
Java Speech Markup Language
Specification
Version 0.5 — August 28, 1997

Beta Draft
o say
t,

xt.
itch,
f text
s the
ages
The Java™ Speech Markup Language (JSML) is used by applications to
annotate text input to Java Speech API speech synthesizers. The JSML
elements provide a speech synthesizer with detailed information on how t
the text. JSML includes elements that describe the structure of a documen
provide pronunciations of words and phrases, and place markers in the te
JSML also provides prosodic elements that control phrasing, emphasis, p
speaking rate, and other important characteristics. Appropriate markup o
improves the quality and naturalness of the synthesized voice. JSML use
Unicode character set, so JSML can be used to mark up text in most langu
of the world.

© 1997 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.
All rights reserved.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the
restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The release described in this document may be protected by one or more U.S. patents, foreign patents, or pending
applications.

Sun Microsystems, Inc. (SUN) hereby grants to you a fully paid, nonexclusive, nontransferable, perpetual, worldwide limited
license (without the right to sublicense) under SUN's intellectual property rights that are essential to practice this
specification. This license allows and is limited to the creation and distribution of clean-room implementations of this
specification that (i) are complete implementations of this specification, (ii) pass all test suites relating to this specification
that are available from SUN, (iii) do not derive from SUN source code or binary materials, and (iv) do not include any SUN
binary materials without an appropriate and separate license from SUN.

Java and JavaScript are trademarks of Sun Microsystems, Inc. Sun, Sun Microsystems, Sun Microsystems Computer
Corporation, the Sun logo, the Sun Microsystems Computer Corporation logo, Java and HotJava are trademarks or registered
trademarks of Sun Microsystems, Inc. UNIX ® is a registered trademark in the United States and other countries, exclusively
licensed through X/Open Company, Ltd. All other product names mentioned herein are the trademarks of their respective
owners.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS
PUBLICATION AT ANY TIME

 .
. . . 2

. . . 3

. . . 3
 . . . 3
 . . . 4
 . . . 4
 . . . 5
 . . . 5
 . . . 5
. . . 6
 . . . 7

 . . . 7

 . . . 8
. . . 8
 . . 9
 . . 10

 . . 10
. . 10
. . 13
. . 14
 . . 15

. . . 18
 . 18
. . 18
Contents
Notes to Reviewers

Contributions

Java Speech Markup Language Specification

1.0 Introduction .. . 1
1.1 Role of JSML.

2.0 Markup in JSML .
2.1 Basic Markup.
2.2 Container Elements .
2.3 Empty Elements. .
2.4 Names .
2.5 White Space .
2.6 Undefined Names. .
2.7 Document Structure .
2.8 Escaping/Quoting Text.
2.9 Comments .

3.0 JSML Elements .

4.0 Structural Elements .
4.1 PARA .
4.2 Implicit Paragraph Marking. .
4.3 SENT .

5.0 Production Elements .
5.1 SAYAS .
5.2 EMP .
5.3 BREAK .
5.4 PROS .

6.0 Other Elements.
6.1 MARKER .
6.2 ENGINE.
iii

-

iv

s

h
n
7.

are

he

h

d

es
Notes to Reviewer

This document describes theJava™ Speech Markup Language (JSML) and
explains how it can be used to annotate text input to Java Speech API speec
synthesizers. This specification is an extract from the Java Speech Applicatio
Programming Interface (JSAPI) specification that will be released later in 199
When the full specification is released, the Java Speech Markup Language
specification will be included as part of the programming guide.

Review Comments

We are very interested in your input concerning theJava Speech Markup
Languagespecification. Send your comments to:

javaspeech-comments@sun.com

Please be sure to include the version number and date of the document you
reviewing with your comments. We anticipate releasing a small number of
updates to our documentation during the review period. These updates will
incorporate responses to comments. The earlier we receive your feedback, t
more likely it will be taken into consideration for the next update.

Because of the high level of interest in the Java Speech API, the Java Speec
Grammar Format and the Java Speech Markup Language, we are unable to
respond directly to individual comments or questions, but we will carefully rea
and evaluate all of the input we receive.

JSML and JSAPI

This specification for theJava Speech Markup Languagedescribes a textual
representation of input to a speech synthesizer but does not address the issu
v

Java Synthesis Markup Language

vi

or the

e and

ed to

pear

t you
listed below. These programmatic issues are covered in the documentation f
Java Speech API, which is expected to be released later in 1997.

• Mechanisms for providing marked-up text to a synthesizer.

