Sun Microsystems, Inc.

Java Naming and Directory Interfalce
Service Provider Interface
(JNDI SPI)

Please send technical comments to jndi@java.sun.com.

Please send product and business questions to jndi-business@java.sun.com.

JNDI 1.2/JavadM 2 Platform, Standard Edition, v 1.3
July 14, 1999

Java Naming and Directory SPI

Copyright © 1999 by Sun Microsystems Inc.
901 San Antonio Road, Palo Alto, CA 94303.
All rights reserved.

RESTRICTED RIGHTS: Use, duplication or disclosure by the government is subject to the restrictions as set forth
in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software Clause as DFARS 252.227-
7013 and FAR 52.227-19.

Sun, Sun Microsystems, the Sun logo, Java, and JavaSoft, are trademarks or registered trademarks of Sun Micro-
systems, Inc.

THIS PUBLICATION IS PROVIDED “AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MECHANTABIL-
ITY, FITNESS FOR A PARTICULAR USE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ER-
RORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES
WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC.,
MAY MAKE NEW IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PRO-
GRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Sun Microsystems, Inc. ii 7/14/99

Java Naming and Directory SPI

Contents
1 INtrodUCHION . . . o e 1..
1.1 DOCUMENt OVEIVIEWttt ittt e e e et 1
1.2 Interface OVEIVIEW 2
1.2.1 NamingManager and DirectoryManager.oiiiune. .. 2
1.2.2 Initial CoNteXtS. . . .ot 2
1.2.3 Object FaCtories.o e e 2
1.2.4 State FaCtories oot 2
1.2.5 Federation SUPPOIt. oot e 3
2 Building a Context Implementation. 4
2.1 Ownership of Parameters i 4
2.2 REENIIANCY 4
2.3 Basic Support—Implementing the Context Interface(s) 4
2.4 Object SUPPOIt 5
2.4.1 Readingan Object i e 5
2.4.2 Storingan Object. 7
2.5 Federation SUPPOItottt 9
2.5.0 NAMES . .. 9
2.5.2 Resolving Througha Context 9
2.5.3 Resolving Through to Subinterfacesof Context. 10
2.5.4 Naming System Boundariesi i, 10
2.5.5 Continuing an Operation in a Federation. 11
2.5.6 “Dynamic” Location of Next Naming System 12
2.5.7 More about CannotProceedException., .. 13
2.5.8 Contextual Information 13
2.6 Referral SUPpPOrt 14
2.7 SChema SUPPOrt 15
2.8 BEvent SUPPOIt 16
2.9 Context Environment SUPPOrt 17
2.9.1 Property Naming Conventionttt 17
2.9.2 Initializing a Context’'s Environment. 17
293 Inheritance 17
2.9.4 Updatestothe Environment i 18
2.9.5 Provider Resource Files. e 18
2.10 Connection Management ittt 19
3 Thelnitial Context. e 0....2
3.1 The Initial Context Factory 20
311 EXCEPLONS . oottt e 21
3.2 URL SUPPOIt .. 21
3.2.1 URL CONteXt . .ot e e e e e e e e 21
3.22 URLContext Factory. i 22
3.2.3 Service Provider's Responsibility L 22
3.3 Overriding the Default Behavior 23
3.3.1 Removing URL SUPPOIt . . . oot e e e 23
3.3.2 Removing Al POlICY 23
3.4 Implementing a Subclass of InitialContext 23

Sun Microsystems, Inc. iii

7/14/99

Java Naming and Directory SPI

3.4.1 URL SUPPOI .« . ottt e e e e e e 24
3.4.2 New Method SUppOrt. 24
3.4.3 CONSIUCIOIS. . . . e 24
4 Customizing A Context Implementation. 26
4.1 Reading Objects: Object Factories 26
4.1.1 Handling Structured References 27
4.1.2 Handling URL References. i 28
4.1.3 Handling Arbitrary References: The java.naming.factory.object Property. 29
4.1.4 Overriding the Default Behavior. 30
4.1.5 ContexXt Factory 30
4.1.6 URL Context FaCtory e 31
4.2 Storing Objects: State Factories 31
4.2.1 Input/Output OPLioNS. . .« .o ot 32
4.2.2 Locating State Factories: The java.naming.factory.state Property 32
4.3 Narrowing LDAP v3 Controls: Response Control Factories 33
4.3.1 Locating Response Control Factories: The java.naming.factory.control Property
34
4.4 Ownership of Parameters e 35
4.5 REENIIANCYot e 35
Appendix A: Service Provider Example 37
Appendix B: Legend for Class Diagramttt 47
Appendix C: JNDI Change History e 49

Sun Microsystems, Inc. iv

7/14/99

Java Naming and Directory SPI Introduction

1 Introduction

The JNDI SPI provides the means by which developers can write different naming and direc-
tory service providersand make them available so that the corresponding services are accessi-
ble from applications that use the JNDI API. A service provider is a set of modules that together
satisfy JNDI API requests. In addition, because JNDI allows the use of names that span multi-
ple namespaces, one service provider implementation may need to interact with another in or-
der to complete an operation. The SPI provides methods that allow different provider
implementations to cooperate to complete client JNDI operations.

This document describes the components of the SPI and explains how developers can build ser-
vice providers for JNDI. It is assumed that the reader is familiar with the contents dRNbEe
APl document.

All service provider developers should read the “Security Considerations” sectioniible
APl document. It contains important issues that all developers using JNDI, especially those
writing service providers, should consider.

1.1 Document Overview

There are several types of implementations that sit beneath the JNDI API. A service provider
contains at a minimum aonitext implementatiorA context implementation implements the
Context interface or any of its subinterfaces, suclbasontext , EventContext , Or Ldap-

Context . The complexity of the implementation depends primarily on the complexity of the
underlying service, and secondarily on the number of JNDI features that the implementation
supports. Chapter 2 describes the details of building a context implementation.

A context implementation can be accessed in different ways. The most common way is to ac-
cess it from the initial context. Chapter 3 describes two ways that a context implementation can
be accessed from the initial context: via an initial context factory and a URL context factory.

The JNDI architecture defines components/implementations that can be used to augment the
behavior of context implementations. This allows users and applications to customize the im-
plementation. These components are supported thriaagbries JINDI defines three types of
factories and provides SPI methods that make use of them. These factories are described in
Chapter 4.

* Object factories—For transforming data stored in naming/directory services into Java
types more natural to the Java application.

» State factories-For transforming objects of Java types natural to the program into
formats suitable for storage into naming/directory services.

» Response control factoriesFor narrowing LDAP v3 response controls received from
LDAP servers into more user-friendly types.

Sun Microsystems, Inc. 1 7/14/99

Java Naming and Directory SPI Introduction

1.2

1.2.1

1.2.2

1.2.3

1.2.4

Interface! Overview

The JNDI SPI is contained in the packagex.naming.spi . The following sections provide
an overview of the SPI. For more details on the SPI, see the correspjavdithoc.

‘ java.lang.Object | <ObjectFactoryBuﬂder >

NamingManager J (Im‘tia]ContextFactoryBui'Ider >

]—{ DirectoryManager | <ObjectFactory >

ResolveResult | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ »(java.io.SeriaHzaMe

(Reso'lver

(Im‘ tialContextFactory

(StateFactory

(Di rStateFactory

NI N N N 7 N

(Di rObjectFactory

NamingManager and DirectoryManager

The NamingManager class contains static methods that perform provider-related operations.
For example, it contains methods to create instances of objectsrisimgnece , to obtain an
instance of the initial context using thea.naming.factory.initial property, and to in-

stall ObjectFactoryBuilder and InitialContextFactoryBuilder . The DirectoryMan-

ager class provides similar static methodsocContext related operations.

Initial Contexts

InitialContextFactory is the interface for creating an initial context instance. See Section
3.1 for more details.

InitialContextFactoryBuilder is the interface for creatingitialContextFactory in-
stances. See Section 3.3 for more details.

Object Factories

ObjectFactory is the interface for supporting creation of objects using information stored in
the namespaceirObjectFactory is a subinterface abbjectFactory for use by context im-
plementations that implement tbeContext interface. See Section 4.1 for more details.

ObjectFactoryBuilder is the interface for creating object factories. See Section 4.1.4 for
more details.

State Factories

StateFactory IS the interface for supporting converting objects into storable formats support-
ed by the naming/directory serviaeirStateFactory is a subinterface dftateFactory for
use by context implementations that implementbit€ontext interface.DirStateFacto-

1. See Appendix B for legend of class diagram.

Sun Microsystems, Inc. 2 7/14/99

Java Naming and Directory SPI Introduction

1.2.5

ry.Result is a class for holding a pair @fva.lang.Object andAttributes thatis returned
by DirStateFactory.getState ToBind() . See Section 4.2 for more details.

Federation Support

TheResolver interface defines a method for providers to implement that allows them to par-
ticipate in a federation for supporting extended interfac&atoext . See “Resolving Through
to Subinterfaces of Context” on page 10 for more details.

ResolveResult is the return value of callin@esolver.resolveToClass() . It contains the
object to which resolution succeeded, and the remaining name yet to be resolved.

Sun Microsystems, Inc. 3 7/14/99

Java Naming and Directory SPI Building a Context Implementation

2

2.1

2.2

2.3

Building a Context Implementation

One of the basic tasks in building a service provider is to define a class that implements the
Context interface or any of its subinterfaces. This class is calleorsext implementatiohe
following guidelines should be used for developing a context implementation.

Ownership of Parameters

In general, any object passed as a parameter to methodsdortteet interface (or subinter-

faces) andNamingManager /DirectoryManager utility methods is owned by the caller. In

many cases, the parameter eventually reaches a context implementation. Because the caller
owns the object, the context implementation is prohibited from modifying the object. Further-
more, the context implementation is allowed to maintain a pointer to the object only for the du-
ration of the operation and not beyond. If a context implementation needs to save the
information contained in a parameter beyond the duration of the operation, it should maintain
its own copy.

For purposes of parameter ownership, an operation on a context instance is not considered to
have completed while any referrals generated by that operation are still being followed, or if
the operation returnsNamingEnumeration , while the enumeration is still in use.

Reentrancy

A context instance need not be reentrant. Two threads that need to access the same context in-
stance concurrently should synchronize amongst themselves and provide the necessary lock-
ing.

However, different context instances must be safe for concurrent multithreaded access. That s,
two threads each operating concurrently on their respective context instance should not need
to synchronize their access. For example, even though two contexts might share the same re-
sources (such as the same connection), it must be possible (and safe) for two separate threads
to operate on each of those contexts without the threads having to do any explicit synchroniza-
tion.

For purposes of concurrency control, an operation on a context instance is not considered to
have completed while any referrals generated by that operation are still being followed, or if
the operation returnshamingEnumeration , while the enumeration is still in use.

Basic Support—Implementing the Context Interface(s)

The context implementation defines implementations for each of the methodsGuorilest
interface or subinterfaces that the implementation supports.

If a method is not supported, it should throperationNotSupportedException

For methods in th€ontext interface or subinterfaces that accept a name argument (either as
astring or aNamg, an empty name denotes the current context. For example, if an empty
name is supplied twokup() , that means to return a new instance of the current context. If an

empty name is supplied tat() , that means to enumerate the names in the current context.

