
e

Please send technical comments to jndi@java.sun.com.

Please send product and business questions to jndi-business@java.sun.com.

Sun Microsystems, Inc.

Java Naming and Directory Interface
Application Programming Interfac

(JNDI API)

JNDI 1.2/JavaTM 2 Platform, Standard Edition, v 1.3

July 14, 1999

Java Naming and Directory Interface

t forth
2.227-

n Micro-
Copyright © 1999 by Sun Microsystems Inc.

901 San Antonio Road, Palo Alto, CA 94303.

All rights reserved.

RESTRICTED RIGHTS: Use, duplication or disclosure by the government is subject to the restrictions as se
in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software Clause as DFARS 25
7013 and FAR 52.227-19.

Sun, Sun Microsystems, the Sun logo, Java, and JavaSoft, are trademarks or registered trademarks of Su
systems, Inc.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MECHANTABIL-
ITY, FITNESS FOR A PARTICULAR USE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ER-
RORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES
WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC.,
MAY MAKE NEW IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PRO-
GRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.
Sun Microsystems, Inc. ii 7/14/99

Java Naming and Directory Interface
Contents

1 Introduction . 1

2 Goals and Design Principles . 2

3 Overview of the Architecture. 4

4 Fundamentals . 5

4.1 Naming — The Foundation . 5
4.2 Directory Objects . 6
4.3 URLs and Composite Names . 8
4.4 Events . 8

5 Overview of the Interface . 9

5.1 The Naming Package —javax.naming . 9
5.1.1 Contexts . 9
5.1.2 The Initial Context. 10
5.1.3 Names . 10
5.1.4 Bindings. 11
5.1.5 References . 11
5.1.6 Referrals. 12

5.2 The Directory Package —javax.naming.directory 13
5.2.1 Directory Objects. 13
5.2.2 Attributes . 14
5.2.3 Directory Objects as Naming Contexts . 14
5.2.4 The Initial Context. 15
5.2.5 Searches . 15
5.2.6 Schema. 16

5.3 The Event Package —javax.naming.event 18
5.3.1 Naming Events. 18
5.3.2 Naming Listeners. 18
5.3.3 Event Registration and Deregistration. 19
5.3.4 Exception Handling . 20

5.4 The LDAP Package —javax.naming.ldap 20
5.4.1 Extended Operations . 21
5.4.2 Controls . 21
5.4.3 The Initial Context. 22
5.4.4 Unsolicited Notifications . 23

6 Configuration . 24

6.1 Environment Properties . 24
6.2 Context Environment . 25
6.3 Resource Files . 25
6.4 Application/Applet-scope Standard JNDI Properties 26
6.5 How the Environment Properties are Set . 26
6.6 Modifications to the Environment . 27

7 Scenarios . 29

7.1 User authentication . 29
Sun Microsystems, Inc. iii 7/14/99

Java Naming and Directory Interface
7.2 Electronic Mail . 29
7.3 Databases . 29
7.4 Browsing . 30
7.5 Network Printing . 31

8 Security Considerations . 33

8.1 JNDI Classes . 33
8.2 Security Model . 33
8.3 Access To Servers . 34
8.4 Sharing Context Handles . 34
8.5 Context Environment . 34
8.6 Class Loading . 34
8.7 Serializable Objects . 35
8.8 Responsibilities of Service Providers . 35

9 Design Choices . 37

9.1 Separation of Interfaces into Context and DirContext 37
9.2 Separation of JNDI into Different Functional Packages 37
9.3 Separation of Client APIs and Service Provider Interfaces 37
9.4 Multiple methods for listing Context . 37
9.5 Support for Federation . 38
9.6 DirContext versus DirObject . 38
9.7 Support for Schemas . 39
9.8 Overloaded Methods in Context and DirContext 39
9.9 Reference and Referenceable . 40
9.10 Automatically Turning References into Objects 40

 Appendix A: JNDI Standard Environment Properties . 41

 Appendix B: Examples for LDAP Programmers . 45

 Appendix C: Legend for Class Diagram . 65

 Appendix D: JNDI Change History . 67
Sun Microsystems, Inc. iv 7/14/99

Java Naming and Directory Interface Introduction

riety
ature,
ame-

s of-
in

tions
LDAP
posite
multiple
ctive.

nly
ables
ation
to dis-

cation

them

g
ser-

NDI.

his is

.

niza-

rgani-
1 Introduction

Directory services play a vital role in Intranets and Internets by providing access to a va
of information about users, machines, networks, services, and applications. By its very n
a directory service incorporates a naming facility for providing human understandable n
spaces that characterize the arrangement and identification of the various entities.

The computing environment of an enterprise typically consists of several naming facilitie
ten representing different parts of acompositenamespace. For example, the Internet Doma
Name System (DNS) might be used as the top-level naming facility for different organiza
within an enterprise. The organizations themselves might use a directory service such as
or NDS or NIS. From a user’s perspective, there is one namespace consisting of com
names. URLs are examples of composite names because they span namespaces of
naming facilities. Applications which use directory services must support this user perspe

Many JavaTM application developers can benefit from a directory service API that is not o
independent of the particular directory or naming service implementation, but also en
seamless access to directory objects through multiple naming facilities. In fact, any applic
can attach its own objects to the namespace. Such a facility enables any Java application
cover and retrieve objects of any type.

End users can benefit from logical namespaces that allow easier discovery and identifi
of the objects in the network.

Directory service developers can benefit from a service-provider capability that enables
to incorporate their respective implementations without requiring changes to the client.

Java Naming and Directory InterfaceTM (JNDI) is an API that provides directory and namin
functionality to Java applications. It is defined to be independent of any specific directory
vice implementation. Thus, a variety of directories can be accessed in a common way.

Here are two examples to briefly illustrate some of the more commonly used features of J

An application that wants to access a printer needs the corresponding printer object. T
simply done as follows:

prt = (Printer) building7.lookup("puffin");
prt.print(document);

JNDI does all the work of locating the information needed to construct the printer object

An application that wants to find a person’s phone numbers, which are stored in the orga
tion’s directory, can simply do:

String[] attrs = {"workPhone", "cellPhone", "faxNumber"};
bobsPhones = directory.getAttributes("cn=Bob, o=Widget, c=US", attrs);

If there may be several Bobs in the Widget organization, the application can search the o
zation’s directory to find the right Bob as follows:

bob = directory.search("o=Widget, c=US", "(cn=Bob)", searchctls);

This document describes the architecture and interfaces of JNDI.
Sun Microsystems, Inc. 1 7/14/99

Java Naming and Directory Interface Goals and Design Principles

pment
ore

sim-
nsion

a cer-
bility.
n case

age of
NIS
cific

t ac-
igned
f the
om-
class-

es in
service

e ap-
xy-

d to a
imple-
ation
r such
2 Goals and Design Principles

We followed several principles and maxims in designing the API.

2.1 Keep it consistent and intuitive

Wherever possible, we have used existing components from the rest of the Java develo
environment. Adhering to this principle not only makes JNDI consistent with existing c
classes in the Java platform but also reduces needless proliferation of classes.

The object-oriented nature of the Java programming language allows for an intuitive and
ple API design, in which the directory service functionality is expressed as a natural exte
to the more fundamental naming service functionality.

2.2 Pay for what you use

The API is structured in a tiered manner so that the application programmer interested in
tain directory service capability need not necessarily know about a more advanced capa
We have strived to keep the lower tiers simple and also make them represent the commo
capability, relegating the more complex ones to the upper tiers.

2.3 Implementable over common directory and naming services and protocols

This goal is important for two reasons. First, it enables Java applications to take advant
information in a variety of existing naming and directory services such as DNS, NDS,
(YP), X.500, and LDAP. Second, it helps limit the appearance of any implementation spe
artifacts in the API.

Providing a unified interface to multiple naming and directory services does not imply tha
cess of unique features of a particular service is precluded. The unified API which is des
to cover the common case is still beneficial to applications that have explicit knowledge o
underlying naming or directory service. Such applications still benefit from sharing the c
mon portions that use the API. This is analogous to applications sharing commonly used
es and yet adding needed specificity via subclassing.

2.4 Seamless integration

This is important not only because of the diversity of directory service and naming servic
the installed base that need to be supported, but also because new Java application and
programmers can export their own namespaces and directory objects in a uniform way.

We also wanted to make a variety of implementation choices possible without having th
plication pay for this freedom. For example, a “thin-client” might be better served by a pro
style protocol in which the access to specific naming and directory services is relegate
server. Whereas, a performance sensitive, resource rich client, might choose to use an
mentation which directly allows it to access the various servers. However, the applic
should be insulated from these implementation choices. It should be possible to defe
choices even until runtime.
Sun Microsystems, Inc. 2 7/14/99

Java Naming and Directory Interface Goals and Design Principles

ndard
sup-
tures
se for
2.5 Support for leading industry standards

The Lightweight Directory Access Protocol (Internet RFC 2251) has emerged as the sta
for directory access at the protocol level. All major directory vendors have products that
port this protocol. An application that uses JNDI should be able to access all of the fea
offered by this standard. Where possible, JNDI should support conventions (such as tho
specifying search queries/filters) already defined by the standard.
Sun Microsystems, Inc. 3 7/14/99

Java Naming and Directory Interface Overview of the Architecture

ava
ned to
a va-
ation
ser-
3 Overview of the Architecture

The JNDI architecture consists of the JNDI API and the JNDI SPI. The JNDI API allows J
applications to access a variety of naming and directory services. The JNDI SPI is desig
be used by arbitrary service providers including directory service providers. This enables
riety of directory and naming services to be plugged in transparently to the Java applic
(which uses only the JNDI API). Figure 1 shows the JNDI architecture and includes a few
vice providers of directory and naming contexts as examples.

Figure 1: JNDI Architecture

Java Application

JNDI Naming Manager

JNDI API

JNDI SPI

RMI CORBA LDAP NDS
Sun Microsystems, Inc. 4 7/14/99

Java Naming and Directory Interface Fundamentals

urces
-
tion
d in
d direc-

hich
tradi-

ith an-
ystem,
nd di-

ices.
rprise
also in-
rvice,
ips be-
vices
atural
gful

se rela-

ording

elim-
-

ited
g

ntext
n that
ames,

ontext
.

4 Fundamentals

A directory service provides access to diverse kinds of information about users and reso
in a network environment. It uses anaming systemfor the purpose of identifying and organiz
ing directory objectsto represent this information. A directory object provides an associa
betweenattributesandvalues. Thus, a directory service enables information to be organize
a hierarchical manner to provide a mapping between human understandable names an
tory objects.

4.1 Naming — The Foundation

A fundamental facility in any computing system is the naming service – the means by w
names are associated with objects, and by which objects are found given their names. In
tional systems, the naming service is seldom a separate service. It is usually integrated w
other service, such as a file system, directory service, database, desktop, mail s
spreadsheet, or calendar. For example, a file system includes a naming service for files a
rectories; a spreadsheet has a naming service for cells and macros.

The computing environment of an enterprise typically consists of several naming serv
There are naming services that provide contexts for naming common entities in an ente
such as organizations, physical sites, human users and computers. Naming services are
corporated in applications offering services such as file service, mail service, printer se
and so on. From a user’s perspective, there exist several natural and logical relationsh
tween these naming services. For example, it is natural to think of naming a variety of ser
such as files, mail, appointment calendar, and so on, in the context of a user. It is also n
to think of a user in the context of a department, within a division of an enterprise. Meanin
names can be composed using useful arrangements of naming services reflecting the
tionships.

Every nameis generated by a set of syntactic rules called anaming convention. An atomic
name is an indivisible component of a name, as defined by the naming convention.

A compound namerepresents a sequence of zero or more atomic names composed acc
to the naming convention.

For example, in UNIX pathnames, atomic names are ordered from left to right, and are d
ited by slash (‘/’) characters. The UNIX pathnameusr/local/bin is a compound name rep
resenting the sequence of atomic names,usr, local, and bin . In names from the Internet
Domain Name System (DNS), atomic names are ordered from right to left, and are delim
by dot (‘.’) characters. Thus, the DNS namesales.Wiz.COM is a compound name representin
the sequence of atomic names,COM, Wiz, sales .

The association of an atomic name with an object is called abinding.

A contextis an object whose state is a set of bindings with distinct atomic names. Every co
has an associated naming convention. A context provides a lookup (resolution) operatio
returns an object, and may provide operations such as for binding names, unbinding n
listing bound names. An atomic name in one context object can be bound to another c
object of the same type, called asubcontext, giving rise to compound names
Sun Microsystems, Inc. 5 7/14/99

Java Naming and Directory Interface Fundamentals

nent in

con-

d list
naming

e
s

,
nd

rmed
t

of any
in-

t

fying
ming

ly be-
Resolution of compound names proceeds by looking up each successive atomic compo
each successive context. The reader will find a familiar model inUNIX file naming, where di-
rectories serve as contexts, and pathnames may be compound names.

A naming systemis a connected set of contexts of the same type (having the same naming
vention) and providing the same set of operations with identical semantics.

A namespaceis the set of all names in a naming system.

A composite nameis a name that spans multiple naming systems. It consists of an ordere
of zero or more components. Each component is a name from the namespace of a single
system.

For example, the namejurassic.eng:/export/home/jdoe/.signature is a composite
name representation made up of a host namejurassic.eng from a host namespace, and th
file name/export/home/jdoe/.signature from aUNIX file namespace. Another example i
the InternetURL http://www.moon.org/public/index.html, which is a composite name
representation made up of the scheme-idhttp from the “URL scheme-id” namespace
www.moon.org which is theDNS name of the machine on which the web server is running, a
public/index.html which is a file name from a file namespace.

Every name is interpreted relative to some context, and every naming operation is perfo
on a context object. A client can obtain aninitial contextobject that provides a starting poin
for resolution of names.

4.2 Directory Objects

The primary function of a naming system is to map names to objects. The objects can be
type. Adirectory objectis a particular type of object that is used to represent the variety of
formation in a computing environment. A directory object can have associated with iat-
tributes. An attribute has an identifier and a set of values.

A directory object provides operations for creating attributes, adding, removing, and modi
attributes associated with the directory object. If we make a directory object also be a na
context, we can represent trees of directory information where the interior nodes not on
have like naming contexts but also contain attributes.

Figure 2 is an example used for illustrating several things.
Sun Microsystems, Inc. 6 7/14/99

Java Naming and Directory Interface Fundamentals
Figure 2: Example of a Composite Namespace

LDAP

DNS

“User” objects

File System

Printer Service

NDS

File

Printer

InitialContext
Sun Microsystems, Inc. 7 7/14/99

Java Naming and Directory Interface Fundamentals

ite
es

be

nd

in

t

deter-
ob-

larly,
the

tilities
ames

iron-
in the
sponse
llows
• ‘There can be multiple naming systems that can be represented by a compos
namespace. In this case, DNS is used as the global naming system; one division us
NDS, while a second division uses LDAP.

• Each namespace has interior nodes that represent naming contexts, which may
directory objects as well. Leaf nodes can be objects of any type.

• TheInitialContextis configured to have bindings to useful starting contexts in different
naming and directory systems.

• Applications just see a composite namespace. They can access any type of object bou
in any naming system in this arrangement.

• Services can incorporate their own namespaces which appear as first-class citizens
JNDI.

• Arbitrary directory services can be added and accessed without requiring clien
applications to be changed.

4.3 URLs and Composite Names

Universal Resource Locators (URLs) are special composite names whose syntax are
mined by the URL’s definition. Clients of JNDI can use URLs to refer to arbitrary types of
jects. For example, a client can usenfs://nfs.sun.com/export/jndi/src/README to refer
to a file object that is being accessed using the Network File System (NFS) protocol. Simi
a client can perform directory operations on a directory object in an LDAP server using
URL ldap://ldap.widget.com/cn=Jonathan,ou=marketing .

