
Java™ObjectSerializationSpecification

Object serialization in the Java™ system is the process of creating a serialized
representation of objects or a graph of objects. Object values and types are serialized with
sufficient information to insure that the equivalent typed object can be recreated.
Deserialization is the symmetric process of recreating the object or graph of objects from
the serialized representation. Different versions of a class can write and read compatible
streams.

Revision 1.43
JDK™ 1.2,   November 30, 1998



Copyright 1996, 1997 , 1998 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.
All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

Sun Microsystems, Inc. (SUN) hereby grants to you a fully-paid, nonexclusive, nontransferable, perpetual,
worldwide limited license (without the right to sublicense) under SUN's intellectual property rights that are
essential to practice this specification. This license allows and is limited to the creation and distribution of clean
room implementations of this specification that (i) include a complete implementation of the current version of
this specification without subsetting or supersetting, (ii) implement all the interfaces and functionality of the
standard java.* packages as defined by SUN, without subsetting or supersetting, (iii) do not add any additional
packages, classes or methods to the java.* packages (iv) pass all test suites relating to the most recent published
version of this specification that are available from SUN six (6) months prior to any beta release of the clean
room implementation or upgrade thereto, (v) do not derive from SUN source code or binary materials, and (vi)
do not include any SUN binary materials without an appropriate and separate license from SUN.
RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87)
and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1(a).

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, JavaBeans, JDK, Java, HotJava, the Java Coffee Cup logo, Java Work-
Shop, Visual Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS, SNM, SunNet Man-
ager, Solaris sunburst design, Solstice, SunCore, SolarNet, SunWeb, Sun Workstation, The Network Is The
Computer, ToolTalk, Ultra, Ultracomputing, Ultraserver, Where The Network Is Going, Sun WorkShop,
XView, Java WorkShop, the Java Coffee Cup logo, and Visual Java are trademarks or registered trademarks of
Sun Microsystems, Inc. in the United States and other countries.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through
X/Open Company, Ltd. OPEN LOOK® is a registered trademark of Novell, Inc.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC Interna-
tional, Inc. in the United States and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYS-
TEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

For further information on Intellectual Property matters contact Sun Legal Department:

      Trademarks, Jan O'Dell at 415-786-8191
      Patents at 415-336-0069



Page iii

Table ofContents

1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Writing to an Object Stream  . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Reading from an Object Stream  . . . . . . . . . . . . . . . . . . . . . 3

1.4 Object Streams as Containers  . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Defining Serializable Fields for a Class . . . . . . . . . . . . . . . 4

1.6 Documenting Serializable Fields and Data for a Class  . . 5

1.7 Accessing Serializable Fields of a Class . . . . . . . . . . . . . . . 6

1.8 The ObjectOutput Interface. . . . . . . . . . . . . . . . . . . . . . . . . 7

1.9 The ObjectInput Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.10 The Serializable Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.11 The Externalizable Interface . . . . . . . . . . . . . . . . . . . . . . . . 9

1.12 Protecting Sensitive Information  . . . . . . . . . . . . . . . . . . . . 10

2 Object Output Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 The ObjectOutputStream Class. . . . . . . . . . . . . . . . . . . . . . 13



Page iv Java™ Object Serialization Specification—JDK™ 1.2, November 30, 1998

2.2 The ObjectOutputStream.PutField Class . . . . . . . . . . . . . . 20

2.3 The writeObject Method  . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 The writeExternal Method. . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 The writeReplace Method . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 The useProtocolVersion Method. . . . . . . . . . . . . . . . . . . . . 22

3 Object Input Classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 The ObjectInputStream Class . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 The ObjectInputStream.GetField Class  . . . . . . . . . . . . . . . 31

3.3 The ObjectInputValidation Interface  . . . . . . . . . . . . . . . . . 31

3.4 The readObject Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 The readExternal Method . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 The readResolve Method. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Class Descriptors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 The ObjectStreamClass Class  . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 The ObjectStreamField Class. . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Inspecting Serializable Classes . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Stream Unique Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Versioning of Serializable Objects  . . . . . . . . . . . . . . . . . . . . . . 41

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Goals  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.4 Who’s Responsible for Versioning of Streams  . . . . . . . . . 43

5.5 Compatible Java™ Type Evolution  . . . . . . . . . . . . . . . . . . 44

5.6 Type Changes Affecting Serialization  . . . . . . . . . . . . . . . . 45



Table of Contents Page v

6 Object Serialization Stream Protocol  . . . . . . . . . . . . . . . . . . . . 49

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 Stream Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.3 Stream Protocol Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.4 Grammar for the Stream Format  . . . . . . . . . . . . . . . . . . . . 52

A Security in Object Serialization . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.2 Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A.3 Using transient to Protect Important System Resources . 60

A.4 Writing Class-Specific Serializing Methods  . . . . . . . . . . . 60

A.5 Encrypting a Bytestream . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

B Exceptions In Object Serialization. . . . . . . . . . . . . . . . . . . . . . . 63

C Example of Serializable Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 65

C.1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example Alternate Implementation of java.io.File. . . . . . 65



Page vi Java™ Object Serialization Specification—JDK™ 1.2, November 30, 1998



Page vii

ChangeHistory

Sept. 30, 1998 Updates for JDK™ 1.2 Beta4 RC1

• Documentation corrections only.

June 22, 1998 Updates for JDK™ 1.2 Beta4

• Eliminated JDK™ 1.2java.io interfaces,Replaceable andResolvable .
References to either of these classes as an interface should be replaced with
java.io.Serializable . Serialization will use reflection to invoke the
methods,writeReplace andreadResolve , if the Serializable class defines
these methods. See Section 2.5, “The writeReplace Method” and Section 3.6, “The
readResolve Method.”

• New javadoc tags@serial , @serialField , and@serialData provide a way
to document the Serialized Form of a Serializable class. Javadoc generates a
serialization specification based on the contents of these tags. See Section 1.6,
“Documenting Serializable Fields and Data for a Class.”

• Special Serializable class member,serialPersistentFields , must be declared
private. See Section 1.5, “Defining Serializable Fields for a Class.”

• Clarified the steps involved in computing theserialVersionUID in Section 4.4,
“Stream Unique Identifiers.”



Page viii Java™ Object Serialization Specification— JDK™ 1.2, November 30, 1998

Feb. 6, 1998 Updates for JDK™ 1.2 Beta 3

• Introduced the concept of STREAM_PROTOCOL versions. Added the
STREAM_PROTOCOL_2version to indicate a new format forExternalizable
objects that enable skipping by anExternalizable object within the stream,
even when the object’s class is not available in the local Virtual Machine.
Compatibility issues are discussed in Section 6.3, “Stream Protocol Versions.”

• The ObjectInputStream.resolveClass method can return a local class in a
different package than the name of the class within the stream. This capability
enables renaming of packages between releases. TheserialVersionUID and the
base class name must be the same in the stream and in the local version of the class.
See Section 3.1, “The ObjectInputStream Class.”

• Allow substitution ofString or array objects when writing them to or reading
them from the stream. See Section 2.1, “The ObjectOutputStream Class” and
Section 3.1, “The ObjectInputStream Class.”

Sept. 4, 1997 Updates for JDK™ 1.2 Beta1

• Separated theReplaceable interface into two interfaces:Replaceable and
Resolvable . TheReplaceable interface allows a class to nominate its own
replacement just before serializing the object to the stream. TheResolvable
interface allows a class to nominate its own replacement when reading an object
from the stream.

• Modified serialization to use the JDK™ 1.2 security model. There is a check for
SerializablePermission “enableSubstitution” within the
ObjectInputStream.enableReplace and
ObjectOutputStream.enableResolve methods. See Section 2.1, “The
ObjectOutputStream Class” and Section 3.1, “The ObjectInputStream Class.”

• UpdatedwriteObject ’s exception handler to write handledIOException s into
the stream. See Section 2.1, “The ObjectOutputStream Class.”



Change History Page ix

July 3, 1997 Updates for JDK™ 1.2 Alpha

• Documented the requirements for specifying the serialized state of classes. See
Section 1.5, “Defining Serializable Fields for a Class.”

• Added the Serializable Fields API to allow classes more flexibility in accessing the
serialized fields of a class. The stream protocol is unchanged. See Section 1.7,
“Accessing Serializable Fields of a Class,” Section 2.2, “The
ObjectOutputStream.PutField Class,” and Section 3.2, “The
ObjectInputStream.GetField Class.”

• Clarified that field descriptors and data are written to and read from the stream in
canonical order. See Section 4.1, “The ObjectStreamClass Class.”



Page x Java™ Object Serialization Specification— JDK™ 1.2, November 30, 1998



Page 1

SystemArchitecture 1

Topics:

• Overview
• Writing to an Object Stream
• Reading from an Object Stream
• Object Streams as Containers
• Defining Serializable Fields for a Class
• Documenting Serializable Fields and Data for a Class
• Accessing Serializable Fields of a Class
• The ObjectOutput Interface
• The ObjectInput Interface
• The Serializable Interface
• The Externalizable Interface
• Protecting Sensitive Information

1.1 Overview

The ability to store and retrieve Java™ objects is essential to building all but the most
transient applications. The key to storing and retrieving objects in a serialized form is
representing the state of objects sufficient to reconstruct the object(s). Objects to be
saved in the stream may support either theSerializable or theExternalizable
interface. For Java™ objects, the serialized form must be able to identify and verify the
Java™ class from which the contents of the object were saved and to restore the
contents to a new instance. For serializable objects, the stream includes sufficient



Page 2 Java™ Object Serialization Specification— JDK™ 1.2, November 30, 1998

1

information to restore the fields in the stream to a compatible version of the class. For
Externalizable objects, the class is solely responsible for the external format of its
contents.

Objects to be stored and retrieved frequently refer to other objects. Those other objects
must be stored and retrieved at the same time to maintain the relationships between the
objects. When an object is stored, all of the objects that are reachable from that object
are stored as well.

The goals for serializing Java™ objects are to:

• Have a simple yet extensible mechanism.

• Maintain the Java™ object type and safety properties in the serialized form.

• Be extensible to support marshaling and unmarshaling as needed for remote objects.

• Be extensible to support simple persistence of Java™ objects.

• Require per class implementation only for customization.

• Allow the object to define its external format.

1.2 Writing to an Object Stream

Writing objects and primitives to a stream is a straightforward process. For example:

// Serialize today’s date to a file.
    FileOutputStream f = new FileOutputStream("tmp");
    ObjectOutpu t s = new ObjectOutputStream(f);
    s.writeObject("Today");
    s.writeObject(new Date());
    s.flush();

First anOutputStream , in this case aFileOutputStream , is needed to receive the
bytes. Then anObjectOutputStream is created that writes to the
FileOutputStream . Next, the string “Today” and a Date object are written to the
stream. More generally, objects are written with thewriteObject method and
primitives are written to the stream with the methods ofDataOutput .

ThewriteObject method (see Section 2.3, “The writeObject Method”) serializes the
specified object and traverses its references to other objects in the object graph
recursively to create a complete serialized representation of the graph. Within a stream,
the first reference to any object results in the object being serialized or externalized
and the assignment of a handle for that object. Subsequent references to that object are



Chapter 1:System Architecture Page 3

1

encoded as the handle. Using object handles preserves sharing and circular references
that occur naturally in object graphs. Subsequent references to an object use only the
handle allowing a very compact representation.

Special handling is required for objects of typeClass , ObjectStreamClass ,
String , and arrays. Other objects must implement either theSerializable or the
Externalizable interface to be saved in or restored from a stream.