Sun Microsystems, Inc. 4 7/14/99

Java Naming and Directory SPI Building a Context Implementation

2.4

241

If an empty name is supplied tetAttributes() , that means to retrieve the attributes asso-
ciated with this context.

Appendix A contains an example context implementation that implements a flat, in-memory
namespace.

Object Support

JNDI encourages providers to supply implementations ofcitveext and its subinterfaces

that are natural and intuitive for the Java application programmer. For example, when looking
up a printer name in the namespace, it is natural for the programmer to expect to get back a
printer object on which to operate.

Context ctx = new InitialContext();
Printer prt = (Printer)ctx.lookup(somePrinterName);
prt.print(someStreamOfData);

Similarly, when storing an application’s object into the underlying service, it is most portable
and convenient if the application does not have to know about the underlying data representa-
tion.

However, what is bound in the underlying directory or naming services typically are not objects

in the Java programming language but merely reference information which can be used to lo-
cate or access the actual object. This case is quite common, especially for Java applications ac-
cessing and sharing services in an existing installed base. The reference in effect acts as a
“pointer” to the real object. In the printer example, what is actually bound might be information

on how to access the printer (e.qg., its protocol type, its server address). To enable this easy-to-
use model for the application developer, the context implementation must do the transforma-
tion of the data to/from the underlying service into the appropriate objects in the Java program-
ming language.

There are different ways to achieve this goal. One context implementation might have access
to all the implementation classes of objects that a directory can return; another context imple-
mentation might have a special class loader for locating implementation classes for its objects.
JNDI provides thareference class as a standard way of representing references. Applications
and context implementations are encouraged to use this class, rather than invent separate mech-
anisms on their own. However, this does not preclude context implementations from using their
own mechanisms for achieving the same goal.

JNDI provides utilities for context implementations to use when reading/storing objects in the
Java programming language in a format-independent way to the underlying service. This sec-
tion describes these utilities. These utilities interact with components aabjedtand state
factoriesthat do the actual transformations. These factories are described in Chapter 4.

Reading an Object

JNDI provides the following methods that context implementations should use to transform
data read from the underlying service into objects in the Java programming language:

Sun Microsystems, Inc. 5 7/14/99

Java Naming and Directory SPI Building a Context Implementation

Object NamingManager.getObjectinstance(Object refinfo,
Name name,
Context nameCitx,
Hashtable env)
throws Exception;
Object DirectoryManager.getObjectinstance(Object refinfo,
Name name,
Context nameCitx,
Hashtable env,
Attributes attrs)
throws Exception;

refinfo is the data (representing the object) read from the underlying senaiaeis the name

of the object whilenameCtx is the context in which to resolw@ame. The name/nameCtx pair

can be used to obtain more information about the object than is availabledtiafm . env

is the environment of the context from whigétObjectinstance() is being invokedattrs

is the collection of attributes read from the directory about the object, usually in the same re-
guest that was used to getinfo . It might not be the complete collection of attributes if such
was not requested.

The method in thélamingManager class should be used by context implementations that im-
plement theContext interface, while the method in th@rectoryManager class should be
used by context implementations that implementit@ontext interface.

When constructing objects to be returned for the following methods, the context implementa-

tion should calbetObjectinstance() , or its own mechanism for generating objects from the
bound information, if it wants this feature to be enabled in their contexts. (String overloads not
shown.)

javax.naming.Context.lookup(Name name)
javax.naming.Context.lookupLink(Name name)
javax.naming.Binding.getObject()
javax.naming.directory.SearchResult.getObject()

ForBinding andSearchResult , the context implementation should either pass an object that

is the result of callingjetObjectinstance() or its equivalent to the constructor, or override
the default implementation @&inding andSearchResult SO that theigetObject() imple-
mentations calyetObjectinstance() or its equivalent before returning.

Here is an example. Suppose printers are represented in the namespa&efaginge s. To
turn a printeReference into a livePrinter object, the context implementation would use the
NamingManager.getObjectinstance() method. In this way, the underlying service need not
know anything specific about printers.

Object lookup(Name name) {

Reference ref = <some printer reference looked up from naming service >;
return NamingManager.getObjectinstance(ref, name, this, env);

}

In another example, suppose printers are represented in the directory as a collection of at-
tributes. To turn a printer’s directory entry into a liventer ~ object, the context implemen-
tation would us@®irectoryManager.getObjectinstance()

Sun Microsystems, Inc. 6 7/14/99

Java Naming and Directory SPI Building a Context Implementation

Object lookup(Name name) {

Attributes attrs = <read attributes from directory >
Reference ref = <construct reference from attributes >
return DirectoryManager.getObjectinstance(ref, name, this,

env, attrs);

}
2.4.2 Storing an Object

JNDI provides the following methods that context implementations should use to transform an
object before storing it in the underlying service:

Object NamingManager.getStateToBind(
Object obj,
Name name,
Context nameCtx,
Hashtable env)
throws NamingException;
DirStateFactory.Result DirectoryManager.getStateToBind(
Object obj,
Name name,
Context nameCtx,
Hashtable env,
Attributes attrs)
throws NamingException;

obj is the object to be stored in the underlying servieene is the name of the object while
nameCtx is the context in which to resolveme. Thename/nameCtx pair can be used to obtain
more information about the object than is available frain. env is the environment of the
context from whichyetStateToBind() Is being invokedattrs is the collection of attributes
that is to be bound with the objedclirStateFactory.Result Is a class that contains an object
and a collection of attributes.

The method in thé&lamingManager class should be used by context implementations that im-
plement theContext interface, while the method in th@rectoryManager class should be
used by context implementations that implementit@ntext interface.

Before storing an object supplied by the application, the context implementation should call
getStateToBind() , Or its own mechanism for generating information to be bound, if it wants
this feature to be enabled in their contexts. (String overloads not shown.)

javax.naming.Context.bind(Name name, Object 0)
javax.naming.Context.rebind(Name name, Object o)
javax.naming.DirContext.bind(Name name, Object o, Attributes attrs)
javax.naming.DirContext.rebind(Name name, Object o, Attributes attrs)

Here’s an example of howGontext implementation supportsontext.bind

Sun Microsystems, Inc. 7 7/14/99

Java Naming and Directory SPI Building a Context Implementation

/Il First do transformation
obj = NamingManager.getStateToBind(obj, name, ctx, env);

/I Check for Referenceable
if (obj instanceof Referenceable) {
obj = ((Referenceable)obj).getReference();

}

if (obj instanceof Reference) {
/I store as ref

} else if (obj instanceof Serializable) {
/I serialize

}else {

}
Here’s an example of howtarContext implementation supportsrContext.bind

/I First do transformation
DirStateFactory.Result res = DirectoryManager.getStateToBind(
obj, name, ctx, env, inAttrs);

obj = res.getObject();
Attributes outAttrs = res.getAttributes();

/I Check for Referenceable
if (obj instanceof Referenceable) {
obj = ((Referenceable)obj).getReference();

}

if (obj instanceof Reference) {
/I store as ref and add outAttrs
} else if (obj instanceof Serializable) {
/I serialize and add outAttrs
} else if (obj instanceof DirContext) {
/l grab attributes and merge with outAttrs
}else {

}

As shown in these examples, a context implementation might be able to store different types
of objects Reference , Serializable , andDirContext). If the context implementation can-

not storeReferenceable objects directly andetStateToBind() returns such an object, the
context implementation should subsequently Ralérenceable.getReference() and store

the resultingreference instead.

If a context implementation can store different types of objects, it should follow this order for
the following common types:

» Reference

« Serializable

 DirContext

This order is recommended because it is most likely to capture the intent of the caller of the
bind() /rebind() method. For example,Reference IS Serializable , so if you performed

Sun Microsystems, Inc. 8 7/14/99

Java Naming and Directory SPI Building a Context Implementation

2.5
25.1

25.2

theSerializable check first, nReference objects would ever be stored in the reference for-
mat (that is, they would all be serialized).

Federation Support

Names

When a context is given a string hame argument, the name represents a composite name that
may span multiple namespaces, or it may have only a single compound name component
(which in turn may be made up of one or several atomic names) that belongs to a single name-
space. The context implementation must determine which part of the name is to be resolved/
processed in its context and pass the rest onto the next context. This may be done syntactically
by examining the name, or dynamically by resolving the name.

When a context is givenigameargument, if it is an instance abmpositeName , then it will be
treated as a composite name. Otherwise, it will be treated as a compound name that is imple-
mented by th€ompoundNameclass or some other compound name implementation.

Resolving Through a Context

A context participates in a federation by performing the resolution phase of all of the context
operations. Th&okup() method must always be supported. Support for other methods is op-
tional, but if the context is to participate in a federation, then the resolution implicit in all op-
erations must be supported.

Figure 1: Example of Resolving through Intermediate Contexts to Perform a bind().

ctx.bind(“cl/c2/c3/a’,) [

bin(él/cz/cs/a", y I bind(c3/a”,)

bind(‘c2/c3/a”,) [binda”,) [}

c3 i)a.

cl c2

ctx

For example, suppose a context does not suppotiitdg operation. When that context is
being used as an intermediate contextdiad() , it must perform the resolution part of that
operation to enable the operation to continue to the next context. It should only tiproay
tionNotSupportedException ifitis being asked to create a binding in its own context. Figure
1 shows an example of how théd() operation is passed through intermediate contexts to
be performed in the target context.

Sun Microsystems, Inc. 9 7/14/99

Java Naming and Directory SPI Building a Context Implementation

2.5.3 Resolving Through to Subinterfaces of Context

To invoke aDirContext method (such agetAttributes()), the application first obtains an
initial DirContext , and then perform the operation on th€ontext

DirContext ctx = new InitialDirContext();
Attributes attrs = ctx.getAttributes(someName);

From the context implementation’s perspective, in order to retrieve the attrilystes,

tributes() might need to traverse multiple naming systems. Some of these naming systems
only support thecontext interface, not th®irContext interface. These naming systems are
being used as intermediaries for resolving towards the target context. The target context must
support thedirContext interface. Figure 2 shows an example of this.

Figure 2: Example of Resolving Through Intermediate non-DirContexts

startingDirContext targetbirContext

O DirContext
Q Context

In order for intermediate naming systems to participate in the federation for extensioss of

text , they must implement thresolver interface. Theresolver interface is used by the
JNDI framework to resolve through intermediate contexts that do not support a particular sub-
interface ofContext . It consists of two overloaded forms of the methesblveToClass()

This method is used to partially resolve a name, stopping at the first context that is an instance
of the required subinterface. By providing support for this method and the resolution phase of
all methods in theontext interface, a context implementation can act as an intermediate con-
text for extensions (subinterfaces)awitext .

public interface Resolver {
public ResolveResult resolveToClass(Name name, Class contextType)
throws NamingException;
public ResolveResult resolveToClass(String name,
Class contextType)
throws NamingException;

}
2.5.4 Naming System Boundaries

The resolution of a (multicomponent) composite name proceeds from one naming system to
the next, with the resolution of the components that span each naming system typically handled
by a corresponding context implementation. From a context implementation’s point of view, it
passes the components for which it is not responsible to the (context implementation of the)
next naming system

Sun Microsystems, Inc. 10 7/14/99

Java Naming and Directory SPI Building a Context Implementation

There are several ways in which the context implementation for the next naming system may
be located. It may be dorexplicitlythrough the use of mnction where a name in one naming
system is bound to a context (ORaference to a context) in the next naming system. For ex-
ample, with the composite name “cn=fs,ou=eng/lib/xyz.zip”, the LDAP name “cn=fs,ou=eng”
might resolve to a file system context in which the name “lib/xyz.zip” could then be resolved.