• Software control of the output of annotated text such as queuing, paus
resume, and variation of pitch and speaking rate.

• Mechanisms for receiving notification of synthesis events including
marker events requested in JSML texts.

• Error handling capabilities including incorrect markup.

• Vocabulary management issues such as provision of pronunciations.

Issues for this Release

Many aspects of theJava Speech Markup Language are fully specified. However,
some areas are still under development. Reviewers are especially encourag
provide feedback in these areas.

Specification Issues

The following areas in theJava Speech Markup Language are not fully defined:

• A formal syntax and Document Type Definition (DTD) for JSML

• An attribute for structural elements for selection of speaking voices

Plans for Future Releases

Sun and its partners are developing new capabilities and features that will ap
in a future release of theJava Speech Markup Languagespecification. Features
that we are considering for future releases include:

• Intonational phrase patterns forSENT, PARA, and other elements

• Attribute for specifying the language and region of language for text
segments using ISO codes

• Detailed phonetic-prosodic strings

Comments regarding the priority of these features, or other new features tha
would like to see, are appreciated.

e the

API,
up

d

Web Resources

To obtain information about the Java Speech API, see the web site at:

http://java.sun.com/products/java-media/speech/

To obtain information about other Java Media and Communications APIs, se
web site at:

http://java.sun.com/products/java-media/

Mailing Lists

Discussion lists have been set up for anyone interested in the Java Speech
the Java Speech Grammar Format specification, and the Java Speech Mark
Language. Thejavaspeech-announce mailing list will carry important
announcements about releases and updates. Thejavaspeech-interest
mailing list is for open discussion of the Java Speech API and the associated
specifications.

To subscribe to thejavaspeech-announce list or thejavaspeech-interest
list, send email with “subscribe javaspeech-announce ” or
“subscribe javaspeech-interest ” or both in the message body to:

javamedia-request@sun.com

The javaspeech-announce mailing list is moderated. It is not possible to sen
email to that list.

To send messages to the interest list, send email to:

javaspeech-interest@sun.com

To unsubscribe from thejavaspeech-announce or javaspeech-interest
lists, send email with either “unsubscribe javaspeech-announce ” or
“unsubscribe javaspeech-interest ” or both in the message body to:

javamedia-request@sun.com

Revision History

Version 0.5: First public Beta release.
vii

Java Synthesis Markup Language

viii

logy

rch on

, but
Contributions

Sun Microsystems, Inc. has worked in partnership with leading speech techno
companies to define the specifications for the Java Speech API and the Java
Speech Markup Language (JSML). These companies bring decades of resea
speech technology and experience in the development and use of speech
applications. Sun is grateful for the contributions of:

♦ Apple Computer, Inc.

♦ AT&T

♦ Dragon Systems, Inc.

♦ IBM Corporation

♦ Novell, Inc.

♦ Philips Speech Processing

♦ Texas Instruments Incorporated

Acknowledgments

JSML has benefited from many previous initiatives to mark up speech output
two deserve particular mention for using an SGML-like syntax: work at
Edinburgh University (Taylor, P. A. and Isard, A.,SSML: A speech synthesis
markup language, Speech Communication 21 (1997) p. 123-133) and the
Massachusetts Institute of Technology (Slott, J. M.,A General Platform and
Markup Language for Text to Speech Synthesis, MIT Masters Thesis, 1996).
ix

Java Synthesis Markup Language

x

p
n

d
udio.

put.
ech

s use

f

ords
ontrol
Java Speech Marku
Language Specificatio

1.0 Introduction

A speech synthesizer provides a computer with the ability to speak. Users an
applications provide text to a speech synthesizer, which is then converted to a

Figure 1 Text from an application is converted to audio output

Speech synthesizers are developed to produce natural-sounding speech out
However, natural human speech is a complex process, and the ability of spe
synthesizers to mimic human speech is limited in many ways. For example,
speech synthesizers do not “understand” what they say, so they do not alway
the right style or phrasing and do not provide the same nuances as people.

TheJava™ Speech Markup Language (JSML) allows applications to annotate
text with additional information that can improve the quality and naturalness o
synthesized speech. JSML documents can includestructural information about
paragraphs and sentences. JSML allows control of theproduction of synthesized
speech, including the pronunciation of words and phrases, the emphasis of w
(stressing or accenting), the placements of boundaries and pauses, and the c
of pitch and speaking rate. Finally, JSML allowsmarkers to be embedded in text
and allows synthesizer-specific controls.

“Computers
can speak.”

