
This is the specification of the Enterprise JavaBeansTM 1.0 architecture. The Enterprise Java-
Beans architecture is a component architecture for the development and deployment of object-
oriented distributed enterprise-level applications. Applications written using the Enterprise
JavaBeans architecture are scalable, transactional, and multi-user secure. These applications
may be written once, and then deployed on any server platform that supports the Enterprise
JavaBeans specification.

Please send technical comments on this specification to:

ejb-spec-comments@sun.com

Please send product and business questions to:

ejb-marketing@sun.com

Copyright 1998 by Sun Microsystems Inc.

901 San Antonio Road, Palo Alto, CA 94303

All rights reserved.

Sun Microsystems

Enterprise JavaBeansTM

microsystems

Vlada Matena & Mark Hapner

March 21, 1998 8:54 am
Version 1.0

Enterprise JavaBeans

Sun Microsystems Inc. 2 March 21, 1998

RESTRICTED RIGHTS: Use, duplication or disclosure by the government is subject
to the restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data
and Computer Software Clause as DFARS 252.227-7013 and FAR 52.227-19.

Sun, Sun Microsystems, the Sun logo, Java, and all Java-based trademarks and logos
are trademarks or registered trademarks of Sun Microsystems, Inc. in the Unites States
and other countries.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MECHANTABILITY, FITNESS FOR A PAR-
TICULAR USE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TY-
POGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE
INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN
NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC., MAY
MAKE NEW IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/
OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Enterprise JavaBeans

Sun Microsystems Inc. 3 March 21, 1998

1. Introduction . 6

1.1 Target audience . 6

1.2 Acknowledgments. 6

1.3 Organization. 6

2. Goals . 7

2.1 Overall goals . 7

2.2 Goals for Release 1.0 . 7

3. Roles and scenarios . 9

3.1 Roles . 9

3.2 Scenario 1: Development, deployment, assembly 11

4. Fundamentals . 12

4.1 Enterprise Beans as components . 12

4.2 Enterprise JavaBeans contracts . 13

4.3 Session and entity objects . 15

4.4 Standard CORBA mapping . 16

5. Client view of a session Bean . 18

5.1 Overview . 18

5.2 EJB container . 18

5.3 Home interface. 19

5.4 EJB object . 20

5.5 Session object identity. 21

5.6 Client’s view of session Bean’s life cycle 21

5.7 Creating and using a session Bean . 22

6. Session Bean component contract . 24

6.1 Overview . 24

6.2 Goals . 24

6.3 A container’s management of its working set 24

6.4 Conversational state . 25

6.5 The protocol between a session Bean and its container 26

6.6 STATEFUL session Bean state diagram 29

6.7 Sequence diagrams for a STATEFUL session Bean 31

6.8 Stateless session Beans . 36

6.9 Sequence diagrams for a STATELESS session Bean 38

6.10 The responsibilities of the enterprise Bean provider. 40

6.11 The responsibilities of the container provider 42

7. Example session scenario . 45

7.1 Overview . 45

7.2 Inheritance relationship . 46

8. Client view of an entity . 49

8.1 Overview . 49

Enterprise JavaBeans

Sun Microsystems Inc. 4 March 21, 1998

8.2 EJB container . 50

8.3 Enterprise Bean’s home interface . 51

8.4 Entity EJB object life cycle . 53

8.5 Primary key and object identity. 55

8.6 Enterprise Bean’s remote interface . 56

8.7 Enterprise Bean’s handle . 57

9. Entity Bean component contract . 58

9.1 The runtime execution model . 58

9.2 Entity persistence. 59

9.3 Instance life cycle. 61

9.4 The entity Bean component contract. 63

9.5 Concurrent access from multiple transactions. 68

9.6 Non-reentrant and re-entrant instances 69

9.7 The responsibilities of the enterprise Bean provider. 70

9.8 The responsibilities of the container provider 73

9.9 Miscellaneous. 74

9.10 Container-managed entity Beans. 75

9.11 Sequence diagrams . 78

10. Example entity scenario. 91

10.1 Overview . 91

10.2 Inheritance relationship . 92

11. Support for transactions . 95

11.1 Transaction model . 95

11.2 Relationship to JTS. 95

11.3 Scenarios . 96

11.4 Declarative transaction management . 100

11.5 TX_BEAN_MANAGED transactions . 103

11.6 Transaction isolation levels. 104

11.7 Deployment descriptor restrictions . 105

11.8 Transaction management and exceptions 106

12. Exception handling . 107

12.1 Client’s view of exceptions. 107

12.2 Rules for the enterprise Bean developer 108

12.3 Rules for the container provider . 108

13. Support for distribution . 111

13.1 Overview . 111

13.2 Client-side objects . 111

13.3 Interoperability via network protocol . 111

14. Support for security . 113

14.1 Package java.security . 113

14.2 Security-related methods in EJBContext. 113

14.3 Security-related deployment descriptor properties 114

Enterprise JavaBeans

Sun Microsystems Inc. 5 March 21, 1998

15. Ejb-jar file . 116

15.1 ejb-jar file . 116

15.2 Deployment descriptor . 116

15.3 ejb-jar Manifest. 116

16. Enterprise Bean provider responsibilities . 117

16.1 Classes and interfaces . 117

16.2 Environment properties . 117

16.3 Deployment descriptor . 117

16.4 Programming restrictions . 117

16.5 Component packaging responsibilities. 118

17. Container provider responsibilities . 119

17.1 Enterprise Bean deployment tools. 119

17.2 Runtime infrastructure . 120

17.3 Runtime management tools . 120

17.4 Evolution management tools . 120

18. Enterprise JavaBeans API Reference. 121

19. Related documents . 165

Appendix A. Features deferred to future releases 166

Appendix B. package javax.jts. 167

Appendix C. Revision history . 179

C.1 Changes since Release 0.8 . 179
C.2 Changes since Release 0.9 . 179
C.3 Changes since Release 0.95 . 180

Enterprise JavaBeans

Sun Microsystems Inc. 6 March 21, 1998

1 Introduction

1.1 Target audience

The target audiences for this specification are the vendors of transaction processing
platforms, vendors of enterprise application tools, and other vendors who want to pro-
vide support for Enterprise JavaBeans in their products.

Many concepts described in this document are system-level issues that are transparent
to the Enterprise JavaBeans application programmer. Since the main goal of Enterprise
JavaBeans is to hide these complex system level issues from the application program-
mer, we plan to provide a separate Enterprise JavaBean programmer’s primer.

1.2 Acknowledgments

Rick Cattell, Shel Finkelstein, Graham Hamilton, Li Gong, Rohit Garg, Susan Cheung,
Sanjeev Krishnan, Anil Vijendran, and Larry Cable have provided invaluable input to
the design of Enterprise JavaBeans.

Enterprise JavaBeans is a broad effort that includes contributions from numerous
groups at Sun and at partner companies. The ongoing specification review process has
been extremely valuable, and the many comments that we have received helped us to
define the specification.

We would also like to thank all the reviewers who sent us feedback during the public
review period. Their input helped us to improve the specification.

1.3 Organization

Chapter 2, “Goals”discusses the advantages of Enterprise JavaBeans. Chapter 3, “Roles
and Scenarios” discusses the responsibilities of Bean providers, application assemblers,
application deployers, server providers, container providers, and system administrators
with respect to Enterprise JavaBeans. Chapter 4, “Fundamentals” defines the scope of
the Enterprise JavaBeans specification.

Chapters 5 through 7 define session Beans; Chapter 5 discusses the client view, Chapter
6 presents the session Bean component contract, and Chapter 7 outlines an example ses-
sion Bean scenario.

Chapters 8 through 10 define entity Beans; the client view, component contract, and an
example scenario are presented in each of the chapters, respectively.

Chapters 11 through 15 discuss transactions, exceptions, distribution, security, and
packaging, respectively, in the context of Enterprise JavaBeans.

Chapters 16 and 17 summarize enterprise Bean provider responsibilities and container
provider responsibilities, respectively.

Chapter 18 is the Enterprise JavaBeans API Reference.

Chapter 19 provides a list of related documents and an Enterprise JavaBeans specifica-
tion change history.

Enterprise JavaBeans

Sun Microsystems Inc. 7 March 21, 1998

2 Goals

2.1 Overall goals

We have set the following goals for the Enterprise JavaBeans (EJB) architecture:

• Enterprise JavaBeans will be the standard component architecture for building
distributed object-oriented business applications in the Java programming
language. Enterprise JavaBeans will make it possible to build distributed
applications by combining components developed using tools from different
vendors.

• Enterprise JavaBeans will make it easy to write applications: Application
developers will not have to understand low-level transaction and state
management details; multi-threading; resource pooling; and other complex low-
level APIs. However, an expert-level programmer will be allowed to gain direct
access to the low-level APIs.

• Enterprise JavaBeans applications will follow the “write-once, run anywhere”
philosophy of the Java programming language. An enterprise Bean can be
developed once, and then deployed on multiple platforms without
recompilation or source code modification.

• The Enterprise JavaBeans architecture will address the development,
deployment, and runtime aspects of an enterprise application’s life cycle.

• The Enterprise JavaBeans architecture will define the contracts that enable tools
from multiple vendors to develop and deploy components that can interoperate
at runtime.

• The Enterprise JavaBeans architecture will be compatible with existing server
platforms. Vendors will be able to extend their existing products to support
Enterprise JavaBeans.

• The Enterprise JavaBeans architecture will be compatible with other Java
programming language APIs.

• The Enterprise JavaBeans architecture will provide interoperability between
enterprise Beans and non-Java programming language applications.

• The Enterprise JavaBeans architecture will be compatible with CORBA.

2.2 Goals for Release 1.0

In Release 1.0, we want to focus on the following aspects:

• Define the distinct “roles” that are assumed by the component architecture.

• Define the client’s view of enterprise Beans.

• Define the enterprise Bean developer’s view.

Enterprise JavaBeans

Sun Microsystems Inc. 8 March 21, 1998

• Define the responsibilities of anEJB container providerandserver provider;
together these make up a system that supports the deployment and execution of
enterprise Beans.

• Define the format of theejb-jar file, EJB’s unit of deployment.

Enterprise JavaBeans

Sun Microsystems Inc. 9 March 21, 1998

3 Roles and scenarios

3.1 Roles

The Enterprise JavaBeans architecture defines six distinct roles in the application de-
velopment and deployment workflow. Each role may be performed by a different party.
Enterprise JavaBeans specifies the contracts that ensure that the product of each role is
compatible with the product of the other roles.

In some scenarios, a single party may perform several roles. For example, the
container provider and the EJB server provider may be the same vendor. Or a
single programmer may perform the role of the enterprise Bean provider and
the role of the application assembler.

The following sections define the six EJB roles.

3.1.1 Enterprise Bean provider

An enterprise Bean provider is typically an application domain expert. An enterprise
Bean provider develops reusable components called enterprise Beans. An enterprise
Bean implements a business task, or a business entity.

An enterprise Bean provider is not an expert at system-level programming. Therefore,
an enterprise Bean provider usually does not program transactions, concurrency, secu-
rity, distribution and other services into the enterprise Beans. An enterprise Bean pro-
vider relies on an EJB container provider for these services.

The output of an enterprise Bean provider is an ejb-jar file that contains enterprise
Beans. Each Bean includes its classes for the Java programming language, its remote
and home interfaces, its deployment descriptor, and its environment properties. The en-
terprise Beans must conform to the Enterprise JavaBeans component contract to ensure
that they can be installed into any compliant EJB container.

3.1.2 Application assembler

An application assembler is a domain expert who composes applications that use enter-
prise Beans. The application assembler works with the enterprise Bean’s client view
contract. Although the assembler must be familiar with the functionality provided by
the enterprise Beans’ remote and home interfaces, he or she does not have to have any
knowledge of the enterprise Beans’ implementation.

The output of the application assembler can be new enterprise Beans, or applications
that are not enterprise Beans (for example, servlets, applets, or scripts). The assembler
may also write a GUI for the applications.

The application assembly can be done before or after the deployment of the enterprise
Beans into an operational environment.

3.1.3 Deployer

A deployer is an expert at a specific operational environment, and is responsible for the
deployment of enterprise Beans and their containers. A deployer typically uses tools

Enterprise JavaBeans

Sun Microsystems Inc. 10 March 21, 1998

provided by the container provider to adapt enterprise Beans to a specific operational
environment.

For example, a deployer is responsible for mapping the security roles assumed by the
enterprise Beans to those required by the organization that will be using the enterprise
Beans. A deployer typically reads the attribute settings in the enterprise Beans’ deploy-
ment descriptors and modifies the values of the enterprise Beans’ environment proper-
ties.

In some cases, a qualified deployer may customize the business logic of the enterprise
Beans at their deployment. Such a deployer would typically use the container tools to
write relatively simple application code that wraps the enterprise Bean’s business meth-
ods.

3.1.4 EJB server provider

An EJB server provider is a specialist in the area of distributed transaction manage-
ment, distributed objects, and other lower-level system-level services. A typical EJB
server provider is an OS vendor, middleware vendor, or database vendor.

Typically, the EJB server provider will provide a container that implements the EJB
session container[4.2.2] contract, and may also provide anentity container[4.2.2] for
one or more data sources supported on the EJB server.

An EJB server provider will typically publish its lower-level interfaces to allow third
parties to develop containers. These interfaces are not currently specified by Enterprise
JavaBeans and are vendor specific.

 A later release of Enterprise JavaBeans may standardize the interfaces
between a container and an EJB server.

3.1.5 EJB container provider

The expertise of a container provider is system-level programming, possibly combined
with some application-domain expertise. The focus of a container provider is on the de-
velopment of a scalable, secure, transaction-enabled container system. The container
provider insulates the enterprise Bean from the specifics of an underlying EJB server
by providing a simple, standard API between the enterprise Bean and the container (this
API is the Enterprise JavaBeans component contract).

For enterprise entity Beans with container-managed persistence, the entity container is
responsible for persistence of the entity Beans installed in the container. The container
provider’s tools are used to generate code that moves data between the enterprise
Bean’s instance variables, and a database or an existing application. The container pro-
vider may be an expert in the area of providing access to an enterprise’s existing data
sources or packaged application systems.

A container provider typically provides support for versioning of the installed enter-
prise Bean components. For example, the container provider may allow enterprise Bean
classes to be upgraded without invalidating existing clients or losing existing enterprise
Bean objects.

Enterprise JavaBeans

Sun Microsystems Inc. 11 March 21, 1998

The container provider typically provides tools that allow the system administrator to
monitor and manage the container and the Beans running in the container at runtime.

Enterprise JavaBeans defines the component contract that must be supported by every
compliant EJB container. Enterprise JavaBeans allows container vendors to develop
specialized containers that extend this contract. Examples of specialized containers in-
clude a container that supports an application-domain specific framework, a container
that bridges the EJB environment with an existing application system (such a container
allows modeling of the existing applications as enterprise Beans), a container that im-
plements an Object/Relational mapping, or a container that is built on top of an object-
oriented database system.

3.1.6 System administrator

The role of a system administrator is to oversee the well-being of a running system. The
system administrator typically uses runtime monitoring and management tools provid-
ed by the EJB server and container providers to accomplish this task.

3.2 Scenario 1: Development, deployment, assembly

Wombat Inc. is an enterprise Bean provider that specializes in the development of soft-
ware components for the banking sector. Wombat Inc. has developed theAccountBean
andTellerBean enterprise Beans, and packages them in anejb-jar file.

Wombat sells the enterprise Beans to banks that may use containers and EJB servers
from multiple vendors. One of the banks uses a container from the Acme Corporation.
Acme’s tools that are part of Acme’s container product facilitate the deployment of en-
terprise Beans from any provider, including Wombat Inc. The deployment process re-
sults in generating additional classes used internally by the Acme container. The
additional classes allow the Acme container to manage enterprise Bean objects at runt-
ime, as defined by the EJB component contract.

Since theAccountBeanandTellerBeanenterprise Beans by themselves are not a com-
plete application, the bank MIS department may use Acme’s tools to assemble theAc-
countBeanandTellerBeanenterprise Beans with other enterprise Beans (possibly from
another vendor) and possibly with some non-EJB existing software, into a complete ap-
plication. The MIS department takes on both the EJB deployer and application assem-
bler roles.

Enterprise JavaBeans

Sun Microsystems Inc. 12 March 21, 1998

4 Fundamentals

This chapter defines the scope of the Enterprise JavaBeans specification.

4.1 Enterprise Beans as components

Enterprise JavaBeans is an architecture for component based distributed computing.
Enterprise Beans are components of distributed transaction-oriented enterprise applica-
tions.

4.1.1 Component characteristics

The essential characteristics of an enterprise Bean are:

• An enterprise Bean’s instances are created and managed at runtime by a
container.

• An enterprise Bean can be customized at deployment time by editing its
environment properties.

• Various metadata, such as a transaction mode and security attributes, are
separated out from the enterprise Bean class. This allows the metadata to be
manipulated using the container’s tools at design and deployment time.

• Client access is mediated by the container and the EJB server on which the
enterprise Bean is deployed.

• If an enterprise Bean uses only the standard container services defined by the
EJB specification, the enterprise Bean can be deployed in any compliant EJB
container.

• Specialized containers can provide additional services beyond those defined by
the EJB specification. An enterprise Bean that depends on such a service can be
deployed only in a container that supports the service.

• An enterprise Bean can be included in a composite application without
requiring source code changes or recompilation of the enterprise Bean.

• A client’s view of an enterprise Bean is defined by the Bean developer. Its view
is unaffected by the container and server the Bean is deployed in. This ensures

that both Beans and their 100% Pure JavaTM clients are write-once-run-
anywhere.

4.1.2 Flexible component model

The enterprise Bean architecture is flexible enough to implement components such as
the following:

• An object that represents a stateless service.

• An object that represents a conversational session with a particular client. Such
session objects automatically maintain their conversational state across multiple
client-invoked methods.

Enterprise JavaBeans

Sun Microsystems Inc. 13 March 21, 1998

• A persistent entity object that is shared among multiple clients.

Although the state management protocol defined by the Enterprise JavaBeans architec-
ture is simple, it provides an enterprise Bean developer great flexibility in managing a
Bean’s state.

A client always uses the same API for object creation, lookup, method invocation, and
destruction, regardless of how an enterprise Bean is implemented, and what function it
provides to the client.

4.2 Enterprise JavaBeans contracts

This section describes the Enterprise JavaBeans Release 1.0 contracts.

4.2.1 Client’s view contract

This is a contract between a client and a container. The client’s view contract provides
a uniform development model for applications using enterprise Beans as components.
This uniform model enables using higher level development tools, and will allow great-
er reuse of components.

Both the enterprise Bean provider and the container provider have obligations to fulfill
the contract. This contract includes:

• Object identity.

• Method invocation.

• Home interface.

A client expects that an enterprise Bean object has a unique identifier. The container
provider is responsible for generating a unique identifier for each session EJB object.
For entity enterprise Beans (See Subsection 4.3.2), the Bean provider is responsible for
supplying a unique primary key that the container embeds into the EJB object’s identi-
fier. The Bean provider supplies the primary key at EJB object creation time, and then
uses the primary key of the EJB object at object activation and/or load time.

A client locates an enterprise Bean home interface through the standard Java Naming

and Directory InterfaceTM (JNDI). Within a home, the primary key is used to identify
each EJB object.

An enterprise Bean and its container cooperate to implement the create, find, and re-
move operations callable by clients.

An enterprise Bean provider defines a remote interface that defines the business meth-
ods callable by a client. The enterprise Bean provider is also responsible for writing the
implementation of the business methods in the enterprise Bean class. The container is
responsible for allowing the clients to invoke an enterprise Bean through its associated
remote interface. The container delegates the invocation of a business method to its im-
plementation in the enterprise Bean class.

An enterprise Bean provider is responsible for supplying an enterprise Bean’shome in-
terface. The enterprise Bean’s home interface extends thejavax.ejb.EJBHomeinter-

Enterprise JavaBeans

Sun Microsystems Inc. 14 March 21, 1998

face. A home interface defines zero or morecreate(...)methods, one for each way to
create an EJB object. A home interface for entity Beans defines zero or morefinder
methods, one for each way to lookup an EJB object, or a collection of EJB objects of a
particular type.

The enterprise Bean provider is responsible for the implementation of theejbCreate(...)
methods in the enterprise Bean class, whose signature must match those of thecre-
ate(...)methods defined in the Bean’s home interface. The container is responsible for
delegating a client-invokedcreate(...)method to the matchingejbCreate(...)method on
an enterprise Bean instance.

The enterprise entity Bean provider is responsible for the implementation of the
ejbFind<METHOD>(...)methods in the enterprise Bean class, whose signature must
match those of thefind<METHOD>(...) finder methods defined in the Bean’s home in-
terface. The container is responsible for delegating a client-invokedfind<METH-
OD>(...) method to the matchingejbFind<METHOD>(...)method on an enterprise
Bean instance.

4.2.2 Component contract

This is a contract between an enterprise Bean and its container. This contract includes:

• An enterprise Bean class instance’s view of its life cycle. For a session
enterprise Bean, this includes the state management callbacks defined by the
javax.ejb.SessionBeanandjavax.ejb.SessionSynchronizationinterfaces. For an
entity enterprise Bean, this includes the state management callbacks defined by
thejavax.ejb.EntityBeaninterface. The container invokes the callback methods
defined by these interfaces at the appropriate times to notify the instance of the
important events in its life cycle.

• The javax.ejb.SessionContextinterface that a container passes to a session
enterprise Bean instance at instance creation. The instance uses the
SessionContextinterface to obtain various information and services from its
container. Similarly, an entity instance uses thejavax.ejb.EntityContext
interface to communicate with its container.

• The environmentjava.util.Propertiesthat a container makes available to an
enterprise Bean.

• A list of services that every container must provide for its enterprise Beans.

4.2.3 Ejb-jar file

An ejb-jar file is a standard format used by EJB tools for packaging enterprise Beans
with their declarative deployment information. All EJB tools must support ejb-jar files.

The ejb-jar contract includes:

• JAR file manifest entries that describe the contents of the ejb-jar file.

• Java class files for the enterprise Beans.

Enterprise JavaBeans

Sun Microsystems Inc. 15 March 21, 1998

• Enterprise Bean deployment descriptors. A deployment descriptor includes the
declarative attributes associated with an enterprise Bean. The attributes instruct
the container how to manage the enterprise Bean objects.

• Enterprise Bean environment properties that the enterprise Bean requires at
runtime.

The following figure illustrates the Enterprise JavaBeans contracts that are defined in
Release 1.0.

Note that while the figure illustrates only a remote client running outside of the contain-
er, the client-side API is also applicable to clients who themselves are enterprise Beans
installed in an EJB container.

4.3 Session and entity objects

Enterprise JavaBeans 1.0 defines two types of enterprise Beans:

• A session object type.

• An entity object type.

Support for session objects is mandatory for an EJB 1.0 compliant container. Support
for entity objects is optional for an EJB 1.0 compliant container, but it will become
mandatory for EJB 2.0 compliant containers.

client EnterpriseBean

 ejb-jar file

container

container
contract

client’s view

EJB server

Enterprise JavaBeans

Sun Microsystems Inc. 16 March 21, 1998

4.3.1 Session objects

A typical session object has the following characteristics:

• Executes on behalf of a single client.

• Can be transaction-aware.

• Updates shared data in an underlying database.

• Does not represent directly shared data in the database, although it may access
and update such data.

• Is relatively short-lived.

• Is removed when the EJB server crashes. The client has to re-establish a new
session object to continue computation.

A typical EJB server and container provide a scalable runtime environment to execute
a large number of session objects concurrently.

4.3.2 Entity objects

A typical entity object has the following characteristics:

• Represents data in the database.

• Is transactional.

• Allows shared access from multiple users.

• Can be long-lived (lives as long as the data in the database).

• Survives crashes of the EJB server. A crash is transparent to the client.

A typical EJB server and container provide a scalable runtime environment for a large
number of concurrently active entity objects.

4.4 Standard CORBA mapping

To ensure interoperability for multi-vendor EJB environments, we define a standard
mapping of the Enterprise JavaBeans client’s view contract to CORBA.

The mapping to CORBA covers:

1. Mapping of the EJB client interfaces to CORBA IDL.

2. Propagation of transaction context.

3. Propagation of security context.

The Enterprise JavaBeans to CORBA mapping not only enables on-the-wire interoper-
ability among multiple vendors’ implementations of an EJB server, but also enables
non-Java clients to access server-side applications written as enterprise Beans through
standard CORBA APIs.

The Enterprise JavaBeans to CORBA mapping relies on the standard CORBA Object
Services protocols for the propagation of the transaction and security context.

Enterprise JavaBeans

Sun Microsystems Inc. 17 March 21, 1998

The CORBA mapping is defined in an accompanying document [6].

The following figure illustrates a heterogeneous environment that includes systems
from five different vendors.

Enterprise
JavaBeans

EJB
server

Enterprise
JavaBeans

EJB
server

Enterprise
JavaBeans
client

Java IDL
client

CORBA
client

vendor 4 vendor 5

vendor 3

vendor1

vendor 2

IIOP
IIOP

IIOP

IIOP

Enterprise JavaBeans

Sun Microsystems Inc. 18 March 21, 1998

5 Client view of a session Bean

This chapter describes the client’s view of a session enterprise Bean. The session Bean
itself implements the Bean’s business logic. All the functionality for remote access, se-
curity, concurrency, transactions, etc. is provided by the Bean’s container.

Although the client view of the enterprise Bean is provided by classes implemented by
the container, the container itself is transparent to the client.

5.1 Overview

For a client, a session enterprise Bean is a non-persistent object that implements some
business logic running on the server. One way to think of a session object is that a ses-
sion object is a logical extension of the client program that runs on the server. A session
object is not shared among multiple clients.

A client accesses a session enterprise Bean through the session Bean’s remote interface.
The object that implements this remote interface is called anEJB object.An EJB object
is a remote Java programming language object accessible from a client through the
standard Java APIs for remote object invocation [3].

From its creation until destruction, an EJB object lives in a container. Transparently to
the client, the container provides security, concurrency, transactions, swapping to sec-
ondary storage, and other services for the EJB object.

Each session EJB object has an identity which, in general,does notsurvive a crash and
restart of the container, although a high-end container implementation can mask con-
tainer and server crashes to the client.

The client’s view of an EJB object is location-independent. A client running in the same
JVM as the EJB object uses the same API as a client running in a different JVM on the
same or different machine.

Multiple EJB classes can be installed in a container. The container allows the clients to
look up the home interfaces of the installed EJB classes via JNDI. Each home interface
provides methods to create and remove the EJB objects of the corresponding EJB class.

The client’s view of an EJB object is the same, irrespective of the implementation of
the enterprise Bean and its container.

5.2 EJB container

An EJB container (container for short) is a system that functions as the “container” for
enterprise Beans. Enterprise Beans of multiple EJB classes can live in the same con-
tainer. The client can look up the home interface for a specific EJB class using JNDI.
The container is responsible for making the installed EJB classes available to the client
through JNDI.

A container is where an enterprise Bean object lives, just as a record lives in a database,
and a file or directory lives in a file system.

Enterprise JavaBeans

Sun Microsystems Inc. 19 March 21, 1998

5.2.1 Locating an enterprise Bean’s home interface

A client locates an enterprise Bean’s home interface using JNDI. For example, a con-
tainer forCart EJB objects can be located using the following code segment:

Context initialContext = new InitialContext();
CartHome cartHome = javax.rmi.PortableRemoteObject.narrow(

initialContext.lookup(“applications/mall/freds-carts”),
CartHome.class);

A client’s JNDI name space may be configured to include the home interfaces of EJB
classes installed in multiple EJB containers located on multiple machines on a network.
The actual locations of an EJB class and EJB container are, in general, transparent to
the client.

5.2.2 What a container provides

The following diagram illustrates the view that a session container provides to its cli-
ents.

5.3 Home interface

An EJB container implements the home interface of each enterprise Bean installed in
the container. The container makes the home interfaces available to the client through
JNDI.

The home interface allows a client to do the following:

client

EJB objects

EJB Home

container

EJB objectsEJB objects

EJB class 1

EJB objects

EJB Home

EJB objectsEJB objects

EJB class 2

Enterprise JavaBeans

Sun Microsystems Inc. 20 March 21, 1998

• Create a new EJB object.

• Remove an EJB object.

• Get the javax.ejb.EJBMetaDatainterface for the enterprise Bean. The
javax.ejb.EJBMetaDatainterface is intended to allow application assembly
tools to discover information about the enterprise Bean. The meta-data is
defined to allow loose client/server binding and scripting.

5.3.1 Creating an EJB object

A home interface defines one or morecreate(...)methods, one for each way to create
an EJB object. The arguments of thecreatemethods are typically used to initialize the
state of the created EJB object.

The following example illustrates a home interface that defines a singlecreate(...)
method:

public interface CartHome extends javax.ejb.EJBHome {
Cart create(String customerName, String account)

throws RemoteException, BadAccountException,
CreateException;

}

The following example illustrates how a client creates a new EJB object using acre-
ate(...) method of theCartHome interface:

cartHome.create(“John”, “7506”);

5.3.2 Removing an EJB object

Thejavax.ejb.EJBHomeinterface defines several methods that allow a client to remove
an EJB object. In addition, a client may remove an EJB object using theremove()meth-
od on thejavax.ejb.EJBObject interface.

5.4 EJB object

A client never accesses instances of the enterprise Bean’s class directly. A client always
uses the enterprise Bean’s remote interface to access an enterprise Bean’s instance. The
class that implements the enterprise Bean’s remote interface is provided by the contain-
er. The distributed objects that this class implements are calledEJB objects.

An EJB object supports:

• The business logic methods of the object. The EJB object delegates invocation
of a business method to the enterprise Bean instance.

