client’s view of an EJB object is location-independent. A client running in the same
JVM as the EJB object uses the same API as a client running in a different JVM on the
same or different machine.

The client’s view of an EJB object is the same, irrespective of the implementation of
the enterprise bean and its container.

5.2 EJB container

An EJB container (container for short) is an object that functions as the “container” for
enterprise beans. A container is where an enterprise bean object lives, just as a record
lives in a database, and a file or directory lives in a file system.

5.2.1 Locating a container

A client locates a container using JNDI. For example, a container forCart EJB objects
can be located using the following code segment:

Context initialContext = new InitialContext();
Container cartContainer = (Container)

initialContext.lookup(“applications/mall/freds-carts”);

A client’s JNDI name space may be configured to include EJB containers located on
multiple machines on a network. The actual location of an EJB container is, in general,
transparent to the client.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 18 December 9, 1997

5.2.2 What a container provides

The following diagram illustrates the services that an session container provides to its
clients.

5.2.3 Container interface

An EJB container implements thejava.ejb.Container interface. Thejava.ejb.Container
interface allows a client to do the following:

• Obtain a factory object that allows a client to create new EJB objects in the
container.

• Destroy an EJB object.

• Get metadata describing the container’s EJB object type.

5.2.4 Enterprise bean’s factory

An enterprise bean’s factory interface is an interface that allows a client to create new
EJB objects in a container. A client obtains a factory interface using a container’sget-
Factorymethod.

A factory interface defines one or morecreate(...) methods, one for each way to create
the EJB object. The arguments of thecreate methods are typically used to initialize the
state of the created EJB object.

An enterprise bean’s factory interface must extend thejava.ejb.Factory interface. The
following is an example of a factory interface:

public interface CartFactory extends java.ejb.Factory {
public Cart create(String customerName, String account)

 throws RemoteException;
}

client

EJB objects

Container

container

Factory

EJB objectsEJB objects

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 19 December 9, 1997

The following example illustrates how a client obtains and uses a factory object:

CartFactory cartFactory = (CartFactory)
cartContainer.getFactory();

cartFactory.create(“John”, “7506”);

5.2.5 Destroying an EJB object

The container defines several methods that allow a client to destroy an EJB object.

5.2.6 A container’s metadata

TODO

5.3 EJB Object

A client never accesses an EJB object directly.

An EJB object supports:

• The business logic methods of the object.

• The java.ejb.EJBObject interface.EJBObject includes methods that allow the
client to

• get the EJB object’s container.
• get the EJB object’s handle.
• test to see if another EJB object is identical.
• destroy the EJB object.

The implementation of the methods defined in thejava.ejb.EJBObject interface is pro-
vided by the container. The business methods are delegated to the particular EJB object
implementation.

5.4 Session object identity

Session objects are intended to be private resources used only by the client that created
them. For this reason, session EJB objects, from the clients perspective, appear anony-
mous. In contrast to entity EJB objects which expose their identity as a primary key,
session objects hide their identity.

Since all session objects hide their identity, there is no need to provide a finder for them,
so all theirContainer.getFinder methods return null.

A session EJB object handle can be held beyond the life of a client process by serializ-
ing the handle to persistent store. When the handle is later deserialized, the session EJB
object it returns will work as long as the object still exists on the server (an earlier tim-
eout or server crash may have destroyed it).

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 20 December 9, 1997

5.5 Client’s view of session bean’s lifecycle

From a client point of view, the lifecycle of a session bean object is illustrated below.

An object does not exist until it is created. When an object is created by a client, the
client gets a reference to the newly created EJB object.

A client that has a reference to an object can then do any of the following:

• Invoke application methods on the object through the session bean’s remote
interface.

• Get a reference to the object’s container.

• Get a handle for the object

• Pass the object as a parameter or return value within the scope of the client.

• Destroy the object. A container may also destroy the object when the object’s
lifetime expires.

References to an EJB object that does not exist are invalid. Attempted invocations on
an object that does not exist will throw ajava.ejb.NoSuchObjectException.

does not exist
and

not referenced

does not exist
and

referenced

exists
and

not referenced

exists
and

referenced

release reference

create()

destroy()

release reference

client’s method on reference

client’s method on reference
generates NoSuchObjectException

or

Server crash/timeout
Server crash/timeout

handle.getEJBObject

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 21 December 9, 1997

5.6 Creating and using a session bean

An example of the session bean runtime objects is illustrated by the following diagram:

A client creates a Cart session object (which provides a shopping service) using the cart
Container’s CartFactory. The client then uses this object to fill the cart with items and
to purchase its contents.

If the client wishes to start his shopping session on his work machine and later complete
this session from his home machine, this can be done by getting the session’s handle,
sending the serialized handle to his home, and using it to reestablish access to the orig-
inal Cart.

For the following example, we start off by looking up a cart Container in JNDI. We then
use this container to create aCart EJBObject and add a few items to it:

Container store = (Container) lookup...
CartFactory cartFactory = store.getFactory();
Cart cart = cartFactory.create();
cart.addItem(66);
cart.addItem(22);

Next we decide to complete this shopping session at home so we serialize a handle to
this cart session and mail it home:

Handle cartHandle = cart.gethandle;
serialize cartHandle, attach to message and mail it home...

Finally we deserialize the handle at home and purchase the content of the shopping cart:

Handle cartHandle = deserialize from mail attachment...
Cart cart = (Cart) cartHandle.getEJBObject();
cart.purchase();
cart.destroy();

CartEB

client Cart

Container

container

CartFactory

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 22 December 9, 1997

6 Session bean state management

The state management of a session bean instance is part of the contract between a ses-
sion bean and its container. It defines the lifecycle of a session bean instance.

This chapter defines the developer’s view of session bean state management and the
container’s responsibility for managing it.

6.1 Overview

By definition, a session bean instance is an extension of the client that creates it:

• Its fields containconversational state on behalf of the client. This state
describes the conversation represented by a specific client/instance pair.

• It typically reads and updates data in a database on behalf of the client. Within
a transaction, some of this data may be cached in the bean.

• Its lifetime is typically that of its client.

 A session bean instance’s life may also be terminated by a container-specified
timeout or the failure of the server it is running on. For this reason, a client must
always be prepared to recreate a new instance if it loses the one it’s using.

Typically, a session bean’s conversational state is not written to the database. A bean
developer simply stores it in the bean’s fields and assumes its value is retained for the
lifetime of the bean.

On the other hand, cached database data must be explicitly managed by the bean. A
bean must write any database updates it is caching prior to the bean’s transaction com-
pletion, and it must refresh any potentially stale database data it contains at the begin-
ning of the next transaction.

6.2 Goals

The goal of the session bean model is to make developing a session bean as simple as
developing the same functionality directly in a client.

The session bean container manages the lifecycle of the session bean, notifying it when
bean action may be necessary, and providing a full range of services to ensure the bean
implementation scales to support a large number of clients.

The remainder of this section describes the session bean lifecycle in detail and the pro-
tocol between the bean and its container.

6.3 A container’s management of its working set

In order to efficiently manage the size of its working set, a session bean container may
need to temporarily transfer the state of an idle session bean to some form of secondary
storage. The transfer from the working set to secondary storage is calledpassivation.
The transfer back is calledactivation.

A container may only passivate a session bean when that bean isnot in a transaction.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 23 December 9, 1997

In order to help its container manage its state, a session bean is specified at deployment
as having one of the following state management modes:

• STATELESS - the bean contains no conversational state between methods; any
bean instance can be used for any client.

• STATEFUL - the bean contains conversational state which must be retained
across transactions.

• PINNED - the bean must not be passivated by its container; it contains
conversational state that would be lost if it were passivated.

 ThePINNED style should be used with care. Since it prevents a container from
passivating a session bean, it may not scale as well as the other styles.

6.4 Conversational state

A STATEFUL session bean’s conversational state is defined as its field values plus the
transitive closure of the objects reachable from the session bean’s fields. The transitive
closure is defined in terms of the standard Java Serialization protocol—the fields that
would be stored by serializing the enterprise bean instance are considered part of the
enterprise bean state.

While a session container is not required to use the Java Serialization protocol to store
the state of passivated beans, it must achieve the equivalent result. The one exception
is that containers are not required to reset the value oftransient fields.

In advanced cases, a session bean’s conversational state may contain open resources.
Examples of this are open files, open sockets and open database cursors. It is not pos-
sible for a container to retain open resources while a session bean is passivated. A de-
veloper of such a session bean must either designate the bean as PINNED, or close and
open the resources using theejbPassivateand ejbActivatenotifications.

6.4.1 The effect of transaction rollback on conversational state

A session bean’s conversational state is not transactional. It is not automatically rolled
back to its initial state if the bean’s transaction rolls back.

If a rollback could result in a session bean’s conversational state being inconsistent, the
bean developer must use the afterCompletionnotification to manually reset its state.

6.5 The protocol between a session bean and its container

This section describes the interfaces that define the services a container provides to a
session bean.

Containers themselves make no actual service demands on their session beans. The
calls a container makes on a bean provide it with access to container services and de-
liver notifications issued by the container.

6.5.1 The requiredSessionBean interface

All session beans must implement theSessionBean interface.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 24 December 9, 1997

ThesetSessionContext method is called by the bean’s container to associate a session
bean instance with itsContainer andEJBObject. Typically a session bean retains its
session context as part of its conversational state.

TheejbDestroy notification signals that the instance is in the process of being destroyed
by the container. Since most session beans don’t have any database or resource state to
clean up, this method is typically left empty.

The ejbPassivate notification signals the intent of the container to passivate the in-
stance. TheejbActivatenotification signals the instance it has just been reactivated.
Since containers automatically maintain the conversational state of a session bean in-
stance while it is passivated, most session beans can ignore these notifications. Their
purpose is to allow advanced beans to maintain open resources that need to be closed
prior to an instance’s passivation and reopened when it is reactivated.

6.5.2 The container’sSessionContext interface

All bean containers provide their bean instances with aSessionContext. This gives the
bean instance access to itsContainer and itsEJBObject.

ThegetEJBObject method returns the bean instance’s EJB object.

ThegetEnvironment method returns the environment properties list the bean was de-
ployed with.

ThegetCallerIdentity method returns the identity of the current invoker of the bean in-
stance’s EJB object.

The isCallerInRole predicate tests if the immediate caller has a particular role.

6.5.3 The optionalSessionSynchronization interface

Most session beans will implement theSessionSynchronizationinterface. It provides
the bean with notifications for transaction synchronization. Session beans use these no-
tifications to manage database data they may cache within transactions.

ThebeginTransaction notification signals a session instance that a new transaction has
begun. At this point, the instance is already in the transaction and may do any database
work it requires.

ThebeforeCompletion notification is issued when a session instance’s client has com-
pleted work on its current transaction but prior to committing the instance’s resources.
This is the time when the instance should write out any database updates it has cached.

TheafterCompletion notification signals that the current transaction has completed. A
completion status oftrue indicates the transaction committed; a status offalse indicates
a rollback occurred. Since a session instance’s conversational state is not transactional,
it may need to manually reset its state if a rollback occurred.

6.5.4 Business method delegation

 TODO: describe how the container delegates a business method

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 25 December 9, 1997

6.5.5 Session bean factory

Session beans go through a two step creation process. First, a container calls the bean
class’newInstance method to create a bean instance. Second, it calls one of the in-
stance’sejbCreatemethods.

Each session bean must have at least oneejbCreate method. The number and signatures
of a session bean’screate methods are open-ended.

A client creates a session bean instance using a factory object obtained from the bean’s
container. The bean’s factory interface is provided by the bean developer; its imple-
mentation is generated by the bean’s container. It has a set ofcreate methods that du-
plicate the signatures of the bean’sejbCreate methods.

When a client calls a factorycreate method, the container creates a bean instance and
then calls the bean’s correspondingejbCreate method, passing the original parameter
values.

Since a session bean represents a specific, private conversation between the bean and
its client, its create parameters typically contain the information the client uses to per-
sonalize the bean instance for its use.

6.5.6 Serializing session bean methods

A container serializes calls to each of its bean instances. Most containers will support
many instances of a bean executing concurrently; however, each instance sees only a
serialized sequence of method calls.

The method calls a container serializes includes those delivered via an instance’s EJB
object as well as the service calls made by the container itself.

6.5.7 Transaction context of session bean methods

A session bean’sbeginTransaction andbeforeCompletion methods are always called
within a transaction.

A session bean’ssetSessionContext, ejbCreate, ejbDestroy, ejbPassivate, ejbActivate
andafterCompletion methods are always called without a transaction. So, for instance,
it would usually be wrong to make database updates within a session bean’sejbCreate
or ejbDestroy methods.

A session bean’s deployment descriptor determines whether or not its business methods
are called with a transaction.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 26 December 9, 1997

6.6 Non-transactional session bean state diagram

The following figure illustrates the lifecycle of a non-transactional session bean in-
stance.

The following is a walk-through the lifecyle of a session bean instance:

• A non-transactional session bean’s life starts when a client invokes a create(...)
method on its container’s factory. This causes the container to invoke
newInstance() on the bean class to create a new memory object for the
enterprise bean. Next, the container callssetSessionContext() followed by
ejbCreate(...) on the instance, and returns an EJB object to the client.

• The bean instance is now ready for client methods.

• The container’s caching algorithm may decide that the bean instance should be
evicted from memory (this could be done at the end of each method, or by using
an LRU policy). If the bean instance is STATELESS, the container can simply
let the instance be garbage collected. If it is PINNED, the container cannot evict
the instance. If it is STATEFUL, the container will issueejbPassivate() on the
instance. After this completes, the container must save the instance’s state to
secondary storage.

does not
 exist

method
 ready passive

1. newInstance()
2. setSessionContext(oc)
3. ejbCreate(args)

create(args)

ejbDestroy()

destroy()

method

chosen as LRU victim

ejbActivate()

method

ejbPassivate()

create()
ejbDestroy

action initiated by client
action initiated by container

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 27 December 9, 1997

• If a client invokes a method on this passivated instance (only STATEFUL beans
are passivated), the container activates the session instance prior to delegating
the method invocation to it. To activate the session instance, the container
restores the instance’s state from secondary storage and issuesejbActivate() on
it.

• The enterprise bean is again ready for client methods.

• When the client callsdestroy() on the EJB object, this causes the container to
issueejbDestroy() on the bean instance. This ends the life of the session bean
instance. Any subsequent attempt by its client to invoke the instance will result
in throwing thejava.rmi.NoSuchObjectException. Note that a container can
implicitly call thedestroy() method on the instance after the lifetime of the EJB
object has expired.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 28 December 9, 1997

6.7 Transactional session bean state diagram

The following figure illustrates the lifecycle of a transactional session bean instance.

The following is a walk-through of the lifecycle of a transactional session bean in-
stance:

method

commitbeginTransaction()

1. beforeCompletion()

does not
 exist

active passive

1. newInstance()
2. setSessionContext(oc)
3. ejbCreate(args)

create(args)

ejbDestroy()

destroy()
chosen as LRU victim

ejbPassivate()

method

create()
newInstance

action initiated by client
action initiated by container

method
ready in TX

ejbActivate()

method

2. afterCompletion(true)
afterCompletion(false)

rollback

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 29 December 9, 1997

• A transactional session bean’s life starts when a client invokes a create(...)
method on its container’s factory. This causes the container to invoke
newInstance() on the bean class to create a new memory object for the
enterprise bean. Next, the container callssetSessionContext() followed by
ejbCreate(...) on the instance, and returns an EJB object to the client.

• The bean instance is now ready to be included in a transaction.

• After the bean instance is included in a transaction and before any of its other
methods are executed within the transaction, the container issues
beginTransaction on it.

• Bean methods invoked by the client in this transaction can now be delegated to
the bean instance.

• If a transaction commit has been requested, prior to actually committing the
transaction, the container issuesbeforeCompletion on the instance. This is when
the instance should write any cached updates to the database.

• The container then attempts to commit the transaction, resulting in either a
commit or rollback. If, in the previous step, transaction rollback had been
requested, rollback status is reached without issuingbeforeCompletion.

• When the transaction completes, the container issuesafterCompletion on the
instance, specifying the status of the completion (commit or rollback). If a
rollback occurred, the bean instance may need to reset its conversational state
back to the value it had at the beginning of the transaction.

• The container’s caching algorithm may decide that the bean instance should be
evicted from memory (this could be done at the end of each method, or by using
an LRU policy). If the bean instance is STATELESS, the container can simply
let the instance be garbage collected. If it is PINNED, the container cannot evict
the instance. If it is STATEFUL, the container issuesejbPassivate() on the
instance. After this completes, the container must save the instance’s state to
secondary storage.

• If this passivated instance’s EJB object is included in a transaction (only
STATEFUL beans are passivated), the container will activate the session
instance. To activate the session instance, the container restores the instance’s
state from secondary storage and issuesejbActivate() on it.

• The enterprise bean is again ready to be included in a transaction.