To support composite names in general, JNDI defines a composite name syntax and u
for processing composite names. This allows clients of JNDI to refer to objects using n
that span multiple namespaces.

4.4 Events

As the naming/directory service plays an increasingly important role in the computing env
ment, the need to provide administration and monitoring tools to help manage changes
service also increases. For such tools and other applications, the traditional request/re
style of interaction needs to be augmented with an asynchronous notification model that a
applications to register interest in changes in the service.
Sun Microsystems, Inc. 8 7/14/99

Java Naming and Directory Interface Overview of the Interface

e

see

such
isting
5 Overview of the Interface

The JNDI API is contained in four packages:

• javax.naming contains classes and interfaces for accessing naming services

• javax.naming.directory extends the corejavax.naming package to provide access
to directories

• javax.naming.event contains classes and interfaces for supporting event notification
in naming and directory services

• javax.naming.ldap contains classes and interfaces for supporting LDAP v3
extensions and controls

The JNDI service provider interface is contained one package:

• javax.naming.spi contains classes and interfaces that allow various naming and
directory service providers to be dynamically plugged in beneath the JNDI API (see th
JNDI SPI document for details)

The following sections provide an overview of the JNDI API. For more details on the API,
the correspondingjavadoc.

5.1 The Naming Package —javax.naming 1

5.1.1 Contexts

Context is the core interface that specifies a naming context. It defines basic operations
as adding a name-to-object binding, looking up the object bound to a specified name, l

1. See Appendix C for legend of class diagram.

(exception classes are not shown)

java.lang.Object

CompositeName

CompoundName

InitialContext

NameClassPair

Binding

RefAddr

BinaryRefAddr

StringRefAddr

Reference

LinkRef

Name

Context

java.io.Serializable

NamingEnumeration

NameParser

java.lang.Cloneable

Referenceable
Sun Microsystems, Inc. 9 7/14/99

Java Naming and Directory Interface Overview of the Interface

of the

the
e.
e of
to refer
fact,
odi-

ppli-

ared
f DNS.

h

es:

ok up

ulti-
the bindings, removing a name-to-object binding, creating and destroying subcontexts
same type,etc.

public interface Context {
public Object lookup(Name name) throws NamingException;
public void bind(Name name, Object obj) throws NamingException;
public void rebind(Name name, Object obj) throws NamingException;
public void unbind(Name name) throws NamingException;
public void rename(Name old, Name new) throws NamingException;
public NamingEnumeration listBindings(Name name)

throws NamingException;
...
public Context createSubcontext(Name name) throws NamingException;
public void destroySubcontext(Name name) throws NamingException;
...

};

Every naming method inContext takes a name as an argument. The operation defined by
method is performed on theContext object that is obtained by implicitly resolving the nam
If the name is empty (“”) the operation is performed directly on the context itself. The nam
an object can be a composite name reflecting the arrangement of the namespaces used
to the object. Of course, the client is not exposed to any naming service implementation. In
a new type of naming service can be introduced without requiring the application to be m
fied or even disrupted if it is running.

5.1.2 The Initial Context

In JNDI, every name is relative to a context. There is no notion of “absolute names.” An a
cation can bootstrap by obtaining its first context of classInitialContext :

public class InitialContext implements Context {
public InitialContext()...;
...

}

The initial context contains a variety of bindings that hook up the client to useful and sh
contexts from one or more naming systems, such as the namespace of URLs or the root o

5.1.3 Names

TheNameinterface represents a generic name—an ordered sequence of components. EacCon-

text method that takes aNameargument has a counterpart that takes the name as aString in-
stead. The versions usingName are useful for applications that need to manipulate nam
composing them, comparing components, and so on. The versions usingString are likely to
be more useful for simple applications, such as those that simply read in a name and lo
the corresponding object. TheString name parameter represents a composite name. TheName

parameter can represent acomposite name or acompound name.

TheCompositeName class represents a sequence of names (atomic or compound) from m
ple namespaces. If theNameparameter supplied to a method of theContext class is an in-
stance ofCompositeName , the name represents a composite name.

If the Nameparameter supplied to a method of theContext class isnotan instance ofCompos-

iteName , the name represents a compound name, which can be represented by theCompound-
Sun Microsystems, Inc. 10 7/14/99

Java Naming and Directory Interface Overview of the Interface

anipu-

ulate
site

n re-
might

ing
e

-
e
hat
f the
-

ar-
tation
tory.
e able
pport
Name class or some other implementation class. TheCompoundName class represents
hierarchical names from a single namespace. A context’s name parser can be used to m
late compound names in the syntax associated with that particular context:

public interface Context {
...
public NameParser getNameParser(Name name) throws NamingException;
...

}

A namespace browser is an example of the kind of application that might need to manip
names syntactically at this level. Most other applications will work with strings or compo
names.

5.1.4 Bindings

Context.lookup() is the most commonly used operation. The context implementation ca
turn an object of whatever class is required by the Java application. For example, a client
use the name of a printer to look up the correspondingPrinter object, and then print to it di-
rectly:

Printer printer = (Printer) ctx.lookup(“treekiller”);
printer.print(report);

Context.listBindings() returns an enumeration of name-to-object bindings, each bind
represented by an object of classBinding . A binding is a tuple containing the name of th
bound object, the name of the object’s class, and the object itself.

TheContext.list() method is similar tolistBindings() , except that it returns an enumer
ation of NameClassPair objects. EachNameClassPair contains an object’s name and th
name of the object’s class. Thelist() method is useful for applications such as browsers t
wish to discover information about the objects bound within a context, but don’t need all o
actual objects. AlthoughlistBindings() provides all of the same information, it is poten
tially a much more expensive operation.

public class NameClassPair ... {
public String getName() ...;
public String getClassName() ...;
...

}

public class Binding extends NameClassPair {
public Object getObject() ...;
...

}

5.1.5 References

Different Context implementations are able to bind different kinds of objects natively. A p
ticularly useful object that should be supported by any general-purpose context implemen
is theReference class. A reference represents an object that exists outside of the direc
References are used to give JNDI clients the illusion that objects of arbitrary classes ar
to be bound in naming or directory services—such as X.500—that do not have native su
for objects in the Java programming language.
Sun Microsystems, Inc. 11 7/14/99

Java Naming and Directory Interface Overview of the Interface

s be-
nce

tem.
osite

h
refer-

ay also
ad-

hen-

wed,

or au-

erral
se to

ny).

using
When the result of an operation such asContext.lookup() or Binding.getObject() is a
Reference object, JNDI attempts to convert the reference into the object that it represent
fore returning it to the client. A particularly significant instance of this occurs when a refere
representing aContext of one naming system is bound to a name in a different naming sys
This is how multiple independent naming systems are joined together into the JNDI comp
namespace. Details of how this mechanism operates are provided in theJNDI SPI document.

Objects that are able to be represented by a reference should implement theReferenceable

interface. Its single method —getReference() — returns the object’s reference. When suc
an object is bound to a name in any context, the context implementation might store the
ence in the underlying system if the object itself cannot be stored natively.

Each reference may contain the name of the class of the object that it represents, and m
contain the location (typically a URL) where the class file for that object can be found. In
dition, a reference contains a sequence of objects of classRefAddr . EachRefAddr in turn con-
tains a “type” string and some addressing data, generally a string or a byte array.

A specialization ofReference called aLinkRef is used to add “symbolic” links into the JNDI
namespace. It contains the name of a JNDI object. By default, these links are followed w
ever JNDI names are resolved.

5.1.6 Referrals

Some naming/directory services support the notion ofreferrals for redirecting a client’s re-
quest to another server. The JNDI client can request that referrals be automatically follo
be ignored, or be processed manually.

The abstract classReferralException is used to represent a referral:

public abstract class ReferralException extends NamingException {
public abstract Context getReferralContext()

throws NamingException;
...
public abstract Object getReferralInfo();
public abstract void retryReferral();
public abstract boolean skipReferral();

}

When a referral is encountered and the client has requested that referrals not be ignored
tomatically followed, aReferralException is thrown. ThegetReferralInfo() method pro-
vides information—in a format appropriate to the service provider—about where the ref
leads. The application is not required to examine this information; however, it might choo
present it to a human user to help him determine whether to follow the referral or not.skipRe-

ferral() allows the application to discard a referral and continue to the next referral (if a

To continue the operation, the application re-invokes the method on the referral context
the same arguments it supplied to the original method.
Sun Microsystems, Inc. 12 7/14/99

Java Naming and Directory Interface Overview of the Interface

ing

tes

hile
5.2 The Directory Package — javax.naming.directory1

5.2.1 Directory Objects

The DirContext interface enables the directory capability by defining methods for examin
and updating attributes associated with a directory object.

public interface DirContext extends Context {
public Attributes getAttributes(Name name)

throws NamingException;
public Attributes getAttributes(Name name, String[] attrIds)

throws NamingException;
...
public void modifyAttributes(Name name,

int modOp,
Attributes attrs)

throws NamingException;
public void modifyAttributes(Name name,

ModificationItem[] mods)
throws NamingException;

...
}

ThegetAttributes() operations on a directory return some or all of its attributes. Attribu
are modified using two forms ofmodifyAttributes() . Both forms make use of a “modifica-
tion operation,” one of:

ADD_ATTRIBUTE
REPLACE_ATTRIBUTE
REMOVE_ATTRIBUTE

TheADD_ATTRIBUTEoperation adds values to an attribute if that attribute already exists, w
theREPLACE_ATTRIBUTEoperation discards any pre-existing values. The first form ofmodify-

1. See Appendix C for legend of class diagram.

(exception classes are not shown)

java.lang.Object

BasicAttribute

BasicAttributes

ModificationItem

SearchControls

javax.naming.InitialContext

InitialDirContext

javax.naming.NameClassPair

javax.naming.Binding

SearchResult

Attribute

Attributes

java.io.Serializable

DirContext

javax.naming.Context
Sun Microsystems, Inc. 13 7/14/99

Java Naming and Directory Interface Overview of the Interface

sec-

possi-

d

licates

n im-

or
direc-

n to a
tural
Attributes() performs the specified operation on each element of a set of attributes. The
ond form takes an array of objects of classModificationItem :

public class ModificationItem {
public ModificationItem(int modOp, Attribute attr) ...;
...

}

Each operation is performed on its corresponding attribute in the order specified. When
ble, a context implementation should perform each call tomodifyAttributes() as an atomic
operation.

5.2.2 Attributes

A directory object contains a set of zero or moreAttribute objects. Each attribute is denote
by a string identifier and can have zero or more values of any type.

public interface Attribute ... {
...
public String getID();
public Object get(int n) throws NamingException;
public boolean isOrdered();
public NamingEnumeration getAll()

throws NamingException;
...

}

An attribute’s values can be ordered or unordered. If the values are unordered, no dup
are allowed. If the values are ordered, duplicates are allowed.

Attributes are grouped into a collection by using theAttributes interface.

public interface Attributes ... {
...
public Attribute get(String attrID);
public NamingEnumeration getIDs();
public NamingEnumeration getAll();
public Attribute put(Attribute attr);
public Attribute remove(String attrID);
...

}

JNDI provides implementations for these two interfaces,BasicAttribute and Basic-

Attributes , for convenience. Service providers and applications are free to use their ow
plementations.

Note that updates toAttributes andAttribute , such as adding or removing an attribute
its value, do not affect the corresponding representation in the directory. Updates to the
tory can only be effected by usingDirContext.modifyAttributes() .

5.2.3 Directory Objects as Naming Contexts

TheDirContext interface also behaves as a naming context by extending theContext inter-
face. This means that any directory object can also provide a naming context. In additio
directory object keeping a variety of information about a person, for example, it is also a na
Sun Microsystems, Inc. 14 7/14/99

Java Naming and Directory Interface Overview of the Interface

, cal-

pera-

t and
spe-

.

f

naming context for resources associated with that person: a person’s printers, file system
endar,etc.

Hybrid operations perform certain naming and directory operations in a single atomic o
tion:

public interface DirContext extends Context {
...
public void bind(Name name, Object obj, Attributes attrs)

throws NamingException;
...

}

Other hybrid operations that are provided arerebind() andcreateSubcontext() that accept
an additionalAttributes argument.

5.2.4 The Initial Context

An application that is performing directory operations can useInitialDirContext instead of
javax.naming.InitialContext to create its initial context:

public class InitialDirContext
extends InitialContext implements DirContext {

public InitialDirContext() ...;
...

}

It can then invoke any method in theContext or DirContext interface on the initial context.

5.2.5 Searches

TheDirContext interface supports content-based searching of directories. In the simples
most common form of usage, the application specifies a set of attributes — possibly with
cific values — to match. It then invokes theDirContext.search() method on the directory
object, which returns the matching directory objects along with the requested attributes

public interface DirContext extends Context {
...
public NamingEnumeration search(Name name,

 Attributes matchingAttributes)
throws NamingException;

public NamingEnumeration search(Name name,
Attributes matchingAttributes,
String[] attributesToReturn)

throws NamingException;
...

}

The results of the search are returned as aNamingEnumeration containing an enumeration o
objects of classSearchResult :
Sun Microsystems, Inc. 15 7/14/99

Java Naming and Directory Interface Overview of the Interface

olling
search

object,

s stored
d with

urpose
sche-
mple,
rectory

rlying

a di-
nd

t and

ec-
public class SearchResult extends Binding {
...
public Attributes getAttributes() ...;

}

In the more sophisticated case, it is possible to specify a search filter and to provide contr
information such as the scope of the search and the maximum size of the results. The
filter specifies a syntax that follows Internet RFC 2254 for LDAP. TheSearchControls argu-
ment specifies such things as the scope of the search: this can include a single directory
all of its children, or all of its descendants in the directory hierarchy.

public interface DirContext extends Context {
...
public NamingEnumeration search(Name name,

 String filter,
 SearchControls ctls)

throws NamingException;

public NamingEnumeration search(Name name,
 String filter,
 Object[] filterArgs,
 SearchControls ctls)

throws NamingException;
...

}

5.2.6 Schema

A schema describes the rules that define the structure of a namespace and the attribute
within it. The granularity of the schema can range from a single schema that is associate
the entire namespace, to a per-attribute, fine-grained schema description.

Because schemas can be expressed as an information tree, it is natural to use for this p
the naming and directory interfaces already defined in JNDI. This is powerful because the
ma part of a namespace is accessible to applications in a uniform way. A browser, for exa
can access information in the schema tree just as though it were accessing any other di
objects.

Applications can retrieve the schema associated with a directory object when the unde
context implementation provides the appropriate support.

DirContext.getSchema() is used to retrieve the root of the schema tree associated with
rectory object. The root has children such as “ClassDefinition”, “AttributeDefinition”, a
“SyntaxDefinition”, each denoting the kind of definition being described. The schema roo
its descendents are objects of typeDirContext . TheDirContext.getSchemaClassDefini-

tion() method returns aDirContext that contains class descriptions about a particular dir
tory object.
Sun Microsystems, Inc. 16 7/14/99

Java Naming and Directory Interface Overview of the Interface

e

ation.
public interface DirContext extends Context {
...
public DirContext getSchema(Name name)

throws NamingException;

public DirContext getSchemaClassDefinition(Name name)
throws NamingException;

...
}

In addition, the schema associated with any attribute can be accessed using thAt-

tribute.getAttributeDefinition() andgetAttributeSyntaxDefinition() methods.

public interface Attribute ... {
...
public DirContext getAttributeDefinition() throws NamingException;
public DirContext getAttributeSyntaxDefinition()

throws NamingException;
...