Primitive data types are written to the stream with the methods in theDataOutput
interface, such aswriteInt , writeFloat , or writeUTF . Individual bytes and arrays
of bytes are written with the methods ofOutputStream . Except for serializable
fields, primitive data is written to the stream in block-data records, with each record
prefixed by a marker and an indication of the number of bytes in the record.

ObjectOutputStream can be extended to customize the information about classes in
the stream or to replace objects to be serialized. Refer to theannotateClass and
replaceObject method descriptions for details.

1.3 Reading from an Object Stream

Reading an object from a stream, like writing, is straightforward:

// Deserialize a string and date from a file.
    FileInputStream in = new FileInputStream(“tmp”);
    ObjectInputStream s = new ObjectInputStream(in);
    String today = (String)s.readObject();
    Date date = (Date)s.readObject();

First anInputStream , in this case aFileInputStream , is needed as the source
stream. Then anObjectInputStream is created that reads from theInputStream .
Next, the string “Today” and a Date object are read from the stream. Generally, objects
are read with thereadObject method and primitives are read from the stream with
the methods ofDataInput .

The readObject method deserializes the next object in the stream and traverses its
references to other objects recursively to create the complete graph of objects
serialized.

Primitive data types are read from the stream with the methods in theDataInput
interface, such asreadInt , readFloat , or readUTF . Individual bytes and arrays of
bytes are read with the methods ofInputStream . Except for serializable fields,
primitive data is read from block-data records.



Page 4 Java™ Object Serialization Specification— JDK™ 1.2, November 30, 1998

1

ObjectInputStream can be extended to utilize customized information in the
stream about classes or to replace objects that have been deserialized. Refer to the
resolveClass and resolveObject method descriptions for details.

1.4 Object Streams as Containers

Object Serialization produces and consumes a stream of bytes that contain one or more
primitives and objects. The objects written to the stream, in turn, refer to other objects,
which are also represented in the stream. Object Serialization produces just one stream
format that encodes and stores the contained objects.

Each object that acts as a container implements an interface which allows primitives
and objects to be stored in or retrieved from it. These interfaces are the
ObjectOutput andObjectInput interfaces which:

• Provide a stream to write to and to read from

• Handle requests to write primitive types and objects to the stream

• Handle requests to read primitive types and objects from the stream

Each object which is to be stored in a stream must explicitly allow itself to be stored
and must implement the protocols needed to save and restore its state. Object
Serialization defines two such protocols. The protocols allow the container to ask the
object to write and read its state.

To be stored in an Object Stream, each object must implement either the
Serializable or theExternalizable interface:

• For aSerializable class, Object Serialization can automatically save and
restore fields of each class of an object and automatically handle classes that evolve
by adding fields or supertypes. A serializable class can declare which of its fields
are saved or restored, and write and read optional values and objects.

• For anExternalizable class, Object Serialization delegates to the class
complete control over its external format and how the state of the supertype(s) is
saved and restored.

1.5 Defining Serializable Fields for a Class

The serializable fields of a class can be defined two different ways. Default serializable
fields of a class are defined to be the non-transient and non-static fields. This default
computation can be overridden by declaring a special field in theSerializable



Chapter 1:System Architecture Page 5

1

class,serialPersistentFields . This field must be initialized with an array of
ObjectStreamField objects that list the names and types of the serializable fields.
The modifiers for the field are required to be private, static, and final.

For example, the following declaration duplicates the default behavior.

class List implements Serializable {
    List next;

private static final ObjectStreamField[] serialPersistentFields
                 = {new ObjectStreamField(“next”, List.class)};

}

By usingserialPersistentFields to define the Serializable fields for a class,
there no longer is a limitation that a serializable field must be a field within the current
definition of theSerializable class. ThewriteObject andreadObject
methods of theSerializable class can map the current implementation of the class
to the serializable fields of the class using the interface that is described in Section 1.7,
“Accessing Serializable Fields of a Class.” Therefore, the fields for aSerializable
class can change in a later release, as long as it maintains the mapping back to its
Serializable fields that must remain compatible across release boundaries.

1.6 Documenting Serializable Fields and Data for a Class

It is important to document the serializable state of a class to enable interoperability
with alternative implementations of a Serializable class and to document class
evolution. Documenting a serializable field gives one a final opportunity to review
whether or not the field should be serializable. The serialization javadoc tags,
@serial , @serialField , and@serialData , provide a way to document the
serialized form for a Serializable class within the source code.

• The @serial tag should be placed in the javadoc comment for a default
serializable field. The syntax is as follows:

@serial field-description

The optionalfield-descriptiondescribes the meaning of the field and its acceptable
values. Thefield-descriptioncan span multiple lines. When a field is added after the
initial release, a@since tag indicates the version the field was added. Thefield-
descriptionfor @serial provides serialization-specific documentation and is
appended to the javadoc comment for the field within the serialized form
documentation.



Page 6 Java™ Object Serialization Specification— JDK™ 1.2, November 30, 1998

1

• The@serialField tag is used to document anObjectStreamField component
of a serialPersistentFields array. One of these tags should be used for each
ObjectStreamField component. The syntax is as follows:

@serialField field-name field-type field-description

• The @serialData tag describes the sequences and types of data written or read.
The tag describes the sequence and type of optional data written bywriteObject
or all data written by theExternalizable.writeExternal method. The
syntax is as follows:

@serialData data-description

The javadoc application recognizes the serialization javadoc tags and generates a
specification for each Serializable and Externalizable class. See Section C.1, “Example
Alternate Implementation of java.io.File” for an example that uses these tags.

When a class is declared Serializable, the serializable state of the object is defined by
serializable fields (by name and type) plus optional data. Optional data can only be
written explicitly by thewriteObject method of aSerializable class. Optional
data can be read by theSerializable class’readObject method or serialization
will skip unread optional data.

When a class is declared Externalizable, the data that is written to the stream by the
class itself defines the serialized state. The class must specify the order, types, and
meaning of each datum that is written to the stream. The class must handle its own
evolution, so that it can continue to read data written by and write data that can be read
by previous versions. The class must coordinate with the superclass when saving and
restoring data. The location of the superclasses data in the stream must be specified.

The designer of a Serializable class must ensure that the information saved for the
class is appropriate for persistence and follows the serialization-specified rules for
interoperability and evolution. Class evolution is explained in greater detail in
Chapter 5, “Versioning of Serializable Objects.”

1.7 Accessing Serializable Fields of a Class

Serialization provides two mechanisms for accessing the serializable fields in a stream:

• The default mechanism requires no customization

• The Serializable Fields API allows a class to explicitly access/set the serializable
fields by name and type



Chapter 1:System Architecture Page 7

1

The default mechanism is used automatically when reading or writing objects that
implement theSerializable interface and do no further customization. The
serializable fields are mapped to the corresponding fields of the class and values are
either written to the stream from those fields or are read in and assigned respectively.
If the class provideswriteObject andreadObject methods, the default
mechanism can be invoked by callingdefaultWriteObject and
defaultReadObject . When thewriteObject andreadObject methods are
implemented, the class has an opportunity to modify the serializable field values before
they are written or after they are read.

When the default mechanism cannot be used, the serializable class can use the
putFields method ofObjectOutputStream to put the values for the serializable
fields into the stream. ThewriteFields method ofObjectOutputStream puts the
values in the correct order, then writes them to the stream using the existing protocol
for serialization. Correspondingly, thereadFields method of
ObjectInputStream reads the values from the stream and makes them available to
the class by name in any order. See Section 2.2, “The ObjectOutputStream.PutField
Class” and Section 3.2, “The ObjectInputStream.GetField Class.” for a detailed
description of the Serializable Fields API.

1.8 The ObjectOutput Interface

The ObjectOutput interface provides an abstract, stream-based interface to object
storage. It extends theDataOutput interface so those methods can be used for writing
primitive data types. Objects that implement this interface can be used to store
primitives and objects.

package java.io;

public interface ObjectOutput extends DataOutput
{
    public void writeObject(Object obj) throws IOException;
    public void write(int b) throws IOException;
    public void write(byte b[]) throws IOException;

public void write(byte b[], int off, int len) throws IOException;
    public void flush() throws IOException;
    public void close() throws IOException;
}

The writeObject method is used to write an object. The exceptions thrown reflect
errors while accessing the object or its fields, or exceptions that occur in writing to
storage. If any exception is thrown, the underlying storage may be corrupted. If this
occurs, refer to the object that is implementing this interface for more information.



Page 8 Java™ Object Serialization Specification— JDK™ 1.2, November 30, 1998

1

1.9 The ObjectInput Interface

The ObjectInput interface provides an abstract stream based interface to object
retrieval. It extends theDataInput interface so those methods for reading primitive
data types are accessible in this interface.

package java.io;

public interface ObjectInput extends DataInput
{
    public Object readObject()
        throws ClassNotFoundException, IOException;
    public int read() throws IOException;
    public int read(byte b[]) throws IOException;

public int read(byte b[], int off, int len) throws IOException;
    public long skip(long n) throws IOException;
    public int available() throws IOException;
    public void close() throws IOException;
}

The readObject method is used to read and return an object. The exceptions thrown
reflect errors while accessing the objects or its fields or exceptions that occur in
reading from the storage. If any exception is thrown, the underlying storage may be
corrupted. If this occurs, refer to the object implementing this interface for additional
information.

1.10 The Serializable Interface

Object Serialization produces a stream with information about the Java™ classes for
the objects which are being saved. For serializable objects, sufficient information is
kept to restore those objects even if a different (but compatible) version of the
implementation of the class is present. TheSerializable interface is defined to
identify classes which implement the serializable protocol:

package java.io;

public interface Serializable {};

A Serializable class must do the following:

• Implement thejava.io.Serializable interface

• Identify the fields that should be serializable

(Use theserialPersistentFields member to explicitly declare them
serializable or use the transient keyword to denote nonserializable fields.)



Chapter 1:System Architecture Page 9

1

• Have access to the no-arg constructor of its first nonserializable superclass

The class can optionally define the following methods:

• A writeObject method to control what information is saved or to append
additional information to the stream

• A readObject method either to read the information written by the corresponding
writeObject method or to update the state of the object after it has been restored

• A writeReplace method to allow a class to nominate a replacement object to be
written to the stream

(See Section 2.5, “The writeReplace Method” for additional information.)

• A readResolve method to allow a class to designate a replacement object for the
object just read from the stream

(See Section 3.6, “The readResolve Method” for additional information.)

ObjectOutputStream andObjectInputStream allow the serializable classes on
which they operate to evolve (allow changes to the classes that are compatible with the
earlier versions of the classes). See Section 5.5, “Compatible Java™ Type Evolution”
for information about the mechanism which is used to allow compatible changes.

1.11 The Externalizable Interface

For Externalizable objects, only the identity of the class of the object is saved by the
container; the class must save and restore the contents. TheExternalizable
interface is defined as follows:

package java.io;

public interface Externalizable extends Serializable
{
    public void writeExternal(ObjectOutput out)
        throws IOException;

    public void readExternal(ObjectInput in)
        throws IOException, java.lang.ClassNotFoundException;
}

The class of an Externalizable object must do the following:

• Implement thejava.io.Externalizable interface

• Implement awriteExternal method to save the state of the object



Page 10 Java™ Object Serialization Specification— JDK™ 1.2, November 30, 1998

1

(It must explicitly coordinate with its supertype to save its state.)

• Implement areadExternal method to read the data written by the
writeExternal method from the stream and restore the state of the object

(It must explicitly coordinate with the supertype to save its state.)