• The methods of thejavax.ejb.EJBObjectinterface. These methods allow the
client to:

• Get the EJB object’s container.
• Get the EJB object’s handle.
• Test if the EJB object is identical with another EJB object.
• Remove the EJB object.

Enterprise JavaBeans

Sun Microsystems Inc. 21 March 21, 1998

The implementation of the methods defined in thejavax.ejb.EJBObject
interface is provided by the container.

5.5 Session object identity

Session objects are intended to be private resources used only by the client that created
them. For this reason, session EJB objects, from the clients perspective, appear anony-
mous. In contrast to entity EJB objects which expose their identity as a primary key,
session objects hide their identity.

Since all session objects hide their identity, there is no need to provide a finder for them.
The home interface for a session object must not define any finder methods.

A session EJB object handle can be held beyond the life of a client process by serializ-
ing the handle to persistent store. When the handle is later deserialized, the session EJB
object it returns will work as long as the object still exists on the server (an earlier tim-
eout or server crash may have destroyed it).

5.6 Client’s view of session Bean’s life cycle

From a client point of view, the life cycle of a session Bean object is illustrated below.

An EJB object does not exist until it is created. When an object is created by a client,
the client gets a reference to the newly created EJB object.

A client that has a reference to an object can then do any of the following:

• Invoke application methods on the object through the session Bean’s remote
interface.

does not exist
and

not referenced

does not exist
and

referenced

exists
and

not referenced

exists
and

referenced

release reference

home.create(...)

object.remove()

release reference

client’s method on reference

client’s method on reference
generates NoSuchObjectException

or

home.remove(...)

Server crash/timeout

handle.getEJBObject()

or
Server crash/timeout

Enterprise JavaBeans

Sun Microsystems Inc. 22 March 21, 1998

• Get a reference to the object’s home interface.

• Get a handle for the object

• Pass the object as a parameter or return value within the scope of the client.

• Remove the object. A container may also remove the object automatically when
the object’s lifetime expires.

References to an EJB object that does not exist are invalid. Attempted invocations on
an object that does not exist will throwjava.rmi.NoSuchObjectException.

5.7 Creating and using a session Bean

An example of the session Bean runtime objects is illustrated by the following diagram:

A client creates a Cart session object (which provides a shopping service) using acre-
ate(...)method of the Cart’s home interface. The client then uses this object to fill the
cart with items and to purchase its contents.

If the client wishes to start his shopping session on his work machine and later complete
this session from his home machine, this can be done by getting the session’s handle,
sending the serialized handle to his home, and using it to reestablish access to the orig-
inal Cart.

For the following example, we start off by looking up the Cart’s home interface in JN-
DI. We then use the home interface to create aCart EJB object, and add a few items to
it:

CartHome cartHome = javax.rmi.PortableRemoteObject.narrow(
initialContext.lookup(...), CartHome.class);

Cart cart = cartHome.create(...);
cart.addItem(66);
cart.addItem(22);

CartBeanclient

Cart

CartHome

container

Enterprise JavaBeans

Sun Microsystems Inc. 23 March 21, 1998

Next we decide to complete this shopping session at home so we serialize a handle to
this cart session and mail it home:

Handle cartHandle = cart.getHandle();
serialize cartHandle, attach to message and mail it home...

Finally we deserialize the handle at home and purchase the content of the shopping cart:

Handle cartHandle = deserialize from mail attachment...
Cart cart = (Cart) cartHandle.getEJBObject();
cart.purchase();
cart.remove();

Enterprise JavaBeans

Sun Microsystems Inc. 24 March 21, 1998

6 Session Bean component contract

This chapter specifies the contract between a session Bean and its container. It defines
the life cycle of a session Bean instance.

This chapter defines the developer’s view of session Bean state management and the
container’s responsibility for managing it.

6.1 Overview

By definition, a session Bean instance is an extension of the client that creates it:

• Its fields containconversational stateon behalf of the client. This state
describes the conversation represented by a specific client/instance pair.

• It typically reads and updates data in a database on behalf of the client. Within
a transaction, some of this data may be cached in the Bean.

• Its lifetime is typically that of its client.

A session Bean instance’s life may also be terminated by a container-specified
timeout or the failure of the server it is running on. For this reason, a client must
always be prepared to recreate a new instance if it loses the one it is using.

Typically, a session Bean’s conversational state is not written to the database. A Bean
developer simply stores it in the Bean’s fields and assumes its value is retained for the
lifetime of the Bean.

On the other hand, cached database data must be explicitly managed by the Bean. A
Bean must write any cached database updates prior to the Bean’s transaction comple-
tion, and it must refresh its copy of any potentially stale database data at the beginning
of the next transaction.

6.2 Goals

The goal of the session Bean model is to make developing a session Bean as simple as
developing the same functionality directly in a client.

The session Bean container manages the life cycle of the session Bean, notifying it
when Bean action may be necessary, and providing a full range of services to ensure
the Bean implementation scales to support a large number of clients.

The remainder of this section describes the session Bean life cycle in detail and the pro-
tocol between the Bean and its container.

6.3 A container’s management of its working set

In order to efficiently manage the size of its working set, a session Bean container may
need to temporarily transfer the state of an idle session Bean to some form of secondary
storage. The transfer from the working set to secondary storage is calledpassivation.
The transfer back is calledactivation.

A container may only passivate a session Bean when that Bean isnot in a transaction.

Enterprise JavaBeans

Sun Microsystems Inc. 25 March 21, 1998

In order to help its container manage its state, a session Bean is specified at deployment
as having one of the following state management modes:

• STATELESS - the Bean contains no conversational state between methods; any
Bean instance can be used for any client.

• STATEFUL - the Bean contains conversational state which must be retained
across methods and transactions.

6.4 Conversational state

A STATEFUL session Bean’s conversational state is defined as its field values plus the
transitive closure of the objects reachable from the session Bean’s fields.

The transitive closure of a session Bean instance is defined in terms of the standard Se-
rialization protocol for the Java programming language —the fields that would be
stored by serializing the enterprise Bean instance are considered part of the enterprise
Bean state.

In advanced cases, a session Bean’s conversational state may contain open resources.
Examples of this are: open files, open sockets, and open database cursors. It is not pos-
sible for a container to retain open resources while a session Bean is passivated. A de-
veloper of such a session Bean must close and open the resources using the
ejbPassivateand ejbActivatenotifications.

6.4.1 Instance passivation and conversational state

The container performs the Java programming language Serialization (or its equivalent)
of the instance’s state after it invokes theejbPassivatemethod on the instance. The en-
terprise Bean developer must ensure that the instance’s state is serializable afterejbPas-
sivate completes. The container may destroy an instance if the instance is not
serializable afterejbPassivate.

An instance may hold EJB object references to other EJB objects (sessions or entities).
When the container passivates the instance afterejbPassivate, it must store the EJB ob-
ject references with the passivated instance, and reconstruct these object references
when it loads the instance’s state beforeejbActivate.

While a session container is not required to use the Serialization protocol for the Java
programming language to store the state of a passivated session instance, it must
achieve the equivalent result. The one exception is that containers are not required to

reset the value oftransientfields during activation1. Declaring the enterprise Bean’s
fields as “transient” is, in general, discouraged.

6.4.2 The effect of transaction rollback on conversational state

A session Bean’s conversational state is not transactional. It is not automatically rolled
back to its initial state if the Bean’s transaction rolls back.

1.This is to allow containers that use specialized JVM to swap out an instance’s state without performing the
actual Serialization protocol for the Java programming language on the instance.

Enterprise JavaBeans

Sun Microsystems Inc. 26 March 21, 1998

If a rollback could result in a session Bean’s conversational state being inconsistent
with the state of the underlying database, the Bean developer must use theafterCom-
pletionnotification to manually reset its state.

6.5 The protocol between a session Bean and its container

Containers themselves make no actual service demands on their session Beans. The
calls a container makes on a Bean provide it with access to container services and de-
liver notifications issued by the container.

6.5.1 The requiredSessionBean interface

All session Beans must implement theSessionBean interface.

ThesetSessionContextmethod is called by the Bean’s container to associate a session
Bean instance with its context maintained by the container. Typically a session Bean
retains its session context as part of its conversational state.

TheejbRemovenotification signals that the instance is in the process of being removed
by the container. Since most session Beans don’t have any database or resource state to
clean up, the implementation of this method is typically left empty.

The ejbPassivatenotification signals the intent of the container to passivate the in-
stance. TheejbActivatenotification signals the instance it has just been reactivated.
Since containers automatically maintain the conversational state of a session Bean in-
stance while it is passivated, most session Beans can ignore these notifications. Their
purpose is to allow advanced Beans to maintain open resources that need to be closed
prior to an instance’s passivation and reopened during an instance’s activation.

6.5.2 TheSessionContext interface

All Bean containers provide their Bean instances with aSessionContext. This gives the
Bean instance access to the instance’s context maintained by the container. TheSes-
sionContext interface has the following methods:

• ThegetEJBObject method returns the EJB object for the instance.

• ThegetHome method returns the home interface for the instance’s EJB class.

• The getEnvironmentmethod returns the environment properties list that the
Bean was deployed with.

• ThegetCallerIdentitymethod returns the identity of the current invoker of the
Bean instance’s EJB object.

• The isCallerInRole predicate tests if the Bean caller has a particular role.

• ThesetRollbackOnlymethod allows the instance to mark the current transaction
such that the only outcome of the transaction is a rollback.

• The getRollbackOnlymethod allows the instance to test if the current
transaction has been marked for rollback.

Enterprise JavaBeans

Sun Microsystems Inc. 27 March 21, 1998

• The getUserTransaction method returns the javax.jts.UserTransaction

interface that the Bean can use for explicit transaction demarcation1.

6.5.3 The optionalSessionSynchronization interface

A session Bean can optionally implement thejavax.ejb.SessionSynchronizationinter-
face. This interface can provide the Bean with transaction synchronization notifica-
tions. Session Beans use these notifications to manage database data they may cache
within transactions.

TheafterBeginnotification signals a session instance that a new transaction has begun.
At this point, the instance is already in the transaction and may do any database work
it requires within the scope of the transaction.

ThebeforeCompletionnotification is issued when a session instance’s client has com-
pleted work on its current transaction but prior to committing the instance’s resources.
This is the time when the instance should write out any database updates it has cached.
The instance can cause the transaction to rollback by invoking thesetRollbackOnly
method on its session context.

TheafterCompletionnotification signals that the current transaction has completed. A
completion status oftrue indicates the transaction committed; a status offalseindicates
a rollback occurred. Since a session instance’s conversational state is not transactional,
it may need to manually reset its state if a rollback occurred.

6.5.4 Business method delegation

The enterprise Bean’s remote interface defines the business methods callable by a cli-
ent. The enterprise Bean’s remote interface is implemented by the EJB object class gen-
erated by the container tools. The EJB object class delegates an invocation of a business
method to the matching business method implementation in the enterprise Bean class.

6.5.5 Session Bean’sejbCreate(...) methods

A client creates a session Bean instance using one of thecreatemethods defined in the
Bean’s home interface. The Bean’s home interface is provided by the Bean developer;
its implementation is generated by the Bean’s container.

The container creates an instance of a session Bean in three steps. First, the container
calls the Bean class’newInstancemethod to create a Bean instance. Second, the con-
tainer calls thesetSessionContextmethod to pass the context object to the instance.
Third, the container calls the instance’sejbCreatemethod whose signature matches the
signature of thecreatemethod invoked by the client. The input parameters sent from
the client are passed to theejbCreate method.

Each session Bean must have at least oneejbCreatemethod. The number and signa-
tures of a session Bean’screate methods are specific to each EJB class.

1.The container makes theUserTransactioninterface available only to the Beans deployed with the
TX_BEAN_MANAGEDtransaction attribute. ThegetUserTransactioninterface will fail if invoked by a
Bean that is deployed with a different value of the transaction attributes.

Enterprise JavaBeans

Sun Microsystems Inc. 28 March 21, 1998

Since a session Bean represents a specific, private conversation between the Bean and
its client, its create parameters typically contain the information the client uses to per-
sonalize the Bean instance for its use.

6.5.6 Serializing session Bean methods

A container serializes calls to each instance. Most containers will support many instanc-
es of a Bean executing concurrently; however, each instance sees only a serialized se-
quence of method calls. Therefore, a session Bean does not have to be coded as
reentrant.

The method calls that a container serializes includes those delivered via an instance’s
EJB object as well as the service callbacks made by the container itself (for example,
the container must not invoke theejbPassivatemethod on an instance while the in-
stance executes a business method).

One implication of this rule is that it is illegal to make a “loopback” call to a session
Bean instance. An example of a loopback call is when a client calls instance A, instance
A calls instance B, and B calls A. The loopback call attempt from B to A would result
in the container throwing thejava.rmi.RemoteException to B.

6.5.7 Transaction context of session Bean methods

A session Bean’safterBeginandbeforeCompletionmethods are always called with the
proper transaction context (if the Bean is transactional).

A session Bean’snewInstance, setSessionContext, ejbCreate, ejbRemove, ejbPassi-
vate, finalize(), ejbActivate,andafterCompletionmethods are always called without a
transaction. So, for example, it would usually be wrong to make database updates with-
in a session Bean’sejbCreate or ejbRemove method.

A session Bean’s deployment descriptor determines whether or not its business meth-
ods are called with a transaction.

Enterprise JavaBeans

Sun Microsystems Inc. 29 March 21, 1998

6.6 STATEFUL session Bean state diagram

The following figure illustrates the life cycle of a STATEFUL session Bean instance.

The following is a walk-through of the life cycle of a STATEFUL transactional session
Bean instance:

tx method

commitafterBegin()

1. beforeCompletion()

does not
 exist

method ready passive

1. newInstance()
2. setSessionContext(sc)
3. ejbCreate(args)

create(args)

ejbRemove()

remove()
chosen as LRU victim

ejbPassivate()
non-tx method

create()
newInstance

action initiated by client
action initiated by container

method
ready in TX

ejbActivate()

method

2. afterCompletion(true)
afterCompletion(false)

rollback

tx method non-tx or different tx method
ERROR

Enterprise JavaBeans

Sun Microsystems Inc. 30 March 21, 1998

• A session Bean’s life starts when a client invokes a create(...)method on the
enterprise Bean’s home interface. This causes the container to invoke
newInstance()on the Bean class to create a new memory object for the
enterprise Bean. Next, the container callssetSessionContext()followed by
ejbCreate(...)on the instance, and returns an EJB object reference to the client.
The instance is now in the method ready state.

• The Bean instance is now ready for client’s business methods. Based on the
transaction attributes in the enterprise Bean’s deployment descriptor and the
transaction context associated with client’s invocation, a business method is or
is not executed in a global transaction context (shown astx methodandnon-tx
methodin the diagram). See Chapter 11 for how the container deals with
transactions.

• A non-transactional method is executed while the instance is in the method
ready state.

• An invocation of a transactional method causes the instance to be included in a
transaction. When the Bean instance is included in a transaction, the container
issues theafterBeginmethod on it. TheafterBeginis delivered to the instance
before any business method that is executed as part of the transaction. The
instance becomes associated with the transaction and will remain associated
with the transaction until the transaction completes.

• Bean methods invoked by the client in this transaction can now be delegated to
the Bean instance. It is an error if a client attempts to invoke a method on the
Bean and the deployment descriptor for the method would require that the
container invokes the method in a different transaction context than the one that
the instance is currently associated with, or in no transaction context.

• If a transaction commit has been requested, prior to actually committing the
transaction, the transaction service notifies the container, and the container
issuesbeforeCompletionon the instance. At this time, the instance should write
any cached updates to the database.

• The transaction service then attempts to commit the transaction, resulting in
either a commit or rollback. If, in the previous step, transaction rollback had
been requested, rollback status is reached without issuingbeforeCompletion.

• When the transaction completes, the container issuesafterCompletionon the
instance, specifying the status of the completion (commit or rollback). If a
rollback occurred, the Bean instance may need to reset its conversational state
back to the value it had at the beginning of the transaction.

• The container’s caching algorithm may decide that the Bean instance should be
evicted from memory (this could be done at the end of each method, or by using
an LRU policy). The container issuesejbPassivate()on the instance. After this
completes, the container must save the instance’s state to secondary storage. A
session Bean can be passivated only between transactions (not in a transaction).

Enterprise JavaBeans

Sun Microsystems Inc. 31 March 21, 1998

• If a client invokes a passivated session Bean instance, the container will activate
the instance. To activate the session instance, the container restores the
instance’s state from secondary storage and issuesejbActivate() on it.

• The session Bean is again ready for client methods.

• When the client callsremove()on the EJB object, this causes the container to
issueejbRemove()on the Bean instance. This ends the life of the session Bean
instance. Any subsequent attempt by its client to invoke the instance will result
in throwing thejava.rmi.NoSuchObjectException(this exception is a subclass
of java.rmi.RemoteException). Note that a container can implicitly invoke the
remove()method on the instance after the lifetime of the EJB object has expired.
The remove()method cannot be called when the instance is participating in a
transaction. An attempt to remove a session instance while the instance is in a
transaction will result in the container’s throwing the
javax.ejb.RemoveException to the client.

6.6.1 Restrictions for transactions

The state diagram implies the following restrictions on transaction scoping of the client
invoked business methods. The restrictions are enforced by the container and must be
observed by the client programmer.

• A session Bean instance can participate in at most a single transaction at a time.

• If a session Bean instance is participating in a transaction, it is an error for a
client to invoke a method on the session Bean in a different or no transaction
context. It is also an error to invoke a method on the session Bean if the
deployment descriptor would cause the container to execute the method in a
different transaction context or no transaction context. The container will throw
the java.rmi.RemoteException to the client in such a case.

• If a session Bean instance is participating in a transaction, it is an error for a
client to invoke theremovemethod on the session Bean or its home interface.
The container must detect such an attempt and throw the
javax.ejb.RemoveExceptionto the client. The container should not mark the
client’s transaction for rollback, allowing the client to recover.

6.7 Sequence diagrams for a STATEFUL session Bean

This section contains sequence diagrams that illustrates the interaction of the classes.

6.7.1 Notes

The sequence diagrams illustrate a box labeled “container provided classes”. These are
either classes that are part of the container, or classes that were generated by the con-
tainer tools. These classes communicate with each other through protocols that are con-
tainer implementation specific. Therefore, the communication between these classes is
not shown in the diagrams.

The classes shown in the diagrams should be considered as an illustrative implementa-
tion rather than a prescriptive one.

Enterprise JavaBeans

Sun Microsystems Inc. 32 March 21, 1998

6.7.2 Creating a session object

The following diagram illustrates the creation of a transactional session enterprise
Bean.

client instance transaction
service

EJB

ejbCreate(args)

session
context

EJB
object

create(args)

container provided classes

new

synchro-
nization

new

setSessionContext()

new

home
container

Enterprise JavaBeans

Sun Microsystems Inc. 33 March 21, 1998

6.7.3 Starting a transaction

The following diagram illustrates the protocol performed at the beginning of a transac-
tion.

business method

afterBegin

client instance transactiondatabase
service

EJB session
context

EJB
object

container provided classes

synchro-
nization

javax.jts.UserTransaction.begin()

If the instance was passivated it is reactivated

register_synchronization(synchronization)

new

business method
business method

business method

read some data

home
container

register resource manager

Enterprise JavaBeans

Sun Microsystems Inc. 34 March 21, 1998

6.7.4 Committing a transaction

The following diagram illustrates the transaction synchronization protocol for a session
enterprise Bean instance.

write updates to DB

client instance transactiondatabase
service

EJB session
context

EJB
object

container provided classes

synchro-
nization

UserTransaction.commit()

beforeCompletion()

prepare

commit

afterCompletion(status)

beforeCompletion()

afterCompletion(status)

home
container

Enterprise JavaBeans

Sun Microsystems Inc. 35 March 21, 1998

6.7.5 Passivating and activating an instance between transactions

The following diagram illustrates the passivation and reactivation of a session enter-
prise Bean instance. Passivation typically happens spontaneously based on the needs of
the container. Activation typically occurs when a client calls a method.

ejbActivate

ejbPassivate

read state

client instanceEJB instance
context

containerEJB
object

container provided classes

synchro-
nization

secondary store

write state

Activation:

Passivation:

home

Enterprise JavaBeans

Sun Microsystems Inc. 36 March 21, 1998

6.7.6 Removing a session object

The following diagram illustrates the destruction of a session Bean.

6.8 Stateless session Beans

Stateless session Beans are session Beans with no conversational state. This means that
each Bean instance is identical, when it is not involved in serving a client-invoked
method.

The home interface of a stateless session Bean must have acreatemethod that takes no
arguments, and returns the session Bean’s remote interface. The home interface must
not have any othercreatemethods. The session enterprise Bean class must define a sin-
gleejbCreate method. ThisejbCreate method must take no arguments.

Since all instances of a stateless session Bean are equivalent, the container can choose
to delegate a client’s work to any available instance.

A container only needs to retain the number of instances it needs to service the current
client load. Due to client “think time”, this number is typically much smaller than the
number of active clients. Passivation is not needed for stateless sessions. If another
stateless session Bean instance is needed to handle an increase in client work load, the
container creates one. If a stateless session Bean is not needed to handle the current cli-
ent work load, the container can destroy it.

Since stateless session Beans minimize the resources needed to support a large popula-
tion of clients, depending the implementation of the container, applications that use this
approach may scale somewhat better than those using stateful session Beans. This ben-
efit may be offset by the increased complexity of the client application that uses the
stateless Beans.

Clients use thecreateandremovemethod on the home interface of a stateless session
Bean in the same way as they do on a stateful session Bean. Although the client thinks

client instance

remove()

EJB session
context

containerEJB
object

container provided classes

synchro-
nization

ejbRemove()

home

Enterprise JavaBeans

Sun Microsystems Inc. 37 March 21, 1998

it is controlling the life cycle of an EJB instance, the container is handling thecreate
andremove calls without necessarily creating and removing an EJB instance.

There is no fixed mapping between clients and stateless instances. The container simply
delegates client work to any available instance that is method-ready.

A stateless session must not implement thejavax.ejb.SessionSynchronizationinterface.

6.8.1 Stateless session Bean state diagram

When a client calls a method on its stateless session Bean reference, the container se-
lects one of its method-ready instances and delegates the method invocation to it.

The following figure illustrates the life cycle of a STATELESS session Bean instance.

The following is a walk-through the lifecyle of a session Bean instance:

• A stateless session Bean’s life starts when the container invokesnewInstance()
on the Bean class to create a new memory object for the enterprise Bean. Next,
the container callssetSessionContext()followed byejbCreate()on the instance.
The container can perform the instance creation at anytime, with no relationship
to a client’s invoking thecreate() method.

• The Bean instance is now ready to be delegated a method call from any client.

does not
 exist

method-ready
 pool

1. newInstance()
2. setSessionContext(sc)
3. ejbCreate()

ejbRemove()

method

method()
ejbCreate()

action initiated by client
action initiated by container

Enterprise JavaBeans

Sun Microsystems Inc. 38 March 21, 1998

• When the container no longer needs the instance (this usually happens when the
container wants to reduce the number of instances in the method-ready pool),
the container invokesejbRemove()on it. This ends the life of the stateless
session Bean instance.

6.9 Sequence diagrams for a STATELESS session Bean

This section contains sequence diagrams that illustrates the interaction of the classes.

6.9.1 Client-invokedcreate()

The following diagram illustrates the creation of an EJB object that is implemented by
a stateless session Bean.

client instance transaction
service

EJB session
context

EJB
object

create()

container provided classes

new

synchro-
nizationhome

container

Enterprise JavaBeans

Sun Microsystems Inc. 39 March 21, 1998

6.9.2 Business method invocation

The following diagram illustrates the invocation of a business method.

6.9.3 Client-invokedremove()

The following diagram illustrates the destruction of an EJB object that is implemented
by a stateless session Bean.

business method

client instance transactiondatabase
service

EJB session
context

EJB
object

container provided classes

synchro-
nization

business method

read or update some data

home
container

register resource manager

client instance

remove()

EJB session
context

containerEJB
object

container provided classes

synchro-
nizationhome

Enterprise JavaBeans

Sun Microsystems Inc. 40 March 21, 1998

6.9.4 Adding instance to the pool

The following diagram illustrates the sequence for a container adding an instance to the
method-ready pool.

The following diagram illustrates the sequence for a container removing an instance
from the method-ready pool.

6.10 The responsibilities of the enterprise Bean provider

This section describes the responsibilities of session enterprise Bean provider to ensure
that an enterprise Bean can be deployed in any EJB container.

instance transaction
service

EJB

ejbCreate()

session
context

EJB
object

container provided classes

synchro-
nization

setSessionContext()

new

home
container

new

instance transaction
service

EJB session
context

EJB
object

container provided classes

synchro-
nizationhome

container

ejbRemove()

finalize()

Java
VM

finalize()

Enterprise JavaBeans

Sun Microsystems Inc. 41 March 21, 1998

6.10.1 Classes and interfaces

The enterprise Bean provider is responsible for providing the following class files:

• Enterprise Bean class.

• Enterprise Bean’s remote interface.

• Enterprise Bean’s home interface.

6.10.2 Enterprise Bean class

The following are the requirements for session enterprise Bean class:

The class must implement thejavax.ejb.SessionBean interface.

The class must be defined aspublic, and must not beabstract.

The class may, but is not required to, implement the enterprise Bean’s remote inter-

face1.

The class must implement the business methods and theejbCreatemethods.

The class can optionally implement thejavax.ejb.SessionSynchronization interface.

6.10.3 ejbCreate methods

The enterprise Bean class must define one or moreejbCreate(...)methods whose sig-
natures must follow these rules:

The method name must beejbCreate.

The method must be declared aspublic.

The return type must bevoid.

The methods arguments must be legal types for Java RMI.

The throws clause may define arbitrary application specific exceptions.

The throws clause may includejava.rmi.RemoteException.

The throws clause may includejavax.ejb.CreateException.

6.10.4 Business methods

The class may define zero or more business methods whose signatures must follow
these rules:

The function names can be arbitrary, but they must not conflict with the names of the
methods defined by the EJB architecture (ejbCreate, ejbActivate, etc.).

The business method must be declared aspublic.

The methods arguments and return value types must be legal types for Java RMI.

The throws clause may define arbitrary application specific exceptions.

1.It is recommended that the enterprise bean class not implement the remote interface to prevent inadvertent
passing ofthis as a method argument or result.

Enterprise JavaBeans

Sun Microsystems Inc. 42 March 21, 1998

The throws clause may includejava.rmi.RemoteException.

6.10.5 Enterprise Bean’s remote interface

The following are the requirements for the enterprise Bean’s remote interface:

The interface must extend thejavax.ejb.EJBObject interface.

The methods defined in this interface must follow the rules for Java RMI. This means
that their arguments and return values must be of valid types for Java RMI, and their
throws clause must include thejava.rmi.RemoteException.

For each method defined in the remote interface, there must be a matching method in
the enterprise Bean’s class. The matching method must have:

• The same name.

• The same number and types of its arguments, and the same return type.

• All the exceptions defined in the throws clause of the matching method of the
enterprise Bean class must be defined in the throws clause of the method of the
remote interface.

6.10.6 Enterprise Bean’s home interface

The following are the requirements for the enterprise Bean’s home interface signature:

The interface must extend thejavax.ejb.EJBHome interface.

The methods defined in this interface must follow the rules for Java RMI. This means
that their arguments and return values must be of valid types for Java RMI, and their
throws clause must include thejava.rmi.RemoteException.

A session bean’s home interface defines one or morecreate(...) methods.

Eachcreatemethod must be named “create”, and it must match one of theejbCreate
methods defined in the enterprise Bean class. The matchingejbCreatemethod must
have the same number and types of its arguments (note that the return type is different).

The return type for acreatemethod must be the enterprise Bean’s remote interface type.

All the exceptions defined in the throws clause of anejbCreatemethod of the enterprise
Bean class must be defined in the throws clause of the matchingcreatemethod of the
remote interface.

The throws clause must includejavax.ejb.CreateException.

6.11 The responsibilities of the container provider

This section describes the responsibilities of the container provider to support a session
Bean.

6.11.1 Generation of implementation classes

The tools provided by the container are responsible for the generation of additional
classes at enterprise Bean deployment time. The tools obtains the information that they
need for generation of the additional classes by introspecting the classes and interfaces

Enterprise JavaBeans

Sun Microsystems Inc. 43 March 21, 1998

provided by the enterprise Bean provider and from the information obtained from the
Bean’s deployment descriptor.

The container tools must generate the following classes:

• A class that implements the enterprise Bean’s home interface (EJB Home
class).

• A class that implements the enterprise Bean’s remote interface (EJB Object
class).

The container tools may also generate a class that mixes some container-specific code
with the enterprise Bean class. The code may, for example, help the container to man-
age the Bean instances at runtime. Subclassing, delegation, and code generation can be
used by the tools.

The container’s tools may also allow generation of additional code that wraps the busi-
ness methods and is used to customize the business logic to an existing operational en-
vironment. For example, a wrapper for adebit function on theAccountManagerBean
may check that the debited amount does not exceed a certain limit.

6.11.2 EJB Home class

The EJB home class is a container generated class that implements the enterprise
Bean’s home interface. The class implements the methods of thejavax.ejb.EJBHome
interface, and thecreate methods specific to the enterprise Bean.

The implementation of eachcreate(...)methods invokes a matchingejbCreate(...).

The implementation of theremove(...)methods defined in thejavax.ejb.EJBHomein-
terface must activate the instance (if the instance is in the passive state) and invoke the
ejbRemove method on the instance.