• When the client callsdestroy() on the EJB object, this causes the container to
issueejbDestroy() on the bean instance. This ends the life of the session bean
instance. Any subsequent attempt by its client to invoke the instance will result
in throwing thejava.rmi.NoSuchObjectException. Note that a container can
implicitly invoke thedestroy() method on the instance after the lifetime of the
EJB object has expired.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 30 December 9, 1997

6.8 Sequence diagrams

6.8.1 Creating a session object

The following diagram illustrates the creation of a transactional session enterprise bean.

client instance transaction
coordinator

getFactory()

factory

ejbCreate(args)

instance
context

containerEJB
object

create(args)

container provided classes

new

synchro-
nization

new

setSessionContext()

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 31 December 9, 1997

6.8.2 Starting a transaction

The following diagram illustrates the protocol performed at the beginning of a transac-
tion.

business method

beginTransaction

client instance transactiondatabase
coordinator

factory instance
context

containerEJB
object

container provided classes

synchro-
nization

Current.begin()

If the instance was passivated it is reactivated

register_synchronization(synchronization)

new

business method
business method

business method

read some data

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 32 December 9, 1997

6.8.3 Committing a transaction

The following diagram illustrates the transaction synchronization protocol for a session
enterprise bean instance.

write updates to DB

client instance transactiondatabase
coordinator

factory instance
context

containerEJB
object

container provided classes

synchro-
nization

Current.commit()

beforeCompletion()

prepare

commit

afterCompletion(status)

beforeCompletion()

afterCompletion(status)

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 33 December 9, 1997

6.8.4 Passivating and activating an instance between transactions

The following diagram illustrates the passivation and reactivation of a session enter-
prise bean instance. Passivation typically happens spontaneously based on the needs of
the container. Activation typically occurs when a client calls a method.

ejbActivate

ejbPassivate

read state

client instancefactory instance
context

containerEJB
object

container provided classes

synchro-
nization

secondary store

write state

Activation:

Passivation:

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 34 December 9, 1997

6.8.5 Destroying a session object

The following diagram illustrates the destruction of a session bean.

client instance

destroy()

factory instance
context

containerEJB
object

container provided classes

synchro-
nization

ejbDestroy()

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 35 December 9, 1997

7 Example session scenario

This chapter describes an example development and deployment scenario of a session
enterprise bean. We use the scenario to explain the responsibilities of the enterprise
bean provider and those of the container provider.

The classes generated by the container provider’s tools in this scenario should be con-
sidered illustrative rather than prescriptive. Container providers are free to implement
the contract between a session enterprise bean and its container in a different way that
achieves an equivalent effect (from the perspectives of the enterprise bean provider and
the client-side programmer).

7.1 Overview

Wombat Inc. has developed theCartBean session bean. The CartBean is deployed in a
container provided by the Acme Corporation.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 36 December 9, 1997

7.2 Inheritance relationship

An example of the inheritance relationship between the interfaces and classes is illus-
trated in the following diagram:

AcmeRemoteCart

Cart

CartBean

AcmeRemote

Container

AcmeContainer

JDK

Enterprise
JavaBeans

enterprise bean
provider

container
provider

produced by
Acme tools

java.rmi.Remote

EJBObject

(Wombat Inc.)

(Acme)

EnterpriseBean

Java interface Java class

java.io.Serializable

CartFactory

extends or implements interface

extends implementation, code generation, or delegation

AcmeAccountFactory

AcmeFactory AcmeBean

SessionBean

AcmeCartBean

Factory

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 37 December 9, 1997

7.2.1 What the session bean provider is responsible for

Wombat Inc. is responsible for providing the following:

• Define the session bean’s remote interface (Cart). The remote interface defines
the business methods callable by a client. The remote interface must extend the
java.ejb.EJBObject interface, and follow the standard rules for a Java RMI
remote interface. The remote interface must be defined aspublic.

• Write the business logic in the session bean class (CartBean). The enterprise
bean class must not implement the enterprise bean’s remote interface (Cart).
The enterprise bean must implement thejava.ejb.SessionBean interface, and
define theejbCreate(...) methods invoked at an EJB object creation. The
ejbCreate(...) methods must follow the factory design pattern[9.6].

• Define a factory interface (CartFactory) for the enterprise bean. The signatures
of the methods of the factory interface must follow the factory design
pattern[9.6]. The factory interface must be defined aspublic, extend the
java.ejb.Factoryinterface, and follow the standard rules for Java RMI remote
interfaces.

• Specify the environment properties that the session bean needs at runtime. The
environment properties is a standardjava.util.Properties file.

• Define a deployment descriptor that specifies any declarative metadata that the
session bean provider wishes to pass with the bean to the next stage of the
development/deployment workflow.

7.2.2 Classes supplied by container provider

The following classes are supplied by the container provider Acme Corp:

• The AcmeContainer class provides the Acme implementation of the
java.ejb.Container interface.

• The AcmeFactory class provides the Acme implementation of a factory base
class.

• The AcmeRemote class provides the Acme implementation of the
java.ejb.EJBObject methods.

• The AcmeBean class provides additional state and methods to allow Acme’s
container to manage its session bean instances. For example, if Acme’s
container uses an LRU algorithm, then AcmeBean may include the clock count
and methods to use it.

7.2.3 What the container provider is responsible for

The tools provided by Acme Corporation are responsible for the following:

• Generate the remote bean class (AcmeRemoteCart) for the session bean. The
remote bean class is a “wrapper” class for the enterprise bean and provides the
client’s view of the enterprise bean. The tools also generate the classes that
implement the communication stub and skeleton for the remote bean class.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 38 December 9, 1997

• Generate the implementation of the session bean class suitable for the Acme
container (AcmeCartBean). AcmeCartBean includes the business logic from
the CartBean class mixed with the services defined in the AcmeBean class.
Acme tools can use inheritance, delegation, and code generation to achieve a
mix-in of the two classes.

• Generate the class for the session bean’s factory interface (AcmeCartFactory).
The tools also generate the classes that implement the communication stub and
skeleton for the factory class.

Many of the above classes and tools are container-specific (i.e., they reflect the way
Acme Corp implemented them). Other container providers may use different mecha-
nisms to produce their runtime classes, and the generated classes most likely will be dif-
ferent from those generated by Acme’s tools.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 39 December 9, 1997

8 Client view of an entity

 Note: Container support for entity enterprise beans is an optional feature for
EJB 1.0 compliance. Container support for entity enterprise beans will become
mandatory in EJB 2.0.

This chapter describes the client’s view of an entity EJB object. It is actually a contract
fulfilled by an enterprise bean’s container, with only the business part supplied by the
enterprise bean itself.

 We are considering whether to extend the Container interface to support
multiple enterprise bean classes. This feature would be desirable for supporting
evolution of entity objects.

8.1 Overview

A client-side programmer accesses an enterprise bean through an EJB object. An EJB
object is a remote Java object accessible from a client through the standard Java APIs
for remote object invocation [3, 5].

From its creation until destruction, an EJB object lives in a container. Transparently to
the client, the container provides security, concurrency, transactions, persistence, and
other services for the EJB object.

Each entity object has an identity which, in general, survives a crash and restart of the
container in which the entity object has been created. The object identity is implement-
ed by the container.

The client’s view of an EJB object is location independent. A client running in the same
JVM as the EJB object uses the same API as a client running in a different JVM on the
same or different machine.

The client’s view of an EJB object is the same, irrespective of the implementation of
the enterprise bean and its container.

8.2 EJB container

An EJB container (container for short) is an object that functions as the “container” for
enterprise beans. A container is where an enterprise bean object lives, just as a record
lives in a database, and a file or directory lives in a file system.

8.2.1 Locating a container

A client locates a container using JNDI. For example, a container for account EJB ob-
jects can be located using the following code segment:

Context initialContext = new InitialContext();
Container accountContainer = (Container)

initialContext.lookup(“applications/bank/accounts”);

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 40 December 9, 1997

A client’s JNDI name space may be configured to include EJB containers located on
multiple machines on a network. The actual location of an EJB container is, in general,
transparent to the client.

8.2.2 What a container provides

The following diagram illustrates the services that an entity container provides to its cli-
ents.

8.2.3 Container interface

An EJB container implements thejava.ejb.Container interface. Thejava.ejb.Container
interface allows a client to do the following:

• Obtain a factory object that allows a client to create new EJB objects in the
container.

• Obtain a finder object that allows a client to look up existing EJB objects in the
container.

• Destroy an EJB object.

8.2.4 Enterprise bean’s factory

An enterprise bean’s factory is an object that allows a client to create new EJB objects
in a container. A client obtains a factory object using a container’sgetFactorymethod.

A factory interface defines one or morecreate(...) methods, one for each way to create
the EJB object. The arguments of thecreate methods are typically used to initialize the
state of the created EJB object.

An enterprise bean’s factory interface must extend thejava.ejb.Factory interface. The
following is an example of a factory interface:

client

EJB objects

Container

container

Factory

Finder

EJB objectsEJB objects

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 41 December 9, 1997

public interface AccountFactory extends java.ejb.Factory {
public Account create(String firstName, String lastName,

double initialBalance) throws RemoteException;
public Account create(String accountNumber,

initialBalance) throws RemoteException;
}

The following example illustrates how a client obtains and uses a factory interface:

AccountFactory accountFactory = (AccountFactory)
accountContainer.getFactory();

accountFactory.create(“John”, “Smith, 500.00);

8.2.5 Enterprise bean’s finder

 TODO: describe how a client uses a finder

An enterprise bean’s finder interface must extend thejava.ejb.Finder interface.

8.2.6 Destroying an EJB object

The container defines several methods that allow a client to destroy an EJB object.

8.3 Entity EJB object lifecycle

This section describes the lifecycle of an EJB object from the perspective of a client.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 42 December 9, 1997

The following diagram illustrates a client’s point of view of an entity EJB object life-
cycle (the termreferenced in the diagram means that the client program has a reference
of the EJB object).

An EJB object does not exist until it is created. Until it is created, it has no identity. Af-
ter it is created, it has identity. A client creates an EJB object using a factory object that
is provided by the container. When an EJB object is created by a client, the client ob-
tains a reference to the newly created EJB object.

In an environment with a legacy data, EJB objects may “exist” before the container is
deployed. In addition, an entity EJB object may be “created” in the environment via a
mechanism other than by invoking a factorycreate(...) method (e.g. by inserting a da-
tabase record), but still may be accessible by a container’s clients via the finder inter-
face. Also, an EJB object may be deleted directly using other means than thedestroy()
operation (e.g. by deletion of a database record). The “direct insert” and “direct delete”
transitions in the diagram represent such direct database manipulation.

For an existing EJB object, a client can get a reference to an EJB object in any of the
following ways:

• Receive a reference as a parameter in a method call (input parameter or result).

does not exist
and

not referenced

does not exist
and

referenced

exists
and

not referenced

exists
and

referenced

release reference

factory.create(...)

container.destroy(...)

finder.find(...)

object.destroy()

release reference

object.businessMethod(...)

obj.businessMethod(...)

direct
insert

direct delete
or

throws NoSuchObjectException

container.destroy(...)
or

create()
direct delete

action initiated by client
action on database from outside EJB

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 43 December 9, 1997

• Look up the EJB object using a container’s finder interface.

• Obtain the reference from a bean’s handle (handles are described later in
Section 8.6).

A client that has a reference to an object can then do any of the following:

• Invoke business methods on the object through the EJB object’s remote
interface.

• Obtain a reference to the object’s container.

• Obtain the name of the enterprise bean class that provides the implementation
of the business methods.

• Pass the reference as a parameter or return value.

• Obtain the EJB object’s primary key.

• Obtain the EJB object’s handle.

• Destroy the EJB object.

All references to an object that does not exist are invalid. All attempted invocations on
an object that does not exist will result in anjava.rmi.NoSuchObjectException being
thrown.

All entity EJB objects are consideredpersistent objects. The lifetime of an entity EJB
object is not limited by the lifetime of the Java Virtual Machine process in which it ex-
ecutes. A crash of the Java Virtual Machine may result in a rollback of current transac-
tions, but does not destroy previously created EJB entity objects, or invalidate their
references held by clients.

8.4 Primary key and object identity

Every entity EJB object has a unique identity within its container. The object’s identity
relative to its container is determined by the EJB object’s primary key.

Enterprise JavaBeans allows a primary key object to be anyjava.io.Serializable class.
The primary key class is specific to an enterprise bean class (i.e. each enterprise bean
class may have a difference class for its primary key).

A client that holds a reference to an EJB object can determine the object’s identity by
invoking thegetPrimaryKey() method on the reference.

A client can test whether two EJB object references refer to the same entity by any of
the following methods:

• Invoke theisIdentical(object) method on one of the references and pass the
other reference as the method’s argument.

• Obtain the primary keys, and compare them using the Java equality operator.

 TODO: Add code showing obtaining primary key and test of object identity.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 44 December 9, 1997

A client that know the primary key of an entity EJB object can obtain a reference to the
object by invoking thegetByPrimaryKey(key) method on the finder interface provided
by the container.

Note that Enterprise JavaBeans does not specify “object equality” for EJB object refer-
ences. The result of comparing two object references using the JavaObject.equals(Ob-
ject obj) method is unspecified. Performing theObject.hashCode() method on two
object references that represent the same object is not guaranteed to yield the same re-
sult.

ISSUE: Should we prescribe comparison of EJB object references as part of the EJB
architecture? Making this a requirement might put some burden on ORB providers, but
it would simplify programming of client-side applications.

8.5 Enterprise bean’s remote interface

A client accesses an entity bean through the enterprise bean’s remote interface. An en-
terprise bean’s remote interface must extend thejava.ejb.EJBObject interface. A re-
mote interface defines the business methods that are callable by clients.

The following example illustrates the definition of an entity bean’s remote interface:

public interface Account extends java.ejb.EJBObject {
void debit(double amount)

throws java.rmi.RemoteException;
void credit(double amount)

throws java.rmi.RemoteException;
double getBalance()

throws java.rmi.RemoteException;
}

Thejava.ejb.EJBObject interface defines methods that allow the client to do the follow-
ing operations on an EJB object’s reference:

• Obtain a reference of the EJB object’s container.

• Destroy the EJB object.

• Obtain the EJB object’s handle.

• Obtain the EJB object’s primary key.

The implementation of the methods defined in thejava.ejb.EJBObject interface is pro-
vided by the container. The business methods are delegated to the enterprise bean class.

Note that the EJB object does not expose the enterprise bean’s methods introduced by
thejava.ejb.EnterpriseBean andjava.ejb.EntityControl interfaces. These interfaces are
not intended for the client—they are for the container to manage the object.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 45 December 9, 1997

8.6 Enterprise bean’s handle

A handle is an object that identifies an EJB object. A client that has a reference to an
EJB object can obtain the object’s handle by invokinggetHandle() method on the ref-
erence.

Since the handle’s class implements thejava.io.Serializable interface, a client may se-
rialize it. The client may use the serialized handle later, possibly in a different process,
to re-obtain a reference to the EJB object identified by the handle.

Containers that store long-lived entities will typically provide handle implementations
that allow clients to store a handle for a long time (possibly many years). Such a handle
will be usable even if parts of the technology used by the container (e.g. ORB, DBMS,
server) have been upgraded or replaced while the client has stored the handle.

The use of a handle is illustrated by the following example:

// A client obtains a handle of an account EJB object and
// stores the handle in stable storage.
//
ObjectOutputStream stream = ...;
Account account = ...;
Handle handle = account.getHandle();
stream.writeObject(handle);

// A client can read the handle from stable storage, and resurrect
// an object reference to the account EJB object from the handle.
//
ObjectInputStream stream = ...;
Handle handle = (Handle) stream.readObject(handle);
Account account = (Account) handle.getEJBObject();
account.debit(100.00);

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 46 December 9, 1997

9 Entity container protocol

 Note: Container support for entity enterprise beans is an optional feature for
EJB 1.0 compliance. Container support for entity enterprise beans will become
mandatory in EJB 2.0.

The goal is to define a “basic” state management protocol between an entity enterprise
bean and its container that must be supported by all entity containers.

This chapter both describes the enterprise bean provider’s view of an entity object, and
defines the responsibility of the entity container provider.

 Note: This chapter is still work-in-progress.

9.1 The runtime execution model

 TODO - explain the difference between an EJB object and enterprise bean
instance

This section describes the runtime model and the classes used in the description of the
contract between an enterprise bean and its container.

Theenterprise bean is an object whose class was provided by the enterprise bean de-
veloper.

An EJB object is an object whose class was generated at deployment time by the con-
tainer provider’s tools. The EJB object class implements the enterprise bean’s remote

classes provided by
enterprise bean provider

classes provided by
container tools

client

container

management

factory

EJB objects

container

finder

EJB objectsEJB objects

enterprise bean
instances

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 47 December 9, 1997

interface. A client never references an enterprise bean instance directly—a client al-
ways references the corresponding EJB object.

Thecontainer object provides the lifecycle operations for its EJB objects. The class for
the container object is provided by the container provider, or generated by the container
provider’s tools.

The factory is a remote object that implements an enterprise bean’s factory interface.
The class for the factory object was generated by the container provider’s tools.

Thefinder is a remote object that implements an enterprise bean’s finder interface. The
class for the factory object was generated by the container provider’s tools.

9.2 Entity persistence

The entity container protocol allows the enterprise bean provider either to implement
the enterprise bean’s persistence directly in the enterprise bean class (we call this bean-
managed persistence), or delegate the enterprise bean’s persistence to the container (we
call this container-managed persistence).

9.2.1 Bean-managed persistence

In the bean-managed case, the enterprise bean provider writes database access calls

(e.g. using JDBCTM or JSQL) directly in the methods of the enterprise bean class. The
database access calls are performed in theejbCreate(...), ejbDestroy(), ejbLoad(), and
ejbStore() enterprise bean callback methods.

The advantage of using bean-managed persistence is that the enterprise bean can be in-
stalled into a container without human assistance. The main disadvantage is that the
persistence is hard-coded into the enterprise bean class, which makes it hard to adapt
the enterprise bean to a different data source.

9.2.2 Container-managed persistence

In the container-managed case, the container provider’s tools generate the database ac-
cess calls at deployment time (i.e. when the enterprise bean class is installed into the
container). The enterprise bean provider must specify thecontainerManagedFields de-
ployment descriptor property to specify the list of instance fields for which the contain-
er provider tools shall generate database access calls.