• Have thewriteExternal andreadExternal methods be solely responsible for
the format, if an externally defined format is written

• Have a public no-arg constructor

Note – The writeExternal and readExternal methods are public and raise the
risk that a client may be able to write or read information in the object other than by
using its methods and fields. These methods must be used only when the information
held by the object is not sensitive or when exposing it does not present a security risk.

An Externalizable class can optionally define the following methods:

• A writeReplace method to allow a class to nominate a replacement object to be
written to the stream

(See Section 2.5, “The writeReplace Method” for additional information.)

• A readResolve method to allow a class to designate a replacement object for the
object just read from the stream

(See Section 3.6, “The readResolve Method” for additional information.)

1.12 Protecting Sensitive Information

When developing a class that provides controlled access to resources, care must be
taken to protect sensitive information and functions. During deserialization, the private
state of the object is restored. For example, a file descriptor contains a handle that
provides access to an operating system resource. Being able to forge a file descriptor
would allow some forms of illegal access, since restoring state is done from a stream.
Therefore, the serializing runtime must take the conservative approach and not trust the
stream to contain only valid representations of objects. To avoid compromising a class,
the sensitive state of an object must not be restored from the stream, or it must be
reverified by the class. Several techniques are available to protect sensitive data in
classes.

The easiest technique is to mark fields that contain sensitive data asprivate
transient . Transient fields are not persistent and will not be saved by any
persistence mechanism. Marking the field will prevent the state from appearing in the



Chapter 1:System Architecture Page 11

1

stream and from being restored during deserialization. Since writing and reading (of
private fields) cannot be superseded outside of the class, the transient fields of the class
are safe.

Particularly sensitive classes should not be serialized at all. To accomplish this, the
object should not implement either theSerializable or theExternalizable
interface.

Some classes may find it beneficial to allow writing and reading but specifically handle
and revalidate the state as it is deserialized. The class should implement
writeObject and readObject methods to save and restore only the appropriate
state. If access should be denied, throwing aNotSerializableException will
prevent further access.



Page 12 Java™ Object Serialization Specification— JDK™ 1.2, November 30, 1998

1



Page 13

ObjectOutputClasses 2

Topics:

• The ObjectOutputStream Class
• The ObjectOutputStream.PutField Class
• The writeObject Method
• The writeExternal Method
• The writeReplace Method
• The useProtocolVersion Method

2.1 The ObjectOutputStream Class

ClassObjectOutputStream implements object serialization. It maintains the state
of the stream including the set of objects already serialized. Its methods control the
traversal of objects to be serialized to save the specified objects and the objects to
which they refer.

package java.io;

public class ObjectOutputStream
    extends OutputStream
    implements ObjectOutput, ObjectStreamConstants
{
    public ObjectOutputStream(OutputStream out)
        throws IOException;

    public final void writeObject(Object obj)
        throws IOException;



Page 14 Java™ Object Serialization Specification— JDK™ 1.2, November 30, 1998

2

    public void defaultWriteObject();
        throws IOException, NotActiveException;

    public PutField putFields()
        throws IOException;

    public writeFields()
        throws IOException;

    public void reset() throws IOException;

    protected void annotateClass(Class cl) throws IOException;

    protected Object replaceObject(Object obj) throws IOException;

    protected boolean enableReplaceObject(boolean enable)
        throws SecurityException;

    protected void writeStreamHeader() throws IOException;

    public void write(int data) throws IOException;

    public void write(byte b[]) throws IOException;

public void write(byte b[], int off, int len) throws IOException;

    public void flush() throws IOException;

    protected void drain() throws IOException;

    public void close() throws IOException;

    public void writeBoolean(boolean data) throws IOException;

    public void writeByte(int data) throws IOException;

    public void writeShort(int data) throws IOException;

    public void writeChar(int data) throws IOException;

    public void writeInt(int data) throws IOException;

    public void writeLong(long data) throws IOException;

    public void writeFloat(float data) throws IOException;



Chapter 2: Object Output Classes Page 15

2

    public void writeDouble(double data) throws IOException;

    public void writeBytes(String data) throws IOException;

    public void writeChars(String data) throws IOException;

    public void writeUTF(String data) throws IOException;

    // Inner class to provide access to serializable fields.
    abstract static public class PutField
    {
        public void put(String name, boolean value)
            throws IOException, IllegalArgumentException;

        public void put(String name, char data)
            throws IOException, IllegalArgumentException;

        public void put(String name, byte data)
            throws IOException, IllegalArgumentException;

        public void put(String name, short data)
            throws IOException, IllegalArgumentException;

        public void put(String name, int data)
            throws IOException, IllegalArgumentException;

        public void put(String name, long data)
            throws IOException, IllegalArgumentException;

        public void put(String name, float data)
            throws IOException, IllegalArgumentException;

        public void put(String name, double data)
            throws IOException, IllegalArgumentException;

        public void put(String name, Object data)
            throws IOException, IllegalArgumentException;
    }

public void useProtocolVersion(int version) throws IOException;

    protected ObjectOutputStream()
        throws IOException;



Page 16 Java™ Object Serialization Specification— JDK™ 1.2, November 30, 1998

2

     protected writeObjectOverride()
        throws NotActiveException, IOException;
}

TheObjectOutputStream constructor requires anOutputStream . The constructor
calls writeStreamHeader to write a magic number and version to the stream, that
will be read and verified by the correspondingreadStreamHeader in the
ObjectInputStream constructor.

The writeObject method is used to serialize an object to the stream. An object is
serialized as follows:

1. If a subclass is overriding the implementation, call the
writeObjectOverride method and return. Overriding the implementation is
described at the end of this section.

2. If there is data in the block-data buffer, the data is written to the stream and
the buffer is reset.

3. If the object is null, null is put in the stream and writeObject returns.

4. If the object has been previously replaced, as described in Step 8, write the
handle of the replacement to the stream andwriteObject returns.

5. If the object has already been written to the stream, its handle is written to the
stream and writeObject returns.

6. If the object is a Class , the correspondingObjectStreamClass is written to
the stream, a handle is assigned for the class, andwriteObject returns.

7. If the object is an ObjectStreamClass , a descriptor for the class is written to
the stream including its name,serialVersionUID , and the list of fields by
name and type. A handle is assigned for the descriptor. TheannotateClass
subclass method is called beforewriteObject returns.

8. Process potential substitutions by the class of the object and/or by a subclass of
ObjectInputStream .

a. If the class of an object defines the appropriatewriteReplace method, the
method is called. Optionally, it can return a substitute object to be
serialized.



Chapter 2: Object Output Classes Page 17

2

b. Then, if enabled by calling theenableReplaceObject method, the
replaceObject method is called to allow subclasses of
ObjectOutputStream to substitute for the object being serialized. If the
original object was replaced in the previous step, thereplaceObject
method is called with the replacement object.

If the original object was replaced by either one or both steps above, the mapping
from the original object to the replacement is recorded for later use in Step 4. Then,
Steps 3 through 7 are repeated on the new object.

If the replacement object is not one of the types covered by Steps 3 through 7,
processing resumes using the replacement object at Step 10.

9. If the object is a java.lang.String, the string is written in Universal
Transfer Format (UTF) format, a handle is assigned to the string, and
writeObject returns.

10. If the object is an array, writeObject is called recursively to write the
ObjectStreamClass of the array. The handle for the array is assigned. It is
followed by the length of the array. Each element of the array is then written to
the stream, after which writeObject returns.

11. For regular objects, theObjectStreamClass for the class of the object is
written by recursively calling writeObject . It will appear in the stream only
the first time it is referenced. A handle is assigned for this object.

12. The contents of the object is written to the stream.

a. If the object is serializable, the highest serializable class is located. For that
class, and each derived class, that class’s fields are written. If the class does
not have awriteObject method, thedefaultWriteObject method is
called to write the serializable fields to the stream. If the class does have a
writeObject method, it is called. It may call defaultWriteObject or
putFields and writeFields to save the state of the object, and then it
can write other information to the stream.

b. If the object is externalizable, thewriteExternal method of the object is
called.

c. If the object is neither serializable or externalizable, the
NotSerializableException is thrown.

Exceptions may occur during the traversal or may occur in the underlying stream. For
any subclass ofIOException , the exception is written to the stream using the
exception protocol and the stream state is discarded. If a secondIOException is



Page 18 Java™ Object Serialization Specification— JDK™ 1.2, November 30, 1998

2

thrown while attempting to write the first exception into the stream, the stream is left
in an unknown state andStreamCorruptedException is thrown from
writeObject . For other exceptions, the stream is aborted and left in an unknown and
unusable state.

The defaultWriteObject method implements the default serialization mechanism
for the current class. This method may be called only from a class’swriteObject
method. The method writes all of the serializable fields of the current class to the
stream. If called from outside thewriteObject method, the
NotActiveException is thrown.

TheputFields method returns aPutField object the caller uses to set the values of
the serializable fields in the stream. The fields may be set in any order. After all of the
fields have been set,writeFields must be called to write the field values in the
canonical order to the stream. If a field is not set, the default value appropriate for its
type will be written to the stream. This method may only be called from within the
writeObject method of a serializable class. It may not be called more than once or
if defaultWriteObject has been called. Only afterwriteFields has been called
can other data be written to the stream.

The reset method resets the stream state to be the same as if it had just been
constructed.Reset will discard the state of any objects already written to the stream.
The current point in the stream is marked as reset, so the corresponding
ObjectInputStream will reset at the same point. Objects previously written to the
stream will not be remembered as already having been written to the stream. They will
be written to the stream again. This is useful when the contents of an object or objects
must be sent again.Reset may not be called while objects are being serialized. If
called inappropriately, anIOException is thrown.

The annotateClass method is called while aClass is being serialized, and after
the class descriptor has been written to the stream. Subclasses may extend this method
and write other information to the stream about the class. This information must be
read by theresolveClass method in a correspondingObjectInputStream
subclass.

An ObjectOutputStream subclass can implement thereplaceObject method to
monitor or replace objects during serialization. Replacing objects must be enabled
explicitly by calling enableReplaceObject before callingwriteObject with the
first object to be replaced. Once enabled,replaceObject is called for each object
just prior to serializing the object for the first time. Note that thereplaceObject
method is not called for objects of the specially handled classes,Class and
ObjectStreamClass . An implementation of a subclass may return a substitute



Chapter 2: Object Output Classes Page 19

2

object that will be serialized instead of the original. The substitute object must be
serializable. All references in the stream to the original object will be replaced by the
substitute object.

When objects are being replaced, the subclass must ensure that the substituted object is
compatible with every field where the reference will be stored, or that a
complementary substitution will be made during deserialization. Objects, whose type is
not a subclass of the type of the field or array element, will later abort the
deserialization by raising aClassCastException and the reference will not be
stored.

The enableReplaceObject method can be called by trusted subclasses of
ObjectOutputStream to enable the substitution of one object for another during
serialization. Replacing objects is disabled untilenableReplaceObject is called
with a true value. It may thereafter be disabled by setting it tofalse . The previous
setting is returned. TheenableReplaceObject method checks that the stream
requesting the replacement can be trusted. To ensure that the private state of objects is
not unintentionally exposed, only trusted stream subclasses may usereplaceObject .
Trusted classes are those classes that belong to a security protection domain with
permission to enable Serializable substitution.

If the subclass ofObjectOutputStream is not considered part of the system
domain,SerializablePermission “enableSubstitution” must be added to
the security policy file.AccessControlException is thrown if the protection
domain of the subclass ofObjectInputStream does not have permission to
“enableSubstitution” by calling enableReplaceObject . See the document
Java™ Security Architecture (JDK1.2)for additional information about the security
model.