}

Figure 3 is an example showing the different associations for accessing schema inform

Figure 3: Example mapping Directory to Schema

AttributeDefinition

getSchema()
Schema Tree

SyntaxDefinition

DirContext

Attribute

getAttributeDefinition()

getAttributeSyntaxDefinition()

Directory Tree

ClassDefinition

getSchemaClassDefinition()
Sun Microsystems, Inc. 17 7/14/99

Java Naming and Directory Interface Overview of the Interface

noti-

e,

e
of
in

in
th of
5.3 The Event Package — javax.naming.event1

The javax.naming.event package contains classes and interfaces for supporting event
fication in naming and directory services.

5.3.1 Naming Events

A NamingEvent represents an event that is generated by a naming/directory service.

public class NamingEvent extends java.util.EventObject {
...
public int getType();
public Binding getOldBinding();
public Binding getNewBinding();
...

}

The event’s type identifies the type of event. TheNamingEvent class defines four types of
events:

OBJECT_ADDED
OBJECT_REMOVED
OBJECT_RENAMED
OBJECT_CHANGED

These types can be placed into two categories:

• Those that affect the namespace (add/remove/rename an object)

• Those that affect an object’s contents

In addition to the event’s type, aNamingEvent contains other information about the chang
such as information about the object before and after the change.

5.3.2 Naming Listeners

A naming listeneris an object that registers forNamingEvent s. It is represented by the interfac
NamingListener . Each category ofNamingEvent is handled by a corresponding subtype
NamingListener . TheNamespaceChangeListener interface represents a listener interested
namespace changes, while theObjectChangeListener represents a listener interested
changes to an object’s contents. A listener implementation might implement one or bo
these interfaces, depending on the types of events it is interested in.

1. See Appendix C for legend of class diagram.

java.lang.Object

java.util.EventObject

NamingEvent

NamingExceptionEvent

EventContext

java.io.Serializable

NamingListener

NamespaceChangeListener

ObjectChangeListener

EventDirContext
Sun Microsystems, Inc. 18 7/14/99

Java Naming and Directory Interface Overview of the Interface

the im-
object

ns in
l/ser-

254).

red
5.3.3 Event Registration and Deregistration

TheEventContext andEventDirContext interfaces extend theContext andDirContext in-
terfaces, respectively, to support event registration and deregistration.

public interface EventContext extends Context {
...
public void addNamingListener(Name target,

int scope,
NamingListener l)

throws NamingException;
public void removeNamingListener(NamingListener l)

throws NamingException;
public boolean targetMustExist()

throws NamingException;
}

Like methods in the correspondingContext interface,addNamingListener() has an overload
that accepts aString name argument. The name parameter is referred to as thetarget. The
scope parameter specifies whether the registration is for the object named by the target,
mediate children of the context named by the target, or the entire subtree rooted at the
named by the target.

It is possible to register interest in a target that does not exist, but there might be limitatio
the extent to which this can be supported by the service provider and underlying protoco
vice. An application can use the methodtargetMustExist() to check whether anEventCon-

text supports registration of nonexistent targets.

public interface EventDirContext extends EventContext, DirContext {
public void addNamingListener(Name target,

String filter,
SearchControls ctls,
NamingListener l)

throws NamingException;
public void addNamingListener(Name target,

String filter,
Object[] filterArgs,
SearchControls ctls,
NamingListener l)

throws NamingException;
...

}

TheEventDirContext interface extends theEventContext andDirContext interfaces to al-
low a listener to register interest in objects identified using search filters (Internet RFC 2

Like methods in the correspondingDirContext interface,addNamingListener() methods
have overloads that accept aString name argument.

TheEventContext/EventDirContext instance on which theaddNamingListener() method
is invoked is theevent sourceof the events that are (potentially) generated. When the registe
listener invokesgetSource() or getEventContext() on aNamingEvent , the result will be
this EventContext /EventDirContext instance.

For example, suppose a listener makes the following registration:
Sun Microsystems, Inc. 19 7/14/99

Java Naming and Directory Interface Overview of the Interface

:

ternal
or ex-
server
bout

ch an
-

cific

arily
NamespaceChangeListener listener = ...;
src.addNamingListener("x", SUBTREE_SCOPE, listener);

When an object named “x/y” is subsequently deleted, the correspondingNamingEvent (evt)
delivered tolistener must containsrc as its event source. The following will both be true

evt.getEventContext() == src
evt.getOldBinding().getName().equals("x/y")

5.3.4 Exception Handling

When a listener registers for events with a context, the context might need to do some in
processing in order to collect information required to generate the events. The context, f
ample, might need to make a request to the server to register interest in changes on the
that will eventually be translated into events. If an error occurs that prevents information a
the events from being collected, the listener will never be notified of the events. When su
error occurs, aNamingExceptionEvent is fired to notify the listener, and the listener is auto
matically deregistered.

The baseNamingListener interface defines anamingExceptionThrown() method so that a
listener can be notified of such an error.

 public interface NamingListener extends java.util.EventListener {
public void namingExceptionThrown(NamingExceptionEvent evt);

}

5.4 The LDAP Package — javax.naming.ldap1

The javax.naming.ldap package contains classes and interfaces for using LDAP v3-spe
features that are not already covered by the more genericjavax.naming.directory package.
In fact, the majority of JNDI applications that use LDAP will find thejavax.naming.direc-

tory package sufficient, and will not need to use this package at all. This package is prim

1. See Appendix C for legend of class diagram.

(exception classes are not shown)

java.lang.Object

ControlFactory

java.util.EventObject

UnsolicitedNotificationEvent

javax.naming.InitialContext

javax.naming.directory.InitialDirContext

InitialLdapContext

ExtendedResponse

ExtendedRequest

java.io.Serializable

Control

javax.naming.Context

javax.naming.directory.DirContext

LdapContext

HasControls

UnsolicitedNotification

UnsolicitedNotificationListener
Sun Microsystems, Inc. 20 7/14/99

Java Naming and Directory Interface Overview of the Interface

tifica-

pro-
ween

endor.

e the

ion

n gets
ugh the
asses
, while
n a type-
ing and

sup-
s

ented

lled
F or
ontrols.
for those applications that need to use extended operations, controls, or unsolicited no
tions.

5.4.1 Extended Operations

In addition to specifying well-defined operations such as search and modify, the LDAP v3
tocol (Internet RFC 2251) specifies a way of transmitting yet-to-be defined operations bet
the LDAP client and server. These operations are referred to asextended operations. An ex-
tended operation may be defined by a standards organization such as the IETF or by a v

TheLdapContext interface defines a method for executing an extended operation:

public interface LdapContext extends DirContext {
public ExtendedResponse extendedOperation(ExtendedRequest request)

throws NamingException;
...

}

TheExtendedRequest interface represents the argument to an extended operation, whil
ExtendedResponse interface represents the result of the extended operation. AnExtended-

Request or ExtendedResponse consists of an identifier that identifies the extended operat
and a byte array containing the ASN.1 BER encoded contents of the request/response.

An application typically does not deal directly with theExtendedRequest /ExtendedResponse

interfaces. Instead, it deals with classes that implement these interfaces. The applicatio
these classes either as part of a repertoire of extended operations standardized thro
IETF, or from directory vendors for vendor-specific extended operations. The request cl
should have constructors that accept arguments in a type-safe and user-friendly manner
the response classes should have access methods for getting the data of the response i
safe and user-friendly manner. Internally, the request/response classes deal with encod
decoding BER values.

For example, suppose an LDAP server supports a “get time” extended operation. It would
ply classes such asGetTimeRequest andGetTimeResponse , so that applications can use thi
feature. An application would use these classes as follows:

GetTimeResponse resp =
(GetTimeResponse)lctx.extendedOperation(new GetTimeRequest());

long time = resp.getTime();

5.4.2 Controls

The LDAP v3 protocol (Internet RFC 2251) allows any request or response to be augm
by yet-to-be defined modifiers. These modifiers are referred to ascontrols. Controls that are
sent with requests are calledrequest controlsand those that are sent with responses are ca
response controls. A control may be defined by a standards organization such as the IET
by a vendor. There is not necessarily a pairing between request controls and response c

JNDI classifies request controls into two categories:

• connection request controls: those that affect how a connection is created

• context request controls: those that affect context methods
Sun Microsystems, Inc. 21 7/14/99

Java Naming and Directory Interface Overview of the Interface

r re-es-
oper-
high-

o do
y multi-
e con-
e, the
g the

equest

ntrol

herit-
n

text
ferent
ontext

con-
licitly
Connection request controls are used whenever a connection needs to be established o
tablished with an LDAP server. Context request controls are used when all other LDAP
ations are sent to the LDAP server. The reason for this distinction is because JNDI is a
level API that does not deal directly with connections. It is the job of service providers t
any necessary connection management. Hence, a single connection might be shared b
ple context instances, and a service provider is free to use its own algorithms to conserv
nection and network usage. Thus, when a method is invoked on the context instanc
service provider might need to do some connection management in addition to performin
corresponding LDAP operations. For connection management, it uses the connection r
controls, while for the normal LDAP operations, it uses the context request controls.

TheLdapContext interface defines methods for dealing with controls:

public interface LdapContext extends DirContext {
public void reconnect(Control[] connCtls) throws NamingException;
public Control[] getConnectControls() throws NamingException;
...
public LdapContext newInstance(Control[] reqCtls)

throws NamingException;
public void setRequestControls(Control[] reqCtls)

throws NamingException;
public Control[] getRequestControls() throws NamingException;
...
public Control[] getResponseControls() throws NamingException;

}

TheControl interface represents a control. It consists of an identifier that identifies the co
and a byte array containing the ASN.1 BER encoded contents of the control.

Connection request controls are initialized using the initial context constructor and are in
ed by contexts that are derived from a context.reconnect() is used to change the connectio
request controls of a context. A context’s connection request controls are retrieved usingget-

ConnectControls() .

Context request controls are initialized usingnewInstance() and changed usingsetRequest-

Controls() . newInstance() is a convenience method for creating a new instance of a con
for the purposes of multithreaded access. For example, if multiple threads want to use dif
context request controls, each thread may use this method to get its own copy of this c
and set/get context request controls without having to synchronize with other threads.

Unlike connection request controls, context request controls arenot inherited by context in-
stances that are derived from a context. Derived context instances are initialized with no
text request controls. You must set the request controls of a derived context instance exp
usingsetRequestControls() . A context’s context request controls are retrieved usingget-

RequestControls() .

5.4.3 The Initial Context

An application that is performing LDAP extended operations or controls can useInitial-

LdapContext instead ofjavax.naming.InitialContext or javax.naming.directo-

ry.InitialDirContext to create its initial context:
Sun Microsystems, Inc. 22 7/14/99

Java Naming and Directory Interface Overview of the Interface

erver,
e

-
e

public class InitialLdapContext
extends InitialDirContext implements LdapContext {

public InitialDirContext() ...;
public InitialDirContext(Hashtable env, Control[] connCtls) ...;

}

It can then invoke any method in theContext , DirContext , or LdapContext interfaces on the
initial context. By using the constructor that accepts aconnCtls argument, the application can
specify controls to be used when establishing a connection with the LDAP server.

5.4.4 Unsolicited Notifications

In addition to the normal request/response style of interaction between the client and s
the LDAP v3 protocol also specifiesunsolicited notifications—messages that are sent from th
server to the client asynchronously, not in response to any client request.

JNDI supports unsolicited notifications using the event model embodied in thejavax.nam-

ing.event package. It defines anUnsolicitedNotificationEvent class and a correspond
ing UnsolicitedNotificationListener interface. An application registers to receiv
UnsolicitedNotificationEvent s by supplying anUnsolicitedNotificationListener to
EventContext.addNamingListener() .
Sun Microsystems, Inc. 23 7/14/99

Java Naming and Directory Interface Configuration

n that
ple, an
. Or,
than

d users

re
r

se

all
x

all

r
n
le,

that
rties.
ion has
6 Configuration

6.1 Environment Properties

Some JNDI applications need a way to communicate various preferences and informatio
define the environment in which naming and directory services are accessed. For exam
application might need to specify the level of security for accessing a directory service
when directory and naming services are distributed, the source of information is in more
one place—replicas, master, caches,etc.An application might want to access information from
the authoritative source and needs to indicate this information to the JNDI system.

To address these requirements, JNDI defines a number of properties that developers an
can use to provide configuration information to the JNDI system. These are calledenvironment
properties.

There are different types of environment properties:

• Standard JNDI environment properties. These properties are defined by JNDI and a
common across all service providers. They are defined in relatively generic terms. Fo
example, the property “java.naming.security.principal” is used to specify the security
principal for authentication to the naming service. Individual service providers map
these environment properties to an interpretation appropriate for their service. The
properties have the prefix “java.naming.”. Appendix A contains a list of standard JNDI
environment properties. TheContext interface defines constants for most of these
environment property names.

• Service-specific environment properties. These properties are common across
service providers that implement a particular service or protocol. They have the prefi
“java.naming.service.”, where serviceis the name of the service. For example, the
prefix “java.naming.ldap.” is used for LDAP-specific environment properties.

• Feature-specific environment properties. These properties are common across
service providers that support a particular feature. They have the prefix
“java.naming.feature.”, where feature is the name of the feature. For example, the
prefix “java.naming.security.sasl.” is used for SASL-specific environment properties.

• Provider-specific environment properties. These properties only apply to a particula
service provider. They should have a prefix that reflects this uniqueness. A commo
practice is to use the package name of the service provider as the prefix. For examp
since Sun’s LDAP provider is primarily contained in the package
com.sun.jndi.ldap , properties specific to Sun’s LDAP provider have the prefix
“com.sun.jndi.ldap.”.

See Section 8.5 for security-related considerations when using environment properties.

Although the support for environment properties is rather extensive, it is important to note
an application typically does need to deal with them, or only needs to set one or two prope
Most properties have reasonable defaults and only need to be adjusted when the applicat
special requirements.
Sun Microsystems, Inc. 24 7/14/99

Java Naming and Directory Interface Configuration

h
m the
he fol-
reates

two

ingful
aning-

am-
is an

JARs
hives
amed

file.

ment
6.2 Context Environment

A context’s environment is represented as ajava.util.Hashtable or any of its subclasses

(e.g.,java.util.Properties 1). It is typically specified using an argument to theInitial-

Context , InitialDirContext , or InitialLdapContext constructors, and augmented wit
data from other sources (as discussed in the rest of this section). They are inherited fro
parent context as context methods proceed from one context to the next. For example, t
lowing code creates an environment consisting of two security-related properties and c
an initial context using that environment.

Hashtable env = new Hashtable();
env.put(Context.SECURITY_PRINCIPAL, "jsmith");
env.put(Context.SECURITY_CREDENTIALS, "xxxxxxx");
Context ctx = new InitialContext(env);

Contexts that are looked up or otherwise derived from this initial context will have these
properties in their environment.

A context’s environment can be examined usingContext.getEnvironment() .

Not all environment properties are meaningful to all contexts. Those that are not mean
are ignored by the context but inherited by derived contexts (because they might be me
ful, for instance, to federated contexts).

6.3 Resource Files

A JNDI resource file is a file in the properties file format (seejava.util.Properties). The
file contains a list of key/value pairs. The key is the name of the property (e.g., “java.n
ing.factory.object”) and the value is a string in the format defined for that property. Here
example of a JNDI resource file:

java.naming.factory.object=com.wiz.jndi.AttrsToCorba:com.wiz.jndi.ToPerson
java.naming.factory.state=com.wiz.jndi.CorbaToAttrs:com.wiz.jndi.FromPerson
java.naming.factory.control=com.wiz.jndi.MyResponseControlFactory

There are two kinds of JNDI resource files: application and provider.