The enterprise bean provider must declare the container-managed fields aspublic to al-
low the container tools to generate the additional classes that transfer data between the
instance fields and the data source. The container-managed fields must be of Java prim-
itive types.

 This restriction to only primitive types can, in the future, be relaxed to allow
persisting bean handles, references to other enterprise beans, and any
java.io.Serializable objects.

The advantage of using container-managed persistence is that the enterprise bean class
is independent from the data source in which the entity is stored. The container tools
can generate classes that use JDBC or JSQL to access the entity state in a relational da-

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 48 December 9, 1997

tabase, or classes that implement access to a non-relational data source, such as CICS
or IMS databases. The disadvantage is that tools must be used at deployment time to
map the enterprise bean’s fields to a specific data source.

9.3 Instance lifecycle

The following diagram illustrates the lifecycle of an enterprise bean’s instance.

The following is a walk-through of the lifecycle of an entity enterprise bean instance:

• An enterprise bean’s instance life starts when the container creates the instance
usingnewInstance(). The container then invokes thesetEntityContext() method
to pass the instance a reference to an entity context object associated with the
instance. The entity context object allows the instance to invoke services
provided by the container and obtain the information about the caller of a
business method.

does not
 exist

1. newInstance()
2. setEntityContext(oc)

ejbActivate()

pooled

1. unsetEntityContext()
2. finalize()

ready

ejbPassivate()
ejbDestroy()ejbCreate(args)

ejbStore()ejbLoad()

business method

create()
newInstance()

action initiated by client

action initiated by container

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 49 December 9, 1997

• The instance enters the pool of available instances of the enterprise bean class.
While the instance is in the available pool, the instance is not associated with an
identity of a specific EJB object. All instances in the pool are equivalent, and
therefore can be assigned by the container to any EJB object at the transition to
the ready state.

• An instance transitions from the pooled state to the ready state when the
container picks that instance to service a client call on an EJB object for which
there is no instance in the ready state. There are two possible transitions from
the pooled to the ready state: through theejbCreate(...) method, and through the
ejbActivate() method. The container invokes theejbCreate(...) method when the
instance is assigned to an EJB object during EJB object creation (i.e. when the
client invokes a factory method to create the EJB object). The container invokes
theejbActivate() method on an instance when the instance needs to be activated
to service an invocation on an existing EJB object.

• When an enterprise bean instance is in the ready state, the instance is associated
with a specific EJB object. While the instance is in the ready state, the container
can invoke theejbLoad() and ejbStore() methods zero or more times, at
anytime. A business method can be invoked on the instance zero or more times.
Invocations of theejbLoad() andejbStore() methods can be arbitrarily mixed
with invocations of business methods.

• Eventually, the container will transition the instance to the pooled state. There
are two possible transitions from the ready to the pooled state: through the
ejbPassivate() method, and through theejbDestroy() method. The container
invokes theejbPassivate() method when the container wants to disassociate the
instance from the EJB object without destroying the EJB object. The container
invokes theejbDestroy() method when the container is destroying the EJB
object (i.e. when the client invoked thedestroy() method on the EJB object, or
one of thedestroy() methods on the container).

• When the instance is put back into the pool, it is no longer associated with the
identity of the EJB object. The container can assign the instance to any EJB
object of the same enterprise bean class.

• An instance in the pool can be terminated by calling theunsetEntityContext()
method on the instance. The Java runtime will eventually invoke thefinalize()
method on the instance.

9.4 The entity container contract

This section specifies the state management contract between an entity container and
an enterprise bean.

9.4.1 Enterprise bean instance’s view:

The following describes the enterprise bean instance’s side of the contract:

An enterprise bean is responsible for doing the following in the callback methods:

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 50 December 9, 1997

• public void setEntityContext(EntityContext ic);

A container uses this method to pass a reference to the entity context object to
the enterprise bean instance. If the enterprise bean instance needs to use the
entity context during its lifetime, it must remember the entity context in an
instance variable.

It is unspecified in which transaction context this method is called. An identity
of an EJB object is not available during this method.

The instance can take advantage of thesetEntityContext(ic) method to allocate
any resources that are to be held by the instance for its lifetime. Such resources
cannot be specific to an EJB object identity since the instance might be reused
during its lifetime to serve multiple EJB objects.

• public void unsetEntityContext(EntityContext ic);

A container invokes this method before terminating the life of the instance.

It is unspecified in which transaction context this method is called. An identity
of an EJB object is not available during this method.

The instance can take advantage of theunsetEntityContext(ec) method to free
any resources that are held by the instance (these resource typically had been
allocated by thesetEntityContext() method).

• public void ejbCreate(...);

There are zero1 or moreejbCreate(...) methods, whose signatures match the
signatures of thecreate(...)methods of the enterprise bean’s factory interface
(See Section 9.6 for theejbCreate(...) design pattern). The container invokes an
ejbCreate(...) method on an enterprise bean instance when a client invokes a
matching factorycreate(...)function to create an EJB object.

An ejbCreate(...) method gives the enterprise bean instance a chance to validate
the client supplied arguments and initialize the instance variables from the input
arguments before the instance enters the ready state.

The instance must invoke thesetPrimaryKey(primaryKey) method on its entity
context during theejbCreate(...) method so that the container knows the
primary key that needs to be inserted into the EJB object reference that is
returned to the client as the result of the factorycreate(...) method.

An ejbCreate(...) method executes in the proper transaction context.

An instance of an enterprise bean with bean-managed persistence should insert
a record into the database with its initial values copied or computed from the
input arguments of theejbCreate(...) method. An instance of an enterprise bean
with container-managed persistence must set the values of the container-

1.An entity enterprise bean has noejbCreate(...) methods if it does not define a factory interface. Such an
entity enterprise bean does not allow the clients to create new EJB objects. The enterprise bean restricts the
clients to accessing entities that were created through direct database inserts.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 51 December 9, 1997

managed fields such that when theejbCreate(...) method completes, the
container can extract the values and insert a record containing the values into
the database.

• public void ejbActivate();

The container invokes this method on the instance when the container picks the
instance from the pool and assigns it to a specific EJB object identity. The
ejbActivate() method gives the enterprise bean instance the chance to acquire
additional resources that it needs while it is in the ready state.

This method executes in an unspecified transaction context. The instance can
obtain the identity of the EJB object via thegetPrimaryKey() or getEJBObject()
method on the entity context.

public void ejbPassivate();
The container invokes this method on an instance when the container decides to
disassociate the instance from an EJB object identity, and put the instance back
into the pool of available instances. TheejbPassivate() method gives the
enterprise bean the chance to release any resources that should not be held while
the instance is in the pool (these resource typically had been allocated during
theejbActivate() method).

This method executes in an unspecified transaction context. The instance can
still obtain the identity of the EJB object via thegetPrimaryKey() or
getEJBObject()method on the entity context.

• public void ejbDestroy();

The container invokes this method on an instance as a result of a client’s
invoking a destroy method. The instance is in the ready state whenejbDestroy()
is invoked and it will be entered into the pool when the method completes.

This method executes in the effective transaction context of the client’sdestroy
method. The instance can still obtain the identity of the EJB object via the
getPrimaryKey() or getEJBObject()method on the entity context.

An enterprise bean instance with bean-managed persistence should use this
method to destroy its entity state in the database.

Since the instance will be entered into the pool, the state of the instance at the
end of this method must be equivalent to the state of a passivated instance. This
means that the instance must release any resource that it would normally release
in theejbPassivate() method.

• public void ejbLoad();

The container invokes this method on an instance in the ready state to advise the
instance that it must synchronize its instance variables from the entity state in
the database. The instance must be prepared for the container to invoke this
method at any time that the instance is in the ready state.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 52 December 9, 1997

An instance of an enterprise bean with bean-managed persistence should refresh
its state in theejbLoad() method by reading the entity state from the database.

An instance of an enterprise bean with container-managed persistence should
refresh any fields whose content is computed from the fields managed by the
container. The container invokes this method after it has read the container-
managed fields from the database.

This method executes in the proper transaction context.

• public void ejbStore();

The container invokes this method on an instance to advise the instance that the
instance must synchronize the entity state in the database with its instance
variables. The instance must be prepared for the container to invoke this method
at any time that the instance is in the ready state.

An instance of an enterprise bean with bean-managed persistence should write
its state to the database in theejbStore() method.

An instance of an enterprise bean with container-managed persistence should
prepare the fields that are managed by the container for being written to the
database. The container invokes this method before it writes the container-
managed fields to the database.

This method executes in the proper transaction context.

9.4.2 Container’s view:

The following describes the container’s side of the state management contract. The con-
tainer must call the following methods as indicated below:

• public void setEntityContext(oc);

The container invokes this method to pass a reference to the enterprise bean’s
entity context to the enterprise bean. The container must invoke this method
after it creates the instance, and before it puts the instance into the pool of
available instances.

It does not matter whether the container calls this method inside or outside of a
transaction context.

• public void unsetEntityContext(oc);

The container invokes this method when the container wants to reduce the
number of instances in the pool. After this method completes, the container is
not allowed to reuse this instance, and therefore it should drop any references to
the instance to allow the Java garbage collector to eventually invoke the
finalize() method on the instance.

It does not matter whether the container calls this method inside or outside of a
transaction context.

• public void ejbCreate(...);

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 53 December 9, 1997

The container invokes anejbCreate(...) method on an instance during the
creation of an EJB object as a result of a client invoking a create method on a
container-generated class that implements the enterprise bean’s factory
interface. The container invokes theejbCreate(...) method whose signature
matches thecreate(...) method invoked by the client (See Section 9.6).

A container of an enterprise bean with bean-managed persistence invokes its
ejbCreate(...) method to allow the instance to initialize its fields and create a
representation of the entity in the database.

A container of an enterprise bean with container-managed persistence invokes
theejbCreate(...) method on the instance to allow the instance to initialize the
container-managed fields from thecreate(...) arguments before the container
extracts those fields from the instance. On return from theejbCreate(...)
method, the container creates a representation of the entity in the database using
the values extracted from the instance.

The container invokes this method in the transaction context of the client’s
create(...)method.

• public void ejbActivate();

The container invokes this method on an enterprise bean instance at activation
time (i.e., when the instance is taken from the pool and assigned to an EJB
object). The container must ensure that the primary key of the associated EJB
object is available to the instance if the instance invokes thegetPrimaryKey()
or getEJBObject()method on its entity context.

A container may call this method inside or outside of a transaction context.

• public void ejbPassivate();

The container invokes this method on an enterprise bean instance at passivation
time (i.e., when the instance is being disassociated from an EJB object and
moved into the pool). The container must ensure that the primary key of the
associated EJB object is still available to the instance if the instance invokes the
getPrimaryKey()or getEJBObject()method on its entity context.

A container may call this method inside or outside of a transaction context.

• public void ejbDestroy();

The container invokes this method before it ends the life of an EJB object as a
result of a client’s invoking a destroy operation.

If the enterprise bean uses container-managed persistence, the container must
invoke this method before deleting the database representation of the entity.

The container invokes this method in the transaction context of the client’s
destroy method. The container must ensure that the primary key of the
associated EJB object is still available to the instance if the instance invokes the
getPrimaryKey() or getEJBObject()method on its entity context.

• public void ejbLoad();

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 54 December 9, 1997

The container must invoke this method on the instance whenever it becomes
necessary for the instance to synchronize its instance state from its state in the
database.

If the enterprise bean’s persistence is container-managed, the container reloads
the instance’s container-managed state from the database before invoking this
method on the instance.

The container invokes this method in the proper transaction context.

• public void ejbStore();

The container must invoke this method on the instance whenever it becomes
necessary for the instance to synchronize its state in the database with the state
of the instance’s fields.

If the enterprise bean’s persistence is container-managed, the container must
invoke this method on the instance before it stores the instance’s container-
managed state to the database.

The container invokes this method in the proper transaction context.

9.4.3 Single-threaded rule

The container must ensure that only one thread can be executing the instance at any
time. Consequently, the container must not invoke any of the state management call-
back methods while a business method invocation is in-progress.

9.5 The design pattern for business method delegation

 TODO:

9.6 The design pattern for the factory interface

An enterprise bean’s factory interface is defined by the enterprise bean provider. The
factory interface defines one or morecreate(...) functions that a client can invoke to cre-
ate a new EJB object.

9.6.1 Enterprise bean provider responsibility

The factorycreate(...) methods must follow these rules:

• The return value of acreate(...) method must be the enterprise bean’s remote
interface.

For each factory interfacecreate(...) method, the enterprise bean provider must also de-
fine a matchingejbCreate(...) method in the enterprise bean class. The enterprise bean
provider must match the enterprise bean’sejbCreate(...)methods with the factorycre-
ate(...)methods through the following design pattern:

• Each create(...) method of the factory interface must have a matching
ejbCreate(...) method in the enterprise bean class.

• An ejbCreate(...) method must be declared aspublic.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 55 December 9, 1997

• The input arguments of anejbCreate(...) method need to be the same as the
arguments of its correspondingcreate(...) method.

• The return value of anejbCreate(...) method must bevoid.

• The throws clause of anejbCreate(...) method can include an arbitrary set of
exceptions.

For example, an enterprise bean class with the following factory interface:

public interface AccountFactory extends java.ejb.Factory {
public Account create(Foo foo)

throws RemoteException;
public Account create(Foo foo, Bar bar);

throws RemoteException;
}

can have the followingejbCreate(...) methods:

public class AccountBean... {
public void ejbCreate(Foo foo) {...}
public void ejbCreate(Foo foo, Bar bar) {...}

...
}

Each ejbCreate(...) method must include a call to thesetPrimaryKey(primaryKey)
method on the entity context. ThesetPrimaryKey(primaryKey) method allows the con-
tainer to know the value of the primary key to embed into the reference of the created
EJB object.

The following example illustrates the calls to thesetPrimaryKey(primaryKey) method.
The “PrimaryKeyType” type in the example can be any Java class that implements the
java.io.Serializable interface.

public class AccountBean... {
EntityContext entityContext;

public void ejbCreate(Foo foo) {
PrimaryKeyType primaryKey;

...
primaryKey = ...;
entityContext.setPrimaryKey(primaryKey);

...
}
public void ejbCreate(Foo foo, Bar bar) {

PrimaryKeyType primaryKey;
...

primaryKey = ...;
entityContext.setPrimaryKey(primaryKey);

...
}

}

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 56 December 9, 1997

9.6.2 Container provider’s responsibility

The container is responsible for generating a class that provides the implementation of
the methods of the factory interface. Eachcreate(...)functions invokes a matchingejb-
Create(...) method.

The container provider is responsible for catching any exception thrown from anejb-
Create(...) method, and must perform as follows:

• If the exception thrown by theejbCreate(...) method is an instance of an
exception declared in thethrows clause of the matchingcreate(...) method, the
exception should be re-thrown to the client.

• All other exceptions should be converted to ajava.rmi.RemoteException, or an
exception of a subclass ofjava.rmi.RemoteException.

The following is a skeleton of the class that a container provider would generate to im-
plement the factory interface:

public class AcmeAccountFactory implements AccountFactory {
...

public Account create(Foo foo)
throws RemoteException{
AccountBean instance;
 ...
instance = ...;
instance.ejbCreate(foo);
//
// if this is EJB with container-managed
// persistence, extract values and insert
// a record into database
 ...

}
public Account create(Foo foo, Bar bar)

throws RemoteException {
AccountBean instance;

 ...
instance = ...;
instance.ejbCreate(foo, bar);
//
// if this is EJB with container-managed
// persistence, extract values and insert
// a record into database
 ...

}
}

If an enterprise bean uses container-managed persistence, the implementation of acre-
ate(...) function must invoke a matchingejbCreate(...)method on the enterprise bean
instance before it creates a representation of the entity in the database.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 57 December 9, 1997

9.7 The design pattern for the finder interface

 TODO:

9.8 Sequence diagrams

9.8.1 Creating an entity object

The following diagram illustrates the creation of an enterprise bean with bean-managed
persistence.

client instance transactiondatabase

Current.begin()

coordinator

getFactory()

factory

register_synchronization(synchronization)

ejbCreate(args)

instance
context

setPrimaryKey(primaryKey)

containerEJB
object

create(args)

container provided classes

create representation in DB

new

business method
business method

synchro-
nization

new

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 58 December 9, 1997

The following diagram illustrates the creation of an enterprise bean with container-
managed persistence:

client instance transactiondatabase

Current.begin()

coordinator

getFactory()

factory

register_synchronization(synchronization)

instance
context

containerEJB
object

create(args)

container provided classes

create representation in DB

business method
business method

synchro-
nization

new

ejbCreate(args)

setPrimaryKey(primaryKey)

new

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 59 December 9, 1997

9.8.2 Passivating and activating an instance in a transaction

The following diagram illustrates the passivation and reactivation of an enterprise bean
instance with bean-managed persistence.

business method
ejbActivate()

ejbStore()

write state to DB

ejbPassivate()

business method

ejbLoad()

read state from DB

business method
business method

business method
business method

client instance transactiondatabase
coordinator

factory instance
context

containerEJB
object

container provided classes

synchro-
nization

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 60 December 9, 1997

The following diagram illustrates the passivation and reactivation of an enterprise bean
instance with container-managed persistence.

9.8.3 Committing a transaction

This section describes the sequence during transaction commit.

business method
ejbActivate()

ejbStore()

write state to DB

ejbPassivate()

business method

ejbLoad()

read state from DB

business method
business method

business method
business method

client instance transactiondatabase
coordinator

factory instance
context

containerEJB
object

container provided classes

synchro-
nization

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 61 December 9, 1997

Different containers may provide difference disposition of an instance after transaction
commit. The examples below illustrate three different options (these options are illus-
trative rather than prescriptive).

• Option A:

• Cache during a transaction and between transactions.
• Exclusive persistent storage—no refresh of instance state is needed.