The writeStreamHeader method writes the magic number and version to the
stream. This information must be read by thereadStreamHeader method of
ObjectInputStream . Subclasses may need to implement this method to identify the
stream’s unique format.

The flush method is used to empty any buffers being held by the stream and to
forward the flush to the underlying stream. Thedrain method may be used by
subclassers to empty only theObjectOutputStream ’s buffers without forcing the
underlying stream to be flushed.

All of the write methods for primitive types encode their values using a
DataOutputStream to put them in the standard stream format. The bytes are
buffered into block data records so they can be distinguished from the encoding of



Page 20 Java™ Object Serialization Specification— JDK™ 1.2, November 30, 1998

2

objects. This buffering allows primitive data to be skipped if necessary for class
versioning. It also allows the stream to be parsed without invoking class-specific
methods.

To override the implementation of serialization, the subclass of
ObjectOutputStream should call the protected no-argObjectOutputStream ,
constructor. There is a security check within the no-arg constructor for
SerializablePermission “enableSubclassImplementation” to ensure
that only trusted classes are allowed to override the default implementation. This
constructor does not allocate any private data forObjectOutputStream and sets a
flag that indicates that the finalwriteObject method should invoke the
writeObjectOverride method and return. All otherObjectOutputStream
methods are not final and can be directly overridden by the subclass.

2.2 The ObjectOutputStream.PutField Class

ClassPutField provides the API for setting values of the serializable fields for a
class when the class does not use default serialization. Each method puts the specified
named value into the stream. I/O exceptions will be thrown if the underlying stream
throws an exception. AnIllegalArgumentException is thrown if the name does
not match the name of a field declared for this object’sObjectStreamClass or if the
type of the value does not match the declared type of the serializable field.

2.3 The writeObject Method

For serializable objects, thewriteObject method allows a class to control the
serialization of its own fields. Here is its signature:

    private void writeObject(ObjectOutputStream stream)
        throws IOException;

Each subclass of a serializable object may define its ownwriteObject method. If a
class does not implement the method, the default serialization provided by
defaultWriteObject will be used. When implemented, the class is only
responsible for having its own fields, not those of its supertypes or subtypes.

The class’swriteObject method, if implemented, is responsible for saving the state
of the class. ThedefaultWriteObject method should be called before writing any
optional data that will be needed by the correspondingreadObject method to restore
the state of the object. The responsibility for the format, structure, and versioning of
the optional data lies completely with the class.



Chapter 2: Object Output Classes Page 21

2

2.4 The writeExternal Method

Objects implementingjava.io.Externalizable must implement the
writeExternal method to save the entire state of the object. It must coordinate with
its superclasses to save their state. All of the methods ofObjectOutput are available
to save the object’s primitive typed fields and object fields.

    public void writeExternal(ObjectOutput stream)
        throws IOException;

A new default format for writing Externalizable data has been introduced in JDK™
1.2. The new format specifies that primitive data will be written in block data mode by
writeExternal methods. Additionally, a tag denoting the end of the External object
is appended to the stream after thewriteExternal method returns. The benefits of
this format change are discussed in Section 3.5, “The readExternal Method.”
Compatibility issues caused by this change are discussed in Section 2.6, “The
useProtocolVersion Method.”

2.5 The writeReplace Method

For Serializable and Externalizable classes, thewriteReplace method allows a class
of an object to nominate its own replacement in the stream before the object is written.
By implementing thewriteReplace method, a class can directly control the types
and instances of its own instances being serialized.

The method is defined as follows:

ANY-ACCESS-MODIFIER Object writeReplace() {
 throws ObjectStreamException;

The writeReplace method is called whenObjectOutputStream is preparing to
write the object to the stream. TheObjectOutputStream checks whether the class
defines thewriteReplace method. If the method is defined, thewriteReplace
method is called to allow the object to designate its replacement in the stream. The
object returned should be either of the same type as the object passed in or an object
that when read and resolved will result in an object of a type that is compatible with all
references to the object. If it is not, aClassCastException will occur when the
type mismatch is discovered.



Page 22 Java™ Object Serialization Specification— JDK™ 1.2, November 30, 1998

2

2.6 The useProtocolVersion Method

Due to a stream protocol change that was not backwards compatible, a mechanism has
been added to enable the current Virtual Machine to write a serialization stream that is
readable by a previous release. Of course, the problems that are corrected by the new
stream format will exist when using the backwards compatible protocol.

Stream protocol versions are discussed in Section 6.3, “Stream Protocol Versions.”



Page 23

Object InputClasses 3

Topics:

• The ObjectInputStream Class
• The ObjectInputStream.GetField Class
• The ObjectInputValidation Interface
• The readObject Method
• The readExternal Method
• The readResolve Method

3.1 The ObjectInputStream Class

ClassObjectInputStream implements object deserialization. It maintains the state
of the stream including the set of objects already deserialized. Its methods allow
primitive types and objects to be read from a stream written by
ObjectOutputStream . It manages restoration of the object and the objects that it
refers to from the stream.

package java.io;

public class ObjectInputStream
    extends InputStream
    implements ObjectInput, ObjectStreamConstants
{
    public ObjectInputStream(InputStream in)
        throws StreamCorruptedException, IOException;



Page 24 Java™ Object Serialization Specification— JDK™ 1.2, November 30, 1998

3

    public final Object readObject()
        throws OptionalDataException, ClassNotFoundException,
            IOException;

    public void defaultReadObject()
        throws IOException, ClassNotFoundException,
            NotActiveException;

    public GetField readFields()
        throws IOException;

    public synchronized void registerValidation(
        ObjectInputValidation obj, int prio)
        throws NotActiveException, InvalidObjectException;

    protected Class resolveClass(ObjectStreamClass v)
        throws IOException, ClassNotFoundException;

    protected Object resolveObject(Object obj)
        throws IOException;

    protected boolean enableResolveObject(boolean enable)
        throws SecurityException;

    protected void readStreamHeader()
        throws IOException, StreamCorruptedException;

    public int read() throws IOException;

    public int read(byte[] data, int offset, int length)
        throws IOException

    public int available() throws IOException;

    public void close() throws IOException;

    public boolean readBoolean() throws IOException;

    public byte readByte() throws IOException;

    public int readUnsignedByte() throws IOException;

    public short readShort() throws IOException;

    public int readUnsignedShort() throws IOException;



Chapter 3:Object Input Classes Page 25

3

    public char readChar() throws IOException;

    public int readInt() throws IOException;

    public long readLong() throws IOException;

    public float readFloat() throws IOException;

    public double readDouble() throws IOException;

    public void readFully(byte[] data) throws IOException;

    public void readFully(byte[] data, int offset, int size)
        throws IOException;

    public int skipBytes(int len) throws IOException;

    public String readLine() throws IOException;

    public String readUTF() throws IOException;

    // Class to provide access to serializable fields.
    static abstract public class GetField
    {
        public ObjectStreamClass getObjectStreamClass();

        public boolean defaulted(String name)
            throws IOException, IllegalArgumentException;

        public char get(String name, char default)
            throws IOException, IllegalArgumentException;

        public boolean get(String name, boolean default)
            throws IOException, IllegalArgumentException;

        public byte get(String name, byte default)
            throws IOException, IllegalArgumentException;

        public short get(String name, short default)
            throws IOException, IllegalArgumentException;

        public int get(String name, int default)
            throws IOException, IllegalArgumentException;

        public long get(String name, long default)
            throws IOException, IllegalArgumentException;



Page 26 Java™ Object Serialization Specification— JDK™ 1.2, November 30, 1998

3

        public float get(String name, float default)
            throws IOException, IllegalArgumentException;

        public double get(String name, double default)
            throws IOException, IllegalArgumentException;

        public Object get(String name, Object default)
            throws IOException, IllegalArgumentException;
    }

    protected ObjectInputStream()
        throws StreamCorruptedException, IOException;

    protected readObjectOverride()
        throws OptionalDataException, ClassNotFoundException,
            IOException;
}

The ObjectInputStream constructor requires anInputStream . The constructor
calls readStreamHeader to read and verifies the header and version written by the
correspondingObjectOutputStream.writeStreamHeader method.

The readObject method is used to deserialize an object from the stream. It reads
from the stream to reconstruct an object.

1. If the ObjectInputStream subclass is overriding the implementation,
call the readObjectOverride method and return. Reimplementation is
described at the end of this section.

2. If a block data record occurs in the stream, throw aBlockDataException
with the number of available bytes.

3. If the object in the stream is null, return null.

4. If the object in the stream is a handle to a previous object, return the object.

5. If the object in the stream is aClass , read its ObjectStreamClass
descriptor, add it and its handle to the set of known objects, and return the
corresponding Class object.



Chapter 3:Object Input Classes Page 27

3

6. If the object in the stream is anObjectStreamClass , read its name,
serialVersionUID , and fields. Add it and its handle to the set of known
objects. Call theresolveClass method on the stream to get the local class for
this descriptor, and throw an exception if the class cannot be found. Return the
ObjectStreamClass object.

7. If the object in the stream is a String, read its UTF encoding, add it and its
handle to the set of known objects, and proceed to Step 11.

8. If the object in the stream is an array, read itsObjectStreamClass and the
length of the array. Allocate the array, and add it and its handle in the set of
known objects. Read each element using the appropriate method for its type
and assign it to the array. Proceed to Step 11.

9. For all other objects, theObjectStreamClass of the object is read from the
stream. The local class for thatObjectStreamClass is retrieved. The class
must be serializable or externalizable.

10. An instance of the class is allocated. The instance and its handle are added to
the set of known objects. The contents restored appropriately:

a. For serializable objects, the no-arg constructor for the first non-serializable
supertype is run. For serializable classes, the fields are initialized to the
default value appropriate for its type. Then the fields of each class are
restored by calling class-specificreadObject methods, or if these are not
defined, by calling thedefaultReadObject method. Note that field
initializers and constructors are not executed for serializable classes during
deserialization. In the normal case, the version of the class that wrote the
stream will be the same as the class reading the stream. In this case, all of
the supertypes of the object in the stream will match the supertypes in the
currently-loaded class. If the version of the class that wrote the stream had
different supertypes than the loaded class, theObjectInputStream must
be more careful about restoring or initializing the state of the differing
classes. It must step through the classes, matching the available data in the
stream with the classes of the object being restored. Data for classes that
occur in the stream, but do not occur in the object, is discarded. For classes
that occur in the object, but not in the stream, the class fields are set to
default values by default serialization.

b. For externalizable objects, the no-arg constructor for the class is run and
then the readExternal method is called to restore the contents of the
object.



Page 28 Java™ Object Serialization Specification— JDK™ 1.2, November 30, 1998

3

11. Process potential substitutions by the class of the object and/or by a subclass of
ObjectInputStream :

a. If the class of the object defines the appropriatereadResolve method, the
method is called to allow the object to replace itself.

b. Then if previously enabled byenableResolveObject, the
resolveObject method is called to allow subclasses of the stream to
examine and replace the object. If the previous step did replace the original
object, the resolveObject method is called with the replacement object.

If a replacement took place, the table of known objects is updated so the
replacement object is associated with the handle. The replacement object is then
returned fromreadObject .

All of the methods for reading primitives types only consume bytes from the block
data records in the stream. If a read for primitive data occurs when the next item in the
stream is an object, the read methods return-1 or theEOFException as appropriate.
The value of a primitive type is read by aDataInputStream from the block data
record.

The exceptions thrown reflect errors during the traversal or exceptions that occur on
the underlying stream. If any exception is thrown, the underlying stream is left in an
unknown and unusable state.

When the reset token occurs in the stream, all of the state of the stream is discarded.
The set of known objects is cleared.