Application
Speech

Synthesizer

“Computers
can speak.”
1

Java Synthesis Markup Language Specification – Version 0.5 Draft August 28, 1997

2

d end

ible,
le,
s

lish,
xt for
ent
.

y

text
ce

the
kable
sage
a

For the example in Figure 1, we might use JSML tags to indicate the start an
of the sentence and to emphasize the word “can”:

<SENT>Computers <EMP>can</EMP> speak.</SENT>

1.1 Role of JSML

JSML has been developed to support as many types of applications as poss
and to support text markup in many different languages. To make this possib
JSML marks general information about the text and, whenever possible, use
cross-language properties.

Although JSML may be used for text in Japanese, Spanish, Tamil, Thai, Eng
and nearly all modern languages, a single JSML document should contain te
only a single language. Applications are therefore responsible for managem
and control of speech synthesizers if output of multiple languages is required

JSML can be used by a wide range of applications to speak text from equall
varied sources, including email, database information, web pages, and word
processor documents. Figure 2 illustrates the basic steps in this process.

Figure 2 JSML Process

The application is responsible for converting the source information to JSML
using any special knowledge it has about the content and format of the sour
information. For example, an email application can provide the ability to read
email messages aloud by converting messages to JSML. This could involve
conversion of email header information (sender, subject, date, etc.) to a spea
form and might also involve special processing of text in the body of the mes
(for handling attachments, indented text, special abbreviations, etc.) Here is
sample of an email message converted to JSML:

JSML
Text

Application
Speech

Synthesizer

Source
Information

Speech
Output

Java Speech Markup Language Specification

rs
se
age

.

n one
tag.
<PARA>Message from <EMP>Alan Schwarz</EMP> about new
synthesis technology.
Arrived at <SAYAS CLASS="time">2pm</SAYAS> today.</PARA>

<PARA>I’ve attached a diagram showing the new way we do
speech synthesis.</PARA>

<PARA>Regards, Alan.</PARA>

Similarly, a web browser could provide the ability to speak web pages by
converting them to JSML. This process would involve conversion from HTML
(HyperText Markup Language), the basic format of the web, to JSML. Reade
may notice that JSML and HTML have a similar form. This similarity is becau
the formats share a common ancestor: Standard Generalized Markup Langu
(SGML). However, their roles are different. HTML is specialized for visual
display of information, whereas JSML is for speaking information.

2.0 Markup in JSML
2.1 Basic Markup

The special text in the following example is thetext markup.

<SENT>Computers <EMP>can</EMP> speak.</SENT>

This style will be familiar to you if you have used HTML, SGML, or XML.
<SENT> indicates the start of a sentence element and</SENT> ends that
sentence. Similarly,<EMP> and</EMP> mark a region to beemphasized.

SENT andEMP are referred to aselements. JSML defines eight elements. The
following sections describe elements and other JSML markup in more detail

2.2 Container Elements

JSML elements are either container elements or empty elements. Acontainer
element has a balanced start tag and end tag (e.g.,<SENT> and</SENT>). The
text appearing between the start and end tags is thecontained text as shown in
Figure 3. An element’s start-tag defines the type of element and may contai
or more attributes. All end-tags have the same name as their matching start-
3

Java Synthesis Markup Language Specification – Version 0.5 Draft August 28, 1997

4

is is

not

ple,
e

ike
Figure 3 Elements and Attributes

2.2.1 Attributes

Attributes are used to provide additional information about an element. Each
JSML element has a set of defined attribute names and, in some cases, the
attribute value is restricted to certain strings. For example, anEMP element can
mark words with aLEVEL attribute value ofstrong :

Ich bin ein <EMP LEVEL="strong">Berliner!</EMP>

2.2.2 Element Nesting

Some JSML elements allow the contained text to contain other elements. Th
referred to asnesting.

<PARA> text with <EMP> more text </EMP> </PARA>

Nested elements cannot overlap or intertwine. For example, the following is
legal:

<PARA> text with <EMP> more text </PARA> </EMP>

2.3 Empty Elements

An empty element has only one tag and does not contain any text. For exam
the following results in a large break/pause in the speech at the point that th
element occurs:

A loud noise was heard, <BREAK SIZE="large"/>and the room
became quiet.

Because it doesn’t mark any text, an empty element likeBREAK doesn’t need an
end-tag. Rather, the “/>” marks the end of the start-tag and of the element. L

It landed <EMP LEVEL="moderate">on Mars.</EMP>

start-tag end-tagcontained text

attribute
name

attribute
value

element name

Java Speech Markup Language Specification

ues
the
ent to

he

tained
 output.

t tags
n to

nt set

table
the container elements, empty elements can include attributes to provide
additional information (for example,SIZE="large" above).