• Option B:

• Cache during a transaction and between transactions.
• Shared persistent storage—refresh of instance state is needed.

• Option C:

• Cache only during a transaction.
• Shared persistent storage.

Table 1: Example commit-time options

Write instance state
to database

Instance stays
active

Instance state
remains valid

Option A Yes Yes Yes

Option B Yes Yes No

Option C Yes No No

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 62 December 9, 1997

The following diagram illustrates the transaction commit protocol that involves an en-
terprise bean instance with bean-managed persistence.

ejbStore()

write state to DB

client instance transactiondatabase
coordinator

factory instance
context

containerEJB
object

container provided classes

synchro-
nization

Current.commit()

beforeCompletion()

prepare

commit

afterCompletion(status)

ejbPassivate()Option C:

Option A: mark “not registered”

Option B: mark “invalid state”

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 63 December 9, 1997

The following diagram illustrates the transaction commit protocol for an enterprise
bean instance with container-managed persistence.

ejbStore()

write state to DB

client instance transactiondatabase
coordinator

factory instance
context

containerEJB
object

container provided classes

synchro-
nization

Current.commit()

beforeCompletion()

prepare

commit

afterCompletion(status)

ejbPassivate()Option C:

Option A: mark “not registered”

Option B: mark “invalid state”

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 64 December 9, 1997

9.8.4 Starting the next transaction

The following diagram illustrates the protocol performed for a bean with bean-managed
persistence at the beginning of a newtransaction. The three options illustrated in the di-
agram correspond to the three commit options in the previous subsection.

business method

business method

read state from DB

client instance transactiondatabase
coordinator

factory instance
context

containerEJB
object

container provided classes

synchro-
nization

Current.begin()

ejbActivate()Option C:

Option A: do nothing

Option B: ejbLoad()

read state from DB
ejbLoad()

register_synchronization(synchronization)

new

business method
business method

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 65 December 9, 1997

The following diagram illustrates the protocol performed for a bean with container-
managed persistence at the beginning of a new transaction.

business method

business method

read state from DB

client instance transactiondatabase
coordinator

factory instance
context

containerEJB
object

container provided classes

synchro-
nization

Current.begin()

ejbActivate()Option C:

Option A:
do nothing

Option B:
ejbLoad()

register_synchronization(synchronization)

new

business method
business method

ejbLoad()

read state from DB

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 66 December 9, 1997

9.8.5 Destroying an entity object

The following diagram illustrates the destruction of an entity enterprise bean with bean-
managed persistence.

The following diagram illustrates the destruction of an entity enterprise bean with con-
tainer-managed persistence.

9.8.6 Finding an object

TODO

client instance transactiondatabase
coordinator

destroy()

factory instance
context

containerEJB
object

container provided classes

synchro-
nization

destroy representation
in DB

ejbDestroy()

client instance transactiondatabase
coordinator

destroy()

factory instance
context

containerEJB
object

container provided classes

synchro-
nization

destroy representation in DB

ejbDestroy()

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 67 December 9, 1997

10 Example entity scenario

 Note: Container support for entity enterprise beans is an optional feature for
EJB 1.0 compliance. Container support for entity enterprise beans will become
mandatory in EJB 2.0.

This chapter describes an example development and deployment scenario for an entity
enterprise bean. We use the scenario to explain the responsibilities of the enterprise
bean provider and those of the container provider.

The classes generated by the container provider’s tools in this scenario should be con-
sidered illustrative rather than prescriptive. Container providers are free to implement
the contract between an enterprise bean and its container in a different way that
achieves an equivalent effect (from the perspectives of the enterprise bean provider and
the client-side programmer).

10.1 Overview

Wombat Inc. has developed theAccountBean enterprise bean. The AccountBean enter-
prise bean is deployed in a container provided by the Acme Corporation.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 68 December 9, 1997

10.2 Inheritance relationship

An example of the inheritance relationship between the interfaces and classes is illus-
trated in the following diagram:

AcmeRemoteAccount

Account

AccountBean

AcmeRemote

Container

AcmeContainer

JDK

Enterprise
JavaBeans

enterprise bean
provider

container
provider

produced by
Acme tools

java.rmi.Remote

EJBObject

(Wombat Inc.)

(Acme)

EnterpriseBean

Java interface Java class

java.io.Serializable

AccountFactory

extends or implements interface

extends implementation, code generation, or delegation

AcmeAccountFactory

AcmeFactory AcmeBean

EntityBean

AcmeAccountBean

AcmeFinder

AcmeAccountFinder

AccountFinder

Factory

Finder

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 69 December 9, 1997

10.2.1 What the enterprise bean provider is responsible for

Wombat Inc. is responsible for providing the following:

• Define the enterprise bean’s remote interface (Account). The remote interface
defines the business methods callable by a client. The remote interface must
extend thejava.ejb.EJBObject interface, and follow the standard rules for a Java
RMI remote interface. The remote interface must be defined aspublic.

• Write the business logic in the enterprise bean class (AccountBean). The
enterprise bean class must not implement the enterprise bean’s remote interface
(Account). The enterprise bean must implement thejava.ejb.EntityBean
interface, and define theejbCreate(...) methods invoked at an EJB object
creation. TheejbCreate(...) methods must follow the factory design pattern
described in Section 9.6.

• Define a factory interface (AccountFactory) for the enterprise bean. The
signatures of the methods of the factory interface must follow the factory design
pattern described in Section 9.6. The factory interface must be defined aspublic,
extend thejava.ejb.Factoryinterface, and follow the standard rules for Java
RMI remote interfaces.

• TODO: describe AccountFinder

• Specify the environment properties that an enterprise bean requires at runtime.
The environment properties is a standardjava.util.Properties file.

• Define a deployment descriptor that specifies any declarative metadata that the
enterprise bean provider wishes to pass with the enterprise bean to the next stage
of the development/deployment workflow.

10.2.2 Classes supplied by container provider

The following classes are supplied by the container provider, Acme Corp:

• The AcmeContainer class provides the Acme implementation of the
java.ejb.Container interface.

• The AcmeFactory class provides the Acme implementation of a factory base
class.

• The AcmeFinder class provides the Acme implementation of a finder base
class.

• The AcmeRemote class provides the Acme implementation of the
java.ejb.EJBObject methods.

• The AcmeBean class provides additional state and methods to allow Acme’s
container to manage its enterprise bean instances. For example, if Acme’s
container uses an LRU algorithm, then AcmeBean may include the clock count
and methods to use it.

10.2.3 What the container provider is responsible for

The tools provided by Acme Corporation are responsible for the following:

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 70 December 9, 1997

• Generate the remote bean class (AcmeRemoteAccount) for the enterprise bean.
The remote bean class is a “wrapper” class for the enterprise bean and provides
the client’s view of the enterprise bean. The tools also generate the classes that
implement the communication stub and skeleton for the remote bean class.

• Generate the implementation of the enterprise bean class suitable for the Acme
container (AcmeAccountBean). AcmeAccountBean includes the business logic
from the AccountBean class mixed with the services defined in the AcmeBean
class. Acme tools can use inheritance, delegation, and code generation to
achieve mix-in of the two classes.

• Generate the class for the enterprise bean’s factory interface
(AcmeAccountFactory). The tools also generate the classes that implement the
communication stub and skeleton for the factory class.

• Generate the class for the enterprise bean’s finder interface
(AcmeAccountFinder). The tools also generate the classes that implement the
communication stub and skeleton for the finder class.

Many of the above classes and tools are container-specific (i.e., they reflect the way
Acme Corp implemented them). Other container providers may use different mecha-
nisms to produce their runtime classes, and the generated classes most likely will be dif-
ferent from those generated by Acme’s tools.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 71 December 9, 1997

11 Support for transactions

One of the key features of Enterprise JavaBeans is support for distributed transactions.
Enterprise JavaBeans allows an application developer to write an application that atom-
ically updates data in multiple databases which are possibly distributed across multiple
sites. The sites may use EJB servers and containers from different vendors.

No distinction is made between session and entity beans in this section. This section ap-
plies equally to both.

An enterprise bean developer or client programmer does not have to deal with the com-
plexity of distributed transactions. The burden of managing transactions is shifted to the
container and EJB server providers. A container implements the declarative transaction
scopes defined later in this chapter. The EJB server implements the necessary low-level
transaction protocols, such as the two-phase commit protocol between a transaction
manager and a database system, transaction context propagation, and distributed two-
phase commit.

11.1 Transaction model

Enterprise JavaBeans supports flat transactions, modeled after the OMG Object Trans-
action Service 1.1 (OTS). An enterprise bean object that istransaction-enabled corre-
sponds to theTransactionalObject described in OTS (a future release may allow an
enterprise bean to act as a recoverable object).

 Note: The decision not to support nested transactions was to allow vendors of
existing transaction processing and database management systems to
incorporate support for Enterprise JavaBeans. If these vendors provide support
for nested transactions in the future, Enterprise JavaBeans may be enhanced to
take advantage of nested transactions.

11.2 Relationship to JTS

Enterprise JavaBeans is high-level component framework that attempts to hide system
complexity from the application developer. Therefore, most enterprise beans do not di-
rectly access transaction management.

JTS is a lower-level API, part of which must be implemented by the EJB server and
used by the container.

In Release 1.0, an enterprise bean does not use the JTS interfaces directly. The only ex-
ception to this rule is that an enterprise bean with theBEAN_MANAGEDtransaction
attribute is allowed to use thejava.jts.CurrentTransaction interface to demarcate trans-
action boundaries.

11.3 Scenarios

This section describes several scenarios that illustrate the distributed transaction capa-
bilities of Enterprise JavaBeans.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 72 December 9, 1997

11.3.1 Update of multiple databases

Enterprise JavaBeans makes it possible for an application program to update data in
multiple databases in a single transaction.

In the following figure, a client invokes the enterprise bean X. X updates data in two
databases, A and B. Then X calls another enterprise bean Y. Y updates data in database
C. The EJB server ensures that the updates to databases A, B, and C are either all com-
mitted, or all rolled back.

The application programmer does not have to do anything to handle transaction seman-
tics. The enterprise beans X and Y perform the database updates using the standard
JDBC API. Behind the scenes, the EJB server enlists the database connections as part
of the transaction. When the transaction commits, the EJB server and the database sys-
tems perform a two-phase commit protocol to ensure atomic updates across all the three
databases.

11.3.2 Update of databases via multiple EJB servers

Enterprise JavaBeans allows updates of data at multiple sites to be performed in a single
transaction.

In the following figure, a client invokes the enterprise bean X. X updates data in data-
base A, and then calls another enterprise bean Y that is installed in a remote EJB server.

X

client EJB server

Y

database A database Bdatabase C

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 73 December 9, 1997

Y updates data in database B. Enterprise JavaBeans makes it possible to perform the
updates to databases A and B as a single transaction.

When X invokes Y, the two EJB servers cooperate to propagate the transaction context
from X to Y. This transaction context propagation is transparent to the application-level
code.

At transaction commit time, the two EJB servers use a distributed two-phase commit
protocol (if the capability exists) to ensure the atomicity of the database updates.

11.3.3 Client-managed demarcation

A client or a non-transaction enterprise bean object can use thejava.jts.CurrentTrans-
action interface to explicitly demarcate transaction boundaries.

X

client EJB server

database A

Y

EJB server

database B

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 74 December 9, 1997

A client program using explicit transaction demarcation may perform atomic updates
across multiple databases residing at multiple transaction servers, as illustrated in the
following figure.

The application programmer does not have to do anything to make the updates to data-
bases A and B performed by enterprise beans X and Y atomic other than demarcate the
transaction by thebegin andcommit calls. A proxy of a transaction service on the client
automatically propagates the transaction context to the two EJB servers. When the cli-
ent program calls commit, the two EJB servers perform the two-phase commit protocol.

11.3.4 Container-managed demarcation

Whenever a client invokes an enterprise bean, the container interposes on the method
invocation. The interposition allows the container to control transaction demarcation
declaratively through thetransaction attribute.

For example, if an enterprise bean is deployed with theREQUIRES transaction at-
tribute, the container automatically initiates a transaction whenever a client invokes a
transaction-enabled enterprise bean while the client is not associated with a transaction
context.

The following figure illustrates such a scenario. A non-transactional client invokes the
enterprise bean X. Since the message from the client does not include a transaction con-
text, the container starts a new transaction before dispatching the remote method on X.
X’s work is performed in the context of the transaction. When X calls other enterprise
beans (Y in our example), the work performed by the other enterprise beans is also au-

Xclient

EJB server

database A

Y

EJB server

database B

begin

commit

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 75 December 9, 1997

tomatically included in the transaction (subject to the transaction attribute of the other
enterprise bean).

The container automatically commits the transaction at the time X returns a reply to the
client.

11.3.5 Bean-managed demarcation

An enterprise bean with theBEAN_MANAGEDtransaction attribute can use theja-
va.jts.CurrentTransaction interface to demarcate transactions.

11.3.6 Interoperability with non-Java clients and servers

Although the focus of Enterprise JavaBeans is the Java API for writing distributed en-
terprise applications in Java, it is desirable that such applications can also interoperate
with non-Java clients and servers.

A container can make it possible for an enterprise bean to be invoked from a non-Java
client. For example, the CORBA mapping of Enterprise JavaBeans [6] allows any

X

client EJB server

Y

database A database B

begin

commit

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 76 December 9, 1997

CORBA client to invoke any enterprise bean object on a CORBA-enabled server using
the standard CORBA API.

Providing connectivity to existing server applications is also important. An EJB server
may choose to provide access to existing enterprise applications, such as applications
running under CICS on a mainframe. For example, an EJB server may provide a bridge
that makes existing CICS programs accessible to enterprise beans. The bridge can make
the CICS programs visible to the Java developer as if the CICS programs were other
enterprise beans installed in some container on the EJB server.

 Note: It is beyond the scope of the Enterprise JavaBeans specification to define
the bridging protocols that would enable such interoperability. Such bridges
will be a value added by some EJB servers.

11.4 Declarative transaction management

Every client method invocation on an enterprise bean object is interposed by the con-
tainer. The interposition allows for delegating the transaction management responsibil-
ities to the container.

The declarative transaction management is controlled by atransaction attribute asso-
ciated with each enterprise bean’s home container. The container provider’s tools can
be used to set and change the values of transaction attributes.

Enterprise JavaBeans defines the following values for the transaction attribute:

• NOT_SUPPORTED

• BEAN_MANAGED

• REQUIRES

• SUPPORTS

• REQUIRES_NEW

• MANDATORY

X

CORBA client EJB server

X

database A database B

bridge
CICS

LU 6.2

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 77 December 9, 1997

The transaction attribute is specified in the enterprise bean’s deployment descriptor. A
transaction attribute can be associated with the entire bean (to apply to all methods), or
it can be associated with an individual method.

11.4.1 NOT_SUPPORTED

A container must always invoke an enterprise bean that has theNOT_SUPPORTED
transaction attribute without a transaction scope. If a client calls with a transaction
scope, the container suspends the association of the transaction scope with the current
thread before delegating the method call to the enterprise bean object. The container re-
sumes the suspended association when the method call on the enterprise bean object has
completed.

The suspended transaction context of the client is not passed to resources or other en-
terprise bean objects that are invoked from the enterprise bean object.

11.4.2 BEAN_MANAGED

An enterprise bean with theBEAN_MANAGEDattribute can use thejava.jts.Current-
Transaction interface to demarcate transaction boundaries.

 TODO: need to described the rules that the enterprise bean must follow when
doing transaction demarcation and the rules for the container to deal with
suspending and resuming caller’s transaction.

11.4.3 REQUIRES

If a client invokes an enterprise bean object that has theREQUIRES transaction at-
tribute while the client is associated with a transaction context, the container invokes
the enterprise bean’s method in the client’s transaction context.

If the client invokes the enterprise bean object while the client is not associated with a
transaction context, the container automatically starts a new transaction before delegat-
ing a method call to the enterprise bean object, and attempts to commit the transaction
when the method call on the enterprise bean object has completed. The container per-
forms the commit protocol before the method result is sent to the client.

The transaction context is passed to the resources or other enterprise bean objects that
are invoked from the enterprise bean object.

11.4.4 SUPPORTS

An enterprise bean object that has theSUPPORTS transaction attribute is invoked in
the client’s transaction scope. If the client does not have a transaction scope, the enter-
prise bean is also invoked without a transaction scope.

The transaction context (if any) is passed to the resources or other enterprise bean ob-
jects that are invoked from the enterprise bean object.

11.4.5 REQUIRES_NEW

An enterprise bean that has theREQUIRES_NEW transaction attribute is always in-
voked in the scope of a new transaction. The container starts a new transaction before

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 78 December 9, 1997

delegating a method call to the enterprise bean object, and attempts to commit the trans-
action when the method call on the enterprise bean object has completed. The container
performs the commit protocol before the method result is sent to the client.

If the client request is associated with a transaction, the association is suspended before
the new transaction is started and is resumed when the new transaction has completed.

The new transaction context is passed to the resources or other enterprise bean objects
that are invoked from the enterprise bean object.

11.4.6 MANDATORY

An enterprise bean object that has theMANDATORY attribute is always invoked in the
scope of the client’s transaction. If the client attempts to invoke the enterprise bean
without a transaction context, the container throws theTransactionRequired exception
to the client.

The client’s transaction context is passed to the resources or other enterprise bean ob-
jects that are invoked from the enterprise bean object.

11.4.7 Transaction attribute summary

The following table provides a summary of the transaction scopes under which a meth-
od on an enterprise bean object method executes, as a function of the transaction at-
tribute and client’s transaction context. A dash means “no transaction context”.