Alternately, the next naming system may be locateplicitly. For example, a context imple-
mentation may choose the next naming system based upon service-specific knowledge of the
object that it has resolved. For example, with the composite name “ldap.wiz.com/
cn=fs,ou=eng”, the DNS namdéap.wiz.com might name a DNS entry. To get the next nam-

ing system beyond DNS, the DNS context implementation might construct a context using
SRV resource records found in that entry, which in this case, happens to name an LDAP con-
text. When the next naming system is located in this fashion, JNDI composite name separator
is used to denote the boundary from one naming system to the next, and is referred to as the
implicit next naming system pointer

However the next naming system is located, the context implementation must hand the next
naming system the remaining portion of the composite name to resolve.

2.5.5 Continuing an Operation in a Federation

In performing an operation on a name that spans multiple namespaces, a context in an interme-
diate naming system needs to pass the operation onto the next naming system. The context does
this by first constructing @annotProceedException containing information pinpointing how

far it has proceeded. In so doing it sets the resolved object, resolved name, remaining hame,

and environment parts of the exceptibfin the case of theontext.rename() method, it also
sets the “resolved newname” part.)

It then obtains @ontinuation contexrom JNDI by passing theannotProceedException to
static methodNamingManager .getContinuationContext()

public class NamingManager {
public static Context getContinuationContext(
CannotProceedException e) throws NamingException;

}

The information in the exception is used dmtContinuationContext() to create the context
instance in which to continue the operation.

To obtain a continuation context for theirContext operations, useDirectory-
Manager.getContinuationDirContext()

1. TheCannotProceedException may well have been thrown by one of the context’s internal methods when it
discovered that the name being processed is beyond the scope of its naming system. The process by which the
exception is produced is dependent on the implementation of the context.

Sun Microsystems, Inc. 11 7/14/99

Java Naming and Directory SPI Building a Context Implementation

2.5.6

public class DirectoryManager {
public static getContinuationDirContext(
CannotProceedException e) throws NamingException;

}

Upon receiving the continuation context, the operation should be continued using the remain-
der of the name that has not been resolved.

For example, when attempting to continugiral() operation, the code in the context imple-
mentation might look as follows:

public void bind(Name name, Object obj) throws NamingException {

try {
internal_bind(name, obj);

} catch (CannotProceedException e) {
Context cctx = NamingManager.getContinuationContext(e);
cctx.bind(e.getRemainingName(), obj);

}

In this examplepind() depends on an internal methadgrnal_bind(), to carry out the
actual work of the bind and to throwGannotProceedException when it discovers that it is
going beyond this naming system. The exception is then passggdentinuationCon-

text() in order to continue the operation. If the operation cannot be continued, the continua-
tion context will throw theCannotProceedException to the caller of the originabind()
operation.

“Dynamic” Location of Next Naming System

In some federation configurations, the result of resolution in one naming system does not indi-

cate which is the next naming system. The only conclusion that the context implementation can

draw is that resolution has terminated in the current naming system and should proceed to the
next naming system.

For example, suppose the composite name “lib/xyz.zip/partl/abc” consists of two parts: “lib/
Xyz.zip”, which names a file in ZIP format, and “partl/abc”, which names an entry within the
ZIP file. Although the resolution of “lib/xyz.zip” results in a file object, the desired result is a
context in which to resolve names of ZIP entries. Similarly, another composite name could
name an entry within a file in “tar” format, and the desired result of the resolution of the file
component of the composite name would be a context in which to resolve tar entries.

In effect, any type of context might be federated beneath the file system namespace depending
on the format of the files. Such relationships should be symmetric: it should be possible for the
ZIP file context and other similar contexts to federate beneath other, non-file system namespac-
es. Furthermore, developers writing the file system context implementation and those writing
the context implementations for the ZIP file context, the tar file context, or a context for some
yet-to-be defined format, should be able to work independently.

To support this type of federation, JNDI defines a special foretdrence called amns ref-
erencg“nns” stands for “next naming system”). TiReference has an address with types.

Sun Microsystems, Inc. 12 7/14/99

Java Naming and Directory SPI Building a Context Implementation

2.5.7

2.5.8

The address contents is the resolved object (in the above example, the ZIP file). Continuing
with the file system example, the file system context implementation might create the nns ref-
erence as follows:

RefAddr addr = new RefAddr("nns") {
public Object getContent() {
return theFile;

}

¥

Reference ref = new Reference("java.io.File", addr);
Next, the context implementation constructsanotProceedException (as with the junction
case) by using the nns reference as the resolved object, and a resolved name consisting of the
resolved file name and an empty component. The empty component is being used as an implicit
next naming system pointer and indicates that the resolution has succeeded to the point of re-
solving the next naming system. (Notice how the values of the resolved object and resolved
name are matched.) The context implementation then passesiiieProceedException to
getContinuationContext()

As with any resolved object in @annotProceedException , getContinuationContext()

searches for a context implementation that accepts this nns reference. The ZIP file context im-
plementation, for instance, might accept an nns reference and other information provided, such
as the name of the file (relative to a given context). If the context implementation determines
that the file is a ZIP file, it would then construct a context for resolving names within that file.

More about CannotProceedException

Central to the JNDI SPI's framework for federation is thaennotProceedException . A
CannotProceedException contains information such as the resolved name/object and remain-
ing name, inherited from theamingException ~ superclass. In addition,@annotProceedEx-

ception also contains fields for the “alt” name and “alt” name context. While the resolved
name fromNamingException is the full composite name (relative to the starting context of the
operation), alt name is the resolved name relative to the alt name context. That is, alt name
might not necessarily be the same as the resolved name. Alt name and alt name context are used
as arguments t®amingManager /DirectoryManager.getObjectinstance() . They allow the
factories that are called by this method to obtain more information about the resolved object
(for example, it could be used to get a special attribute about the object). These factories are
described in Chapter 4.

Contextual Information

While the emphasis of the JNDI SPI framework is on “looking forward” and trying to find the
next naming system, some context implementations, once located, need to “look back” the res-
olution chain to obtain contextual information. For example, a particular context implementa-
tion that is federated off of a host naming system might be designed such that the only means
by which it can find out host information is to ask its (possibly not immediate) superior naming
system. To do that, it needsntextual information-information about how the resolution pro-
ceeded to its current point.

Summarizing earlier discussions on federation, when performing an operation on a name that
spans multiple namespaces, the context implementation first constraeis\é@Proceed-

Sun Microsystems, Inc. 13 7/14/99

Java Naming and Directory SPI Building a Context Implementation

2.6

Exception containing information pinpointing how far it has proceeded. It then obtains a con-

tinuation context from JNDI by callingetContinuationContext() . To support the retrieval
of contextual informationgetContinuationContext() automatically adds the environment
property java.naming.spi.CannotProceedException , with the value of thecCannot-

ProceedException argument, to the continuation context’s environment. This property is in-
herited by the continuation context and may be used by that context’s implementation to
inspect the fields of the exception.

Referral Support

LDAP-style directory services support the notiorreferralsfor redirecting a client’s request

to another server. A referral differs from the federation continuation mechanism described ear-
lier in that a referral may be presented to the JNDI client, who then decides whether to follow
it, whereas &annotProceedException should be returned to the client only when no further
progress is possible. Another difference is that an individual context implementation offers the
capability of continuing the operation using the referral (and itself determines the mechanism
for doing so). In a federation, the mechanism of continuation is beyond the scope of individual
context implementations: individual context implementations benefit from the common feder-
ation mechanism provided by the JNDI SPI framework.

A context implementation that supports referrals defines a subclagsf@falException

and provides implementations for its abstract methgelreferralContext() returns a con-
text at which to carry on the operation, agudReferralinfo() returns information on where
the referral leads to, in a format appropriate to the context implementation.

The environment properigva.naming.referral specifies how the context implementation
should treat referrals. If the context implementation is asked to throw an exception when a re-
ferral is encountered, or if the context implementation encounters problems following a refer-
ral, it throws aReferralException to the application. To continue the operation, the
application re-invokes the method on the referral context using the same arguments it supplied
to the original method. The following code sample shows IRefrralException may be

used by an applicatioh:

1. Note that this is code in thegplication In “Continuing an Operation in a Federation”, the code sample presented
is code in theontext implementation

Sun Microsystems, Inc. 14 7/14/99

Java Naming and Directory SPI Building a Context Implementation

while (true) {

try {
bindings = ctx.listBindings(name);
while (bindings.hasMore()) {
b = (Binding) bindings.next();

}

break;
} catch (ReferralException e) {
ctx = e.getReferralContext();

}
}

This convention of re-invoking the method using the original arguments is a simple one for ap-
plications to follow. This places the burden on the implementation aréneralException

to supply enough information to the implementation of the referral context for the operation to

be continued. Note that this will likely render some of the arguments passed to the re-invoked
operation superfluous. The referral context implementation is free to ignore any redundant or
unneeded information.

It is possible for an operation to return results in addition to a referral. For example, when
searching a context, the server might return several results in addition to a few referrals as to
where to obtain further results. These results and referrals might be interleaved at the protocol
level. If referrals require user interaction (i.e., not followed automatically), the context imple-
mentation should return the results through the search enumeration first. When the results have
been returned, the referral exception can then be thrown. This allows a simple programming
model to be used when presenting the user with a clear relationship between a referral and its
set of results.

2.7 Schema Support

JNDI defines therttribute interface for representing an attribute in a directory. An attribute
consists of an attribute identifier (a string) and a set of attribute values, which can be any object
in the Java programming language. There are also methods defim@tbine for obtaining

the attribute’s definition and syntax definition from the directory’s schema.

public class Attribute {
public DirContext getAttributeDefinition() throws NamingException;
public DirContext getAttributeSyntaxDefinition()
throws NamingException;

}

The utility class BasicAttribute , does not provide useful implementations for these meth-
ods. A directory context implementation that has support for such schema information should
provide implementations afitribute that implement these two methods based on its schema
mechanisms, perhaps by subclassagicAttribute and overriding these two methods. The
context implementation should then return instances of these subclasses when asked to return
instances ofttribute . The contextimplementation, when it receives\arbute instance

that do not have meaningful implementations of these two methods, should use reasonable de-

Sun Microsystems, Inc. 15 7/14/99

Java Naming and Directory SPI Building a Context Implementation

faults to determine the attribute’s definition and syntax, using information such as the attribute
values’ class names or conventions used for the attribute identifier.

ThebDirContext interface contains schema-related methods:

public class DirContext {

public DirContext getSchema(Name name) throws NamingException;
public DirContext getSchema(String name) throws NamingException;

public DirContext getSchemacClassDefinition(Name name)
throws NamingException;

public DirContext getSchemaClassDefinition(String name)
throws NamingException;

}

getSchema() returns the schema tree for the named object, wjeilechemaClassDefini-

tion() returns a context containing schema class definitions for the named object. Some sys-
tems have just one global schema and, regardless of the valuenaftbargument, will return

the same schema tree. Others support finer grained schema definitions, and may return differ-
ent schema trees depending on which context is being examined.