6.3.1 Application Resource Files

When an application is deployed, it will generally have several codebase directories and
in its classpath. Similarly, when an applet is deployed, it will have a codebase and arc
specifying where to find the applet’s classes. JNDI locates all application resource files n
jndi.properties in the classpath. In addition, if the file$JAVA_HOME/lib/jndi.proper-

ties exists and is readable, JNDI treats it as an additional application resource
($JAVA_HOMEis the directory named by thejava.home system property.) All of the properties
contained in these files are placed into the environment of the initial context. This environ
is then inherited by other contexts.

1. Note that if you useProperties , only the top-level properties are consulted—its defaults are not consulted—
becauseHashtable.get() is used when retrieving entries from the environment. Seejava.util.Proper-

ties for details.
Sun Microsystems, Inc. 25 7/14/99

Java Naming and Directory Interface Configuration

value
s. For

three
s that
r fac-

e file

t pro-

riod

tain
cretion
prop-

erties,

ll of the

per-
source
s and

ment
any
For each property found in more than one application resource file, JNDI uses the first
found or, in a few cases where it makes sense to do so, it concatenates all of the value
example, if thejava.naming.factory.object property is found in threejndi.properties

resource files, the list of object factories is a concatenation of the property values from all
files. Using this scheme, each deployable component is responsible for listing the factorie
it exports. JNDI automatically collects and uses all of these export lists when searching fo
tory classes.

Application resource files are available beginning with the Java 2 Platform, except that th
in $JAVA_HOME/lib can be used on all Java platforms.

6.3.2 Provider Resource Files

Each service provider has an optional resource file that contains properties specific to tha
vider. The name of this resource is:

[prefix/]jndiprovider.properties

whereprefix is the package name of the provider’s context implementation(s), with each pe
(“.”) converted to a slash (“/”).

The JNDI library will consult the provider resource file when determining the values of cer
properties. Properties other than these can be set in the provider resource file at the dis
of the service provider. The service provider’s documentation should clearly state which
erties are allowed.

6.4 Application/Applet-scope Standard JNDI Properties

Certain standard JNDI properties can alternately be set in the Java runtime’s system prop
or in an applet’s parameter list. These properties are:

java.naming.factory.initial
java.naming.factory.object
java.naming.factory.state
java.naming.factory.control
java.naming.factory.url.pkgs
java.naming.provider.url
java.naming.dns.url

For JNDI to access an applet’s parameters, the applet code must set thejava.naming.applet

environment property to an instance of the applet (java.applet.Applet).

When these properties are set as system properties or applet parameters, they affect a
application’s/applet’s contexts.

6.5 How the Environment Properties are Set

When JNDI constructs an initial context, the context’s environment is initialized with pro
ties defined in the environment parameter passed to the constructor and all application re
files. For the application/applet-scope properties, their values from the system propertie
the applet parameters are also used.

JNDI passes the resulting environment to the initial context implementation. The environ
is then inherited by contexts that are derived from the initial context. Since JNDI performs
Sun Microsystems, Inc. 26 7/14/99

Java Naming and Directory Interface Configuration

or con-

re not

new
e com-
ating
ontext
erwise

change

e an

e de-
ext’s
nt has

ult be-
must
of the

values
ecific
necessary merging of the properties and their values, there is no need for the application
text implementation to directly consult the system properties or applet parameters.

6.6 Modifications to the Environment

A context’s environment can be changed using theaddToEnvironment() andremoveFromEn-

vironment() methods:

public interface Context {
public Object addToEnvironment(String propName, Object val)

throws NamingException;
public Object removeFromEnvironment(String propName)

throws NamingException;
...

}

Not all environment properties are meaningful to all contexts. Changes to those that a
meaningful are still recorded and passed onto derived contexts.

6.6.1 Scope

Changing a property using theaddToEnvironment() or removeFromEnvironment() methods
affects the context instance on which the method is invoked. For example, if you specify
credentials for a context to use, subsequent methods invoked on that context that requir
munication with the server will use those new credentials (perhaps internally by first cre
a new connection to the server). These updated environment properties are inherited by c
instances that are subsequently derived from the affected context instance, but do not oth
affect other context instances that were in existence prior to the update.

6.6.2 Timeliness

When a change is made to the environment properties, there is no requirement that the
be verified and acted upon at the timeaddToEnvironment() or removeFromEnvironment()

is invoked. The only requirement is that the change (or changes) be effective the next tim
operation that uses that property is invoked.

6.6.3 Defaults

For some environment properties, JNDI defines defaults (see Appendix A). For others, th
fault might be determined by the service provider or a group of service providers. If a cont
environment does not have a particular property, the context behaves as if its environme
that property with its default value.

When a property is removed from a context’s environment, the context assumes the defa
havior specified for that property. This does not necessarily mean that the default value
be recorded as the property’s value. The removal may also be indicated by the absence
property from the context’s environment.

6.6.4 Acceptable Values

Some environment properties have a fixed set of acceptable values while others have
that must follow a particular syntax. If an unacceptable value is presented, a property-sp
exception will be thrown (for example,ConfigurationException , IllegalArgumentExcep-
Sun Microsystems, Inc. 27 7/14/99

Java Naming and Directory Interface Configuration

le
those
tion , or AuthenticationNotSupportedException). In some cases, it might be reasonab
for the service provider to accept additional values than those specified, in which case,
values should be documented.
Sun Microsystems, Inc. 28 7/14/99

Java Naming and Directory Interface Scenarios

ed by

solve

ce that
word.
ation
ystem
the

g be-
ss of a
n the
John
t in
lect
th that

ample,
again
hich I

inancial
plica-
7 Scenarios

This section outlines a few application scenarios to help illustrate the capabilities enabl
JNDI.

• The examples below are not meant to be prescriptive. There are often several ways to
a problem, and JNDI is designed with flexibility in mind.

7.1 User authentication

In secure systems, a user must authenticate himself to the computer, network, or servi
he wishes to access. For example, logging into Unix requires the user to supply a pass
Similarly, use of SSL requires that the user supply his X.509 certificate. Such authentic
information can be stored as attributes associated with each user in the directory. The s
performing the authentication would look up the attribute (for example, “password”) of
user and verify the authenticity using the information supplied by the user.

DirContext ctx = new InitialDirContext();
Attribute attr = ctx.getAttributes(userName).get("password");
String password = (String)attr.get();

7.2 Electronic Mail

A useful feature of an electronic mail system is a directory service that provides a mappin
tween users and email addresses. This allows mail users to search for the email addre
particular user. This is analogous to searching for an individual’s telephone number i
phone book in order to dial his phone number. For example, when I want to send mail to
Smith in my department, I search for “John Smith” in the directory using a “search” widge
the mail application. The widget returns to me five entries of John Smith, from which I se
the one that is in a building on my site and use the email address attribute associated wi
entry.

NamingEnumeration matches =
deptCtx.search("user", new BasicAttributes("name", "John Smith"));

// use matches to construct a selectable list for end-user
while (matches.hasMore()) {

SearchResult item = (SearchResult) matches.next();
Attributes info = item.getAttributes();
/* display attributes */
...

}

The directory could also be used by users to set up personalized address books. For ex
once I have located John Smith’s email address, I might not want to search the directory
each time I send him mail. Instead, I can create a personal subtree in the directory in w
maintain entries that I frequently use, possibly by creating links to the existing entries.

7.3 Databases

Database applications can use the directory to locate database servers. For example, a f
application needs to get the stock quotes from a stock quote server using JDBC. This ap
Sun Microsystems, Inc. 29 7/14/99

Java Naming and Directory Interface Scenarios

me at-
ication
e “loca-

e us-
her be
gen-

iew-
name
tion can enable the user to select the stock quote server based on specification of so
tributes (such as coverage of which markets and frequency of quote updates). The appl
searches the directory for quote servers that meet these attributes, and then retrieves th
tion” attribute (a JDBC URL) of the selected quote server and connects to it.

NamingEnumeration matches =
ctx.search("service/stockQuotes",

"(&(market=NASDAQ)(updateFreqency<=300))",
searchctls);

while (matches.hasMore()) {
SearchResult item = (SearchResult)matches.next();
Attribute location = item.getAttributes().get("location");
...

}

7.4 Browsing

When using almost any kind of interactive application that asks a user to input names, th
er’s job is made easier if a namespace browser is available to him. The browser can eit
built into the application and tailored to suit that application in particular, or it can be more
eral-purpose such as a typical web browser.

A very simple example of a JNDI browser allows a user to “walk” through a namespace, v
ing the atomic names at each step along the way. The browser prints a “*” to highlight the

of eachContext , thus telling the user where he can go next.1

1. TheisContext() method used in the example is not part of JNDI. It is a method that must be provided by the
application.
Sun Microsystems, Inc. 30 7/14/99

Java Naming and Directory Interface Scenarios

asily
chine
e net-
. The

e

ings.
ions,
tion
rvice.
// Start at the top -- the initial context.
Context ctx = new InitialContext();
while (ctx != null) { // display one level

NamingEnumeration items = ctx.list();
while (items.hasMoreElements()) {

NameClassPair item = (NameClassPair)items.next();
if (isContext(item.getClassName())) {

System.out.print("*");
} else {

System.out.print(" ");
}
System.out.println(" " + item.getName());

}
// Take the next step down into the namespace.
String target = input.readLine();
try {

ctx = (Context)ctx.lookup(target);
} catch (NamingException e) {

// handle error
} catch (ClassCastException e) {

// not a context; cannot traverse
}

}

7.5 Network Printing

An important function of a printing service is to provide a means for its human users to e
discover and select printers in the network. An application that needs to print, or the ma
on which it runs, should not have to be configured each time a new printer is added to th
work. The scope of network access to printers may range from a workgroup to global
printing service can use the directory to provide this capability.

Assume that printers are represented by aPrinter interface. One of the methods in it could b
print() which, when given anInputStream , will read data fromInputStream and print it
on the printer represented by this instance ofPrinter .

interface Printer {
void print(InputStream data) throws PrinterException;
...

}

A user selects a printer using a logical printer name, either explicitly or through default sett
For example, the user might have specified a default printer to use for all his applicat
which is overridden only when he explicitly specifies another printer to use. The applica
that is accepting the print request takes the printer name and looks it up in the directory se
The application expects to receive as the result an object that implements thePrinter inter-
face.
Sun Microsystems, Inc. 31 7/14/99

Java Naming and Directory Interface Scenarios

ser
ch for
print-
aser

rning
void myAppPrint(String printerName, String fileName)
throws IOException {
try {

DirContext ctx = new InitialDirContext();
Printer prt = (Printer) ctx.lookup(printerName);
prt.print(new FileInputStream(fileName));

} catch (NamingException e){
System.err.println("Could not locate printer: " + e);

} catch (ClassCastException e) {
System.err.println(printerName + "does not name a printer");

}
}

7.5.1 Browsing and searching for printers

Selecting a printer by explicitly giving its name is but one way of identifying a printer. The u
can also use the directory to see the different printers available (browsing), or to sear
printers with particular attributes. For example the user can ask the directory to list all the
ers on the second floor of building 5 in the Mountain View campus, or search for all color l
printers with 600dpi resolution. From the application’s perspective, just aslookup() returned
a Printer object, the list and search operations also provide the same capability of retu
Printer objects that the application could use to submit print requests.
Sun Microsystems, Inc. 32 7/14/99

Java Naming and Directory Interface Security Considerations

r in-

rusted
here is
ming

an be

rio.
cess
s (like

pecial

ions to
ight
ger in-
ame
perties

m

ming
tion or

I pro-
ation

f take

client

gain
rs may
xam-
8 Security Considerations

There are two main settings in which JNDI is used: with and without a security manage
stalled.

In the case of Java applications running with no security manager installed, the code is t
and the application can access service providers from the local classpath. Furthermore, t
no restriction if the service providers access local files, or make network connections to na
or directory servers anywhere on the network.

In the case of an applet or application running with a security manager installed, there c
trusted code and untrusted code within the same applet or application. TheSharing Context
HandlesandContext Environmentsections below are especially applicable in such a scena
The ability of an applet or an application running with a security manager installed to ac
service providers, especially service providers that require the use of restricted resource
the file system or network connections) may be severely limited.

8.1 JNDI Classes

The classes in the JNDI packages contain no native methods. They do not require any s
installation in order to run inside an applet or an application.

JNDI uses several system properties (see Section 6.4). This allows applets and applicat
be configured easily without much programming. However, an applet or application m
have restricted access to some or all system properties as a result of the security mana
stalled on the platform on which it is running. Consequently, JNDI also allows these s
properties to be specified as applet parameters, in resource files, or as environment pro
passed to a context.

In the Java 2 Platform, the JNDI classes usedoPrivileged blocks when accessing the syste
properties listed in Section 6.4.

8.2 Security Model

JNDI does not define a security model or a common security interface for accessing na
and directory servers. Security-related operations, such as those required for authentica
access control to the directory service, are dealt with by individual service providers. JND
vides the means by which an application or applet can pass such security-related inform
to service providers in order to establish a connection with the service, but does not itsel
part in such security-related activities.

JNDI also provides the means by which security-related problems can be indicated to the
in the form of security-related exceptions.

JNDI service providers are controlled by the security manager in place when they try to
access to protected resources such as the file system or network. Some service provide
control directory access by making use of the Java 2 Platform security architecture (for e
ple, allowing access to special ports for administration-related applets).
Sun Microsystems, Inc. 33 7/14/99

Java Naming and Directory Interface Security Considerations

ct in-
n” to
ht al-

t priv-

code
er), it
logous
ce of
usted
rusted

ccess-
rop-

form
ntext.

need

rotect

nviron-

only
class

the se-
8.3 Access To Servers

Naming and directory services typically have their own security system in place to prote
formation stored therein. For example, one directory might require that its users first “logi
the directory before reading or updating information in the directory. Some services mig
low anonymous access to part of its namespace/directory.

Once a user has logged into a service, it is imperative for security reasons not to share tha
ilege with untrusted code.

8.4 Sharing Context Handles

In the following discussion, we refer to acontext handleas a reference to aContext instance.
This is analogous to how a reference to aReader /Writer /InputStream /OutputStream in-
stance is often referred to as afile handle.

A context handle should be treated like any other protected resource. If a piece of trusted
obtains a context handle (possibly by authenticating its access with the directory serv
should protect the use of that context against unauthorized or untrusted code. This is ana
to how application and/or applet code should protect file handles. For example, if a pie
trusted code opens a file for writing (and it was granted such privilege because of its tr
nature), it should be careful about passing that file handle to any other pieces of code, t
or otherwise.

Similarly, giving access of a context handle to untrusted code may lead to its misuse in a
ing or updating information in the directory, or accessing security-sensitive environment p
erties associated with the context.

8.5 Context Environment

JNDI allows the application/applet to pass preferences and information to a context in the
of an environment. The application/applet can also get the current environment from a co
See Chapter 6 and Appendix A for more information on a context’s environment.

The nature of the information contained in a context’s environment might be sensitive and
protection from untrusted access. Specifically, the environment propertiesjava.naming.se-

curity.principal and java.naming.security.credentials contain information that
should not be given out to untrusted code. Service providers might take precaution to p
against accessing these properties (seeResponsibilities of Service Providersbelow). Client ap-
plications and applets should take care not to pass context handles with such sensitive e
ment properties to untrusted code.

8.6 Class Loading

JNDI allows the class files to be loaded dynamically.

When JNDI is run on the JDK 1.1.x platform, it uses the RMI class loader. The classes can
be loaded if there is a security manager installed, and if that security manager permits the
to be loaded. When such classes are loaded, they run in the security context dictated by
curity manager.
Sun Microsystems, Inc. 34 7/14/99

Java Naming and Directory Interface Security Considerations

tions

e per-
me is

e form
e doc-

r by
times
ser in-
re to

r oth-
nsitive

any
y the
ertain
imply
.

twork.
hich

pro-
trust-

se the
an un-
such

“anon-
ony-
e data.

quest-
otocols
lar to
When JNDI is run on the Java 2 platform, it will attempt to load such classes from the loca
specified in the codebase using thejava.net.URLClassLoader . In order for the class loading
to succeed, you must grant the application and the JNDI and service provider classes th
missions appropriate for the URLs named in the codebase. For example, if the URL sche
“http” or “ftp”, you must grant the application the appropriatejava.net.SocketPermission ;
if the URL scheme is “file”, you must grant the application the appropriatejava.io.File-

Permission .