2.4 Names

All JSML element and attribute names are uppercase. All JSML attribute val
are case sensitive. Furthermore, the naming of elements and attributes and
values of attributes are independent. Consequently, it is possible for an elem
have an attribute of the same name (though none currently do).

2.5 White Space

Within an element’s start- and end-tags, single white space characters can
optionally be replaced by multiple white space characters without changing t
semantics of the element.

White space contained between an element’s start- and end-tags, or not con
by any element, is passed to the speech synthesizer and may affect speech

2.6 Undefined Names

Elements or attributes with undefined names are ignored by the speech
synthesizer. This feature is useful in automatic generation and processing of
JSML. For example, a web browser could generate the following:

<URL ORIG="http://acme.com">URL is ACME dot com</URL>

In this example, theORIG attribute is used to preserve the original URL. The
contained text will be spoken by the speech synthesizer but the URL elemen
will be ignored, because they are not defined in JSML and therefore not know
the synthesizer.

This mechanism does allow speech synthesizers to extend the JSML eleme
by interpreting these additional elements specially. However, application
developers should be aware that elements not specified in JSML are not por
across synthesizers and platforms.
5

Java Synthesis Markup Language Specification – Version 0.5 Draft August 28, 1997

6

s that:

cific

e

plies

ents

ng

.

n
lit

ld be
ach
2.7 JSML Document Structure

JSML is a subset of XML1 (Extensible Markup Language), which is a simple
dialect of SGML. By being a subset of XML, JSML gains a standardized,
extensible syntax that is not tied to the Java Speech API (JSAPI). This mean

• JSML is readable and editable by both humans and computers.

• General XML editors can be used to simplify writing JSML.

• JSML markup is very regular and easy for a synthesizer to parse.

• Text containing JSML can be prepared by hand using non-JSAPI-spe
editors.

Although it is not necessary to know about XML to understand JSML or to us
JSML, the following may be of interest. If JSML text starts with:

<?XML version="1.0" encoding="UCS-2"?>

<JSML>

and ends with:

</JSML>

then the JSML is a well-formed XML document. This means that a speech
synthesizer can use a generic XML parser on JSML text. If a synthesizer sup
the parser with a DTD (Document Type Definition) for JSML, then the
synthesizer’s work is significantly reduced. These openning and closing elem
are optional in JSML documents.

Having a DTD allows the application to use the full power of XML for generati
text, for example, entity references that can act as a shorthand for repetitive
JSML, and then to use generic text processing tools for generating the JSML

2.7.1 Splitting JSML Documents

A JSML document must be syntactically complete. Every start tag must be a
empty element (no end tag required) or have a matching end tag. If text is sp
into multiple JSML documents to be spoken in sequence, then the text shou
split between paragraphs or perhaps between sentences. This is because e
document will be spoken independently and important phrasing and pitch
information will be affected by inappropriate boundaries.

1. World Wide Web Consortium Working DraftExtensible Markup Language Version 1.0
(August 7, 1997) at http://www.w3.org/TR/WD-xml-lang

Java Speech Markup Language Specification

here

ot the

mple:

ence

 not
2.8 Escaping/Quoting Text

If text to be spoken contains a less-than sign (“<”, which is\u003C) or an
ampersand (“&”, which is\u0026), then the text needs to beescaped or quoted
to prevent the possibility of some of the text being mistaken for JSML tags. T
are several methods available:

• Individual less-than signs may be replaced with one of the following
character sequences (without the quotes): “< ”, “ < ”, or
“< ”.

• Individual ampersands may be replaced with one of the following
character sequences (without the quotes): “&”, “ & ”, or
“& ”.

• A CDATA section can be placed around the entire text.

A CDATA section has the general form of:

<![CDATA[the text that is being escaped]]>

The text that is being escaped can contain any character sequence that is n
“]]>” sequence.

A CDATA section can be used on text that is contained by an element, for exa

<EMP>Joe Doe <!CDATA[<joe.doe@acme.com>]]></EMP>

and on text that is not contained by an element, for example:

<![CDATA[X < Y is a boolean expression.]]>

Synthesizers handleCDATA sections by stripping away the<![CDATA[and]]>
markup and not parsing theCDATA section’s contents for JSML.

2.9 Comments

A JSML comment begins with a<!-- character sequence and ends with a-->
character sequence and may contain any text except the two-character sequ
-- .