2.8 Event Support

A context implementation supports event notification by providing implementation for the
methods in the&ventContext /EventDirContext interfaces. The event model advocated by
these interfaces can be readily supported using a multithreaded model. When an application
usesaddNamingListener() to register a listener with a context, the context records the re-
guests and takes action to collect information required to generate the events. When the context
eventually receives information to generate the events, it fires the events to the listener. The
thread that does the registration is typically different from the thread that runs the listener. The
context implementation typically uses a thread that it has created and manages to run the lis-
tener method. When one event is dispatched to multiple listeners, the context implementation
may choose to (and is generally encouraged) to execute the listener methods concurrently in
separate threads.

The addNamingListener() methods accept an instance NdmingListener . The instance

might implement one or more subinterfacesNafingListener . If the listener implements

more than one subinterface, the context implementation should try to conserve resources re-
quired to satisfy the registration. For example, an implementation might be able to submit a sin-
gle request to the server that captures all of the requests of the subinterfaces.

Where possible, the context implementation should fiveraingExceptionEvent to a listener

if the context will be unable to fire further events and then automatically deregister the listener.
For example, if the connection to the server is broken subsequent to the registration of the lis-
tener and no information will be available to fire events, the context should fi@ring-
ExceptionEvent to the listener.

Sun Microsystems, Inc. 16 7/14/99

Java Naming and Directory SPI Building a Context Implementation

2.9

29.1

29.2

293

Context Environment Support

Each instance ofontext (or its subinterfaces) can have associated with ieamronment

which contains preferences expressed by the application of how it would like to access the ser-
vices offered by the context. Examples of information found in an environment are security-
related information that specify the user’s credentials and desired level of seaunitty {im-

ple , strong), and configuration information, such as the server to use. See Chapter 6 and Ap-
pendix A of theJNDI API document for more details about environment properties.

Environment properties are defined generically in order to ensure maximum portability. Indi-
vidual service providers should map these generic properties to characteristics appropriate for
their service. Properties that are not relevant to a provider should be recorded and silently ig-
nored. The environment may also be used for storing service provider-specific properties or
preferences, in which case their applicability across different providers is limited.

Property Naming Convention

See Section 6.1 in théNDI APl document for a description of how environment properties

are named. Service provider-specific properties should have a prefix that reflects their unique-
ness to the provider. A common practice is to use the package name of the service provider as
the prefix. For example, since Sun’s LDAP provider is primarily contained in the package
com.sun.jndi.ldap , properties specific to Sun’s LDAP provider have the prefix “com.sun.jn-
di.ldap.”.

Initializing a Context’s Environment

When creating an initial context (either using the constructors firadalContext or its
subclasses), the application can supply an environment as a parameter. The parameter is repre-
sented as Hashtable or any of its subclasses (e.grpperties). The JNDI class library aug-

ments the data from this parameter with data from other sources (see Chapter 8NDihe

APl document) and passes this to the context implementation.

Like all other parameters, the environment parameter received by a context implementation is
owned by the caller. The context implementation should make a copy of the environment pa-
rameter it gets or otherwise take steps to ensure that changes by the caller to the parameter
would not affect what the context implementation sees and vice versa. Note also that if the en-
vironment parameter isRxoperties instance, enumeration ardshtable.get() on the pa-
rameter only examine the top-level properties (not any nested defaults). This is the expected
behavior. The context implementation is not expected to retrieve or enumerate values in the
Properties instance’s nested defaults.

The JNDI library is responsible for merging properties from different sources, such as the en-
vironment parameter to the initial context, resource files, and, where appropriate, system prop-
erties and applet parameters (see the JNDI API document, Chapter 6). The context
implementation typically just reads the property it needs from the environment which it was
supplied. There is seldom a need for a context implementation to consult other sources.

Inheritance

The environment is inherited from parent to child as the context methods proceed from one
context to the next. The entire environment of a context instance is inherited by the child con-

Sun Microsystems, Inc. 17 7/14/99

Java Naming and Directory SPI Building a Context Implementation

text instances, regardless of whether certain properties within the environment are ignored by
a particular context.

A context implementation must pass on the environment from one context instance to the next
in order to implement this “inheritance” trait of environments. Within one context implemen-
tation it can do so by passing the environment as an argument totiext constructor, or

to the NamingManager/DirectoryManager.getObjectinstance() method for creating
Context instances.

Across context implementations in a federation, this is supported by passing the environment
as part of thecannotProceedException parameter oNamingManager.getContinuation-
Context()/DirectoryManager.getContinuationDirContext() , Which in turn will use

this environment when creating an instance of the context in which to continue the operation.

Inheritance can be implemented in any way as long as it preserves the semantics that each con-
text has its own view of its environment. For example, a copy-on-write implementation could
be used to defer copying of the environment until it is absolutely necessary.

2.9.4 Updates to the Environment

The environment of a context can be updated via the use atitti@Environment() and re-
moveFromEnvironment() ~ methods in th€ontext interface.

public interface Context {

public Object addToEnvironment(String propName, Object propVal)
throws NamingException;

public Object removeFromEnvironment(String propName)
throws NamingException;

}

These methods update the environment of this instanceraéxt . An environment property

that is not relevant to the context implementation is silently ignored but maintained as part of
the environment. The updated environment affects this instancenadkt , and will be inher-

ited by any new childContext instances, but does not affect atgntext instances already in
existence. A lookup of the empty name ogatext Wwill return a newContext instance with

an environment inherited as with any other child.

See Section 6.6 in tkINDI APl document for details.

2.9.5 Provider Resource Files

Each service provider has an optional resource file that contains properties specific to that pro-
vider. The name of this resource is:

[prefix [jndiprovider.properties

whereprefixis the package name of the provider’s context implementation(s), with each period
(“.") converted to a slash (“/”). For example, suppose a service provider defines a context im-
plementation with class naneem.sun.jndi.ldap.LdapCtx . The provider resource for this
provider is namedom/sun/jndi/ldap/jndiprovider.properties

Sun Microsystems, Inc. 18 7/14/99

Java Naming and Directory SPI Building a Context Implementation

2.10

The JNDI class library will consult this file when it needs to determine the value of a property,
as described in Section 6.5.2 in ti¢DI API document.

When the service provider needs to determine the value of a property, it will generally take that
value directly from the environment. The service provider may define provider-specific prop-
erties to be placed in its own provider resource file. In that case it needs to read them from its
property resource file and merge them in a way consistent with the algorithm described in Sec-
tion 6.5.2 in the]NDI API document.

Connection Management

For a context implementation that uses a client/server protocol, there is not necessarily a one-
to-one mapping between a context and a connection between the client and the server. JNDI is
a high-level API that does not deal directly with connections. It is the job of the context imple-
mentation to do any necessary connection management. Hence, a single connection may be
shared by multiple context instances, and a context implementation is free to use its own algo-
rithms to conserve connection and network usage. Thus, when a method is invoked on the con-
text instance, the context implementation might need to do some connection management in
addition to performing the requested operation.

The Context.close() andNamingEnumeration.close() methods can be used by applica-
tions to provide hints to the context implementation as to when to free connection-related re-
sources. A context implementation may choose to (and is generally encouraged to) take other
measures to garbage-collect and conserve its connection-related resources.

Some environment properties affect a context’s connection. For example, if the application
changes the security-related properties, the context implementation might need to modify or
create a new connection using those updated properties. If the connection was being shared by
other contexts prior to the change, the connection change should not affect contexts whose
properties have not been updated.

Sun Microsystems, Inc. 19 7/14/99

Java Naming and Directory SPI The Initial Context

3 The Initial Context

Since all naming methods are performed relative to a context, an application needs a starting
context in order to invoke them. This starting context is referred to amit context The
bindings in the initial context are determined by policies set forth by the initial context imple-
mentation, perhaps using standard policies for naming global and enterprise-wide namespaces.
For example, the initial context might contain a binding to the Internet DNS namespace, a bind-
ing to the enterprise-wide namespace, and a binding to a personal directory belonging to the
user who is running the application.

An application obtains an initial context by making the following call:
Context ctx = new InitialContext();

An alternate constructor allows an environment to be passed as an argument. This allows the
application to pass in preferences or security information to be used in the construction of the
initial context.

Hashtable env = new Hashtable(); 1
env.put(Context. SECURITY_PRINCIPAL, "jsmith");
env.put(Context. SECURITY_CREDENTIALS, "XXXXxxX");
Context ctx = new InitialContext(env);

Subsequent to getting an initial context, the application can invakext methods.
Object obj = ctx.lookup("this/is/a/test");

The InitialContext class (and subclasses) selects an implementation using a default algo-
rithm that can be overridden by installingiaitial context factory builde{described below).

ThelnitialDirContext is an extension ahitialContext . Itis used for performing direc-
tory operations using the initial context. ThetialLdapContext class is an extension of
InitialDirContext . It'is used for performing special LDAP v3 operations using the initial
context. The algorithms and policies described in this section also appl§ai@irCon-

text andinitialLdapContext . Places whereirContext/LdapContext is required instead
of Context have been noted.

3.1 The Initial Context Factory

An initial context factoryis a class that creates an instance of a context that has been imple-
mented following the guidelines outlined in Chapter 2. The factory is used bytihi€on-
text class (or subclass) constructor.

Given an environment, the factory returns an instanceméxt (or its subinterfaces).

public interface InitialContextFactory {
public Context getlnitialContext(Hashtable env)
throws NamingException;

}
Appendix A contains an example of @hialContextFactory

1. You can also use a subclas$iashtable (e.g.Properties) for this.

Sun Microsystems, Inc. 20 7/14/99

Java Naming and Directory SPI The Initial Context

3.1.1

3.2

3.2.1

Once the context instance has been created, when a method is invakgdioontext by
using a non-URL name (see below), the method is forwarded and invoked on that context in-
stance.

JNDI selects the initial context implementation to use by using the propariyam-
ing.factory.initial . This property contains the fully-qualified class name of an initial con-
text factory. The class must implement tin@ialContextFactory interface and have a
public constructor that does not take any arguments. JNDI will load the initial context factory
class and then invokgetinitialContext() on it to obtain aContext instance to be used as
the initial context.

An application that wants to use a particular initial context must supplgth@aming.fac-
tory.initial property in the environment passed to thigalContext (or subclass) con-
structors, or via resource files, system properties, or applet parameters.

Exceptions

When the propertjava.naming.factory.initial is setto a nomull value, thanitial-

Context (and subclass) constructors will try to load and instantiate an initial context factory,
which will then create a context instance. If the factory or context cannot be created, for exam-
ple as a result of an authentication problem, the initial context factory can throw an exception
to indicate this problem. Note however that it is up to the context implementatienit ver-

ifies and indicates to users of the initial context any environment property- or connection- re-
lated problems. It can do so lazily—delaying until an operation is performed on the context, or
eagerly, at the time the context is created.

If the propertyjava.naming.factory.initial is not set, no attempt will be made to create
an underlying context for the initial context. The initial context is still useful, for instance, for
processing URL names, as described next.