When the exception token occurs in the stream, the exception is read and a new
WriteAbortedException is thrown with the terminating exception as an
argument. The stream context is reset as described earlier.

The defaultReadObject method is used to read the fields and object from the
stream. It uses the class descriptor in the stream to read the fields in the canonical
order by name and type from the stream. The values are assigned to the matching fields
by name in the current class. Details of the versioning mechanism can be found in
Section 5.5, “Compatible Java™ Type Evolution.” Any field of the object that does not
appear in the stream is set to its default value. Values that appear in the stream, but not
in the object, are discarded. This occurs primarily when a later version of a class has
written additional fields that do not occur in the earlier version. This method may only
be called from thereadObject method while restoring the fields of a class. When
called at any other time, theNotActiveException is thrown.



Chapter 3:Object Input Classes Page 29

3

The readFields method reads the values of the serializable fields from the stream
and makes them available via theGetField class. ThereadFields method is only
callable from within thereadObject method of a serializable class. It cannot be
called more than once or ifdefaultReadObject has been called. TheGetFields
object uses the current object’sObjectStreamClass to verify the fields that can be
retrieved for this class. TheGetFields object returned byreadFields is only valid
during this call to the classesreadObject method. The fields may be retrieved in any
order. Additional data may only be read directly from stream afterreadFields has
been called.

The registerValidation method can be called to request a callback when the
entire graph has been restored but before the object is returned to the original caller of
readObject . The order of validate callbacks can be controlled using the priority.
Callbacks registered with higher values are called before those with lower values. The
object to be validated must support theObjectInputValidation interface and
implement thevalidateObject method. It is only correct to register validations
during a call to a class’sreadObject method. Otherwise, a
NotActiveException is thrown. If the callback object supplied to
registerValidation is null, anInvalidObjectException is thrown.

The resolveClass method is called while a class is being deserialized, and after the
class descriptor has been read. Subclasses may extend this method to read other
information about the class written by the corresponding subclass of
ObjectOutputStream . The method must find and return the class with the given
name andserialVersionUID . The default implementation locates the class by
calling the class loader of the closest caller ofreadObject that has a class loader. If
the class cannot be foundClassNotFoundException should be thrown. Prior to
JDK™ 1.1.6, theresolveClass method was required to return the same fully
qualified class name as the class name in the stream. In order to accommodate package
renaming across releases,method resolveClass only needs to return a class with
the same base class name andSerialVersionUID in JDK™ 1.1.6 and later versions.

The resolveObject method is used by trusted subclasses to monitor or substitute
one object for another during deserialization. Resolving objects must be enabled
explicitly by calling enableResolveObject before callingreadObject for the
first object to be resolved. Once enabled,resolveObject is called once for each
serializable object just prior to the first time it is being returned fromreadObject .
Note that theresolveObject method is not called for objects of the specially
handled classes,Class , ObjectStreamClass , String , and arrays. A subclass’s
implementation ofresolveObject may return a substitute object that will be
assigned or returned instead of the original. The object returned must be of a type that



Page 30 Java™ Object Serialization Specification— JDK™ 1.2, November 30, 1998

3

is consistent and assignable to every reference of the original object or else a
ClassCastException will be thrown. All assignments are type-checked. All
references in the stream to the original object will be replaced by references to the
substitute object.

The enableResolveObject method is called by trusted subclasses of
ObjectOutputStream to enable the monitoring or substitution of one object for
another during deserialization. Replacing objects is disabled until
enableResolveObject is called with atrue value. It may thereafter be disabled by
setting it tofalse . The previous setting is returned. TheenableResolveObject
method checks if the stream has permission to request substitution during serialization.
To ensure that the private state of objects is not unintentionally exposed, only trusted
streams may useresolveObject . Trusted classes are those classes with a class
loader equal to null or belong to a security protection domain that provides permission
to enable substitution.

If the subclass ofObjectInputStream is not considered part of the system domain,
a line has to be added to the security policy file to provide to a subclass of
ObjectInputStream permission to callenableResolveObject . The
SerializablePermission to add is“enableSubstitution” .
AccessControlException is thrown if the protection domain of the subclass of
ObjectStreamClass does not have permission to“enableSubstitution” by
calling enableResolveObject . See the documentJava™ Security Architecture
(JDK™ 1.2) for additional information about the security model.

The readStreamHeader method reads and verifies the magic number and version of
the stream. If they do not match, theStreamCorruptedMismatch is thrown.

To override the implementation of deserialization, a subclass of
ObjectInputStream should call the protected no-argObjectInputStream ,
constructor. There is a security check within the no-arg constructor for
SerializablePermission “enableSubclassImplementation” to ensure
that only trusted classes are allowed to override the default implementation. This
constructor does not allocate any private data forObjectInputStream and sets a
flag that indicates that the finalreadObject method should invoke the
readObjectOverride method and return. All otherObjectInputStream methods
are not final and can be directly overridden by the subclass.



Chapter 3:Object Input Classes Page 31

3

3.2 The ObjectInputStream.GetField Class

The classObjectInputStream.GetField provides the API for getting the values
of serializable fields. The protocol of the stream is the same as used by
defaultReadObject. Using readFields to access the serializable fields does not
change the format of the stream. It only provides an alternate API to access the values
which does not require the class to have the corresponding non-transient and non-static
fields for each named serializable field. The serializable fields are those declared using
serialPersistentFields or if it is not declared the non-transient and non-static
fields of the object. When the stream is read the available serializable fields are those
written to the stream when the object was serialized. If the class that wrote the stream
is a different version not all fields will correspond to the serializable fields of the
current class. The available fields can be retrieved from theObjectStreamClass of
the GetField object.

The getObjectStreamClass method returns anObjectStreamClass object
representing the class in the stream. It contains the list of serializable fields.

The defaulted method returnstrue if the field is not present in the stream. An
IllegalArgumentException is thrown if the requested field is not a serializable
field of the current class.

Eachget method returns the specified serializable field from the stream. I/O
exceptions will be thrown if the underlying stream throws an exception. An
IllegalArgumentException is thrown if the name or type does not match the
name and type of an field serializable field of the current class. The default value is
returned if the stream does not contain an explicit value for the field.

3.3 The ObjectInputValidation Interface

This interface allows an object to be called when a complete graph of objects has been
deserialized. If the object cannot be made valid, it should throw the
ObjectInvalidException . Any exception that occurs during a call to
validateObject will terminate the validation process, and the
InvalidObjectException will be thrown.

package java.io;

public interface ObjectInputValidation
{



Page 32 Java™ Object Serialization Specification— JDK™ 1.2, November 30, 1998

3

    public void validateObject()
        throws InvalidObjectException;
}

3.4 The readObject Method

For serializable objects, thereadObject method allows a class to control the
deserialization of its own fields. Here is its signature:

private void readObject(ObjectInputStream stream)
        throws IOException, ClassNotFoundException;

Each subclass of a serializable object may define its ownreadObject method. If a
class does not implement the method, the default serialization provided by
defaultReadObject will be used. When implemented, the class is only responsible
for restoring its own fields, not those of its supertypes or subtypes.

The readObject method of the class, if implemented, is responsible for restoring the
state of the class. The values of every field of the object whether transient or not, static
or not are set to the default value for the fields type. ThedefaultReadObject
method should be called before reading any optional data written by the corresponding
writeObject method. If thereadObject method of the class attempts to read more
data than is present in the optional part of the stream for this class, the stream will
throw anEOFException . The responsibility for the format, structure, and versioning
of the optional data lies completely with the class. The@serialData javadoc tag
within the javadoc comment for thereadObject method should be used to document
the format and structure of the optional data.

If the class being restored is not present in the stream being read, its fields are
initialized to the appropriate default values.

Reading an object from theObjectInputStream is analogous to creating a new
object. Just as a new object’s constructors are invoked in the order from the superclass
to the subclass, an object being read from a stream is deserialized from superclass to
subclass. ThereadObject or defaultReadObject method is called instead of the
constructor for eachSerializable subclass during deserialization.

One last similarity between a constructor and areadObject method is that both
provide the opportunity to invoke a method on an object that is not fully constructed.
Any non-final method called while an object is being constructed can potentially be
overridden by a subclass. Methods called during the construction phase of an object



Chapter 3:Object Input Classes Page 33

3

are resolved by the actual type of the object, not the type currently being initialized by
either its constructor orreadObject method. This situation results in the overriding
method being invoked on an object that is not fully constructed yet.

3.5 The readExternal Method

Objects implementingjava.io.Externalizable must implement the
readExternal method to restore the entire state of the object. It must coordinate
with its superclasses to restore their state. All of the methods ofObjectInput are
available to restore the object’s primitive typed fields and object fields.

    public void readExternal(ObjectInput stream)
        throws IOException;

Note – The readExternal method is public, and it raises the risk of a client being
able to overwrite an existing object from a stream. The class may add its own checks
to insure that this is only called when appropriate.

A new stream protocol version has been introduced in JDK™ 1.2 to correct a problem
with Externalizable objects. The old definition ofExternalizable objects
required the local virtual machine to find areadExternal method to be able to
properly read anExternalizable object from the stream. The new format adds
enough information to the stream protocol so serialization can skip an
Externalizable object when the localreadExternal method is not available.
Due to class evolution rules, serialization must be able to skip anExternalizable
object in the input stream if there is not a mapping for the object using the local
classes.

An additional benefit of the newExternalizable stream format is the exception
EOFException is thrown if a readExternal method attempts to read beyond the
end of anExternalizable object. Also, serialization is able to skip by any External
data that is not read by areadExternal method.

Due to the format change, JDK™ 1.1.6 and earlier releases are not able to read the new
format.StreamCorruptedException is thrown when JDK™ 1.1.6 or earlier
attempts to read anExternalizable object from a stream written in
PROTOCOL_VERSION_2. Compatibility issues are discussed in more detail in
Section 6.3, “Stream Protocol Versions.”



Page 34 Java™ Object Serialization Specification— JDK™ 1.2, November 30, 1998

3

3.6 The readResolve Method

For Serializable and Externalizable classes, thereadResolve method allows a class
to replace/resolve the object read from the stream before it is returned to the caller. By
implementing thereadResolve method, a class can directly control the types and
instances of its own instances being deserialized. The method is defined as follows:

ANY-ACCESS-MODIFIER Object readResolve()
throws ObjectStreamException;

The readResolve method is called whenObjectInputStream has read an object
from the stream and is preparing to return it to the caller.ObjectInputStream
checks whether the class of the object defines thereadResolve method. If the
method is defined, thereadResolve method is called to allow the object in the
stream to designate the object to be returned. The object returned should be of a type
that is compatible with all uses. If it is not compatible, aClassCastException
will be thrown when the type mismatch is discovered.

For example, aSymbol class could be created for which only a single instance of each
symbol binding existed within a virtual machine. ThereadResolve method would
be implemented to determine if that symbol was already defined and substitute the
preexisting equivalentSymbol object to maintain the identity constraint. In this way
the uniqueness ofSymbol objects can be maintained across serialization.



Page 35

ClassDescriptors 4

Topics:

• The ObjectStreamClass Class
• The ObjectStreamField Class
• Inspecting Serializable Classes
• Stream Unique Identifiers

4.1 The ObjectStreamClass Class

The ObjectStreamClass provides information about classes that are saved in a
Serialization stream. The descriptor provides the fully-qualified name of the class and
its serialization version UID. ASerialVersionUID identifies the unique original
class version for which this class is capable of writing streams and from which it can
read.

package java.io;

public class ObjectStreamClass
{
    public static ObjectStreamClass lookup(Class cl);

    public String getName();

    public Class forClass();

    public ObjectStreamField[] getFields();

    public long getSerialVersionUID();



Page 36 Java™ Object Serialization Specification— JDK™ 1.2, November 30, 1998

4

    public String toString();
}

The lookup method returns theObjectStreamClass descriptor for the specified
class in the virtual machine. If the class has definedserialVersionUID it is
retrieved from the class. If theserialVersionUID is not defined by the class, it is
computed from the definition of the class in the virtual machine.I f the specified class
is not serializable or externalizable,null is returned.