Comments can be placed within text that is to be spoken (the comments will
be spoken).

How now brown <!-- This is an example comment --> cow.

Comments may not be placed within elements.
7

Java Synthesis Markup Language Specification – Version 0.5 Draft August 28, 1997

8

. The
e
 also

.

3.0 JSML Elements

JSML syntax consists of structural, production, and miscellaneous elements
following table presents an overview of JSML’s elements. These elements ar
defined in detail in the following sections. The section on structural elements
describesimplicit paragraph marking, which is an alternative to thePARA
element.

4.0 Structural Elements
4.1 PARA

ThePARA element declares a range of text to be a paragraph. For example:

<PARA>This a short paragraph.</PARA><PARA>The subject has
changed, so this is a new paragraph.</PARA>

Element
Function

Element
Name

Element
Type

Element
Description

Structure PARA Container Specifies that the contained text is a paragraph

SENT Container Specifies that the contained text is a sentence.

Production SAYAS Container Specifies how to say the contained text.

EMP Both Specifies emphasis for the contained text or
immediately following text.

BREAK Empty Specifies a break in the speech.

PROS Container Specifies a prosodic property, such as baseline
pitch, rate, or volume, for the contained text.

Miscellaneous MARKER Empty Requests a notification when speech reaches
the marker.

ENGINE Container Native instructions to a specified speech
synthesizer.

PARA Container element that marks the contained text as a paragraph.

MARK Optional attribute that requests a notification when the synthesizer’s
production of audio reaches this element’s contained text. Its value is the
text to be made available when the notification occurs.

Java Speech Markup Language Specification

 that
rking

e

PARA elements do not contain otherPARA elements; that is,PARA elements do not
embed or nest. For example, the following is not legal:

<PARA>The raven spoke.

<PARA>I’ve come from Norway at the command of the king.
He sues for peace.</PARA>

</PARA>

4.2 Implicit Paragraph Marking

In JSML, a blank line (that is, a line that contains only whitespace characters)
separates one block of text from another is treated the same as explicitly ma
the block as a paragraph. Strictly speaking, a blank line is not an element,
however, it does serve the same function as thePARA element.

The following fragments result in the same speech:

She went to school and passed the tests.

When she returned to her bicycle, the sun had set.

and

<PARA>She went to school and passed the tests.</PARA>
<PARA>When she returned home, the sun had set.</PARA>

and

<PARA>She went to school and passed the tests.</PARA>

<PARA>When she returned home, the sun had set.</PARA>

and

<PARA>She went to school and passed the tests.

When she returned home, the sun had set.</PARA>

A blank line can be created by any of the following or by inserting white spac
(that is, any combination of spaces,\u0020 , horizontal tabulations,\u0009 , and
ideographic spaces,\u3000) in any of the following:

• Consecutive carriage return and line feed pairs (that is,\u000D \u000A
\u000D \u000A)

• Consecutive line feeds/newlines (that is,\u000A \u000A)

• Consecutive Unicode line separators (that is,\u2028 \u2028)

• A single Unicode paragraph separator (that is,\u2029)
9

Java Synthesis Markup Language Specification – Version 0.5 Draft August 28, 1997

10

n,
4.3 SENT

TheSENT element declares a range of text to be a sentence. For example:

<SENT>C’est la vie.</SENT>

SENT elements do not contain otherSENT elements, that is,SENT elements do not
embed or nest. For example, the following is not legal:

<SENT>He said, <SENT>"I leave tomorrow."</SENT></SENT>

5.0 Production Elements
5.1 SAYAS

It is frequently difficult for a synthesizer to determine how to pronounce
abbreviations, acronyms, proper names (particularly those originating in a
language that is different from that of the synthesizer), domain-specific jargo
and homographs2. If an application has information that resolves a difficulty, it
can provide that information to the synthesizer by using theSAYAS element.

SENT Container element that marks the contained text as a sentence.

MARK Optional attribute that requests a notification when the synthesizer’s
production of audio reaches this element’s contained text. Its value is the
text to be made available when the notification occurs.

SAYAS Container element that says how to pronounce a word or short phrase.
One of theSUB, CLASS, or PHON attributes is required.

SUB Optional attribute having a value of the text that is to be spoken as a
substitute for the contained text.

CLASS Optional attribute indicating how to pronounce the contained text. Values:
date , digits , literal , number , time .

PHON Optional attribute having a value of a string of IPA (International Phonetic
Alphabet) characters or the Java\uXXXX representation of the Unicode
IPA characters that are to be spoken instead of the contained text.