Table 2: Effect of the declarative transaction attribute

Transaction attribute Client’s transaction
Transaction associated with
enterprise bean’s method

NOT_SUPPORTED
- -

T1 -

BEAN_MANAGED TODO

REQUIRES
- T2

T1 T1

SUPPORTS
- -

T1 T1

REQUIRES_NEW
- T2

T1 T2

MANDATORY
- error

T1 T1

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 79 December 9, 1997

11.5 Bean-managed demarcation

An enterprise bean with theBEAN_MANAGEDattribute is allowed to use theja-
va.jts.CurrentTransaction interface to demarcate transaction boundaries.

The container makes thejava.jts.CurrentTransaction interface available to the enter-
prise bean though theInstanceContext.getCurrentTransaction() method, as illustrated
in the following example.

import java.jts.CurrentTransaction;
...
InstanceContext ic = ...;
...
CurrentTransaction tx = ic.getCurrentTransaction();
tx.begin();
...
tx.commit();

Enterprise beans deployed with a transaction attribute other thanBEAN_MANAGED
are not allowed to access directly the underlying transaction manager. This means that
the container makes the JTS API unavailable to the enterprise bean.

11.6 Transaction management exceptions

The container throws the TransactionRollbackException, TransactionRequiredExcep-
tion, andInvalidTransactionExceptionexceptions in the situations defined in the JTS
specification.

 TODO - here we need to define rules for how a container shall handle
transaction management exceptions

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 80 December 9, 1997

12 Support for distribution

12.1 Overview

Support for remote client access to an enterprise bean object is through the standard
Java API for remote method invocation (Java RMI) [3]. This API allows a client to in-
voke an enterprise bean object using the industry standard IIOP protocol, as defined in
the OMG Java to IDL Mapping specification [5].

The Java RMI API makes access to an enterprise bean objectlocation transparent to a
client programmer.

12.2 Client-side objects

The following objects are present in the client’s JVM:

• A local container object.

• A stub for the enterprise bean’s factory object.

• A stub for the EJB object.

The factory object, container, and the EJB object are remote objects in the sense of Java
RMI. The Java RMI specification [3] and the OMG Java to IDL Mapping specification
[5] define the stubs for the factory, container, and EJB objects, and the communication
between the stubs and the objects on the server.

12.3 Interoperability via network protocol

12.3.1 Mapping to CORBA

The standard mapping of Enterprise JavaBeans to CORBA is defined in [6].

The mapping enables the following interoperability:

enterprise bean

container ‘s address space (i.e. JVM)

container object

remote bean

remote

client address space (i.e. JVM)

client
factory object

remote bean stub

factory stub

 container stub

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 81 December 9, 1997

• Any non-Java CORBA client can access any enterprise bean object.

• A client using an ORB from one vendor can access enterprise beans residing on
a CORBA-based EJB server provided by another vendor.

• Enterprise beans in one CORBA-based EJB server can access enterprise beans
in another CORBA-based EJB server.

12.3.2 Support for other protocols

Other forms of distributions are possible. For example, a client may use HTTP to in-
voke a servlet that invokes an enterprise bean object via its remote bean. Similarly, an
ActiveX client may invoke an enterprise bean via its remote bean through a DCOM/
IIOP bridge. These forms of distribution are not covered by this specification at this
time.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 82 December 9, 1997

13 Support for security

Support for security in Enterprise JavaBeans includes the following components:

• Use of the existing Java security APIs defined in the core packagejava.security.

• Security-related methods inInstanceContext.

• Security-related attributes in the deployment descriptor.

The following sections describe support for security in more detail.

 TODO: this chapter needs more examples

13.1 Packagejava.security

The packagejava.security provides the generic Java security-related interfaces. Enter-
prise JavaBeans uses the applicable existing Java security APIs. This section describes
the parts of the java.security API that are relevant to Enterprise JavaBeans.

13.1.1 classjava.security.Identity

The java.security.Identity class encapsulates the concept of “user identity” for security
purposes. Please refer to the reference page ofjava.security.Identity for the description.

13.2 Security-related methods inInstanceContext

The InstanceContext interface contains the following security-related method:

• getCallerIdentity

• hasRole

Please refer to reference page ofjava.ejb.InstanceContext for the description of this
method.

13.3 Security-related deployment descriptor properties

An enterprise bean’s deployment descriptor allows a container to perform security
management outside of the enterprise bean code. The security management of an enter-
prise bean is determined by the bean’s security descriptor. Please see the reference page
for java.ejb.deployment.SecurityDescriptor.

13.4 Examples

The following example illustrates programmatic access to the security information.

13.4.1 Obtain client’s Identity

/* Obtain the security identity of the client. */
Identity caller = instanceContext.getCallerIdentity();

/* getName returns a printable representation of identity. */
String clientAccount = caller.getName();

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 83 December 9, 1997

13.4.2 Check client’s role

/*
* Check if the client has the “vip-account” role
*/
Identity vipAccount = new Identity(“vip-account”);

if (instanceContext.isCallerInRole(vipAccount)) {
do something;

} else {
do something else;

}

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 84 December 9, 1997

14 Ejb-jar file

Enterprise JavaBeans defines the format for packaging of enterprise beans. The pack-
aging format can be used both for distribution of individual enterprise beans as compo-
nents, and for distribution of an entire server-side application built of multiple
enterprise beans.

14.1 ejb-jar file

Enterprise beans are packaged for deployment in a standard Java Archive File called an
ejb-jar file.

An ejb-jar file contains the enterprise beans’ class files and their deployment descrip-
tors. The ejb-jar file’s manifest file identifies the enterprise beans that are included in
the file.

14.2 Deployment descriptor

An enterprise bean provider must include a deployment descriptor for each enterprise
bean. A deployment descriptor is a serialized instance of ajava.ejb.deployment.Entity-
Descriptor or java.ejb.deployment.SessionDescriptor object. Please refer to the refer-
ence pages for information on deployment descriptors.

14.3 ejb-jar Manifest

An ejb-jar file must include amanifest file. The manifest file identifies the enterprise
beans included in the ejb-jar file.

The manifest file must be named “META-INF/MANIFEST.MF”.

The manifest file is organized as a sequence ofsections. Sections are separated by emp-
ty lines. Each section contains one or moreheaders, each of the form<tag>: <value>.
The sections that provide information on enterprise beans in the archive use headers
with the following<tags>:

• Name, whose<value> is the relative name of the enterprise bean’s serialized
deployment descriptor.

• Enterprise-Bean, whose<value> is True.

Every enterprise bean must have a section in the manifest file. The headers with the
Name andEnterprise-Bean<tags> are mandatory for all enterprise beans.

For example, two relevant sections of an ejb-jar manifest might be:

Name: bank/AccountDeployment.ser
Enterprise-Bean: True

Name: quotes/QuoteServerDeployment.ser
Enterprise-Bean: True

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 85 December 9, 1997

15 Enterprise bean provider responsibilities

15.1 Classes and interfaces

The enterprise bean provider is responsible for providing the class files for the follow-
ing classes and interface:

• Enterprise bean class.

• Enterprise bean’s remote interface.

• Enterprise bean’s factory interface.

• Enterprise bean’s finder interface.

The enterprise bean provider must provide the enterprise bean class and the enterprise
bean’s remote interface for every enterprise bean.

The enterprise bean provider must also provide the factory and finder interface for ev-
ery enterprise bean, with several exceptions that are noted below.

15.1.1 Enterprise bean class

The enterprise bean provider must provide an enterprise bean class for every enterprise
bean. An enterprise bean class implements the business logic.

The following are the requirements for an enterprise bean class:

• An enterprise bean class must provide an implementation of a session or entity
enterprise bean.

• A session enterprise bean class must implement thejava.ejb.SessionBean
interface. The implementation of thejava.ejb.SessionBean methods must
follow the rules described in Subsection 6.6.

• A session enterprise bean class can optionally implement the
java.ejb.SessionSynchronizationinterface. The implementation of the
java.ejb.SessionSynchronizationmethods must follow the rules described in
Subsection 6.6.

• An entity enterprise bean class must implement thejava.ejb.EntityBean
interface. The implementation of thejava.ejb.EntityBean methods must follow
the rules described in Subsection 9.6.1.

• An enterprise bean must not be an abstract class.

• An enterprise bean class must define zero or moreejbCreate(...) methods, as
described in Section 9.6.

• An enterprise bean class must not implement its associated remote interface.

• An enterprise bean class must define the implementation of the business
methods defined in the enterprise bean’s remote interface, as described in
Section 9.5.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 86 December 9, 1997

• The implementation of the enterprise bean’s methods must follow the
programming restrictions defined in Section 15.4.

15.1.2 Enterprise bean’s remote interface

The enterprise bean provider must provide a remote interface for every enterprise bean.
An enterprise bean’s remote interface defines the business methods that are callable by
clients.

The following are the requirements for an enterprise bean’s remote interface:

• An enterprise bean remote interface must extend thejava.ejb.EJBObject
interface.

• An enterprise bean remote interface must follow all the standard rules for Java
remote interfaces (e.g.throws clause of each enterprise bean remote interface
method must include thejava.rmi.RemoteException).

• The types used for the arguments and results of the enterprise bean’s remote
interface methods must be restricted to the subset of Java RMI described in [5].

15.1.3 Enterprise bean’s factory interface

An enterprise bean’s factory interface defines thecreate(...) methods used by clients to
create new EJB objects.

The enterprise bean provider must provide a factory interface for every enterprise bean,
with one exception. It is legal not to provide a factory interface for an entity enterprise
bean if the enterprise bean provider wishes to restrict the clients from creating new en-
tity EJB objects (for example, when the entities are stored in a read-only data source).

The following are the requirements for an enterprise bean’s remote interface:

• An enterprise bean factory interface must extend thejava.ejb.Factoryinterface.

• All the factory interface methods must be namedcreate(...).

• Thecreate(...) methods must match the enterprise bean’sejbCreate(...) methods
using the design pattern described in Section 9.6.

• An enterprise bean factory interface must follow all the standard rules for Java
remote interfaces (e.g.throws clause of each enterprise bean factory interface
method must include thejava.rmi.RemoteException).

• The types used for the arguments and results of the enterprise bean’s factory
interface methods must be restricted to the subset of Java RMI described in [5].

15.1.4 Enterprise bean’s finder interface

 TODO:

15.2 Environment properties

If the enterprise bean depends on some environment properties, the enterprise bean pro-
vider must provide the environment properties for the bean. Environment properties are
defined as a standardjava.util.Properties object.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 87 December 9, 1997

The enterprise bean provider must define file all thekey:value pairs that the enterprise
bean’s instances will require at runtime. The values are typically edited at deployment
time.

15.3 Deployment descriptor

The enterprise bean provider must provide a deployment descriptor for every enterprise
bean. The format of a deployment descriptor is described in Section 15.3.

15.4 Programming restrictions

 NOTE: this is still only a partial list

The following rules must be followed by a programmer developing an enterprise bean
class:

• An enterprise bean is not allowed to start new threads or attempt to terminate
the running thread.

• An enterprise bean is not allowed to use read/writestatic fields. Using read-only
static fields is allowed. Therefore, allstatic fields must be declared asfinal.

• An enterprise bean is not allowed to use thread synchronization primitives.

• An enterprise bean is not allowed to use the JTS interfaces directly. The only
exception are enterprise beans with theBEAN_MANAGEDtransaction attribute
which are allowed to use thejava.jts.CurrentTransactioninterface to demarcate
transactions.

• An enterprise bean is not allowed to change itsjava.security.Identity. Any such
attempt will result in thejava.security.SecurityException being thrown.

• A transaction-enabled enterprise bean using JDBC is not allowed to use the
commit and rollback methods. An enterprise bean that is not transaction-
enabled is allowed to use thecommit androllback methods.

15.5 Component packaging responsibilities

The enterprise bean provider is responsible for putting the following classes and files
in the ejb-jar file:

• The enterprise bean class with any classes that the enterprise bean depends on.

• The deployment descriptor file that contains the deployment attributes for the
enterprise bean.

• The factory and finder interfaces if they are required by the enterprise bean.

• Enterprise bean’s environment properties.

• The Manifest file that identifies the deployment descriptors of all the enterprise
beans in the ejb-jar file.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 88 December 9, 1997

16 Container provider responsibilities

 XXX - this chapter is still work in progress

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 89 December 9, 1997

17 Enterprise JavaBeans API Reference

The following interfaces and classes comprise the Enterprise JavaBeans API:

packagejava.ejb:

Interfaces:

public interface Container
public interface ContainerMetaData
public interface EJBObject
public interface EnterpriseBean
public interface EntityBean
public interface EntityContext
public interface Factory
public interface Finder
public interface Handle
public interface InstanceContext
public interface SessionBean
public interface SessionContext
public interface SessionSynchronization

Classes:

public class BeanPermission
public class InvalidKeyException
public class NoObjectWithKeyException
public class NotDestroyableException

packagejava.ejb.deployment:

Classes:

public class DeploymentDescriptor
public class EntityDescriptor
public class MethodDescriptor
public class MethodDescriptor
public class SessionDescriptor
public class TransactionAttribute

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 90 December 9, 1997

Interface Container

public interface java.ejb. Container
 extends java.rmi. Remote
{
 public abstract void

destroy (Handle handle);
 public abstract void

destroy (Object primaryKey);
 public abstract ContainerMetaData

getContainerMetaData ();
 public abstract Factory getFactory ();
 public abstract Finder getFinder ();
}

The Container interface provides client's access to the EJB object's lifecycle operations. All EJB containers
must implement this interface.

The Container interface allows a client to obtain the enterprise bean's factory and finder interfaces, and to
destroy an existing EJB object.

Methods

• destroy

public abstract void destroy(Handle handle)
 throws RemoteException, NotDestroyableException

Destroy an EJB object identified by its handle.

Throws: NotDestroyableException
Thrown if the container does not allow the client to destroy the object.

Throws: RemoteException
Thrown when the method failed due to a system-level failure.

• destroy

public abstract void destroy(Object primaryKey)
 throws RemoteException, NotDestroyableException

Destroy an EJB object identified by its primary key.

Throws: NotDestroyableException
Thrown if the container does not allow the client to destroy the object.

Throws: RemoteException
Thrown when the method failed due to a system-level failure.

• getContainerMetaData

public abstract ContainerMetaData
getContainerMetaData()

 throws RemoteException

Obtain the ContainerMetaData interface that allows the client to get the various metadata associated with the
container.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 91 December 9, 1997

Returns:
The ContainerMetaData interface for the container.

Throws: RemoteException
Thrown when the method failed due to a system-level failure.

• getFactory

public abstract Factory getFactory()
 throws RemoteException

Get the enterprise bean factory associated with the container.

Returns:
The enterprise bean factory interface, or null if the container does not provide a factory for its enter-
prise beans.

• getFinder

public abstract Finder getFinder()
 throws RemoteException

Get enterprise bean finder associated with the container.

Returns:
The enterprise bean finder interface, or null if the container does not provide a finder for its enter-
prise beans.

Throws: RemoteException
Thrown when the method failed due to a system-level failure.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 92 December 9, 1997

Interface ContainerMetaData

public interface java.ejb. ContainerMetaData
 extends java.rmi. Remote
{
 public abstract String getClassName ();
 public abstract Container getContainer ();
 public abstract Class

getPrimaryKeyClass ();
}

The ContainerMetaData interface allows a client to obtain the various metadata associated with a container.

TODO: the definition of this interface is still in-progress

Methods

• getClassName

public abstract String getClassName()
 throws RemoteException

Obtain the class name of the enterprise bean that this factory interface is associated with.

Throws: RemoteException
Thrown when the method failed due to a system-level failure.

• getContainer

public abstract Container getContainer()
 throws RemoteException

Obtain the container associated with this factory.

• getPrimaryKeyClass

public abstract Class getPrimaryKeyClass()
 throws RemoteException

Obtain the Class object for the primary key class.

Throws: RemoteException
Thrown when the method failed due to a system-level failure.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 93 December 9, 1997

Interface EJBObject

public interface java.ejb. EJBObject
 extends java.rmi. Remote
{
 public abstract void destroy ();
 public abstract String getClassName ();
 public abstract Container getContainer ();
 public abstract Handle getHandle ();
 public abstract Object getPrimaryKey ();
 public abstract boolean

isIdentical (EJBObject bean);
}

The EJBObject interface provides the client view of an EJB object.

Methods

• destroy

public abstract void destroy()
 throws RemoteException, NotDestroyableException

Destroy the EJB object.

Throws: NotDestroyableException
The container does not allow the client to destroy the EJB object.

Throws: RemoteException
Thrown when the method failed due to a system-level failure.

• getClassName

public abstract String getClassName()
 throws RemoteException

Obtain the class name of the enterprise bean that provides the implementation of this EJB object.

Returns:
The class name of the enterprise bean that provides the implementation of this EJB object.

Throws: RemoteException
Thrown when the method failed due to a system-level failure.

• getContainer

public abstract Container getContainer()
 throws RemoteException

Obtain a reference to the EJB object's container.

Returns:
A reference to this object's container.

Throws: RemoteException
Thrown when the method failed due to a system-level failure.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 94 December 9, 1997

• getHandle

public abstract Handle getHandle()
 throws RemoteException

Obtain a handle for this EJB object. A handle can be used at later time to re-obtain a reference to the EJB
object.

Returns:
A handle for the EJB object.

Throws: RemoteException
Thrown when the method failed due to a system-level failure.

• getPrimaryKey

public abstract Object getPrimaryKey()
 throws RemoteException

Obtain the primary key of the EJB object.

• isIdentical

public abstract boolean isIdentical(EJBObject bean)
 throws RemoteException

Test if a given EJB object is identical to the invoked EJB object.