The getName method returns the fully-qualified name of the class. The class name is
saved in the stream and is used when the class must be loaded.

The forClass method returns theClass in the local virtual machine if one was
found byObjectInputStream.resolveClass method. Otherwise, it returns
null .

The getFields method returns an array ofObjectStreamField objects that
represent the serializable fields of this class.

ThegetSerialVersionUID method returns theserialVersionUID of this class.
Refer to Section 4.4, “Stream Unique Identifiers.” If not specified by the class, the
value returned is a hash computed from the class’s name, interfaces, methods, and
fields using the Secure Hash Algorithm (SHA) as defined by the National Institute of
Standards.

The toString method returns a printable representation of the class descriptor
including the name of the class and theserialVersionUID .

When anObjectStreamClass instance is written to the stream, it writes the class
name andserialVersionUID , flags, and the number of fields. Depending on the
class, additional information may be written:

• For non-serializable classes, the number of fields is always zero. Neither the
serializable nor the externalizable flag bits are set.

• For serializable classes, the serializable flag is set, the number of fields counts the
number of serializable fields and is followed by a descriptor for each serializable
field. The descriptors are written in canonical order. The descriptors for primitive
typed fields are written first sorted by field name followed by descriptors for the
object typed fields sorted by field name. The names are sorted using
String.compareTo . The protocol describes the format.

• For externalizable classes, flags includes the externalizable flag, and the number of
fields is always zero.



Chapter 4:Class Descriptors Page 37

4

4.2 The ObjectStreamField Class

An ObjectStreamField represents a serializable field of a serializable class. The
serializable fields of a class can be retrieved from theObjectStreamClass .

The special static Serializable field, serialPersistentFields, an array of
ObjectStreamField components is used to override the default serializable fields.

package java.io;

public class ObjectStreamField {

    public ObjectStreamField(String fieldName, Class fieldType);

    public String getName();

    public Class getType() throws ClassNotFoundException;

    public String toString();
}

The ObjectStreamField constructor is used to create a new instance of an
ObjectStreamField . The argument is the type of the serializable field. For
example,Integer.TYPE or java.lang.Hashtable.class .
ObjectStreamField objects are used to specify the serializable fields of a class or
to describe the fields present in a stream.

The getName method returns the name of the serializable field.

The getType method returns the type of the field.

The toString method returns a printable representation with name and type.

4.3 Inspecting Serializable Classes

The programserialver can be used to find out if a class is serializable and to get its
serialVersionUID . When invoked with the-show option, it puts up a simple user
interface. To find out if a class is serializable and to find out itsserialVersionUID,
enter its full class name, then press either the Enter or the Show button. The string
printed can be copied and pasted into the evolved class.



Page 38 Java™ Object Serialization Specification— JDK™ 1.2, November 30, 1998

4

When invoked on the command line with one or more class names,serialver prints
theserialVersionUID for each class in a form suitable for copying into an evolving
class. When invoked with no arguments,serialver prints a usage line.

4.4 Stream Unique Identifiers

Each versioned class must identify the original class version for which it is capable of
writing streams and from which it can read. For example, a versioned class must
declare:

private static final long serialVersionUID = 3487495895819393L;

The stream-unique identifier is a 64-bit hash of the class name, interface class names,
methods, and fields. The value must be declared in all versions of a class except the
first. It may be declared in the original class but is not required. The value is fixed for
all compatible classes. If the SUID is not declared for a class, the value defaults to the
hash for that class.Serializable classes do not need to anticipate versioning;
however,Externalizable classes do. The initial version of anExternalizable
class must output a stream data format that is extensible in the future. The initial
version of the methodreadExternal has to be able to read the output format of all
future versions of the methodwriteExternal .

The serialVersionUID is computed using the signature of a stream of bytes that
reflect the class definition. The National Institute of Standards and Technology (NIST)
Secure Hash Algorithm (SHA-1) is used to compute a signature for the stream. The
first 8 bytes of the signature are used to form a 64-bit hash. A
java.lang.DataOutputStream is used to convert primitive data types to a
sequence of bytes. The values input to the stream are defined by the Java™ Virtual
Machine (VM) specification for classes.

The sequence of items in the stream is as follows:

1. Class name, written using UTF encoding.

2. Class modifiers, written as a 32-bit integer.



Chapter 4:Class Descriptors Page 39

4

3. The name of each interface, sorted by name and written using UTF encoding.

4. For each field of the class sorted by field name (except private static and private
transient fields):

a. Field name, in UTF encoding.

b. Field modifiers, written as a 32-bit integer.

c. Field descriptor, in UTF encoding.

5. If a class initializer exists, write out the following:

a. Method name,<clinit> , in UTF encoding.

b. Method modifier,java.lang.reflect.Modifier.STATIC , written as a
32-bit integer.

c. Method descriptor,()V , in UTF encoding.

6. For each non-private constructor sorted by method name and signature:

a. Method name,<init> , in UTF encoding.

b. Method modifiers, written as a 32-bit integer.

c. Method descriptor, in UTF encoding.

7. For each non-private method sorted by method name and signature:

a. Method name, in UTF encoding.

b. Method modifiers, written as a 32-bit integer.

c. Method descriptor, in UTF encoding.

8. The SHA-1 algorithm is executed on the stream of bytes produced by
DataOutputStream and produces 20 byte values,sha[0..19] .

9. The hash value is assembled from the first 8 byte values ofsha array.

   long h = 0;
   for (int i = 0; i < Math.min(8, sha.length); i++) {
       h += (long)(sha[i] & 255) << (i * 8);
   }



Page 40 Java™ Object Serialization Specification— JDK™ 1.2, November 30, 1998

4



Page 41

VersioningofSerializableObjects 5

Topics:

• Overview
• Goals
• Assumptions
• Who’s Responsible for Versioning of Streams
• Compatible Java™ Type Evolution
• Type Changes Affecting Serialization

5.1 Overview

When Java™ objects use serialization to save state in files, or as blobs in databases, the
potential arises that the version of a class reading the data is different than the version
that wrote the data.

Versioning raises some fundamental questions about the identity of a class, including
what constitutes a compatible change. Acompatible changeis a change that does not
affect the contract between the class and its callers.

This section describes the goals, assumptions, and a solution that attempts to address
this problem by restricting the kinds of changes allowed and by carefully choosing the
mechanisms.



Page 42 Java™ Object Serialization Specification— JDK™ 1.2, November 30, 1998

5

The proposed solution provides a mechanism for “automatic” handling of classes that
evolve by adding fields and adding classes. Serialization will handle versioning
without class-specific methods to be implemented for each version. The stream format
can be traversed without invoking class-specific methods.

5.2 Goals

The goals are to:

• Support bidirectional communication between different versions of a class operating
in different virtual machines by:

• Defining a mechanism that allows Java™ classes to read streams written by older
versions of the same class.

• Defining a mechanism that allows Java™ classes to write streams intended to be
read by older versions of the same class.

• Provide default serialization for persistence and for RMI.
• Perform well and produce compact streams in simple cases, so that RMI can use

serialization.
• Be able to identify and load classes that match the exact class used to write the

stream.
• Keep the overhead low for nonversioned classes.
• Use a stream format that allows the traversal of the stream without having to invoke

methods specific to the objects saved in the stream.

5.3 Assumptions

The assumptions are that:

• Versioning will only apply to serializable classes since it must control the stream
format to achieve it goals. Externalizable classes will be responsible for their own
versioning which is tied to the external format.

• All data and objects must be read from, or skipped in, the stream in the same order
as they were written.

• Classes evolve individually as well as in concert with supertypes and subtypes.
• Classes are identified by name. Two classes with the same name may be different

versions or completely different classes that can be distinguished only by
comparing their interfaces or by comparing hashes of the interfaces.

• Default serialization will not perform any type conversions.
• The stream format only needs to support a linear sequence of type changes, not

arbitrary branching of a type.



Chapter 5:Versioning of Serializable Objects Page 43

5

5.4 Who’s Responsible for Versioning of Streams

In the evolution of classes, it is the responsibility of the evolved (later version) class to
maintain the contract established by the nonevolved class. This takes two forms. First,
the evolved class must not break the existing assumptions about the interface provided
by the original version, so that the evolved class can be used in place of the original.
Secondly, when communicating with the original (or previous) versions, the evolved
class must provide sufficient and equivalent information to allow the earlier version to
continue to satisfy the nonevolved contract.

For the purposes of the discussion here, each class implements and extends the
interface or contract defined by its supertype. New versions of a class, for example
foo’ , must continue to satisfy the contract forfoo and may extend the interface or
modify its implementation.

java.lang.Object

           foo

           bar

java.lang.Object’

           foo’

           bar’

Private serialization protocol

Contract with supertype



Page 44 Java™ Object Serialization Specification— JDK™ 1.2, November 30, 1998

5

Communication between objects via serialization is not part of the contract defined by
these interfaces. Serialization is a private protocol between the implementations. It is
the responsibility of the implementations to communicate sufficiently to allow each
implementation to continue to satisfy the contract expected by its clients.

5.5 Compatible Java™ Type Evolution

In the Java™ Language Specification, Chapter 13 discusses binary compatibility of
Java™ classes as those classes evolve. Most of the flexibility of binary compatibility
comes from the use of late binding of symbolic references for the names of classes,
interfaces, fields, methods, and so on.

The following are the principle aspects of the design for versioning of serialized object
streams.

• The default serialization mechanism will use a symbolic model for binding the
fields in the stream to the fields in the corresponding class in the virtual machine.

• Each class referenced in the stream will uniquely identify itself, its supertype, and
the types and names of each serializable field written to the stream. The fields are
ordered with the primitive types first sorted by field name, followed by the object
fields sorted by field name.

• Two types of data may occur in the stream for each class: required data
(corresponding directly to the serializable fields of the object); and optional data
(consisting of an arbitrary sequence of primitives and objects). The stream format
defines how the required and optional data occur in the stream so that the whole
class, the required, or the optional parts can be skipped if necessary.

• The required data consists of the fields of the object in the order defined by the
class descriptor.

• The optional data is written to the stream and does not correspond directly to
fields of the class. The class itself is responsible for the length, types, and
versioning of this optional information.

• If defined for a class, thewriteObject /readObject methods supersede the
default mechanism to write/read the state of the class. These methods write and read
the optional data for a class. The required data is written by calling
defaultWriteObject and read by callingdefaultReadObject .

• The stream format of each class is identified by the use of a Stream Unique
Identifier (SUID). By default, this is the hash of the class. All later versions of the
class must declare the Stream Unique Identifier (SUID) that they are compatible
with. This guards against classes with the same name that might inadvertently be
identified as being versions of a single class.



Chapter 5:Versioning of Serializable Objects Page 45

5

• Subtypes ofObjectOutputStream andObjectInputStream may include their
own information identifying the class using theannotateClass method; for
example,MarshalOutputStream embeds the URL of the class.

5.6 Type Changes Affecting Serialization

With these concepts, we can now describe how the design will cope with the different
cases of an evolving class. The cases are described in terms of a stream written by
some version of a class. When the stream is read back by the same version of the class,
there is no loss of information or functionality. The stream is the only source of
information about the original class. Its class descriptions, while a subset of the
original class description, are sufficient to match up the data in the stream with the
version of the class being reconstituted.