URL Support

If a URL! string is passed to the initial context, it will be resolved using the correspoitiRhg

context implementatio his feature is supported by thétialContext class (and subclass-
es) and is independent of the setting of {he.naming.factory.initial environment
property.

This feature allows applications to use the initial context to reach any namespace for which a
URL context implementation has been made available. For example, the following code lists
an LDAP namespace from the initial context:

new InitialContext().list("ldap://Iserver/ou=eng,0=wiz,c=us");

URL Context
A URL string has the following format:

1. The mention of “URL” in this document refers to a URL string as defined by RFC 1738 and its related RFCs. It is
any string that conforms to the syntax described therein, and may not always have corresponding support in the
java.net.URL class or Web browsers. The URL string is either passed &&itle name parameter, or as
the first component of tHdameparameter.

Sun Microsystems, Inc. 21 7/14/99

Java Naming and Directory SPI The Initial Context

scheme_isbpaque_string

For example, an LDAP URL string has the scheme id “ldap”; a file URL has the scheme id
“file”.
A URL context implementation is a class that implementsdb&ext interface (and possibly

some subinterfaces) and accepts name arguments that are URL strings of the scheme that it sup-
ports. For example, an LDAP URL context accepts “ldap” URL strings.

When a URL string name is passed to a URL context, the context methods thatsdogpt

treat the name as a URL with the syntax defined by the URL scheme. Wkeanembject in

which the first component is a URL string name is passed to a URL context, the first component
is treated as a URL string, and the rest is used for federation (that is, resolution of the first com-
ponent will indicate which naming system to use to resolve the rest)Namheinstance should

be aCompositeName ; otherwise, amvalidNameException should be thrown.

Name arguments that are not URL strings, and URL strings with an inappropriate scheme id
should be rejected with anvalidNameException

3.2.2 URL Context Factory

A URL context factorys a class (actually a special typbject factory(see Section 4.1)) that
creates an instance of a URL context for URLs of one or more schemes.

When thelnitialContext class receives a URL string as a name argument, it will look for a
URL context factory by using the following algorithm. The environment propevtynam-
ing.factory.url.pkgs contains a colon-separated list of package prefixes. The factory’s

class name is constructed by using the following rule:

package_prefix “.” + scheme_id “.” + scheme_idRLContextFactory

for each package prefix listed in the property. The default package prefixun.jndi.url
is appended to the end of the list.

For example, if the URL isldap://somehost:389 " and java.naming.factory.url.pkgs

contains tom.widget:com.wiz.jndi ", the InitialContext class will attempt to locate the
corresponding factory class by loading the following classes until one is successfully instanti-
ated:

com.widget.ldap.ldapURLContextFactory
com.wiz.jndi.ldap.ldapURLContextFactory
com.sun.jndi.url.ldap.ldapURLContextFactory

The factory class implements tlawjectFactory interface (see “URL Context Factory” on
page 31) and has a public constructor that takes no arguments.Initfdi®@ontext class
passes the scheme id as the resolved object to the factet@isiectinstance() method,
which in turn creates a URL context for the URL scheme. The URL context will then be used
to carry out the originally intendeContext or DirContext ~ operation on the URL supplied to
InitialContext

3.2.3 Service Provider’'s Responsibility

There is no requirement that a service provider supply a URL context factory and URL context
implementation. It only does so if it wants to allow URL string names with its URL scheme to

Sun Microsystems, Inc. 22 7/14/99

Java Naming and Directory SPI The Initial Context

3.3

3.3.1

3.3.2

3.4

be accepted by theitialContext class. A service provider, for instance, might just provide
an initial context factory and a context implementation that is accessed through that factory.

Overriding the Default Behavior

The policy of creating an initial context factory using {hea.naming.factory.initial en-
vironment property and URL support is built into thtialContext class. There are two
ways an application can override some or all of this policy.

Removing URL Support

If an application does not want URL strings to be treated specially, it can use the method
NamingManager.getlnitialContext() , Which creates a context instance using the factory
named in thgava.naming.factory.initial environment property.

This method is also useful if the application needs to access interfaces implemented by the con-
text created by the initial context factory, but which are not onewifext , DirContext , Or
LdapContext . Here is a code fragment that gets a context usiagingManager.getini-

tialContext() and then casts it to a subclass:

FooContext ctx = (FooContext) NamingManager.getinitialContext(env);

Object obj = ctx.lookup(hame);
ctx.fooMethodi(...);

Note that installing an initial context factory builder (discussed next) affects the result of
NamingManager.getinitialContext()

Removing All Policy
An initial context factorybuilderis a class that creates instances of initial context factories.

An application can install an initial context factory builder to define its own policy of how to
locate and construct initial context implementations. When a builder has been installed, it is
solely responsible for creating the initial context factories. None of the default poljgies (
va.naming.factory.initial property or URL support) normally used by JNDI are em-
ployed.

An implementation of an initial context factory builder must implementihialContext-
FactoryBuilder interface. ItgreatelnitialContextFactory() method creates instances
of InitialContextFactory

After a builder has been installed. the application can get the initial context by either using the
InitialContext /InitialDirContext /InitialLdapContext constructors, or by using
NamingManager.getinitialContext() . When one of the constructors is used, its class is ba-
sically a wrapper around the underlying context implementation returnedatmnhgMan-
ager.getlnitialContext()

Implementing a Subclass of InitialContext

When there is a need to provide an initial context that supports an interface that extends from
Context ,DirContext , OrLdapContext ,the service provider should supply a subclagsiof
tialContext (or InitialDirContext/InitialLdapContext).

Sun Microsystems, Inc. 23 7/14/99

Java Naming and Directory SPI The Initial Context

3.4.1 URL Support

To add support for URLS in the same wajtialContext andinitialDirContext do, the
subclass should use the protected methods availabl@arContext as follows. This only
makes sense for interfaces that have methods that accept name argument.

For example, suppog@oContext is a subinterface abirContext . Its initial context imple-
mentation would defingetURLOrDefaultinitFooCtx() methods (for botihNameandString
parameters) that retrieve the real initial context to use.

public class InitialFooContext extends InitialDirContext {

protected FooContext getURLOrDefaultinitFooCtx(Name name)
throws NamingException {
Context answer = getURLOrDefaultInitCtx(name);
if (!(answer instanceof FooContext)) {
throw new NolnitialContextException(“Not a FooContext”);

}
return (FooContext)answer;
}
/I similar code for getURLOrDefaultinitFooCtx(String name)
}
When providing implementations for the new methods irftwecontext interface that accept
a hame argumengetURLOrDefaultinitFooCtx() Is used in the following way.

public Object FooMethod1(Name name, ...) throws NamingException {
return getURLOrDefaultinitFooCtx(name).FooMethodl(name, ...);
}

3.4.2 New Method Support

When providing implementations for the new methods infilweContext interface that do not
have a name argument, or for which URL support is not requiredntiga&ontext.get-
DefaultInitCtx()

protected FooContext getDefaultinitFooCtx() throws NamingException {
Context answer = getDefaultInitCtx();
if (I(answer instanceof FooContext)) {
throw new NolnitialContextException(“Not an FooContext”);
}

return (FooContext)answer;

}

public Object FooMethod2(Args args) throws NamingException {
return getDefaultinitFooCtx().FooMethod2(args);

}

3.4.3 Constructors

The implementation should provide appropriate constructors for the class. The constructor
should call the appropriate constructor of the superclass. If the environment needs to be modi-
fied or examined prior to the superclass’s constructor being called, it should use the protected

Sun Microsystems, Inc. 24 7/14/99

Java Naming and Directory SPI The Initial Context

constructor that accepts a boolean flag to control the initialization of the initial context, and
then use thait) method to initialize the context. Here is an example:

public InitialFooContext(Hashtable environment, Object otherArg)
throws NamingException {
super(true); // don't initialize yet

/I Clone environment and adjust
Hashtable env = (environment == null) ? new Hashtable(11) :
(Hashtable)environment.clone();

i'ﬁ.it(env);
}
Client programs that use this new initial context would look as follows.

import com.widget.jndi.InitialFooContext;
FooContext ctx = new InitialFooContext(env);

Object obj = ctx.lookup(name);
ctx.FooMethod1(name, ...);

Sun Microsystems, Inc. 25 7/14/99

Java Naming and Directory SPI Customizing A Context Implementation

4

4.1

Customizing A Context Implementation

JNDI allows a context implementation to be customized—by the application, the application’s
deployer or user, or the service provider—in how it reads and stores objects in the naming/di-
rectory service. A similar facility is also available for narrowing LDAP v3 control classes.

You can think of these facilities as modules that plug into a context implementation.

Reading Objects: Object Factories

JNDI provides a generic way of creating objects (including instancesraéxt) using infor-

mation stored in the namespace. That information may be of arbitrary jaxagafg.Ob-

ject). For example, it may beReference , or a URL, or any other data required to create the
object. Turning such information stored in the namespace into an object is supported through
the use obbject factoriesAn object factory is a class that implements tigectFactory in-

terface (or th@irObjectFactory subinterface):

public interface ObjectFactory {
public Object getObjectinstance(Object refObj,
Name name,
Context namecCitx,
Hashtable env)
throws Exception;

public interface DirObjectFactory extends ObjectFactory {
public Object getObjectinstance(Object refObj,
Name name,
Context namecCitx,
Hashtable env,
Attributes attrs)
throws Exception;

}

Given some reference informatiorefObj) about an object, optional information about the
name of the object and where it is bound, and optionally some additional environment infor-
mation (for example, some identity or authentication information about the user creating the
object), the factory attempts to create an object represented by the reference information. For
example, given reference information about a printer, a printer object factory might return an
instance oPrinter . In the case of an object factory that is to be used witir@ntext im-
plementation, the factory is also given some attributes about the object. If the factory requires
more attributes or information, it can obtain them directly from the naming/directory service
by using themame/nameCtx arguments.

If the factory cannot created an object using the arguments supplied, it shouldneturf-or
example, when a printer object factory is given data about a disk drive, it should neturn

The factory should only thrown an exception if no other object factories should be tried. There-
fore, the factory should be careful about runtime exceptions that might be thrown from its im-
plementation. For example, if a printer object factory is given data about a printer but the data
is malformed in some way, it should throw an exception.

Sun Microsystems, Inc. 26 7/14/99

Java Naming and Directory SPI Customizing A Context Implementation

41.1

Object factories are used in several places in JNDI, basically to turn any reference information
into an object. They are used in federation, URL processing in the initial context, and, as illus-
trated by the printer example, turning data into a form expected by the application.

Handling Structured References

A Reference contains methods for returning the class name and location of the object factory.
The following methods are found Reference .

public class Reference {

public String getClassName();
public String getFactoryClassName();
public String getFactoryClassLocation();

}

If the object read from the directory/naming service is an instancefefence or Refer-

enceable , its corresponding object factory can be located using informaticreference .
ThegetFactoryClassName() method retrieves the name of the factory class that implements
the ObjectFactory interface. This factory must implement tbéjectFactory interface and

have a public constructor that takes no argumeyetsactoryClassLocation() retrieves the
codebase of the class implementation for the factory, which is a list of space-separated URLSs.

JNDI creates the object by invokingtObjectinstance() on theObjectFactory instance,
by using theReference and environment as arguments. The result is an instance of a class
identified bygetClassName()

Note that all the classes necessary to instantiate the object returned to the application are made
available using mechanisms provided by JNDI. The application doesn’t have to install the
classes locally.