Returns:
True if the given EJB object is identical to the invoked object, false otherwise.

Throws: RemoteException
Thrown when the method failed due to a system-level failure.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 95 December 9, 1997

Interface EnterpriseBean

public interface java.ejb. EnterpriseBean
 extends java.io. Serializable
{
}

The EnterpriseBean interface is an interface that every enterprise bean class must implement.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 96 December 9, 1997

Interface EntityBean

public interface java.ejb. EntityBean
 extends java.ejb. EnterpriseBean
{
 public abstract void ejbActivate ();
 public abstract void ejbDestroy ();
 public abstract void ejbLoad ();
 public abstract void ejbPassivate ();
 public abstract void ejbStore ();
 public abstract void

setEntityContext (EntityContext ctx);
 public abstract void

unsetEntityContext ();
}

The EntityBean interface is implemented by every enterprise bean class that provides the implementation for
an entity EJB object. The methods defined in the EntityBean interface are invoked by the container to allow
an enterprise bean instance to participate in its lifecycle management.

Note: Support for entity enterprise beans is optional for EJB 1.0 compliant containers. Support for entities
will become mandatory for EJB 2.0 compliant containers.

Methods

• ejbActivate

public abstract void ejbActivate()
 throws Exception

A container invokes this method on the instance when the instance is taken out of the pool of available
instances to become associated with a specific EJB object. This method transitions the instance to the ready
state.

This method executes in an unspecified transaction context.

Throws: Exception
The implementation of this method can throw an arbitrary exception. The container is responsible
for catching and handling the exception.

• ejbDestroy

public abstract void ejbDestroy()
 throws Exception

A container invokes this method before it ends the life of the EJB object that is currrently associated with the
instance. This method is invoked when a client invokes a destroy operation. This method transitions the
instance from the ready state to the pool of available instances.

This method is called in the proper transaction context.

Throws: Exception
The implementation of this method can throw an arbitrary exception. The container is responsible
for catching and handling the exception.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 97 December 9, 1997

• ejbLoad

public abstract void ejbLoad()
 throws Exception

A container invokes this method on the instance to instruct the instance to synchronize its state by loading it
state from the underlying database.

This method executes in the proper transaction context.

Throws: Exception
The implementation of this method can throw an arbitrary exception. The container is responsible
for catching and handling the exception.

• ejbPassivate

public abstract void ejbPassivate()
 throws Exception

A container invokes this method on instance before the instance becomes disassociated with a specific EJB
object. After this method completes, the container will place the instance into the pool of available instances.

This method executes in an unspecified transaction context.

Throws: Exception
The implementation of this method can throw an arbitrary exception. The container is responsible
for catching and handling the exception.

• ejbStore

public abstract void ejbStore()
 throws Exception

A container invokes this method on the instance to instruct the instance to synchronize its state by storing it
to the underlying database.

This method executes in the proper transaction context.

Throws: Exception
The implementation of this method can throw an arbitrary exception. The container is responsible
for catching and handling the exception.

• setEntityContext

public abstract void
setEntityContext(EntityContext ctx)

 throws Exception

Set the associated entity context. The container calls this method on the instance after the instance creation
before the instance is is entered into the pool of available instances.

The EJB instance should store the reference to the context object in an instance variable.

This method is called in unspecified or no transaction context.

Parameters:
ctx

An EntityContext interface for the instance.

Throws: Exception
The implementation of this method can throw an arbitrary exception. The container is responsible
for catching and handling the exception.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 98 December 9, 1997

• unsetEntityContext

public abstract void unsetEntityContext()
 throws Exception

Unset the associated entity context. The container calls this method after the instance is removed from the
pool of available instances. The container will then discard the instance.

This is the last method that the container invokes on the instance. The Java garbage collector will eventually
invoke the finalize() method on the instance.

This method is called in unspecified or no transaction context.

Throws: Exception
The implementation of this method can throw an arbitrary exception. The container is responsible
for catching and handling the exception.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 99 December 9, 1997

Interface EntityContext

public interface java.ejb. EntityContext
 extends java.ejb. InstanceContext
{
 public abstract EJBObject getEJBObject ();
 public abstract EJBObject

getEJBObject (Object primaryKey);
 public abstract Object getPrimaryKey ();
 public abstract void

setPrimaryKey (Object primaryKey);
}

The EntityContext interface provides access to the runtime context that the container provides for an entity
enterprise bean instance. The container passes the EntityContext interface to an entity enterprise bean
instance after the instance has been created. The entity context remains associated with the instance for the
lifetime of the instance.

Methods

• getEJBObject

public abstract EJBObject getEJBObject()
 throws IllegalStateException

Obtain a reference to the EJB object that is currently associated with the instance.

An instance of an entity enterprise bean can call this method only when the instance is in the ready state;
from the ejbActivate(), ejbPassivate(), and ejbDestroy() methods; and from the ejbCreate(...) methods after
the instance has called the set primary key method on the InstanceContext interface.

An instance can use this method, for example, when it wants to pass a reference to itself in a method argu-
ment or result.

Returns:
The EJB object currently associated with the instance.

Throws: IllegalStateException
Thrown if the instance invokes this method while the instance is in a state that does not allow the
instance to invoke this method.

• getEJBObject

public abstract EJBObject
getEJBObject(Object primaryKey)

Create an EJB object reference for a given primary key. An instance uses this method, for example, when it
needs to create an EJB object reference to another entity that lives in the same container, in order to pass the
EJB object reference as a method argument or result.

Parameters:
primaryKey

The primary key for which an EJB object reference should be created.

Returns:
An EJB object reference for the given primary key.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 100 December 9, 1997

• getPrimaryKey

public abstract Object getPrimaryKey()
 throws IllegalStateException

Obtain the primary key of the EJB object that is currently associated with this instance.

An entity enterprise bean instance can call this method only when the instance is in the ready state; from the
ejbActivate(), ejbPassivate(), and ejbDestroy() methods; and from the ejbCreate(...) methods after the
instance has called the set primary key method on the InstanceContext interface.

Note: The result of this method is that same as the the result of getEJBObject().getPrimaryKey().

Returns:
The EJB object currently associated with the instance.

Throws: IllegalStateException
Thrown if the instance invokes this method while the instance is in a state that does not allow the
instance to invoke this method.

• setPrimaryKey

public abstract void
setPrimaryKey(Object primaryKey)

 throws IllegalStateException

Associate the primary key with the EJB object that is being currently created. This method is callable only
from the ejbCreate(...) methods of an entity enterprise bean class.

Throws: IllegalStateException
Thrown if the instance invokes this method from a method other than ejbCreate(...).

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 101 December 9, 1997

Interface Factory

public interface java.ejb. Factory
 extends java.rmi. Remote
{
 public abstract String getClassName ();
 public abstract Container getContainer ();
}

The Factory interface is a base interface of all EJB factory interfaces.

Methods

• getClassName

public abstract String getClassName()
 throws RemoteException

Obtain the class name of the enterprise bean that provides the implementation for the EJB objects created by
this factory.

Returns:
The class name of the enterprise bean that provides the implementation of the EJB object created
by this factory.

Throws: RemoteException
Thrown when the method failed due to a system-level failure.

• getContainer

public abstract Container getContainer()
 throws RemoteException

Obtain the container associated with this factory.

Returns:
A reference to the container associated with this factory.

Throws: RemoteException
Thrown when the method failed due to a system-level failure.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 102 December 9, 1997

Interface Finder

public interface java.ejb. Finder
 extends java.rmi. Remote
{
 public abstract EJBObject

findByPrimaryKey (Object primaryKey);
 public abstract String getClassName ();
 public abstract Container getContainer ();
}

The Finder interface is a base interface of all EJB finder interfaces.

Methods

• findByPrimaryKey

public abstract EJBObject
findByPrimaryKey(Object primaryKey)

 throws RemoteException, InvalidKeyException, NoObjectWithKeyEx-
ception

Find an EJB object by its primary key.

Parameters:
primaryKey

The primary key by which to look up the EJB object.

Returns:
The looked up EJB object.

Throws: InvalidKeyException
The specified primary key had invalid format.

Throws: NoObjectWithKeyException
The EJB object with the given primary key does not exist.

Throws: RemoteException
Thrown when the method failed due to a system-level failure.

• getClassName

public abstract String getClassName()
 throws RemoteException

Obtain the class name of the enterprise bean that provides the implementation for the EJB objects found by
this finder.

Returns:
The class name of the enterprise bean that provides the implementation of the EJB object found by
this finder.

Throws: RemoteException
Thrown when the method failed due to a system-level failure.

• getContainer

public abstract Container getContainer()

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 103 December 9, 1997

 throws RemoteException

Obtain the container associated with this finder.

Returns:
A reference to the container associated with this finder.

Throws: RemoteException
Thrown when the method failed due to a system-level failure.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 104 December 9, 1997

Interface Handle

public interface java.ejb. Handle
 extends java.io. Serializable
{
 public abstract EJBObject getEJBObject ();
}

The Handle is an abstraction of a network reference to an EJB object. It should be used as a "robust" persis-
tent reference to an EJB object.

Methods

• getEJBObject

public abstract EJBObject getEJBObject()

Obtain the EJB object represented by this handle.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 105 December 9, 1997

Interface InstanceContext

public interface java.ejb. InstanceContext
{
 public abstract Identity

getCallerIdentity ();
 public abstract Container getContainer ();
 public abstract CurrentTransaction

getCurrentTransaction ();
 public abstract Properties

getEnvironment ();
 public abstract boolean

isCallerInRole (Identity role);
}

The InstanceContext interface provides access to the runtime context that a container provides for an enter-
prise bean instance. A container passes the InstanceContext interface to an instance after the instance has
been created. The instance context remains associated with the instance for the lifetime of the instance.

This interface is extended by the SessionContext and EntityContext interface which provide additional
methods specific to the enterprise bean type.

Methods

• getCallerIdentity

public abstract Identity getCallerIdentity()

Obtain the security Identity of the immediate caller.

Returns:
The Identity object that identifies the immediate caller.

• getContainer

public abstract Container getContainer()

Obtain a reference to the enterprise bean's container.

Returns:
A reference to the enterprise bean's container.

• getCurrentTransaction

public abstract CurrentTransaction
getCurrentTransaction()

 throws IllegalStateException

Obtain the transaction demaraction interface.

Returns:
The CurrentTransaction interface that the enterprise bean instance can use for transaction demarca-
tion.

Throws: IllegalStateException
Thrown if the instance container does not make the CurrentTransaction interface available to the
instance because the instance is not deployed with the NotSupported transaction attribute.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 106 December 9, 1997

• getEnvironment

public abstract Properties getEnvironment()

Obtain the ServerBean's environment Properties.

The method returns the enterprise bean's environment properties.

If no environment properties were specified for the enterprise bean, this method returns an empty Properties
object. This method never returns null.

Returns:
The environment properties for the enterprise bean.

• isCallerInRole

public abstract boolean
isCallerInRole(Identity role)

Test if the caller has a given role.

Parameters:
role

The Identity of the role to be tested.

Returns:
True if the caller has the specified role.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 107 December 9, 1997

Interface SessionBean

public interface java.ejb. SessionBean
 extends java.ejb. EnterpriseBean
{
 public abstract void ejbActivate ();
 public abstract void ejbDestroy ();
 public abstract void ejbPassivate ();
 public abstract void

setSessionContext (SessionContext ctx);
}

The SessionBean interface is implemented by every enterprise bean class that provides the implementation
for a session EJB object. The methods defined in the SessionBean interface are invoked by the container to
allow an enterprise bean instance to participate in its lifecycle and transaction management.

Methods

• ejbActivate

public abstract void ejbActivate()
 throws Exception

The activate method is called when the instance is activated from its "passive" state. The instance should
acquire any resource that it has released earlier in the ejbPassivate() method.

Throws: Exception
The implementation of this method can throw an arbitrary exception. The container is responsible
for catching and handling the exception.

• ejbDestroy

public abstract void ejbDestroy()
 throws Exception

A container invokes this method before it ends the life of the session object. This happens as a result of a cli-
ent's invoking a destroy operation, or when a container decides to terminate the session object after a time-
out.

This method is called in the proper transaction context.

Throws: Exception
The implementation of this method can throw an arbitrary exception. The container is responsible
for catching and handling the exception.

• ejbPassivate

public abstract void ejbPassivate()
 throws Exception

The passivate method is called before the instance enters the "passive" state. The instance should release any
resources that that it can re-acquire later in the ejbActivate() method.

After the passivate method completes, the instance must be in a state that allows the container to use the Java
Serialization protocol to externalize and store away the instance's state.

Throws: Exception

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 108 December 9, 1997

The implementation of this method can throw an arbitrary exception. The container is responsible
for catching and handling the exception.

• setSessionContext

public abstract void
setSessionContext(SessionContext ctx)

 throws Exception

Set the associated session context. The container calls this method after the instance creation.

The enterprise bean instance should store the reference to the context object in an instance variable.

This method is called in unspecified or no transaction context.

Parameters:
ctx

An SessionContext interface for the instance.

Throws: Exception
The implementation of this method can throw an arbitrary exception. The container is responsible
for catching and handling the exception.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 109 December 9, 1997

Interface SessionContext

public interface java.ejb. SessionContext
 extends java.ejb. InstanceContext
{
 public abstract EJBObject getEJBObject ();
}

The SessionContext interface provides access to the runtime session context that the container provides for a
session enterprise bean instance. The container passes the SessionContext interface to an instance after the
instance has been created. The session context remains associated with the instance for the lifetime of the
instance.

Methods

• getEJBObject

public abstract EJBObject getEJBObject()
 throws IllegalStateException

Obtain a reference to the EJB object that is currently associated with the instance.

An instance of a session enterprise bean can call this method at anytime between the ejbCreate() and ejbDe-
stroy() methods, including from within the ejbCreate() and ejbDestroy() methods.

An instance can use this method, for example, when it wants to pass a reference to itself in a method argu-
ment or result.

Returns:
The EJB object currently associated with the instance.

Throws: IllegalStateException
Thrown if the instance invokes this method while the instance is in a state that does not allow the
instance to invoke this method.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 110 December 9, 1997

Interface SessionSynchronization

public interface java.ejb. SessionSynchronization
{
 public abstract void

afterCompletion (boolean committed);
 public abstract void beforeCompletion ();
 public abstract void beginTransaction ();
}

The SessionSynchronization interface allows a session bean to be notified by its container of transaction
boundaries.

An session bean class is not required to implement this interface. A session bean class should implement this
interface only if it wishes to synchronize its state with the transactions.

Methods

• afterCompletion

public abstract void
afterCompletion(boolean committed)

 throws Exception

• beforeCompletion

public abstract void beforeCompletion()
 throws Exception

The beforeCompletions method notifies a session bean instance that a transaction is about to be committed.
The instance can use this method, for example, to write any cached data to a database.

This method executes in the proper transaction context.

Throws: Exception
The implementation of this method can throw an arbitrary exception. The container is responsible
for catching and handling the exception.

• beginTransaction

public abstract void beginTransaction()
 throws Exception

The beginTransaction method notifies a session bean instance that the next method invocation will be in the
context of a new transaction.

The instance can use this method, for example, to read data from a database and cache the data in the
instance fields.

This method executes in the proper transaction context.

Throws: Exception
The implementation of this method can throw an arbitrary exception. The container is responsible
for catching and handling the exception.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 111 December 9, 1997

Class BeanPermission

public final class java.ejb. BeanPermission
 extends java.security. BasicPermission
{
 public BeanPermission (String actions);
}

The class BeanPermission represent a permission to perform specified operations on an enterprise bean. A
BeanPermission consists of one or more comma-separated actions. The possible actions are "create",
"destroy", "invoke", "invoke:method_name", and "manage". Their meaning is defined as follows:

The "create" permission controls the Identities that can create a enterprise bean object.

The "destroy" permission controls the Identities that can destroy a enterprise bean object.

The "invoke" permission controls the Identities that can invoke all methods on a enterprise bean object.

The "invoke:method_name" permission controls the Identities that can invoke a specific method on a enter-
prise bean object. The stringmethod_name is the name of the enterprise bean method.

The "manage" permission controls the Identities that can modify a enterprise bean's deployment descriptor.
A BeanPermission permission is intended to be used in the ACList of the deployment descriptor of an enter-
prise bean.

Constructors

• BeanPermission

public BeanPermission(String actions)

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 112 December 9, 1997

Class InvalidKeyException

public class java.ejb. InvalidKeyException
 extends java.lang. Exception
{
 public InvalidKeyException ();
 public

InvalidKeyException (String message);
}

The InvalidKeyException exception is thrown when an EJB object is being looked up by a key, and the spec-
ified key is invalid. A key can be invalid because its class does not match, or the fields of the key have invalid
values.

Constructors

• InvalidKeyException

public InvalidKeyException()

Constructs an InvalidKeyException with no detail message.

• InvalidKeyException

public InvalidKeyException(String message)

Constructs an InvalidKeyException with the specified detail message.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 113 December 9, 1997

Class NoObjectWithKeyException

public class java.ejb. NoObjectWithKeyException
 extends java.lang. Exception
{
 public NoObjectWithKeyException ();
 public

NoObjectWithKeyException (String message);
}

The NoObjectWithKeyException exception is thrown when an object is being looked up by a key, and the
object with the specified key does not exist.

Constructors

• NoObjectWithKeyException

public NoObjectWithKeyException()

Constructs an NoObjectWithKeyException with no detail message.

• NoObjectWithKeyException

public NoObjectWithKeyException(String message)

Constructs an NoObjectWithKeyException with the specified detail message.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 114 December 9, 1997

Class NotDestroyableException

public class java.ejb. NotDestroyableException
 extends java.lang. Exception
{
 public NotDestroyableException ();
 public

NotDestroyableException (String message);
}

The NotDestroyableException exception is thrown at an attempt to destroy an EJB object that is in a state
that does not allow destruction.