6.11.3 EJB Object class

The EJB Object class is a container generated class that implements the enterprise
Bean’s remote interface. It implements the methods of thejavax.ejb.EJBObjectinter-
face and the business methods specific to the enterprise Bean.

The implementation of theremove()method (defined in thejavax.ejb.EJBObjectinter-
face) must activate the instance (if the instance is in the passive state) and invoke the
ejbRemove method on the instance.

The implementation of each business method must activate the instance (if the instance
is in the passive state) and invoke the matching business method on the instance.

6.11.4 Handle class

The container is responsible for implementing the handle class for the enterprise Bean.
The handle class must be serializable by the Serialization protocol for the Java pro-
gramming language.

Enterprise JavaBeans

Sun Microsystems Inc. 44 March 21, 1998

6.11.5 Meta-data class

The container is responsible for implementing the class that provides meta-data to the
client’s view contract. The class must be a valid RMI/Value class and implement the
javax.ejb.EJBMetaData interface.

6.11.6 Non-reentrant instances

The container must ensure that only one thread can be executing an instance at any time.
If a client request arrives for an instance while the instance is executing another request,
the container must throw thejava.rmi.RemoteException to the second request.

Note that a session enterprise Bean is intended to support only a single client.
Therefore, it would be an application error if two clients attempted to invoke the
same session Bean.

One implication of this rule is that is not possible for an application to make loopback
calls to a session Bean instance.

6.11.7 Transaction scoping, security, exceptions

The container must follow the rules with respect to transaction scoping, security check-
ing, and exception handling described in Chapters 11, 14, and 12.

Enterprise JavaBeans

Sun Microsystems Inc. 45 March 21, 1998

7 Example session scenario

This chapter describes an example development and deployment scenario of a session
enterprise Bean. We use the scenario to explain the responsibilities of the enterprise
Bean provider and those of the container provider.

The classes generated by the container provider’s tools in this scenario should be con-
sidered illustrative rather than prescriptive. Container providers are free to implement
the contract between a session enterprise Bean and its container in a different way that
achieves an equivalent effect (from the perspectives of the enterprise Bean provider and
the client-side programmer).

7.1 Overview

Wombat Inc. has developed theCartBeansession Bean. The CartBean is deployed in
a container provided by the Acme Corporation.

Enterprise JavaBeans

Sun Microsystems Inc. 46 March 21, 1998

7.2 Inheritance relationship

An example of the inheritance relationship between the interfaces and classes is illus-
trated in the following diagram:

AcmeRemoteCart

Cart

CartBean

AcmeRemote

JDK

Enterprise
JavaBeans

enterprise bean
provider

container
provider

produced by
Acme tools

java.rmi.Remote

EJBObject

(Wombat Inc.)

(Acme)

EnterpriseBean

Java interface Java class

java.io.Serializable

CartHome

extends or implements interface

extends implementation, code generation, or delegation

AcmeCartHome

AcmeHome AcmeBean

SessionBean

AcmeCartBean

EJBHome

EJBMetaData

AcmeCartMetaData

AcmeMetaData

Enterprise JavaBeans

Sun Microsystems Inc. 47 March 21, 1998

7.2.1 What the session Bean provider is responsible for

Wombat Inc. is responsible for providing the following:

• Define the session Bean’s remote interface (Cart). The remote interface defines
the business methods callable by a client. The remote interface must extend the
javax.ejb.EJBObjectinterface, and follow the standard rules for a Java RMI
remote interface. The remote interface must be defined aspublic.

• Write the business logic in the session Bean class (CartBean). The enterprise
Bean class may, but is not required to, implement the enterprise Bean’s remote
interface (Cart). The enterprise Bean must implement the
javax.ejb.SessionBeaninterface, and define theejbCreate(...)methods invoked
at an EJB object creation.

• Define a home interface (CartHome) for the enterprise Bean. The home
interface must be defined aspublic, extend thejavax.ejb.EJBHomeinterface,
and follow the standard rules for Java RMI remote interfaces.

• Specify the environment properties that the session Bean needs at runtime. The
environment properties is a standardjava.util.Properties file.

• Define a deployment descriptor that specifies any declarative metadata that the
session Bean provider wishes to pass with the Bean to the next stage of the
development/deployment workflow.

7.2.2 Classes supplied by container provider

The following classes are supplied by the container provider Acme Corp:

• The AcmeHome class provides the Acme implementation of the
javax.ejb.EJBHome methods.

• The AcmeRemoteclass provides the Acme implementation of the
javax.ejb.EJBObject methods.

• The AcmeBeanclass provides additional state and methods to allow Acme’s
container to manage its session Bean instances. For example, if Acme’s
container uses an LRU algorithm, then AcmeBean may include the clock count
and methods to use it.

• The AcmeMetaData class provides the Acme implementation of the
javax.ejb.EJBMetaDatamethods.

7.2.3 What the container provider is responsible for

The tools provided by Acme Corporation are responsible for the following:

• Generate the remote Bean class (AcmeRemoteCart) for the session Bean. The
remote Bean class is a “wrapper” class for the enterprise Bean and provides the
client’s view of the enterprise Bean. The tools also generate the classes that
implement the communication stub and skeleton for the remote Bean class.

Enterprise JavaBeans

Sun Microsystems Inc. 48 March 21, 1998

• Generate the implementation of the session Bean class suitable for the Acme
container (AcmeCartBean). AcmeCartBean includes the business logic from
the CartBean class mixed with the services defined in the AcmeBean class.
Acme tools can use inheritance, delegation, and code generation to achieve a
mix-in of the two classes.

• Generate the implementation class for the session Bean’s home interface
(AcmeCartHome). The tools also generate the classes that implement the
communication stub and skeleton for the home class.

• Generate the class (AcmeCartMetaData) that implements the
javax.ejb.EJBMetaData interface for the Cart Bean.

Many of the above classes and tools are container-specific (i.e., they reflect the way
Acme Corp implemented them). Other container providers may use different mecha-
nisms to produce their runtime classes, and the generated classes most likely will be dif-
ferent from those generated by Acme’s tools.

Enterprise JavaBeans

Sun Microsystems Inc. 49 March 21, 1998

8 Client view of an entity

 Note: Container support for entity enterprise Beans is an optional feature for
EJB 1.0 compliance. Container support for entity enterprise Beans will become
mandatory in EJB 2.0.

This chapter describes the client’s view of an entity EJB object. It is actually a contract
fulfilled by an enterprise Bean’s container in which the enterprise Bean is installed,
with only the business methods supplied by the enterprise Bean itself.

Although the client view of the enterprise Beans is provided by classes implemented by
the container, the container itself is transparent to the client.

8.1 Overview

For a client, an entity enterprise Bean is a persistent object that represents an object
view of an entity stored in a persistent storage (for example, in a database) or an entity
that is implemented by an existing enterprise application.

A client accesses an entity enterprise Bean through the entity Bean’s remote interface.
The object that implements the remote interface is called anEJB object.An EJB object
is a remote Java programming language object accessible from a client through the
standard Java APIs for remote object invocation [3].

From its creation until its destruction, an EJB object lives in a container. Transparently
to the client, the container provides security, concurrency, transactions, persistence,
and other services for the EJB objects that live in the container. The container is trans-
parent to the client—there is no API that a client can use to manipulate the container.

Multiple clients can access an entity object concurrently. The container in which the en-
tity Bean is installed properly synchronizes access to the entity state using transactions.

Each entity object has an identity which, in general, survives a crash and restart of the
container in which the entity object has been created. The object identity is implement-
ed by the container.

The client’s view of an EJB object is location independent. A client running in the same
JVM as the EJB object uses the same API as a client running in a different JVM on the
same or different machine.

Multiple EJB classes can be installed in a container. For each EJB class installed in a
container, the container implements the enterprise Bean’shome interface.The home in-
terface allows the client to create, look up, and remove entity EJB objects of a given
enterprise Bean. A client can look up the enterprise Bean’s home interface through JN-
DI; it is the responsibility of the container to make the enterprise Bean’s home interface
available in the JNDI name space.

A client’s view of an EJB object is the same, irrespective of the implementation of the
enterprise Bean and its container. This ensures that a client application is portable
across all container implementations in which the enterprise Bean might be deployed..

Enterprise JavaBeans

Sun Microsystems Inc. 50 March 21, 1998

8.2 EJB container

An EJB container (container for short) is a system that functions as a “container” for
enterprise Beans. A container is where an enterprise Bean object lives, just as a record
lives in a database, and a file or directory lives in a file system.

Multiple EJB classes can be installed in a single container. For each EJB class installed
in a container, the container provides ahome interfacethat allows the client to create,
look up, and remove EJB objects of the corresponding EJB class. The container makes
the enterprise Beans’ home interfaces (defined by the Bean provider and implemented
by the container provider) available in the JNDI name space for clients.

An EJB server may host one or multiple EJB containers. The containers are transparent
to the client: there is no client API to manipulate the container, and there is no way for
a client to tell in which container an enterprise Bean is installed.

8.2.1 Locating enterprise Bean’s home interface

A client locates an enterprise Bean’s home interface using JNDI. For example, the
home interface for the Account enterprise Bean can be located using the following code
segment:

Context initialContext = new InitialContext();
AccountHome accountHome = javax.rmi.PortableRemoteObject.narrow(

initialContext.lookup(“applications/bank/accounts”),
AccountHome.class);

A client’s JNDI name space may be configured to include the home interfaces of EJB
classes installed in multiple EJB containers located on multiple machines on a network.
The actual location of an EJB container is, in general, transparent to the client.

Enterprise JavaBeans

Sun Microsystems Inc. 51 March 21, 1998

8.2.2 What a container provides

The following diagram illustrates the view that an entity container provides to its cli-
ents.

8.3 Enterprise Bean’s home interface

The container provides the implementation of the home interface of each enterprise
Bean installed in the container. The container makes the home interface of every enter-
prise Bean installed in the container accessible to the clients through JNDI. The imple-
mentation class of an enterprise Bean’s home interface is calledEJB home.

The home interface of an entity Bean allows a client to do the following:

• Create new EJB objects.

• Look up existing EJB objects.

• Remove an EJB object.

• Get the javax.ejb.EJBMetaDatainterface for the enterprise Bean. The
javax.ejb.EJBMetaDatainterface is intended to allow application assembly
tools to discover information about the enterprise Bean. The meta-data is
defined to allow loose client/server binding and scripting.

client

EJB objects

EJB Home

container

EJB objectsEJB objects

EJB class 1

EJB objects

EJB Home

EJB objectsEJB objects

EJB class 2

other EJB classes

Enterprise JavaBeans

Sun Microsystems Inc. 52 March 21, 1998

An enterprise Bean’s home interface must extend thejavax.ejb.EJBHomeinterface,
and follow the standard rules for Java programming language remote interfaces.

8.3.1 create methods

An entity Bean’s home interface can define zero or morecreate(...)methods, one for
each way to create an EJB object. The arguments of thecreatemethods are typically
used to initialize the state of the created EJB object.

The return type of acreate method is the enterprise Bean’s remote interface.

The throws clause of everycreatemethod must include thejava.rmi.RemoteException
and thejavax.ejb.CreateException. It may also include additional application-level ex-
ceptions.

The following home interface illustrates two possiblecreate methods:

public interface AccountHome extends javax.ejb.EJBHome {
public Account create(String firstName, String lastName,

double initialBalance)
 throws RemoteException, CreateException;

public Account create(String accountNumber,
double initialBalance)
 throws RemoteException, CreateException,

LowInitialBalanceException;
 ...

}

The following example illustrates how a client creates a new EJB object:

AccountHome accountHome = ...;
Account account = accountHome.create(“John”, “Smith”, 500.00);

8.3.2 finder methods

An entity Bean’s home interface defines one or morefindermethods1, one for each way
to look up an EJB object, or collection of EJB objects of a particular type. The names
of each finder method must start with the prefix “find”, such asfindLargeAccounts(...).
The arguments of a finder method are used by the entity Bean implementation to locate
the requested entity objects. The return type of a finder method must be the enterprise
Bean’s remote interface, or a type representing a collection of EJB objects.

The throws clause of every finder method must include thejava.rmi.RemoteException.
The throws clause typically includes also thejavax.ejb.FinderException.

The home interface of every entity Bean includes thefindByPrimaryKey(primaryKey)
method that allows a client to locate an entity Bean using a primary key. The name of
the method is alwaysfindByPrimaryKey; it has a single argument that is of the enter-
prise Bean’s primary key type, and its return type is the enterprise Bean’s remote inter-
face.

1.ThefindByPrimaryKey(primaryKey)method is mandatory for all entity Beans.

Enterprise JavaBeans

Sun Microsystems Inc. 53 March 21, 1998

The following is an example of thefindByPrimaryKey method:

public interface AccountHome extends javax.ejb.EJBHome {
 ...
public Account findByPrimaryKey(String AccountNumber)
 throws RemoteException, FinderException;

}

The following example illustrates how a client uses thefindByPrimaryKey method:

AccountHome = ...;
Account account = accountHome.findByPrimaryKey(“100-3450-3333”);

8.3.3 remove methods

The javax.ejb.EJBHomeinterface defines several methods that allow the client to re-
move EJB objects.

public interface EJBHome extends Remote {
void remove(Handle handle) throws RemoteException,

RemoveException;
void remove(Object primaryKey) throws RemoteException,

RemoveException;
}

8.4 Entity EJB object life cycle

This section describes the life cycle of an EJB object from the perspective of a client.

Enterprise JavaBeans

Sun Microsystems Inc. 54 March 21, 1998

The following diagram illustrates a client’s point of view of an entity EJB object life
cycle (the termreferencedin the diagram means that the client program has a reference
to the EJB object).

An EJB object does not exist until it is created. Until it is created, it has no identity. Af-
ter it is created, it has identity. A client creates an EJB object using the enterprise Bean’s
home interface that is implemented by the container. When an EJB object is created by
a client, the client obtains a reference to the newly created EJB object.

In an environment with a legacy data, EJB objects may “exist” before the container and
EJB object are deployed. In addition, an entity EJB object may be “created” in the en-
vironment via a mechanism other than by invoking acreate(...)method of the home in-
terface (e.g. by inserting a database record), but still may be accessible by a container’s
clients via the finder methods. Also, an EJB object may be deleted directly using other
means than theremove()operation (e.g. by deletion of a database record). The “direct
insert” and “direct delete” transitions in the diagram represent such direct database ma-
nipulation.

A client can get a reference to an existing EJB object in any of the following ways:

• Receive a reference as a parameter in a method call (input parameter or result).

does not exist
and

not referenced

does not exist
and

referenced

exists
and

not referenced

exists
and

referenced

release reference

home.create(...)

home.remove(...)

home.find(...)

object.remove()

release reference

object.businessMethod(...)

obj.businessMethod(...)

direct
insert

direct delete
or

throws NoSuchObjectException

home.remove(...)
or

create()
direct delete

action initiated by client
action on database from outside EJB

direct delete
or

Enterprise JavaBeans

Sun Microsystems Inc. 55 March 21, 1998

• Look up the EJB object using a finder method of the enterprise Bean’s home
interface.

• Obtain the reference from a Bean’s handle (handles are described later in
Section 8.7).

A client that has a reference to an object can then do any of the following:

• Invoke business methods on the object through the EJB object’s remote
interface.

• Obtain a reference to the enterprise Bean’s home interface.

• Pass the reference as a parameter or return value.

• Obtain the EJB object’s primary key.

• Obtain the EJB object’s handle.

• Remove the EJB object.

All references to an object that does not exist are invalid. All attempted invocations on
an object that does not exist will result in anjava.rmi.NoSuchObjectExceptionbeing
thrown.

All entity EJB objects are consideredpersistent objects. The lifetime of an entity EJB
object is not limited by the lifetime of the Java Virtual Machine process in which it ex-
ecutes. A crash of the Java Virtual Machine may result in a rollback of current transac-
tions, but does not destroy previously created EJB entity objects, or invalidate their
references held by clients.

Multiple clients can access the same EJB object concurrently. Transactions are used to
isolate the clients’s work from each other.

8.5 Primary key and object identity

Every entity EJB object has a unique identity within its home. The object’s identity
within its container is determined by the EJB object’s home and primary key. If two
EJB objects have the same home and the same primary key, they are considered iden-
tical.

Enterprise JavaBeans allows a primary key object to be anyjava.io.Serializableclass.
The primary key class is specific to an enterprise Bean class (i.e. each enterprise Bean
class may have a different class for its primary key).

A client that holds a reference to an EJB object can determine the object’s identity with-
in its home by invoking thegetPrimaryKey() method on the reference.

A client can test whether two EJB object references refer to the same entity by any of
the following methods:

• Invoke theisIdentical(object)method on one of the references and pass the
other reference as the method’s argument.

Enterprise JavaBeans

Sun Microsystems Inc. 56 March 21, 1998

• Obtain the entity objects’ primary keys, and compare the keys using the Java
programming language equality operator. This method works only if the two
EJB references refer to EJB objects with the same home.

The following code illustrates using theisIdentical()method to test if two object refer-
ences refer to the same entity EJB object:

Account acc1 = ...;
Account acc2 = ...;

if (acct1.isIdentical(acc2)) {
acc1 and acc2 are the same EJB objects

} else {
acc2 and acc2 are different EJB object

}

A client that knows the primary key of an entity EJB object can obtain a reference to
the object by invoking thefindByPrimaryKey(key)method of the home interface imple-
mented by the container.

Note that Enterprise JavaBeans does not specify “object equality” for EJB object refer-
ences. The result of comparing two object references using the Java programming lan-
guage Object.equals(Object obj) method is unspecified. Performing the
Object.hashCode()method on two object references that represent the same object is
not guaranteed to yield the same result. Therefore, a client should always use theisI-
denticalmethod to determine if two EJB object references refer to the same EJB object.

8.6 Enterprise Bean’s remote interface

A client accesses an entity Bean through the enterprise Bean’s remote interface. An en-
terprise Bean’s remote interface must extend thejavax.ejb.EJBObjectinterface. A re-
mote interface defines the business methods that are callable by clients.

The following example illustrates the definition of an entity Bean’s remote interface:

public interface Account extends javax.ejb.EJBObject {
void debit(double amount)

throws java.rmi.RemoteException,
InsufficientBalanceException;

void credit(double amount)
throws java.rmi.RemoteException;

double getBalance()
throws java.rmi.RemoteException;

}

The javax.ejb.EJBObjectinterface defines methods that allow the client to do the fol-
lowing operations on an EJB object’s reference:

• Obtain the home interface for the EJB class.

• Remove the EJB object.

Enterprise JavaBeans

Sun Microsystems Inc. 57 March 21, 1998

• Obtain the EJB object’s handle.

• Obtain the EJB object’s primary key.

The implementation of the methods defined in thejavax.ejb.EJBObjectinterface is pro-
vided by the container. The business methods are delegated to the enterprise Bean class.

Note that the EJB object does not expose the enterprise Bean’s methods introduced by
the javax.ejb.EnterpriseBeaninterface to the client. These interfaces are not intended
for the client—they are used by the container to manage the EJB instances.

8.7 Enterprise Bean’s handle

A handle is an object that identifies an EJB object. A client that has a reference to an
EJB object can obtain the object’s handle by invokinggetHandle()method on the ref-
erence.

Since the handle’s class must implement thejava.io.Serializableinterface, a client may
serialize it. The client may use the serialized handle later, possibly in a different pro-
cess, to re-obtain a reference to the EJB object identified by the handle.

Containers that store long-lived entities will typically provide handle implementations
that allow clients to store a handle for a long time (possibly many years). Such a handle
will be usable even if parts of the technology used by the container (e.g. ORB, DBMS,
server) have been upgraded or replaced while the client has stored the handle.

The use of a handle is illustrated by the following example:

// A client obtains a handle of an account EJB object and
// stores the handle in stable storage.
//
ObjectOutputStream stream = ...;
Account account = ...;
Handle handle = account.getHandle();
stream.writeObject(handle);

// A client can read the handle from stable storage, and use the
// handle to ressurect an object reference to the
// account EJB object.
//
ObjectInputStream stream = ...;
Handle handle = (Handle) stream.readObject(handle);
Account account = (Account) handle.getEJBObject();
account.debit(100.00);

Enterprise JavaBeans

Sun Microsystems Inc. 58 March 21, 1998

9 Entity Bean component contract

 Note: Container support for entity enterprise Beans is an optional feature for
EJB 1.0 compliance. Container support for entity enterprise Beans will become
mandatory in EJB 2.0.

The entity Bean component contract is the contract between an entity Bean and its con-
tainer. It defines the life cycle of an entity Bean instance and the model for method del-
egation the client-invoked business methods. The main goal of this contract is to ensure
that a component is portable across all compliant EJB containers.

This chapter defines the enterprise Bean developer’s view of this contract, and the con-
tainer’s responsibility for managing the component’s life cycle.

9.1 The runtime execution model

This section describes the runtime model and the classes used in the description of the
contract between an entity enterprise Bean and its container.

An enterprise Bean instanceis an object whose class was provided by the enterprise
Bean developer.

classes provided by
enterprise bean provider

classes generated by
container tools

client

container

EJB objects

EJB home

EJB objectsEJB objects

enterprise Bean
instances

EJB objects

EJB home

EJB objectsEJB objects

enterprise Bean
instances

Bean class 1

Bean class 2

Enterprise JavaBeans

Sun Microsystems Inc. 59 March 21, 1998

An EJB objectis an object whose class was generated at deployment time by the con-
tainer provider’s tools. The EJB object class implements the enterprise Bean’s remote
interface. A client never references an enterprise Bean instance directly—a client al-
ways references an EJB object whose implementation is provided by the container.

An EJB homeobject provides the life cycle operations (create, remove, find) for its EJB
objects. The class for the EJB home object was generated by the container provider’s
tools at deployment time. The home object implements the enterprise Bean’s home in-
terface that was defined by the EJB provider.

9.2 Entity persistence

An entity enterprise Bean implements an object view of an entity stored in an underly-
ing database, or an entity implemented by an existing enterprise application (for exam-
ple, by a mainframe program or by a packaged application). The protocol for
transferring the state of the entity between the instance variables of an enterprise Bean
instance and the underlying database is referred to as object persistence.

The entity component protocol allows the enterprise Bean provider either to implement
the enterprise Bean’s persistence directly in the enterprise Bean class (we call this
Bean-managed persistence), or delegate the enterprise Bean’s persistence to the con-
tainer (we call this container-managed persistence).

In many cases, the underlying data source may be an existing application rather than a
database.

Account

Container

Client
Account 100

Entity Bean

Account

Container

Client
Account 100

Entity Bean

existing

application

(a) Entity bean is an object view of a record in the database

(b) Entity bean is an object view of an existing application

Enterprise JavaBeans

Sun Microsystems Inc. 60 March 21, 1998

9.2.1 Bean-managed persistence

In the Bean-managed case, the enterprise Bean provider writes database access calls

(e.g. using JDBCTM or JSQL) directly in the methods of the enterprise Bean class. The
database access calls are performed in theejbCreate(...), ejbRemove(),
ejbFind<METHOD>(), ejbLoad(), andejbStore() enterprise Bean callback methods.

The advantage of using Bean-managed persistence is that the enterprise Bean can be
installed into a container without the container having to generate database calls that
implement the enterprise Bean’s persistence. The main disadvantage is that the persis-
tence is hard-coded into the enterprise Bean class, which makes it hard to adapt the en-
terprise Bean to a different data source.

9.2.2 Container-managed persistence

In the container-managed case, the Bean developer does not write the database access
calls in the enterprise Bean. Instead, the container provider’s tools generate the data-
base access calls at enterprise Bean’s deployment time (i.e. when the enterprise Bean
class is installed into a container). The enterprise Bean provider must specify thecon-
tainerManagedFieldsdeployment descriptor property to specify the list of instance
fields for which the container provider tools must generate access calls.

The advantage of using container-managed persistence is that the enterprise Bean class
is independent from the data source in which the entity is stored. The container tools
can generate classes that use JDBC or JSQL to access the entity state in a relational da-
tabase, or classes that implement access to a non-relational data source, such as IMS
databases, or classes that implement function calls to existing enterprise applications.

The disadvantage is that sophisticated tools must be used at deployment time to map
the enterprise Bean’s fields to a data source. These tools and containers are typically
specific to each data source.

Enterprise JavaBeans

Sun Microsystems Inc. 61 March 21, 1998

9.3 Instance life cycle

The following diagram illustrates the life cycle of an enterprise Bean’s instance.

An instance is in one of the three states:

• It does not exist.

• Pooled state. An instance in the pooled state is not associated with any
particular EJB object identity.

• Ready state. An instance in the ready state is assigned to an EJB object.

The following is a walk-through of the life cycle of an entity enterprise Bean instance:

• An enterprise Bean’s instance life starts when the container creates the instance
usingnewInstance(). The container then invokes thesetEntityContext()method
to pass the instance a reference to an entity context interface. The entity context
object allows the instance to invoke services provided by the container and

obtain the information about the caller of a client-invoked method1.

1.The entity context passed by the container to the instance in the setEntityContext method is an interface not
a class that contains static information. For example, the result of the getPrimaryKey() method might be
different each time an instance moves from the pooled state to the ready state.

does not
 exist

1. newInstance()
2. setEntityContext(ec)

ejbActivate()

pooled

1. unsetEntityContext()
2. finalize()

ready

ejbPassivate()
ejbRemove()ejbCreate(args)

ejbStore()ejbLoad()

business method

ejbFind<METHOD>()

ejbPostCreate(args)

Enterprise JavaBeans

Sun Microsystems Inc. 62 March 21, 1998

• The instance enters the pool of available instances of the enterprise Bean class.
While the instance is in the available pool, the instance is not associated with an
identity of a specific EJB object. All instances in the pool are equivalent, and
therefore can be assigned by the container to any EJB object at the transition to
the ready state. While the instance is in the pooled state, the container may use
the instance to execute any of the enterprise Bean’s finder methods (shown as
ejbFind<METHOD>(...) in the diagram).

• An instance transitions from the pooled state to the ready state when the
container picks that instance to service a client call on an EJB object for which
there is no instance in the ready state in the proper transaction context. There
are two possible transitions from the pooled to the ready state: through the
ejbCreate(...)and ejbPostCreate(...)methods, or through theejbActivate()
method. The container invokes theejbCreate(...) and ejbPostCreate(...)
methods when the instance is assigned to an EJB object during EJB object
creation (i.e. when the client invokes a create method on the Bean’s home
object). The container invokes theejbActivate()method on an instance when the
instance needs to be activated to service an invocation on an existing EJB
object.

• When an enterprise Bean instance is in the ready state, the instance is associated
with a specific EJB object. While the instance is in the ready state, the container
can invoke theejbLoad() and ejbStore()methods zero or more times, at
anytime. A business method can be invoked on the instance zero or more times.
Invocations of theejbLoad()andejbStore()methods can be arbitrarily mixed
with invocations of business methods. The purpose of theejbLoadandejbStore
methods is to synchronize the state of the instance with the state of the entity in
the underlying data source.

• Eventually, the container will transition the instance to the pooled state. There
are two possible transitions from the ready to the pooled state: through the
ejbPassivate()method, and through theejbRemove()method. The container
invokes theejbPassivate()method when the container wants to disassociate the
instance from the EJB object without removing the EJB object. The container
invokes theejbRemove()method when the container is removing the EJB object
(i.e. when the client invoked theremove()method on the EJB object, or one of
theremove() methods on the enterprise Bean’s home interface).

• When the instance is put back into the pool, it is no longer associated with the
identity of the EJB object. The container can assign the instance to any EJB
object of the same enterprise Bean class.

• An instance in the pool can be removed by calling theunsetEntityContext()
method on the instance. The Java application environment runtime will
eventually invoke thefinalize() method on the instance.

Notes:

Enterprise JavaBeans

Sun Microsystems Inc. 63 March 21, 1998

1. The entity context passed by the container to the instance in the
setEntityContext method is an interface not a class that contains static
information. For example, the result ofgetPrimaryKey() method might be
different each time an instance moves from the pooled state to the ready state.

9.4 The entity Bean component contract

This section specifies the contract between an entity Bean and its container. The con-
tract is specified here assuming Bean-managed persistence. The differences in the con-
tract for a container-managed persistence are defined in Section 9.10.

9.4.1 Enterprise Bean instance’s view:

The following describes the enterprise Bean instance’s side of the contract:

An enterprise Bean is responsible for implementing the following functionality in the
enterprise Bean methods:

• public void setEntityContext(EntityContext ic);

A container uses this method to pass a reference to theEntityContextinterface
to the enterprise Bean instance. If the enterprise Bean instance needs to use the
entity context during its lifetime, it must remember the entity context in an
instance variable.

It is unspecified in which transaction context this method is called. An identity
of an EJB object is not available during this method.

The instance can take advantage of thesetEntityContext(ic)method to allocate
any resources that are to be held by the instance for its lifetime. Such resources
cannot be specific to an EJB object identity since the instance might be reused
during its lifetime to serve multiple EJB objects.

• public void unsetEntityContext(EntityContext ic);

A container invokes this method before terminating the life of the instance.

It is unspecified in which transaction context this method is called. An identity
of an EJB object is not available during this method.

The instance can take advantage of theunsetEntityContext(ec)method to free
any resources that are held by the instance (these resources typically had been
allocated by thesetEntityContext() method).

• public void ejbCreate(...);

Enterprise JavaBeans

Sun Microsystems Inc. 64 March 21, 1998

There are zero1 or moreejbCreate(...)methods, whose signatures match the
signatures of thecreate(...)methods of the enterprise Bean’s home interface.
The container invokes anejbCreate(...)method on an enterprise Bean instance
when a client invokes a matchingcreate(...)function.

The implementation of theejbCreate(...)method typically validates the client-
supplied arguments, and inserts a record representing the entity into the
database. The method also initializes the instance’s variables. TheejbCreate(...)
method must return the primary key for the created entity.