Figure 3: Example Using Reference to Get Back An Object From the Namespace

getObjectinstance())
PrinterReference

©) bound in namespace

PrinterFactory h l

Printer object

lookup printer name namespace

application)

Returning to the printer example, suppeseter is an interface for representing a printer and
theBSDPrinter class is an implementation of that interfaBeDPrinter implements th&ef-
erenceable interface and uses tireference class to store information on how to construct
instances oBSDPrinter and address information for communicating with the print server. The
Reference contains the class name of the objeé¢t{iter”), the class name of the printer ob-

Sun Microsystems, Inc. 27 7/14/99

Java Naming and Directory SPI Customizing A Context Implementation

4.1.2

ject factory (‘PrinterFactory ~ ”) and a URL for loading the factory’s class implementation.
Using the factory class name and implementation location, JNDI first loads the implementation
of PrinterFactory and creates an instancerfnterFactory . It then invokegyetObject-

Instance() on the factory to create an instancerafiter using the reference. For example,
one address in the reference may have an address ofitype and contains the print server’'s
host name ({bbby-printserver "). The PrinterFactory instance uses the address type
(“bsd”) to decide to create asDPrinter instance and passes the address contebpty-
printserver ") to its constructor. The resultingSDPrinter object is returned as the result of
lookup()

From the context implementation’s point of view, all of this is done automatically by its invo-
cation ofNamingManager /DirectoryManager.getObjectinstance()

When the application invokesint() on theBSDPrinter instance returned byokup() , the

data is sent to the print server on the machineby-printserver " for printing. The appli-

cation need not know the details of tReference stored in the namespace, the protocol used

to perform the job, or whether tiBsDPrinter class was defined locally or loaded over the net-
work. The transformation of the information stored in the underlying service into an object that
implements therinter interface is done transparently through the cooperation of the service
provider (which stores bindings of printer names to printer address information), the printer
service provider (which provides tireinterFactory andBsDPrinter classes), and the JNDI

SPI framework (which ties the two together to return an object that the application can use di-

rectly).
A service provider for such an object must do the following:

1. Define the class for the object (e.gSDPrinter) that implementReferenceable or
is a subclass ateference .

2. Define thereference and its reference addresses for the object.

3. Define a factory class that implemenatsjectFactory (€.g.,PrinterFactory). This
class’sgetObjectinstance() method will create an instance of the class from step 1
(e.g.,BSDPrinter) when given th&eference from step 2.

Handling URL References

If a Reference contains an address of type “URL” but not the factory class name and location,
or if the reference is an array of strings containing URLs, JNDI will use the URL context fac-
tory support described in Section 3.2 to locate the factory, and then pass the URL string in the
address to the factory@gtObjectinstance() method. See Section 4.1.6 for a description of
how JNDI expects a URL context factory implementation to behave.

A service provider for such an object must do the following:
1. Define the class for the object (e®sDPrinter).
2. Define the URL scheme for the object.

3. Define a URL context factory class that implementgectFactory . This class’s
getObjectinstance() method will create an instance of the class from step 1 (e.qg.,
BSDPrinter) when given the URL from step 2.

Sun Microsystems, Inc. 28 7/14/99

Java Naming and Directory SPI

4.1.3

Customizing A Context Implementation

Handling Arbitrary References: The java.naming.factory.object Property

In addition to extracting factory information fromeference s, or using URLs, JNDI also

looks for object factories specified in tia.naming.factory.object property, which can

be in the environment or the provider resource file (see Section 2.9.5). The property contains a
colon-separated list of fully-qualified class names of object factories. Each class must imple-
ment theObjectFactory interface and have a public constructor that takes no arguments. For
each class in the list, INDI attempts to load and instantiate the factory class, and to invoke the
ObjectFactory/DirObjectFactory.getObjectinstance() method on it using the object

and environment arguments supplied. If the creation is successful, the resulting object is re-
turned; otherwise, JNDI uses the same procedure on the next class in the list until the list is
exhausted or a factory returns a mon- result.

Figure 4: Example using java.naming.factory.object to Get Back an Object from the Namespace

getObjectinstance()
information about printer
® bound in namespace

Object factories % % m .
O O O

in java.naming.factory.object @

Sun Microsystems, Inc. 29

Printer object

lookup printer name namespace

application)

For the printer example, instead of usingederence to represent a printer in the namespace,
some other information is stored. When that information is later retrieved, the object factories
specifiedjava.naming.factory.object are tried in turn to attempt to turn that information

into aPrinter instance.
A service provider for such an object must do the following:

1. Define the class for the object (e®sDPrinter).

2. Define the class for reference information for the object. This is the object that will be
bound in the namespace. This need noRbierence . It can be anything that will be
understood by its corresponding object factory (e.g., some string containing the server
name rinter type=bsd; host=lobby-printserver).

3. Define a factory class that implemeisjectFactory (e.g.,PrinterFactory). This
class’sgetObjectinstance() method will create an instance of the class from step 1
(e.g.,BSDPrinter) when given an instance of the class from step 2 (emjintér
type=bsd; host=lobby-printserver ").

7/14/99

Java Naming and Directory SPI Customizing A Context Implementation

The service provider should automatically convert between the actual objecB@ogrint-
er) and the reference information (step 2, e.@rinter type=bsd; host=lobby-print-
server ") when binding or looking up the object.

An application that wants to use a particular factory for generating objects must include the fac-
tory’s class name in itfva.naming.factory.object environment property and make the
factory’s classes and object classes available.

4.1.4 Overriding the Default Behavior
An object factorybuilderis a class that creates instances of object factories.

An application can install an object factory builder to defining its own policy of how to locate
and construct object factory implementations. When a builder has been installed, it is solely
responsible for creating the object factories. None of the default poliRigsrénce , URL

string, orjava.naming.factory.object property) normally used by JNDI are employed.

Figure 5: Example using an Object Factory Builder to Get Back an Object from the Namespace

Installed object factory builder

information about printer
bound in namespace

PrinterFactory

@

Printer object

lookup printer name namespace
application
A service provider for an object factory builder must do the following:
1. Define object factories that implemetijectFactory

2. Define a class that implementsObjectFactoryBuilder . This class’s
createObjectFactory() method will use the constructors for tlobjectFactory
classes in step 1.

An application that wants to use this factory builder must first install it.
NamingManager.setObjectFactoryBuilder(builder);
4.1.5 Context Factory

A context factorys an object factory that creates instances®fiext . The implementation of

these contexts for a particular naming or directory service is referred toagext implemen-

tation. Context implementations are described in Chapter 2. Like any other object factory, a
context factory can be obtained by using any of the three mechanisms described above: from a
Reference , a URL scheme id, or listed in ti#@a.naming.factory.object property.

Sun Microsystems, Inc. 30 7/14/99

Java Naming and Directory SPI Customizing A Context Implementation

4.1.6 URL Context Factory

A URL context factory is a special kind of context factory. It follows these rules when imple-
mentingObjectFactory.getObjectinstance()

» If refObj isnull , create a context for resolving URLs of the scheme associated with
this factory. The resulting context is not tied to a specific URL. For example, invoking

getObjectinstance(null, null, null, env)

on an “Idap” URL context factory returns a context that can resolve LDAP URLSs (e.g.,

“ldap://ldap.wiz.com/o=wiz,c=us " or “| dap://ldap.umich.edu/) een)s

» If refObj is a URL string, create the object identified by the URL. For example,
invoking

getObjectinstance(“Idap://ldap.wiz.com/o=wiz,c=us”, null, null, env);

on an “Idap” URL context factory would return the object named &ywiz,c=us " on
the LDAP serverdap.wiz.com . If this happens to name a context, it can then be used
for resolving (relative) LDAP names (e.gcp=Jane Smith ").

* If refObj is an array of URL strings, the assumption is that the URLs are equivalent in
terms of the context to which they refer. Verification of whether the URLSs are, or need
to be, equivalent is up to the context factory. The order of the URLSs in the array is not
significant. The object returned lygtObjectinstance() is the same as that for the
single URL case—it is an object (perhaps a context) named by the URLSs.

* If refObj is any other type, the behavior gétObjectinstance() is determined by
the implementation.

URL context factories are used by thiialContext class when it is passed a URL to re-
solve. URL context factories are also used for creating objects in the Java programming lan-
guage from URLSs stored in the namespace (see Section 4.1.2).

4.2 Storing Objects: State Factories

JNDI provides a mechanism to transform an object into a form storable by the underlying con-
text implementation. That form may be any arbitrary type acceptable to the underlying context
implementation. For example, it may b&eference , a URL, aSerializable object, or a set

of attributes, or any other data acceptable by the underlying context implementation. Turning
an arbitrary object into data that can be stored in the namespace is supported through the use
of state factoriesA state factory is a class that implements $iteeFactory interface (or the
DirStateFactory subinterface):

Sun Microsystems, Inc. 31 7/14/99

Java Naming and Directory SPI Customizing A Context Implementation

42.1

4.2.2

public interface StateFactory {
public Object getStateToBind(Object obj,
Name name,
Context nameCitx,
Hashtable env)
throws NamingException;

}

public interface DirStateFactory {
public DirStateFactory.Result getStateToBind(Object obj,
Name name,
Context nameCitx,
Hashtable env,
Attributes attrs)
throws NamingException;

}

Given an objectdpj), optional information about the name of the object and where itis bound,
and optionally some additional environment information (for example, some identity or au-
thentication information about the user accessing the namespace), the factory attempts to create
an object suitable for binding. Typically, the state factory is knowledgeable about the target
naming/directory service and/or context implementation, and knows which data formats are ac-
ceptable. In the case of a state factory that is to be used vintitentext implementation,

the factory is also given some attributes that are to be stored with the object. If the factory re-
guire more information about the object, it can obtain them directly from the naming/directory
service by using theame/nameCtx arguments. For example, a printer state factory for an
LDAP directory might return a set of attributes that represent the printer.

If the factory cannot return any data using the arguments supplied, it should melturnFor
example, when a printer state factory is given a disk object, it should redurn The factory
should only thrown an exception if no other state factories should be tried. Therefore, the fac-
tory should be careful about exceptions that might be thrown from its implementation. For ex-
ample, if a printer state factory is given a printer object but perhaps contradictory attributes, it
might throw an exception.

Input/Output Options

Ultimately, a factory’s output formats are determined by the underlying naming/directory ser-
vice. A context implementation for the CORBA Object Services (COS) naming service, for ex-
ample, can only store CORBA object references into the service; a context implementation for
LDAP can only store attributes, although there is a lot of flexibility in how to encode informa-
tion within those attributes.

A service provider typically supplies a factory for each (common) type of input that it expects,
and the application can augment that set with state factories of its own. For example, a service
provider for COS naming might have a state factory for converting a Java Remote Method In-
vocation (RMI) object into a CORBA object reference. A user of that provider might add a state
factory for converting a Microsoft COM object reference into a CORBA object reference.