Constructors

• NotDestroyableException

public NotDestroyableException()

Constructs an NotDestroyableException with no detail message.

• NotDestroyableException

public NotDestroyableException(String message)

Constructs an NotDestroyableException with the specified detail message.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 115 December 9, 1997

Class DeploymentDescriptor

public class java.ejb.deployment. DeploymentDescriptor
 extends java.lang. Object
 implements java.io. Serializable
{
 public DeploymentDescriptor ();
 public Name getContainerName ();
 public Class getEnterpriseBeanClass ();
 public Properties

getEnvironmentProperties ();
 public Class getFactoryInterface ();
 public MethodDescriptor[]

getMethodDescriptors ();
 public MethodDescriptor

getMethodDescriptors (int index);
 public Class getRemoteInterface ();
 public SecurityDescriptor

getSecurityDescriptor ();
 public int getTransactionAttribute ();
 public void setContainerName (Name value);
 public void

setEnterpriseBeanClass (Class value);
 public void

setEnvironmentProperties (Properties value);
 public void

setFactoryInterface (Class value);
 public void

setMethodDescriptors (int index,
MethodDescriptor value);

 public void
setMethodDescriptors (MethodDescriptor value[]);

 public void
setRemoteInterface (Class value);

 public void
setSecurityDescriptor (SecurityDescriptor value);

 public void
setTransactionAttribute (int value);

}

The DeploymentDescriptor class is the common baseclass for the SessionDescriptor and EntityDescriptor
deployment descriptor classes.

A serialized instance of a deployment descriptor class is used as the standard way for passing an enterprise
bean's declarative attributes in the ejb-jar file. The deployment descriptor setter functions are used by the
enterprise bean provider's tools to create the deployment descriptor before it is put into the ejb-jar file, and
the getter functions are used by the container provider's tools to read the deployment descriptor from the ejb-
jar file when the enterprise bean is installed into the container.

Constructors

• DeploymentDescriptor

public DeploymentDescriptor()

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 116 December 9, 1997

Create an instance of the deployment descriptor.

Methods

• getContainerName

public Name getContainerName()

Get the name to associate with the enterprise bean's container in the JNDI name space.

Returns:
The container's name in the JNDI name space.

• getEnterpriseBeanClass

public Class getEnterpriseBeanClass()

Get the enterprise bean's class.

Returns:
The Class object for the enterprise bean's class.

• getEnvironmentProperties

public Properties getEnvironmentProperties()

Get enterprise bean's environment properties.

Returns:
Enterprise bean's environment properties.

• getFactoryInterface

public Class getFactoryInterface()

Get the enterprise bean's remote factory.

Returns:
The Class object for the enterprise bean's factory.

• getMethodDescriptors

public MethodDescriptor[] getMethodDescriptors()

Get the array of the enterprise bean's method descriptors.

Returns:
An array of enterprise bean's method descriptors, or null of the enterprise bean does not provide
method-level descriptors.

• getMethodDescriptors

public MethodDescriptor
getMethodDescriptors(int index)

Get the method descriptor at a given index.

Parameters:
index

The index of the method descriptor.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 117 December 9, 1997

Returns:
The method descriptor at the specified index.

• getRemoteInterface

public Class getRemoteInterface()

Get the enterprise bean's remote interface.

Returns:
The Class object for the enterprise bean's remote interface.

• getSecurityDescriptor

public SecurityDescriptor getSecurityDescriptor()

Get the enterprise bean's security descriptor.

Returns:
The enterprise bean's security descriptor.

• getTransactionAttribute

public int getTransactionAttribute()

Get the enterprise bean's transaction attribute. The values of the transaction attribute are defined in the class
TransactionAttribute.

Returns:
The enterprise bean's transaction attribute.

• setContainerName

public void setContainerName(Name value)

Set the name to associate with the enterprise bean's container in the JNDI name space.

Parameters:
value

The container's name in the JNDI name space.

• setEnterpriseBeanClass

public void setEnterpriseBeanClass(Class value)

Set the enterprise bean's class.

Parameters:
value

The Class object for the enterprise bean's class.

• setEnvironmentProperties

public void
setEnvironmentProperties(Properties value)

Set enterprise bean's environment properties.

Parameters:
value

Enterprise bean's environment properties.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 118 December 9, 1997

• setFactoryInterface

public void setFactoryInterface(Class value)

Set the enterprise bean's remote factory.

Parameters:
value

The Class object for the enterprise beans factory.

• setMethodDescriptors

public void
setMethodDescriptors(int index,

MethodDescriptor value)

Set the method descriptor at a given index.

Parameters:
index

The index of the method descriptor.
value

The method descriptor to be set at the specified index.

• setMethodDescriptors

public void
setMethodDescriptors(MethodDescriptor value[])

Set the array of the enterprise bean's method descriptors.

A deployment descriptor may define zero or several MethodDescriptors. If a MethodDescriptor is defined
for a method, the MethodDescriptor overrides the values of the transactionAttribute and securityDescriptor
set at the bean level.

A MethodDescriptor can be provided for the methods defined in the enterprise bean's remote interface, fac-
tory interface, finder interface, and the java.ejb.Container interface.

Parameters:
value

An array of the enterprise bean's method descriptors.

• setRemoteInterface

public void setRemoteInterface(Class value)

Set the enterprise bean's remote interface.

Parameters:
value

The Class object for the enterprise bean's remote interface.

• setSecurityDescriptor

public void
setSecurityDescriptor(SecurityDescriptor value)

Set the enterprise bean's security descriptor.

The SecurityDescriptor applies to all methods of the enterprise bean, unless it is overridden by a MethodDe-
scriptor.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 119 December 9, 1997

Parameters:
value

The enterprise bean's security descriptor.

• setTransactionAttribute

public void setTransactionAttribute(int value)

Set the enterprise bean's transaction attribute. The values of the transaction attribute are defined in the class
TransactionAttribute.

The transaction attribute applies to all methods of the enterprise bean, unless it is overridden by a Method-
Descriptor.

Parameters:
value

The enterprise bean's transaction attribute.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 120 December 9, 1997

Class EntityDescriptor

public class java.ejb.deployment. EntityDescriptor
 extends java.ejb.deployment. DeploymentDescriptor
{
 public EntityDescriptor ();
 public Field[]

getContainerManagedFields ();
 public Field

getContainerManagedFields (int index);
 public Class getFinderInterface ();
 public Class getPrimaryKeyClass ();
 public void

setContainerManagedFields (Field values[]);
 public void

setContainerManagedFields (int index,
Field value);

 public void
setFinderInterface (Class value);

 public void
setPrimaryKeyClass (Class value);

}

The SessionDescriptor class defines the deployment descriptor for an entity enterprise bean.

A serialized instance of a deployment descriptor class is used as the standard format for passing an enter-
prise bean's declarative attributes in the ejb-jar file. The deployment descriptor setter functions are used by
the enterprise bean provider's tools to create the deployment descriptor before it is put into the ejb-jar file,
and the getter functions are used by the container provider's tools to read the deployment descriptor from the
ejb-jar file.

Constructors

• EntityDescriptor

public EntityDescriptor()

Create an instance of the deployment descriptor.

Methods

• getContainerManagedFields

public Field[] getContainerManagedFields()

Get the array of container-managed enterprise bean's fields.

Returns:
The array of container-managed fields.

• getContainerManagedFields

public Field getContainerManagedFields(int index)

Get the container-managed field at the given index.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 121 December 9, 1997

Parameters:
index

The index of the field.

Returns:
The Field of the specified container-managed field.

• getFinderInterface

public Class getFinderInterface()

Get the enterprise bean's finder interface.

Returns:
The Class object for the finder interface.

• getPrimaryKeyClass

public Class getPrimaryKeyClass()

Get the enterprise bean's primary key class.

Returns:
The Class object for the primary key.

• setContainerManagedFields

public void
setContainerManagedFields(Field values[])

Set the array of container-managed enterprise bean's fields.

Parameters:
value

The array of container-managed fields.

• setContainerManagedFields

public void
setContainerManagedFields(int index, Field value)

Set the container-managed field at the given index.

Parameters:
index

The index of the field.
value

The Field of the specified container-managed field.

• setFinderInterface

public void setFinderInterface(Class value)

Set the enterprise bean's finder interface.

Parameters:
value

The Class object for the finder interface.

• setPrimaryKeyClass

public void setPrimaryKeyClass(Class value)

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 122 December 9, 1997

Get the enterprise bean's primary key class.

Parameters:
value

The Class object for the primary key.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 123 December 9, 1997

Class MethodDescriptor

public class java.ejb.deployment. MethodDescriptor
 extends java.lang. Object
{
 public MethodDescriptor (Method method);
 public Method getMethod ();
 public SecurityDescriptor

getSecurityDescriptor ();
 public int getTransactionAttribute ();
 public void

setSecurityDescriptor (SecurityDescriptor value);
 public void

setTransactionAttribute (int value);
}

The MethodDescriptor is used to provide deployment information specific to a single method. The method-
level information overrides any information set at the bean-level.

A MethodDescriptor can be provided for any method defined in the enterprise bean's remote interface, fac-
tory interface, finder interface, and java.ejb.Container interface. A Method descriptor shall not be provided
for a method defined in the enterprise bean class (use a MethodDescriptor for the corresponding method of
the enterprise bean's remote interface instead).

Constructors

• MethodDescriptor

public MethodDescriptor(Method method)

Construct a MethodDescriptor for a given Method.

Methods

• getMethod

public Method getMethod()

Get the Method to which this MethodDescriptor applies.

Returns:
The Method associated with this MethodDescriptor.

• getSecurityDescriptor

public SecurityDescriptor getSecurityDescriptor()

Get the SecurityDescriptor for the method.

Returns:
The SecurityDescriptor for the method.

• getTransactionAttribute

public int getTransactionAttribute()

Get the transaction attribute for the method.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 124 December 9, 1997

Returns:
The transaction attribute for the method.

• setSecurityDescriptor

public void
setSecurityDescriptor(SecurityDescriptor value)

Set the SecurityDescriptor for the method.

Parameters:
value

The SecurityDescriptore for the method.

• setTransactionAttribute

public void setTransactionAttribute(int value)

Set the transaction attribute for the method.

Parameters:
value

The transaction attribute for the method.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 125 December 9, 1997

Class MethodDescriptor

public class java.ejb.deployment. MethodDescriptor
 extends java.lang. Object
{
 public MethodDescriptor (Method method);
 public Method getMethod ();
 public SecurityDescriptor

getSecurityDescriptor ();
 public int getTransactionAttribute ();
 public void

setSecurityDescriptor (SecurityDescriptor value);
 public void

setTransactionAttribute (int value);
}

The MethodDescriptor is used to provide deployment information specific to a single method. The method-
level information overrides any information set at the bean-level.

A MethodDescriptor can be provided for any method defined in the enterprise bean's remote interface, fac-
tory interface, finder interface, and java.ejb.Container interface. A Method descriptor shall not be provided
for a method defined in the enterprise bean class (use a MethodDescriptor for the corresponding method of
the enterprise bean's remote interface instead).

Constructors

• MethodDescriptor

public MethodDescriptor(Method method)

Construct a MethodDescriptor for a given Method.

Methods

• getMethod

public Method getMethod()

Get the Method to which this MethodDescriptor applies.

Returns:
The Method associated with this MethodDescriptor.

• getSecurityDescriptor

public SecurityDescriptor getSecurityDescriptor()

Get the SecurityDescriptor for the method.

Returns:
The SecurityDescriptor for the method.

• getTransactionAttribute

public int getTransactionAttribute()

Get the transaction attribute for the method.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 126 December 9, 1997

Returns:
The transaction attribute for the method.

• setSecurityDescriptor

public void
setSecurityDescriptor(SecurityDescriptor value)

Set the SecurityDescriptor for the method.

Parameters:
value

The SecurityDescriptore for the method.

• setTransactionAttribute

public void setTransactionAttribute(int value)

Set the transaction attribute for the method.

Parameters:
value

The transaction attribute for the method.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 127 December 9, 1997

Class SecurityDescriptor

public class java.ejb.deployment. SecurityDescriptor
 extends java.lang. Object
{
 public final static int Client ;
 public final static int SpecifiedUser ;
 public final static int System ;
 public SecurityDescriptor ();
 public Identity[] getGrantAccess ();
 public Identity

getGrantAccess (int index);
 public int getRunAsAttribute ();
 public Identity getRunAsIdentity ();
 public void

setGrantAccess (Identity values[]);
 public void setGrantAccess (int index,

Identity value);
 public void setRunAsAttribute (int value);
 public void

setRunAsIdentity (Identity value);
}

The SecurityDescriptor descriptor defines security-related attributes for enterprise bean. A SecurityDescrip-
tor can be used both at the level of the entire bean, or the level of individual methods.

Variables

• Client

public final static int Client

Run the enterprise bean method with the client's Identity.

• SpecifiedUser

public final static int SpecifiedUser

Run the enterprise bean method with the Identity of a specified user account.

• System

public final static int System

Run the enterprise bean method with the Identity of a "privileged account". The container maps the abstract
notion of a "privileged account" to some privileged account on the target system, such as the database
administrator, or the operating system administrator account.

Constructors

• SecurityDescriptor

public SecurityDescriptor()

Constructor.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 128 December 9, 1997

Methods

• getGrantAccess

public Identity[] getGrantAccess()

Get the array of Identities that are granted access to execute the enterprise bean method.

Returns:
An array of Identities.

• getGrantAccess

public Identity getGrantAccess(int index)

Get the Identity at the specified index in the array of Identities that are granted access to execute the enter-
prise bean method.

Parameters:
index

Index of the Identity to be obtained.

Returns:
The Identity at the specified index.

• getRunAsAttribute

public int getRunAsAttribute()

Get the "runAsAttribute" security attribute.

Returns:
The runAs attribute. The value must be one of Client, SpecifiedUser, and System.

• getRunAsIdentity

public Identity getRunAsIdentity()

Get the Identity of the specified user account with whose credentials to run the enterprise bean method. This
attribute is consulted only if the value of the runAsAttribute is SpecifiedUser.

Returns:
The Identity to associate with the execution of the enterprise bean method.

• setGrantAccess

public void setGrantAccess(Identity values[])

Set the array of Identities that are granted access to execute the enterprise bean method. param value An
array of Identities.

• setGrantAccess

public void
setGrantAccess(int index, Identity value)

Set the Identity at the specified index in the array of Identities that are granted access to execute the enter-
prise bean method.

Parameters:
index

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 129 December 9, 1997

Index of the Identity to be set.
value

The Identity to be set.

• setRunAsAttribute

public void setRunAsAttribute(int value)

Set the "runAsAttribute" security attribute.

Parameters:
value

The runAs attribute. The value must be one of Client, SpecifiedUser, and System.

• setRunAsIdentity

public void setRunAsIdentity(Identity value)

Set the Identity of the specified user account with whose credentials to run the enterprise bean method. This
attribute is consulted only if the value of the runAsAttribute is set to SpecifiedUser.

Parameters:
value

The Identity to associate with the execution of the enterprise bean method.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 130 December 9, 1997

Class SessionDescriptor

public class java.ejb.deployment. SessionDescriptor
 extends java.ejb.deployment. DeploymentDescriptor
{
 public final static int PINNED;
 public final static int stateful ;
 public final static int STATELESS;
 public SessionDescriptor ();
 public int getSessionTimeout ();
 public int getStateManagement ();
 public void setSessionTimeout (int value);
 public void setStateManagement ();
}

The EntityDescriptor class defines the deployment descriptor for a session enterprise bean.

A serialized instance of a deployment descriptor class is used as the standard format for passing an enter-
prise bean's declarative attributes in the ejb-jar file. The deployment descriptor setter functions are used by
the enterprise bean provider's tools to create the deployment descriptor before it is put into the ejb-jar file,
and the getter functions are used by the container provider's tools to read the deployment descriptor from the
ejb-jar file.

Variables

• PINNED

public final static int PINNED

The session bean is stateful and can never be passivated.

• stateful

public final static int STATEFUL

The session bean is stateful and can be passivated between transactions.

• STATELESS

public final static int STATELESS

The session bean is stateless. A stateless bean can be reused for multiple session objects.

Constructors

• SessionDescriptor

public SessionDescriptor()

Create an instance of the deployment descriptor.

Methods

• getSessionTimeout

public int getSessionTimeout()

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 131 December 9, 1997

Get the session timeout value in seconds. A zero value means that the container should use a default.

Returns:
The timeout value in seconds.

• getStateManagement

public int getStateManagement()
 throws IllegalStateException

Get the session bean's state management attribute.

Returns:
The session bean's state management attribute. It must be one of STATELESS, stateful, and
PINNED.

Throws: IllegalStateException
Thrown if the attribute's value has not yet been set.

• setSessionTimeout

public void setSessionTimeout(int value)

Set the session timeout value in seconds. A zero value means that the container should use a default.

Parameters:
value

The timeout value in seconds.

• setStateManagement

public void setStateManagement()

Set the session bean's state management attribute.

Parameters:
value

The session bean's state management attribute. It must be one of STATELESS, stateful, and
PINNED.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 132 December 9, 1997

Class TransactionAttribute

public class java.ejb.deployment. TransactionAttribute
 extends java.lang. Object
{
 public final static int BEAN_MANAGED;
 public final static int MANDATORY;
 public final static int NOT_SUPPORTED;
 public final static int REQUIRED;
 public final static int REQUIRES_NEW;
 public final static int SUPPORTS;
}

The TransactionAttribute class defines the value of the enterprise bean's transaction attribute.