The descriptions are from the perspective of the stream being read in order to
reconstitute either an earlier or later version of the class. In the parlance of RPC
systems, this is a “receiver makes right” system. The writer writes its data in the most
suitable form and the receiver must interpret that information to extract the parts it
needs and to fill in the parts that are not available.

5.6.1 Incompatible Changes

Incompatible changes to classes are those changes for which the guarantee of
interoperability cannot be maintained. The incompatible changes that may occur while
evolving a class are:

• Deleting fields - If a field is deleted in a class, the stream written will not contain its
value. When the stream is read by an earlier class, the value of the field will be set
to the default value because no value is available in the stream. However, this
default value may adversely impair the ability of the earlier version to fulfill its
contract.

• Moving classes up or down the hierarchy - This cannot be allowed since the data in
the stream appears in the wrong sequence.

• Changing a nonstatic field to static or a nontransient field to transient - When
relying on default serialization, this change is equivalent to deleting a field from the
class. This version of the class will not write that data to the stream, so it will not
be available to be read by earlier versions of the class. As when deleting a field, the
field of the earlier version will be initialized to the default value, which can cause
the class to fail in unexpected ways.



Page 46 Java™ Object Serialization Specification— JDK™ 1.2, November 30, 1998

5

• Changing the declared type of a primitive field - Each version of the class writes the
data with its declared type. Earlier versions of the class attempting to read the field
will fail because the type of the data in the stream does not match the type of the
field.

• Changing thewriteObject or readObject method so that it no longer writes or
reads the default field data or changing it so that it attempts to write it or read it
when the previous version did not. The default field data must consistently either
appear or not appear in the stream.

• Changing a class fromSerializable to Externalizable or visa-versa is an
incompatible change since the stream will contain data that is incompatible with the
implementation in the available class.

• Removing eitherSerializable or Externalizable is an incompatible change
since when written it will no longer supply the fields needed by older versions of
the class.

• Adding thewriteReplace or readResolve method to a class is incompatible if
the behavior would produce an object that is incompatible with any older version of
the class.

5.6.2 Compatible Changes

The compatible changes to a class are handled as follows:

• Adding fields - When the class being reconstituted has a field that does not occur in
the stream, that field in the object will be initialized to the default value for its type.
If class-specific initialization is needed, the class may provide a readObject method
that can initialize the field to nondefault values.

• Adding classes - The stream will contain the type hierarchy of each object in the
stream. Comparing this hierarchy in the stream with the current class can detect
additional classes. Since there is no information in the stream from which to
initialize the object, the class’s fields will be initialized to the default values.

• Removing classes - Comparing the class hierarchy in the stream with that of the
current class can detect that a class has been deleted. In this case, the fields and
objects corresponding to that class are read from the stream. Primitive fields are
discarded, but the objects referenced by the deleted class are created, since they
may be referred to later in the stream. They will be garbage-collected when the
stream is garbage-collected or reset.

• Adding writeObject /readObject methods - If the version reading the stream
has these methods thenreadObject is expected, as usual, to read the required data
written to the stream by the default serialization. It should call



Chapter 5:Versioning of Serializable Objects Page 47

5

defaultReadObject first before reading any optional data. ThewriteObject
method is expected as usual to calldefaultWriteObject to write the required
data and then may write optional data.

• RemovingwriteObject /readObject methods - If the class reading the stream
does not have these methods, the required data will be read by default serialization,
and the optional data will be discarded.

• Adding java.io.Serializable - This is equivalent to adding types. There will
be no values in the stream for this class so its fields will be initialized to default
values. The support for subclassing nonserializable classes requires that the class’s
supertype have a no-arg constructor and the class itself will be initialized to default
values. If the no-arg constructor is not available, theInvalidClassException
is thrown.

• Changing the access to a field - The access modifiers public, package, protected,
and private have no effect on the ability of serialization to assign values to the
fields.

• Changing a field from static to nonstatic or transient to nontransient - When relying
on default serialization to compute the serializable fields, this change is equivalent
to adding a field to the class. The new field will be written to the stream but earlier
classes will ignore the value since serialization will not assign values to static or
transient fields.



Page 48 Java™ Object Serialization Specification— JDK™ 1.2, November 30, 1998

5



Page 49

ObjectSerializationStreamProtocol 6

Topics:

• Overview
• Stream Elements
• Stream Protocol Versions
• Grammar for the Stream Format
• Example

6.1 Overview

The stream format satisfies the following design goals:

• Is compact and is structured for efficient reading.
• Allows skipping through the stream using only the knowledge of the structure and

format of the stream. Does not require invoking any per class code.
• Requires only stream access to the data.

6.2 Stream Elements

A basic structure is needed to represent objects in a stream. Each attribute of the object
needs to be represented: its classes, its fields, and data written and later read by class-
specific methods. The representation of objects in the stream can be described with a
grammar. There are special representations for null objects, new objects, classes,
arrays, strings, and back references to any object already in the stream. Each object



Page 50 Java™ Object Serialization Specification— JDK™ 1.2, November 30, 1998

6

written to the stream is assigned a handle that is used to refer back to the object.
Handles are assigned sequentially starting from 0x7E0000. The handles restart at
0x7E0000 when the stream is reset.

A class object is represented by the following:

• Its ObjectStreamClass object.

An ObjectStreamClass object is represented by the following:

• The Stream Unique Identifier (SUID) of compatible classes.
• A flag indicating if the class hadwriteObject /readObject methods
• The number of serializable fields
• The array of fields of the class that are serialized by the default mechanism

For arrays and object fields, the type of the field is included as a string.
• Optional block-data records or objects written by theannotateClass method
• The ObjectStreamClass of its supertype (null if the superclass is not

serializable)

Strings are represented by their UTF encoding. Note that the current specification and
implementation of the modified UTF restricts the total length of the encoded string to
65535 characters.

Arrays are represented by the following:

• Their ObjectStreamClass object.
• The number of elements.
• The sequence of values. The type of the values is implicit in the type of the array.

for example the values of a byte array are of type byte.

New objects in the stream are represented by the following:

• The most derived class of the object.
• Data for each serializable class of the object, with the highest superclass first.

For each class the stream contains the following:

- The serializable fields.
See Section 1.5, “Defining Serializable Fields for a Class.”

- If the class haswriteObject /readObject methods, there may be optional
objects and/or block-data records of primitive types written by the
writeObject method followed by anendBlockData code.

All primitive data written by classes is buffered and wrapped in block-data records,
regardless if the data is written to the stream within awriteObject method or
written directly to the stream from outside awriteObject method. This data can



Chapter 6:Object Serialization Stream Protocol Page 51

6

only be read by the correspondingreadObject methods or be read directly from the
stream. Objects written by thewriteObject method terminate any previous block-
data record and are written either as regular objects or null or back references, as
appropriate. The block-data records allow error recovery to discard any optional data.
When called from within a class, the stream can discard any data or objects until the
endBlockData .

6.3 Stream Protocol Versions

It was necessary to make a change to the serialization stream format in JDK™ 1.2 that
is not backwards compatible to all minor releases of JDK™ 1.1. To provide for cases
where backwards compatibility is required, a capability has been added to indicate
what PROTOCOL_VERSIONto use when writing a serialization stream. The method
ObjectOutputStream.useProtocolVersion takes as a parameter the protocol
version to use to write the serialization stream.

The Stream Protocol Versions are as follows:

• ObjectStreamConstants.PROTOCOL_VERSION_1
Indicates the initial stream format.

• ObjectStreamConstants.PROTOCOL_VERSION_2
Indicates the new external data format. Primitive data is written in block data mode
and is terminated withTC_ENDBLOCKDATA.

Block data boundaries have been standardized. Primitive data written in block data
mode is normalized to not exceed 1024 byte chunks. The benefit of this change was
to tighten the specification of serialized data format within the stream. This change
is fully backward and forward compatible.

JDK™ 1.2 defaults to writingPROTOCOL_VERSION_2.

JDK™ 1.1 defaults to writingPROTOCOL_VERSION_1.

JDK™ 1.1.7 and greater can read both versions.

Releases prior to JDK™ 1.1.7 can only readPROTOCOL_VERSION_1.



Page 52 Java™ Object Serialization Specification— JDK™ 1.2, November 30, 1998

6

6.4 Grammar for the Stream Format

The table below contains the grammar for the stream format. Nonterminal symbols are
shown initalics. Terminal symbols in afixed width font . Definitions of
nonterminals are followed by a “:”. The definition is followed by one or more
alternatives, each on a separate line. The following table describes the notation:

6.4.1 Rules of the Grammar

A Serialized stream is represented by any stream satisfying thestreamrule.

stream:
magic version contents

contents:
content
contents content

content:
object
blockdata

object:
newObject
newClass
newArray
newString
newClassDesc
prevObject
nullReference
exception

  TC_RESET

newClass :
  TC_CLASS  classDesc newHandle

Notation Meaning

(datatype) This token has the data type specified, such as byte.

token[n] A predefined number of occurrences of the token, that is an array.

x0001 A literal value expressed in hexadecimal. The number of hex digits
reflects the size of the value.

<xxx > A value read from the stream used to indicate the length of an array.



Chapter 6:Object Serialization Stream Protocol Page 53

6

classDesc:
  newClassDesc
  nullReference
  (ClassDesc)prevObject      // an object required to be of type
                               // ClassDesc

superClassDesc:
  classDesc

newClassDesc:
TC_CLASSDESC className serialVersionUID newHandle classDescInfo

classDescInfo:
  classDescFlags fields classAnnotation superClassDesc

className:
  (utf)

serialVersionUID:
  (long)

classDescFlags:
  (byte)                  // Defined in Terminal Symbols and
                               // Constants

fields:
  (short)<count>  fieldDesc[count]

fieldDesc:
  primitiveDesc
  objectDesc

primitiveDesc:
  prim_typecode fieldName

objectDesc:
  obj_typecode fieldName className1

fieldName:
  (utf)

className1:
  (String)object             // String containing the field’s type

classAnnotation:
  endBlockData
  contents endBlockData      // contents written by annotateClass



Page 54 Java™ Object Serialization Specification— JDK™ 1.2, November 30, 1998

6

prim_typecode:
  ‘B’// byte
  ‘C’// char
  ‘D’// double
  ‘F’// float
  ‘I’// integer
  ‘J’// long
  ‘S’// short
  ‘Z’// boolean

obj_typecode:
  ‘[‘// array
  ‘L’// object

newArray:
TC_ARRAY classDesc newHandle (int)<size> values[size]

newObject:
TC_OBJECT classDesc newHandle classdata[] // data for each class

classdata:
  nowrclass                 // SC_SERIALIZABLE & classDescFlag &&
                            // !( SC_WRITE_METHOD & classDescFlags)
  wrclass objectAnnotation  // SC_SERIALIZABLE & classDescFlag &&
                            // SC_WRITE_METHOD & classDescFlags

externalContents // SC_EXTERNALIZABLE& classDescFlag &&
                            // !( SC_BLOCKDATA  & classDescFlags

objectAnnotation // SC_EXTERNALIZABLE& classDescFlag&&
                            // SC_BLOCKDATA & classDescFlags

nowrclass:
  values                    // fields in order of class descriptor

wrclass:
  nowrclass

objectAnnotation:
  endBlockData
  contents endBlockData     // contents written by writeObject

// or writeExternal PROTOCOL_VERSION_2.