Locating State Factories: The java.naming.factory.state Property

JNDI looks for state factories specified in tjaga.naming.factory.state property, which
can be in the environment or the provider resource file (see Section 2.9.5). The property con-

Sun Microsystems, Inc. 32 7/14/99

Java Naming and Directory SPI Customizing A Context Implementation

tains a colon-separated list of fully-qualified class names of state factories. Each class mustim-
plement thestateFactory interface and have a public constructor that takes no arguments.
For each class in the list, JNDI attempts to load and instantiate the factory class, and to invoke
the StateFactory/DirStateFactory.getStateToBind() method on it using the object,
name, context, environment, and attributes arguments supplied. If the factory produces a non-
null result, the result is returned; otherwise, JNDI uses the same procedure on the next class
in the list until the list is exhausted or a factory returns anadn-result.

4.3 Narrowing LDAP v3 Controls: Response Control Factories

The LDAP v3 protocol allows response controls to accompany any response sent by the server.
The control consists of an OID string identifier and a sequence of ASN.1 BER encoded bytes.
In the absence of any external information or assistance, the context implementation can only
return a plain implementation of tleentrol interface that returns the OID and bytes.

JNDI provides the following abstract class for dealing with response controls:

public abstract javax.naming.ldap.ControlFactory {

public static Control getControlinstance(Control ctl,
Context ctx,
Hashtable env)
throws NamingException;
public abstract Control getControlinstance(Control ctl)
throws NamingException;

}

When a context implementation receives a response control, it invokes theystaditrol-

Instance() method to find a control factory that can narrow the control to one that has more
user-friendly access methods. Such a control, for instance, can decode the ASN.1 BER bytes
and provide access methods that return the information as Java types. If no such control factory
can be found, the original response control is returned. Here is an example of a hypothetical
TimeResponseControl ~ Which decodes the time of day.

Sun Microsystems, Inc. 33 7/14/99

Java Naming and Directory SPI Customizing A Context Implementation

public class TimeResponseControl implements Control {
long time;
/I Constructor used by ControlFactory
public TimeResponseControl(String OID, byte[] berVal)
throws NamingException {
/I check validity of OID
time = // extract time from berVal

h

I/l Type-safe and User-friendly method
public long getTime() {

return time;
}

/I Low-level methods
public String getID() {
return TIME_OID;

}

public byte[] getEncodedValue() {
return // original berVal

}

}

A control factory may be responsible for one or more controls. If the factory cannot return a
control using the arguments supplied, it should retwtn . Typically, this involves just match-

ing the control’'s OID against the list of OIDs supported by the factory. The factory should only
thrown an exception if no other control factories should be tried. Therefore, the factory should
be careful about exceptions that might be thrown from its implementation. For example, if a

control factory is given a control with an OID that it supports, but the byte array has an encod-
ing error, it should throw an exception.

Here is an example of a control factory:

public class VendorXControlFactory extends ControlFactory {
public VendorXControlFactory () {

}

public Control getControlinstance(Control orig)
throws NamingException {
if (isOneOfMyControls(orig.getID())) {

/I determine which of ours it is and call its constructor
return new TimeResponseControl(orig.getID(),
orig.getEncodedValue());

return null; // not one of ours

}

4.3.1 Locating Response Control Factories: The java.naming.factory.control Property

JNDI looks for response control factories specified in jva.naming.factory.control

property, which can be in the environment or the provider resource file (see Section 2.9.5). The
property contains a colon-separated list of fully-qualified class names of control factories. Each
class must implement th&ontrolFactory interface and have a public constructor that takes

Sun Microsystems, Inc. 34 7/14/99

Java Naming and Directory SPI Customizing A Context Implementation

4.4

4.5

no arguments. For each class in the list, JINDI attempts to load and instantiate the factory class,
and to invoke theontrolFactory.getControlinstance() instance method on it using the
control, context, and environment arguments supplied. If the factory producesralnhore-

sult, the result is returned; otherwise, JNDI uses the same procedure on the next class in the list
until the list is exhausted or a factory returns a moin- result.

Ownership of Parameters

Any object passed as a parameter to a method in a factory is owned by the caller. Therefore,
the factory is prohibited from maintaining a pointer to the object beyond the duration of the
operation or modifying the object. If the factory needs to save the information contained in a
parameter beyond the duration of the operation, it should maintain its own copy.

Reentrancy

A factory instance should be reentrant. That is, it should be possible for multiple threads to in-
voke methods on a single instance of a factory concurrently.

Sun Microsystems, Inc. 35 7/14/99

Java Naming and Directory SPI Customizing A Context Implementation

Sun Microsystems, Inc. 36 7/14/99

Java Naming and Directory Interface Service Provider Example

Appendix A: Service Provider Example

Sun Microsystems, Inc. 37 7/14/99

Java Naming and Directory Interface Service Provider Example

This appendix contains a simple service provider. It implements a flat namespace (with no
federation support). It shows how to produce a context implementation by providing all the
methods in th€ontext interface.

An instance of this context is bound directly as the initial context. This example provides the
correspondingpitialContextFactory definition.

Sun Microsystems, Inc. 38 7/14/99

Java Naming and Directory Interface Service Provider Example

A.1 Simple Flat Context

A.1.1 Context Implementation

/*
* @(#)FlatCtx.javal.3 99/07/26
*

* Copyright 1997, 1998, 1999 Sun Microsystems, Inc. All Rights
* Reserved.

*

* Sun grants you (“Licensee”) a hon-exclusive, royalty free,

* license to use, modify and redistribute this software in source and

* binary code form, provided that i) this copyright notice and license

* appear on all copies of the software; and ii) Licensee does not

* utilize the software in a manner which is disparaging to Sun.

*

* This software is provided “AS IS,” without a warranty of any

* kind. ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
* WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE

* HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE LIABLE

* FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING,
* MODIFYING OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN
* NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST

* REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL,

* CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER

* CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT
* OF THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS

* BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

*

* This software is not designed or intended for use in on-line

* control of aircraft, air traffic, aircraft navigation or aircraft

* communications; or in the design, construction, operation or

* maintenance of any nuclear facility. Licensee represents and warrants

* that it will not use or redistribute the Software for such purposes.

*

package examples.spi.flat;

import javax.naming.*;
import java.util.*;

/7\-*
* A sample service provider that implements a flat namespace in memory.
*

class FlatCtx implements Context {
Hashtable myEnv;
private Hashtable bindings = new Hashtable(11);
static NameParser myParser = new FlatNameParser();

FlatCtx(Hashtable environment) {

myEnv = (environment != null)
? (Hashtable)(environment.clone())

Sun Microsystems, Inc. 39 7/14/99

Java Naming and Directory Interface Service Provider Example

2 null;

}

public Object lookup(String name) throws NamingException {
if (name.equals(*)) {
/I Asking to look up this context itself. Create and return
/[a new instance with its own independent environment.
return (new FlatCtx(myEnv));
}
Object answer = bindings.get(name);
if (answer == null) {
throw new NameNotFoundException(name + “ not found”);

}

return answer;

}

public Object lookup(Name name) throws NamingException {
I/l Flat namespace; no federation; just call string version
return lookup(name.toString());

}

public void bind(String name, Object obj) throws NamingException {
if (name.equals(*)) {

throw new InvalidNameException(“Cannot bind empty name”);
}
if (bindings.get(name) != null) {

throw new NameAlreadyBoundException(

“Use rebind to override™);

}

bindings.put(name, obj);

}

public void bind(Name name, Object obj) throws NamingException {
I/l Flat namespace; no federation; just call string version
bind(name.toString(), obj);

}

public void rebind(String name, Object obj) throws NamingException {
if (name.equals(*)) {
throw new InvalidNameException(“Cannot bind empty name”);
}
bindings.put(name, obj);

}

public void rebind(Name name, Object obj) throws NamingException {
I/l Flat namespace; no federation; just call string version
rebind(name.toString(), obj);

}

public void unbind(String name) throws NamingException {
if (name.equals(*)) {
throw new InvalidNameException(“Cannot unbind empty name”);
}

bindings.remove(name);

Sun Microsystems, Inc. 40 7/14/99

Java Naming and Directory Interface Service Provider Example

}

public void unbind(Name name) throws NamingException {
I/l Flat namespace; no federation; just call string version
unbind(name.toString());

}

public void rename(String oldname, String newname)
throws NamingException {
if (oldname.equals(**) || newname.equals(**)) {
throw new InvalidNameException(“Cannot rename empty name”);

}

/I Check if new name exists
if (bindings.get(newname) != null) {
throw new NameAlreadyBoundException(newname +
“is already bound”);
}

/I Check if old name is bound
Object oldBinding = bindings.remove(oldname);
if (oldBinding == null) {
throw new NameNotFoundException(oldname + “ not bound”);

}

bindings.put(newname, oldBinding);

}

public void rename(Name oldname, Name newname)
throws NamingException {
I/l Flat namespace; no federation; just call string version
rename(oldname.toString(), newname.toString());

}

public NamingEnumeration list(String name)
throws NamingException {
if (name.equals(*)) {
/I listing this context
return new FlatNames(bindings.keys());

}

/l Perhaps ‘name’ names a context

Object target = lookup(name);

if (target instanceof Context) {
return ((Context)target).list(*);

}

throw new NotContextException(name + “ cannot be listed”);

}

public NamingEnumeration list(Name name)
throws NamingException {
I/l Flat namespace; no federation; just call string version
return list(name.toString());

}

Sun Microsystems, Inc. 41 7/14/99

Java Naming and Directory Interface Service Provider Example

public NamingEnumeration listBindings(String name)
throws NamingException {
if (name.equals(*)) {
/I listing this context
return new FlatBindings(bindings.keys());

}

/l Perhaps ‘name’ names a context
Obiject target = lookup(name);
if (target instanceof Context) {

return ((Context)target).listBindings(*“);
}

throw new NotContextException(name + “ cannot be listed”);

}

public NamingEnumeration listBindings(Name name)
throws NamingException {
I/l Flat namespace; no federation; just call string version
return listBindings(name.toString());

}

public void destroySubcontext(String name) throws NamingException {
throw new OperationNotSupportedException(
“FlatCtx does not support subcontexts”);

}

public void destroySubcontext(Name name) throws NamingException {
I/l Flat namespace; no federation; just call string version
destroySubcontext(name.toString());

}

public Context createSubcontext(String name)
throws NamingException {
throw new OperationNotSupportedException(
“FlatCtx does not support subcontexts”);

public Context createSubcontext(Name name) throws NamingException {
I/l Flat namespace; no federation; just call string version
return createSubcontext(name.toString());

}

public Object lookupLink(String name) throws NamingException {
Il This flat context does not treat links specially
return lookup(name);

}

public Object lookupLink(Name name) throws NamingException {
I/l Flat namespace; no federation; just call string version
return lookupLink(name.toString());

}

public NameParser getNameParser(String name)

Sun Microsystems, Inc. 42 7/14/99

Java Naming and Directory Interface Service Provider Example

throws NamingException {
return myParser;

}

public NameParser getNameParser(Name name) throws NamingException {
I/l Flat namespace; no federation; just call string version
return getNameParser(name.toString());

}

public String composeName(String name, String prefix)
throws NamingException {
Name result = composeName(new CompositeName(name),
new CompositeName(prefix));
return result.toString();

}

public Name composeName(Name name, Name prefix)
throws NamingException {
Name result = (Name)(prefix.clone());
result.addAll(name);
return result;

}

public Object addToEnvironment(String propName, Object propVal)
throws NamingException {
if (myEnv == null) {
myEnv = new Hashtable(5, 0.75f);

}
return myEnv.put(propName, propVal);

}

public Object removeFromEnvironment(String propName)
throws NamingException {
if (myEnv == null)
return null;

return myEnv.remove(propName);

}

public Hashtable getEnvironment() throws NamingException {
if (myEnv == null) {
/I Must return non-null
myEnv = new Hashtable(3, 0.75f);
}

return myEnv;

}

public String getNamelnNamespace() throws NamingException {

return “;

}

public void close() throws NamingException {
myEnv = null;
bindings = null;

Sun Microsystems, Inc. 43 7/14/99

Java Naming and Directory Interface

}

/I Class for enumerating name/class pairs
class FlatNames implements NamingEnumeration {

}

Enumeration names;

FlatNames (Enumeration names) {
this.names = names;

}

public boolean hasMoreElements() {
return names.hasMoreElements();

}

public boolean hasMore() throws NamingException {
return hasMoreElements();

}

public Object nextElement() {
String name = (String)names.nextElement();

Service Provider Example

String className = bindings.get(hame).getClass().getName();

return new NameClassPair(name, className);

}

public Object next() throws NamingException {
return nextElement();

}

public void close() {

}

/I Class for enumerating bindings
class FlatBindings implements NamingEnumeration {

Sun Microsystems, Inc.