An ejbCreate(...) method executes in the proper transaction context.

• public void ejbPostCreate(...);

For eachejbCreate(...)method, there is a matchingejbPostCreate(...)method
that has the same input parameters but the return value is void. The container
invokes the matchingejbPostCreate(...)method after it invokes the
ejbCreate(...)method, with the same arguments. The EJB object identity is
available during theejbPostCreate(...)method. The instance may, for example,
pass its own EJB object reference to another EJB object as a method argument.

An ejbPostCreate(...) method executes in the proper transaction context.

• public void ejbActivate();

The container invokes this method on the instance when the container picks the
instance from the pool and assigns it to a specific EJB object identity. The
ejbActivate()method gives the enterprise Bean instance the chance to acquire
additional resources that it needs while it is in the ready state.

This method executes in an unspecified transaction context. The instance can
obtain the identity of the EJB object via thegetPrimaryKey() or getEJBObject()
method on the entity context. The instance can rely on that the primary key and
EJB object identity will remain associated with the instance until the
completion ofejbPassivate() or ejbRemove().

Note that the instance should not use theejbActivate()method to read the state
of the entity from the database; the instance should load its state only in the
ejbLoad() method.

• public void ejbPassivate();
The container invokes this method on an instance when the container decides to
disassociate the instance from an EJB object identity, and put the instance back
into the pool of available instances. TheejbPassivate()method gives the
enterprise Bean the chance to release any resources that should not be held
while the instance is in the pool (these resources typically had been allocated
during theejbActivate() method).

1.An entity enterprise Bean has noejbCreate(...)andejbPostCreate(...)methods if it does not define any cre-
ate methods in its home interface. Such an entity enterprise Bean does not allow the clients to create new
EJB objects. The enterprise Bean restricts the clients to accessing entities that were created through direct
database inserts.

Enterprise JavaBeans

Sun Microsystems Inc. 65 March 21, 1998

This method executes in an unspecified transaction context. The instance can
still obtain the identity of the EJB object via thegetPrimaryKey() or
getEJBObject()method on the entity context.

Note that instance should not use theejbPassivate()method to write its state to
the database; the instance should store its state only in theejbStore() method.

• public void ejbRemove();

The container invokes this method on an instance as a result of a client’s
invoking a remove method. The instance is in the ready state whenejbRemove()
is invoked and it will be entered into the pool when the method completes.

This method executes in the effective transaction context of the client’sremove
method. The instance can still obtain the identity of the EJB object via the
getPrimaryKey() or getEJBObject()method on the entity context.

An enterprise Bean instance should use this method to remove its entity
representation in the database.

Since the instance will be entered into the pool, the state of the instance at the
end of this method must be equivalent to the state of a passivated instance. This
means that the instance must release any resource that it would normally release
in theejbPassivate() method.

• public void ejbLoad();

The container invokes this method on an instance in the ready state to advise the
instance that it must synchronize its instance variables from the entity state in
the database. The instance must be prepared for the container to invoke this
method at any time that the instance is in the ready state.

An instance should refresh its state in theejbLoad()method by reading the
entity state from the database.

This method executes in the proper transaction context.

• public void ejbStore();

The container invokes this method on an instance to advise the instance that the
instance must synchronize the entity state in the database with its instance
variables. The instance must be prepared for the container to invoke this method
at any time that the instance is in the ready state.

An instance should write its state to the database in theejbStore() method.

This method executes in the proper transaction context.

• publicprimary key type or collection ejbFind<METHOD>(...);

The container invokes this method on the instance when the container selects
the instance to execute a matching client-invokedfind<METHOD>(...)
method. The instance is in the pooled state (i.e. it is not assigned to any

Enterprise JavaBeans

Sun Microsystems Inc. 66 March 21, 1998

particular EJB object identity) when the container selects the instance to
execute theejbFind<METHOD> method on it, and is returned to the pooled
state when the execution of theejbFind<METHOD> method completes.

TheejbFind<METHOD> method executes in the proper transaction context.

The implementation of anejbFind<METHOD> method should use the
method’s arguments to locate the requested object or a collection of objects in
the database. The method must return a primary key or a collection of primary
keys to the container.

9.4.2 Container’s view:

The following describes the container’s side of the state management contract. The con-
tainer must call the following methods as indicated below:

• public void setEntityContext(ec);

The container invokes this method to pass a reference to the enterprise Bean’s
entity context to the enterprise Bean. The container must invoke this method
after it creates the instance, and before it puts the instance into the pool of
available instances.

It does not matter whether the container calls this method inside or outside of a
transaction context. At this point, the entity context is not associated with any
EJB object.

• public void unsetEntityContext();

The container invokes this method when the container wants to reduce the
number of instances in the pool. After this method completes, the container is
not allowed to reuse this instance, and therefore it should drop any references to
the instance to allow the Java programming language garbage collector to
eventually invoke thefinalize() method on the instance.

It does not matter whether the container calls this method inside or outside of a
transaction context.

• public void ejbCreate(...);

• public void ejbPostCreate(...);

The container invokes these two methods during the creation of an EJB entity
object as a result of a client’s invoking acreate(...)method on the enterprise
Bean’s EJB home.

The container first invokes theejbCreate(...)method whose signature matches
thecreate(...)method invoked by the client. TheejbCreate(...)method returns
a primary key for the created entity. The container creates an EJB object
reference for the primary key. The container then invokes a matching
ejbPostCreate(...)method to allow the instance to fully initialize itself. Finally,
the container returns the EJB object reference to the client.

The container must invoke this method in the proper transaction context.

Enterprise JavaBeans

Sun Microsystems Inc. 67 March 21, 1998

• public void ejbActivate();

The container invokes this method on an enterprise Bean instance at activation
time (i.e., when the instance is taken from the pool and assigned to an EJB
object). The container must ensure that the primary key of the associated EJB
object is available to the instance if the instance invokes thegetPrimaryKey()
or getEJBObject()method on its entity context.

A container may call this method inside or outside of a transaction context.

Note that instance is not yet ready for the delivery of a business method. The
container must still invoke theejbLoad()method prior to a business method.

• public void ejbPassivate();

The container invokes this method on an enterprise Bean instance at passivation
time (i.e., when the instance is being disassociated from an EJB object and
moved into the pool). The container must ensure that the primary key of the
associated EJB object is still available to the instance if the instance invokes the
getPrimaryKey()or getEJBObject()method on its entity context.

A container may call this method inside or outside of a transaction context.

Note that if the instance state has been updated by a transaction, the container
must first invoke theejbStore()method on the instance before it invokes
ejbPassivate() on it.

• public void ejbRemove();

The container invokes this method before it ends the life of an EJB object as a
result of a client’s invoking a remove operation.

The container invokes this method in the transaction context of the client’s
remove method. The container must ensure that the primary key of the
associated EJB object is still available to the instance if the instance invokes the
getPrimaryKey() or getEJBObject()method on its entity context.

• public void ejbLoad();

The container must invoke this method on the instance whenever it becomes
necessary for the instance to synchronize its instance state from its state in the
database.

The container invokes this method in the proper transaction context.

• public void ejbStore();

The container must invoke this method on the instance whenever it becomes
necessary for the instance to synchronize its state in the database with the state
of the instance’s fields.

The container invokes this method in the proper transaction context.

• publicprimary key type or collection ejbFind<METHOD>(...);

Enterprise JavaBeans

Sun Microsystems Inc. 68 March 21, 1998

The container invokes theejbFind<METHOD>(...) method on an instance
when a client invokes a matchingfind<METHOD>(...) method on the
enterprise Bean’s home interface. The container must pick an instance that is in
the pooled state (i.e. the instance is not associated with any EJB object) for the
execution of theejbFind<METHOD>(...) method.

The container must invoke theejbFind<METHOD>(...)method in the proper
transaction context.

If the ejbFind<METHOD>method is declared to return a single primary key,
the container creates and EJB object reference for the primary key and returns
it to the client. If theejbFind<METHOD> method is declared to return a
collection of primary keys, the container creates a collection of EJB objects for
the primary keys returned fromejbFind<METHOD>, and returns the collection
to the client.

9.5 Concurrent access from multiple transactions

The enterprise Bean developer does not have to worry about concurrent access from
multiple transactions when writing the business methods. The enterprise Bean develop-
er writes the methods assuming that the container will ensure appropriate synchroniza-
tion for entity Beans that are accessed concurrently from multiple transactions.

The entity container typically uses one of two implementation strategies to achieve
proper synchronization (these strategies are illustrative not prescriptive):

• The container activates multiple instances of the enterprise Bean, one for each
transaction in which the entity is being accessed. The transaction
synchronization is performed automatically by the underlying database during
the database access calls performed by theejbLoad, ejbCreate, ejbStore,and
ejbRemovemethods. The database system provides all the necessary transaction
synchronization, the container does not have to perform any synchronization
logic. The commit-time options B and C in Subsection 9.11.4 is applicable to
this type of container.

Account 100
in TX 1

Account 100
in TX 2

Container

Client 1

Client 2

Account 100EJB Object
Account 100

TX 1

TX 2

EB instances

Enterprise JavaBeans

Sun Microsystems Inc. 69 March 21, 1998

• The container acquires an exclusive lock on the instance’s state in the database.
The container activates a single instance and serializes the access from multiple
transactions to this instance. The commit-time option A in Subsection 9.11.4 is
applicable to this type of container.

9.6 Non-reentrant and re-entrant instances

By default, an entity Bean instance is not re-entrant. If an instance executes a client re-
quest in a given transaction context, and another request with the same transaction con-
text arrives at the EJB object, the container will throw thejava.rmi.RemoteExceptionto
the second request. This rules allows the Bean developer to program the Bean as single-
threaded, non-reentrant code.

The functionality of some entity Beans may require loopbacks in the same transaction
context. An example of a loopback is when the client calls Bean A, A calls Bean B, and
B calls back A in the same transaction context. The container will allow loopbacks if
the Bean’s deployment descriptor specifies that the Bean is re-entrant. The Bean’s
method invoked by the loopback shares the current execution context (which includes
the transaction and security contexts) with the Bean’s method invoked by the client.

Re-entrant Beans must be programmed and used with great caution. First, the Bean pro-
grammer must code the Bean with the anticipation of a loopback call. Second, since the
container cannot, in general, tell a loopback from a concurrent call from a different cli-
ent, the client programmer must be careful to avoid code that could lead to concurrent
call in the same transaction context.

Concurrent calls in the same transaction context targeted at the same EJB object are il-
legal, and may lead to unpredictable results. Since the container cannot, in general, dis-
tinguish between an illegal concurrent call and a legal loopback, application
programmers are encouraged to avoid using loopbacks. Entity Beans that do not need
callbacks can be marked as non-reentrant in the deployment descriptor, allowing the
container to detect and prevent illegal concurrent calls from clients.

Account 100
in TX 1

Container

Client 1

Client 2

Account 100

container blocks Client 2
until Client 1 finishes

EJB Object
Account 100

TX 1

TX 2

EB instance

Enterprise JavaBeans

Sun Microsystems Inc. 70 March 21, 1998

9.7 The responsibilities of the enterprise Bean provider

This section describes the responsibilities of an entity enterprise Bean provider to en-
sure that an enterprise Bean can be deployed in any EJB container.

9.7.1 Classes and interfaces

The enterprise Bean provider is responsible for providing the following class files:

• Enterprise Bean class.

• Enterprise Bean’s remote interface.

• Enterprise Bean’s home interface.

9.7.2 Enterprise Bean class

The following are the requirements for an entity enterprise Bean class:

The class must implement thejavax.ejb.EntityBean interface.

The class must be defined aspublic, and must not beabstract.

The class may, but is not required to, implement the enterprise Bean’s remote inter-

face1.

The class must implement the business methods, and theejbCreate, ejbPostCreate,and
ejbFind<METHOD> methods as described later in this section.

9.7.3 ejbCreate methods

The enterprise Bean class may define zero or moreejbCreate(...)methods whose sig-
natures must follow these rules:

The method name must beejbCreate.

The method must be declared aspublic.

The return type must be the primary key type.

The methods arguments and return value types must be legal types for Java RMI.

The throws clause may define arbitrary application specific exceptions.

The throws clause may includejava.rmi.RemoteException.

The throws clause may includejavax.ejb.CreateException.

The return type of anejbCreatemethod must be either the primary key type, or a col-
lection (See 9.9.1).

9.7.4 ejbCreate methods

For eachejbCreate(...)method, the enterprise Bean class may define a matchingejb-
PostCreate(...) method, using the following rules:

1.It is recommended that the enterprise bean class not implement the remote interface to prevent inadvertent
passing ofthis as a method argument or result.

Enterprise JavaBeans

Sun Microsystems Inc. 71 March 21, 1998

The method name must beejbPostCreate.

The method must be declared aspublic.

The return type must be void.

The methods arguments must be the same as the arguments of the matchingejbCre-
ate(...)method.

The throws clause may define arbitrary application specific exceptions.

The throws clause may includejava.rmi.RemoteException.

The throws clause may includejavax.ejb.CreateException.

9.7.5 ejbFind methods

The enterprise Bean class must define theejbFindByPrimaryKey method.

The enterprise Bean class may also define additionalejbFind<METHOD>(...)finder
methods.

The signatures of the finder methods must follow the following rules:

A finder method name must start with the prefix “ejbFind” (e.g. ejbFindByPrima-
ryKey, ejbFindLargeAccounts, ejbFindLateShipments).

A finder method must be declared aspublic.

The methods arguments and return value types must be legal types for Java RMI.

The return type of a finder method must be the enterprise Bean’s primary key type, or
a collection of objects of the primary key type (See Subsection 9.9.1).

The throws clause may define arbitrary application specific exceptions.

The throws clause may includejava.rmi.RemoteException.

The throws clause may includejavax.ejb.FinderException.

Each entity enterprise Bean class must define theejbFindByPrimaryKey method.

9.7.6 Business methods

The class may define zero or more business methods whose signatures must follow
these rules:

The function names can be arbitrary, but they must not conflict with the names of the
methods defined by the EJB architecture (ejbCreate, ejbActivate, etc.).

The business method must be declared aspublic.

The methods arguments and return value types must be legal types for Java RMI.

The throws clause may define arbitrary application specific exceptions.

The throws clause may also include thejava.rmi.RemoteException.

9.7.7 Enterprise Bean’s remote interface

The following are the requirements for the enterprise Bean’s remote interface:

Enterprise JavaBeans

Sun Microsystems Inc. 72 March 21, 1998

The interface must extend thejavax.ejb.EJBObject interface.

The methods defined in this interface must follow the rules for Java RMI. This means
that their arguments and return values must be of valid types for Java RMI, and their
throws clause must include thejava.rmi.RemoteException.

For each method defined in the remote interface, there must be a matching method in
the enterprise Bean’s class. The matching method must have:

• The same name.

• The same number and types of its arguments, and the same return type.

• All the exceptions defined in the throws clause of the matching method of the
enterprise Bean class must be defined in the throws clause of the method of the
remote interface.

9.7.8 Enterprise Bean’s home interface

The following are the requirements for the enterprise Bean’s home interface signature:

The interface must extend thejavax.ejb.EJBHome interface.

The methods defined in this interface must follow the rules for Java RMI. This means
that their arguments and return values must be of valid types for Java RMI, and their
throws clause must include thejava.rmi.RemoteException.

Each method defined in the home interface must be one of the following:

• A create method.

• A finder method.

Eachcreatemethod must be named “create”, and it must match one of theejbCreate
methods defined in the enterprise Bean class. The matchingejbCreatemethod must
have the same number and types of its arguments (note that the return type is different).

The return type for acreatemethod must be the enterprise Bean’s remote interface type.

All the exceptions defined in the throws clause of the matchingejbCreateandejbPost-
Createmethods of the enterprise Bean class must be included in the throws clause of
the matchingcreatemethod of the remote interface (i.e the set of exceptions defined for
thecreatemethod must be a superset of the union of exceptions defined for theejbCre-
ate andejbPostCreate methods)

The throws clause of acreate method must include thejavax.ejb.CreateException.

Eachfinder method must be named “find<METHOD>” (i.e. findLargeAccounts), and
it must match one of theejbFind<METHOD>methods defined in the enterprise Bean
class (i.e.ejbFindLargeAccounts). The matchingejbFind<METHOD> method must
have the same number and types of its arguments (note that the return type may be dif-
ferent).

The return type for afindermethod must be the enterprise Bean’s remote interface type,
or a collection of thereof.

Enterprise JavaBeans

Sun Microsystems Inc. 73 March 21, 1998

All the exceptions defined in the throws clause of anejbFindmethod of the enterprise
Bean class must be included in the throws clause of the matchingcreatemethod of the
remote interface.

The throws clause of afinder method must include thejavax.ejb.FindException.

9.7.9 Enterprise Bean’s primary key class

The Bean provider must define a primary key class. The class must be serializable by
the Java programming language Serialization protocol.

9.8 The responsibilities of the container provider

This section describes the responsibilities of the container provider to support an entity
Bean.

9.8.1 Generation of implementation classes

The tools provided by the container are responsible for the generation of additional
classes at enterprise Bean deployment time. The tools obtain the information that they
need for generation of the additional classes by introspecting the classes and interfaces
provided by the enterprise Bean provider and from the information obtained from the
Bean’s deployment descriptor.

The container tools must generate the following classes:

• A class that implements the enterprise Bean’s home interface.

• A class that implements the enterprise Bean’s remote interface.

The container tools may also generate a class that mixes some container-specific code
with the enterprise Bean class. The code may, for example, help the container to man-
age the Bean instances at runtime. Subclassing, delegation, and code generation can be
used by the tools.

The container’s tools may also allow generation of additional code that wraps the busi-
ness methods and that is used to customize the business logic for an existing operational
environment. For example, a wrapper for adebit function on theAccountBean may
check that the debited amount does not exceed a certain limit.

9.8.2 EJB Home class

The EJB home class is a container generated class that implements the enterprise
Bean’s home interface. The class implements the methods of thejavax.ejb.EJBHome
interface, and the type specificcreateand finder methods specific to the enterprise
Bean.

The implementation of eachcreate(...)methods invokes a matchingejbCreate(...)
method, followed by the matchingejbPostCreate(...)method, passing thecreate(...)pa-
rameters to these methods.

The implementation of theremove(...)methods defined in thejavax.ejb.EJBHomein-
terface must activate an instance (if an instance is not already in the ready state) and
invoke theejbRemove method on the instance.

Enterprise JavaBeans

Sun Microsystems Inc. 74 March 21, 1998

The implementation of eachfind<METHOD>(...) methods invokes a matching
ejbFind<METHOD>(...) method. The implementation of thefind<METHOD>(...)
method must create an EJB object for the primary key returned from the
ejbFind<METHOD>, and return the EJB object reference to the client. If the
ejbFind<METHOD>method returns a collection of primary keys, the implementation
of thefind<METHOD>(...)method must create a collection of EJB objects for the pri-
mary keys, and return the collection to the client.

9.8.3 EJB Object class

The EJB Object class is a container generated class that implements the enterprise
Bean’s remote interface. It implements the methods of thejavax.ejb.EJBObjectinter-
face and the business methods specific to the enterprise Bean.

The implementation of theremove(...)method (defined in thejavax.ejb.EJBObjectin-
terface) must activate an instance (if an instance is not already in the ready state) and
invoke theejbRemove method on the instance.

The implementation of each business method must activate an instance (if an instance
is not already in the ready state) and invoke the matching business method on the in-
stance.

9.8.4 Handle class

The container is responsible for implementing the handle class for the enterprise Bean.
The handle class must be serializable by the Java programming language Serialization
protocol.

9.8.5 Meta-data class

The container is responsible for implementing the class that provides meta-data to the
client’s view contract. The class must be a valid RMI/Value class and implement the
javax.ejb.EJBMetaData interface.

9.8.6 Instance’s re-entrance

The container must enforce the rules defined in Section 9.6.

9.8.7 Transaction scoping, security, exceptions

The container must follow the rules with respect to transaction scoping, security check-
ing, and exception handling described in Chapters 11, 14, and 12.

9.9 Miscellaneous

9.9.1 Collections

The return type of an entity finder method can be either a single EJB object reference
or a collection of EJB object references. If there is the possibility that the finder method
may find more than one EJB object, the Bean developer should define the return type
of theejbFind<METHOD>(...) andfind<METHOD>(...) method to be a collection.

Enterprise JavaBeans

Sun Microsystems Inc. 75 March 21, 1998

The JDK 1.1.x type for a collection is thejava.util.Enumerationinterface, and therefore
a finder method that returns a collection of EJB objects must define the return type to
be java.util.Enumeration.

JDK 1.2 will provide better support for collections. A future release of EJB will
extend the allowed types for finders to use the JDK 1.2 collections, in addition
to the java.util.Enumeration type.

The following is an example of a finder method defined in a home interface:

public AccountHome {
...
java.util.Enumeration findLargeAccounts(double limit)

throws FinderException, RemoteException;
...

}

The following is an example of a finder method implemented in the enterprise Bean’s
class:

public AccountBean {
...
public java.util.Enumeration ejbFindLargeAccounts(

double limit)
throws FinderException, RemoteException

{
...

}
...

}

9.10 Container-managed entity Beans

Sections 9.3 through 9.9 describe the component contract for entity Beans with Bean-
managed persistence. This section specifies the contract for the entity Beans with con-
tainer-managed persistence.

We define here the differences in the contract for entities with Bean-managed persis-
tence.

9.10.1 containerManagedFields deployment descriptor property

The container determines that an entity Bean is of the container-managed persistence
type by examining thecontainerManagedFieldsproperty of the deployment descriptor.
If the containerManagedFieldsproperty is defined in the deployment descriptor, the
entity Bean is of the container-managed persistence type.

The value of thecontainerManagedFieldsproperty is a list of instance fields that the
enterprise Bean provider expects the container to manage by loading and storing from
a database. The enterprise Bean code should not contain any database access calls—the
database access calls will be generated by the container tools at deployment time.

Enterprise JavaBeans

Sun Microsystems Inc. 76 March 21, 1998

The containers that specialize in providing support for container-managed persistence
will typically provided rich deployment time tools to allow the enterprise Bean deploy-
er to establish the mapping of the instance fields to the underlying data source. Such
containers are likely to be specialized for a particular legacy data source. It is expected
that although the mapping process is made easy by the container provider’s tools, the
Bean deployer may be involved in the mapping process (i.e. the mapping process is not
fully automatic).

The container moves data between the Bean’s instance variables and the underlying
data source before or after the execution of theejbCreate, ejbRemove, ejbLoad, andejb-
Store, as described in the below subsections. The container is also responsible for the
implementation of the finder methods.

The enterprise bean provider must declare the container-managed fields aspublic to al-
low the container tools to generate the additional classes that transfer data between the
instance’s fields and the data source. A container-managed field must be of a Java Se-

rializable type1.

9.10.2 ejbCreate, ejbPostCreate

While in the case of Bean-managed persistence the enterprise Bean developer is re-
sponsible for writing the code that inserts a record into the database in theejbCreate(...)
methods, in the case of container-managed persistence it is the container who performs
the database insert after theejbCreate(...) method completes.

The enterprise Bean developer’s responsibility is to initialize the container-managed
fields in anejbCreate(...)method from the input arguments such that whenejbCre-
ate(...) returns, the container can extract the container-managed fields from the in-
stance, and insert them into the database.

The return value of anejbCreate(...)method must be void for enterprise Beans with
container-managed persistence.

The container is responsible for extracting the primary key fields of the newly created
entity representation in the database, and for creating an EJB object reference for the
primary key.

Then the container invokes the matchingejbPostCreate(...)method on the instance.
The instance can discover the primary key by callinggetPrimaryKey()on its session
context object.

The container must performejbCreate, database insert operation, andejbPostCreatein
the proper transaction context.

1.This does not imply that the container must use Java Serialization to extract the field. For example, if a field
is of a primitive type, or a reference to an instance of a class whose fields are all declared aspublic, the
container may extract the fields directly.

Enterprise JavaBeans

Sun Microsystems Inc. 77 March 21, 1998

9.10.3 ejbRemove

The container invokes theejbRemove()method on an entity Bean instance with con-
tainer-managed persistence in response to a client-invokedremove()operation on an
EJB object reference or on the EJB home interface.

The enterprise Bean provider can use theejbRemovemethod to implement any actions
that must be done before the entity representation is removed from the database.

After ejbRemovereturns, the container removes the entity representation from the da-
tabase.

The container must performejbRemoveand the database delete operation in the proper
transaction context.

9.10.4 ejbLoad

When the container needs to synchronize the state of an instance with the entity state in
the database, the container reads the entity state from the database into the container-
managed fields and then it invokes theejbLoad() method on the instance.

The enterprise Bean developer can rely on the container’s having loaded the container-
managed fields from the database just before the container invoked theejbLoad()meth-
od. The enterprise Bean can use theejbLoad()method, for example, to perform some
computation on the values of the fields that were read by the container (for example,
perform uncompression of text fields).

9.10.5 ejbStore

When the container needs to synchronize the state of the entity state in the database with
the state of the instance, the container first calls theejbStore()method on the instance,
and then it extracts the container-managed fields and writes them to the database.

The enterprise Bean developer should use theejbStore()method to set up the values of
the container-managed fields just before the container writes them to the database. For
example, theejbStore()method may perform compression of text before the text is
stored in the database.

9.10.6 finder methods

The enterprise Bean provider does not write the finder (ejbFind<METHOD>(...))
methods.

The finder methods are generated at Bean deployment time using the container provid-
er’s tools. The tools can, for example, create a subclass of the enterprise Bean class that
implements theejbFind<METHOD>() methods, or the tools can generate the imple-
mentation of the finder methods directly in the class that implements the enterprise
Bean’s home interface.

Note that theejbFind<METHOD>names and parameter signatures do not provide the
container tools with sufficient information for automatically generating the implemen-
tation of the finder methods for methods other thanejbFindByPrimaryKey. Therefore,
the bean provider is responsible for providing a description of each finder method. The

Enterprise JavaBeans

Sun Microsystems Inc. 78 March 21, 1998

bean deployer uses container tools to generate the implementation of the finder meth-
ods based in their description supplied by the bean provider. The Enterprise JavaBeans
architecture does not specify the format of the finder method description.

9.10.7 primary key type

The container must be able to manipulate the primary key type. Therefore, the primary
key type for a Bean with container-managed persistence must follow these rules:

• The primary key type must bepublic.

• All fields in the primary key class must be declared aspublic.

• The class must have apublic default constructor.

• The names of the fields in the primary key class must be a subset of the names
of the container-managed fields (this allows the container to extract the primary
key fields from an instance’s container-managed fields, and vice versa).

9.11 Sequence diagrams

This section uses sequence diagrams to illustrate the interactions between an entity
Bean instance and its container.

9.11.1 Notes

The sequence diagrams illustrate a box labeled “container provided classes”. These are
either classes that are part of the container, or classes that were generated by the con-
tainer tools. These classes communicate with each other through protocols that are con-
tainer implementation specific. Therefore, the communication between these classes is
not shown in the diagrams.

The classes shown in the diagrams should be considered as an illustrative implementa-
tion rather than a prescriptive one

Enterprise JavaBeans

Sun Microsystems Inc. 79 March 21, 1998

9.11.2 Creating an entity object

The following diagram illustrates the creation of an enterprise Bean with Bean-man-
aged persistence.

client instance transactiondatabase

javax.jts.UserTransaction.begin()

service
EJB

register_synchronization(synchronization)

ejbCreate(args)

entity
context

EJB
object

create(args)

container provided classes

create representation in DB

new

business method
business method

synchro-
nization

new

home

ejbPostCreate(args)

container

register resource manager

Enterprise JavaBeans

Sun Microsystems Inc. 80 March 21, 1998

The following diagram illustrates the creation of an enterprise Bean with container-
managed persistence:

client instance transactiondatabase

javax.jts.UserTransaction.begin()

service
EJB

register_synchronization(synchronization)

instance
context

EJB
object

create(args)

container provided classes

extract container-managed field

business method
business method

synchro-
nization

new

ejbCreate(args)

new

home

ejbPostCreate(args)

container

register resource manager

create entity representation in DB

Enterprise JavaBeans

Sun Microsystems Inc. 81 March 21, 1998

9.11.3 Passivating and activating an instance in a transaction

The following diagram illustrates the passivation and reactivation of an enterprise Bean
instance with Bean-managed persistence.

business method
ejbActivate()

ejbStore()

write state to DB

ejbPassivate()

business method

ejbLoad()

read state from DB

business method
business method

business method
business method

client instance transactiondatabase
service

EJB instance
context

containerEJB
object

container provided classes

synchro-
nizationhome

Enterprise JavaBeans

Sun Microsystems Inc. 82 March 21, 1998

The following diagram illustrates the passivation and reactivation of an enterprise Bean
instance with container-managed persistence.

9.11.4 Committing a transaction

This section describes the sequence during transaction commit.

business method
ejbActivate()

ejbStore()

extract container-managed fields

ejbPassivate()

business method

ejbLoad()

read entity state from DB

business method
business method

business method
business method

client instance transactiondatabase
service

EJB instance
context

containerEJB
object

container provided classes

synchro-
nizationhome

update entity state in DB

set container-managed fields

Enterprise JavaBeans

Sun Microsystems Inc. 83 March 21, 1998

The entity Bean protocol is designed to allow a container the flexibility to select the dis-
position of an instance at transaction commit time. The sequence diagrams in this sec-
tion illustrate three alternative commit options with respect to the instance state. The
selection of the commit option is transparent to the entity Bean—the entity Bean will
work correctly regardless of the option chosen by the container.