blockdata:
  blockdatashort
  blockdatalong

blockdatashort:
TC_BLOCKDATA (unsigned byte)<size> (byte)[size]

blockdatalong:
TC_BLOCKDATALONG (int)<size> (byte)[size]

endBlockData:
TC_ENDBLOCKDATA



Chapter 6:Object Serialization Stream Protocol Page 55

6

externalContent:          // Only parseable by readExternal
  ( bytes)                // primitive data
    object

externalContents:         // externalContent written by
  externalContent         // writeExternal in PROTOCOL_VERSION_1.
  externalContents externalContent

newString:
TC_STRING newHandle (utf)

prevObject
TC_REFERENCE (int)handle

nullReference
TC_NULL

exception:
TC_EXCEPTION reset (Throwable)object reset

magic:
STREAM_MAGIC

version
STREAM_VERSION

values:          // The size and types are described by the
                 // classDesc for the current object

newHandle:       // The next number in sequence is assigned
                 // to the object being serialized or deserialized

reset:           // The set of known objects is discarded
                 // so the objects of the exception do not
                 // overlap with the previously sent objects
                 // or with objects that may be sent after
                 // the exception

6.4.2 Terminal Symbols and Constants

The following symbols injava.io.ObjectStreamConstants define the terminal
and constant values expected in a stream.

    final static short STREAM_MAGIC = (short)0xaced;
    final static short STREAM_VERSION = 5;
    final static byte TC_NULL = (byte)0x70;
    final static byte TC_REFERENCE = (byte)0x71;
    final static byte TC_CLASSDESC = (byte)0x72;
    final static byte TC_OBJECT = (byte)0x73;
    final static byte TC_STRING = (byte)0x74;
    final static byte TC_ARRAY = (byte)0x75;



Page 56 Java™ Object Serialization Specification— JDK™ 1.2, November 30, 1998

6

    final static byte TC_CLASS = (byte)0x76;
    final static byte TC_BLOCKDATA = (byte)0x77;
    final static byte TC_ENDBLOCKDATA = (byte)0x78;
    final static byte TC_RESET = (byte)0x79;
    final static byte TC_BLOCKDATALONG = (byte)0x7A;
    final static byte TC_EXCEPTION = (byte)0x7B;
    final static  int   baseWireHandle = 0x7E0000;

The flag byteclassDescFlags may include values of

    final static byte SC_WRITE_METHOD = 0x01; //if SC_SERIALIZABLE
final static byte SC_BLOCK_DATA = 0x08; //if SC_EXTERNALIZABLE

    final static byte SC_SERIALIZABLE = 0x02;
    final static byte SC_EXTERNALIZABLE = 0x04;

The flagSC_WRITE_METHODis set if the Serializable class writing the stream had a
writeObject method that may have written additional data to the stream. In this case
a TC_ENDBLOCKDATAmarker is always expected to terminate the data for that class.

The flagSC_BLOCKDATAis set if theExternalizable class is written into the
stream usingSTREAM_PROTOCOL_2. By default, this is the protocol used to write
Externalizable objects into the stream in JDK™ 1.2. JDK™ 1.1 writes
STREAM_PROTOCOL_1.

The flagSC_SERIALIZABLE is set if the class that wrote the stream extended
java.io.Serializable but not java.io.Externalizable , the class
reading the stream must also extendjava.io.Serializable and the default
serialization mechanism is to be used.

The flagSC_EXTERNALIZABLEis set if the class that wrote the stream extended
java.io.Externalizable , the class reading the data must also extend
Externalizable and the data will be read using itswriteExternal and
readExternal methods.

Example

Consider the case of an original class and two instances in a linked list:

class List implements java.io.Serializable {
    int value;
    List next;
    public static void main(String[] args) {
        try {
            List list1 = new List();
            List list2 = new List();



Chapter 6:Object Serialization Stream Protocol Page 57

6

            list1.value = 17;
            list1.next = list2;
            list2.value = 19;
            list2.next = null;

            ByteArrayOutputStream o = new ByteArrayOutputStream();
            ObjectOutputStream out = new ObjectOutputStream(o);
            out.writeObject(list1);
            out.writeObject(list2);
            out.flush();
            ...
        } catch (Exception ex) {
            ex.printStackTrace();
        }
    }
}

The resulting stream contains:

00: ac ed 00 05 73 72 00 04 4c 69 73 74 69 c8 8a 15 >....sr..Listi...<

10: 40 16 ae 68 02 00 02 49 00 05 76 61 6c 75 65 4c >Z......I..valueL<

20: 00 04 6e 65 78 74 74 00 06 4c 4c 69 73 74 3b 78 >..nextt..LList;x<

30: 70 00 00 00 11 73 71 00 7e 00 00 00 00 00 13 70 >p....sq.~......p<

40: 71 00 7e 00 03                                  >q.~..<



Page 58 Java™ Object Serialization Specification— JDK™ 1.2, November 30, 1998

6



Page 59

Security inObjectSerialization A

Topics:

• Overview
• Design Goals
• Using transient to Protect Important System Resources
• Writing Class-Specific Serializing Methods
• Encrypting a Bytestream

A.1 Overview
The object serialization system allows a bytestream to be produced from a graph of
objects, sent out of the Java™ environment (either saved to disk or sent over the
network) and then used to recreate an equivalent set of new objects with the same state.

What happens to the state of the objects outside of the environment is outside of the
control of the Java™ system (by definition), and therefore is outside the control of the
security provided by the system. The question then arises, once an object has been
serialized, can the resulting byte array be examined and changed, perhaps injecting
viruses into Java™ programs? The intent of this section is to address these security
concerns.



Page 60 Java™ Object Serialization Specification— JDK™ 1.2, November 30, 1998

A.2 Design Goals
The goal for object serialization is to be as simple as possible and yet still be
consistent with known security restrictions; the simpler the system is, the more likely it
is to be secure. The following points summarize how security in object serialization
has been implemented:

• Only objects implementing thejava.io.Serializable or
java.io.Externalizable interfaces can be serialized. there are mechanisms
for not serializing certain fields and certain classes.

• The serialization package cannot be used to recreate thesameobject, and no object
is ever overwritten by a deserialize operation. All that can be done with the
serialization package is to createnewobjects, initialized in a particular fashion.

• While deserializing an object might cause code for the class of the object to be
loaded, that code loading is protected by all of the usual Java™ code verification
and security management guarantees. Classes loaded because of deserialization are
no more or less secure than those loaded in any other fashion.

• Externalizable objects expose themselves to being overwritten because the
readExternal method is public.

A.3 Using transient to Protect Important System Resources
Direct handles to system resources, such as file handles, are the kind of information
that is relative to an address space and should not be written out as part of an object's
persistent state. Therefore, fields that contain this kind of information should be
declaredtransient , which prevents them from being serialized. Note that this is not
a new or overloaded meaning for thetransient keyword.

If a resource, like a file handle, was not declaredtransient , the object could be
altered while in its serialized state, enabling it to have improper access to resources
after it is deserialized.

A.4 Writing Class-Specific Serializing Methods
To guarantee that a deserialized object does not have state which violates some set of
invariants that need to be guaranteed, a class can define its own serializing and
deserializing methods. If there is some set of invariants that need to be maintained



Appendix : Security in Object Serialization Page 61

between the data members of a class, only the class can know about these invariants,
and it is up to the class writer to provide a deserialization method that checks these
invariants.

This is important even if you are not worried about security; it is possible that disk
files can be corrupted and serialized data be invalid. So checking such invariants is
more than just a security measure; it is a validity measure. However, the only place it
can be done is in the code for the particular class, since there is no way the
serialization package can determine what invariants should be maintained or checked.

A.5 Encrypting a Bytestream
Another way of protecting a bytestream outside the virtual machine is to encrypt the
stream produced by the serialization package. Encrypting the bytestream prevents the
decoding and the reading of a serialized object’s private state.

The implementation allows encryption, both by allowing the classes to have their own
special methods for serialization/deserialization and by using the stream abstraction for
serialization, so the output can be fed into some other stream or filter.



Page 62 Java™ Object Serialization Specification— JDK™ 1.2, November 30, 1998



Page 63

Exceptions InObjectSerialization B

All exceptions thrown by serialization classes are subclasses of
ObjectStreamException which is a subclass ofIOException .

Exception Description

ObjectStreamException Superclass of all serialization exceptions.

InvalidClassException Thrown when a class cannot be used to restore
objects for any of these reasons:
• The class does not match the serial version of

the class in the stream.
• The class contains fields with invalid

primitive data types.
• The Externalizable class does not have a

public no-arg constructor.
• The Serializable class can not access the

no-arg constructor of its closest non-
Serializable superclass.

NotSerializableException Thrown by areadObject or writeObject
method to terminate serialization or deserialization.

StreamCorruptedException Thrown:
• If the stream header is invalid.
• If control information not found.
• If control information is invalid.
• JDK™ 1.1.5 or less attempts to call

readExternal on a PROTOCOL_VERSION_2
stream.



Page 64 Java™ Object Serialization Specification— JDK™ 1.2, November 30, 1998

NotActiveException Thrown if writeObject state is invalid within
the following ObjectOutputStream methods:
• defaultWriteObject
• putFields
• writeFields

Thrown if readObject state is invalid within the
following ObjectInputStream methods:
• defaultReadObject
• readFields
• registerValidation

InvalidObjectException Thrown when a restored object cannot be made
valid.

OptionalDataException Thrown byreadObject when there is primitive
data in the stream and an object is expected. The
length field of the exception indicates the number of
bytes that are available in the current block.

WriteAbortedException Thrown when reading a stream terminated by an
exception that occurred while the stream was being
written.

Exception Description



Page 65

ExampleofSerializableFields C

Topics:

• Example Alternate Implementation of java.io.File

C.1 Example Alternate Implementation of java.io.File
This appendix provides a brief example of how an existing class could be specified and
implemented to interoperate with the existing implementation but without requiring the
same assumptions about the representation of the file name as aString .

The system classjava.io.File represents a filename and has methods for parsing,
manipulating files and directories by name. It has a single private field that contains the
current file name. The semantics of the methods that parse paths depend on the current
path separator which is held in a static field. This path separator is part of the serialized
state of a file so that file name can be adjusted when read.

The serialized state of aFile object is defined as the serializable fields and the
sequence of data values for the file. In this case, there is one of each.

Serializable Fields:
    String path;     // path name with embedded separators
Serializable Data:
    char            // path name separator for path name
An alternate implementation might be defined as follows:
class File implements java.io.Serializable {
    ...



Page 66 Java™ Object Serialization Specification— JDK™ 1.2, November 30, 1998

    private String[] pathcomponents;
    // Define serializable fields with the ObjectStreamClass

/**

 * @serialField path String

* Path components separated by separator.

     */

private static final ObjectStreamField[] serialPersistentFields
=   }
            new ObjectStreamField(“path”, String.class)

    };

    ...
/**

* @serialData Default fields followed by separator character.

    */

    private void writeObject(ObjectOutputStream s)
        throws IOException
    {
        ObjectOutputStream.PutField fields = s.putFields();
        StringBuffer str = new StringBuffer();
        for(int i = 0; i < pathcomponents; i++) {
            str.append(separator);
            str.append(pathcomponents[i]);
        }
        fields.put(“path”, str.toString());
        s.writeFields();
        s.writeChar(separatorChar); // Add the separator character
    }
    ...

    private void readObject(ObjectInputStream s)
        throws IOException
    {
        ObjectInputStream.GetField fields = s.readFields();
        String path = (String)fields.get(“path”, null);
        ...

char sep = s.readChar(); // read the previous separator char

        // parse path into components using the separator
        // and store into pathcomponents array.
    }
}