8.7 Serializable Objects

Several of the JNDI classes are serializable. This allows the objects to be accessed in th
of a byte stream, possibly outside of the environment in which they were created. See th
ument at the following URL regarding security issues related to serialized objects.

http://java.sun.com/products/jdk/1.2/docs/guide/serialization/spec/security.doc.html

8.8 Responsibilities of Service Providers

8.8.1 Context Environment

When a context handle is created (either by getting the initial context or by looking it up o
creating it from the directory), some environment properties may be specified for it. Some
security-related properties are required for the creation of the context handle (such as u
formation that “logs” the user in with the directory). The service provider should take ca
protect this security-sensitive information from untrusted code.

The service provider needs to protect the context’s environment from being tampered o
erwise modified by untrusted code. The service provider needs to protect the security-se
environment properties from being read by untrusted code. It might do this by disallowing
thread whose execution context and/or trust level is different than that originally held b
thread that created the context handle to use the context handle. Or it might disallow c
operations (such as accessing security-sensitive environment properties). Or it might s
not return security-sensitive environment properties, or only return them to trusted code

8.8.2 Network Security

Untrusted code (such as those found in untrusted applets) have limited access to the ne
Untrusted applets, for example, can only create a network connection to the host from w
they were downloaded. With finer-grain security models, it will be possible for the service
vider itself to be trusted code, and hence be allowed to connect to hosts not allowed for un
ed applets. In such a scenario, the service provider should be careful not to compromi
security intended by the security manager. If the service provider is sure that access by
trusted applet to the directory will cause no security problems, then it may proceed to offer
a service to untrusted code. For example, allowing untrusted code to access a directory
ymously” would post no security problems because the directory already allows any an
mous client (written in the Java programming language or otherwise) to access the sam

Most naming and directory services are accessed over the network. Although the data re
ed is protected by the server’s authentication and access control mechanisms, some pr
do not protect (encrypt) the data being sent as replies. Again, this is not a problem particu
Sun Microsystems, Inc. 35 7/14/99

Java Naming and Directory Interface Security Considerations

vider
y over

e ser-
pre-

priv-
n the
gh the

en it
/plat-
a client using JNDI but a problem for any client accessing the directory. The service pro
should document the security implications associated with using the associated director
a network.

8.8.3 Accessing Local Files

Similar to network access, untrusted code has limited access to the local file system. If th
vice provider has special privileges for accessing local files, it should do so with utmost
caution so as not to compromise the security policies intended by the runtime/platform.

8.8.4 Privileged Code, Native Methods

A service provider that is written completely in the Java programming language with no
ileged sections is controlled by the same security policies afforded other code written i
Java programming language. All protected resources that it attempts to access go throu
same security manager and access controller.

If a service provider contains privileged code sections, or if it contains native methods, th
needs to be especially careful to preserve the security policies intended by the runtime
form.
Sun Microsystems, Inc. 36 7/14/99

Java Naming and Directory Interface Design Choices

p-
what

pread-

vices.

a-
chema-

a par-
For

with

gory of

that are
use
-

needs

, and
wser-
ition
ames,
sually
ld then
9 Design Choices

9.1 Separation of Interfaces into Context and DirContext

There are two core interfaces in JNDI:Context , andDirContext , with DirContext extending
the base naming operations inContext with directory service operations. They have been se
arated into separate interfaces both for modularity and also in keeping with the “pay for
you use” goal of JNDI.

Naming is a basic component found in many computing services such as file systems, s
sheets, calendar services, and directory services. By having a baseContext interface for the
naming operations, we enable its use by all these other services, not just for directory ser

DirContext extendsContext to provide basic directory service operations, which include m
nipulation of attributes associated with named objects, attribute-based searches, and s
related operations of those attributes and named objects.

9.2 Separation of JNDI into Different Functional Packages

JNDI is separated into four client packages (javax.naming , javax.naming.directory , jav-

ax.naming.event , javax.naming.ldap) and a service provider package (javax.nam-

ing.spi). The idea is that each package contains the interfaces and classes required for
ticular category of applications, again in keeping with the “pay for what you use” goal.
example, an application that just wants to perform name-lookups only needs to use thejav-

ax.naming package. An application that wants to examine/modify attributes associated
an object uses thejavax.naming and javax.naming.directory packages. An application
that needs to use LDAP-specific controls or extended operations uses thejavax.naming.ldap

package. There is a step-by-step progression of what classes and interfaces each cate
application writer needs to learn and use.

9.3 Separation of Client APIs and Service Provider Interfaces

JNDI separates interfaces and classes that a client application needs to use from those
only of interest to service providers into different packages. For example, a client would
interfaces and classes fromjavax.naming , while a service provider that is hooking up a nam
ing service would use bothjavax.naming andjavax.naming.spi . The package delineation
minimizes confusion for the application developer and makes clear which packages he
to examine when writing his program.

9.4 Multiple methods for listing Context

There are two common types of applications that list contexts: browser-style applications
applications that need to perform operations on the objects in a context en-masse. Bro
style applications typically want to display the names of the contents of a context. In add
to the names, many browsers often require type information of the objects bound to the n
so that it can display appropriate pictorial representations of the objects. The browser is u
interactive. Once a user has used a browser to display the contents of a context, he wou
select one or a few of the entries displayed and request more information on it.
Sun Microsystems, Inc. 37 7/14/99

Java Naming and Directory Interface Design Choices

exam-
file

ing.
ontext.

le

a con-
n-

that

os-

art of
to

ation
ntual

se of
ller of

esolu-
erven-

e pro-
f fed-

a sin-

-

just

-

Some applications need to perform operations on objects within a context en-masse. For
ple, a backup program might want to perform “file stats” operations on all the objects in a
directory. A printer administration program might want to restart all the printers in a build
To perform such operations, these programs need to obtain all the objects bound in a c

With these two common styles of usage in mind, theContext interface has two types of list
methods:list() andlistBindings() . list() returns a list of name/class-name pairs whi
listBindings() returns a list of name/class-name/object tuples.list() is designed for
browser-style applications that want mostly just the names and types of objects bound in
text. listBindings() is for applications that want to potentially get all the objects in the co
text, as well as their names and types.listBindings() returns an enumeration ofBinding .
Both thelistBindings() operation itself and invocation of methods in theBinding class (e.g.
getObject()) could be implemented lazily or eagerly. UsinglistBindings() simply indi-
cates the potential that the caller might want all or many of the objects in the context so
implementations that are able can optimize for it. Usinglist() indicates that the caller is un-
likely to want all, if any, objects in the context so implementations can optimize for that if p
sible.

An alternative is to have a single list operation and have the lazy or eager behavior as p
the implementation ofBinding . The advantage of this is that there is a single list operation
learn. The disadvantage is that the caller has no way of indicating which piece of inform
he wants back from list, and subsequently, implementations cannot optimize for the eve
behavior of the program.

9.5 Support for Federation

Federation is a first-class concept in JNDI. In the client interfaces, it is supported by the u
theNameinterface for specifying names that can span one or more namespaces. The ca
the methods in the client interface need not know anything else regarding federation. R
tion of names across multiple systems is handled by the SPI and does not involve any int
tion on the part of the caller.

Although federation is a first-class concept, that does not mean that all callers and servic
viders must make use of it. If an application or service does not want to take advantage o
eration, there is no requirement thatName always span multiple namespaces.Name can just
name objects within a single namespace, and the SPI can handle name resolution within
gle namespace as well (as a degenerate case of multiple namespace support).

9.6 DirContext versus DirObject

Instead of havingDirContext extendContext , an alternative would be to not extendContext

at all but to have a separate interface calledDirObject that encapsulates all the directory-re
lated methods. In that case, an object can implement bothContext andDirObject if it sup-
ports both the naming and directory operations; another object might implement
DirObject .

The problem with eliminatingDirContext is thatDirContext contains some hybrid opera
tions that involve both naming and directories (bind() , createSubcontext() methods that
accept attributes as arguments). To keep these operationsandhaveDirObject at the same time
Sun Microsystems, Inc. 38 7/14/99

Java Naming and Directory Interface Design Choices

t

s with

ma for

e di-
s
and
s no
o live
by the
ibute

ight
other

d.

that
object
ds ac-

that
forms
ames

ca-
eth-
n

would produce the need for a third interface (perhaps calledDirContext) to contain just these
hybrids.

Furthermore, havingDirContext instead ofDirObject is somewhat more convenient in tha
you can perform some operations in one step instead of two. For exampleDirContext.getAt-

tributes() could be used to get the attributes associated with a named object, wherea
DirObject , you would need first to resolve to the object (Context.lookup()) and then use
DirObject.getAttributes() to get the attributes from it.

9.7 Support for Schemas

TheDirContext interface contains support for schemas. For example, from aDirContext ob-
ject you can obtain its schema object, which points to the directory space where the sche
this particularDirContext instance is defined. From aDirContext object, you can also obtain
its schema class definition (i.e. information about what type of object this represents in th
rectory). There is further support for schemas in theAttribute class, which contains method
for obtaining an attribute’s syntax information (i.e. what is the type of the attribute’s value)
the attribute’s definition (e.g. is it multivalued, syntax, constraints on its syntax). There i
requirement that any of this schema information be dynamically accessible (i.e. points t
directory spaces). Support for such schema information could be generated statically
service provider. For example, a particular directory service might only support string attr
values, so it can hard-wire the syntax of the attributes that it returns. Another directory m
support only static schemas (where information in the schema are not modifiable). Yet an
directory might support fully dynamic schemas. The interfaces and classes inDirContext are
flexible enough that these different levels of support for schemas can be accommodate

9.8 Overloaded Methods in Context and DirContext

For each method in theContext andDirContext interfaces that accepts aNameargument,
there is a corresponding overloaded form that accepts aString argument for specifying a
name.

The motivation for having theString -based methods is that there are many applications
simply accept a string name from the end-user and perform context methods on the
named by that string name. For those applications, it is useful to have the context metho
cept a string for the name directly, instead of requiring the applications to first construct aName

object using the string name.

The motivation for having theName-based methods is that there are also many applications
manipulate names and do not want to worry about syntactic details of the names’ string
when composing and modifying names. These applications deal with the parsed form of n
and hence would prefer to deal withNameobjects rather than string names. For these appli
tions, we provide theName-based methods in the context interfaces. Not providing these m
ods would probably cause proliferation ofName-like interfaces/classes to support manipulatio
of names in their structural form in applications developed on top of JNDI.
Sun Microsystems, Inc. 39 7/14/99

Java Naming and Directory Interface Design Choices

te ob-
appli-

up a
ation
pace.
uently
r mak-
the di-

a-
ad-
ding a
ffect is
class

b-
ation

be ap-

y
n sim-
tion

ou a

his is

an in-
9.9 Reference and Referenceable

There are different ways in which applications and services can use the directory to loca
jects. JNDI is general enough that it accommodates several different models. For some
cations, the object bound in the directory is the object itself. An application may build
dynamic directory while the application is active, and delete the directory when the applic
exits. Another application might store URLs as attributes for locating objects in its names
Other systems might bind some reference information in the directory, which can subseq
be used to locate or access the actual object. This last case is quite common, especially fo
ing Java applications take advantage of services in the installed base. The reference in
rectory acts as a “pointer” to the real object.

JNDI defines aReference class to provide a uniform way of representing reference inform
tion. A Reference contains information on how to access an object. It consists of a list of
dresses and class information about the object to which this reference refers. When bin
name to an object that is to be represented in the directory as a reference, the desired e
that the object’s reference be extracted and bound. To allow for this behavior, the object’s
must implement theReferenceable interface, which contains the methodgetReference() .

There is some similarity between the interfacesSerializable andReferenceable and a nat-
ural question is “why not just useSerializable instead?” The answer is that a serialized o
ject is really a frozen version of the object, whereas the reference contains just the inform
needed to construct it. The serialized version may have a lot more state which may not
propriate for storage in the directory.

9.10 Automatically Turning References into Objects

For an object that is bound as aReference in the directory, JNDI SPI framework automaticall
creates and instantiates the object identified by the reference. In this way, the program ca
ply narrow the result oflookup() to the expected class, instead of calling a separate opera
to transform the result oflookup() into an object of the expected class.

For example, if you are looking up a printer object, a successful lookup would return to y
printer object that you can directly use.

Printer prt = (Printer) ctx.lookup(somePrinterName);
prt.print(someFileName);

JNDI does this automatically, instead of requiring an explicit conversion step, because t
expected to be the common usage pattern. By having theReference class, and a common
mechanism for converting aReference into the object identified by theReference , JNDI en-
courages different applications and system providers to utilize this mechanism, rather th
venting separate mechanisms on their own.
Sun Microsystems, Inc. 40 7/14/99

Java Naming and Directory Interface JNDI Standard Environment Properties
 Appendix A: JNDI Standard Environment Properties
Sun Microsystems, Inc. 41 7/14/99

Java Naming and Directory Interface JNDI Standard Environment Properties

se.

se.

,
y

t

Table 1: JNDI Environment Propertiesa

Program Configurationb

java.naming.factory.initial
(Context.INITIAL_CONTEXT_FACTORY)

Class name of initial context factory to use.
SeeInitialContext .
No default.

java.naming.factory.object
(Context.OBJECT_FACTORIES)

Colon-separated list of class names of object factory classes to u
SeeNamingManager.getObjectInstance() and
DirectoryManager.getObjectInstance() .
Defaults to empty list.

java.naming.factory.state
(Context.STATE_FACTORIES)

Colon-separated list of class names of state factory classes to u
SeeNamingManager.getStateToBind() andDirect-
oryManager.getStateToBind() .
Defaults to empty list.

java.naming.factory.control
(LdapContext.CONTROL_FACTORIES)

Colon-separated list of class names of response control factory
classes to use.
SeeControlFactory.getControlInstance() .
Defaults to empty list.

java.naming.factory.url.pkgs
(Context.URL_PKG_PREFIXES)

Colon-separated list of package prefixes to use when loading in
URL context factories.com.sun.jndi.url is always added to
end of list.
SeeNamingManager.getURLContext() .
Defaults to empty list.

Access Configurationc

java.naming.provider.url
(Context.PROVIDER_URL)

Specifies configuration information for provider to use.
Defaults to provider default, using provider’s own configuration or
discovery protocols.

java.naming.dns.url
(Context.DNS_URL)

Specifies the DNS host and domain names.
No default.

Service-Related

java.naming.authoritative
(Context.AUTHORITATIVE)

Specifies the authoritativeness of the service requested. If “true”
specifies most authoritative source is to be used (e.g., bypass an
caches, or bypass replicas in some systems). Otherwise, source
need not be (but can be) authoritative.
Defaults to “false”.

java.naming.batchsize
(Context.BATCHSIZE)

Specifies the preferred batch size to use when returning data via
the service’s protocol. This is a hint to the provider to return the
results of operations in batches of the specified size, so that the
provider can optimize its performance and usage of resources. I
does not affect the total number or size of the data returned.
Defaults to provider default.
Sun Microsystems, Inc. 42 7/14/99

Java Naming and Directory Interface JNDI Standard Environment Properties

o

-
re

ts
java.naming.referral
(Context.REFERRAL)

Specifies that referrals encountered by the service provider are t
be followed automatically. If “follow”, follow referrals automati-
cally. If “ignore”, ignore referrals encountered. If “throw”, throw
ReferralException when a referral is encountered.
Defaults to provider default.