The three options are:

• Option A: The container caches a “ready” instance between transactions. The
instance has exclusive access to the state of the object in the persistent storage,
and therefore the container does not have to synchronize the instance’s state
from the persistent storage at the beginning of the next transaction.

• Option B: The container caches a “ready” instance between transactions. Unlike
in Option A, the instance does not have exclusive access to the state of the
object in the persistent storage, and therefore the container must synchronize the
instance’s state from the persistent storage at the beginning of the next
transaction.

• Option C: The container does not cache a “ready” instance between
transactions. An instance is returned to the pool of available instances after a
transaction has completed.

Note that the container must synchronize the instance’s state with the persistent storage
at transaction commit for all the three options.

Table 1: Summary of commit-time options

Write instance state
to database

Instance stays
ready

Instance state
remains valid

Option A Yes Yes Yes

Option B Yes Yes No

Option C Yes No No

Enterprise JavaBeans

Sun Microsystems Inc. 84 March 21, 1998

The following diagram illustrates the transaction commit protocol that involves an en-
terprise Bean instance with Bean-managed persistence.

ejbStore()

write state to DB

client instance transactiondatabase
service

EJB instance
context

containerEJB
object

container provided classes

synchro-
nization

javax.jts.UserTransaction.commit()

beforeCompletion()

prepare

commit

afterCompletion(status)

ejbPassivate()Option C:

Option A: mark “not registered”

Option B: mark “invalid state”

home

Enterprise JavaBeans

Sun Microsystems Inc. 85 March 21, 1998

The following diagram illustrates the transaction commit protocol for an enterprise
Bean instance with container-managed persistence.

ejbStore()

extract container-managed fields

client instance transactiondatabase
service

EJB entity
context

EJB
object

container provided classes

synchro-
nization

javax.jts.UserTransaction.commit()

beforeCompletion()

prepare

commit

afterCompletion(status)

ejbPassivate()Option C:

Option A: mark “not registered”

Option B: mark “invalid state”

home
container

update entity state in DB

Enterprise JavaBeans

Sun Microsystems Inc. 86 March 21, 1998

9.11.5 Starting the next transaction

The following diagram illustrates the protocol performed for a Bean with Bean-man-
aged persistence at the beginning of a new transaction. The three options illustrated in
the diagram correspond to the three commit options in the previous subsection.

business method

business method

read state from DB

client instance transactiondatabase
service

EJB instance
context

EJB
object

container provided classes

synchro-
nization

javax.jts.UserTransaction.begin()

ejbActivate()Option C:

Option A: do nothing

Option B: ejbLoad()

read state from DB
ejbLoad()

register_synchronization(synchronization)

new

business method
business method

home
container

register resource manager

register resource manager

Enterprise JavaBeans

Sun Microsystems Inc. 87 March 21, 1998

The following diagram illustrates the protocol performed for a Bean with container-
managed persistence at the beginning of a new transaction.

business method

business method

read state from DB

client instance transactiondatabase
service

EJB entity
context

EJB
object

container provided classes

synchro-
nization

javax.jtsUserTransaction.begin()

ejbActivate()Option C:

Option A:
do nothing

Option B:

ejbLoad()

register_synchronization(synchronization)

new

business method
business method

ejbLoad()

read entity state from DB

home
container

register resource manager

register resource manager

set container managed fields

set container managed fields

Enterprise JavaBeans

Sun Microsystems Inc. 88 March 21, 1998

9.11.6 Removing an entity object

The following diagram illustrates the destruction of an entity enterprise Bean with
Bean-managed persistence.

The following diagram illustrates the destruction of an entity enterprise Bean with con-
tainer-managed persistence.

client instance transactiondatabase
service

remove()

EJB entity
context

EJB
object

container provided classes

synchro-
nization

remove representation
in DB

ejbRemove()

home
container

client instance transactiondatabase
service

remove()

EJB entity
context

EJB
object

container provided classes

synchro-
nization

remove representation in DB

ejbRemove()

home
container

Enterprise JavaBeans

Sun Microsystems Inc. 89 March 21, 1998

9.11.7 Finding an object

The following diagram illustrates the execution of a finder method on an entity enter-
prise Bean with Bean-managed persistence.

The following diagram illustrates the execution of a finder method on an entity enter-
prise Bean with container-managed persistence.

client instance transactiondatabase
service

EJB

ejbFind<METHOD>(args)

entity
context

EJB
object

find<METHOD>(args)

container provided classes

search DB

synchro-
nizationhome

new

container

client instance transactiondatabase
service

EJB

search DB

entity
context

EJB
object

find<METHOD>(args)

container provided classes

synchro-
nizationhome

new

container

Enterprise JavaBeans

Sun Microsystems Inc. 90 March 21, 1998

9.11.8 Adding and removing instance from the pool

The diagrams in Subsections 9.11.2 through 9.11.7 did not show the sequences between
the “does not exist” and “pooled” state (See the diagram in Section 9.3).

The following diagram illustrates the sequence for a container adding an instance to the
pool.

The following diagram illustrates the sequence for a container removing an instance
from the pool.

instance transactiondatabase
service

EJB entity
context

EJB
object

container provided classes

synchro-
nizationhome

container

new

new

setEntityContext(ec)

instance transactiondatabase
service

EJB entity
context

EJB
object

container provided classes

synchro-
nizationhome

container

unsetEntityContext()

finalize()

Java
VM

finalize()

Enterprise JavaBeans

Sun Microsystems Inc. 91 March 21, 1998

10 Example entity scenario

 Note: Container support for entity enterprise Beans is an optional feature for
EJB 1.0 compliance. Container support for entity enterprise Beans will become
mandatory in EJB 2.0.

This chapter describes an example development and deployment scenario for an entity
enterprise Bean. We use the scenario to explain the responsibilities of the enterprise
Bean provider and those of the container provider.

The classes generated by the container provider’s tools in this scenario should be con-
sidered illustrative rather than prescriptive. Container providers are free to implement
the contract between an enterprise Bean and its container in a different way that
achieves an equivalent effect (from the perspectives of the enterprise Bean provider and
the client-side programmer).

10.1 Overview

Wombat Inc. has developed theAccountBeanenterprise Bean. The AccountBean en-
terprise Bean is deployed in a container provided by the Acme Corporation.

Enterprise JavaBeans

Sun Microsystems Inc. 92 March 21, 1998

10.2 Inheritance relationship

An example of the inheritance relationship between the interfaces and classes is illus-
trated in the following diagram:

AcmeRemoteAccount

Account

AccountBean

AcmeRemote

EJBHome

AcmeHome

JDK

Enterprise
JavaBeans

enterprise Bean
provider

container
provider

produced by
Acme tools

java.rmi.Remote

EJBObject

(Wombat Inc.)

(Acme)

EnterpriseBean

Java interface Java class

java.io.Serializable

extends or implements interface

extends implementation, code generation, or delegation

AcmeAccountHome

AcmeBean

EntityBean

AcmeAccountBean

AccountHome

AcmeAccountMetaData

AcmeMetaData

EJBMetaData

Enterprise JavaBeans

Sun Microsystems Inc. 93 March 21, 1998

10.2.1 What the enterprise Bean provider is responsible for

Wombat Inc. is responsible for providing the following:

• Define the enterprise Bean’s remote interface (Account). The remote interface
defines the business methods callable by a client. The remote interface must
extend thejavax.ejb.EJBObjectinterface, and follow the standard rules for a
Java RMI remote interface. The remote interface must be defined aspublic.

• Write the business logic in the enterprise Bean class (AccountBean). The
enterprise Bean class may, but is not required to, implement the enterprise
Bean’s remote interface (Account). The enterprise Bean must implement the
javax.ejb.EntityBeaninterface, and define theejbCreate(...)methods invoked at
an EJB object creation.

• Define a home interface (AccountHome) for the enterprise Bean. The home
interface defines the EJB class specificcreateand finder methods. The home
interface must be defined aspublic, extend thejavax.ejb.EJBHomeinterface,
and follow the standard rules for Java RMI remote interfaces.

• Specify the environment properties that an enterprise Bean requires at runtime.
The environment properties is a standardjava.util.Properties file.

• Define a deployment descriptor that specifies any declarative metadata that the
enterprise Bean provider wishes to pass with the enterprise Bean to the next
stage of the development/deployment workflow.

10.2.2 Classes supplied by container provider

The following classes are supplied by the container provider, Acme Corp:

• The AcmeHome class provides the Acme implementation of the
javax.ejb.EJBHome methods.

• The AcmeRemote class provides the Acme implementation of the
javax.ejb.EJBObject methods.

• The AcmeBean class provides additional state and methods to allow Acme’s
container to manage its enterprise Bean instances. For example, if Acme’s
container uses an LRU algorithm, then AcmeBean may include the clock count
and methods to use it.

• The AcmeMetaData class provides the Acme implementation of the
javax.ejb.EJBMetaDatamethods.

10.2.3 What the container provider is responsible for

The tools provided by Acme Corporation are responsible for the following:

• Generate the remote Bean class (AcmeRemoteAccount) for the enterprise Bean.
The remote Bean class is a “wrapper” class for the enterprise Bean and provides
the client’s view of the enterprise Bean. The tools also generate the classes that
implement the communication stub and skeleton for the remote Bean class.

Enterprise JavaBeans

Sun Microsystems Inc. 94 March 21, 1998

• Generate the implementation of the enterprise Bean class suitable for the Acme
container (AcmeAccountBean). AcmeAccountBean includes the business logic
from the AccountBean class mixed with the services defined in the AcmeBean
class. Acme tools can use inheritance, delegation, and code generation to
achieve mix-in of the two classes.

• Generate the home class (AcmeAccountHome) for the enterprise Bean. The
home class implements the enterprise Bean’s home interface (AccountHome).
The tools also generate the classes that implement the communication stub and
skeleton for the home class.

• Generate a class (AcmeAccountMetaData) that implements the
javax.ejb.EJBMetaData interface for the Account Bean.

Many of the above classes and tools are container-specific (i.e., they reflect the way
Acme Corp implemented them). Other container providers may use different mecha-
nisms to produce their runtime classes, and the generated classes most likely will be dif-
ferent from those generated by Acme’s tools.

Enterprise JavaBeans

Sun Microsystems Inc. 95 March 21, 1998

11 Support for transactions

One of the key features of Enterprise JavaBeans is support for distributed transactions.
Enterprise JavaBeans allows an application developer to write an application that atom-
ically updates data in multiple databases which are possibly distributed across multiple
sites. The sites may use EJB servers and containers from different vendors.

No distinction is made between session and entity Beans in this section. This section ap-
plies equally to both.

An enterprise Bean developer or client programmer is not exposed to the complexity of
distributed transactions. The burden of managing transactions is shifted to the container
and EJB server providers. A container implements the declarative transaction scopes
defined later in this chapter. The EJB server implements the necessary low-level trans-
action protocols, such as the two-phase commit protocol between a transaction manager
and a database system, transaction context propagation, and distributed two-phase com-
mit.

11.1 Transaction model

Enterprise JavaBeans supports flat transactions, modeled after the OMG Object Trans-
action Service 1.1 (OTS). An enterprise Bean object that istransaction-enabledcorre-
sponds to theTransactionalObjectdescribed in OTS (a future release may allow an
enterprise Bean to act as a recoverable object).

 Note: The decision not to support nested transactions was intended to allow
vendors of existing transaction processing and database management systems
to incorporate support for Enterprise JavaBeans. If these vendors provide
support for nested transactions in the future, Enterprise JavaBeans may be
enhanced to take advantage of nested transactions.

11.2 Relationship to JTS

Enterprise JavaBeans is a high-level component framework that attempts to hide sys-
tem complexity from the application developer. Therefore, most enterprise Beans and
their clients do not need to access transaction management programmatically. The cli-
ents and Beans that have to programmatically control transaction scopes should use the
javax.jts.UserTransactioninterface that is defined as part of the Java Transaction Ser-
vice (JTS) API. Thejavax.jts.UserTransactioninterface is the only JTS interface that
the EJB container provider must implement in order to support EJB.

Java Transaction Service (JTS) API defines all the Java programming language inter-
faces related to transaction management on the Java platform. Currently, JTS has the
following parts:

• The packagejavax.jtsdefines the application-level demarcation interface. This
packaged is intended to be used in the EJB environment, both by the Bean
implementor (for TX_BEAN_MANAGED Beans) and by a client in the Java

Enterprise JavaBeans

Sun Microsystems Inc. 96 March 21, 1998

programming language who wants to explicitly demarcate transaction
boundaries. Thejavax.jts package defines interfaces that can be easily
implemented by any existing transaction manager.

• A Java programming language mapping of the OTS 1.1 API. This is a Java
programming language mapping of the OMG specification using the Java IDL
mapping. This API is intended to be used by a CORBA programmer using the
Java programming language to implement CORBA objects. Support for this
API is not required in the EJB environment. Note that a vendor may choose to
use this API as part of the interface between the EJB server and container, but
the vendor is free to use another API as well.

• A Java programming language mapping of the standard X/Open XA interface.
This is an API for attaching a resource manager (such as JDBC driver) to an
external transaction manager. An EJB server and/or container could use this
API to interface to the database drivers. This API is being proposed and
reviewed as part of the JDBC 2.0 specification.

11.3 Scenarios

This section describes several scenarios that illustrate the distributed transaction capa-
bilities of Enterprise JavaBeans.

11.3.1 Update of multiple databases

Enterprise JavaBeans makes it possible for an application program to update data in
multiple databases in a single transaction.

In the following figure, a client invokes the enterprise Bean X. X updates data in two
databases, A and B. Then X calls another enterprise Bean Y. Y updates data in database
C. The EJB server ensures that the updates to databases A, B, and C are either all com-
mitted, or all rolled back.

The application programmer does not have to do anything to ensure transactional se-
mantics. The enterprise Beans X and Y perform the database updates using the standard

X

client EJB server

Y

database A database Bdatabase C

Enterprise JavaBeans

Sun Microsystems Inc. 97 March 21, 1998

JDBC API. Behind the scenes, the EJB server enlists the database connections as part
of the transaction. When the transaction commits, the EJB server and the database sys-
tems perform a two-phase commit protocol to ensure atomic updates across all the three
databases.

11.3.2 Update of databases via multiple EJB servers

Enterprise JavaBeans allows updates of data at multiple sites to be performed in a single
transaction.

In the following figure, a client invokes the enterprise Bean X. X updates data in data-
base A, and then calls another enterprise Bean Y that is installed in a remote EJB server.
Y updates data in database B. Enterprise JavaBeans makes it possible to perform the
updates to databases A and B as a single transaction.

When X invokes Y, the two EJB servers cooperate to propagate the transaction context
from X to Y. This transaction context propagation is transparent to the application-level
code.

At transaction commit time, the two EJB servers use a distributed two-phase commit
protocol (if the capability exists) to ensure the atomicity of the database updates.

11.3.3 Client-managed demarcation

A client or a non-transaction enterprise Bean object can use thejavax.jts.UserTransac-
tion interface to explicitly demarcate transaction boundaries.

X

client EJB server

database A

Y

EJB server

database B

Enterprise JavaBeans

Sun Microsystems Inc. 98 March 21, 1998

A client program using explicit transaction demarcation may perform atomic updates
across multiple databases residing at multiple transaction servers, as illustrated in the
following figure.

The application programmer demarcates the transaction withbeginandcommitcalls,
and the EJB server ensures that the updates to databases A and B are transactional. A
proxy of a transaction service on the client automatically propagates the transaction
context to the two EJB servers. When the client program calls commit, the two EJB
servers perform the two-phase commit protocol.

11.3.4 Container-managed demarcation

Whenever a client invokes an enterprise Bean, the container interposes on the method
invocation. The interposition allows the container to control transaction demarcation
declaratively through thetransaction attribute.

For example, if an enterprise Bean is deployed with theTX_REQUIREDtransaction at-
tribute, the container automatically initiates a transaction whenever a client invokes a
transaction-enabled enterprise Bean while the client is not associated with a transaction
context.

The following figure illustrates such a scenario. A non-transactional client invokes the
enterprise Bean X. Since the message from the client does not include a transaction con-
text, the container starts a new transaction before dispatching the remote method on X.
X’s work is performed in the context of the transaction. When X calls other enterprise
Beans (Y in our example), the work performed by the other enterprise Beans is also au-

Xclient

EJB server

database A

Y

EJB server

database B

begin

commit

Enterprise JavaBeans

Sun Microsystems Inc. 99 March 21, 1998

tomatically included in the transaction (subject to the transaction attribute of the other
enterprise Bean).

The container automatically commits the transaction at the time X returns a reply to the
client.

11.3.5 Bean-managed demarcation

An enterprise Bean with theTX_BEAN_MANAGEDtransaction attribute can use the
javax.jts.UserTransaction interface to demarcate transactions.

11.3.6 Interoperability with non-Java clients and servers

Although the focus of Enterprise JavaBeans is the Java API for writing distributed en-
terprise applications in Java, it is desirable that such applications are also interoperable
with non-Java clients and servers.

A container can make it possible for an enterprise Bean to be invoked from a non-Java
client. For example, the CORBA mapping of Enterprise JavaBeans [6] allows any

X

client EJB server

Y

database A database B

begin

commit

Enterprise JavaBeans

Sun Microsystems Inc. 100 March 21, 1998

CORBA client to invoke any enterprise Bean object on a CORBA-enabled server using
the standard CORBA API.

Providing connectivity to existing server applications is also important. An EJB server
may choose to provide access to existing enterprise applications, such as applications
running under CICS on a mainframe. For example, an EJB server may provide a bridge
that makes existing CICS programs accessible to enterprise Beans. The bridge can
make the CICS programs visible to the Java programming language-based developer as
if the CICS programs were other enterprise Beans installed in some container on the
EJB server.

Note: It is beyond the scope of the Enterprise JavaBeans specification to define
the bridging protocols that would enable such interoperability. Such bridges
will be a value added by some EJB servers.

11.4 Declarative transaction management

Every client method invocation on an enterprise Bean object is interposed by the con-
tainer. The interposition allows for delegating the transaction management responsibil-
ities to the container.

The declarative transaction management is controlled by atransaction attributeasso-
ciated with each enterprise Bean’s home container. The container provider’s tools can
be used to set and change the values of transaction attributes.

Enterprise JavaBeans defines the following values for the transaction attribute:

• TX_NOT_SUPPORTED

• TX_BEAN_MANAGED

• TX_REQUIRED

• TX_SUPPORTS

• TX_REQUIRES_NEW

X

CORBA client EJB server

X

database A database B

bridge
CICS

LU 6.2

Enterprise JavaBeans

Sun Microsystems Inc. 101 March 21, 1998

• TX_MANDATORY

The transaction attribute is specified in the enterprise Bean’s deployment descriptor. A
transaction attribute can be associated with the entire Bean (to apply to all methods), or
it can be associated with an individual method. If method-level descriptors are used,
they must follow the restrictions defined in Section 15.2.

11.4.1 TX_NOT_SUPPORTED

A container must always invoke an enterprise Bean that has the
TX_NOT_SUPPORTEDtransaction attribute without a transaction scope. If a client
calls with a transaction scope, the container suspends the association of the transaction
scope with the current thread before delegating the method call to the enterprise Bean
object. The container resumes the suspended association when the method call on the
enterprise Bean object has completed.

The suspended transaction context of the client is not passed to resources or other en-
terprise Bean objects that are invoked from the enterprise Bean object.

11.4.2 TX_BEAN_MANAGED

An enterprise Bean with theTX_BEAN_MANAGEDattribute can use thejav-
ax.jts.UserTransactioninterface to demarcate transaction boundaries. The rules for
TX_BEAN_MANAGED transactions are defined in Section 11.5.

11.4.3 TX_REQUIRED

If a client invokes an enterprise Bean object that has theTX_REQUIREDtransaction
attribute while the client is associated with a transaction context, the container invokes
the enterprise Bean’s method in the client’s transaction context.

If the client invokes the enterprise Bean object while the client is not associated with a
transaction context, the container automatically starts a new transaction before delegat-
ing a method call to the enterprise Bean object, and attempts to commit the transaction
when the method call on the enterprise Bean object has completed. The container per-
forms the commit protocol before the method result is sent to the client.

The transaction context is passed to the resources or other enterprise Bean objects that
are invoked from the enterprise Bean object.

11.4.4 TX_SUPPORTS

An enterprise Bean object that has theTX_SUPPORTStransaction attribute is invoked
in the client’s transaction scope. If the client does not have a transaction scope, the en-
terprise Bean is also invoked without a transaction scope.

The transaction context (if any) is passed to the resources or other enterprise Bean ob-
jects that are invoked from the enterprise Bean object.

11.4.5 TX_REQUIRES_NEW

An enterprise Bean that has theTX_REQUIRES_NEWtransaction attribute is always
invoked in the scope of a new transaction. The container starts a new transaction before

Enterprise JavaBeans

Sun Microsystems Inc. 102 March 21, 1998

delegating a method call to the enterprise Bean object, and attempts to commit the
transaction when the method call on the enterprise Bean object has completed. The con-
tainer performs the commit protocol before the method result is sent to the client.

If the client request is associated with a transaction, the association is suspended before
the new transaction is started and is resumed when the new transaction has completed.

The new transaction context is passed to the resources or other enterprise Bean objects
that are invoked from the enterprise Bean object.

11.4.6 TX_MANDATORY

An enterprise Bean object that has theTX_MANDATORYattribute is always invoked
in the scope of the client’s transaction. If the client attempts to invoke the enterprise
Bean without a transaction context, the container throws theTransactionRequiredex-
ception to the client.

The client’s transaction context is passed to the resources or other enterprise Bean ob-
jects that are invoked from the enterprise Bean object.

11.4.7 Transaction attribute summary

The following table provides a summary of the transaction scopes under which a meth-
od on an enterprise Bean object method executes, as a function of the transaction at-
tribute and client’s transaction context.

A dash indicates that “no global transaction context exists or will be propagated”. The
container can execute the method outside of any transaction, or as a local transaction.

Table 2: Effect of the declarative transaction attribute

Transaction attribute Client’s transaction
Transaction associated with
enterprise Bean’s method

TX_NOT_SUPPORTED
- -

T1 -

TX_REQUIRED
- T2

T1 T1

TX_SUPPORTS
- -

T1 T1

TX_REQUIRES_NEW
- T2

T1 T2

TX_MANDATORY
- error

T1 T1

Enterprise JavaBeans

Sun Microsystems Inc. 103 March 21, 1998

11.5 TX_BEAN_MANAGED transactions

An enterprise Bean with theTX_BEAN_MANAGEDattribute is allowed to use thejav-
ax.jts.UserTransaction interface to demarcate transaction boundaries.

The container makes thejavax.jts.UserTransactioninterface available to the enterprise
Bean though theEJBContext.getUserTransaction()method, as illustrated in the follow-
ing example.

import javax.jts.UserTransaction;
...
EJBContext ic = ...;
...
UserTransaction tx = ic.getUserTransaction();
tx.begin();
... // do work
tx.commit();

Enterprise Beans deployed with a transaction attribute other than
TX_BEAN_MANAGEDare not allowed to access directly the underlying transaction
manager.The container makes thejavax.jts.UserTransactioninterface unavailable to
these enterprise Beans.

11.5.1 Specification of TX_BEAN_MANAGED for stateful session Beans

The container must manage transactions on a TX_BEAN_MANAGED Bean as fol-
lows. When a client invokes a stateful TX_BEAN_MANAGED Bean, the container
suspends any incoming transaction. The container allows the session instance to initiate
a transaction using thebegin javax.jts.UserTransactioninterface. The instance be-
comes associated with the transaction and remains associated until the transaction ter-
minates. When a Bean-initiated transaction is associated with the instance, methods on
the instances run under that transaction.

It is possible that a business method that initiated the transaction completes without
committing or rolling back the transaction. The container must retain the association
between the transaction and the instance across multiple client calls until the transaction
terminates.

The actions performed by the container are summarized by the following table.

Table 3: TX_BEAN_MANAGED session Bean

Client’s transaction
Transaction currently

associated with instance
Transaction associated with

the method

- - -

T1 - -

- T3 T3

T1 T3 T3

Enterprise JavaBeans

Sun Microsystems Inc. 104 March 21, 1998

The following explains the entries in the table in detail.

• If the client request is not associated with a transaction and the instance is not
associated with a transaction, the container invokes the instance with no
transaction context.

• If the client is associated with a transaction, and the instance is not associated
with a transaction, the container suspends the client’s transaction association
and invokes the method with no transaction context. The container resumes the
client’s transaction association when the method completes.

• If the client request is not associated with a transaction and the instance is
already associated with a transaction, the container invokes the instance with
the transaction that is associated with the instance.

• If the client is associated with a transaction, and the instance is already
associated with a transaction, the container suspends the client’s transaction
association and invokes the method with the transaction context that is
associated with the instance. The container resumes the client’s transaction
association when the method completes.

In all cases, if the instance is associated with a transaction when the method completes
(i.e. the instance has no yet completed the transaction), the container suspends the trans-
action before returning control to the client.

It is legal for a Bean to perform serially several transactions in a method.

It is illegal for an instance to attempt to start a new transaction before the current one
has completed.

11.5.2 Specification of TX_BEAN_MANAGED for stateless sessions and entity Beans

The specification of the behavior of TX_BEAN_MANAGED transactions for stateless
session Beans and all entity Beans is identical to that for stateful session Beans, with
one important exception. An instance of a stateless session Bean or an entity Bean is
not allowed to retain an association with a transaction across multiple calls from a cli-
ent. This means that if a business method initiates a transaction, the method must com-
plete (commit or rollback) the transaction before it returns.

Associating a transaction with an instance across multiple calls from the client
makes sense for a stateful session Bean because an instance of a session Bean
is permanently associated with a single client. Retaining transaction
association across multiple client calls would not make sense for entity Beans
or stateless session Beans because their instances are, in general, shared
across multiple clients.

11.6 Transaction isolation levels

The enterprise Bean provider must specify the requested transaction isolation level in
the deployment descriptor. The possible isolation levels are:

• TRANSACTION_READ_UNCOMMITTED

Enterprise JavaBeans

Sun Microsystems Inc. 105 March 21, 1998

• TRANSACTION_READ_COMMITTED

• TRANSACTION_REPEATABLE_READ

• TRANSACTION_SERIALIZABLE

These isolation levels correspond to the JDBC isolation levels1, and are defined in the
javax.ejb.deployment.ControlDescriptor class.

The container uses the transaction isolation level information provided in the deploy-
ment descriptor in the following way:

• For sessions Beans and entity Beans with Bean-managed persistence, the
container ensures that the specified transaction isolation level is set on the
database connections used by the Bean at the start of each transaction.

• For entity Beans with container-managed persistence, the database access calls
generated by the container tools must achieve the specified isolation level.

11.7 Deployment descriptor restrictions

A transaction attribute and isolation level can be specified for the entire enterprise
Bean, and for individual enterprise Bean’s methods. If a value is specified at a method-
level, the value takes precedence over the value specified at the Bean level.

This sections defines the restrictions on the use of the transaction attribute and isolation
level at the method level.

11.7.1 TX_BEAN_MANAGED

The TX_BEAN_MANAGED transaction attribute value must not be mixed with the
other values of the transaction attributes. This means that if the Bean-level descriptor
or one of the method-level descriptors specifies the TX_BEAN_MANAGED attribute,
then all method-level descriptors, if there are any, must specify
TX_BEAN_MANAGED.

A container should detect this error at deployment time and alert the deployer.

11.7.2 Session Bean

If a client performs explicit transaction demarcation, the client must not invoke a se-
quence of methods on an instance that would lead to the situation that:

• the instance is associated with a transaction, and

• the container, using the rules for the transaction attribute described in this
chapter, would be required to invoke a method on the Bean in a different
transaction, or no transaction.

The container must detect such an attempt and throw thejava.rmi.RemoteExceptionto
the client, and should log the error to alert the system administrator.

1.Note that EJB does not allow the JDBC TRANSACTION_NONE isolation level.

Enterprise JavaBeans

Sun Microsystems Inc. 106 March 21, 1998

For example, it is an error for a client to begin a transaction, and then invokemethod1
andmethod2on a session Bean ifmethod1is deployed with the TX_REQUIRED at-
tribute andmethod2 with TX_REQUIRES_NEW.

11.7.3 Isolation level

If method-level descriptors are used, the isolation level specified in the descriptors must
be used consistently so that a method does not require a different isolation level than
one that is associated with an instance. The container must detect such a condition and
throw thejava.rmi.RemoteExceptionto the client. The container should log the error to
alert the system administrator.

For example, assuming that an enterprise Bean’s transaction attribute is
TX_REQUIRED, it is an error for a client to begin a transaction, and invokemethod1
andmethod2on an enterprise Bean if the isolation levels specified formethod1and
method2 are different.

This rule applies to both session and entity enterprise Beans.

11.8 Transaction management and exceptions

The EJB server and EJB container may throw theTransactionRolledbackException,
TransactionRequiredException, and InvalidTransactionExceptionexceptions in the
situations defined in the JTS specification. See Appendix B for the reference pages of
these exceptions.

Enterprise JavaBeans

Sun Microsystems Inc. 107 March 21, 1998

12 Exception handling

This chapter describes the rules for exception handling.

12.1 Client’s view of exceptions

A client accesses an enterprise Bean through the enterprise Bean’s remote and home
interfaces. Both of these are Java RMI interfaces. Therefore, the throws clause of every
method of these interfaces includes the mandatoryjava.rmi.RemoteException.This ex-
ception is thrown to the client as an indication of a system-level failure.

The java.rmi.RemoteExceptionmay be thrown by the communication subsystem be-
tween the client and the container; by the container; or by the enterprise Bean. The con-
tainer throws this exception to the client if it cannot complete a client’s request because
of an unexpected condition when delegating the client invocation to the enterprise
Bean. The Bean throws this exception to indicate a system-level error (e.g. database er-
ror).