MARK Optional attribute that requests a notification when the synthesizer’s
production of audio reaches this element’s contained text. Its value is the
text to be made available when the notification occurs.

Java Speech Markup Language Specification

d

d

sired

is is
5.1.1 SUB (Substitute)

TheSUB attribute defines substitute text to be spoken instead of the containe
text. For example:

<SAYAS SUB="I triple E">IEEE</SAYAS>

5.1.2 CLASS

When theCLASS attribute value isdate , the contained text should be pronounce
as a date. For example:

<SAYAS CLASS="date">Jan. 1952</SAYAS>
<!--spoken as January nineteen fifty-two -->

Note that simply stating that something is a date does not always yield the de
pronunciation. ASUB attribute may be required. For example, 4/3/97 is
ambiguous in:

<SAYAS CLASS="date">4/3/97</SAYAS>

It might be spoken as “April third nineteen ninety-seven” or as “March fourth
nineteen ninety-seven.” It is unambiguous if aSUB attribute is used:

<SAYAS SUB="March fourth nineteen ninety-seven">4/3/97
</SAYAS>

When theCLASS attribute value isliteral , the letters, digits, and other
characters of the contained text should be spoken individually. In English, th
effectively doing spelling. This is useful for speaking many acronyms and for
speaking numbers as digits. For example:

<SAYAS CLASS="literal">JSML</SAYAS>
<!-spoken as J S M L -->

<SAYAS CLASS="literal">12</SAYAS><!--spoken as one two-->

<SAYAS CLASS="literal">100%</SAYAS> <!--might be spoken
as one zero zero percent sign-->

When theCLASS attribute value isnumber , the contained text should be
pronounced as a number. For example:

<SAYAS CLASS="number">12</SAYAS> <!--spoken as twelve-->

2. Words with the same spelling but different pronunciations. For example, “I willread it.” and
“I have read it.”
11

Java Synthesis Markup Language Specification – Version 0.5 Draft August 28, 1997

12

sented
5.1.3 PHON (Phonetic Pronunciation)

ThePHON attribute uses the International Phonetic Alphabet (IPA) character
subset of Unicode to define a sequence of sounds. IPA characters are repre
by codes from\u0250 to \u02AF , by modifiers from\u02B0 to \u02FF , by
diacritics from\u0300 to \u036F , and by certain Latin, Greek and symbol
characters from the range\u0000 to \u017F . Details of the Unicode IPA support
are provided inThe Unicode Standard, Version 2.0 (The Unicode Consortium,
Addison-Wesley Developers Press, 1996).

The following examples are equivalent:

<SAYAS PHON="foυnεtks"> phonetics </SAYAS>

<SAYAS PHON="\u0066\u006F\u028A\u006E\u025B
\u0074\u026A\u006B\u0073"> phonetics </SAYAS>

Note that sounds from outside the language of the synthesizer may not be
reproduced accurately.

5.1.4 Nesting

Elements cannot be nested within the contents of aSAYAS.

Legal example:

<PROS RATE="-30%"><SAYAS SUB="sun dot com">sun.com
</SAYAS></PROS>

Illegal example:

<SAYAS SUB="sun dot com"><PROS RATE="-30%">sun.com
</PROS></SAYAS>

Java Speech Markup Language Specification

sis.
5.2 EMP

TheEMP element specifies that a range of text should be spoken with empha
TheLEVEL attribute’s values arestrong (for strong emphasis),moderate (for
some emphasis),none (for no emphasis), andreduced (for a reduction in
emphasis).

For example:

Clap your <EMP>hands.</EMP>

Clap your <EMP LEVEL="moderate">hands.</EMP>

TheEMP element can also be an empty element, where it specifies that the
immediately following text3 is to be emphasized.

The following examples have the same effect as above:

Clap your <EMP/>hands.

Clap your <EMP LEVEL="moderate" MARK="hands"/> hands.

3. The meaning of “immediately following text” is language dependent. English speech
synthesizers will emphasize the next word.

EMP Element that specifies a level of emphasis for the contained text (if used
as a container element) or the following word (if used as an empty
element).LEVEL="moderate" is the default attribute.

LEVEL Required attribute that indicates the level of emphasis. Values:strong ,
moderate , none , or reduced . LEVEL="moderate" is the default
attribute.