Security

java.naming.security.protocol
(Context.SECURITY_PROTOCOL)

Security protocol to use for service.
Defaults to provider default.

java.naming.security.authentication
(Context.SECURITY_AUTHENTICATION)

Takes values “none”, “simple”, “strong”, or a provider-specific
string (e.g., “CRAM-MD5 DIGEST-MD5 EXTERNAL”).
Defaults to provider default.

java.naming.security.principal
(Context.SECURITY_PRINCIPAL)

Identity of principal (e.g., user) for the authentication scheme.
Defaults to provider default.

java.naming.security.credentials
(Context.SECURITY_CREDENTIALS)

Principal’s credentials for the authentication scheme.
The particular type of credentials is determined by the authentica
tion scheme chosen. Examples of different types of credentials a
passwords, keys, and certificates.
Defaults to provider default.

Internationalization

java.naming.language
(Context.LANGUAGE)

Specifies a colon-separated list of preferred language to use with
this service (e.g., “en-US”, “fr”, “fr-CH”, “ja-JP-kanji”).
Languages are specified using tags defined in RFC 1766.
Defaults to provider default.

a. TheContext andLdapContext interfaces define constants for these property names. The names of the constan
are shown in parentheses below the property’s string names.

b. These properties may be set in the Java runtime’s system properties or in an applet’s parameter list.
c. These properties may be set in the Java runtime’s system properties or in an applet’s parameter list.

Table 1: JNDI Environment Propertiesa
Sun Microsystems, Inc. 43 7/14/99

Java Naming and Directory Interface JNDI Standard Environment Properties
Sun Microsystems, Inc. 44 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers
 Appendix B: Examples for LDAP Programmers
Sun Microsystems, Inc. 45 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers

h the
sing
the
This appendix contains sample JNDI programs intended to help a developer familiar wit
LDAP C API. Starting with sample programs from the Netscape Directory SDK for acces
and updating the directory using the LDAP C API, we show the equivalent way of doing
same thing for Java applications using JNDI.
Sun Microsystems, Inc. 46 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers
B.1 Search the Directory

B.1.1 Search Using LDAP C API

/*
 * Copyright (c) 1996. Netscape Communications Corporation. All
 * rights reserved.
 *
 * Search the directory for all people whose surname (last name) is
 * “Jensen”. Since the “sn” attribute is a caseignorestring (cis), case
 * is not significant when searching.
 *
 */

#include “examples.h”

int
main(int argc, char **argv)
{
 LDAP *ld;
 LDAPMessage *result, *e;
 BerElement *ber;
 char *a, *dn;
 char **vals;
 int i;

 /* get a handle to an LDAP connection */
 if ((ld = ldap_init(MY_HOST, MY_PORT)) == NULL) {
 perror(“ldap_init”);
 return(1);
 }
 /* authenticate to the directory as nobody */
 if (ldap_simple_bind_s(ld, NULL, NULL) != LDAP_SUCCESS) {
 ldap_perror(ld, “ldap_simple_bind_s”);
 return(1);
 }
 /* search for all entries with surname of Jensen */
 if (ldap_search_s(ld, MY_SEARCHBASE, LDAP_SCOPE_SUBTREE,
 MY_FILTER, NULL, 0, &result) != LDAP_SUCCESS) {
 ldap_perror(ld, “ldap_search_s”);
 return(1);
 }
 /* for each entry print out name + all attrs and values */
 for (e = ldap_first_entry(ld, result); e != NULL;
 e = ldap_next_entry(ld, e)) {
 if ((dn = ldap_get_dn(ld, e)) != NULL) {
 printf(“dn: %s\n”, dn);
 ldap_memfree(dn);
 }
 for (a = ldap_first_attribute(ld, e, &ber);
 a != NULL; a = ldap_next_attribute(ld, e, ber)) {
 if ((vals = ldap_get_values(ld, e, a)) != NULL) {
 for (i = 0; vals[i] != NULL; i++) {
 printf(“%s: %s\n”, a, vals[i]);
 }
 ldap_value_free(vals);
 }
 ldap_memfree(a);
 }
Sun Microsystems, Inc. 47 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers
 if (ber != NULL) {
 ber_free(ber, 0);
 }
 printf(“\n”);
 }
 ldap_msgfree(result);
 ldap_unbind(ld);
 return(0);
}

B.1.2 Search Using JNDI

/*
 *
 * @(#)Search.java1.2 99/07/26
 *
 * Copyright 1997, 1998, 1999 Sun Microsystems, Inc. All Rights
 * Reserved.
 *
 * Sun grants you ("Licensee") a non-exclusive, royalty free,
 * license to use, modify and redistribute this software in source and
 * binary code form, provided that i) this copyright notice and license
 * appear on all copies of the software; and ii) Licensee does not utilize
 * the software in a manner which is disparaging to Sun.
 *
 * This software is provided "AS IS," without a warranty of any
 * kind. ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
 * FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN
 * AND ITS LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY
 * LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE
 * OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR
 * ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL,
 * CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND
 * REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
 * OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 * This software is not designed or intended for use in on-line
 * control of aircraft, air traffic, aircraft navigation or aircraft
 * communications; or in the design, construction, operation or
 * maintenance of any nuclear facility. Licensee represents and warrants
 * that it will not use or redistribute the Software for such purposes.
 */

import java.util.Hashtable;
import java.util.Enumeration;

import javax.naming.*;
import javax.naming.directory.*;

/*
 * Search the directory for all people whose surname (last name) is
 * "Jensen". Since the "sn" attribute is a caseignorestring (cis), case
 * is not significant when searching.
 *
 * [equivalent to search.c in Netscape's SDK.]
 *
Sun Microsystems, Inc. 48 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers
 */

class Search {

public static void main(String[] args) {

 Hashtable env = new Hashtable(5, 0.75f);
 /*
 * Specify the initial context implementation to use.
 * This could also be set by using the -D option to the java program.
 * For example,

* java -Djava.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory \
 * Search
 */
 env.put(Context.INITIAL_CONTEXT_FACTORY, Env.INITCTX);

 /* Specify host and port to use for directory service */
 env.put(Context.PROVIDER_URL, Env.MY_SERVICE);

 try {
 /* get a handle to an Initial DirContext */
 DirContext ctx = new InitialDirContext(env);

 /* specify search constraints to search subtree */
 SearchControls constraints = new SearchControls();
 constraints.setSearchScope(SearchControls.SUBTREE_SCOPE);

 /* search for all entries with surname of Jensen */
 NamingEnumeration results
 = ctx.search(Env.MY_SEARCHBASE, Env.MY_FILTER, constraints);

 /* for each entry print out name + all attrs and values */
 while (results != null && results.hasMore()) {
 SearchResult si = (SearchResult)results.next();

 /* print its name */
 System.out.println("name: " + si.getName());

 Attributes attrs = si.getAttributes();
 if (attrs == null) {
 System.out.println("No attributes");
 } else {
 /* print each attribute */
 for (NamingEnumeration ae = attrs.getAll();
 ae.hasMoreElements();) {
 Attribute attr = (Attribute)ae.next();
 String attrId = attr.getID();

 /* print each value */
 for (Enumeration vals = attr.getAll();
 vals.hasMoreElements();

System.out.println(attrId + " : " + vals.nextElement()))
 ;
 }
 }
 System.out.println();
 }
 } catch (NamingException e) {
 System.err.println("Search example failed.");
Sun Microsystems, Inc. 49 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers
 e.printStackTrace();
 }
}
}

B.2 Read An Entry

B.2.1 Read Using LDAP C-API

/*
 * Copyright (c) 1996. Netscape Communications Corporation. All
 * rights reserved.
 *
 * Search the directory for the specific entry
 * “cn=Barbara Jensen, ou=Product Development, o=Ace Industry, c=US”.
 * Retrieve all attributes from the entry.
 *
 */

#include “examples.h”

int
main(int argc, char **argv)
{
 LDAP *ld;
 LDAPMessage *result, *e;
 BerElement *ber;
 char *a, *dn;
 char **vals;
 int i;

 /* get a handle to an LDAP connection */
 if ((ld = ldap_init(MY_HOST, MY_PORT)) == NULL) {
 perror(“ldap_init”);
 return(1);
 }
 /* authenticate to the directory as nobody */
 if (ldap_simple_bind_s(ld, NULL, NULL) != LDAP_SUCCESS) {
 ldap_perror(ld, “ldap_simple_bind_s”);
 return(1);
 }
 /* search for Babs’ entry */
 if (ldap_search_s(ld, ENTRYDN, LDAP_SCOPE_SUBTREE,
 “(objectclass=*)”, NULL, 0, &result) != LDAP_SUCCESS) {
 ldap_perror(ld, “ldap_search_s”);
 return(1);
 }
 /* for each entry print out name + all attrs and values */
 for (e = ldap_first_entry(ld, result); e != NULL;
 e = ldap_next_entry(ld, e)) {
 if ((dn = ldap_get_dn(ld, e)) != NULL) {
 printf(“dn: %s\n”, dn);
 ldap_memfree(dn);
 }
 for (a = ldap_first_attribute(ld, e, &ber);
 a != NULL; a = ldap_next_attribute(ld, e, ber)) {
 if ((vals = ldap_get_values(ld, e, a)) != NULL) {
Sun Microsystems, Inc. 50 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers
 for (i = 0; vals[i] != NULL; i++) {
 printf(“%s: %s\n”, a, vals[i]);
 }
 ldap_value_free(vals);
 }
 ldap_memfree(a);
 }
 if (ber != NULL) {
 ber_free(ber, 0);
 }
 printf(“\n”);
 }
 ldap_msgfree(result);
 ldap_unbind(ld);
 return(0);
}

B.2.2 Read Using JNDI

/*
 * @(#)Rdentry.java1.2 99/07/26
 *
 * Copyright 1997, 1998, 1999 Sun Microsystems, Inc. All Rights
 * Reserved.
 *
 * Sun grants you ("Licensee") a non-exclusive, royalty free,
 * license to use, modify and redistribute this software in source and
 * binary code form, provided that i) this copyright notice and license
 * appear on all copies of the software; and ii) Licensee does not utilize
 * the software in a manner which is disparaging to Sun.
 *
 * This software is provided "AS IS," without a warranty of any
 * kind. ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
 * FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN
 * AND ITS LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY
 * LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE
 * OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR
 * ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL,
 * CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND
 * REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
 * OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 * This software is not designed or intended for use in on-line
 * control of aircraft, air traffic, aircraft navigation or aircraft
 * communications; or in the design, construction, operation or
 * maintenance of any nuclear facility. Licensee represents and warrants
 * that it will not use or redistribute the Software for such purposes.
 */

import java.util.Hashtable;

import javax.naming.*;
import javax.naming.directory.*;

/*
 * Search the directory for the specific entry
Sun Microsystems, Inc. 51 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers
 * "cn=Barbara Jensen, ou=Product Development, o=Ace Industry, c=US".
 * Retrieve all attributes from the entry.
 *
 * [Equivalent to rdentry.c in Netscape SDK]
 */
class Rdentry {
public static void main(String[] args) {

 Hashtable env = new Hashtable(5, 0.75f);
 /*
 * Specify the initial context implementation to use.
 * This could also be set by using the -D option to the java program.
 * For example,

* java -Djava.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory \
 * Rdentry
 */
 env.put(Context.INITIAL_CONTEXT_FACTORY, Env.INITCTX);

 /* Specify host and port to use for directory service */
 env.put(Context.PROVIDER_URL, Env.MY_SERVICE);

 try {
 /* get a handle to an Initial DirContext */
 DirContext ctx = new InitialDirContext(env);

 /* Read Babs' entry */
 Attributes attrs = ctx.getAttributes(Env.ENTRYDN);

 if (attrs == null) {
 System.out.println(Env.ENTRYDN + "has no attributes");
 } else {
 /* print each attribute */
 for (NamingEnumeration ae = attrs.getAll();
 ae.hasMoreElements();) {
 Attribute attr = (Attribute)ae.next();
 String attrId = attr.getID();

 /* print each value */
 for (NamingEnumeration vals = attr.getAll();
 vals.hasMoreElements();
 System.out.println(attrId + ": " + vals.nextElement()))
 ;
 }
 }
 } catch (NamingException e) {
 System.err.println("Rdentry example failed.");
 e.printStackTrace();
 }
}
}

B.3 Get Attributes

B.3.1 Get Attributes Using LDAP C API

/*
 * Copyright (c) 1996. Netscape Communications Corporation. All
Sun Microsystems, Inc. 52 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers
 * rights reserved.
 *
 * Retrieve several attributes of a particular entry.
 */

#include “examples.h”

int
main(int argc, char **argv)
{
 LDAP *ld;
 LDAPMessage *result, *e;
 char **vals, *attrs[5];
 int i;

 /* get a handle to an LDAP connection */
 if ((ld = ldap_init(MY_HOST, MY_PORT)) == NULL) {
 perror(“ldap_init”);
 return(1);
 }

 attrs[0] = “cn”; /* Get canonical name(s) (full name) */
 attrs[1] = “sn”; /* Get surname(s) (last name) */
 attrs[2] = “mail”; /* Get email address(es) */
 attrs[3] = “telephonenumber”; /* Get telephone number(s) */
 attrs[4] = NULL;

 if (ldap_search_s(ld, ENTRYDN, LDAP_SCOPE_BASE,
 “(objectclass=*)”, attrs, 0, &result) != LDAP_SUCCESS) {
 ldap_perror(ld, “ldap_search_s”);
 return(1);
 }

 /* print it out */
 if ((e = ldap_first_entry(ld, result)) != NULL) {
 if ((vals = ldap_get_values(ld, e, “cn”)) != NULL) {
 printf(“Full name:\n”);
 for (i = 0; vals[i] != NULL; i++) {
 printf(“\t%s\n”, vals[i]);
 }
 ldap_value_free(vals);
 }
 if ((vals = ldap_get_values(ld, e, “sn”)) != NULL) {
 printf(“Last name (surname):\n”);
 for (i = 0; vals[i] != NULL; i++) {
 printf(“\t%s\n”, vals[i]);
 }
 ldap_value_free(vals);
 }
 if ((vals = ldap_get_values(ld, e, “mail”)) != NULL) {
 printf(“Email address:\n”);
 for (i = 0; vals[i] != NULL; i++) {
 printf(“\t%s\n”, vals[i]);
 }
 ldap_value_free(vals);
 }
 if ((vals = ldap_get_values(ld, e, “telephonenumber”)) != NULL) {
 printf(“Telephone number:\n”);
Sun Microsystems, Inc. 53 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers
 for (i = 0; vals[i] != NULL; i++) {
 printf(“\t%s\n”, vals[i]);
 }
 ldap_value_free(vals);
 }
 }
 ldap_msgfree(result);
 ldap_unbind(ld);
 return(0);
}

B.3.2 Get Attributes Using JNDI

/*
 *
 * @(#)Getattrs.java1.2 99/07/26
 *
 * Copyright 1997, 1998, 1999 Sun Microsystems, Inc. All Rights
 * Reserved.
 *
 * Sun grants you ("Licensee") a non-exclusive, royalty free,
 * license to use, modify and redistribute this software in source and
 * binary code form, provided that i) this copyright notice and license
 * appear on all copies of the software; and ii) Licensee does not utilize
 * the software in a manner which is disparaging to Sun.
 *
 * This software is provided "AS IS," without a warranty of any
 * kind. ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
 * FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN
 * AND ITS LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY
 * LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE
 * OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR
 * ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL,
 * CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND
 * REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
 * OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 * This software is not designed or intended for use in on-line
 * control of aircraft, air traffic, aircraft navigation or aircraft
 * communications; or in the design, construction, operation or
 * maintenance of any nuclear facility. Licensee represents and warrants
 * that it will not use or redistribute the Software for such purposes.
 */

import java.util.Hashtable;
import java.util.Enumeration;

import javax.naming.*;
import javax.naming.directory.*;

/*
 * Retrieve several attributes of a particular entry.
 *
 * [equivalent to getattrs.c in Netscape SDK]
 */
Sun Microsystems, Inc. 54 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers
class Getattrs {

public static void main(String[] args) {

 Hashtable env = new Hashtable(5, 0.75f);
 /*
 * Specify the initial context implementation to use.
 * For example,
 * This could also be set by using the -D option to the java program.