In addition to the mandatoryjava.rmi.RemoteExceptionexception, the throws clause of
the methods may include any number of application specific exceptions. These excep-
tions are thrown by the enterprise Bean, and passed unchanged by the container to the
client.

Thejavax.ejb.CreateException, javax.ejb.RemoveException, andjavax.ejb.FindExcep-
tion are standard application-level exceptions to report errors to the client from thecre-
ate, remove, andfinder methods.

12.1.1 Exceptions and transactions

If a client running in a transaction scope invokes an enterprise Bean business method,
acreatemethod, aremovemethod, or afindermethod, and the method returns with an
exception other thanjavax.jts.TransactionRolledbackException, the client can assume
that the transaction has not been automatically marked for rollback. The client may at-
tempt to recover the transaction, for example, by calling the enterprise Bean method
again with different arguments, or by calling a different enterprise Bean.

The client can assume that the transaction has been marked for rollback if the exception
is javax.jts.TransactionRolledbackException. It is fruitless for the client to continue the
transaction because the transaction can never commit.

If the client receives thejava.rmi.RemoteExceptionexception other than thejav-
ax.jts.TransactionRolledbackException(note thatjavax.jts.TransactionRolledbackEx-
ception is a subclass ofjava.rmi.RemoteException), the client, in general, does not
know if the enterprise Bean’s method has completed or not. Therefore, if a transactional
client receives thejava.rmi.RemoteExceptionexception, the client should roll back the
current transaction to prevent inconsistent data. Only expert-level clients should at-
tempt to recover anjava.rmi.RemoteException within a transaction.

Note that an enterprise Bean who is also a client of another enterprise Bean can use the
getRollbackOnlymethod to test if the current transaction has been marked for rollback.

Enterprise JavaBeans

Sun Microsystems Inc. 108 March 21, 1998

12.2 Rules for the enterprise Bean developer

12.2.1 Application-level exceptions

The throws clauses of an enterprise Bean’s business methods, theejbCreatemethods,
ejbRemovemethods, andejbFind<METHOD>methods, may include arbitrary appli-
cation-level exceptions.

Thejavax.ejb.CreateException, javax.ejb.RemoveException, andjavax.ejb.FindExcep-
tion are considered also application-level exceptions, and may be used in the throws
clauses of the create, remove, and finder methods of the enterprise Bean class.

The application-level exceptions are meant to be thrown to the client to indicate an ap-
plication-specific error condition (for example, exceeding a bank-imposed withdrawal
limit on a checking account, or an attempt to create a duplicate account).

The enterprise Bean developer may assume that the container passes these exceptions
unchanged to the client.

12.2.2 System-level exceptions

The enterprise Bean developer should throw thejava.rmi.RemoteExceptionfrom any
of its method (business method,ejbCreate, ejbRemove, and any of the other container
callback methods) to indicate an unexpected system-level failure (e.g. failure to open
database connection).

EJB 1.0 does not standardize the system-level exceptions that a Bean instance
can throw to its container.

12.2.3 Marking a transaction for rollback

The enterprise Bean developer must assume that the container does not automatically
rollback the client’s transaction if the Bean throws an exception (this applies to both the
application and system-level exceptions). Therefore, the enterprise Bean developer
needs to ensure that the Bean is in a consistent state before throwing an exception.

If the Bean cannot ensure that is in an consistent state at the time it throws an exception,
the Bean should use thesetRollbackOnlymethod on theEJBContextinterface to mark
a transaction for rollback before it throws the exception. This mechanism allows the
Bean to make an explicit decision whether a transaction should be rolled back or not.

12.3 Rules for the container provider

The container must handle exceptions thrown by the enterprise Bean’s methods as fol-
lows.

12.3.1 Application-level exceptions

The container must pass all the application-level exceptions (i.e. all exceptions defined
in a method’s throws clause other than thejava.rmi.RemoteException) thrown by the
enterprise Bean’s business methods,ejbCreate, ejbPostCreate, ejbRemove, and
ejbFind<METHOD>methods to the client. This means, for example, that the container
must not convert an application-level exception into thejava.rmi.RemoteException.

Enterprise JavaBeans

Sun Microsystems Inc. 109 March 21, 1998

12.3.2 System-level exceptions

The container should catch alljava.rmi.RemoteExceptionexceptions thrown by the en-
terprise Bean’s methods. The container should log the exception to alert the system ad-
ministrator of the problem. If the error prevents successful completion of a client’s
request, the container must throw thejava.rmi.RemoteExceptionto the client. The con-
tainer may rethrow the exception thrown originally by the Bean, or throw a different
exception (which must bejava.rmi.RemoteException or a subclass thereof).

12.3.3 Unchecked exceptions

The container must catch all unchecked exceptions thrown by the enterprise Bean’s
methods. The container should log the exception, and must throw thejava.rmi.Remote-
Exceptionto the client. The container must assume that the instance is in an undefined
state, and must not use the instance for further requests. If the instance participated in
a transaction, the container must roll back the transaction, or mark it for rollback.

12.3.4 Exceptions and transactions

In general, a checked exception (both application and system-level) thrown by an en-
terprise Bean method should not cause the container to automatically rollback a trans-
action or mark the transaction for rollback. This allows the client to recover from the
exception.

If the container decides for any reason to mark a transaction for rollback, it should
throw thejavax.jts.TransactionRolledbackExceptionto the client. The javax.jts.Trans-
actionRolledbackExceptionis a subclass of thejava.rmi.RemoteException, and it in-
forms the client that any attempted recovery of the exception within the transaction
would be fruitless since the transaction cannot commit.

There are four cases that require the container to rollback a transaction after an instance
method execution resulted in an exception:

• If the enterprise Bean’s method that threw the exception executed in a
transaction that was automatically started by the container before dispatching
the method (Section 11.4 explains when the container automatically starts a
transaction before calling an enterprise Bean’s method), the container must
rollback the transaction when it catches any exception (including application-
level exceptions) from the enterprise Bean’s method before it throws an
exception to the client (the exception thrown to the client is determined using
the rules in the previous subsection). If the client is associated with a
transaction, the client’s transaction is not marked for rollback because the
instance executed in a different transaction (note that this case can happen only
if the Bean is deployed with the TX_REQUIRES_NEW transaction attribute).

• If an instance of a TX_BEAN_MANAGED entity bean or stateless session
bean throws an exception while the instance is associated with a transaction, the
container must roll back the transaction before throwing the appropriate
exception to the client.

Enterprise JavaBeans

Sun Microsystems Inc. 110 March 21, 1998

• If an instance has thrown an unchecked exception while executing in a client’s
transaction context, the container must mark the transaction for rollback and
throw javax.jts.TransactionRolledbackException to the client.

• If a TX_BEAN_MANAGED bean instance throws an unchecked exception
while the instance is associated with a transaction, the container must roll back
the transaction, and throw thejavax.jts.RemoteException to the client.

Enterprise JavaBeans

Sun Microsystems Inc. 111 March 21, 1998

13 Support for distribution

13.1 Overview

Support for remote client access to an enterprise Bean object is through the standard
Java API for remote method invocation (Java RMI) [3]. This API allows a client to in-
voke an enterprise Bean object using any distributed object protocol, including the in-
dustry standard IIOP protocol, as defined in the OMG Java to IDL Mapping
specification [5].

The Java RMI API makes access to an enterprise Bean objectlocation transparentto a
client programmer.

13.2 Client-side objects

The following objects are present in the client’s JVM:

• A local for the EJB object.

• A stub for the enterprise Bean’s home object.

The EJB home object, and the EJB object are Java RMI remote objects. The Java RMI
specification [3] and the OMG Java to IDL Mapping specification [5] define the stubs
for the factory, container, and EJB objects, and the communication between the stubs
and the objects on the server.

The communication stubs and skeletons are generated at enterprise Bean’s deployment
time by the EJB container provider tools.

13.3 Interoperability via network protocol

13.3.1 Mapping to CORBA

The standard mapping of Enterprise JavaBeans to CORBA is defined in [6].

enterprise Bean

container ‘s address space (i.e. JVM)

EJB home object

EJB object

remote

client address space (i.e. JVM)

client

EJB object stub

EJB home stub container

Enterprise JavaBeans

Sun Microsystems Inc. 112 March 21, 1998

The mapping enables the following interoperability:

• A non-Java CORBA client can access any enterprise Bean object.

• A client using an ORB from one vendor can access enterprise Beans residing on
a CORBA-based EJB server provided by another vendor.

• Enterprise Beans in one CORBA-based EJB server can access enterprise Beans
in another CORBA-based EJB server.

13.3.2 Support for other protocols

Other forms of distributions are possible. For example, a client may use HTTP to in-
voke a servlet that invokes an enterprise Bean object through the EJB object and home
interfaces.

A container may also provide additional client’s view API for the installed enterprise
Beans. For example, a container may choose to expose the installed enterprise Beans to
OLE Automation clients, such as Visual Basic or Visual Basic Scripting engine. The
mapping to protocols other than IIOP is not covered by the current EJB specification.

Enterprise JavaBeans

Sun Microsystems Inc. 113 March 21, 1998

14 Support for security

The Enterprise JavaBeans architecture makes it possible to shift most of the burden of
implementing security management from the enterprise Bean to the EJB container and
server.

Support for security in Enterprise JavaBeans includes the following components:

• Existing Java programming language security APIs defined in the core package
java.security.

• Security-related methods in thejavax.ejb.EJBContextinterface.

• Security-related attributes in the deployment descriptor.

The following sections describe the support for security in more detail.

14.1 Packagejava.security

The packagejava.securityprovides the generic Java programming language security-
related interfaces. The Enterprise JavaBeans architecture uses the applicable existing
Java programming language security APIs.

More specifically, the Enterprise JavaBeans architecture uses thejava.security.Identity
class as the API to describe a user identity for security purposes. An instance ofjava.se-
curity.Identitycan describe a specific user, or a security role.

Please refer to the JDK reference page for the description of thejava.security.Identity
class.

The EJB container is responsible for mapping the instances of thejava.security.Identity
class to the user accounts and/or roles of the EJB server (i.e. user accounts and roles
defined and managed by the underlying platform). This mapping is done in a platform-
specific way.

14.2 Security-related methods inEJBContext

The Enterprise JavaBeans API allows an enterprise Bean instance to obtain the identity
of the client that invoked the current method. For this purpose, thejavax.ejb.EJBCon-
text interface contains the following methods:

• getCallerIdentity()

• isCallerInRole(Identity ident)

Please refer to reference page ofjavax.ejb.EJBContextfor the description of these
methods.

The following examples illustrates how an enterprise Bean instance can obtain the iden-
tity of the client that invoked the current method:

/* Obtain the security identity of the client. */
Identity caller = EJBContext.getCallerIdentity();

/* getName returns a printable representation of identity. */

Enterprise JavaBeans

Sun Microsystems Inc. 114 March 21, 1998

String clientAccount = caller.getName();

The following examples illustrates how an enterprise Bean instance can test whether
the invoker of the method has a specified security role.

/*
* Check if the client has the “vip-account” role
*/
Identity vipAccount = new Identity(“vip-account”);

if (EJBContext.isCallerInRole(vipAccount)) {
do something;

} else {
do something else;

}

14.3 Security-related deployment descriptor properties

This section describes the declarative security information passed in the deployment
descriptor in the ejb-jar file. This information is set by the enterprise Bean provider, and
read and interpreted by the container tools at deployment time.

14.3.1 Access control entries

An enterprise Bean’s deployment descriptor includes access control entries that allow
the container to perform runtime security management on behalf of the enterprise Bean.

The enterprise Bean descriptor allows the Bean provider to specify anAccessContro-
lEntry for an individual method and/or for the entire Bean. If anAccessControlEntry is
specified for the entire Bean, it applies to all the methods that do not have an individual
AccessControlEntry.

An AccessControlEntryassociates a method with a list of entries of the typejava.secu-
rity.Identity. These security identities are users or roles that are allowed to invoke the
method.

The container imports theAccessControlEntriesfrom the deployment descriptor at de-
ployment time and enforces them at runtime. The container typically allows the deploy-
er and system administrator to modify theAccessControlEntriesusing container-
provided tools.

14.3.2 RunAsMode and RunAsIdentity

An enterprise Bean’s deployment descriptor allows the Bean provider to specify the se-
curity identity to be associated with the execution of the enterprise Bean’s methods. At
runtime, when an instance of the enterprise Bean makes a call to an underlying resource
manager (e.g. a database access call) or invokes another enterprise Bean, this security
identity will be associated with the call.

The identity is referred to as “RunAs” security identity. It consists of two parts:

Enterprise JavaBeans

Sun Microsystems Inc. 115 March 21, 1998

• RunAsModethat specifies whether a method should execute with the security
identity of the client (CLIENT_IDENTITY), the identity of a privileged system
account (SYSTEM_IDENTITY), or with the identity of a specified user
account (SPECIFIED_IDENTITY).

• RunAsIdentitythat specifies the user identity if the value ofRunAsModeis equal
to SPECIFIED_IDENTITY. This value is ignored if the value ofRunAsModeis
CLIENT_IDENTITY or SYSTEM_IDENTITY.

The EJB container maps the SYSTEM_IDENTITY to a privileged account of the un-
derlying platform in a platform specific way.

The deployment descriptor allows the Bean provider to specify the RunAs security
identity at the level of the entire Bean, or at the level of individual methods. The value
specified at the Bean-level applies to all the methods that do not have a method-level
security identity specified.

While the method-level RunAs security identity may be different for different methods
of the same Bean, the following restrictions must be observed in their use.

• For a stateful session Bean, the RunAs security identity associated with an
instance is determined at instance creation time. This security identity remains
associated with the instance for the session lifetime. This means that the security
identity associated with theejbCreate(...)method will apply not only to the
ejbCreate(...)method itself, but also to all the methods invoked subsequently on
the instance. It is required that the invoked methods do not specify a conflicting
RunAs security identity.

• For stateless session Beans and entity Beans, it is required that all methods
invoked on a Bean instance in the same transaction be executed with the same
RunAs identity. This means that the specified RunAs identity for all the
methods that are executed in the same transaction must be the same.

These restrictions must be observed by the Bean provider and the application assem-
bler. If an EJB container detects violation of the rules, it should throw thejava.rmi.Re-
moteException to the client, and log the error to alert the system administrator.

Enterprise JavaBeans

Sun Microsystems Inc. 116 March 21, 1998

15 Ejb-jar file

Enterprise JavaBeans defines the format for the packaging of enterprise Beans. The
packaging format can be used both for distribution of individual enterprise Beans as
components, and for distribution of an entire server-side application built of multiple
enterprise Beans.

15.1 ejb-jar file

Enterprise Beans are packaged for deployment in a standard Java programming lan-
guage Archive File called anejb-jar file.

An ejb-jar file contains the enterprise Beans’ class files and their deployment descrip-
tors. The ejb-jar file’s manifest file identifies the enterprise Beans that are included in
the file.

15.2 Deployment descriptor

An enterprise Bean provider must include a deployment descriptor for each enterprise
Bean. A deployment descriptor is a serialized instance of ajavax.ejb.deployment.Enti-
tyDescriptoror javax.ejb.deployment.SessionDescriptorobject. Please refer to the ref-
erence pages for information on deployment descriptors.

15.3 ejb-jar Manifest

An ejb-jar file must include amanifest file. The manifest file identifies the enterprise
Beans included in the ejb-jar file.

The manifest file must be named “META-INF/MANIFEST.MF”.

The manifest file is organized as a sequence ofsections. Sections are separated by emp-
ty lines. Each section contains one or moreheaders, each of the form<tag>: <value>.
The sections that provide information on enterprise Beans in the archive use headers
with the following<tags>:

• Name, whose<value> is the relative name of the enterprise Bean’s serialized
deployment descriptor.

• Enterprise-Bean, whose<value> is True.

Every enterprise Bean must have a section in the manifest file. The headers with the
Name andEnterprise-Bean<tags> are mandatory for all enterprise Beans.

For example, two relevant sections of an ejb-jar manifest might be:

Name: bank/AccountDeployment.ser
Enterprise-Bean: True

Name: quotes/QuoteServerDeployment.ser
Enterprise-Bean: True

Enterprise JavaBeans

Sun Microsystems Inc. 117 March 21, 1998

16 Enterprise Bean provider responsibilities

16.1 Classes and interfaces

The enterprise Bean provider is responsible for the following classes and interfaces:

• The enterprise Bean class.

• The enterprise Bean’s remote interface.

• The enterprise Bean’s home interface.

The requirements for these classes and interfaces are specified in Sections 6.9, 9.7, and
9.10.

Furthermore, the Java programming language types used for the arguments, return val-
ue, and exceptions of the enterprise Bean’s remote interface and enterprise Bean’s
home interface must be valid types in the Java to IDL Mapping specification [5].

16.2 Environment properties

If the enterprise Bean depends on certain environment properties, the enterprise Bean
provider must provide the environment properties for the Bean. Environment properties
are defined as a standardjava.util.Properties object.

The enterprise Bean provider must define all thekey:valuepairs that the enterprise
Bean’s instances will require at runtime. The values are typically edited at deployment
time by the container provider tools.

16.3 Deployment descriptor

The enterprise Bean provider must provide a deployment descriptor for every enterprise
Bean. The format of a deployment descriptor is described in Section 15.2.

16.4 Programming restrictions

 NOTE: this is only a partial list of restrictions that the enterprise developer
must observe.

The enterprise Bean developer must follow these restriction when implementing the
methods of the enterprise Bean’s class:

• An enterprise Bean is not allowed to start new threads or attempt to terminate
the running thread.

• An enterprise Bean is not allowed to use read/writestatic fields. Using read-
onlystaticfields is allowed. Therefore, allstaticfields must be declared asfinal.

• An enterprise Bean is not allowed to use thread synchronization primitives.

• An enterprise Bean is not allowed to use the calls to an underlying transaction
manager directly. The only exception are enterprise Beans with the
TX_BEAN_MANAGEDtransaction attribute which are allowed to use the
javax.jts.UserTransactioninterface to demarcate transactions.

Enterprise JavaBeans

Sun Microsystems Inc. 118 March 21, 1998

• An enterprise Bean is not allowed to change itsjava.security.Identity. Any such
attempt will result in thejava.security.SecurityException being thrown.

• A transaction-enabled enterprise Bean using JDBC is not allowed to use the
commit and rollback methods. An enterprise Bean that is not transaction-
enabled is allowed to use thecommit androllback methods.

16.5 Component packaging responsibilities

The enterprise Bean provider is responsible for putting the following classes and files
in the ejb-jar file:

• The enterprise Bean class with any classes that the enterprise Bean depends on.

• The deployment descriptor file that contains the deployment attributes for the
enterprise Bean.

• The enterprise Bean’s remote interface with any classes that the interface
depends on.

• The enterprise Bean’s home interface with any classes that the interface
depends on.

• Enterprise Bean’s environment properties.

• The Manifest file that identifies the deployment descriptors of all the enterprise
Beans in the ejb-jar file.

Enterprise JavaBeans

Sun Microsystems Inc. 119 March 21, 1998

17 Container provider responsibilities

17.1 Enterprise Bean deployment tools

17.1.1 Tools to read ejb-jar

The container must include tools that support deployment of enterprise Beans packaged
in the ejb-jar file format.

The tools must discover all the enterprise Beans that are in the JAR file by reading the
ejb-jar Manifest file. The Manifest file provides the relative name of the serialized de-
ployment descriptors (i.e. .ser files).

For each enterprise Bean in the ejb-jar file, the tools must:

• Deserialize the deployment descriptor, and read the information contained in
the Bean’s deployment descriptor using the getter methods. The information
provides the default setting for the enterprise Bean’s declarative attributes, such
as transaction and security attributes. The deployment descriptor also includes
the initial value of the Bean’s environment properties, and provides the class
names for the enterprise Bean class, remote and home interfaces, and the class
name of the primary key type.

• Generate the container-specific classes as specified in the Sections 6.11 and 9.8.

• Generate the classes for stubs and skeletons used by the underlying distributed
objects protocol.

• Make the enterprise Bean’s home interface available in JNDI for clients to be
able to find and access the enterprise Bean.

• Make the enterprise Bean’s environment properties available to the Bean
instances at runtime.

17.1.2 Tools to manage deployment descriptor attributes

The EJB container may provide tools that allow the EJB deployer to modify the infor-
mation imported from the enterprise Bean’s deployment descriptor. In certain scenari-
os, the tools may restrict the deployer from changing some or all deployment descriptor
attributes. The EJB specification does not specify which attributes can or cannot be
changed at deployment time.

17.1.3 Tools to customize business logic

The EJB container may provide tools that allow the EJB deployer to customize business
logic of the deployed enterprise Beans. For example, the tools may allow the deployer
to write wrapperfunctions for the business methods. To allow maximum freedom for
the tool vendors, the EJB specification does not architect the customization.

17.1.4 Tools for container-managed persistence

The EJB containers that support container-managed persistence should provide tools
that allow the deployer to map the container-managed fields to an enterprise’s existing

Enterprise JavaBeans

Sun Microsystems Inc. 120 March 21, 1998

data source or application system. These tools are typically specific to the legacy data
source or application system.

17.2 Runtime infrastructure

The EJB container must provide the runtime infrastructure that complies with the EJB
specification. In particular, the container must:

• Implement the Session protocol described in Chapters 5 and 6.

• Implement the Entity protocol (if the container supports entities) described in
Chapters 8 and 9.

• Implement the support for transactions described in Chapter 11.

• Implement the support for security described in Chapter 14.

• Handle exceptions as described in Chapter 12.

• Make the enterprise Bean’s environment properties available to the Bean
instances at runtime through thejavax.ejb.EJBContext interface.

• Should implement the EJB to CORBA mapping (if the container uses IIOP as
the distributed object protocol) defined in [6].

17.3 Runtime management tools

The container should provide tools that allow runtime management and monitoring of
the enterprise Beans running in the container.

17.4 Evolution management tools

The container should provide tools that allow the deployer and system administrator to
manage evolution of the enterprise Beans’ implementation. The tools should make it
possible, for example, to upgrade the business logic implemented by an enterprise Bean
by installing a new version of the enterprise Bean class.

Enterprise JavaBeans

Sun Microsystems Inc. 121 March 21, 1998

18 Enterprise JavaBeans API Reference

The following interfaces and classes comprise the Enterprise JavaBeans API:

packagejavax.ejb:

Interfaces:

public interface EJBContext
public interface EJBHome
public interface EJBMetaData
public interface EJBObject
public interface EnterpriseBean
public interface EntityBean
public interface EntityContext
public interface Handle
public interface SessionBean
public interface SessionContext
public interface SessionSynchronization

Classes:

public class CreateException
public class DuplicateKeyException
public class FinderException
public class ObjectNotFoundException
public class RemoveException

packagejavax.ejb.deployment:

Classes:

public class AccessControlEntry
public class ControlDescriptor
public class DeploymentDescriptor
public class EntityDescriptor
public class SessionDescriptor

Enterprise JavaBeans

Sun Microsystems Inc. 122 March 21, 1998

Interface EJBContext

public interface javax.ejb. EJBContext
{
 public abstract Identity

getCallerIdentity ();
 public abstract EJBHome getEJBHome ();
 public abstract Properties

getEnvironment ();
 public abstract boolean

getRollbackOnly ();
 public abstract UserTransaction

getUserTransaction ();
 public abstract boolean

isCallerInRole (Identity role);
 public abstract void setRollbackOnly ();
}

The EJBContext interface provides an instance with access to the container-provided runtime context of an
enterprise Bean instance.

This interface is extended by the SessionContext and EntityContext interface to provide additional methods
specific to the enterprise Bean type.

Methods

• getCallerIdentity

public abstract Identity getCallerIdentity()

Obtain the java.security.Identity of the caller.

Returns:
The Identity object that identifies the caller.

• getEJBHome

public abstract EJBHome getEJBHome()

Obtain the enterprise bean's home interface.

Returns:
The enterprise bean's home interface.

• getEnvironment

public abstract Properties getEnvironment()

Obtain the enterprise bean's environment properties.

Note: If the enterprise bean has no environment properties this method returns an empty java.util.Properties
object. This method never returns null.

Returns:
The environment properties for the enterprise bean.

Enterprise JavaBeans

Sun Microsystems Inc. 123 March 21, 1998

• getRollbackOnly

public abstract boolean getRollbackOnly()

Test if the transaction has been marked for rollback only. An enterprise bean instance can use this operation,
for example, to test after an exception has been caught, whether it is fruitless to continue computation on
behalf of the current transaction.

Returns:
True if the current transaction is marked for rollback, false otherwise.

• getUserTransaction

public abstract UserTransaction getUserTransaction()
 throws IllegalStateException

Obtain the transaction demarcation interface.

Returns:
The UserTransaction interface that the enterprise bean instance can use for transaction demarca-
tion.

Throws: IllegalStateException
Thrown if the instance container does not make the UserTransaction interface available to the
instance (only the enterprise beans with the TX_BEAN_MANAGED transaction attribute are
allowed to use the UserTransaction interface).

• isCallerInRole

public abstract boolean
isCallerInRole(Identity role)

Test if the caller has a given role.

Parameters:
role

The java.security.Identity of the role to be tested.

Returns:
True if the caller has the specified role.

• setRollbackOnly

public abstract void setRollbackOnly()

Mark the current transaction for rollback. The transaction will become permanently marked for rollback. A
transaction marked for rollback can never commit.

Enterprise JavaBeans

Sun Microsystems Inc. 124 March 21, 1998

Interface EJBHome

public interface javax.ejb. EJBHome
 extends java.rmi. Remote
{
 public abstract EJBMetaData

getEJBMetaData ();
 public abstract void

remove (Handle handle);
 public abstract void

remove (Object primaryKey);
}

The EJBHome interface is extended by all enterprise Bean's home interfaces. An enterprise Bean's home
interface defines the methods that allow a client to create, find, and remove EJB objects.

Each enterprise Bean has a home interface. The home interface must extend the javax.ejb.EJBHome inter-
face, and define the enterprise Bean type specific create and finder methods (session Beans do not have find-
ers).

The home interface is defined by the enterprise Bean provider and implemented by the enterprise Bean con-
tainer.

Methods

• getEJBMetaData

public abstract EJBMetaData getEJBMetaData()
 throws RemoteException

Obtain the EJBMetaData interface for the enterprise Bean. The EJBMetaData interface allows the client to
obtain information about the enterprise Bean.

The information obtainable via the EJBMetaData interface is intended to be used by tools.

Returns:
The enterprise Bean's EJBMetaData interface.

Throws: RemoteException
Thrown when the method failed due to a system-level failure.

• remove

public abstract void remove(Handle handle)
 throws RemoteException, RemoveException

Remove an EJB object identified by its handle.

Throws: RemoveException
Thrown if the enterprise Bean or the container does not allow the client to remove the object.

Throws: RemoteException
Thrown when the method failed due to a system-level failure.

• remove

public abstract void remove(Object primaryKey)
 throws RemoteException, RemoveException

Enterprise JavaBeans

Sun Microsystems Inc. 125 March 21, 1998

Remove an EJB object identified by its primary key.

Throws: RemoveException
Thrown if the enterprise Bean or the container does not allow the client to remove the object.

Throws: RemoteException
Thrown when the method failed due to a system-level failure.

Enterprise JavaBeans

Sun Microsystems Inc. 126 March 21, 1998

Interface EJBMetaData

public interface javax.ejb. EJBMetaData
{
 public abstract EJBHome getEJBHome ();
 public abstract Class

getHomeInterfaceClass ();
 public abstract Class

getPrimaryKeyClass ();
 public abstract Class

getRemoteInterfaceClass ();
 public abstract boolean isSession ();
}

The EJBMetaData interface allows a client to obtain the enterprise Bean's meta-data information.

The meta-data is intended for development tools used for building applications that use deployed enterprise
Beans, and for clients using a scripting language to access the enterprise Bean.

Note that the EJBMetaData is not a remote interface. The class that implements this interface (this class is
typically generated by container tools) must be serializable, and must be a valid RMI/IDL value type.

Methods

• getEJBHome

public abstract EJBHome getEJBHome()

Obtain the home interface of the enterprise Bean.

• getHomeInterfaceClass

public abstract Class getHomeInterfaceClass()

Obtain the Class object for the enterprise Bean's home interface.

• getPrimaryKeyClass

public abstract Class getPrimaryKeyClass()

Obtain the Class object for the enterprise Bean's primary key class.

• getRemoteInterfaceClass

public abstract Class getRemoteInterfaceClass()

Obtain the Class object for the enterprise Bean's remote interface.

• isSession

public abstract boolean isSession()

Test if the enterprise Bean's type is "session".

Returns:
True if the type of the enterprise Bean is session.

Enterprise JavaBeans

Sun Microsystems Inc. 127 March 21, 1998

Interface EJBObject

public interface javax.ejb. EJBObject
 extends java.rmi. Remote
{
 public abstract EJBHome getEJBHome ();
 public abstract Handle getHandle ();
 public abstract Object getPrimaryKey ();
 public abstract boolean

isIdentical (EJBObject obj);
 public abstract void remove ();
}

The EJBObject interface is extended by all enterprise Bean's remote interface. An enterprise Bean's remote
interface provides the client's view of an EJB object. An enterprise Bean's remote interface defines the busi-
ness methods callable by a client.

Each enterprise Bean has a remote interface. The remote interface must extend the javax.ejb.EJBObject
interface, and define the enterprise Bean specific business methods.

The enterprise Bean's remote interface is defined by the enterprise Bean provider and implemented by the
enterprise Bean container.

Methods

• getEJBHome

public abstract EJBHome getEJBHome()
 throws RemoteException

Obtain the enterprise Bean's home interface. The home interface defines the enterprise Bean's create, finder,
and remove operations.