Enumeration names;

FlatBindings (Enumeration names) {
this.names = names;

}

public boolean hasMoreElements() {
return names.hasMoreElements();

}

public boolean hasMore() throws NamingException {
return hasMoreElements();

}

public Object nextElement() {
String name = (String)names.nextElement();
return new Binding(name, bindings.get(name));

}

public Object next() throws NamingException {
return nextElement();

44

7/14/99

Java Naming and Directory Interface Service Provider Example

}

public void close() {

}
}
h

Sun Microsystems, Inc. 45 7/14/99

Java Naming and Directory Interface Service Provider Example

A.l.2 Name Parser

/7\-
* @(#)FlatNameParser.javal.3 99/07/26
*

* Copyright 1997, 1998, 1999 Sun Microsystems, Inc. All Rights
* Reserved.
*
* Sun grants you (“Licensee”) a hon-exclusive, royalty free,

* license to use, modify and redistribute this software in source and

* binary code form, provided that i) this copyright notice and license

* appear on all copies of the software; and ii) Licensee does not

* utilize the software in a manner which is disparaging to Sun.

*

* This software is provided “AS IS,” without a warranty of any

* kind. ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
* WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE

* HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE LIABLE

* FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING,
* MODIFYING OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN
* NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST

* REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL,

* CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER

* CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT
* OF THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS

* BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

*

* This software is not designed or intended for use in on-line

* control of aircraft, air traffic, aircraft navigation or aircraft

* communications; or in the design, construction, operation or

* maintenance of any nuclear facility. Licensee represents and warrants

* that it will not use or redistribute the Software for such purposes.

*
package examples.spi.flat;

import javax.naming.NameParser;
import javax.naming.Name;

import javax.naming.CompoundName;
import javax.naming.NamingException;
import java.util.Properties;

class FlatNameParser implements NameParser {

static Properties syntax = new Properties();

static {
syntax.put(“jndi.syntax.direction”, “flat”);
syntax.put(“jndi.syntax.ignorecase”, “false”);

}

public Name parse(String name) throws NamingException {
return new CompoundName(name, syntax);

}

Sun Microsystems, Inc. 46 7/14/99

Java Naming and Directory Interface Service Provider Example

A.1.3 Initial Context Factory

/*
* @ (#)FlatinitCtxFactory.javal.3 99/07/26

* Copyright 1997, 1998, 1999 Sun Microsystems, Inc. All Rights
* Reserved.
*
* Sun grants you (“Licensee”) a non-exclusive, royalty free,
* license to use, modify and redistribute this software in source and
* binary code form, provided that i) this copyright notice and license
* appear on all copies of the software; and ii) Licensee does not
* utilize the software in a manner which is disparaging to Sun.
*
* This software is provided “AS IS,” without a warranty of any
* kind. ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
* WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
* HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE LIABLE
* FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING,
* MODIFYING OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN
* NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST
* REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL,
* CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
* CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT
* OF THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS
* BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
*
* This software is not designed or intended for use in on-line
* control of aircraft, air traffic, aircraft navigation or aircraft
* communications; or in the design, construction, operation or
* maintenance of any nuclear facility. Licensee represents and warrants
* that it will not use or redistribute the Software for such purposes.
*/
package examples.spi.flat;

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.spi.InitialContextFactory;

public class FlatInitCtxFactory implements InitialContextFactory {

public Context getlnitialContext(Hashtable env) {
return new FlatCtx(env);

}
}

Sun Microsystems, Inc. 47 7/14/99

Java Naming and Directory Interface Service Provider Example

Sun Microsystems, Inc. 48 7/14/99

Java Naming and Directory Interface Legend for Class Diagram

Appendix B: Legend for Class Diagram

In a class diagram, we visually distinguish the different kinds of Java entities, as follows:

1. The interface: A rounded rectangle

2. The class: A rectangle

3. The abstract class: A rectangle with an empty dot

4. The final class: A rectangle with a black dot

5. Classes with subclasses: A rectangle with a small black triangle on the lower right corner

Most of these elements are shown below. The class or interface being described in the current chapter is shaded grey (this is
not applicable for package class diagrams). A solid line represeeatsls while a dotted line representsplements

Class from Abstract class i
another package Class with subclasses

\

‘ java. | ang. Obj ect J
NenuGomponent o)
enen]
Emeckbowanultem ;Fox (1tenselectable |)
/ s >
extends Interface

The currentclass
implements

Sun Microsystems, Inc. 49 7/14/99

Java Naming and Directory Interface Legend for Class Diagram

Sun Microsystems, Inc. 50 7/14/99

Java Naming and Directory Interface JNDI Change History

Appendix C: JNDI Change History

1.2: INDI Changes Since 1.1

Addedjavax.naming.event package.
Addedjavax.naming.ldap package.
Added support for configuration using resource files. See Chapter 6JMEHeAPI document.

APIl-related Changes

AddedNamingEnumeration.close() for cancelling or terminating enumerations.
AddedReferralException.getReferralContext(Hashtable env) andReferralExcep-
tion.retryReferral() to allow creation and retry of referral context with different environment properties.
Clarified how context methods that accljpimeargument should deal withompositeName and nolComposite-
Namearguments. Specifically, instances@dmpositeName are treated as composite name, while all others are treated
as compound name.

AddedContext.getNamelnNamespace() for retrieving the full name of a context within its own namespace.
Clarified definition of the class factory location dRaference object. Specifically, the location is a codebase, which
consists of a list space-separated URLSs.

Added support for ordered multivalued attributegtiibute andBasicAttribute

AddedBasicAttributes.equals() andBasicAttributes.hashCode()

Redefined semantics BirContext.getSchemacClassDefinition() so that it returns a context that contains
theDirContext objects of class definitions, rather than returning one (arbitrary) class definition.

Added protectethitialContext /InitialDirContext constructors to allow lazy initialization. Useful for sub-
class implementations.

SPI-related Changes

AddedStateFactory /NamingManager.getStateToBind() , analogous t@bjectFactory /NamingMan-
ager.getObjectinstance() , for transforming an object’s state before the object is bound in the naming/directory
service.

Added interface®irObjectFactory andDirStateFactory to better support service providers that implement
theDirContext interface. Adde®irectoryManager.getObjectinstance() andDirectoryMan-
ager.getStateToStore() to use these interfaces.

Refined definition oNamingManager.getObjectinstance() to not treat URL strings specially. Instead, the

URL should be wrapped insideReference whoseRefAddr type is “URL".

MadeResolveResult implementSerializable

Defined a special form dkeference called a next naming system (nns) reference for supporting “dynamic federation”.
This reference hasRefAddr type of “nns” and a content consisting of the resolved object.

Added the string constaNlamingManager.CPE which names a property set BgmingManager.getContinu-

ationContext() /DirectoryManager.getContinuationContext() . The value of this property is an
instance ofcannotProceedException . This is useful to service providers that implement federation by chaining the
CPEs.

Defined a convention for service providers to use when naming environment properties. See Section 6.1.

Sun Microsystems, Inc. 51 7/14/99

Java Naming and Directory Interface JNDI Change History

Sun Microsystems, Inc. 52 7/14/99

	1 Introduction
	1.1 Document Overview
	1.2 Interface Overview
	1.2.1 NamingManager and DirectoryManager
	1.2.2 Initial Contexts
	1.2.3 Object Factories
	1.2.4 State Factories
	1.2.5 Federation Support

	2 Building a Context Implementation
	2.1 Ownership of Parameters
	2.2 Reentrancy
	2.3 Basic Support—Implementing the Context Interface(s)
	2.4 Object Support
	2.4.1 Reading an Object
	2.4.2 Storing an Object

	2.5 Federation Support
	2.5.1 Names
	2.5.2 Resolving Through a Context
	2.5.3 Resolving Through to Subinterfaces of Context
	2.5.4 Naming System Boundaries
	2.5.5 Continuing an Operation in a Federation
	2.5.6 “Dynamic” Location of Next Naming System
	2.5.7 More about CannotProceedException
	2.5.8 Contextual Information

	2.6 Referral Support
	2.7 Schema Support
	2.8 Event Support
	2.9 Context Environment Support
	2.9.1 Property Naming Convention
	2.9.2 Initializing a Context’s Environment
	2.9.3 Inheritance
	2.9.4 Updates to the Environment
	2.9.5 Provider Resource Files

	2.10 Connection Management

	3 The Initial Context
	3.1 The Initial Context Factory
	3.1.1 Exceptions

	3.2 URL Support
	3.2.1 URL Context
	3.2.2 URL Context Factory
	3.2.3 Service Provider’s Responsibility

	3.3 Overriding the Default Behavior
	3.3.1 Removing URL Support
	3.3.2 Removing All Policy

	3.4 Implementing a Subclass of InitialContext
	3.4.1 URL Support
	3.4.2 New Method Support
	3.4.3 Constructors

	4 Customizing A Context Implementation
	4.1 Reading Objects: Object Factories
	4.1.1 Handling Structured References
	4.1.2 Handling URL References
	4.1.3 Handling Arbitrary References: The java.naming.factory.object Property
	4.1.4 Overriding the Default Behavior
	4.1.5 Context Factory
	4.1.6 URL Context Factory

	4.2 Storing Objects: State Factories
	4.2.1 Input/Output Options
	4.2.2 Locating State Factories: The java.naming.factory.state Property

	4.3 Narrowing LDAP v3 Controls: Response Control Factories
	4.3.1 Locating Response Control Factories: The java.naming.factory.control Property

	4.4 Ownership of Parameters
	4.5 Reentrancy

	Appendix A: Service Provider Example
	A.1 Simple Flat Context
	A.1.1 Context Implementation
	A.1.2 Name Parser
	A.1.3 Initial Context Factory

	Appendix B: Legend for Class Diagram
	Appendix C: JNDI Change History
	1.2: JNDI Changes Since 1.1
	API-related Changes
	SPI-related Changes