* java -Djava.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory \
 * Getattrs
 */
 env.put(Context.INITIAL_CONTEXT_FACTORY, Env.INITCTX);

 /* Specify host and port to use for directory service */
 env.put(Context.PROVIDER_URL, Env.MY_SERVICE);

 try {
 /* get a handle to an Initial DirContext */
 DirContext ctx = new InitialDirContext(env);

 String[] attrs = new String[4];
attrs[0] = "cn"; /* Get canonical name(s) (full name) */

 attrs[1] = "sn"; /* Get surname(s) (last name) */
 attrs[2] = "mail"; /* Get email address(es) */
 attrs[3] = "telephonenumber"; /* Get telephone number(s) */

 Attributes result = ctx.getAttributes(Env.ENTRYDN, attrs);

 if (result == null) {
 System.out.println(Env.ENTRYDN +
 "has none of the specified attributes.");
 } else {
 /* print it out */
 Attribute attr = result.get("cn");
 if (attr != null) {
 System.out.println("Full name:");
 for (NamingEnumeration vals = attr.getAll();
 vals.hasMoreElements();
 System.out.println("\t" + vals.nextElement()))
 ;
 }

 attr = result.get("sn");
 if (attr != null) {
 System.out.println("Last name (surname):");
 for (NamingEnumeration vals = attr.getAll();
 vals.hasMoreElements();
 System.out.println("\t" + vals.nextElement()))
 ;
 }

 attr = result.get("mail");
 if (attr != null) {
 System.out.println("Email address:");
 for (NamingEnumeration vals = attr.getAll();
 vals.hasMoreElements();
 System.out.println("\t" + vals.nextElement()))
 ;
Sun Microsystems, Inc. 55 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers
 }
 attr = result.get("telephonenumber");
 if (attr != null) {
 System.out.println("Telephone number:");
 for (NamingEnumeration vals = attr.getAll();
 vals.hasMoreElements();
 System.out.println("\t" + vals.nextElement()))
 ;
 }
 }
 } catch (NamingException e) {
 System.err.println("Getattrs example failed.");
 e.printStackTrace();
 }
}
}

B.4 Compare An Attribute

B.4.1 Compare Using LDAP C API

/*
 * Copyright (c) 1996. Netscape Communications Corporation. All
 * rights reserved.
 *
 * Use ldap_compare() to compare values agains values contained in entry
 * “cn=Barbara Jensen, ou=Product Development, o=Ace Industry, c=US”.
 * We test to see if (1) the value “person” is one of the values in the
 * objectclass attribute (it is), and if (2) the value “xyzzy” is in the
 * objectlass attribute (it isn’t, or at least, it shouldn’t be).
 *
 */

#include “examples.h”

int
main(int main, char **argv)
{
 LDAP *ld;
 int rc;

 /* get a handle to an LDAP connection */
 if ((ld = ldap_init(MY_HOST, MY_PORT)) == NULL) {
 perror(“ldap_init”);
 return(1);
 }

 /* authenticate to the directory as nobody */
 if (ldap_simple_bind_s(ld, NULL, NULL) != LDAP_SUCCESS) {
 ldap_perror(ld, “ldap_simple_bind_s”);
 return(1);
 }

 /* compare the value “person” against the objectclass attribute */
 rc = ldap_compare_s(ld, ENTRYDN, “objectclass”, “person”);
 switch (rc) {
 case LDAP_COMPARE_TRUE:
Sun Microsystems, Inc. 56 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers
 printf(“The value \”person\” is contained in the objectclass “
 “attribute.\n”);
 break;
 case LDAP_COMPARE_FALSE:
 printf(“The value \”person\” is not contained in the objectclass “
 “attribute.\n”);
 break;
 default:
 ldap_perror(ld, “ldap_compare_s”);
 }

 /* compare the value “xyzzy” against the objectclass attribute */
 rc = ldap_compare_s(ld, ENTRYDN, “objectclass”, “xyzzy”);
 switch (rc) {
 case LDAP_COMPARE_TRUE:
 printf(“The value \”xyzzy\” is contained in the objectclass “
 “attribute.\n”);
 break;
 case LDAP_COMPARE_FALSE:
 printf(“The value \”xyzzy\” is not contained in the objectclass “
 “attribute.\n”);
 break;
 default:
 ldap_perror(ld, “ldap_compare_s”);
 }

 ldap_unbind(ld);
 return(0);
}

B.4.2 Compare Using JNDI

/*
 * @(#)Compare.java1.2 99/07/26
 *
 * Copyright 1997, 1998, 1999 Sun Microsystems, Inc. All Rights
 * Reserved.
 *
 * Sun grants you ("Licensee") a non-exclusive, royalty free,
 * license to use, modify and redistribute this software in source and
 * binary code form, provided that i) this copyright notice and license
 * appear on all copies of the software; and ii) Licensee does not utilize
 * the software in a manner which is disparaging to Sun.
 *
 * This software is provided "AS IS," without a warranty of any
 * kind. ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
 * FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN
 * AND ITS LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY
 * LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE
 * OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR
 * ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL,
 * CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND
 * REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
 * OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 * This software is not designed or intended for use in on-line
Sun Microsystems, Inc. 57 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers
 * control of aircraft, air traffic, aircraft navigation or aircraft
 * communications; or in the design, construction, operation or
 * maintenance of any nuclear facility. Licensee represents and warrants
 * that it will not use or redistribute the Software for such purposes.
 */

import java.util.Hashtable;

import javax.naming.*;
import javax.naming.directory.*;

/*
 * Use search() to compare values against values contained in entry
 * "cn=Barbara Jensen, ou=Product Development, o=Ace Industry, c=US".
 * We test to see if (1) the value "person" is one of the values in the
 * objectclass attribute (it is), and if (2) the value "xyzzy" is in the
 * objectlass attribute (it isn't, or at least, it shouldn't be).
 *
 * [equivalent to compare.c in Netscape SDK]
 *
 */
class Compare {

public static void main(String[] args) {

 Hashtable env = new Hashtable(5, 0.75f);
 /*
 * Specify the initial context implementation to use.
 * This could also be set by using the -D option to the java program.
 * For example,

* java -Djava.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory \
 * Compare
 */
 env.put(Context.INITIAL_CONTEXT_FACTORY, Env.INITCTX);

 /* Specify host and port to use for directory service */
 env.put(Context.PROVIDER_URL, Env.MY_SERVICE);

 DirContext ctx = null;
 SearchControls ctls = new SearchControls();
 ctls.setSearchScope(SearchControls.OBJECT_SCOPE);
 ctls.setReturningAttributes(new String[0]); // do not return any attrs

 try {
 /* get a handle to an Initial DirContext */
 ctx = new InitialDirContext(env);
 } catch (NamingException e) {
 System.err.println("Cannot get initial context.");
 return;
 }

 try {
 NamingEnumeration results =
 ctx.search(Env.ENTRYDN, "objectclass=person", ctls);

 if (results != null && results.hasMoreElements()) {
 System.out.println(

"The value \"person\" is contained in the objectclass attribute.");
Sun Microsystems, Inc. 58 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers
 } else {
 System.out.println(

"The value \"person\" is not contained in the objectclass attribute.");
 }
 } catch (NamingException e) {
 System.err.println("Comparison of value person failed.");
 }

 try {
 NamingEnumeration results =
 ctx.search(Env.ENTRYDN, "objectclass=xyzzy", ctls);

 if (results != null && results.hasMoreElements()) {
 System.out.println(

"The value \"xyzzy\" is contained in the objectclass attribute.");
 } else {
 System.out.println(

"The value \"xyzzy\" is not contained in the objectclass attribute.");
 }
 } catch (NamingException e) {
 System.err.println("Comparison of value xyzzy failed.");
 }
}
}

B.5 Modify Attributes

B.5.1 Modify Attributes Using LDAP C API

/*
 * Copyright (c) 1996. Netscape Communications Corporation. All
 * rights reserved.
 *
 * Modify an entry:
 * - replace any existing values in the “mail” attribute with “babs@ace.com”
 * - add a new value to the “description” attribute
 */

#include “examples.h”

int
main(int argc, char **argv)
{
 LDAP *ld;
 LDAPMod mod0;
 LDAPMod mod1;
 LDAPMod *mods[3];
 char *vals0[2];
 char *vals1[2];
 time_t now;
 char buf[128];

 /* get a handle to an LDAP connection */
 if ((ld = ldap_init(MY_HOST, MY_PORT)) == NULL) {
 perror(“ldap_init”);
 return(1);
 }
Sun Microsystems, Inc. 59 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers
 /* authenticate */
 if (ldap_simple_bind_s(ld, ENTRYDN, ENTRYPW) != LDAP_SUCCESS) {
 ldap_perror(ld, “ldap_simple_bind_s”);
 return(1);
 }
 /* construct the list of modifications to make */
 mod0.mod_op = LDAP_MOD_REPLACE;
 mod0.mod_type = “mail”;
 vals0[0] = “babs@ace.com”;
 vals0[1] = NULL;
 mod0.mod_values = vals0;

 mod1.mod_op = LDAP_MOD_ADD;
 mod1.mod_type = “description”;
 time(&now);
 sprintf(buf, “This entry was modified with the modattrs program on %s”,
 ctime(&now));
 /* Get rid of \n which ctime put on the end of the time string */
 if (buf[strlen(buf) - 1] == ‘\n’) {
 buf[strlen(buf) - 1] = ‘\0’;
 }
 vals1[0] = buf;
 vals1[1] = NULL;
 mod1.mod_values = vals1;

 mods[0] = &mod0;
 mods[1] = &mod1;
 mods[2] = NULL;

 /* make the change */
 if (ldap_modify_s(ld, ENTRYDN, mods)
 != LDAP_SUCCESS) {
 ldap_perror(ld, “ldap_modify_s”);
 return(1);
 }
 ldap_unbind(ld);
 printf(“modification was successful\n”);
 return(0);
}

B.5.2 Modify Attributes Using JNDI

/*
 * @(#)Modattrs.java1.2 99/07/26
 *
 * Copyright 1997, 1998, 1999 Sun Microsystems, Inc. All Rights
 * Reserved.
 *
 * Sun grants you ("Licensee") a non-exclusive, royalty free,
 * license to use, modify and redistribute this software in source and
 * binary code form, provided that i) this copyright notice and license
 * appear on all copies of the software; and ii) Licensee does not utilize
 * the software in a manner which is disparaging to Sun.
 *
 * This software is provided "AS IS," without a warranty of any
 * kind. ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
 * FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN
Sun Microsystems, Inc. 60 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers
 * AND ITS LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY
 * LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE
 * OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR
 * ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL,
 * CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND
 * REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
 * OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 * This software is not designed or intended for use in on-line
 * control of aircraft, air traffic, aircraft navigation or aircraft
 * communications; or in the design, construction, operation or
 * maintenance of any nuclear facility. Licensee represents and warrants
 * that it will not use or redistribute the Software for such purposes.
 */

import java.util.Hashtable;
import java.util.Date;

import javax.naming.*;
import javax.naming.directory.*;

/*
 * Modify an entry:
 * - replace any existing values in the "mail" attribute with "babs@ace.com"
 * - add a new value to the "description" attribute
 *
 * [equivalent to modattrs.c in Netscape SDK]
 */
class Modattrs {

public static void main(String[] args) {

 Hashtable env = new Hashtable(5, 0.75f);
 /*
 * Specify the initial context implementation to use.
 * This could also be set by using the -D option to the java program.
 * For example,

* java -Djava.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory \
 * Modattrs
 */
 env.put(Context.INITIAL_CONTEXT_FACTORY, Env.INITCTX);

 /* Specify host and port to use for directory service */
 env.put(Context.PROVIDER_URL, Env.MY_SERVICE);

 /* specify authentication information */
 env.put(Context.SECURITY_AUTHENTICATION, "simple");
 env.put(Context.SECURITY_PRINCIPAL, Env.MGR_DN);
 env.put(Context.SECURITY_CREDENTIALS, Env.MGR_PW);

 try {
 /* get a handle to an Initial DirContext */
 DirContext ctx = new InitialDirContext(env);

 /* construct the list of modifications to make */
 ModificationItem[] mods = new ModificationItem[2];
Sun Microsystems, Inc. 61 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers
 Attribute mod0 = new BasicAttribute("mail", "babs@eng");
 // Update mail attribute
 mods[0] = new ModificationItem(DirContext.REPLACE_ATTRIBUTE, mod0);

 // Add another value to description attribute
 Attribute mod1 =
 new BasicAttribute("description",

"This entry was modified with the Modattrs program on " +
 (new Date()).toString());
 mods[1] = new ModificationItem(DirContext.ADD_ATTRIBUTE, mod1);

 /* Delete the description attribute altogether */
 /*
 Attribute mod1 = new BasicAttribute("description");
 mods[2] = new ModificationItem(DirContext.REMOVE_ATTRIBUTE, mod1);

*/

 /* make the change */
 ctx.modifyAttributes(Env.ENTRYDN, mods);
 System.out.println("modification was successful.");

 } catch (NamingException e) {
 System.err.println("modification failed. " + e);
 }
}
}

B.6 Rename An Entry

B.6.1 Rename Using LDAP C API

/*
 * Copyright (c) 1996. Netscape Communications Corporation. All
 * rights reserved.
 *
 * Modify the RDN (relative distinguished name) of an entry. In this
 * example, we change the dn “cn=Jacques Smith, o=Ace Industry, c=US”
 * to “cn=Jacques M Smith, o=Ace Industry, c=US”.
 *
 * Since it is an error to either (1) attempt to modrdn an entry which
 * does not exist, or (2) modrdn an entry where the destination name
 * already exists, we take some steps, for this example, to make sure
 * we’ll succeed. We (1) add “cn=Jacques Smith” (if the entry exists,
 * we just ignore the error, and (2) delete “cn=Jacques M Smith” (if the
 * entry doesn’t exist, we ignore the error).
 *
 * We pass 0 for the “deleteoldrdn” argument to ldap_modrdn2_s(). This
 * means that after we change the RDN, the server will put the value
 * “Jacques Smith” into the cn attribute of the new entry, in addition to
 * “Jacques M Smith”.
 */

#include “examples.h”

#define NMODS 4
Sun Microsystems, Inc. 62 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers
unsigned long global_counter = 0;

static void free_mods(LDAPMod **mods);

int
main(int argc, char **argv)
{
 LDAP *ld;
 char *dn, *ndn, *nrdn;
 int i;
 int rc;
 LDAPMod **mods;

 /* Values we’ll use in creating the entry */
 char *objectclass_values[] = { “top”, “person”, “organizationalPerson”,
 “inetOrgPerson”, NULL };
 char *cn_values[] = { “Jacques Smith”, NULL };
 char *sn_values[] = { “Smith”, NULL };
 char *givenname_values[] = { “Jacques”, NULL };

 /* Specify the DN we’re adding */
 dn = “cn=Jacques Smith, o=Ace Industry, c=US”;
 /* the destination DN */
 ndn = “cn=Jacques M Smith, o=Ace Industry, c=US”;
 /* the new RDN */
 nrdn = “cn=Jacques M Smith”;