Returns:
A reference to the enterprise Bean's home interface.

Throws: RemoteException
Thrown when the method failed due to a system-level failure.

• getHandle

public abstract Handle getHandle()
 throws RemoteException

Obtain a handle for the EJB object. The handle can be used at later time to re-obtain a reference to the EJB
object, possibly in a different Java Virtual Machine.

Returns:
A handle for the EJB object.

Throws: RemoteException
Thrown when the method failed due to a system-level failure.

• getPrimaryKey

public abstract Object getPrimaryKey()
 throws RemoteException

Enterprise JavaBeans

Sun Microsystems Inc. 128 March 21, 1998

Obtain the primary key of the EJB object.

Returns:
The EJB object's primary.

• isIdentical

public abstract boolean isIdentical(EJBObject obj)
 throws RemoteException

Test if a given EJB object is identical to the invoked EJB object.

Parameters:
obj

An object to test for identity with the invoked object.

Returns:
True if the given EJB object is identical to the invoked object, false otherwise.

Throws: RemoteException
Thrown when the method failed due to a system-level failure.

• remove

public abstract void remove()
 throws RemoteException, RemoveException

Remove the EJB object.

Throws: RemoteException
Thrown when the method failed due to a system-level failure.

Throws: RemoveException
The enterprise Bean or the container does not allow destruction of the object.

Enterprise JavaBeans

Sun Microsystems Inc. 129 March 21, 1998

Interface EnterpriseBean

public interface javax.ejb. EnterpriseBean
 extends java.io. Serializable
{
}

The EnterpriseBean interface must be implemented by every enterprise Bean class. It is a common super-
interface for the SessionBean and EntityBean interfaces.

Enterprise JavaBeans

Sun Microsystems Inc. 130 March 21, 1998

Interface EntityBean

public interface javax.ejb. EntityBean
 extends javax.ejb. EnterpriseBean
{
 public abstract void ejbActivate ();
 public abstract void ejbLoad ();
 public abstract void ejbPassivate ();
 public abstract void ejbRemove ();
 public abstract void ejbStore ();
 public abstract void

setEntityContext (EntityContext ctx);
 public abstract void

unsetEntityContext ();
}

The EntityBean interface is implemented by every entity enterprise Bean class. The container uses the Enti-
tyBean methods to notify the enterprise Bean instances of the instance's life cycle events.

Note: Support for entity enterprise Beans is optional for EJB 1.0 compliant containers. Support for entities
will become mandatory for EJB 2.0 compliant containers.

Methods

• ejbActivate

public abstract void ejbActivate()
 throws RemoteException

A container invokes this method when the instance is taken out of the pool of available instances to become
associated with a specific EJB object. This method transitions the instance to the ready state.

This method executes in an unspecified transaction context.

Throws: RemoteException
Thrown if the instance could not perform the function requested by the container because of a sys-
tem-level error.

• ejbLoad

public abstract void ejbLoad()
 throws RemoteException

A container invokes this method to instruct the instance to synchronize its state by loading it state from the
underlying database.

This method always executes in the proper transaction context.

Throws: RemoteException
Thrown if the instance could not perform the function requested by the container because of a sys-
tem-level error.

• ejbPassivate

public abstract void ejbPassivate()
 throws RemoteException

A container invokes this method on an instance before the instance becomes disassociated with a specific

Enterprise JavaBeans

Sun Microsystems Inc. 131 March 21, 1998

EJB object. After this method completes, the container will place the instance into the pool of available
instances.

This method executes in an unspecified transaction context.

Throws: RemoteException
Thrown if the instance could not perform the function requested by the container because of a sys-
tem-level error.

• ejbRemove

public abstract void ejbRemove()
 throws RemoteException, RemoveException

A container invokes this method before it removes the EJB object that is currently associated with the
instance. This method is invoked when a client invokes a remove operation on the enterprise Bean's home
interface or the EJB object's remote interface. This method transitions the instance from the ready state to
the pool of available instances.

This method is called in the transaction context of the remove operation.

Throws: RemoteException
Thrown if the instance could not perform the function requested by the container because of a sys-
tem-level error.

Throws: RemoveException
The enterprise Bean does not allow destruction of the object.

• ejbStore

public abstract void ejbStore()
 throws RemoteException

A container invokes this method to instruct the instance to synchronize its state by storing it to the underly-
ing database.

This method always executes in the proper transaction context.

Throws: RemoteException
Thrown if the instance could not perform the function requested by the container because of a sys-
tem-level error.

• setEntityContext

public abstract void
setEntityContext(EntityContext ctx)

 throws RemoteException

Set the associated entity context. The container invokes this method on an instance after the instance has
been created.

This method is called in an unspecified transaction context.

Parameters:
ctx

An EntityContext interface for the instance. The instance should store the reference to the
context in an instance variable.

Throws: RemoteException
Thrown if the instance could not perform the function requested by the container because of a sys-
tem-level error.

Enterprise JavaBeans

Sun Microsystems Inc. 132 March 21, 1998

• unsetEntityContext

public abstract void unsetEntityContext()
 throws RemoteException

Unset the associated entity context. The container calls this method before removing the instance.

This is the last method that the container invokes on the instance. The Java garbage collector will eventually
invoke the finalize() method on the instance.

This method is called in an unspecified transaction context.

Throws: RemoteException
Thrown if the instance could not perform the function requested by the container because of a sys-
tem-level error.

Enterprise JavaBeans

Sun Microsystems Inc. 133 March 21, 1998

Interface EntityContext

public interface javax.ejb. EntityContext
 extends javax.ejb. EJBContext
{
 public abstract EJBObject getEJBObject ();
 public abstract Object getPrimaryKey ();
}

The EntityContext interface provides an instance with access to the container-provided runtime context of an
entity enterprise Bean instance. The container passes the EntityContext interface to an entity enterprise Bean
instance after the instance has been created.

The EntityContext interface remains associated with the instance for the lifetime of the instance. Note that
the information that the instance obtains using the EntityContext interface (such as the result of the getPri-
maryKey() method) may change, as the container assigns the instance to different EJB objects during the
instance's life cycle.

Methods

• getEJBObject

public abstract EJBObject getEJBObject()
 throws IllegalStateException

Obtain a reference to the EJB object that is currently associated with the instance.

An instance of an entity enterprise Bean can call this method only when the instance is associated with an
EJB object identity, i.e. in the ejbActivate, ejbPassivate, ejbPostCreate method, ejbRemove, ejbLoad, ejb-
Store, and business methods.

An instance can use this method, for example, when it wants to pass a reference to itself in a method argu-
ment or result.

Returns:
The EJB object currently associated with the instance.

Throws: IllegalStateException
Thrown if the instance invokes this method while the instance is in a state that does not allow the
instance to invoke this method.

• getPrimaryKey

public abstract Object getPrimaryKey()
 throws IllegalStateException

Obtain the primary key of the EJB object that is currently associated with this instance.

An instance of an entity enterprise Bean can call this method only when the instance is associated with an
EJB object identity, i.e. in the ejbActivate, ejbPassivate, ejbPostCreate method, ejbRemove, ejbLoad, ejb-
Store, and business methods.

Note: The result of this method is that same as the result of getEJBObject().getPrimaryKey().

Returns:
The EJB object currently associated with the instance.

Throws: IllegalStateException

Enterprise JavaBeans

Sun Microsystems Inc. 134 March 21, 1998

Thrown if the instance invokes this method while the instance is in a state that does not allow the
instance to invoke this method.

Enterprise JavaBeans

Sun Microsystems Inc. 135 March 21, 1998

Interface Handle

public interface javax.ejb. Handle
{
 public abstract EJBObject getEJBObject ();
}

The Handle interface is implemented by all EJB object handles. A handle is an abstraction of a network ref-
erence to an EJB object. A handle is intended to be used as a "robust" persistent reference to an EJB object.

The implementation class for the handle (typically provided by the container) must be java.io.Serializable to
allow the client to serialize a handle object.

Methods

• getEJBObject

public abstract EJBObject getEJBObject()
 throws RemoteException

Obtain the EJB object represented by this handle.

Throws: RemoteException
The EJB object could not be obtained because of a system-level failure.

Enterprise JavaBeans

Sun Microsystems Inc. 136 March 21, 1998

Interface SessionBean

public interface javax.ejb. SessionBean
 extends javax.ejb. EnterpriseBean
{
 public abstract void ejbActivate ();
 public abstract void ejbPassivate ();
 public abstract void ejbRemove ();
 public abstract void

setSessionContext (SessionContext ctx);
}

The SessionBean interface is implemented by every session enterprise Bean class. The container uses the
SessionBean methods to notify the enterprise Bean instances of the instance's life cycle events.

Methods

• ejbActivate

public abstract void ejbActivate()
 throws RemoteException

The activate method is called when the instance is activated from its "passive" state. The instance should
acquire any resource that it has released earlier in the ejbPassivate() method.

This method is called with no transaction context.

Throws: RemoteException
Thrown if the instance could not perform the function requested by the container because of a sys-
tem-level error.

• ejbPassivate

public abstract void ejbPassivate()
 throws RemoteException

The passivate method is called before the instance enters the "passive" state. The instance should release any
resources that it can re-acquire later in the ejbActivate() method.

After the passivate method completes, the instance must be in a state that allows the container to use the Java
Serialization protocol to externalize and store away the instance's state.

This method is called with no transaction context.

Throws: RemoteException
Thrown if the instance could not perform the function requested by the container because of a sys-
tem-level error.

• ejbRemove

public abstract void ejbRemove()
 throws RemoteException

A container invokes this method before it ends the life of the session object. This happens as a result of a cli-
ent's invoking a remove operation, or when a container decides to terminate the session object after a time-
out.

This method is called with no transaction context.

Enterprise JavaBeans

Sun Microsystems Inc. 137 March 21, 1998

Throws: RemoteException
Thrown if the instance could not perform the function requested by the container because of a sys-
tem-level error.

• setSessionContext

public abstract void
setSessionContext(SessionContext ctx)

 throws RemoteException

Set the associated session context. The container calls this method after the instance creation.

The enterprise Bean instance should store the reference to the context object in an instance variable.

This method is called with no transaction context.

Parameters:
ctx

A SessionContext interface for the instance.

Throws: RemoteException
Thrown if the instance could not perform the function requested by the container because of a sys-
tem-level error.

Enterprise JavaBeans

Sun Microsystems Inc. 138 March 21, 1998

Interface SessionContext

public interface javax.ejb. SessionContext
 extends javax.ejb. EJBContext
{
 public abstract EJBObject getEJBObject ();
}

The SessionContext interface provides access to the runtime session context that the container provides for a
session enterprise Bean instance. The container passes the SessionContext interface to an instance after the
instance has been created. The session context remains associated with the instance for the lifetime of the
instance.

Methods

• getEJBObject

public abstract EJBObject getEJBObject()
 throws IllegalStateException

Obtain a reference to the EJB object that is currently associated with the instance.

An instance of a session enterprise Bean can call this method at anytime between the ejbCreate() and ejbRe-
move() methods, including from within the ejbCreate() and ejbRemove() methods.

An instance can use this method, for example, when it wants to pass a reference to itself in a method argu-
ment or result.

Returns:
The EJB object currently associated with the instance.

Throws: IllegalStateException
Thrown if the instance invokes this method while the instance is in a state that does not allow the
instance to invoke this method.

Enterprise JavaBeans

Sun Microsystems Inc. 139 March 21, 1998

Interface SessionSynchronization

public interface javax.ejb. SessionSynchronization
{
 public abstract void afterBegin ();
 public abstract void

afterCompletion (boolean committed);
 public abstract void beforeCompletion ();
}

The SessionSynchronization interface allows a session Bean instance to be notified by its container of trans-
action boundaries.

An session Bean class is not required to implement this interface. A session Bean class should implement
this interface only if it wishes to synchronize its state with the transactions.

Methods

• afterBegin

public abstract void afterBegin()
 throws RemoteException

The afterBegin method notifies a session Bean instance that a new transaction has started, and that the subse-
quent business methods on the instance will be invoked in the context of the transaction.

The instance can use this method, for example, to read data from a database and cache the data in the
instance fields.

This method executes in the proper transaction context.

Throws: RemoteException
Thrown if the instance could not perform the function requested by the container because of a sys-
tem-level error.

• afterCompletion

public abstract void
afterCompletion(boolean committed)

 throws RemoteException

The afterCompletion method notifies a session Bean instance that a transaction commit protocol has com-
pleted, and tells the instance whether the transaction has been committed or rolled back.

This method executes with no transaction context.

This method executes with no transaction context.

Parameters:
committed

True if the transaction has been committed, false if is has been rolled back.

Throws: RemoteException
Thrown if the instance could not perform the function requested by the container because of a sys-
tem-level error.

• beforeCompletion

public abstract void beforeCompletion()

Enterprise JavaBeans

Sun Microsystems Inc. 140 March 21, 1998

 throws RemoteException

The beforeCompletion method notifies a session Bean instance that a transaction is about to be committed.
The instance can use this method, for example, to write any cached data to a database.

This method executes in the proper transaction context.

Note: The instance may still cause the container to rollback the transaction by invoking the setRollback-
Only() method on the instance context, or by throwing an exception.

Throws: RemoteException
Thrown if the instance could not perform the function requested by the container because of a sys-
tem-level error.

Enterprise JavaBeans

Sun Microsystems Inc. 141 March 21, 1998

Class CreateException

public class javax.ejb. CreateException
 extends java.lang. Exception
{
 public CreateException ();
 public CreateException (String message);
}

The CreateException exception must be included in the throws clauses of all create(...) methods define in an
enterprise Bean's remote interface.

The exception is used as a standard application-level exception to report a failure to create an entity EJB
object.

Constructors

• CreateException

public CreateException()

Constructs an CreateException with no detail message.

• CreateException

public CreateException(String message)

Constructs an CreateException with the specified detail message.

Enterprise JavaBeans

Sun Microsystems Inc. 142 March 21, 1998

Class DuplicateKeyException

public class javax.ejb. DuplicateKeyException
 extends javax.ejb. CreateException
{
 public DuplicateKeyException ();
 public

DuplicateKeyException (String message);
}

The DuplicateKeyException exception is thrown if an entity EJB object cannot be created because an object
with the same key already exists. This exception is thrown by the create methods defined in an enterprise
Bean's home interface.

Constructors

• DuplicateKeyException

public DuplicateKeyException()

Constructs an DuplicateKeyException with no detail message.

• DuplicateKeyException

public DuplicateKeyException(String message)

Constructs an DuplicateKeyException with the specified detail message.

Enterprise JavaBeans

Sun Microsystems Inc. 143 March 21, 1998

Class FinderException

public class javax.ejb. FinderException
 extends java.lang. Exception
{
 public FinderException ();
 public FinderException (String message);
}

The FinderException exception must be included in the throws clause of every findMETHOD(...) method of
an entity Bean's home interface.

The exception is used as a standard application-level exception to report a failure to find the requested EJB
object(s).

Constructors

• FinderException

public FinderException()

Constructs an FinderException with no detail message.

• FinderException

public FinderException(String message)

Constructs an FinderException with the specified detail message.

Enterprise JavaBeans

Sun Microsystems Inc. 144 March 21, 1998

Class ObjectNotFoundException

public class javax.ejb. ObjectNotFoundException
 extends javax.ejb. FinderException
{
 public ObjectNotFoundException ();
 public

ObjectNotFoundException (String message);
}

The ObjectNotFoundException exception is thrown by a finder method to indicate that the specified EJB
object does not exist.

Only the finder methods that are declared to return a single EJB object use this exception. This exception
should not be thrown by finder methods that return a collection of EJB objects (they should return a null col-
lection instead).

Constructors

• ObjectNotFoundException

public ObjectNotFoundException()

Constructs an ObjectNotFoundException with no detail message.

• ObjectNotFoundException

public ObjectNotFoundException(String message)

Constructs an ObjectNotFoundException with the specified detail message.

Enterprise JavaBeans

Sun Microsystems Inc. 145 March 21, 1998

Class RemoveException

public class javax.ejb. RemoveException
 extends java.lang. Exception
{
 public RemoveException ();
 public RemoveException (String message);
}

The RemoveException exception is thrown at an attempt to remove an EJB object when the enterprise Bean
or the container does not allow the EJB object to be removed.

Constructors

• RemoveException

public RemoveException()

Constructs an RemoveException with no detail message.

• RemoveException

public RemoveException(String message)

Constructs an RemoveException with the specified detail message.

Enterprise JavaBeans

Sun Microsystems Inc. 146 March 21, 1998

Class AccessControlEntry

public class javax.ejb.deployment. AccessControlEntry
 extends java.lang. Object
 implements java.io. Serializable
{
 public AccessControlEntry ();
 public AccessControlEntry (Method method);
 public

AccessControlEntry (Method method,
Identity identities[]);

 public Identity[] getAllowedIdentities ();
 public Identity

getAllowedIdentities (int index);
 public Method getMethod ();
 public void

setAllowedIdentities (Identity values[]);
 public void

setAllowedIdentities (int index,
Identity value);

 public void setMethod (Method value);
}

The class AccessControlEntry associates a list of security identities with an enterprise Bean's method. The
specified identities are permitted to invoke the enterprise Bean's method.

The Method that is associated with an AccessControlEntry must be a Method of the enterprise Bean class
and the method must be one of the following: a business method, an ejbCreate(...) method, a finder method,
or the ejbDestroy method.

If the Method used in an AccessControlEntry is null, then the AccessControlEntry is considered to be asso-
ciated with the entire Bean. A Bean-level AccessControlEntry provides the default value for the methods
that do not have a method-level AccessControlEntry.

Constructors

• AccessControlEntry

public AccessControlEntry()

Constructor.

• AccessControlEntry

public AccessControlEntry(Method method)

Construct an AccessControlEntry for the specified enterprise Bean's method. If method is null, the entry is
considered to be the default AccessControlEntry for the enterprise Bean.

Parameters:
method

An enterprise Bean's method, or null if this is the default AccessControlEntry for the enter-
prise Bean.

• AccessControlEntry

public AccessControlEntry(Method method,

Enterprise JavaBeans

Sun Microsystems Inc. 147 March 21, 1998

Identity identities[])

Construct an AccessControlEntry for the specified enterprise Bean's method. If method is null, the entry is
considered to be the default AccessControlEntry for the enterprise Bean.

Parameters:
method

An enterprise Bean's method, or null if this is the default AccessControlEntry for the enter-
prise Bean.

identities
An array of security Identities that are permitted to invoke this method.

Methods

• getAllowedIdentities

public Identity[] getAllowedIdentities()

Get the array of Identities that are permitted to invoke this method.

Returns:
An array of security Identities that are permitted to invoke this method.

• getAllowedIdentities

public Identity getAllowedIdentities(int index)

Get the Identity at the specified index from the array of Identities that are permitted to invoke this method.

Parameters:
index

The index in the array.

Returns:
The Identity at the specified index.

• getMethod

public Method getMethod()

Get the method to which this AccessControlEntry applies.

Returns:
An enterprise Bean's method to which this AccessControlEntry applies. If the return value is null,
this is the default AccessControlEntry for the enterprise Bean.

• setAllowedIdentities

public void setAllowedIdentities(Identity values[])

Set the array of Identities that are permitted to invoke this method.

Parameters:
values

An array of security Identities that are permitted to invoke this method.

• setAllowedIdentities

public void
setAllowedIdentities(int index, Identity value)

Enterprise JavaBeans

Sun Microsystems Inc. 148 March 21, 1998

Set the Identity at the specified index in the array of Identities that are permitted to invoke this method.

Parameters:
index

The index in the array.
identity

The Identity to be set at the specified index.

• setMethod

public void setMethod(Method value)

Set the method to which this AccessControlEntry applies.

Parameters:
value

An enterprise Bean's method, or null if this is the default AccessControlEntry for the enter-
prise Bean.

Enterprise JavaBeans

Sun Microsystems Inc. 149 March 21, 1998

Class ControlDescriptor

public class javax.ejb.deployment. ControlDescriptor
 extends java.lang. Object
 implements java.io. Serializable
{
 public final static int CLIENT_IDENTITY ;
 public final static int

SPECIFIED_IDENTITY ;
 public final static int SYSTEM_IDENTITY;
 public final static int

TRANSACTION_READ_COMMITTED;
 public final static int

TRANSACTION_READ_UNCOMMITTED;
 public final static int

TRANSACTION_REPEATABLE_READ;
 public final static int

TRANSACTION_SERIALIZABLE;
 public final static int TX_BEAN_MANAGED;
 public final static int TX_MANDATORY;
 public final static int TX_NOT_SUPPORTED;
 public final static int TX_REQUIRED;
 public final static int TX_REQUIRES_NEW;
 public final static int TX_SUPPORTS;
 public ControlDescriptor ();
 public ControlDescriptor (Method method);
 public int getIsolationLevel ();
 public Method getMethod ();
 public Identity getRunAsIdentity ();
 public int getRunAsMode ();
 public int getTransactionAttribute ();
 public void setIsolationLevel (int value);
 public void setMethod (Method value);
 public void

setRunAsIdentity (Identity value);
 public void setRunAsMode (int value);
 public void

setTransactionAttribute (int value);
}

The ControlDescriptor defines the transaction and security attributes to be associated with the runtime exe-
cution of an enterprise Bean method.

If the Method used in an ControlDescriptor is null, then the ControlDescriptor is considered to be associated
with the entire Bean. A Bean-level ControlDescriptor provides the default value for the methods that do not
have a method-level ControlDescriptor.

The methods of the ControlDescriptor class conform to the JavaBeans property design pattern.

Variables

• CLIENT_IDENTITY

public final static int CLIENT_IDENTITY

Enterprise JavaBeans

Sun Microsystems Inc. 150 March 21, 1998

Run the enterprise Bean method with the client's security identity.

• SPECIFIED_IDENTITY

public final static int SPECIFIED_IDENTITY

Run the enterprise Bean method with the security identity of a specified user account.

• SYSTEM_IDENTITY

public final static int SYSTEM_IDENTITY

Run the enterprise Bean method with the Identity of a "privileged account". The container maps the abstract
notion of a "privileged account" to a suitable privileged account on the underlying platform, such as the data-
base administrator, or the operating system administrator account.

• TRANSACTION_READ_COMMITTED

public final static int TRANSACTION_READ_COMMITTED

Isolation degree equivalent to the JDBC TRANSACTION_READ_COMMITTED level.

• TRANSACTION_READ_UNCOMMITTED

public final static int TRANSACTION_READ_UNCOMMITTED

Isolation degree equivalent to the JDBC TRANSACTION_READ_UNCOMMITTED level.

• TRANSACTION_REPEATABLE_READ

public final static int TRANSACTION_REPEATABLE_READ

Isolation degree equivalent to the JDBC TRANSACTION_REPEATABLE_READ level.

• TRANSACTION_SERIALIZABLE

public final static int TRANSACTION_SERIALIZABLE

Isolation degree equivalent to the JDBC TRANSACTION_SERIALIZABLE level.

• TX_BEAN_MANAGED

public final static int TX_BEAN_MANAGED

The enterprise Bean manages transaction boundaries itself using the javax.jts.CurrentTransaction interface.

• TX_MANDATORY

public final static int TX_MANDATORY

The enterprise Bean requires that the client invocation includes a global transaction scope. The container is
responsible for managing transaction boundaries for the enterprise Bean as follow.

If the caller is associated with a transaction, the execution of the enterprise Bean method will be associated
with the caller's transaction.

If the caller is not associated with a transaction, the container throws the javax.jts.TransactionRequiredEx-
ception to the caller.

• TX_NOT_SUPPORTED

public final static int TX_NOT_SUPPORTED

The enterprise Bean does not support a global transaction. The container must not invoke the enterprise
Bean's method in the scope of a global transaction.

Enterprise JavaBeans

Sun Microsystems Inc. 151 March 21, 1998

• TX_REQUIRED

public final static int TX_REQUIRED

The enterprise Bean requires that the method be executed in a global transaction.

The container is responsible for managing transaction boundaries for the enterprise Bean as follow.

If the caller is associated with a transaction, the execution of the enterprise Bean method will be associated
with the caller's transaction.

If the caller is not associated with a transaction, the container starts a new global transaction, executes the
enterprise Bean's method in the scope of the transaction, and commits the transaction when the enterprise
Bean's method has completed.

• TX_REQUIRES_NEW

public final static int TX_REQUIRES_NEW

The enterprise Bean requires that a method is executed in a new global transaction scope.

The container is responsible for managing transaction boundaries for the enterprise Bean as follow.

The container starts a new transaction, executes the enterprise Bean's method in the scope of the new trans-
action, and commits the new transaction when the enterprise Bean's method has completed.

If the caller is associated with a transaction, the association of the current thread with the caller's transaction
is suspended during the execution of the enterprise Bean's method, and resumed when the enterprise Bean's
method has completed.

• TX_SUPPORTS

public final static int TX_SUPPORTS

The enterprise Bean supports the execution of a method in a global transaction scope. The container is
responsible for managing transaction boundaries for the enterprise Bean as follow.

If the caller is associated with a transaction, the execution of the enterprise Bean method will be associated
with the caller's transaction.

If the caller is not associated with a transaction, the container executes the enterprise Bean's method without
a transaction.

Constructors

• ControlDescriptor

public ControlDescriptor()

Construct a Bean-level ControlDescriptor.

• ControlDescriptor

public ControlDescriptor(Method method)

Construct a ControlDescriptor for a specified Method.

Parameters:
method

The Method associated with the ControlDescriptor. The Method must be a method of the
enterprise Bean class and the Method must be one of the following: a business method, an ejb-
Create(...) method, an finder method, or the ejbDestroy method. If method is null, the Control-
Descriptor will be a Bean-level one.

Enterprise JavaBeans

Sun Microsystems Inc. 152 March 21, 1998

Methods

• getIsolationLevel

public int getIsolationLevel()

Get the transaction isolation level.

Returns:
Transaction isolation level. The value is one of TRANSACTION_READ_UNCOMMITTED,
TRANSACTION_READ_COMMITTED, TRANSACTION_REPEATABLE_READ, and
TRANSACTION_SERIALIZABLE.

• getMethod

public Method getMethod()

Obtain the Method associated with the with this ControlDescriptor.

Returns:
A Method associated with the ControlDescriptor. If the return value is null, the ControlDescriptor
is a Bean-level one.

• getRunAsIdentity

public Identity getRunAsIdentity()

Get the value of the runAsIdentity security attribute. The runAsIdentity attribute tells the container the secu-
rity identity to associate with the execution of the enterprise Bean method.

The value of the runAsIdentity is used only if the value of the runAsMode is SPECIFIED_IDENTITY; it is
ignored otherwise.

Returns:
The Identity to associate with the execution of the enterprise Bean method.

• getRunAsMode

public int getRunAsMode()

Get the value of the runAsMode security attribute. The runAsMode attribute tells the container the security
identity to associate with the execution of the enterprise Bean method.

Returns:
The value of the runAsMode attribute. The value is one of CLIENT_IDENTITY,
SPECIFIED_IDENTITY, and SYSTEM_IDENTITY.

• getTransactionAttribute

public int getTransactionAttribute()

Get the value of the transaction attribute. The transaction attribute tells the container how to manage transac-
tion scopes before and after the execution of the enterprise Bean method.

Returns:
The value of the transaction attribute. It must be one of TX_NOT_SUPPORTED,
TX_BEAN_MANAGED, TX_REQUIRED, TX_REQUIRES_NEW, and TX_MANDATORY.

• setIsolationLevel

public void setIsolationLevel(int value)

Enterprise JavaBeans

Sun Microsystems Inc. 153 March 21, 1998

Set the transaction isolation level.

Parameters:
value

Transaction isolation level. The value must be one of
TRANSACTION_READ_UNCOMMITTED, TRANSACTION_READ_COMMITTED,
TRANSACTION_REPEATABLE_READ, and TRANSACTION_SERIALIZABLE.

• setMethod

public void setMethod(Method value)

Set the method to which this ControlDescriptor applies.

Parameters:
value

An enterprise Bean's method, or null if this is the default ControlDescriptor for the enterprise
Bean.

• setRunAsIdentity

public void setRunAsIdentity(Identity value)

Set the value of the runAsIdentity security attribute. The runAsIdentity attribute tells the container the secu-
rity identity to associate with the execution of the enterprise Bean method.

The value of the runAsIdentity is used only if the value of the runAsMode is SPECIFIED_IDENTITY; it is
ignored otherwise.

Parameters:
value

The Identity to associate with the execution of the enterprise Bean method.

• setRunAsMode

public void setRunAsMode(int value)

Set the value of the runAsMode security attribute. The runAsMode attribute tells the container the security
identity to associate with the execution of the enterprise Bean method.

Parameters:
value

The value of the runAsMode attribute. The value must be one of CLIENT_IDENTITY,
SPECIFIED_IDENTITY, and SYSTEM_IDENTITY.

• setTransactionAttribute

public void setTransactionAttribute(int value)

Set the value of the transaction attribute. The transaction attribute tells the container how to manage transac-
tion scopes before and after the execution of the enterprise Bean method.

Parameters:
value

The value of the transaction attribute. It must be one of TX_NOT_SUPPORTED,
TX_BEAN_MANAGED, TX_REQUIRED, TX_REQUIRES_NEW, and
TX_MANDATORY.