MARK Optional attribute that requests a notification when the synthesizer’s
production of audio reaches this element’s contained text. Its value is the
text to be made available when the notification occurs.
13

Java Synthesis Markup Language Specification – Version 0.5 Draft August 28, 1997

14

aries
can

and a

pitch,
cted
unds
5.3 BREAK

TheBREAK element is an empty element that is used to mark phrasing bound
in the speech output. To indicate what type of break is desired, the element
include aSIZE attribute or aMSECS attribute, but not both. ASIZE attribute
indicates a break that is relative to the characteristics of the current speech,
MSECS attribute indicates a pause for an absolute amount of time.

Where possible, the break should be defined by aSIZE rather than aMSECS,
because, in most languages, breaks are produced by special movements in
by timing changes, and often with a pause. Those factors are significantly affe
by speaking context. For example, a 300 millisecond break in fast speech so
more significant than it does in slow speech.

Examples:

<BREAK/>

<BREAK SIZE="small" MARK="145"/>

<BREAK MSECS="300"/>

BREAK Empty element that marks a break in the speech.SIZE="medium" is
the default attribute if neitherSIZE or MSECS is provided.

MSECS Optional attribute having a value of an integral number of milliseconds.

SIZE Optional attribute having one of the following relative values:none ,
small , medium, or large .

MARK Optional attribute that requests a notification when the synthesizer’s
production of audio reaches this element’s contained text. Its value is the
text to be made available when the notification occurs.

Java Speech Markup Language Specification

 of
ntrol
y are

 the
5.4 PROS

ThePROS element provides prosody control for JSML. Prosody is a collection
features of speech that includes its timing, intonation and phrasing. Proper co
of prosody can improve the understandability and naturalness of speech. The
better viewed as being “hints” to the synthesizer. Most of the attributes of the
PROS tag accept numeric values. These values are floating point numbers of
form 23, 10.8, or -0.55.

TheRATE attribute is defined in words per minute and can have values of the
following forms:

For example,

<PROS RATE="150">text at 150 words per minute</PROS>

PROS Element that specifies prosodic information for the contained text. At
least one of theRATE, PITCH, RANGE, andVOL attributes is required.

RATE Optional numeric attribute that sets the speaking rate in words per minute.
See the text following this table for the type of values allowed.

VOL Optional numeric attribute that sets the output volume on a scale of 0.0 to
1.0 where 0.0 is silence and 1.0 is maximum loudness. See the text
following this table for the type of values allowed.

PITCH Optional numeric attribute that sets the baseline pitch in Hertz. See the
text following this table for the type of values allowed.

RANGE Optional numeric attribute that sets the pitch range in Hertz. See the text
following this table for the type of values allowed.

MARK Optional attribute that requests a notification when the synthesizer’s
production of audio reaches this element’s contained text. Its value is the
text to be made available when the notification occurs.

n Sets the speaking rate to n

+n Increases the speaking rate by n

-n Decreases the speaking rate by n

+n% Increases the speaking rate by n percent

-n% Decreases the speaking rate by n percent

reset Sets the speaking rate to the default
15

Java Synthesis Markup Language Specification – Version 0.5 Draft August 28, 1997

16

A
 A

onvey

t of
ge
rge

.5%,

%,
TheVOL attribute can have values of the following forms:

ThePITCH andRANGE attributes can have values of the following forms:

Musically-inclined developers might think of pitch in semitones and octaves.
semitone rise in pitch is approximately +5.9% and a semitone drop is -5.6%.
two-semitone shift is +12.2% or -10.9%. A one-octave shift (12 semitones) is
100% or -50%, that is, doubling or halving pitch.4

While speaking a sentence, pitch moves up and down in natural speech to c
extra information about what is being said. The baseline pitch represents the
normal minimum pitch of a sentence. The pitch range represents the amoun
variation in pitch above the baseline. Setting the baseline pitch and pitch ran
can affect whether speech sounds monotonous (small range) or dynamic (la
range).

4. Percentages for 1 to 12 semitone pitch rises are +5.9%, +12.2%, +18.9%, +26.0%, +33
+41.4%, +50%, +58.7, +68.2%, +78.2%, +88.8%, +100%.
Decreases are -5.6%, -10.9%, -15.9%, -20.6%, -25.1%, -29.3%, -33.3%, -37.0%, -40.5
-43.9%, -47.0%, -50.0%.

n Sets the volume to n (between 0.0 and 1.0 inclusive)

+n Increases the volume by n (to a final value no larger than 1.0)

-n Decreases the volume by n (to a final value no smaller than 0.0)

+n% Increases the volume by n percent

-n% Decreases the volume by n percent

reset Sets the volume to the default

n Sets the baseline pitch or pitch range to n Hertz

+n Increases the baseline pitch or pitch range by n Hertz

-n Decreases the baseline pitch or pitch range by n Hertz

+n% Increases the baseline pitch or pitch range by n percent

-n% Decreases the baseline pitch or pitch range by n percent

reset Sets the baseline pitch or pitch range to the default

Java Speech Markup Language Specification

 a

 same

sers
listen
Figure 4 Baseline Pitch and Pitch Range

Normal baseline pitch for a female voice is between 140Hz and 280Hz, with
pitch range of 80Hz or more. Male voices are typically lower: baseline of 70-
140Hz, with a range of 40-80Hz.