 /* get a handle to an LDAP connection */
 if ((ld = ldap_init(MY_HOST, MY_PORT)) == NULL) {
 perror(“ldap_init”);
 return(1);
 }
 /* authenticate to the directory as the Directory Manager */
 if (ldap_simple_bind_s(ld, MGR_DN, MGR_PW) != LDAP_SUCCESS) {
 ldap_perror(ld, “ldap_simple_bind_s”);
 return(1);
 }

 if ((mods = (LDAPMod **) malloc((NMODS + 1) * sizeof(LDAPMod *)))
 == NULL) {
 fprintf(stderr, “Cannot allocate memory for mods array\n”);
 return(1);
 }
 /* Construct the array of values to add */
 for (i = 0; i < NMODS; i++) {

if ((mods [i] = (LDAPMod *) malloc(sizeof(LDAPMod))) == NULL) {
 fprintf(stderr, “Cannot allocate memory for mods element\n”);
 return(1);
 }
 }
 mods[0]->mod_op = 0;
 mods[0]->mod_type = “objectclass”;
 mods[0]->mod_values = objectclass_values;
 mods[1]->mod_op = 0;
 mods[1]->mod_type = “cn”;
 mods[1]->mod_values = cn_values;
 mods[2]->mod_op = 0;
 mods[2]->mod_type = “sn”;
Sun Microsystems, Inc. 63 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers
 mods[2]->mod_values = sn_values;
 mods[3]->mod_op = 0;
 mods[3]->mod_type = “givenname”;
 mods[3]->mod_values = givenname_values;
 mods[4] = NULL;

 /* Add the entry */
 if ((rc = ldap_add_s(ld, dn, mods)) != LDAP_SUCCESS) {
 /* If entry exists already, fine. Ignore this error. */
 if (rc == LDAP_ALREADY_EXISTS) {
 printf(“Entry \”%s is already in the directory.\n”, dn);
 } else {
 ldap_perror(ld, “ldap_add_s”);
 free_mods(mods);
 return(1);
 }
 } else {
 printf(“Added entry \”%s\”.\n”, dn);
 }
 free_mods(mods);

 /* Delete the destination entry, for this example */
 if ((rc = ldap_delete_s(ld, ndn)) != LDAP_SUCCESS) {
 /* If entry does not exist, fine. Ignore this error. */
 if (rc == LDAP_NO_SUCH_OBJECT) {
 printf(“Entry \”%s\” is not in the directory. “
 “No need to delete.\n”, ndn);
 } else {
 ldap_perror(ld, “ldap_delete_s”);
 return(1);
 }
 } else {
 printf(“Deleted entry \”%s\”.\n”, ndn);
 }

 /* Do the modrdn operation */
 if (ldap_modrdn2_s(ld, dn, nrdn, 0) != LDAP_SUCCESS) {
 ldap_perror(ld, “ldap_modrdn2_s”);
 return(1);
 }

 printf(“The modrdn operation was successful. Entry\n”
 “\”%s\” has been changed to\n”
 “\”%s\”.\n”, dn, ndn);

 ldap_unbind(ld);
 return 0;
}

/*
 * Free a mods array.
 */
static void
free_mods(LDAPMod **mods)
{
 int i;
Sun Microsystems, Inc. 64 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers
 for (i = 0; i < NMODS; i++) {
 free(mods[i]);
 }
 free(mods);
}

B.6.2 Rename Using JNDI

/*
 * @(#)Modrdn.java1.2 99/07/26
 *
 * Copyright 1997, 1998, 1999 Sun Microsystems, Inc. All Rights
 * Reserved.
 *
 * Sun grants you ("Licensee") a non-exclusive, royalty free,
 * license to use, modify and redistribute this software in source and
 * binary code form, provided that i) this copyright notice and license
 * appear on all copies of the software; and ii) Licensee does not utilize
 * the software in a manner which is disparaging to Sun.
 *
 * This software is provided "AS IS," without a warranty of any
 * kind. ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
 * FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN
 * AND ITS LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY
 * LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE
 * OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR
 * ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL,
 * CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND
 * REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
 * OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 * This software is not designed or intended for use in on-line
 * control of aircraft, air traffic, aircraft navigation or aircraft
 * communications; or in the design, construction, operation or
 * maintenance of any nuclear facility. Licensee represents and warrants
 * that it will not use or redistribute the Software for such purposes.
 */

import java.util.Hashtable;
import java.util.Date;

import javax.naming.*;
import javax.naming.directory.*;

/*
 * Modify the RDN (relative distinguished name) of an entry. In this
 * example, we change the dn "cn=Jacques Smith, o=Ace Industry, c=US"
 * to "cn=Jacques M Smith, o=Ace Industry, c=US".
 *
 * Since it is an error to either (1) attempt to modrdn an entry which
 * does not exist, or (2) modrdn an entry where the destination name
 * already exists, we take some steps, for this example, to make sure
 * we'll succeed. We (1) add "cn=Jacques Smith" (if the entry exists,
 * we just ignore the error, and (2) delete "cn=Jacques M Smith" (if the
Sun Microsystems, Inc. 65 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers
 * entry doesn't exist, we ignore the error).
 *
 * After renaming, we add back the attribute "Jacques Smith" into the cn
 * attribute.
 *
 * [based on modrdn.c of Netscape SDK]
 */
class Modrdn {

public static void main(String[] args) {

 /* Values we'll use in creating the entry */
 Attribute objClasses = new BasicAttribute("objectclass");
 objClasses.add("top");
 objClasses.add("person");
 objClasses.add("organizationalPerson");
 objClasses.add("inetOrgPerson");

 Attribute cn = new BasicAttribute("cn", "Jacques Smith");
 Attribute sn = new BasicAttribute("sn", "Smith");
 Attribute givenNames = new BasicAttribute("givenname", "Jacques");

 /* Specify the DN we're adding */
 String dn = "cn=Jacques Smith, " + Env.MY_MODBASE;
 /* the destination DN */
 String ndn = "cn=Jacques M Smith, " + Env.MY_MODBASE;
 /* the new RDN */
 String nrdn = "cn=Jacques M Smith";

 Hashtable env = new Hashtable(5, 0.75f);
 /*
 * Specify the initial context implementation to use.
 * This could also be set by using the -D option to the java program.
 * For example,

* java -Djava.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory \
 * Modrdn
 */
 env.put(Context.INITIAL_CONTEXT_FACTORY, Env.INITCTX);

 /* Specify host and port to use for directory service */
 env.put(Context.PROVIDER_URL, Env.MY_SERVICE);

 /* specify authentication information */
 env.put(Context.SECURITY_AUTHENTICATION, "simple");
 env.put(Context.SECURITY_PRINCIPAL, Env.MGR_DN);
 env.put(Context.SECURITY_CREDENTIALS, Env.MGR_PW);

 DirContext ctx = null;

 try {
 /* get a handle to an Initial DirContext */
 ctx = new InitialDirContext(env);
 Attributes orig = new BasicAttributes();
 orig.put(objClasses);
 orig.put(cn);
 orig.put(sn);
 orig.put(givenNames);

 /* Add the entry */
Sun Microsystems, Inc. 66 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers
 ctx.createSubcontext(dn, orig);
 System.out.println("Added entry " + dn + ".");

 } catch (NameAlreadyBoundException e) {
 /* If entry exists already, fine. Ignore this error. */

System.out.println("Entry " + d n + " already exists, no need to add");
 } catch (NamingException e) {
 System.err.println("Modrdn: problem adding entry." + e);
 System.exit(1);
 }

 try {
 /* Delete the destination entry, for this example */
 ctx.destroySubcontext(ndn);
 System.out.println("Deleted entry " + ndn + ".");

 } catch (NameNotFoundException e) {
 /* If entry does not exist, fine. Ignore this error. */
 System.out.println("Entry " + ndn + " is not in the directory. " +
 "No need to delete.");
 } catch (NamingException e) {
 System.err.println("Modrdn: problem deleting entry." + e);
 System.exit(1);
 }

 /* Do the modrdn operation */
 try {
 ctx.rename(dn, ndn);
 System.out.println("The modrdn operation was successful. Entry " +
 dn + " has been changed to " + ndn + ".");
 } catch (NamingException e) {
 System.err.println("Modify operation failed." + e);
 }
}
}

Sun Microsystems, Inc. 67 7/14/99

Java Naming and Directory Interface Examples for LDAP Programmers
Sun Microsystems, Inc. 68 7/14/99

Java Naming and Directory Interface Legend for Class Diagram

y (this is
 Appendix C: Legend for Class Diagram

In a class diagram, we visually distinguish the different kinds of Java entities, as follows:

1. The interface: A rounded rectangle
2. The class: A rectangle
3. The abstract class: A rectangle with an empty dot
4. The final class: A rectangle with a black dot
5. Classes with subclasses: A rectangle with a small black triangle on the lower right corner

Most of these elements are shown below. The class or interface being described in the current chapter is shaded gre
not applicable for package class diagrams). A solid line representsextends, while a dotted line representsimplements.

java.lang.Object

MenuComponent

MenuItem

CheckboxMenuItem

Menu

ItemSelectable

Interface

Abstract class

The current class

Class with subclasses

implements

extends

Class from
another package
Sun Microsystems, Inc. 69 7/14/99

Java Naming and Directory Interface Legend for Class Diagram
Sun Microsystems, Inc. 70 7/14/99

Java Naming and Directory Interface JNDI Change History

ted

tory

t

n”.

the
 Appendix D: JNDI Change History

1.2: JNDI Changes Since 1.1

• Addedjavax.naming.event package.
• Addedjavax.naming.ldap package.
• Added support for configuration using resource files. See Chapter 6 of theJNDI API document.

API-related Changes

• AddedNamingEnumeration.close() for cancelling or terminating enumerations.
• AddedReferralException.getReferralContext(Hashtable env) andReferralExcep-

tion.retryReferral() to allow creation and retry of referral context with different environment properties.
• Clarified how context methods that acceptName argument should deal withCompositeName and nonComposite-

Namearguments. Specifically, instances ofCompositeName are treated as composite name, while all others are trea
as compound name.

• AddedContext.getNameInNamespace() for retrieving the full name of a context within its own namespace.
• Clarified definition of the class factory location of aReference object. Specifically, the location is a codebase, which

consists of a list space-separated URLs.
• Added support for ordered multivalued attributes toAttribute andBasicAttribute .
• AddedBasicAttributes.equals() andBasicAttributes.hashCode() .
• Redefined semantics ofDirContext.getSchemaClassDefinition() so that it returns a context that contains

theDirContext objects of class definitions, rather than returning one (arbitrary) class definition.
• Added protectedInitialContext /InitialDirContext constructors to allow lazy initialization. Useful for sub-

class implementations.

SPI-related Changes

• AddedStateFactory /NamingManager.getStateToBind() , analogous toObjectFactory /NamingMan-
ager.getObjectInstance() , for transforming an object’s state before the object is bound in the naming/direc
service.

• Added interfacesDirObjectFactory andDirStateFactory to better support service providers that implemen
theDirContext interface. AddedDirectoryManager.getObjectInstance() andDirectoryMan-
ager.getStateToStore() to use these interfaces.

• Refined definition ofNamingManager.getObjectInstance() to not treat URL strings specially. Instead, the
URL should be wrapped inside aReference whoseRefAddr type is “URL”.

• MadeResolveResult implementSerializable .
• Defined a special form ofReference called a next naming system (nns) reference for supporting “dynamic federatio

This reference has aRefAddr type of “nns” and a content consisting of the resolved object.
• Added the string constantNamingManager.CPE which names a property set byNamingManager.getContinu-

ationContext() /DirectoryManager.getContinuationContext() . The value of this property is an
instance ofCannotProceedException . This is useful to service providers that implement federation by chaining
CPEs.

• Defined a convention for service providers to use when naming environment properties. See Section 6.1.
Sun Microsystems, Inc. 71 7/14/99

Java Naming and Directory Interface JNDI Change History
Sun Microsystems, Inc. 72 7/14/99

	1 Introduction
	2 Goals and Design Principles
	2.1 Keep it consistent and intuitive
	2.2 Pay for what you use
	2.3 Implementable over common directory and naming services and protocols
	2.4 Seamless integration
	2.5 Support for leading industry standards

	3 Overview of the Architecture
	4 Fundamentals
	4.1 Naming — The Foundation
	4.2 Directory Objects
	4.3 URLs and Composite Names
	4.4 Events

	5 Overview of the Interface
	5.1 The Naming Package — javax.naming
	5.1.1 Contexts
	5.1.2 The Initial Context
	5.1.3 Names
	5.1.4 Bindings
	5.1.5 References
	5.1.6 Referrals

	5.2 The Directory Package — javax.naming.directory
	5.2.1 Directory Objects
	5.2.2 Attributes
	5.2.3 Directory Objects as Naming Contexts
	5.2.4 The Initial Context
	5.2.5 Searches
	5.2.6 Schema

	5.3 The Event Package — javax.naming.event
	5.3.1 Naming Events
	5.3.2 Naming Listeners
	5.3.3 Event Registration and Deregistration
	5.3.4 Exception Handling

	5.4 The LDAP Package — javax.naming.ldap
	5.4.1 Extended Operations
	5.4.2 Controls
	5.4.3 The Initial Context
	5.4.4 Unsolicited Notifications

	6 Configuration
	6.1 Environment Properties
	6.2 Context Environment
	6.3 Resource Files
	6.3.1 Application Resource Files
	6.3.2 Provider Resource Files

	6.4 Application/Applet-scope Standard JNDI Properties
	6.5 How the Environment Properties are Set
	6.6 Modifications to the Environment
	6.6.1 Scope
	6.6.2 Timeliness
	6.6.3 Defaults
	6.6.4 Acceptable Values

	7 Scenarios
	7.1 User authentication
	7.2 Electronic Mail
	7.3 Databases
	7.4 Browsing
	7.5 Network Printing
	7.5.1 Browsing and searching for printers

	8 Security Considerations
	8.1 JNDI Classes
	8.2 Security Model
	8.3 Access To Servers
	8.4 Sharing Context Handles
	8.5 Context Environment
	8.6 Class Loading
	8.7 Serializable Objects
	8.8 Responsibilities of Service Providers
	8.8.1 Context Environment
	8.8.2 Network Security
	8.8.3 Accessing Local Files
	8.8.4 Privileged Code, Native Methods

	9 Design Choices
	9.1 Separation of Interfaces into Context and DirContext
	9.2 Separation of JNDI into Different Functional Packages
	9.3 Separation of Client APIs and Service Provider Interfaces
	9.4 Multiple methods for listing Context
	9.5 Support for Federation
	9.6 DirContext versus DirObject
	9.7 Support for Schemas
	9.8 Overloaded Methods in Context and DirContext
	9.9 Reference and Referenceable
	9.10 Automatically Turning References into Objects

	Appendix A: JNDI Standard Environment Properties
	Appendix B: Examples for LDAP Programmers
	B.1 Search the Directory
	B.1.1 Search Using LDAP C API
	B.1.2 Search Using JNDI

	B.2 Read An Entry
	B.2.1 Read Using LDAP C-API
	B.2.2 Read Using JNDI

	B.3 Get Attributes
	B.3.1 Get Attributes Using LDAP C API
	B.3.2 Get Attributes Using JNDI

	B.4 Compare An Attribute
	B.4.1 Compare Using LDAP C API
	B.4.2 Compare Using JNDI

	B.5 Modify Attributes
	B.5.1 Modify Attributes Using LDAP C API
	B.5.2 Modify Attributes Using JNDI

	B.6 Rename An Entry
	B.6.1 Rename Using LDAP C API
	B.6.2 Rename Using JNDI

	Appendix C: Legend for Class Diagram
	Appendix D: JNDI Change History
	1.2: JNDI Changes Since 1.1
	API-related Changes
	SPI-related Changes