Enterprise JavaBeans

Sun Microsystems Inc. 154 March 21, 1998

Class DeploymentDescriptor

public class javax.ejb.deployment. DeploymentDescriptor
 extends java.lang. Object
 implements java.io. Serializable
{
 protected int versionNumber ;
 public DeploymentDescriptor ();
 public AccessControlEntry[]

getAccessControlEntries ();
 public AccessControlEntry

getAccessControlEntries (int index);
 public Name getBeanHomeName();
 public ControlDescriptor[]

getControlDescriptors ();
 public ControlDescriptor

getControlDescriptors (int index);
 public String

getEnterpriseBeanClassName ();
 public Properties

getEnvironmentProperties ();
 public String

getHomeInterfaceClassName ();
 public boolean getReentrant ();
 public String

getRemoteInterfaceClassName ();
 public boolean isReentrant ();
 public void

setAccessControlEntries (AccessControlEntry values[]);
 public void

setAccessControlEntries (int index,
AccessControlEntry value);

 public void setBeanHomeName(Name value);
 public void

setControlDescriptors (ControlDescriptor value[]);
 public void

setControlDescriptors (int index,
ControlDescriptor value);

 public void
setEnterpriseBeanClassName (String value);

 public void
setEnvironmentProperties (Properties value);

 public void
setHomeInterfaceClassName (String value);

 public void setReentrant (boolean value);
 public void

setRemoteInterfaceClassName (String value);
}

The DeploymentDescriptor class is the common base class for the SessionDescriptor and EntityDescriptor
deployment descriptor classes.

The methods of the class conform to the JavaBeans property design pattern.

Enterprise JavaBeans

Sun Microsystems Inc. 155 March 21, 1998

See Also:

EntityDescriptor , SessionDescriptor .

Variables

• versionNumber

protected int versionNumber

Constructors

• DeploymentDescriptor

public DeploymentDescriptor()

Create an instance of DeploymentDescriptor.

Methods

• getAccessControlEntries

public AccessControlEntry[]
getAccessControlEntries()

Get the AccessControlEntry objects for the enterprise Bean. An AccessControlEntry object associates an
enterprise Bean's method with a list of security Identities that are allowed to invoke the method.

Returns:
An array of AccessControlEntry objects.

• getAccessControlEntries

public AccessControlEntry
getAccessControlEntries(int index)

Get the AccessControlEntry object at a specified index. An AccessControlEntry object associates an enter-
prise Bean's method with a list of security Identities that are allowed to invoke the method.

Parameters:
index

An index in the array of Identities.

Returns:
The AccessControlEntry at the index.

• getBeanHomeName

public Name getBeanHomeName()

Get the name to associate with the enterprise Bean in the JNDI name space. The container will bind the
enterprise Bean's home interface with a JNDI name that includes this name as its trailing part. This means
that the container can prefix the name returned by getBeanName() with an arbitrary JNDI path.

For example, if getBeanHomeName() returns "bank/Account", the container can bind the Bean's home inter-
face in the JNDI name space with the name "mis/ejb-components/bank/Account".

Returns:

Enterprise JavaBeans

Sun Microsystems Inc. 156 March 21, 1998

A JNDI name for this enterprise Bean.

• getControlDescriptors

public ControlDescriptor[] getControlDescriptors()

Get the array of the enterprise Bean's control descriptors.

Returns:
An array of enterprise Bean's control descriptors.

• getControlDescriptors

public ControlDescriptor
getControlDescriptors(int index)

Get the control descriptor at the specified index.

Parameters:
index

The index of the control descriptor.

Returns:
The control descriptor at the specified index.

• getEnterpriseBeanClassName

public String getEnterpriseBeanClassName()

Get the enterprise Bean's full class name.

Returns:
The enterprise Bean's class name.

• getEnvironmentProperties

public Properties getEnvironmentProperties()

Get enterprise Bean's environment properties.

Returns:
Enterprise Bean's environment properties.

• getHomeInterfaceClassName

public String getHomeInterfaceClassName()

Get the full name of the enterprise Bean's home interface.

Returns:
The name of the enterprise Bean's home interface.

• getReentrant

public boolean getReentrant()

This method returns the same result as isReentrant(). It is included for compatibility with the JavaBeans
design-pattern.

• getRemoteInterfaceClassName

public String getRemoteInterfaceClassName()

Enterprise JavaBeans

Sun Microsystems Inc. 157 March 21, 1998

Get the full name of the enterprise Bean's remote interface.

Returns:
The name of the enterprise Bean's remote interface.

• isReentrant

public boolean isReentrant()

Test if the enterprise Bean is re-entrant. Only entity Beans can be defined as re-entrant, and it is an error for
a session Bean deployment descriptor to return true.

Returns:
True if the Bean is reentrant, false otherwise.

• setAccessControlEntries

public void
setAccessControlEntries(AccessControlEntry values[])

Set the AccessControlEntry objects for the enterprise Bean. An AccessControlEntry object associates an
enterprise Bean's method with a list of security Identities that are allowed to invoke the method.

Parameters:
values

An array of AccessControlEntry objects.

• setAccessControlEntries

public void
setAccessControlEntries(int index,

AccessControlEntry value)

Set the AccessControlEntry object at a specified index. An AccessControlEntry object associates an enter-
prise Bean's method with a list of security Identities that are allowed to invoke the method.

Parameters:
index

An index in the array of Identities.
value

The AccessControlEntry to set at the index.

• setBeanHomeName

public void setBeanHomeName(Name value)

Set the name to associate with the enterprise Bean in the JNDI name space. The container will bind the
enterprise Bean's home interface with a JNDI name that includes this name as its trailing part. This means
that the container can prefix the name returned by getBeanName() with an arbitrary JNDI path.

Note that using the type java.naming.Name makes the format of the name independent of the syntax used by
the actual naming system.

Parameters:
value

A JNDI name for this enterprise Bean.

• setControlDescriptors

public void
setControlDescriptors(ControlDescriptor value[])

Enterprise JavaBeans

Sun Microsystems Inc. 158 March 21, 1998

Set the array of the enterprise Bean's control descriptors.

Parameters:
value

An array of the enterprise Bean's control descriptors.

• setControlDescriptors

public void
setControlDescriptors(int index,

ControlDescriptor value)

Set the control descriptor at the specified index.

Parameters:
index

The index of the control descriptor.
value

The control descriptor to be set at the specified index.

• setEnterpriseBeanClassName

public void setEnterpriseBeanClassName(String value)

Set the enterprise Bean's full class name.

Parameters:
value

The enterprise Bean's class name.

• setEnvironmentProperties

public void
setEnvironmentProperties(Properties value)

Set enterprise Bean's environment properties.

Parameters:
value

Enterprise Bean's environment properties.

• setHomeInterfaceClassName

public void setHomeInterfaceClassName(String value)

Set the full name of the enterprise Bean's home interface.

Parameters:
value

The name of the enterprise Bean's home interface.

• setReentrant

public void setReentrant(boolean value)

Specify that the enterprise Bean is re-entrant. Only entity Beans can be defined as re-entrant, and it is an
error for a session Bean deployment descriptor to attempt to specify that the Bean is re-entrant.

Returns:
True if the Bean is reentrant, false otherwise.

Enterprise JavaBeans

Sun Microsystems Inc. 159 March 21, 1998

• setRemoteInterfaceClassName

public void
setRemoteInterfaceClassName(String value)

Set the full name of the enterprise Bean's remote interface.

Parameters:
value

The name of the enterprise Bean's remote interface.

Enterprise JavaBeans

Sun Microsystems Inc. 160 March 21, 1998

Class EntityDescriptor

public class javax.ejb.deployment. EntityDescriptor
 extends javax.ejb.deployment. DeploymentDescriptor
{
 public EntityDescriptor ();
 public Field[]

getContainerManagedFields ();
 public Field

getContainerManagedFields (int index);
 public String getPrimaryKeyClassName ();
 public void

setContainerManagedFields (Field values[]);
 public void

setContainerManagedFields (int index,
Field value);

 public void
setPrimaryKeyClassName (String value);

}

The EntityDescriptor class defines the deployment descriptor for an entity enterprise Bean.

A serialized instance of the EntityDescriptor class is used as the standard format for passing the entity enter-
prise Bean's declarative deployment attributes in the ejb-jar file.

The Bean provider tools use the setter functions to initialize an instance of the deployment descriptor. The
Bean provider tools then serialize the instance into the ejb-jar file.

The getter functions are used by the container tools at deployment time. The tools deserialize the instance
from the ejb-jar file, and use the getter functions to obtain information about the enterprise Bean.

Note that the Enterprise JavaBeans architecture does not prescribe whether the actual deployment descriptor
class is used by the container at runtime. Therefore, the container is allowed to import the information from
the deployment descriptor at deployment time, and store the information in a container-specific format. The
container is however required to enforce the declarative attributes at runtime, as specified by the Enterprise
JavaBeans specification.

After an enterprise Bean has been installed into a container, the container tools can be then used to view and
change the values of the deployment attributes. As changing the values of the deployment descriptor
attributes may alter the semantics of a deployed application, the container may restrict changes to certain
attributes.

The methods of the EntityDescriptor class conform to the JavaBeans property design pattern.

Constructors

• EntityDescriptor

public EntityDescriptor()

Create an instance of EntityDescriptor.

Enterprise JavaBeans

Sun Microsystems Inc. 161 March 21, 1998

Methods

• getContainerManagedFields

public Field[] getContainerManagedFields()

Get the array of the container-managed fields.

Returns:
The array of the container-managed fields.

• getContainerManagedFields

public Field getContainerManagedFields(int index)

Get the name of field at the given index in the array of container-managed fields.

Parameters:
index

The index in the array.

Returns:
The container-managed field at the specified index.

• getPrimaryKeyClassName

public String getPrimaryKeyClassName()

Get the full class name of the enterprise Bean's primary key.

Returns:
The primary key class name.

• setContainerManagedFields

public void
setContainerManagedFields(Field values[])

Set the array of the names of the container-managed fields.

Parameters:
value

The array of the names of the container-managed fields.

• setContainerManagedFields

public void
setContainerManagedFields(int index, Field value)

Set the field at the given index in the array of container-managed fields.

Parameters:
index

The index in the array.
value

The container-managed field to be set at the index.

• setPrimaryKeyClassName

public void setPrimaryKeyClassName(String value)

Enterprise JavaBeans

Sun Microsystems Inc. 162 March 21, 1998

Set the full class name of the enterprise Bean's primary key.

Returns:
The primary key class name.

Enterprise JavaBeans

Sun Microsystems Inc. 163 March 21, 1998

Class SessionDescriptor

public class javax.ejb.deployment. SessionDescriptor
 extends javax.ejb.deployment. DeploymentDescriptor
{
 public final static int STATEFUL_SESSION;
 public final static int

STATELESS_SESSION;
 public SessionDescriptor ();
 public int getSessionTimeout ();
 public int getStateManagementType ();
 public void setSessionTimeout (int value);
 public void

setStateManagementType (int value);
}

The SessionDescriptor class defines the deployment descriptor for a session enterprise Bean.

A serialized instance of the SessionDescriptor class is used as the standard format for passing the session
enterprise Bean's declarative deployment attributes in the ejb-jar file.

The Bean provider tools use the setter functions to initialize an instance of the deployment descriptor. The
Bean provider tools then serialize the instance into the ejb-jar file.

The getter functions are used by the container tools at deployment time. The tools deserialize the instance
from the ejb-jar file, and use the getter functions to obtain information about the enterprise Bean.

Note that the Enterprise JavaBeans architecture does not prescribe whether the actual deployment descriptor
class is used by the container at runtime. Therefore, the container is allowed to import the information from
the deployment descriptor at deployment time, and store the information in a container-specific format. The
container is however required to enforce the declarative attributes at runtime, as specified by the Enterprise
JavaBeans specification.

After an enterprise Bean has been installed into a container, the container tools can be used to view and
change the values of the deployment attributes. As changing the values of the deployment descriptor
attributes may alter the semantics of a deployed application, the container may restrict changes to certain
attributes.

The methods of the SessionDescriptor class conform to the JavaBeans property design pattern.

Variables

• STATEFUL_SESSION

public final static int STATEFUL_SESSION

The session Bean is stateful. An instance of a stateful session Bean remains associated with a session EJB
object for its lifetime.

• STATELESS_SESSION

public final static int STATELESS_SESSION

The session Bean is stateless. An instance of a stateless Bean can be reused for multiple session EJB objects.

Enterprise JavaBeans

Sun Microsystems Inc. 164 March 21, 1998

Constructors

• SessionDescriptor

public SessionDescriptor()

Create an instance of SessionDescriptor.

Methods

• getSessionTimeout

public int getSessionTimeout()

Get the session timeout value in seconds. A zero value means that the container should use a container-spe-
cific default value.

Returns:
The timeout value in seconds.

• getStateManagementType

public int getStateManagementType()

Get the session Bean's state management type.

Returns:
The session Bean's state management type. Its value must be either STATEFUL_SESSION or
STATELESS_SESSION.

• setSessionTimeout

public void setSessionTimeout(int value)

Set the session timeout value in seconds. A zero value means that the container should use a container-spe-
cific default value.

Parameters:
value

The timeout value in seconds.

• setStateManagementType

public void setStateManagementType(int value)

Set the session Bean's state management type;.

Returns:
The session Bean's state management type. Its value must be either STATEFUL_SESSION or
STATELESS_SESSION.

Enterprise JavaBeans

Sun Microsystems Inc. 165 March 21, 1998

19 Related documents

[1] JavaBeans.http://java.sun.com/beans.

[2] Java Naming and Directory Interface (JNDI).http://java.sun.com/products/jndi.

[3] Java Remote Method Invocation (RMI).http://java.sun.com/products/rmi.

[4] Java Security.http://java.sun.com/security.

[5] Java to IDL Mapping. Joint Initial Submission. OMG TC Document TC orbos/98-
02-01.

[6] Enterprise JavaBeans to CORBA Mapping. Unpublished JavaSoft document avail-
able to the Enterprise JavaBeans reviewers.

[7] OMG Object Transaction Service.http://www.omg.org/corba/sectrans.htm#trans.

[8] ORB Portability Submission, OMG document orbos/97-04-14.

Enterprise JavaBeans

Sun Microsystems Inc. 166 March 21, 1998

Appendix A: Features deferred to future releases

The focus of Release 1.0 is to define the basic component model for session and entity
enterprise beans. The model includes: the distributed object model; enterprise bean ap-
plication programming model; state and transaction management protocols.

Given the broad scope of the Enterprise JavaBeans specification, we defer to future re-
leases the features that introduce an advanced programming style. This conservative
approach reduces the chance of our having to make a backward incompatible change in
a future release.

Examples of the features that we would like to consider for a later release are listed be-
low.

• Programmatic access to security. We would like to allow expert-level enterprise
beans to manage their security Identity.

• Allow a serialized bean prototype. In EJB 1.0, an enterprise bean can be only a
Java class, not a serialized Java object. We want to investigate if there would be
a value in allowing a serialized object to qualify as an enterprise bean.

• Add the capability for a client to obtain a URL string from an enterprise bean
object reference.

• A standard API between the EJB server and EJB container.

Enterprise JavaBeans

Sun Microsystems Inc. 167 March 21, 1998

Appendix B: package javax.jts

This Appendix provides the documentation of the classes and interfaces that are part of
the packagejavax.jtsthat are relevant to Enterprise JavaBeans. Note that the package
javax.jts may include other classes and interfaces that are not shown here.

interface UserTransaction

class HeuristicCommitException
class HeuristicException
class HeuristicMixedException
class HeuristicRollbackException
class TransactionRequiredException
class TransactionRolledbackException
class InvalidTransactionException

Enterprise JavaBeans

Sun Microsystems Inc. 168 March 21, 1998

Interface UserTransaction

public interface javax.jts. UserTransaction
{
 public final static int STATUS_ACTIVE;
 public final static int STATUS_COMMITTED;
 public final static int

STATUS_COMMITTING;
 public final static int

STATUS_MARKED_ROLLBACK;
 public final static int

STATUS_NO_TRANSACTION;
 public final static int STATUS_PREPARED;
 public final static int STATUS_PREPARING;
 public final static int

STATUS_ROLLEDBACK;
 public final static int

STATUS_ROLLING_BACK;
 public final static int STATUS_UNKNOWN;
 public abstract void begin ();
 public abstract void commit ();
 public abstract int getStatus ();
 public abstract void rollback ();
 public abstract void setRollbackOnly ();
 public abstract void

setTransactionTimeout (int seconds);
}

The UserTransaction interface defines the methods that allow an application to explicitly manage transaction
boundaries.

Variables

• STATUS_ACTIVE

public final static int STATUS_ACTIVE

A transaction is associated with the target object and it is in the active state. An implementation returns this
status after a transaction has been started and prior to a Coordinator issuing any prepares unless the transac-
tion has been marked for rollback.

• STATUS_COMMITTED

public final static int STATUS_COMMITTED

A transaction is associated with the target object and it has been committed. It is likely that heuristics exists,
otherwise the transaction would have been destroyed and NoTransaction returned.

• STATUS_COMMITTING

public final static int STATUS_COMMITTING

A transaction is associated with the target object and it is in the process of committing. An implementation
returns this status if it has decided to commit, but has not yet completed the process, probably because it is
waiting for responses from one or more Resources.

Enterprise JavaBeans

Sun Microsystems Inc. 169 March 21, 1998

• STATUS_MARKED_ROLLBACK

public final static int STATUS_MARKED_ROLLBACK

A transaction is associated with the target object and it has been marked for rollback, perhaps as a result of a
setRollbackOnly operation.

• STATUS_NO_TRANSACTION

public final static int STATUS_NO_TRANSACTION

No transaction is currently associated with the target object. This will occur after a transaction has com-
pleted.

• STATUS_PREPARED

public final static int STATUS_PREPARED

A transaction is associated with the target object and it has been prepared, i.e. all subordinates have
responded Vote.Commit. The target object may be waiting for a superior's instruction as how to proceed.

• STATUS_PREPARING

public final static int STATUS_PREPARING

A transaction is associated with the target object and it is in the process of preparing. An implementation
returns this status if it has started preparing, but has not yet completed the process, probably because it is
waiting for responses to prepare from one or more Resources.

• STATUS_ROLLEDBACK

public final static int STATUS_ROLLEDBACK

A transaction is associated with the target object and the outcome has been determined as rollback. It is
likely that heuristics exist, otherwise the transaction would have been destroyed and NoTransaction returned.

• STATUS_ROLLING_BACK

public final static int STATUS_ROLLING_BACK

A transaction is associated with the target object and it is in the process of rolling back. An implementation
returns this status if it has decided to rollback, but has not yet completed the process, probably because it is
waiting for responses from one or more Resources.

• STATUS_UNKNOWN

public final static int STATUS_UNKNOWN

A transaction is associated with the target object but its current status cannot be determined. This is a tran-
sient condition and a subsequent invocation will ultimately return a different status.

Methods

• begin

public abstract void begin()
 throws IllegalStateException

Create a new transaction and associate it with the current thread.

Throws: IllegalStateException

Enterprise JavaBeans

Sun Microsystems Inc. 170 March 21, 1998

Thrown if the thread is already associated with a transaction.

• commit

public abstract void commit()
 throws TransactionRolledbackException, HeuristicMixedException,

HeuristicRollbackException, SecurityException, IllegalStateException

Complete the transaction associated with the current thread. When this method completes, the thread
becomes associated with no transaction.

Throws: TransactionRolledbackException
Thrown to indicate that the transaction has been rolled back rather than committed.

Throws: HeuristicMixedException
Thrown to indicate that a heuristic decision was made and that some relevant updates have been
committed while others have been rolled back.

Throws: HeuristicRollbackException
Thrown to indicate that a heuristic decision was made and that some relevant updates have been
rolled back.

Throws: SecurityException
Thrown to indicate that the thread is not allowed to commit the transaction.

Throws: IllegalStateException
Thrown if the current thread is not associated with a transaction.

• getStatus

public abstract int getStatus()

Obtain the status of the transaction associated with the current thread.

Returns:
The transaction status. If no transaction is associated with the current thread, this method returns
the Status.NoTransaction value.

• rollback

public abstract void rollback()
 throws IllegalStateException, SecurityException

Roll back the transaction associated with the current thread. When this method completes, the thread
becomes associated with no transaction.

Throws: SecurityException
Thrown to indicate that the thread is not allowed to roll back the transaction.

Throws: IllegalStateException
Thrown if the current thread is not associated with a transaction.

• setRollbackOnly

public abstract void setRollbackOnly()
 throws IllegalStateException

Modify the transaction associated with the current thread such that the only possible outcome of the transac-
tion is to roll back the transaction.

Throws: IllegalStateException

Enterprise JavaBeans

Sun Microsystems Inc. 171 March 21, 1998

Thrown if the current thread is not associated with a transaction.

• setTransactionTimeout

public abstract void
setTransactionTimeout(int seconds)

Modify the value of the timeout value that is associated with the transactions started by the current thread
with the begin method.

If an application has not called this method, the transaction service uses some default value for the transac-
tion timeout.

Parameters:
seconds

The value of the timeout in seconds. If the value is zero, the transaction service restores the
default value.

Enterprise JavaBeans

Sun Microsystems Inc. 172 March 21, 1998

Class HeuristicCommitException

public class javax.jts. HeuristicCommitException
 extends java.rmi. RemoteException
{
 public HeuristicCommitException ();
 public

HeuristicCommitException (String msg);
}

This exception is thrown by the rollback operation on a resource to report that a heuristic decision was made
and that all relevant updates have been committed.

Constructors

• HeuristicCommitException

public HeuristicCommitException()

• HeuristicCommitException

public HeuristicCommitException(String msg)

Enterprise JavaBeans

Sun Microsystems Inc. 173 March 21, 1998

Class HeuristicException

public class javax.jts. HeuristicException
 extends java.rmi. RemoteException
{
 public HeuristicException ();
 public HeuristicException (String msg);
}

This exception indicates that one or more participants in a transaction has made a unilateral decision to com-
mit or roll back updates without first obtaining the outcome determined by the transaction service.

Heuristic decisions are normally made only in unusual circumstances, such as communication failures, that
prevent normal processing. When a participant makes a heuristic decision, there is a risk that the decision
will differ from the consensus outcome, potentially resulting in loss of data integrity.

The subclasses of this exception provide more specific reporting of the incorrect heuristic decision or the
possibility of incorrect heuristic decision.

Constructors

• HeuristicException

public HeuristicException()

• HeuristicException

public HeuristicException(String msg)

Enterprise JavaBeans

Sun Microsystems Inc. 174 March 21, 1998

Class HeuristicMixedException

public class javax.jts. HeuristicMixedException
 extends java.rmi. RemoteException
{
 public HeuristicMixedException ();
 public

HeuristicMixedException (String msg);
}

This exception is thrown to report that a heuristic decision was made and that some relevant updates have
been committed and others have been rolled back.

Constructors

• HeuristicMixedException

public HeuristicMixedException()

• HeuristicMixedException

public HeuristicMixedException(String msg)

Enterprise JavaBeans

Sun Microsystems Inc. 175 March 21, 1998

Class HeuristicRollbackException

public class javax.jts. HeuristicRollbackException
 extends java.rmi. RemoteException
{
 public HeuristicRollbackException ();
 public

HeuristicRollbackException (String msg);
}

This exception is thrown by the commit operation to report that a heuristic decision was made and that all
relevant updates have been rolled back.

Constructors

• HeuristicRollbackException

public HeuristicRollbackException()

• HeuristicRollbackException

public HeuristicRollbackException(String msg)

Enterprise JavaBeans

Sun Microsystems Inc. 176 March 21, 1998

Class TransactionRequiredException

public class javax.jts. TransactionRequiredException
 extends java.rmi. RemoteException
{
 public TransactionRequiredException ();
 public

TransactionRequiredException (String msg);
}

This exception indicates that a request carried a null transaction context, but the target object requires an
activate transaction.

Constructors

• TransactionRequiredException

public TransactionRequiredException()

• TransactionRequiredException

public TransactionRequiredException(String msg)

Enterprise JavaBeans

Sun Microsystems Inc. 177 March 21, 1998

Class TransactionRolledbackException

public class javax.jts. TransactionRolledbackException
 extends java.rmi. RemoteException
{
 public TransactionRolledbackException ();
 public

TransactionRolledbackException (String msg);
}

This exception indicates that the transaction associated with processing of the request has been rolled back,
or marked to roll back. Thus the requested operation either could not be performed or was not performed
because further computation on behalf of the transaction would be fruitless

Constructors

• TransactionRolledbackException

public TransactionRolledbackException()

• TransactionRolledbackException

public TransactionRolledbackException(String msg)

Enterprise JavaBeans

Sun Microsystems Inc. 178 March 21, 1998

Class InvalidTransactionException

public class javax.jts. InvalidTransactionException
 extends java.rmi. RemoteException
{
 public InvalidTransactionException ();
 public

InvalidTransactionException (String msg);
}

This exception indicates that the request carried an invalid transaction context. For example, this exception
could be raised if an error occurred when trying to register a resource.

Constructors

• InvalidTransactionException

public InvalidTransactionException()

• InvalidTransactionException

public InvalidTransactionException(String msg)

Enterprise JavaBeans

Sun Microsystems Inc. 179 March 21, 1998

Appendix C: Revision history

C.1 Changes since Release 0.8

Removedjava.ejb.BeanPermissionfrom the API. This file was incorrectly included in
the 0.8 specification.

Renamed packages tojava.ejband javax.ejb.deployment. The Enterprise JavaBeans
API is packaged as a standard extension, and standard extensions should be prefixed
with javax. Also renamedjava.jts to javax.jts.

Made clear that a container can support multiple EJB classes. We renamed thejav-
ax.ejb.Containerto javax.ejb.EJBHome.Some reviewers pointed out that the use of the
term “Container” for the interface that describes the life cycle operations of an EJB
class as seen by a client was confusing.

Folded the factory and finder methods into the enterprise bean’shome interface. This
reduces the number of Java classes per EJB class and the number of round-trips be-
tween a client and the container required to create or find an EJB object. It also simpli-
fies the client view API.

Removed the PINNED mode of a session bean. Many reviewers considered this mode
to be “dangerous” since it could prevent the container from efficiently managing its
memory resources.

Clarified the life cycle of a stateless session bean.

Added a chapter with the specification for exception handling.

We have renamed the contract between a component and its container tocomponent
contract. The previously used termcontainer contract confused several reviewers.

Added description of finder methods.

Modified the entity create protocol by breaking theejbCreatemethod into two:ejbCre-
ateandejbPostCreate. This provides a cleaner separation of the discrete steps involved
in creating an entity in a database and its associated middle-tier object.

Added more clarification to the description of the entity component protocol.

Added more information about the responsibilities of the enterprise bean provider and
container provider.

RenamedSessionSynchronization.beginTransaction()to SessionSynchronization.af-
terBegin() to avoid confusion withUserTransaction.begin().

Added the specification of isolation levels for container-managed entity beans.

C.2 Changes since Release 0.9

Renamedjavax.ejb.InstanceContext to javax.ejb.EJBContext.

Fixed bugs in the javadoc of thejavax.ejb.EntityContext interface.

Enterprise JavaBeans

Sun Microsystems Inc. 180 March 21, 1998

Combined the state diagrams for non-transactional and transactional session beans into
a single diagram.

Added the definition of the restrictions on using transaction scopes with a session bean
(a session bean can be only in a single transaction at a time).

Allowed the enterprise bean’s class to implement the enterprise bean’s remote inter-
face. This change was requested by reviewers to facilitate migration of existing Java
code to Enterprise JavaBeans.

Removed thejavax.ejb.EJBExceptionfrom the specification, and replaced its use by
the standardjava.rmi.RemoteException. This change was necessary because of the pre-
vious change that allows the enterprise bean class to implement its remote interface.

Changed some rules regarding exception handling.

Renamed to thejavax.jts.CurrentTransactioninterface tojavax.jts.UserTransactionto
avoid confusion with theorg.omg.CosTransactions.Currentinterface. The jav-
ax.jts.UserTransactioninterface defines the subset of operations that are “safe” to use
at the application-level, and can be supported by the majority of the transaction manag-
ers used by existing platforms.

Added specification for TX_BEAN_MANAGED transactions.

Made the isolation levels supplied in the deployment descriptor applicable also to ses-
sion beans and entities with bean-managed persistence.

Renamed thedestroy()methods toremove(). This change was requested by several re-
viewers who pointed out the potential for name space collisions in their implementa-
tions.

Added the create arguments to theejbPostCreatemethod. This simplifies the program-
ming of an entity bean that needs the create arguments in theejbPostCreatemethod
(previously, the bean would have to save these arguments in theejbCreate method).

Added restrictions on the use of per-method deployment attributes.

Addedjavax.ejb.EJBMetaDatato the examples, and added the generation of the class
that implements this interface as a requirements for the container tools.

Added thegetRollbackOnlymethod to thejavax.ejb.EJBContextinterface. This method
allows an instance to test if the current transaction has been marked for rollback. The
test may help the enterprise bean to avoid fruitless computation after it caught an ex-
ception.

We removed the placeholder Appendix for examples. We will provide examples on the
Enterprise JavaBeans Web site rather than in this document.

C.3 Changes since Release 0.95

Allowed a container-managed field to be of any Java Serializable type.

Clarified the bean provider responsibilities for theejbFind<METHOD>methods entity
beans with container-managed persistence.

Enterprise JavaBeans

Sun Microsystems Inc. 181 March 21, 1998

Added two rules to Subsection 12.3.4 on exception handling and transaction manage-
ment. The new rules are for the TX_BEAN_MANAGED beans.

Use thejavax.rmi.PortableRemoteObject.narrow(...)method to perform the narrow op-
erations after a JNDI lookup in the code samples used in the specification. While some
JNDI providers may return from thelookup(...)method the exact stub for the home in-
terface making it possible to for the client application to use a Java cast, other providers
may return a wider type that requires an explicit narrow to the home interface type. The
javax.rmi.PortableRemoteObject.narrow(...)method is the standard Java RMI way to
perform the explicit narrow operation.

Changed several deployment descriptor method names.