Note that in all cases, relative values increase the portability of JSML across
speaking voices and synthesizers. Relative settings allow users to apply the
JSML to different voices (e.g., male and female voices with very different pitch
ranges) and to set a local preference for speaking rate. For example, some u
set the speaking rate very high (300 words per minute or faster) so they can
to a lot of text very quickly.

Example:

The <EMP/>ACME Trading Corporation, <PROS
RANGE="-30%">which supplies cartoon goods,</PROS> was
purchased yesterday for <PROS RATE="-20%" VOL="+15%">
$2,060,000 </PROS> by <EMP> Road Runner </EMP>
Incorporated.

Baseline

Range

0 Hz

140 Hz

220 Hz
17

Java Synthesis Markup Language Specification – Version 0.5 Draft August 28, 1997

18

e

er

iven
6.0 Other Elements
6.1 MARKER

TheMARKER element requests a notification from the speech synthesizer to th
application when theMARK is reached during the synthesizer’s production of
audio for the text.

Example:

Answer <MARKER MARK="yes_no_prompt"/> yes or no.

6.2 ENGINE

This ENGINE element allows applications to utilize a synthesizer’s special
capabilities. The element provides information, the value of theDATA attribute, to
any speech synthesizers that are identified by theENGID attribute. The
information is generally a command in an engine-specific syntax.

ENGINE is a container element that is treated specially by a speech synthesiz
that matches any engine specified in theENGID. A matching engine should
substitute theDATA for the text contained within the element. Other engines
should ignore theDATA and instead process the contained text. For example, g
the code

I am <ENGINE ENGID="Acme Voice" DATA="Mr. Acme"> someone
else</ENGINE>

MARKER Empty element that requests a notification when the synthesizer’s
production of audio reaches the marker. TheMARK attribute is required.

MARK Required attribute having a value of the text to be made available when a
marker event occurs.

ENGINE Container element that provides information from the requiredDATA
attribute to the synthesizer identified by the requiredENGID attribute

ENGID Identifier for a speech synthesizer or a comma-separated set of speech
synthesizer identifiers.

DATA Required attribute having a value of the information for the synthesizer.

MARK Optional attribute that requests a notification when the synthesizer’s
production of audio reaches this element’s contained text. Its value is the
text to be made available when the notification occurs.

Java Speech Markup Language Specification

ested.

ed
an Acme voice synthesizer will say “I am Mr. Acme” and all other speech
synthesizers will say “I am someone else.” A JSML document can contain
ENGINE elements for any number of synthesizers. These elements can be n

Less-than signs (“<”) or ampersands (“&”) in a DATA attribute must be escap
to avoid being mistaken for JSML (seeEscaping/Quoting Text on page 7).

For example;

<ENGINE ENGID="Croaker 1.0" DATA="<ribbit=1>"
MARK="frog start"> no frog sound </ENGINE>
19

	Java Speech Markup Language Specification
	1.0 Introduction
	1.1 Role of JSML

	2.0 Markup in JSML
	2.1 Basic Markup
	2.2 Container Elements
	2.2.1 Attributes
	2.2.2 Element Nesting

	2.3 Empty Elements
	2.4 Names
	2.5 White Space
	2.6 Undefined Names
	2.7 JSML Document Structure
	2.7.1 Splitting JSML Documents

	2.8 Escaping/Quoting Text
	2.9 Comments

	3.0 JSML Elements
	4.0 Structural Elements
	4.1 PARA
	4.2 Implicit Paragraph Marking
	4.3 SENT

	5.0 Production Elements
	5.1 SAYAS
	5.1.1 SUB (Substitute)
	5.1.2 CLASS
	5.1.3 PHON (Phonetic Pronunciation)
	5.1.4 Nesting

	5.2 EMP
	5.3 BREAK
	5.4 PROS

	6.0 Other Elements
	6.1 MARKER
	6.2 ENGINE