Variables

• BEAN_MANAGED

public final static int BEAN_MANAGED

The enterprise bean manages transaction boundaries itself using the java.jts.CurrentTransaction interface.
The container does not perform any transaction management on the bean's behalf.

• MANDATORY

public final static int MANDATORY

The container is responsible for managing transaction boundaries for the enterprise bean as follow.

If the caller is associated with a transaction, the execution of the enterprise bean method will be associated
with the caller's transaction.

If the caller is not associated with a transaction, the container throws the java.jts.TransactionRequiredExcep-
tion to the caller.

• NOT_SUPPORTED

public final static int NOT_SUPPORTED

The enterprise bean does not support a transaction. The container must not invoke the enterprise bean's
method in the scope of a transaction.

• REQUIRED

public final static int REQUIRED

The container is responsible for managing transaction boundaries for the enterprise bean as follow.

If the caller is associated with a transaction, the execution of the enterprise bean method will be associated
with the caller's transaction.

If the caller is not associated with a transaction, the container starts a new transaction, executes the enter-
prise bean's method in the scope of the transaction, and commits the transaction when the enterprise bean's
method has completed.

• REQUIRES_NEW

public final static int REQUIRES_NEW

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 133 December 9, 1997

The container is responsible for managing transaction boundaries for the enterprise bean as follow.

The container starts a new transaction, executes the enterprise bean's method in the scope of the new transac-
tion, and commits the new transaction when the enterprise bean's method has completed.

If the caller is associated with a transaction, the association of the current thread with the caller's transaction
is suspended during the execution of the enterprise bean's method, and resumed when the enterprise bean's
method has completed.

• SUPPORTS

public final static int SUPPORTS

The container is responsible for managing transaction boundaries for the enterprise bean as follow.

If the caller is associated with a transaction, the execution of the enterprise bean method will be associated
with the caller's transaction.

If the caller is not associated with a transaction, the container executes the enterprise bean's method without
a transaction.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 134 December 9, 1997

18 Related documents

[1] JavaBeans.http://www.javasoft.com/beans.

[2] Java Naming and Directory Interface (JNDI).http://www.javasoft.com/products/jn-
di.

[3] Java Remote Method Invocation (RMI).http://www.javasoft.com/products/rmi.

[4] Java Security.http://www.javasoft.com/security.

[5] Java to IDL Mapping. Joint Initial Submission. OMG TC Document TC orbos/97-
08-06.

[6] Enterprise JavaBeans to CORBA Mapping. Unpublished JavaSoft document avail-
able to the Enterprise JavaBeans reviewers.

[7] OMG Object Transaction Service.http://www.omg.org/corba/sectrans.htm#trans.

[8] ORB Portability Submission, OMG document orbos/97-04-14.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 135 December 9, 1997

Appendix A: Glossary of terms

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 136 December 9, 1997

Appendix B: Example application

 TODO

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 137 December 9, 1997

Appendix C: Features deferred to future releases

The focus of Release 1.0 is to define the basic component model for session and entity
enterprise beans. The model includes: the distributed object model; enterprise bean ap-
plication programming model; state and transaction management protocols.

Given the broad scope of the Enterprise JavaBeans specification, we defer to future re-
leases the features that introduce an advanced programming style. This conservative
approach reduces the chance of our having to make a backward incompatible change in
a future release.

Examples of the features that we would like to consider for a later release are listed be-
low.

C.1 Programmatic access to security

We would like to allow expert-level enterprise beans to temporarily change their effec-
tive security Identity.

C.2 Enterprise beans with extended transactional semantics

Some enterprise beans may need to themselves be resource managers. One example is
an enterprise bean that tries to provide transactional semantics across resource manag-
ers that do not participate in two-phase commit. The access to legacy data or business
logic may be transaction monitor requests or a database stored procedures, each of
which is itself a transaction with a corresponding compensating transaction. The enter-
prise bean would keep track of these transactions and call the compensating transaction
if rollback occurred. This allows the same simple transactional programming model to
be used externally on the enterprise bean (i.e., transaction begin, commit, rollback),
while not holding locks on the real resources.

These enterprise beans need a much richer contract with the transaction coordinator that
allows full participation in two-phase commit.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 138 December 9, 1997

Appendix D: Issues and dependencies

D.1 Pending issues

We track the important pending issues here on which we would like to receive input
from the reviewers.

D.1.1 Argument passing semantics

Enterprise JavaBeans should define the rules for the semantics of parameter passing in
calls between two enterprise beans. We believe that the arguments that implement the
java.rmi.Remote interface should be passed by-reference, and that all other arguments
should be passed by-value even if the target enterprise bean is in the same container and
JVM.

We believe that this needs to be made part of the architecture to prevent unpredictable
behaviour of applications built from enterprise beans when deployed in different con-
tainers.

These proposed semantics are consistent with those used by RMI and the Java to IDL
Mapping [5] and therefore would be familiar to Java programmers.

D.1.2 Runtime significance of ejb-jar file

In this revision of the specification, an ejb-jar file has no significance at runtime. This
means that a container treats a method invocation between two enterprise bean objects
in the same way, independent from whether the two enterprise beans are part of the
same or different ejb-jar files.

Some reviewers suggested that it would make sense to treat the interactions between
the enterprise beans that are part of the same ejb-jarspecial, as follows.

• The runAsIdentity applies to the whole ejb-jar file, not to the individual
enterprise beans.

• All arguments are passed by-reference (i.e. using the Java semantics, not the
Java RMI semantics).

This would imply that an ejb-jar should treated as a single application with multiple en-
try points (each enterprise bean is an entry point) rather than a collection of independent
components (independent at least as far as the transaction, state, and security manage-
ment is concerned). For a given transaction, a container would have to execute all the
enterprise beans that are part of an ejb-jar in the same JVM process in order to preserve
the by-reference semantics of argument passing.

This proposal would effectively lead to a two-level component architecture (ejb-jar
files and individual enterprise beans) with more complex rules than in the current sin-
gle-level component architecture. We have currently no plans to introduce such a two-
level component architecture.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 139 December 9, 1997

D.1.3 Declarative transaction attribute at method-level

Many reviewers gave us input that enterprise beans are likely to be coarse-grained ob-
jects potentially with a large number of client callable methods. A single declarative
transaction attribute at the object-level may often become a problem because different
methods may require different transaction attributes.

The suggested solution is to allow a per-method transaction attribute to override the one
at object-level. This would be analogous to the security permissions defined on per-
method basis.

D.1.4 NOT_SUPPORTED transaction attribute

It was pointed out that the name of this transaction attribute might be confusing if the
enterprise bean in fact uses JTS to perform explicit transaction demarcation. A sugges-
tion was made that we add a new attribute (e.g.UsesCurrentTransaction) that distin-
guishes an enterprise bean that uses theCurrentTransaction interface from one that
does not support transactions. The container would not make theCurrentTransaction
interface available to an enterprise bean that does not support transaction.

We have added the BEAN_MANAGED transaction attribute to the 0.796 specification.

D.1.5 Deployment descriptor format

Many reviewers suggested that using a serialized bean as a deployment descriptor
would be a better alternative to using ajava.util.Properties file.

We have changed the format of the deployment descriptor to a serialized Java object in
the 0.796 release.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 140 December 9, 1997

Appendix E: package java.jts

This Appendix provides the documentation of the classes and interfaces that are part of
the packagejava.jts that are relevant to Enterprise JavaBeans. Note that the packageja-
va.jts may include other classes and interfaces that are not shown here.

interface CurrentTransaction
interface TransactionControl

class Status

class HeuristicCommitException
class HeuristicException
class HeuristicMixedException
class HeuristicRollbackException
class TransactionRequiredException
class TransactionRolledbackException
class InvalidTransactionException

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 141 December 9, 1997

Interface CurrentTransaction

public interface java.jts. CurrentTransaction
{
 public abstract void begin ();
 public abstract void commit ();
 public abstract TransactionControl

getControl ();
 public abstract int getStatus ();
 public abstract void

resume (TransactionControl suspended);
 public abstract void rollback ();
 public abstract void rollbackOnly ();
 public abstract void

setTransactionTimeout (int seconds);
 public abstract TransactionControl

suspend ();
}

The CurrentTransaction interface defines the methods that allow an application to to explicitly manage trans-
action boundaries and control the association of transactions and threads.

Methods

• begin

public abstract void begin()
 throws IllegalStateException

Create a new transaction and associate it with the current thread.

Throws: IllegalStateException
Thrown if the thread is already associated with a transaction.

• commit

public abstract void commit()
 throws TransactionRolledbackException, HeuristicMixedException,

HeuristicRollbackException, SecurityException, IllegalStateException

Complete the transaction associated with the current thread. When this method completes, the thread
becomes associated with no transaction.

Throws: TransactionRolledbackException
Thrown to indicate that the transaction has been rolled back rather than committed.

Throws: HeuristicMixedException
Thrown to indicate that a heuristic decision was made and that some relevant updates have been
committed while others have been rolled back.

Throws: HeuristicRollbackException
Thrown to indicate that a heuristic decision was made and that some relevant updates have been
rolled back.

Throws: SecurityException
Thrown to indicate that the thread is not allowed to commit the transaction.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 142 December 9, 1997

Throws: IllegalStateException
Thrown if the current thread is not associated with a transaction.

• getControl

public abstract TransactionControl getControl()

Obtain the TransactionControl for the transaction that is associated associated with the current thread.

The returned TransactionControl can be used later by the thread as an argument to the resume method.

Returns:
The TransactionControl control for the transaction that is associated with the thread, or null if no
transaction is associated with the thread.

• getStatus

public abstract int getStatus()

Obtain the status of the transaction associated with the current thread.

Returns:
The transaction status. The values of the transaction status are defined in the java.jts.Status class. If
no transaction is associated with the current thread, this method returns the Status.NoTransaction
value.

• resume

public abstract void
resume(TransactionControl suspended)

 throws IllegalArgumentException

Resume association of a transaction with the current thread.

Parameters:
suspended

A TransactionControl obtained previously by the current thread via the suspend or getControl
method.

Throws: IllegalArgumentException
Thrown if the TransactionControl is invalid for the current thread (i.e. it was not obtained via the
suspend or getControl method.

• rollback

public abstract void rollback()
 throws IllegalStateException, SecurityException

Roll back the transaction associated with the current thread. When this method completes, the thread
becomes associated with no transaction.

Throws: SecurityException
Thrown to indicate that the thread is not allowed to roll back the transaction.

Throws: IllegalStateException
Thrown if the current thread is not associated with a transaction.

• rollbackOnly

public abstract void rollbackOnly()
 throws IllegalStateException

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 143 December 9, 1997

Modify the transaction associated with the current thread such that the only possible outcome of the transac-
tion is to roll back the transaction.

Throws: IllegalStateException
Thrown if the current thread is not associated with a transaction.

• setTransactionTimeout

public abstract void
setTransactionTimeout(int seconds)

Modify the value of the timeout value that is associated with the transactions started by the current thread
with the begin method.

If an application has not called this method, the transaction service uses some default value for the transac-
tion timeout.

Parameters:
seconds

The value of the timeout in seconds. If the value is zero, the transaction service restores the
default value.

• suspend

public abstract TransactionControl suspend()

Suspend the association of the current thread with a transaction. When this method completes, the thread
becomes associated with no transaction.

The returned TransactionControl can be used later by the thread as an argument to the resume method.

Returns:
The TransactionControl control for the transaction that was associated with the thread, or null if no
transaction was associated with the thread.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 144 December 9, 1997

Interface TransactionControl

public interface java.jts. TransactionControl
{
}

The TransactionControl interface represents a transactions. It does not define any methods that would allow
the application to directly manipulate the transaction.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 145 December 9, 1997

Class Status

public class java.jts. Status
 extends java.lang. Object
{
 public final static int Active ;
 public final static int Committed ;
 public final static int Committing ;
 public final static int MarkedRollback ;
 public final static int NoTransaction ;
 public final static int Prepared ;
 public final static int Preparing ;
 public final static int RolledBack ;
 public final static int RollingBack ;
 public final static int Unknown;
}

The class Status defines the values of a transaction status.

Variables

• Active

public final static int Active

A transaction is associated with the target object and it is in the active state. An implementation returns this
status after a transaction has been started and prior to a Coordinator issuing any prepares unless the transac-
tion has been marked for rollback.

• Committed

public final static int Committed

A transaction is associated with the target object and it has been committed. It is likely that heuristics exists,
otherwise the transaction would have been destroyed and NoTransaction returned.

• Committing

public final static int Committing

A transaction is associated with the target object and it is in the process of committing. An implementation
returns this status if it has decided to commit, but has not yet completed the process, probably because it is
waiting for responses from one or more Resources.

• MarkedRollback

public final static int MarkedRollback

A transaction is associated with the target object and it has been marked for rollback, perhaps as a result of a
rollback_only operation.

• NoTransaction

public final static int NoTransaction

No transaction is currently associated with the target object. This will occur after a transaction has com-
pleted.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 146 December 9, 1997

• Prepared

public final static int Prepared

A transaction is associated with the target object and has been prepared, i.e. all subordinates have responded
Vote.Commit. The target object may be waiting for a superior's instruction as how to proceed.

• Preparing

public final static int Preparing

A transaction is associated with the target object and it is in the process of preparing. An implementation
returns this status if it has started preparing, but has not yet completed the process, probably because it is
waiting for responses to prepare from one or more Resources.

• RolledBack

public final static int RolledBack

A transaction is associated with the target object and the outcome has been determined as rollback. It is
likely that heuristics exist, otherwise the transaction would have been destroyed and NoTransaction returned.

• RollingBack

public final static int RollingBack

A transaction is associated with the target object and it is in the process of rolling back. An implementation
returns this status if it has decided to rollback, but has not yet completed the process, probably because it is
waiting for responses from one or more Resources.

• Unknown

public final static int Unknown

A transaction is associated with the target object and, but its current status cannot be determined. This is a
transient condition and a subsequent invocation will ultimately return a different status.

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 147 December 9, 1997

Class HeuristicCommitException

public class java.jts. HeuristicCommitException
 extends java.rmi. RemoteException
{
 public HeuristicCommitException ();
 public

HeuristicCommitException (String msg);
}

This exception is thrown by the rollback operation on a resource to report that a heuristic decision was made
and that all relevant updates have been committed.

Constructors

• HeuristicCommitException

public HeuristicCommitException()

• HeuristicCommitException

public HeuristicCommitException(String msg)

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 148 December 9, 1997

Class HeuristicException

public class java.jts. HeuristicException
 extends java.rmi. RemoteException
{
 public HeuristicException ();
 public HeuristicException (String msg);
}

This exception indicates that indicates that one or more participants in a transaction has made a unilateral
decision to commit or roll back updates without first obtaining the outcome determined by the transaction
service.

Heuristic decisions are normally made only in unusual circumstances, such as communication failures, that
prevent normal processing. When a participant makes a heuristic decision, there is a risk that the decision
will differ from the consensus outcome, potentially resulting in loss of data integrity.

The subclasses of this exception provide more specific reporting of the incorrect heuristic decision or the
possibility of incorrect heuristic decision.

Constructors

• HeuristicException

public HeuristicException()

• HeuristicException

public HeuristicException(String msg)

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 149 December 9, 1997

Class HeuristicMixedException

public class java.jts. HeuristicMixedException
 extends java.rmi. RemoteException
{
 public HeuristicMixedException ();
 public

HeuristicMixedException (String msg);
}

This exception is thrown to report that a heuristic decision was made and that some relevant updates have
been committed and others have been rolled back.

Constructors

• HeuristicMixedException

public HeuristicMixedException()

• HeuristicMixedException

public HeuristicMixedException(String msg)

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 150 December 9, 1997

Class HeuristicRollbackException

public class java.jts. HeuristicRollbackException
 extends java.rmi. RemoteException
{
 public HeuristicRollbackException ();
 public

HeuristicRollbackException (String msg);
}

This exception is thrown by the commit operation to report that a heuristic decision was made and that all
relevant updates have been rolled back.

Constructors

• HeuristicRollbackException

public HeuristicRollbackException()

• HeuristicRollbackException

public HeuristicRollbackException(String msg)

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 151 December 9, 1997

Class TransactionRequiredException

public class java.jts. TransactionRequiredException
 extends java.rmi. RemoteException
{
 public TransactionRequiredException ();
 public

TransactionRequiredException (String msg);
}

This exception indicates that a request carried a null transaction context, but the target object requires an
activate transaction.

Constructors

• TransactionRequiredException

public TransactionRequiredException()

• TransactionRequiredException

public TransactionRequiredException(String msg)

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 152 December 9, 1997

Class TransactionRolledbackException

public class java.jts. TransactionRolledbackException
 extends java.rmi. RemoteException
{
 public TransactionRolledbackException ();
 public

TransactionRolledbackException (String msg);
}

This exception indicates that the transaction associated with processing of the request has been rolled back,
or marked to roll back. Thus the requested operation either could not be performed or was not performed
because further computation on behalf of the transaction would be fruitless

Constructors

• TransactionRolledbackException

public TransactionRolledbackException()

• TransactionRolledbackException

public TransactionRolledbackException(String msg)

Enterprise JavaBeans Sun Microsystems Inc. Proprietary and Confidential

Sun Microsystems Inc. 153 December 9, 1997

Class InvalidTransactionException

public class java.jts. InvalidTransactionException
 extends java.rmi. RemoteException
{
 public InvalidTransactionException ();
 public

InvalidTransactionException (String msg);
}

This exception indicates that the request carried an invalid transaction context. For example, this exception
could be raised if an error occured when trying to register a resource.

Constructors

• InvalidTransactionException

public InvalidTransactionException()

• InvalidTransactionException

public InvalidTransactionException(String msg)

